1
|
Haque F, Akhtar E, Chanda BC, Ara A, Haq MA, Sarker P, Kippler M, Wagatsuma Y, von Ehrenstein OS, Raqib R. Association of chronic arsenic exposure with cellular immune profile in MINIMat adolescents: A birth cohort in Bangladesh. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104583. [PMID: 39481821 DOI: 10.1016/j.etap.2024.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Chronic arsenic exposure is known to affect the immune system. We aimed to evaluate the association between arsenic exposure and immune cell profile in 15 years old adolescents (n=389) in rural Bangladesh, with chronic exposure to groundwater arsenic. Single blood and urine were collected. Urinary arsenic (U-As) concentration was measured using atomic absorption spectrometry. Peripheral blood mononuclear cells (PBMC) were analyzed by flow cytometry. Non-linear association was found between U-As (median, 24.9 µg/L) and immune cells with a cut-off at U-As 20 µg/L. U-As (<20 µg/L) were significantly associated with increases in CD8+T (21 %), naïve CD8+T (42 %) and early B cells (40 %), and classical monocytes (55 %), but reduction in CD3+T cells (37%) and intermediate-monocytes (56 %). U-As (>20 µg/L) were associated with a 3 % reduction in memory B cells. Arsenic exposure was associated with altered immune cell profile in adolescents likely rendering them vulnerable to adverse health effects in later life.
Collapse
Affiliation(s)
- Farjana Haque
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Evana Akhtar
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | | | - Anjuman Ara
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Md Ahsanul Haq
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Protim Sarker
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, SE, Stockholm 171 77, Sweden
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukaba, Japan
| | | | - Rubhana Raqib
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh.
| |
Collapse
|
2
|
Wang W, Sun B, Luo D, Chen X, Yao M, Zhang A. Neurotransmitter Metabolism in Arsenic Exposure-Induced Cognitive Impairment: Emerging Insights and Predictive Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19165-19177. [PMID: 39423902 DOI: 10.1021/acs.est.4c06269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Scholars have long been interested in the association between arsenic (As) exposure and neurological disorders; however, existing systematic epidemiological investigations are insufficient and lack the inclusion of diagnostic or predictive biological markers. This study sought to evaluate the association between As exposure and cognitive impairment and identify potential biomarkers by developing predictive models. Here, we found that logarithm (Ln)-transformed urinary As concentrations were negatively linearly related to the mini-mental state examination (MMSE) score exposure-response curves. Subsequently, we identified a unique plasma neurometabolite profile in subjects exposed to As compared with the reference group. Further analyses showed that tryptophan, tyrosine, dopamine, epinephrine, and homovanillic acid were all significantly associated with both urinary As concentrations and MMSE scores. Notably, the association between As exposure and MMSE scores was partly mediated by tryptophan, tyrosine, dopamine, and epinephrine. Importantly, an unprecedented prediction model utilizing neurotransmitters was established to assess the risk of cognitive impairment due to As exposure. A 91.1% consistency rate was found between the predicted and the actual probabilities. Additionally, machine learning models also produced highly accurate predictions. Overall, this study revealed a dose-dependent cognitive decline in As-exposed adults accompanied by a disturbance in the signature of neurotransmitter metabolites, offering new predictive insights.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Daopeng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
3
|
Qi Y, Sun J, Wang H, Yu H, Jin X, Feng X, Wang Y. Effects of arsenic exposure on the PI3K/Akt/NF-κB signaling pathway in the hippocampus of offspring mice at different developmental stages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116830. [PMID: 39111240 DOI: 10.1016/j.ecoenv.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
The primary purpose of present study was to explore the effects of arsenic exposure on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear transcription factor-κB (NF-κB) signaling pathway in the hippocampus of offspring mice at different developmental stages. Sodium arsenite (NaAsO2) at doses of 0, 15, 30 or 60 mg/L administered to female mice and their pups. The nuclear translocation levels of NF-κB were assessed by EMSA. Real-time RT-PCR was used to measure Akt, NF-κB and PI3K mRNA levels. Protein expressions of PI3K, p-Akt, inhibitor kappa B kinase (IKK), p-NF-κB, protein kinase A (PKA), inhibitor kappa B (IκB), and cAMP response element-binding protein (CREB) were measured by Western blot. Results disclosed that exposure to 60 mg/L NaAsO2 could suppress NF-κB levels of nuclear translocation of postnatal day (PND) 20 and PND 40 mice. Arsenic downregulated the transcriptional and translational levels of PI3K, Akt and NF-κB. Additionally, protein expressions of p-IKK, p-IκB, PKA and p-CREB also reduced. Taken together, results of present study indicated that arsenic could downregulate the PI3K/Akt/NF-κB signaling pathway, particularly on PND 40, which might be involved in the cognitive impairments.
Collapse
Affiliation(s)
- Yingying Qi
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Zhuhai Center for Chronic Disease Control(the Third Hospital of Zhuhai), People's Republic of China
| | - Jiaqi Sun
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Huan Wang
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China
| | - Haiyang Yu
- Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China; Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Xiaoxia Jin
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China
| | - Xu Feng
- Department of Health Statistics, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, Liaoning, People's Republic of China; Key Laboratory of Environment and Population Health of the Educational Department of Liaoning Province, Shenyang, People's Republic of China.
| |
Collapse
|
4
|
Malin Igra A, Trask M, Rahman SM, Dreij K, Lindh C, Krais AM, Persson LÅ, Rahman A, Kippler M. Maternal exposure to polycyclic aromatic hydrocarbons during pregnancy and timing of pubertal onset in a longitudinal mother-child cohort in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2024; 189:108798. [PMID: 38875814 DOI: 10.1016/j.envint.2024.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND In experimental studies, several polycyclic aromatic hydrocarbons (PAHs) have shown endocrine disrupting properties, but very few epidemiological studies have examined their impact on pubertal development and results have been heterogenous. OBJECTIVE To explore if maternal PAH exposure during pregnancy was associated with the offspring's timing of pubertal onset. METHODS We studied 582 mother-daughter dyads originating from a population-based cohort in a rural setting in Bangladesh. Maternal urinary samples, collected in early pregnancy (on average, gestational week 8), were analyzed for monohydroxylated metabolites of phenanthrene (1-OH-Phe, Σ2-,3-OH-Phe, and 4-OH-Phe), fluorene (Σ2-,3-OH-Flu), and pyrene (1-OH-Pyr) using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The girls were interviewed on two separate occasions concerning date of menarche, as well as breast and pubic hair development according to Tanner. Associations were assessed using Kaplan-Meier analysis and multivariable-adjusted Cox proportional hazards regression or ordered logistic regression. RESULTS In early pregnancy, the mothers' median urinary concentrations of Σ1-,2-,3-,4-OH-Phe, Σ2-,3-OH-Flu, and 1-OH-Pyr were 3.25 ng/mL, 2.0 ng/mL, and 2.3 ng/mL respectively. At the second follow-up, 78 % of the girls had reached menarche, and the median age of menarche was 12.7 ± 0.81 years. Girls whose mothers belonged to the second and third quintiles of ΣOH-Phe metabolites had a higher rate of menarche, indicating a younger menarcheal age (HR 1.39; 95 % CI 1.04, 1.86, and HR 1.41; 95 % CI 1.05, 1.88, respectively), than girls of mothers in the lowest quintile. This trend was not observed in relation to either breast or pubic hair development. None of the other maternal urinary PAH metabolites or the sum of all thereof in early pregnancy were associated with age at menarche or pubertal stage. CONCLUSIONS Indications of non-monotonic associations of prenatal phenanthrene exposure with the daughters' age of menarche were found, warranting further investigation.
Collapse
Affiliation(s)
| | - Mercedes Trask
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Syed Moshfiqur Rahman
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christian Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Annette M Krais
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Lars-Åke Persson
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; London School of Hygiene and Tropical Medicine, London, UK
| | - Anisur Rahman
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Shaheen SO. Toxic metals and lung health: silent poisons? Thorax 2024; 79:601-602. [PMID: 38604665 DOI: 10.1136/thorax-2024-221518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
|
6
|
Ma H, Yang W, Li Y, Li J, Yang X, Chen Y, Ma Y, Sun D, Sun H. Effects of sodium arsenite exposure on behavior, ultrastructure and gene expression of brain in adult zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116107. [PMID: 38382348 DOI: 10.1016/j.ecoenv.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Arsenic, a common metal-like substance, has been demonstrated to pose potential health hazards and induce behavioral changes in humans and rodents. However, the chronic neurotoxic effects of arsenic on aquatic animals are still not fully understood. This study aimed to investigate the effects of arsenic exposure on adult zebrafish by subjecting 3-month-old zebrafish to three different sodium arsenite water concentrations: 0 μg/L (control group), 50 μg/L, and 500 μg/L, over a period of 30 days. To assess the risk associated with arsenic exposure in the aquatic environment, behavior analysis, transmission electron microscopy techniques, and quantitative real-time PCR were employed. The behavior of adult zebrafish was evaluated using six distinct tests: the mirror biting test, shoaling test, novel tank test, social preference test, social recognition test, and T maze. Following the behavioral tests, the brains of zebrafish were dissected and collected for ultrastructural examination and gene expression analysis. The results revealed that sodium arsenite exposure led to a significant reduction in aggression, cohesion, social ability, social cognition ability, learning, and memory capacity of zebrafish. Furthermore, ultrastructure and genes regulating behavior in the zebrafish brain were adversely affected by sodium arsenite exposure.
Collapse
Affiliation(s)
- Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Yang Li
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu Distinct, Nanchang, Jiangxi 330006, China.
| | - Jing Li
- Department of Electron Microscopy Center, Faculty of Basic Medical Science, Harbin Medical University, Harbin, China.
| | - Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Yunyan Chen
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| | - Yifan Ma
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China.
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| |
Collapse
|
7
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
8
|
Lumour-Mensah T, Lemos B. Defining high confidence targets of differential CpG methylation in response to in utero arsenic exposure and implications for cancer risk. Toxicol Appl Pharmacol 2024; 482:116768. [PMID: 38030093 PMCID: PMC10889851 DOI: 10.1016/j.taap.2023.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Arsenic is a relatively abundant metalloid that impacts DNA methylation and has been implicated in various adverse health outcomes including several cancers and diabetes. However, uncertainty remains about the identity of genomic CpGs that are sensitive to arsenic exposure, in utero or otherwise. Here we identified a high confidence set of CpG sites whose methylation is sensitive to in utero arsenic exposure. To do so, we analyzed methylation of infant CpGs as a function of maternal urinary arsenic in cord blood and placenta from geographically and ancestrally distinct human populations. Independent analyses of these distinct populations were followed by combination of results across sexes and populations/tissue types. Following these analyses, we concluded that both sex and tissue type are important drivers of heterogeneity in methylation response at several CpGs. We also identified 17 high confidence CpGs that were hypermethylated across sex, tissue type and population; 11 of these were located within protein coding genes. This pattern is consistent with hypotheses that arsenic increases cancer risk by inducing the hypermethylation of genic regions. This study represents an opportunity to understand consistent, reproducible patterns of epigenomic responses after in utero arsenic exposure and may aid towards novel biomarkers or signatures of arsenic exposure. Identifying arsenic-responsive sites can also contribute to our understanding of the biological mechanisms by which arsenic exposure can affect biological function and increase risk of cancer and other age-related diseases.
Collapse
Affiliation(s)
- Tabitha Lumour-Mensah
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Bernardo Lemos
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America; R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
9
|
Howe CG, Armstrong DA, Muse ME, Gilbert-Diamond D, Gui J, Hoen AG, Palys TJ, Barnaby RL, Stanton BA, Jackson BP, Christensen BC, Karagas MR. Periconceptional and Prenatal Exposure to Metals and Extracellular Vesicle and Particle miRNAs in Human Milk: A Pilot Study. EXPOSURE AND HEALTH 2023; 15:731-743. [PMID: 38074282 PMCID: PMC10707483 DOI: 10.1007/s12403-022-00520-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/30/2024]
Abstract
Human milk is a rich source of microRNAs (miRNAs), which can be transported by extracellular vesicles and particles (EVPs) and are hypothesized to contribute to maternal-offspring communication and child development. Environmental contaminant impacts on EVP miRNAs in human milk are largely unknown. In a pilot study of 54 mother-child pairs from the New Hampshire Birth Cohort Study, we examined relationships between five metals (arsenic, lead, manganese, mercury, and selenium) measured in maternal toenail clippings, reflecting exposures during the periconceptional and prenatal periods, and EVP miRNA levels in human milk. 798 miRNAs were profiled using the NanoString nCounter platform; 200 miRNAs were widely detectable and retained for downstream analyses. Metal-miRNA associations were evaluated using covariate-adjusted robust linear regression models. Arsenic exposure during the periconceptional and prenatal periods was associated with lower total miRNA content in human milk EVPs (PBonferroni < 0.05). When evaluating miRNAs individually, 13 miRNAs were inversely associated with arsenic exposure, two in the periconceptional period and 11 in the prenatal period (PBonferroni < 0.05). Other metal-miRNA associations were not statistically significant after multiple testing correction (PBonferroni ≥ 0.05). Many of the arsenic-associated miRNAs are involved in lactation and have anti-inflammatory properties in the intestine and tumor suppressive functions in breast cells. Our findings raise the possibility that periconceptional and prenatal arsenic exposure may reduce levels of multiple miRNAs in human milk EVPs. However, larger confirmatory studies, which can apply environmental mixture approaches, evaluate potential effect modifiers of these relationships, and examine possible downstream consequences for maternal and child health and breastfeeding outcomes, are needed.
Collapse
Affiliation(s)
- Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - David A. Armstrong
- Department of Dermatology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, USA
- Research Service, VA Medical Center, 215 N Main St, White River Junction, VT, USA
| | - Meghan E. Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Thomas J. Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Roxanna L. Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 66 College St, Hanover, NH, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 66 College St, Hanover, NH, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, 6105 Sherman Fairchild Hall, Hanover, NH, USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| |
Collapse
|
10
|
Khan Khanzada A, Al-Hazmi HE, Śniatała B, Muringayil Joseph T, Majtacz J, Abdulrahman SAM, Albaseer SS, Kurniawan TA, Rahimi-Ahar Z, Habibzadeh S, Mąkinia J. Hydrochar-nanoparticle integration for arsenic removal from wastewater: Challenges, possible solutions, and future horizon. ENVIRONMENTAL RESEARCH 2023; 238:117164. [PMID: 37722579 DOI: 10.1016/j.envres.2023.117164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.
Collapse
Affiliation(s)
- Aisha Khan Khanzada
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland.
| | - Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Saeed S Albaseer
- Department of Evolutionary Ecology & Environmental Toxicology, Biologicum, Goethe University Frankfurt, 60438, Frankfurt Am Main, Germany
| | | | - Zohreh Rahimi-Ahar
- Department of Chemical Engineering, Engineering Faculty, Velayat University, Iranshahr, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran, 1599637111, Iran
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| |
Collapse
|
11
|
Yamauchi H, Hitomi T, Takata A. Evaluation of arsenic metabolism and tight junction injury after exposure to arsenite and monomethylarsonous acid using a rat in vitro blood-Brain barrier model. PLoS One 2023; 18:e0295154. [PMID: 38032905 PMCID: PMC10688625 DOI: 10.1371/journal.pone.0295154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Experimental verification of impairment to cognitive abilities and cognitive dysfunction resulting from inorganic arsenic (iAs) exposure in children and adults is challenging. This study aimed to elucidate the effects of arsenite (iAsIII; 1, 10 and 20 μM) or monomethylarsonous acid (MMAIII; 0.1, 1 and 2 μM) exposure on arsenic metabolism and tight junction (TJ) function in the blood-brain barrier (BBB) using a rat in vitro-BBB model. The results showed that a small percentage (~15%) of iAsIII was oxidized or methylated within the BBB, suggesting the persistence of toxicity as iAsIII. Approximately 65% of MMAIII was converted to low-toxicity monomethylarsonic acid and dimethylarsenic acid via oxidation and methylation. Therefore, it is estimated that MMAIII causes TJ injury to the BBB at approximately 35% of the unconverted level. TJ injury of BBB after iAsIII or MMAIII exposure could be significantly assessed from decreased expression of claudin-5 and decreased transepithelial electrical resistance values. TJ injury in BBB was found to be significantly affected by MMAIII than iAsIII. Relatedly, the penetration rate in the BBB by 24 h of exposure was higher for MMAIII (53.1% ± 2.72%) than for iAsIII (43.3% ± 0.71%) (p < 0.01). Exposure to iAsIII or MMAIII induced an antioxidant stress response, with concentration-dependent increases in the expression of nuclear factor-erythroid 2-related factor 2 in astrocytes and heme oxygenase-1 in a group of vascular endothelial cells and pericytes, respectively. This study found that TJ injury at the BBB is closely related to the chemical form and species of arsenic; we believe that elucidation of methylation in the brain is essential to verify the impairment of cognitive abilities and cognitive dysfunction caused by iAs exposure.
Collapse
Affiliation(s)
- Hiroshi Yamauchi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ayako Takata
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
12
|
Soler-Blasco R, Harari F, Riutort-Mayol G, Murcia M, Lozano M, Irizar A, Marina LS, Zubero MB, Fernández-Jimenez N, Braeuer S, Ballester F, Llop S. Influence of genetic polymorphisms on arsenic methylation efficiency during pregnancy: Evidence from a Spanish birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165740. [PMID: 37495132 DOI: 10.1016/j.scitotenv.2023.165740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a widespread toxic metalloid. It is well-known that iAs metabolism and its toxicity are mediated by polymorphisms in AS3MT and other genes. However, studies during pregnancy are scarce. We aimed to examine the role of genetic polymorphisms in AS3MT, GSTO2, N6AMT1, MTHFR, MTR, FTCD, CBS, and FOLH1 in iAs methylation efficiency during pregnancy. METHODS The study included 541 pregnant participants from the INMA (Environment and Childhood) Spanish cohort. Using high-performance liquid chromatography coupled to inductively coupled plasma-tandem mass, we measured arsenic (iAs and the metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in urine samples collected during the first trimester. iAs methylation efficiency was determined based on relative concentrations of the As metabolites in urine (%MMA, %DMA, and %iAs). Thirty-two single nucleotide polymorphisms (SNPs) in nine genes were determined in maternal DNA; AS3MT haplotypes were inferred. We assessed the association between genotypes/haplotypes and maternal As methylation efficiency using multivariate linear regression models. RESULTS The median %MMA and %DMA were 5.3 %, and 89 %, respectively. Ancestral alleles of AS3MT SNPs (rs3740393, rs3740390, rs11191453, and rs11191454) were significantly associated with higher %MMA, %iAs, and lower %DMA. Pregnant participants with zero copies of the GGCTTCAC AS3MT haplotype presented a higher %MMA. Statistically significant associations were also found for the FOLH1 SNP rs202676 (β 0.89 95%CI: 0.24, 1.55 for carriers of the G allele vs. the A allele). CONCLUSIONS Our study shows that ancestral alleles in AS3MT polymorphisms were associated with lower As methylation efficiency in early pregnancy and suggests that FOLH1 also plays a role in As methylation efficiency. These results support the hypothesis that As metabolism is multigenic, being a key element for identifying susceptible populations.
Collapse
Affiliation(s)
- Raquel Soler-Blasco
- Department of Nursing, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Florencia Harari
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Mario Murcia
- Health Policy Planning and Evaluation Service, Conselleria de Sanitat Universal i Salut Pública, Generalitat Valenciana, Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Bizkaia, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Miren Begoña Zubero
- Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Bizkaia, Spain
| | - Nora Fernández-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| | - Simone Braeuer
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ferran Ballester
- Department of Nursing, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
13
|
Dai Y, Lu H, Zhang J, Ding J, Wang Z, Zhang B, Qi X, Chang X, Wu C, Zhou Z. Sex-specific associations of maternal and childhood urinary arsenic levels with emotional problems among 6-year-age children: Evidence from a longitudinal cohort study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115658. [PMID: 37925797 DOI: 10.1016/j.ecoenv.2023.115658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Arsenic exposure has been linked to neurobehavior development disorders among children in cross-sectional studies, but there is little information on the effects of prenatal and childhood arsenic exposure on childhood behavior problem, especially emotional problems. OBJECTIVE To explore the relationship between prenatal and childhood arsenic exposure and behavior problems among six-year-old children. METHODS 389 mother-child pairs from a longitudinal birth cohort were enrolled in the study. The concentrations of arsenic in maternal and 6-year-old children's urine were measured using inductively coupled plasma mass spectrometry (ICP-MS). Neurobehavioral development in 6-year-old children was assessed by Child Behavior Checklist (CBCL). Generalized linear regression models were used to relate arsenic exposure to the score of different domains in CBCL. RESULTS The median concentrations of maternal and 6-year-old children's urinary arsenic were 22.22 and 33.86 μg/L, respectively. After adjusting for potential covariates, natural logarithm transformed concurrent urinary arsenic levels were significantly associated with scores of anxious and depressed problems in 6-year-old girls (β = 0.71, 95% CI: 0.12-1.31, p = 0.018). Furthermore, in terms of the trajectory of arsenic exposure, compared with the "consistently low" group, the "low to high" group (β = 2.73, 95% CI: -3.99 to 9.45, p = 0.425) had a greater effect on total score of CBCL than "high to low" group (β = -0.93, 95% CI: -7.22 to 5.36, p = 0.771) in girls, although insignificant. CONCLUSIONS Our results suggested that concurrent arsenic exposure might have an adverse effect of emotional status in girls. Further studies are needed to verify the findings and explore the mechanisms of the sex-specific association.
Collapse
Affiliation(s)
- Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Hanyu Lu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
14
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
15
|
Soler-Blasco R, Llop S, Riutort-Mayol G, Lozano M, Vallejo-Ortega J, Murcia M, Ballester F, Irizar A, Andiarena A, Fernandez-Jimenez N, Braeuer S, Harari F. Genetic Susceptibility to Neurotoxicity Related to Prenatal Inorganic Arsenic Exposure in Young Spanish Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15366-15378. [PMID: 37787746 DOI: 10.1021/acs.est.3c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
We explored the influence of child and maternal single nucleotide polymorphisms (SNPs) in genes related to neurological function and arsenic metabolism (i.e., ABCA1, ABCB1, PON1, CYP3A, BDNF, GSTP1, MT2A, and APOE as well as AS3MT) on the association between prenatal arsenic (As) exposure and methylation efficiency and neuropsychological development in 4-5-year-old children. Participants were 549 mother-child pairs from the INMA (Environment and Childhood) Spanish Project. We measured inorganic arsenic (iAs) and the metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in urine samples collected during pregnancy. Neuropsychological development was assessed at the age of 4-5 years using the McCarthy Scales of Children's Abilities (MSCA). Several SNPs were determined in maternal and child DNA; AS3MT and APOE haplotypes were inferred. The median ∑As (sum of iAs, DMA, and MMA) was 7.08 μg/g creatinine. Statistically significant interactions for children's APOE haplotype were observed. Specifically, ε4-carrier children had consistently lower MSCA scores in several scales with increasing ∑As and MMA concentrations. These results provide evidence regarding the neurotoxic effects of early life exposure to As, observing that the APOE ε4 allele could make children more vulnerable to this exposure.
Collapse
Affiliation(s)
- Raquel Soler-Blasco
- Department of Nursing, Universitat de València, 46010 Valencia, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 46020 Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, 46010 Valencia, Spain
| | - Jorge Vallejo-Ortega
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 46020 Valencia, Spain
| | - Mario Murcia
- Health Policy Planning and Evaluation Service, Conselleria de Sanitat Universal i Salut Pública, Generalitat Valenciana, 46010 Valencia, Spain
| | - Ferran Ballester
- Department of Nursing, Universitat de València, 46010 Valencia, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Amaia Irizar
- Biodonostia Health Research Institute, 20014 San Sebastian, Spain
- Department of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Ainara Andiarena
- Biodonostia Health Research Institute, 20014 San Sebastian, Spain
- Faculty of Psychology, University of the Basque Country, UPV/EHU, 20018 San Sebastian, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), 48903 Leioa, Spain
| | - Simone Braeuer
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, Vienna 1090, Austria
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Florencia Harari
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| |
Collapse
|
16
|
Smith TJS, Navas-Acien A, Baker S, Kok C, Kruczynski K, Avolio LN, Pisanic N, Randad PR, Fry RC, Goessler W, van Geen A, Buckley JP, Rahman MH, Ali H, Haque R, Shaikh S, Siddiqua TJ, Schulze K, West KP, Labrique AB, Heaney CD. Anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. ENVIRONMENTAL RESEARCH 2023; 234:116453. [PMID: 37343752 PMCID: PMC10518461 DOI: 10.1016/j.envres.2023.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Arsenic methylation converts inorganic arsenic (iAs) to monomethyl (MMA) and dimethyl (DMA) arsenic compounds. Body mass index (BMI) has been positively associated with arsenic methylation efficiency (higher DMA%) in adults, but evidence in pregnancy is inconsistent. We estimated associations between anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. METHODS We enrolled pregnant women (n = 784) (median [IQR] gestational week: 14 [13, 15]) in Gaibandha District, Bangladesh from 2018 to 2019. Anthropometric measures were BMI, subscapular and triceps skinfold thicknesses, and mid-upper arm circumference (MUAC), fat area (MUAFA), and muscle area (MUAMA). Arsenic methylation measures were urinary iAs, MMA, and DMA divided by their sum and multiplied by 100 (iAs%, MMA%, and DMA%), primary methylation index (MMA/iAs; PMI), and secondary methylation index (DMA/MMA; SMI). In complete cases (n = 765 [97.6%]), we fitted linear, beta, and Dirichlet regression models to estimate cross-sectional differences in iAs%, MMA%, DMA%, PMI, and SMI per IQR-unit difference in each anthropometric measure, adjusting for drinking water arsenic, age, gestational age, education, living standards index, and plasma folate, vitamin B12, and homocysteine. RESULTS Median (IQR) BMI, subscapular skinfold thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 21.5 (19.4, 23.8) kg/m2, 17.9 (13.2, 24.2) mm, 14.2 (10.2, 18.7) mm, 25.9 (23.8, 28.0) cm, 15.3 (10.5, 20.3) cm2, and 29.9 (25.6, 34.2) cm2, respectively. Median (IQR) iAs%, MMA%, DMA%, PMI, and SMI were 12.0 (9.3, 15.2)%, 6.6 (5.3, 8.3)%, 81.0 (77.1, 84.6)%, 0.6 (0.4, 0.7), and 12.2 (9.3, 15.7), respectively. In both unadjusted and adjusted linear models, all anthropometric measures were negatively associated with iAs%, MMA%, and PMI and positively associated with DMA% and SMI. For example, fully adjusted mean differences (95% CI) in DMA% per IQR-unit difference in BMI, subscapular skinfolds thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 1.72 (1.16, 2.28), 1.58 (0.95, 2.21), 1.74 (1.11, 2.37), 1.45 (0.85, 2.06), 1.70 (1.08, 2.31), and 0.70 (0.13, 1.27) pp, respectively. CONCLUSIONS Anthropometric measures were positively associated with arsenic methylation efficiency among pregnant women in the early second trimester.
Collapse
Affiliation(s)
- Tyler J S Smith
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Sarah Baker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Caryn Kok
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kate Kruczynski
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lindsay N Avolio
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nora Pisanic
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pranay R Randad
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Graz, Austria
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Jessie P Buckley
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Md Hafizur Rahman
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Hasmot Ali
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Rezwanul Haque
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Saijuddin Shaikh
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Towfida J Siddiqua
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Kerry Schulze
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keith P West
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alain B Labrique
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christopher D Heaney
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
17
|
Kampouri M, Gustin K, Stråvik M, Barman M, Sandin A, Sandberg AS, Wold AE, Vahter M, Kippler M. Associations of gestational and early-life exposure to toxic metals and fluoride with a diagnosis of food allergy or atopic eczema at 1 year of age. ENVIRONMENT INTERNATIONAL 2023; 178:108071. [PMID: 37422976 DOI: 10.1016/j.envint.2023.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Studies have indicated that early-life exposure to toxic metals and fluoride affects the immune system, but evidence regarding their role in allergic disease development is scarce. We aimed to evaluate the relations of exposure to such compounds in 482 pregnant women and their infants (4 months of age) with food allergy and atopic eczema diagnosed by a paediatric allergologist at 1 year of age within the Swedish birth-cohort NICE (Nutritional impact on Immunological maturation during Childhood in relation to the Environment). Urinary cadmium and erythrocyte cadmium, lead, and mercury concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS), urinary inorganic arsenic metabolites by ICP-MS after separation by ion exchange chromatography, and urinary fluoride by an ion-selective electrode. The prevalence of food allergy and atopic eczema was 8 and 7%, respectively. Gestational urinary cadmium, reflecting chronic exposure, was associated with increased odds of infant food allergy (OR [95% CI]: 1.34 [1.09, 1.66] per IQR [0.08 μg/L]). Both gestational and infant urinary fluoride were associated, albeit at a statistically non-significant level, with increased atopic eczema odds (1.48 [0.98, 2.25], 1.36 [0.95, 1.95], per doubling, respectively). By contrast, gestational and infant erythrocyte lead was associated with decreased odds of atopic eczema (0.48 [0.26, 0.87] per IQR [6.6 μg/kg] and 0.38 [0.16, 0.91] per IQR [5.94 μg/kg], respectively), and infant lead with decreased odds of food allergy (0.39 [0.16, 0.93] per IQR [5.94 μg/kg]). Multivariable adjustment had marginal impact on the estimates above. After additional adjustment for fish intake biomarkers, the methylmercury associated atopic-eczema odds were considerably increased (1.29 [0.80, 2.06] per IQR [1.36 μg/kg]). In conclusion, our results indicate that gestational cadmium exposure might be associated with food allergy at 1 year of age and, possibly, early-life exposure to fluoride with atopic eczema. Further prospective and mechanistic studies are needed to establish causality.
Collapse
Affiliation(s)
- Mariza Kampouri
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Gustin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mia Stråvik
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Malin Barman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, Sweden
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Endres K, Zacher T, Richards F, Bear Robe L, Powers M, Yracheta J, Harvey D, Best LG, Red Cloud R, Black Bear A, Ristau S, Aurand D, Skinner L, Perin J, Cuny C, Gross M, Thomas ED, Rule A, Schwab K, Moulton LH, O'Leary M, Navas-Acien A, George CM. Behavioral determinants of arsenic-safe water use among Great Plains Indian Nation private well users: results from the Community-Led Strong Heart Water Study Arsenic Mitigation Program. Environ Health 2023; 22:42. [PMID: 37183246 PMCID: PMC10183246 DOI: 10.1186/s12940-023-00965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/11/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The objective of this study was to evaluate the behavioral determinants associated with exclusive use of arsenic-safe water in the community-led Strong Heart Water Study (SHWS) arsenic mitigation program. METHODS The SHWS is a randomized controlled trial of a community-led arsenic mitigation program designed to reduce arsenic exposure among private well users in American Indian Great Plains communities. All households received point-of-use (POU) arsenic filters installed at baseline and were followed for 2 years. Behavioral determinants selected were those targeted during the development of the SHWS program, and were assessed at baseline and follow-up. RESULTS Among participants, exclusive use of arsenic-safe water for drinking and cooking at follow-up was associated with higher self-efficacy for accessing local resources to learn about arsenic (OR: 5.19, 95% CI: 1.48-18.21) and higher self-efficacy to resolve challenges related to arsenic in water using local resources (OR: 3.11, 95% CI: 1.11-8.71). Higher commitment to use the POU arsenic filter faucet at baseline was also a significant predictor of exclusive arsenic-safe water use for drinking (OR: 32.57, 95% CI: 1.42-746.70) and cooking (OR: 15.90, 95% CI: 1.33-189.52) at follow-up. From baseline to follow-up, the SHWS program significantly increased perceived vulnerability to arsenic exposure, self-efficacy, descriptive norms, and injunctive norms. Changing one's arsenic filter cartridge after installation was associated with higher self-efficacy to obtain arsenic-safe water for drinking (OR: 6.22, 95% CI: 1.33-29.07) and cooking (OR: 10.65, 95% CI: 2.48-45.68) and higher perceived vulnerability of personal health effects (OR: 7.79, 95% CI: 1.17-51.98) from drinking arsenic-unsafe water. CONCLUSIONS The community-led SHWS program conducted a theory-driven approach for intervention development and evaluation that allowed for behavioral determinants to be identified that were associated with the use of arsenic safe water and changing one's arsenic filter cartridge. These results demonstrate that theory-driven, context-specific formative research can influence behavior change interventions to reduce water arsenic exposure. The SHWS can serve as a model for the design of theory-driven intervention approaches that engage communities to reduce arsenic exposure. TRIAL REGISTRATION The SHWS is registered with ClinicalTrials.gov (Identifier: NCT03725592).
Collapse
Affiliation(s)
- Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tracy Zacher
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | | | - Lisa Bear Robe
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Martha Powers
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - David Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Indian Health Service, Rockville, MD, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | | | | | - Steve Ristau
- Mid Continent Testing Labs, Inc., Rapid City, SD, USA
| | - Dean Aurand
- Mid Continent Testing Labs, Inc., Rapid City, SD, USA
| | - Leslie Skinner
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Jamie Perin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christa Cuny
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Marie Gross
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Elizabeth D Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kellogg Schwab
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcia O'Leary
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
19
|
Sprong C, Te Biesebeek JD, Chatterjee M, Wolterink G, van den Brand A, Blaznik U, Christodoulou D, Crépet A, Hamborg Jensen B, Sokolić D, Rauscher-Gabernig E, Ruprich J, Kortenkamp A, van Klaveren J. A case study of neurodevelopmental risks from combined exposures to lead, methyl-mercury, inorganic arsenic, polychlorinated biphenyls, polybrominated diphenyl ethers and fluoride. Int J Hyg Environ Health 2023; 251:114167. [PMID: 37149958 DOI: 10.1016/j.ijheh.2023.114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
We performed a mixture risk assessment (MRA) case study of dietary exposure to the food contaminants lead, methylmercury, inorganic arsenic (iAs), fluoride, non-dioxin-like polychlorinated biphenyls (NDL-PCBs) and polybrominated diphenyl ethers (PBDEs), all substances associated with declines in cognitive abilities measured as IQ loss. Most of these chemicals are frequently measured in human biomonitoring studies. A component-based, personalised modified reference point index (mRPI) approach, in which we expressed the exposures and potencies of our chosen substances as lead equivalent values, was applied to perform a MRA for dietary exposures. We conducted the assessment for four different age groups (toddlers, children, adolescents, and women aged 18-45 years) in nine European countries. Populations in all countries considered exceeded combined tolerable levels at median exposure levels. NDL-PCBs in fish, other seafood and dairy, lead in grains and fruits, methylmercury in fish and other seafoods, and fluoride in water contributed most to the combined exposure. We identified uncertainties for the likelihood of co-exposure, assessment group membership, endpoint-specific reference values (ESRVs) based on epidemiological (lead, methylmercury, iAs, fluoride and NDL-PCBs) and animal data (PBDE), and exposure data. Those uncertainties lead to a complex pattern of under- and overestimations, which would require probabilistic modelling based on expert knowledge elicitation for integration of the identified uncertainties into an overall uncertainty estimate. In addition, the identified uncertainties could be used to refine future MRA for cognitive decline.
Collapse
Affiliation(s)
- Corinne Sprong
- RIVM, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Jan Dirk Te Biesebeek
- RIVM, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Mousumi Chatterjee
- Brunel University London, Centre for Pollution Research and Policy, Uxbridge, UB8 3PH, United Kingdom
| | - Gerrit Wolterink
- RIVM, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Annick van den Brand
- RIVM, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Urska Blaznik
- National Institute of Public Health, Environmental Health Centre, Trubarjeva 2, Ljubljana, Slovenia
| | | | - Amélie Crépet
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, 947001, Maisons-Alfort, France
| | - Bodil Hamborg Jensen
- Technical University of Denmark, National Food Institute, Research group for Chemical Risk Assessment and GMO, Kemitorvet, Building 201, DK 2800, Lyngby, Denmark
| | - Darja Sokolić
- HAPIH, Croatian Agency for Agriculture and Food, Vinkovačka cesta 63C, 31000, Osijek, Croatia
| | - Elke Rauscher-Gabernig
- AGES, Austrian Agency for Health and Food Safety, Spargelfeldstraße 191, 1220, Vienna, Austria
| | - Jiri Ruprich
- National Institute of Public Health in Prague, Centre for Health, Nutrition and Food, Brno, Czech Republic
| | - Andreas Kortenkamp
- Brunel University London, Centre for Pollution Research and Policy, Uxbridge, UB8 3PH, United Kingdom
| | - Jacob van Klaveren
- RIVM, National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, the Netherlands
| |
Collapse
|
20
|
Chen H, Zhang H, Wang X, Wu Y, Zhang Y, Chen S, Zhang W, Sun X, Zheng T, Xia W, Xu S, Li Y. Prenatal arsenic exposure, arsenic metabolism and neurocognitive development of 2-year-old children in low-arsenic areas. ENVIRONMENT INTERNATIONAL 2023; 174:107918. [PMID: 37043832 DOI: 10.1016/j.envint.2023.107918] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND There is limited evidence on the effects of arsenic species and metabolic capacity on child neurodevelopment, particularly at low levels. Further, little is known about the critical window of exposure. OBJECTIVE To estimate the associations of arsenic exposure and arsenic metabolism in different pregnancy periods with neurodevelopment of two-year-old children. METHODS Concentrations of arsenobetaine (AsB), arsenite, arsenate, monomethyl arsenic acid (MMA), and dimethyl arsenic acid (DMA) in urine samples collected in three trimesters from 1006 mothers were measured using HPLC - ICPMS. Inorganic arsenic (iAs) was calculated as the sum of arsenite and arsenate. Total arsenic (tAs) was calculated as the sum of iAs, MMA and DMA. Child neurodevelopment was assessed with the Bayley Scales of Infant Development. RESULTS The geometric mean (GM) of SG-adjusted tAs in the first, second, third trimester was 16.37, 12.94, 13.04 μg/L, respectively. The mental development index (MDI) score was inversely associated with iAs and tAs. Compared to the 1st quartile, the MDI score decreased 0.43 (95%CI: -4.22, 3.36) for the 2nd, 6.50 (95%CI: -11.73, -1.27) for the 3rd, 5.42 (95%CI: -10.74, -0.10) for the 4th quartiles of iAs, and decreased 4.03 (95%CI: -7.90, -0.15) in the 4th quartile of tAs. In trimester-specific models, negative associations of DMA [-1.94 (95%CI: -3.18, -0.71)] and tAs [-1.61 (95%CI: -3.02, -0.20)] with the psychomotor development index (PDI) were only observed in 1st trimester. CONCLUSIONS Our study found inverse associations between prenatal arsenic exposure, especially in early pregnancy, and neurodevelopment of children at two years old, even at low exposure levels.
Collapse
Affiliation(s)
- Huan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan 430023, PR China
| | - Xin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yi Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yiqiong Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Silan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
21
|
Wang YH, Wang YQ, Yu XG, Lin Y, Liu JX, Wang WY, Yan CH. Chronic environmental inorganic arsenic exposure causes social behavioral changes in juvenile zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161296. [PMID: 36592900 DOI: 10.1016/j.scitotenv.2022.161296] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is a metalloid commonly found worldwide. Environmental As exposure may cause potential health hazards and behavioral changes in humans and animals. However, the effects of environmental As concentrations on social behavior, especially during the juvenile stage, are unclear. In this study, we observed behavioral changes in juvenile zebrafish after 28 days of exposure to inorganic As (NaAsO2 100 and 500 ppb) in water, especially anxiety and social deficits. Additionally, the level of oxidative stress in the zebrafish brain after As treatment increased, the content of dopamine (DA) decreased, and the transcription level of genes involved in DA metabolism with the activity of monoamine oxidase (MAO) increased. Oxidative stress is a recognized mechanism of nerve damage induced by As exposure. The zebrafish were exposed to N-acetylcysteine (NAC) to reduce As exposure-induced oxidative stress. The results showed improvements in social behavior, DA content, MAO activity, and gene transcription in zebrafish. In conclusion, environmental As exposure can induce behavioral abnormalities, such as anxiety and social deficits in zebrafish, which may be caused by As-induced oxidative stress altering gene transcription levels, causing an increase in MAO activity and a decrease in DA.
Collapse
Affiliation(s)
- Yi-Hong Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ya-Qian Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Gang Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wei-Ye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Zacher T, Endres K, Richards F, Robe LB, Powers M, Yracheta J, Harvey D, Best LG, Red Cloud R, Black Bear A, Ristau S, Aurand D, Skinner L, Cuny C, Gross M, Thomas E, Rule A, Schwab KJ, O'Leary M, Moulton LH, Navas-Acien A, George CM. Evaluation of a water arsenic filter in a participatory intervention to reduce arsenic exposure in American Indian communities: The Strong Heart Water Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160217. [PMID: 36410482 PMCID: PMC10373100 DOI: 10.1016/j.scitotenv.2022.160217] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Many rural populations, including American Indian communities, that use private wells from groundwater for their source of drinking and cooking water are disproportionately exposed to elevated levels of arsenic. However, programs aimed at reducing arsenic in American Indian communities are limited. The Strong Heart Water Study (SHWS) is a randomized controlled trial aimed at reducing arsenic exposure among private well users in American Indian Northern Great Plains communities. The community-led SHWS program installed point-of-use (POU) arsenic filters in the kitchen sink of households, and health promoters delivered arsenic health communication programs. In this study we evaluated the efficacy of these POU arsenic filters in removing arsenic during the two-year installation period. Participants were randomized into two arms. In the first arm households received a POU arsenic filter, and 3 calls promoting filter use (SHWS mobile health (mHealth) & filter arm). The second arm received the same filter and phone calls, and 3 in-person home visits and 3 Facebook messages (SHWS intensive arm) for program delivery. Temporal variability in water arsenic concentrations from the main kitchen faucet was also evaluated. A total of 283 water samples were collected from 50 households with private wells from groundwater (139 filter and 144 kitchen faucet samples). Ninety-three percent of households followed after baseline had filter faucet water arsenic concentrations below the arsenic maximum contaminant level of 10 μg/L at the final visit during our 2 year study period with no difference between study arms (98 % in the intensive arm vs. 94 % in the mHealth & filter arm). No significant temporal variation in kitchen arsenic concentration was observed over the study period (intraclass correlation coefficient = 0.99). This study demonstrates that POU arsenic filters installed for the community participatory SHWS program were effective in reducing water arsenic concentration in study households in both arms, even with delivery of the POU arsenic filter and mHealth program only. Furthermore, we observed limited temporal variability of water arsenic concentrations from kitchen faucet samples collected over time from private wells in our study setting.
Collapse
Affiliation(s)
- Tracy Zacher
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Kelly Endres
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lisa Bear Robe
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Martha Powers
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - David Harvey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Indian Health Services, Rockville, MD, USA
| | - Lyle G Best
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Reno Red Cloud
- Environmental Resource Department, Oglala Sioux Tribe, USA
| | | | - Steve Ristau
- Mid Continent Testing Labs, Inc, Rapid City, SD, USA
| | - Dean Aurand
- Mid Continent Testing Labs, Inc, Rapid City, SD, USA
| | - Leslie Skinner
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Christa Cuny
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Marie Gross
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Elizabeth Thomas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kellogg J Schwab
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcia O'Leary
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, NY, New York, USA
| | - Christine Marie George
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
23
|
Tong J, Liang C, Tao S, Geng M, Gan H, Yan S, Cao H, Xie L, Huang K, Tao F, Wu X. Association of maternal and cord blood barium exposure with preschoolers' intellectual function: Evidence from the Ma'anshan Birth Cohort (MABC) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160029. [PMID: 36356737 DOI: 10.1016/j.scitotenv.2022.160029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Barium is widely involved in drilling fluids, plastics, and personal care products. Although the neurodevelopmental toxicity of barium has been reported in animals, human data are scarce. This study aimed to investigate the effect of prenatal barium concentrations on preschoolers' intellectual function based on a birth cohort study. METHODS A total of 2164 mother-child pairs from Ma'anshan city, China were included in this study. We measured serum barium concentrations in the first, second, and third trimesters and in cord blood. Intellectual function in children aged 3.0-6.0 years old was assessed using the Chinese version of the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV). Linear regression models were used to analyze the association between averaged barium exposure during pregnancy and intellectual function. Multiple informant models were performed to jointly test for differences in associations between four repeated barium exposure and intellectual function. All models were further stratified by child sex. RESULTS Collectively, we observed significant inverse associations of average maternal barium exposure levels with verbal comprehension index (VCI), visual spatial index (VSI), processing speed index (PSI), and full-scale intelligence quotient (FSIQ) scores. Maternal serum log10-transformed barium levels in the second trimester were inversely associated with VCI [-2.33 (95%CI: -4.02, -0.64)], VSI [-2.30 (95%CI: -4.08, -0.52)], working memory index (WMI) [-2.09 (95%CI: -3.71, -0.46)], PSI [-2.23 (95%CI: -3.82, -0.65)], and FSIQ scores [-2.73 (95%CI: -4.23, -1.22)]. Prenatal barium exposure was inversely associated with VCI, VSI, WMI, PSI, and FSIQ in girls, except for the fluid reasoning index (FRI). Additionally, inverse associations were found between prenatal barium exposure and VSI, PSI, and FSIQ in boys. CONCLUSIONS Prenatal barium exposure had detrimental effects on intellectual function in preschoolers and girls drove these inverse associations more than boys. The second trimester may be the critical window of neurotoxicity to barium exposure.
Collapse
Affiliation(s)
- Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Chunmei Liang
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Shuman Tao
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Menglong Geng
- MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Center, Ma'anshan 243011, Anhui, China
| | - Hui Cao
- Ma'anshan Maternal and Child Health Center, Ma'anshan 243011, Anhui, China
| | - Liangliang Xie
- Ma'anshan Maternal and Child Health Center, Ma'anshan 243011, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei 230032, Anhui, China.
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
24
|
Malin Igra A, Rahman A, Johansson AL, Pervin J, Svefors P, Arifeen SE, Vahter M, Persson LÅ, Kippler M. Early Life Environmental Exposure to Cadmium, Lead, and Arsenic and Age at Menarche: A Longitudinal Mother-Child Cohort Study in Bangladesh. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27003. [PMID: 36729392 PMCID: PMC9894154 DOI: 10.1289/ehp11121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Several metals act as endocrine disruptors, but there are few large longitudinal studies about associations with puberty onset. OBJECTIVES We evaluated whether early life cadmium, lead, and arsenic exposure was associated with timing of menarche. METHODS In a mother-child cohort in rural Bangladesh (n=935), the exposure was assessed by concentrations in maternal erythrocytes in early pregnancy and in girls' urine at 5 and 10 years of age using inductively coupled plasma mass spectrometry. The girls were interviewed twice, at average ages 13.3 [standard deviation (SD)=0.43] and 13.8 (SD=0.43) y, and the date of menarche, if present, was recorded. Associations were assessed using Kaplan-Meier analysis and multivariable-adjusted Cox regression. RESULTS In total, 77% of the girls (n=717) had reached menarche by the second follow-up. The median age of menarche among all girls was 13.0 y (25th-75th percentiles: 12.4-13.7 y). At 10 years of age, median urinary cadmium was 0.25μg/L (5th-95th percentiles: 0.087-0.72μg/L), lead 1.6μg/L (0.70-4.2μg/L), and arsenic 54μg/L (19-395μg/L). Given the same age, girls in the highest quartile of urinary cadmium at 5 and 10 years of age had a lower rate of menarche than girls in the lowest quartile, with an adjusted hazard ratio of (HR) 0.80 (95% CI: 0.62, 1.01) at 5 years of age, and 0.77 (95% CI: 0.60, 0.98) at 10 years of age. This implies that girls in the highest cadmium exposure quartile during childhood had a higher age at menarche. Comparing girls in the highest to the lowest quartile of urinary lead at 10 years of age, the former had a higher rate of menarche [adjusted HR = 1.23 (95% CI: 0.97, 1.56)], implying lower age at menarche, whereas there was no association with urinary lead at 5 years of age. Girls born to mothers in the highest quartile of erythrocyte arsenic during pregnancy were less likely to have attained menarche than girls born to mothers in the lowest quartile [adjusted HR= 0.79 (95% CI: 0.62, 0.99)]. No association was found with girls' urinary arsenic exposure. DISCUSSION Long-term childhood cadmium exposure was associated with later menarche, whereas the associations with child lead exposure were inconclusive. Maternal exposure to arsenic, but not cadmium or lead, was associated with later menarche. https://doi.org/10.1289/EHP11121.
Collapse
Affiliation(s)
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Anna L.V. Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jesmin Pervin
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Pernilla Svefors
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Shams El Arifeen
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Åke Persson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- London School of Hygiene and Tropical Medicine, London, UK
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Saeed M, Rehman MYA, Farooqi A, Malik RN. Arsenic and fluoride co-exposure through drinking water and their impacts on intelligence and oxidative stress among rural school-aged children of Lahore and Kasur districts, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3929-3951. [PMID: 34751868 DOI: 10.1007/s10653-021-01141-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As), and fluoride (F-) are potent contaminants with established carcinogenic and non-carcinogenic impacts on the exposed populations globally. Despite elevated groundwater As and F- levels being reported from various regions of Pakistan no biomonitoring study has been reported yet to address the co-exposure impact of As and F- among school children. We aimed to investigate the effects of these two contaminants on dental fluorosis and intelligence quotient (IQ) along with the induction of oxidative stress in rural children under co-exposed conditions. A total of 148 children (5 to 16 years old) from the exposed and control group were recruited in the current study from endemic rural areas of Lahore and Kasur districts, Pakistan having elevated As and F- levels in drinking water than permissible limits. We monitored malondialdehyde and its probable association with antioxidants activity (SOD, CAT, and GR) as a biomarker of oxidative stress. GSTM1/T1 polymorphisms were measured to find the impact of As on health parameters. Mean urinary concentrations of As (2.70 vs. 0.016 µg/L, P < 0.000) and F- (3.27 vs. 0.24 mg/L, P < 0.000) as well as the frequency of dental fluorosis were found elevated among the exposed group. The cases of children with lower IQ were observed high in the exposed group. Additionally, lower concentrations of antioxidants (SOD, CAT, and GR) were found suggesting high susceptibility to F- toxicity. The findings suggest that F- accounted for high variations in health parameters of children under the co-exposure conditions with As.
Collapse
Affiliation(s)
- Muhammad Saeed
- Environmental Health and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abida Farooqi
- Environmental Geochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riffat Naseem Malik
- Environmental Health and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
26
|
Ventre S, Desai G, Roberson R, Kordas K. Toxic metal exposures from infant diets: Risk prevention strategies for caregivers and health care professionals. Curr Probl Pediatr Adolesc Health Care 2022; 52:101276. [PMID: 36266220 DOI: 10.1016/j.cppeds.2022.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Concerns are growing regarding the presence of toxic elements such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in the ingredients and prepared foods for infants and young children. There are few clear, evidence-based, guidelines on the maximum tolerable limits of toxicants in foods and little understanding of toxicant exposure or adverse health effects attributable to dietary exposure. Caregivers are faced with the burden of making decisions about which foods to select, how often to feed them to their children, and what foods to limit. This article reviews the current literature and existing recommendations on dietary exposure to toxic elements in children under 2 years of age, and their health effects in early childhood-focusing on growth, neurodevelopment, and immune function. The article also outlines best practices for healthcare providers to address the concerns of toxic element exposure through the diet in young children. Several foods consistently appear in the literature as potential sources of toxic element exposure. Contaminated drinking and cooking water, including water used to prepare infant formula, could also be a major exposure source. In the absence of stronger evidence on effects of dietary modification, exclusive breastfeeding until six months of age, followed by a diverse diet are some strategies to reduce dietary toxic element exposure while ensuring an adequate and balanced nutrient intake. Healthcare providers can support families by sharing information and encouraging blood Pb testing, the only element for which such testing is currently recommended.
Collapse
Affiliation(s)
- Sarah Ventre
- Department of Pediatrics, University at Buffalo, USA; New York State Children's Environmental Health Center, USA.
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| | | | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| |
Collapse
|
27
|
Huang Y, Li Y, Knappett PSK, Montiel D, Wang J, Aviles M, Hernandez H, Mendoza-Sanchez I, Loza-Aguirre I. Water Quality Assessment Bias Associated with Long-Screened Wells Screened across Aquifers with High Nitrate and Arsenic Concentrations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9907. [PMID: 36011539 PMCID: PMC9408386 DOI: 10.3390/ijerph19169907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Semi-arid regions with little surface water commonly experience rapid water table decline rates. To hedge against the falling water table, production wells in central Mexico are commonly installed to depths of several hundred meters below the present water table and constructed as open boreholes or perforated casings across their entire length. Such wells represent highly conductive pathways leading to non-negligible flow across chemically distinct layers of an aquifer-a phenomenon known as ambient flow. The objectives of this study were to estimate the rate of ambient flow in seven production wells utilizing an end-member mixing model that is constrained by the observed transient chemical composition of produced water. The end-member chemical composition of the upper and lower layers of an urban aquifer that overlies geothermal heat is estimated to anticipate the future quality of this sole source of water for a rapidly growing urban area. The comprehensive water chemistry produced by seven continuously perforated municipal production wells, spanning three geologically unique zones across the city of San Miguel de Allende in Guanajuato State, was monitored during one day of pumping. The concentration of conservative constituents gradually converged on steady-state values. The model indicates that, relative to the lower aquifer, the upper aquifer generally has higher specific conductance (SC), chloride (Cl), nitrate (NO3), calcium (Ca), barium (Ba) and magnesium (Mg). The lower aquifer generally has a higher temperature, sodium (Na), boron (B), arsenic (As) and radon (Rn). Ambient flow ranged from 33.1 L/min to 225.7 L/min across the seven wells, but this rate for a given well varied depending on which tracer was used. This new 3D understanding of the chemical stratification of the aquifer suggests that as water tables continue to fall, concentrations of geothermally associated contaminants of concern will increase in the near future, potentially jeopardizing the safety of municipal drinking water.
Collapse
Affiliation(s)
- Yibin Huang
- Department of Geology & Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - Yanmei Li
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, Guanajuato 36000, Mexico
| | - Peter S. K. Knappett
- Department of Geology & Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - Daniel Montiel
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA or
- Geosyntec Consultants, Clearwater, FL 33764, USA
| | - Jianjun Wang
- Three Gorges Geotechnical Engineering Co., Ltd., Wuhan 430074, China
| | - Manuel Aviles
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, Guanajuato 36000, Mexico
| | - Horacio Hernandez
- Department of Geomatic and Hydraulic Engineering, University of Guanajuato, Guanajuato 36000, Mexico
| | - Itza Mendoza-Sanchez
- Environmental and Occupational Health Department, Texas A&M University, College Station, TX 77843, USA
| | - Isidro Loza-Aguirre
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, Guanajuato 36000, Mexico
| |
Collapse
|
28
|
Signes-Pastor AJ, Romano ME, Jackson B, Braun JM, Yolton K, Chen A, Lanphear B, Karagas MR. Associations of maternal urinary arsenic concentrations during pregnancy with childhood cognitive abilities: The HOME study. Int J Hyg Environ Health 2022; 245:114009. [PMID: 35947921 PMCID: PMC9500348 DOI: 10.1016/j.ijheh.2022.114009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022]
Abstract
Arsenic exposure during pregnancy may increase the risk for intellectual deficits in children, but limited data exist from prospective epidemiologic studies, particularly at low arsenic exposure levels. We investigated the association between prenatal maternal urinary arsenic concentrations and childhood cognitive abilities in the Health Outcomes and Measures of the Environment (HOME) Study. We used anion exchange chromatography coupled with inductively coupled plasma mass spectrometry detection to measure arsenic species content in pregnant women's urine. The summation of inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) refers to ∑As. We assessed children's cognitive function (n = 260) longitudinally at 1-, 2-, and 3-years using Bayley Scales of Infant and Toddler Development, at 5 years using Wechsler Preschool and Primary Scale of Intelligence, and at 8 years using Wechsler Intelligence Scale for Children. We observed a modest decrease in mental development index and full-scale intelligence quotient at ages 3 and 5 years with each doubling of ∑As with estimated score (ß) differences and 95% confidence interval (CI) of -1.8 from -4.1 to 0.5 and -2.5 from -5.1 to 0.0, respectively. This trend was stronger and reached statistical significance among children whose mothers had lower iAs methylation capacity and low urinary arsenobetaine concentrations. Our findings suggest that arsenic exposure levels relevant to the general US population may affect children's cognitive abilities.
Collapse
Affiliation(s)
- Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA; Unidad de Epidemiología de la Nutrición. Universidad Miguel Hernández, Alicante, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Spain.
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA.
| | - Brian Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bruce Lanphear
- Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA
| |
Collapse
|
29
|
Yang Q, Yan R, Mo Y, Xia H, Deng H, Wang X, Li C, Kato K, Zhang H, Jin T, Zhang J, An Y. The Potential Key Role of the NRF2/NQO1 Pathway in the Health Effects of Arsenic Pollution on SCC. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138118. [PMID: 35805773 PMCID: PMC9265438 DOI: 10.3390/ijerph19138118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
Abstract
Arsenic is widely present in nature and is a common environmental poison that seriously damages human health. Chronic exposure to arsenic is a major environmental poisoning factor that promotes cell proliferation and leads to malignant transformation. However, its molecular mechanism remains unclear. In this study, we found that arsenite can promote the transformation of immortalized human keratinocyte cells (HaCaT) from the G0/G1 phase to S phase and demonstrated malignant phenotypes. This phenomenon is accompanied by obviously elevated levels of NRF2, NQO1, Cyclin E, and Cyclin-dependent kinase 2 (CDK2). Silencing the NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HaCaT) cells was shown to reverse the malignant phenotype. Furthermore, the siRNA silencing of NQO1 significantly decreased the levels of the cyclin E-CDK2 complex, inhibiting the G0/G1 to S phase cell cycle progression and transformation to the T-HaCaT phenotypes. Thus, we hypothesized that the NRF2/NQO1 pathway played a key role in the arsenite-induced malignancy of HaCaT cells. By increasing the expression of Cyclin E-CDK2, the NRF2/NQO1 pathway can affect cell cycle progression and cell proliferation. A new common health effect mechanism of arsenic carcinogenesis has been identified; thus, it would contribute to the development of novel treatments to prevent and treat skin cancer caused by arsenic.
Collapse
Affiliation(s)
- Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Yuemei Mo
- Physical Examination Department, Center for Disease Control and Prevention of Suzhou Industrial Park, Suzhou 215100, China;
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Hanyi Deng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Xiaojuan Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Chunchun Li
- Changzhou Wujin District Center for Disease Control and Prevention, Changzhou 213164, China;
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan;
| | - Hengdong Zhang
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210028, China;
- Jiangsu Preventive Medicine Association, Nanjing 210009, China
| | - Tingxu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (T.J.); (Y.A.)
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, China; (Q.Y.); (R.Y.); (H.X.); (X.W.); (J.Z.)
- Correspondence: (T.J.); (Y.A.)
| |
Collapse
|
30
|
Knappett PSK, Farias P, Miller GR, Hoogesteger J, Li Y, Mendoza‐Sanchez I, Woodward RT, Hernandez H, Loza‐Aguirre I, Datta S, Huang Y, Carrillo G, Roh T, Terrell D. A Systems Approach to Remediating Human Exposure to Arsenic and Fluoride From Overexploited Aquifers. GEOHEALTH 2022; 6:e2022GH000592. [PMID: 35799913 PMCID: PMC9250112 DOI: 10.1029/2022gh000592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 05/14/2023]
Abstract
In semiarid agricultural regions, aquifers have watered widespread economic development. Falling water tables, however, drive up energy costs and can make the water toxic for human consumption. The study area is located in central Mexico, where arsenic and fluoride are widely present at toxic concentrations in well water. We simulated the holistic outcomes from three pumping scenarios over 100 years (2020-2120); (S1) pumping rates increase at a similar rate to the past 40 years, (S2) remain constant, or (S3) decrease. Under scenario S1, by 2120, the depth to water table increased to 426 m and energy consumption for irrigation increased to 4 × 109 kWh/yr. Arsenic and fluoride concentrations increased from 14 to 46 μg/L and 1.0 to 3.6 mg/L, respectively. The combined estimated IQ point decrements from drinking untreated well water lowered expected incomes in 2120 by 27% compared to what they would be with negligible exposure levels. We calculated the 100-year Net Present Value (NPV) of each scenario assuming the 2020 average crop value to water footprint ratio of 0.12 USD/m3. Without drinking water mitigation, S1 and S3 yielded relative NPVs of -5.96 × 109 and 1.51 × 109 USD, respectively, compared to the base case (S2). The relative NPV of providing blanket reverse osmosis treatment, while keeping pumping constant (S2), was 11.55 × 109 USD and this gain increased when combined with decreased pumping (S3). If a high value, low water footprint crop was substituted (broccoli, 1.51 USD/m3), the net gains from increasing pumping were similar in size to those of implementing blanket drinking water treatment.
Collapse
Affiliation(s)
| | - P. Farias
- Environmental HealthInstituto Nacional de Salud PúblicaCuernavacaMéxico
| | - G. R. Miller
- Civil & Environmental EngineeringTexas A&M UniversityCollege StationTXUSA
| | - J. Hoogesteger
- Water Resources ManagementWageningen UniversityWageningenThe Netherlands
| | - Y. Li
- Mines, Metallurgy and Geology EngineeringUniversity of GuanajuatoGuanajuatoMéxico
| | | | - R. T. Woodward
- Agricultural EconomicsTexas A&M UniversityCollege StationTXUSA
| | - H. Hernandez
- Geomatic and Hydraulic EngineeringUniversity of GuanajuatoGuanajuatoMéxico
| | - I. Loza‐Aguirre
- Mines, Metallurgy and Geology EngineeringUniversity of GuanajuatoGuanajuatoMéxico
| | - S. Datta
- Geological SciencesUniversity of Texas at San AntonioSan AntonioTXUSA
| | - Y. Huang
- Geology & GeophysicsTexas A&M UniversityCollege StationTXUSA
| | - G. Carrillo
- Public HealthTexas A&M UniversityCollege StationTXUSA
| | - T. Roh
- Public HealthTexas A&M UniversityCollege StationTXUSA
| | - D. Terrell
- Caminos de AguaSan Miguel de AllendeMéxico
| |
Collapse
|
31
|
Signes-Pastor AJ, Sayarath V, Jackson B, Cottingham KL, Punshon T, Karagas MR. Dietary Exposure to Essential and Non-essential Elements During Infants' First Year of Life in the New Hampshire Birth Cohort Study. EXPOSURE AND HEALTH 2022; 15:269-279. [PMID: 36873246 PMCID: PMC9971144 DOI: 10.1007/s12403-022-00489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 06/18/2023]
Abstract
Even the low levels of non-essential elements exposure common in the US may have health consequences especially early in life. However, little is known about the infant's dynamic exposure to essential and non-essential elements. This study aims to evaluate exposure to essential and non-essential elements during infants' first year of life and to explore the association between the exposure and rice consumption. Paired urine samples from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) were collected at approximately 6 weeks (exclusively breastfed) and at 1 year of age after weaning (n = 187). A further independent subgroup of NHBCS infants with details about rice consumption at 1 year of age also was included (n = 147). Urinary concentrations of 8 essential (Co, Cr, Cu, Fe, Mn, Mo, Ni, and Se) and 9 non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, V, and U) elements were determined as a measure of exposure. Several essential (Co, Fe, Mo, Ni, and Se) and non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, and V) elements had higher concentrations at 1 year than at 6 weeks of age. The highest increases were for urinary As and Mo with median concentrations of 0.20 and 1.02 µg/L at 6 weeks and 2.31 and 45.36 µg/L at 1 year of age, respectively. At 1 year of age, As and Mo urine concentrations were related to rice consumption. Further efforts are necessary to minimize exposure to non-essential elements while retaining essential elements to protect and promote children's health. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-022-00489-x.
Collapse
Affiliation(s)
- Antonio J. Signes-Pastor
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Vicki Sayarath
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
| | - Brian Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH USA
| | | | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
| |
Collapse
|
32
|
Yan N, Li Y, Xing Y, Wu J, Li J, Liang Y, Tang Y, Wang Z, Song H, Wang H, Xiao S, Lu M. Developmental arsenic exposure impairs cognition, directly targets DNMT3A, and reduces DNA methylation. EMBO Rep 2022; 23:e54147. [PMID: 35373418 PMCID: PMC9171692 DOI: 10.15252/embr.202154147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Developmental arsenic exposure has been associated with cognitive deficits in epidemiological studies, but the underlying mechanisms remain poorly understood. Here, we establish a mouse model of developmental arsenic exposure exhibiting deficits of recognition and spatial memory in the offspring. These deficits are associated with genome-wide DNA hypomethylation and abnormal expression of cognition-related genes in the hippocampus. Arsenic atoms directly bind to the cysteine-rich ADD domain of DNA methyltransferase 3A (DNMT3A), triggering ubiquitin- and proteasome-mediated degradation of DNMT3A in different cellular contexts. DNMT3A degradation leads to genome-wide DNA hypomethylation in mouse embryonic fibroblasts but not in non-embryonic cell lines. Treatment with metformin, a first-line antidiabetic agent reported to increase DNA methylation, ameliorates the behavioral deficits and normalizes the aberrant expression of cognition-related genes and DNA methylation in the hippocampus of arsenic-exposed offspring. Our study establishes a DNA hypomethylation effect of developmental arsenic exposure and proposes a potential treatment against cognitive deficits in the offspring of pregnant women in arsenic-contaminated areas.
Collapse
Affiliation(s)
- Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuntong Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yangfei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Jiang CB, Kao CS, Chien LC, Chen YJ, Liao KW. Associations among prenatal and postnatal arsenic, lead, and cadmium exposures and motor development in 3-year-old children: a longitudinal birth cohort study in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43191-43200. [PMID: 35091938 DOI: 10.1007/s11356-021-18321-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Prenatal and postnatal exposures to heavy metals have been suggested to interfere with neurodevelopment, but the neurotoxicity of lead (Pb), arsenic (As), and cadmium (Cd) is still unclear. In this study, we aimed to assess the associations between the levels of As, Cd, and Pb and children's neurodevelopment. A total of 299 mother-infant pairs were recruited in this study and their meconium were collected. After three years, 53 children underwent the Bayley Scales of Infant and Toddler Development (Bayley-III) examinations and provided hair and fingernail specimens. The levels of As, Cd, and Pb in the meconium, hair, and fingernail were measured by inductively coupled plasma mass spectrometry; the median levels were the following: meconium, 42.7, 5.57, and 25.6 ng/g, respectively; hair, 0.19, 0.05, and 3.61 μg/g, respectively; and fingernail, 0.29, 0.04, and 0.84 μg/g, respectively. After adjusting for potential confounding factors, we found that the log-transformed levels of As in the hair samples was negatively associated with gross motor development (β = - 0.032; 95% confidence interval: - 0.061 to - 0.004). We conclude that postnatal exposure to As is a crucial period for gross motor development in children, while the effects of Cd and Pb on neurodevelopment are less clear.
Collapse
Affiliation(s)
- Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chi-Sian Kao
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Jhen Chen
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei, Taiwan.
| |
Collapse
|
34
|
Kampouri M, Tofail F, Rahman SM, Gustin K, Vahter M, Kippler M. Gestational and childhood urinary iodine concentrations and children's cognitive function in a longitudinal mother-child cohort in rural Bangladesh. Int J Epidemiol 2022; 52:144-155. [PMID: 35613019 PMCID: PMC9908062 DOI: 10.1093/ije/dyac110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Severe iodine deficiency adversely affects neurodevelopment; however, evidence regarding the association of non-severe deficiency and child cognitive functioning is inconclusive. METHODS This prospective mother-child cohort study was nested in a population-based nutritional supplementation trial in Bangladesh (Maternal and Infant Nutrition Interventions in Matlab [MINIMat]). Participants with data on cognitive abilities at 5 and 10 years of age (n = 1530) and at least one measurement of urinary iodine concentration (UIC) (gestational week 8, 5, and 10 years) were selected. Cognitive abilities were assessed using the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III) and Wechsler Intelligence Scale for Children (WISC-IV). UICs were measured with inductively coupled plasma mass spectrometry and thereafter adjusted for specific gravity. RESULTS Median UICs in our population: (282 μg/L [pregnancy]; 406 μg/L [5 years]; 294 μg/L [10 years]) indicated that iodine intake corresponded to above 'adequate' or even 'excessive', according to the WHO classification. Maternal 'UIC <150 μg/L' was associated with lower full-scale and verbal scores at 5 and 10 years, although the associations were weakened in the fully adjusted models. A tendency of decreased verbal scores was also observed for maternal 'UIC ≥500 μg/L' but not for the corresponding child iodine category (≥300 μg/L). Child 'UIC <100 μg/L' was associated with lower processing speed (B=-3.1, 95% CI [-6.2, -0.1]; P-value = 0.041) compared with the reference group (100 μg/L≤ UIC <300 μg/L). CONCLUSIONS Current findings add to the growing evidence of a causal association of early-life iodine intake with cognitive development, indicating that low iodine intake during childhood is associated with reduced processing speed and non-optimal gestational iodine intake is weakly associated with slightly poorer verbal development outcomes.
Collapse
Affiliation(s)
- Mariza Kampouri
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fahmida Tofail
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Syed Moshfiqur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh,Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Klara Gustin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Corresponding author. Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden. E-mail:
| |
Collapse
|
35
|
Soler-Blasco R, Murcia M, Lozano M, Sarzo B, Esplugues A, Riutort-Mayol G, Vioque J, Lertxundi N, Santa Marina L, Lertxundi A, Irizar A, Braeuer S, Ballester F, Llop S. Prenatal arsenic exposure, arsenic methylation efficiency, and neuropsychological development among preschool children in a Spanish birth cohort. ENVIRONMENTAL RESEARCH 2022; 207:112208. [PMID: 34662579 DOI: 10.1016/j.envres.2021.112208] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Prenatal arsenic (As) exposure could negatively affect child neuropsychological development, but the current evidence is inconclusive. OBJECTIVES To explore the relationship between prenatal urinary total As (TAs) concentrations, the As species and the methylation efficiency, and child neuropsychological development in a Spanish birth cohort. We also studied the effect modification produced by sex and several nutrients and elements. MATERIALS AND METHODS Study subjects were 807 mother-child pairs participating in the INMA (Childhood and Environment) Project. Urinary TAs and its metabolites, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), inorganic As (iAs) and arsenobetaine were measured in the first trimester of pregnancy. Methylation efficiency was determined through the percentages of the metabolites and using principal component analysis. Children's neuropsychological development was assessed at the age of 4-5 years using the McCarthy Scales of Children's Abilities (MSCA). Multivariable linear regression models were built to assess the association between TAs, the As species and the maternal methylation efficiency, and the neuropsychological scores. We explored effect modification by sex, iron status, maternal nutrients status (serum manganese and selenium, and urinary zinc), and maternal vitamins intake (folate, and vitamins B12 and B6). RESULTS The geometric mean (95%CI) of ∑As (sum of DMA, MMA and iAs) was 7.78 (7.41, 8.17) μg/g creatinine. MMA concentrations were inversely associated with the scores for the general, verbal, quantitative, memory, executive function and working memory scales (i.e. β [CI95%] = -1.37 [-2.33, -0.41] for the general scale). An inverse association between %MMA and the memory scores was found. Children whose mothers had lower manganese, zinc and ferritin concentrations obtained lower scores on several MSCA scales with decreasing As methylation efficiency. DISCUSSION An inverse association was observed between MMA concentrations and children's neuropsychological development. Maternal levels of manganese, zinc and ferritin affected the association between As methylation efficiency and MSCA scores.
Collapse
Affiliation(s)
- Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Health Information Systems Analysis Service, Conselleria de Sanitat, Generalitat Valenciana, Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Blanca Sarzo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Ana Esplugues
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Jesús Vioque
- Alicante Institute for Health and Biomedical Research, ISABIAL-UMH, Alicante, Spain
| | - Nerea Lertxundi
- Biodonostia Health Research Institute, San Sebastian, Spain; Faculty of Psychology of the University of the Basque Country, UPV/ EHU, San Sebastian, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Leioa, Spain.
| | - Amaia Irizar
- Biodonostia Health Research Institute, San Sebastian, Spain; Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Simone Braeuer
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
36
|
Wang H, Chen Y, Liu X, Zhang R, Wang X, Zhang Q, Wei Y, Fang F, Yuan Y, Zhou Q, Dong Y, Shi S, Jiang X, Li X. TNF-α derived from arsenite-induced microglia activation mediated neuronal necroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113468. [PMID: 35378400 DOI: 10.1016/j.ecoenv.2022.113468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Arsenic, an identified environmental toxicant, poses threats to the health of human beings through contaminated water and food. Recently, increasing reports focused on arsenic-induced nerve damage, however, the underlying mechanism remains elusive. Microglia are important immune cells in the nervous system, which produce a large number of inflammatory factors including TNF-α when activated. Recent reports indicated that TNF-α is involved in the process of necroptosis, a new type of programmed cell death discovered recently. Although there were evidences suggested that arsenic could induce both microglia activation and TNF-α production in the nervous system, the mechanism of arsenic-induced neurotoxicity due to microglia activation is rarely studied. In addition, the role of microglia-derived TNF-α in response to arsenic exposure in necroptosis has not been documented before. In this study, we found that arsenite induced microglial activation through p38 MAPK signaling pathway, leading to the production of TNF-α. Microglia-derived TNF-α further induced necroptosis in the neuronal cells. Our findings suggested that necroptosis induced by microglia-derived TNF-α upon arsenite exposure partially played a role in arsenic-induced cell death which underlie the fundamental event of arsenic-related neurotoxicity.
Collapse
Affiliation(s)
- Huanhuan Wang
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yao Chen
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xudan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ruo Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaotong Wang
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qianhui Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuting Wei
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Fang Fang
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ye Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qianqian Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yinqiao Dong
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Sainan Shi
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaojing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xin Li
- Department of Occupational and Environmental Health, Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
37
|
Heng YY, Asad I, Coleman B, Menard L, Benki-Nugent S, Hussein Were F, Karr CJ, McHenry MS. Heavy metals and neurodevelopment of children in low and middle-income countries: A systematic review. PLoS One 2022; 17:e0265536. [PMID: 35358213 PMCID: PMC8970501 DOI: 10.1371/journal.pone.0265536] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The presence of harmful environmental exposures, which disproportionately affects low-and-middle income countries (LMICs), contributes to >25% of deaths and diseases worldwide and detrimentally affects child neurodevelopment. Few resources succinctly summarize the existing literature on this topic. Our objective is to systematically review and characterize the evidence regarding the relationship between heavy metals and neurodevelopment of children in LMICs. METHODS We conducted a medical librarian-curated search on multiple online databases to identify articles that included individuals <18 years living in a LMIC, quantitatively measured exposure to a heavy metal (either prenatal or postnatal), and used a standardized measurement of neurodevelopment (i.e. cognitive, language, motor, and behavior). Reviews, editorials, or case studies were excluded. Results were analyzed qualitatively, and quality was assessed. RESULTS Of the 18,043 screened articles, 298 full-text articles were reviewed, and 100 articles met inclusion criteria. The included studies represented data from 19 LMICs, only one of which was classified as a low-income country. Ninety-four percent of postnatal lead and all postnatal manganese studies showed a negative association with metal exposure and neurodevelopment, which were the strongest relationships among the metals studied. Postnatal exposure of mercury was associated with poor neurodevelopment in only half of studies. Limited data on postnatal arsenic and cadmium suggests an association with worse neurodevelopment. Findings were mixed for prenatal arsenic and lead, although some evidence supports that the neurotoxicity of lead was amplified in the presence of manganese. CONCLUSIONS AND POTENTIAL IMPACT We found that lead and manganese appear to consistently have a detrimental effect on the neurodevelopment of children, and more evidence is needed for mercury, arsenic, and cadmium. Better characterization of these effects can motivate and inform prioritization of much needed international policies and programs to reduce heavy metal exposures for young children within LMICs.
Collapse
Affiliation(s)
- Yi Yan Heng
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Iqra Asad
- School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Bailey Coleman
- School of Health and Human Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Laura Menard
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah Benki-Nugent
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Faridah Hussein Were
- Department of Chemistry, College of Biological and Physical Sciences of the University of Nairobi, Nairobi, Kenya
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Megan S McHenry
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
38
|
Schmidt S. Navigating a Two-Way Street: Metal Toxicity and the Human Gut Microbiome. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:32001. [PMID: 35302387 PMCID: PMC8932408 DOI: 10.1289/ehp9731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/07/2021] [Indexed: 05/21/2023]
|
39
|
Sasaki N, Carpenter DO. Associations between Metal Exposures and Cognitive Function in American Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042327. [PMID: 35206515 PMCID: PMC8871766 DOI: 10.3390/ijerph19042327] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023]
Abstract
Cognitive function frequently declines with older age, independently of the development of neurodegenerative diseases, and few interventions are known to counter this decline. Exposure to neurotoxic metals may contribute to this decline in cognitive function in older adults. Using the National Health and Nutrition Examination Survey (NHANES) data, the performance of 3042 adults aged 60 years and older on three cognitive tests for immediate, delayed, and working memory were examined in relation to blood concentrations of seven metals and metalloids and urinary concentrations of nineteen metals and metabolites. Using linear regression models, associations between cognitive tests and logarithms of metal exposures were adjusted for age, sex, ethnicity, education level, depression, diabetes, alcohol consumption, and cigarette use. Increased selenium was strongly associated with better performance on all three cognitive tests. Cadmium and lead were negatively associated with performance on all three cognitive tests. Some urinary metabolites of arsenic, urinary lead, cadmium, and tungsten were significantly associated with poor performance on some tests. In older adults, higher selenium levels were strongly associated with better cognitive performance.
Collapse
Affiliation(s)
- Nozomi Sasaki
- Department of Environmental Health Science, School of Public Health, University at Albany, Rensselaer, NY 12144, USA
- Correspondence: (N.S.); (D.O.C.)
| | - David O. Carpenter
- Department of Environmental Health Science, School of Public Health, University at Albany, Rensselaer, NY 12144, USA
- Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
- Correspondence: (N.S.); (D.O.C.)
| |
Collapse
|
40
|
Tong J, Liang C, Wu X, Huang K, Zhu B, Gao H, Zhu Y, Li Z, Qi J, Han Y, Ding P, Zhu Y, Tao F. Prenatal serum thallium exposure and cognitive development among preschool-aged children: A prospective cohort study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118545. [PMID: 34801620 DOI: 10.1016/j.envpol.2021.118545] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Thallium, a highly toxic heavy metal and priority pollutant, has been widely reported to cause neurodevelopmental toxicity in animals. However, accessible epidemiological studies concerning the neurodevelopmental toxicity of early-life thallium exposure in humans are limited. In a prospective birth cohort including 2164 mother-child pairs, we explored the effect of prenatal serum thallium exposure on cognitive development among preschool-aged children born in Ma'anshan, Anhui, China. Serum thallium concentrations were measured in the first trimester, second trimester, third trimester, and cord blood by inductively coupled plasma mass spectrometry (ICP-MS). Child cognitive development was appraised by the Chinese version of the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV) at 4.5 years old. Multiple informants generalized estimating equations (GEEs) were fit to jointly estimate the association between the four repeated measurements of thallium concentrations and the preschool-aged children's cognitive test scores. After adjusting for potential confounders, the visual spatial index (VSI) was 1.45 points lower in the highest tertile of serum thallium during the first trimester than in the lowest tertile (p for trend = 0.04). Moreover, children in the highest tertile of serum thallium during the third trimester had a significantly lower full-scale intelligence quotient (FSIQ) (β = -1.51, 95% CI: -2.68, -0.35), VSI (β = -1.79, 95% CI: -3.16, -0.42), fluid reasoning index (FRI) (β = -1.41, 95% CI: -2.73, -0.10), and processing speed index (PSI) (β = -1.47, 95% CI: -2.71, -0.24) scores than the children in the lowest tertile. When performing stratified analysis by child sex, the associations of first- and third-trimester thallium concentrations with cognitive test scores were more prominent in boys than in girls. Our findings revealed that maternal serum thallium exposure during the first and third trimesters, but not other periods, had detrimental effects on preschoolers' cognitive development, and these effects showed sex differences.
Collapse
Affiliation(s)
- Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Kung Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Beibei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Hui Gao
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Yuanduo Zhu
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Zhijuan Li
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Juan Qi
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Yan Han
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Peng Ding
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui, China.
| |
Collapse
|
41
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
42
|
Sun H, Yang Y, Gu M, Li Y, Jiao Z, Lu C, Li B, Jiang Y, Jiang L, Chu F, Yang W, Sun D, Gao Y. The role of Fas-FasL-FADD signaling pathway in arsenic-mediated neuronal apoptosis in vivo and in vitro. Toxicol Lett 2021; 356:143-150. [PMID: 34953944 DOI: 10.1016/j.toxlet.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022]
Abstract
The molecular mechanisms underlying arsenic-induced neurotoxicity have not been completely elucidated. Our study aimed to determine the role of the Fas-FasL-FADD signaling pathway in arsenic-mediated neuronal apoptosis. Pathological and molecular biological tests were performed on the cerebral cortex of arsenic-exposed rats and SH-SY5Y neuroblastoma cells. Arsenic induced apoptosis in the cortical neurons, which corresponded to abnormal ultrastructural changes. Mechanistically, arsenic activated the Fas-FasL-FADD signaling pathway and the downstream caspases both in vivo and in vitro. ZB4 treatment reversed the apoptotic effects of arsenic on the SHSY5Y cells. Taken together, arsenic induces neurotoxicity by activating the Fas-FasL-FADD signaling pathway.
Collapse
Affiliation(s)
- Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Yanmei Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Muyu Gu
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yang Li
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Zhe Jiao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Bingyu Li
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Yuting Jiang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Lixin Jiang
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China.
| | - Yanhui Gao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health Commission(23618504), Harbin, 150081 Heilongjiang, China.
| |
Collapse
|
43
|
Lv JW, Song YP, Zhang ZC, Fan YJ, Xu FX, Gao L, Zhang XY, Zhang C, Wang H, Xu DX. Gestational arsenic exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112901. [PMID: 34673408 DOI: 10.1016/j.ecoenv.2021.112901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Several studies found that reduction of 5-hydroxymethylcytosine (5hmC), a marker of DNA hydroxymethylation highly enriched in developing brain, is associated with anxiety-like behaviors. This study aimed to investigate whether gestational arsenic (As) exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. The dams drank ultrapure water containing NaAsO2 (15 mg/L) throughout pregnancy. Anxiety-like behaviors were evaluated and developing brain 5hmC was detected. Results showed that anxiety-like behaviors were observed in As-exposed adult offspring. In addition, 5hmC content was reduced in As-exposed fetal brain. Despite no difference on Tet1, Tet2 and Tet3 expression, TET activity was suppressed in As-exposed fetal brain. Mechanistically, alpha-ketoglutarate (α-KG), a cofactor for TET dioxygenases, was reduced and Idh2, a key enzymatic gene for mitochondrial α-KG synthesis, was downregulated in As-exposed fetal brain. Of interest, ascorbic acid, a cofactor for TET dioxygenases, reversed As-induced suppression of TET activity. Moreover, ascorbic acid attenuated As-induced reduction of 5hmC in fetal brain. In addition, ascorbic acid alleviated As-induced anxiety-like behaviors in adult offspring. Taken together, these results suggest that gestational As exposure induces anxiety-like behaviors in adult offspring, possibly at part, by inhibiting DNA hydroxymethylation in developing brain.
Collapse
Affiliation(s)
- Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
44
|
Biswas B, Chakraborty A, Chatterjee D, Pramanik S, Ganguli B, Majumdar KK, Nriagu J, Kulkarni KY, Bansiwal A, Labhasetwar P, Bhowmick S. Arsenic exposure from drinking water and staple food (rice): A field scale study in rural Bengal for assessment of human health risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113012. [PMID: 34837872 DOI: 10.1016/j.ecoenv.2021.113012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a well-known carcinogen with emerging reports showing a range of health outcomes even for low to moderate levels of exposure. This study deals with arsenic exposure and associated increased lifetime cancer risk for populations in arsenic-endemic regions of rural Bengal, where arsenic-safe drinking water is being supplied at present. We found a median total exposure of inorganic arsenic to be 2. 9 μg/Kg BW/day (5th and 95th percentiles were 1.1 μg/Kg BW/day and 7.9 μg/Kg BW/day); with major contribution from cooked rice intake (2.4 µg/Kg BW/day). A significant number of households drank arsenic safe water but used arsenic-rich water for rice cooking. As a result, 67% participants had inorganic arsenic intake above the JEFCA threshold value of 3 μg/Kg BW/day for cancer risk from only rice consumption when arsenic contaminated water was used for cooking (median: 3.5 μg/Kg BW/day) compared to 29% participants that relied on arsenic-free cooking water (median: 1.0 µg/kg BW/day). Arsenic in urine samples of study participants ranged from 31.7 to 520 µg/L and was significantly associated with the arsenic intake (r = 0.76); confirming the preponderance of arsenic exposure from cooked rice. The median arsenic attributable cancer risks from drinking water and cooked rice were estimated to be 2.4 × 10-5 and 2.7 × 10-4 respectively, which further emphasized the importance of arsenic exposure from staple diet. Our results show that any mitigation strategy should include both drinking water and local staple foods in order to minimize the potential health risks of arsenic exposure.
Collapse
Affiliation(s)
- Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bhaswati Ganguli
- Department of Statistics, University of Calcutta, 35 Bullygunge Circular Road, Kolkata, West Bengal 700 019, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College and Hospital, Jadavpur, Kolkata, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Ketki Y Kulkarni
- Sophisticated Environmental Analytical Facility (SAEF), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Amit Bansiwal
- Sophisticated Environmental Analytical Facility (SAEF), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pawan Labhasetwar
- Water Technology & Management Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
45
|
Malin Igra A, Warnqvist A, Rahman SM, Ekström EC, Rahman A, Vahter M, Kippler M. Environmental metal exposure and growth to 10 years of age in a longitudinal mother-child cohort in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 156:106738. [PMID: 34246127 DOI: 10.1016/j.envint.2021.106738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early-life exposure to arsenic (As), cadmium (Cd), and lead (Pb) has been linked to smaller birth and early childhood anthropometry, but little is known beyond the first years in life. OBJECTIVES To evaluate the impact of gestational and childhood exposures to As, Cd, and Pb on growth up to 10 years of age. METHODS We studied 1530 mother-child dyads from a nested sub-cohort of the MINIMat trial in rural Matlab, Bangladesh. Metal concentrations in maternal erythrocytes during pregnancy and in children's urine at 10y were measured by inductively coupled plasma mass spectroscopy. Child height and weight were measured at 19 occasions from birth until 10y and converted to height-for-age Z-scores (HAZ) and weight-for-age Z-scores (WAZ). Associations between log2-transformed metal concentrations and growth parameters were assessed with multivariable-adjusted regression models. RESULTS Children's concurrent urinary Cd (median 0.24 µg/L), reflecting long-term exposure, was inversely associated with WAZ (B: -0.072; 95% confidence interval (CI): -0.12, -0.020; p = 0.007), and possibly HAZ (B: -0.046; 95% CI: -0.096, 0.0014; p = 0.057), at 10y. The association with WAZ was stronger in boys than in girls. Maternal erythrocyte Cd (median 0.90 µg/kg) during pregnancy was inversely associated with WAZ during childhood only in boys (B: -0.071, 95% CI: -0.14, -0.0047, p = 0.036). Concurrent urinary Pb (median 1.6 µg/L) was inversely associated with WAZ (B: -0.084; 95% CI: -0.16, -0.0085; p = 0.029) and HAZ (B: -0.087; 95% CI: -0.15, -0.021; p = 0.010) in boys, but not in girls. Neither gestational nor childhood As exposure (median maternal erythrocyte As 4.3 µg/kg and children's urinary As 57 µg/L) was associated with growth up to 10y. CONCLUSIONS While all effect estimates were small, environmental exposure to Cd and Pb is common and impaired growth is of public health concern, especially for children already at risk of reduced growth due to malnutrition. Gender differences in susceptibility need further investigation.
Collapse
Affiliation(s)
- Annachiara Malin Igra
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Warnqvist
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Syed Moshfiqur Rahman
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Eva-Charlotte Ekström
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
47
|
Zhang J, Yang Y, Yang X, Qin J, Wei X, Peng Y, Li Z, Zhang L, Zhang Z, Zou Y. Influence of manganese exposure on cognitive function, plasma APP and Aβ levels in older men. J Trace Elem Med Biol 2021; 67:126788. [PMID: 34015662 DOI: 10.1016/j.jtemb.2021.126788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Elevated manganese (Mn) exposure impairs cognition in adults and children, but the association between Mn and cognitive function in elderly people is unclear. Previous studies have linked Mn neurotoxicity in AD to Aβ-dependent mechanisms. However, the association between Mn and plasma APP and Aβ in the general elderly population remains unknown. This study aimed to investigate the association between Mn exposure and cognitive function, plasma APP and plasma Aβ in older adults. METHODS Cognitive abilities in 375 men aged 60 and older in Guangxi, China were assessed using the Mini-Mental State Examination (MMSE) and cognitive impairment were identified using education-stratified cut-off points of MMSE scores. Urinary Mn levels and plasma APP, and Aβ levels were measured using ICP-MS and ELISA, respectively. RESULTS A total of 109 (29.07 %) older men were identified as having cognitive impairment. The median urinary Mn level was 0.22 μg/g creatinine. Urinary Mn levels were negatively correlated with MMSE scores (β = -1.35, 95 % CI: -2.65 to -0.06; p = 0.041). In addition, higher concentrations of urinary manganese were associated with a greater risk of cognitive impairment (OR = 2.03, 95 % CI: 1.14-3.59; comparing the highest and lowest manganese; p = 0.025). Moreover, plasma APP levels were inversely associated with urinary Mn levels (r = -0.123, p = 0.020), and positively associated with MMSE scores (r = 0.158, p = 0.002). Surprisingly, no correlations were observed between plasma Aβ42, Aβ40, Aβ40/Aβ42, or Aβ42/Aβ40 and urinary Mn levels and MMSE scores. CONCLUSION These results suggested that Mn exposure is negatively associated with older men's cognition and plasma APP levels, but not plasma Aβ levels.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yiping Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yang Peng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiying Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li'e Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, 541100, Guangxi, China.
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
48
|
Rahman A, Kippler M, Pervin J, Tarafder C, Lucy IJ, Svefors P, Arifeen SE, Persson LÅ. A cohort study of the association between prenatal arsenic exposure and age at menarche in a rural area, Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 154:106562. [PMID: 33866057 DOI: 10.1016/j.envint.2021.106562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Millions of individuals worldwide, particularly in Bangladesh, are exposed to arsenic, mainly through drinking water from tube wells. Arsenic is a reproductive toxicant, but there is limited knowledge of whether it influences pubertal development. OBJECTIVES We evaluated the association between prenatal arsenic exposure and age at menarche. METHODS This prospective study was based on data from two studies conducted in Matlab, Bangladesh-the Maternal and Infant Nutrition Interventions in Matlab (MINIMat) trial and the Health Consequences of Arsenic in Matlab (AsMat) study. We included 809 MINIMat girls who participated in assessing age at menarche from July 2016 to June 2017 and had prenatal arsenic exposure data through the AsMat study via measurements in tube well water used by the mothers during pregnancy. The exposure was categorized into <10, 10-49, 50-99, 100-199, and ≥200 µg/L. We used Kaplan-Meier and Cox proportional hazards analyses with adjustment for potential confounders to evaluate the association between arsenic exposure and age at menarche. The results were presented by adjusted hazards ratio (aHR) with a 95% confidence interval (CI). RESULTS The median arsenic concentration in tube well water consumed by pregnant women was 80 µg/L (interquartile range 2-262 µg/L), and 55% drank water with concentrations above Bangladesh's acceptable value of 50 µg/L. The median age at menarche was 13.0 years. The unadjusted analysis revealed 3.2 months delay in menarche for girls exposed to arsenic concentrations ≥200 µg/L compared with the girl exposed to arsenic concentrations <10 µg/L. Girls exposed to the same higher arsenic concentrations were 23% (aHR 0.77, 95% CI: 0.63-0.95) less likely to have reached menarche than girls exposed to low arsenic concentrations. CONCLUSIONS Increased levels of prenatal arsenic exposure were associated with older age at menarche. This delay may indicate endocrine disruptions that could potentially result in adverse health consequences in later life. This finding, along with other severe adverse health reinforces the need for arsenic mitigation at the population level.
Collapse
Affiliation(s)
- Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh; Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesmin Pervin
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Chandan Tarafder
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Ishrat Javeen Lucy
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Pernilla Svefors
- Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Shams El Arifeen
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Lars Åke Persson
- Women's and Children's Health, Uppsala University, Uppsala, Sweden; London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
49
|
First report of successful management of acute promyelocytic leukemia in a pregnant female with All-Trans-Retinoic Acid and Arsenic Trioxide-based induction regimen. Blood Cells Mol Dis 2020; 85:102476. [PMID: 32688220 DOI: 10.1016/j.bcmd.2020.102476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/10/2020] [Indexed: 11/21/2022]
|