1
|
Dong A, Lei W, Zhou W, Li W, Wang J. Maternal exposure to tris (2-butoxyethyl) phosphate induces F0 female reproductive toxicity and offspring developmental toxicity in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117781. [PMID: 39847880 DOI: 10.1016/j.ecoenv.2025.117781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
The toxicity of tris (2-butoxyethyl) phosphate (TBOEP) has been extensively investigated because of its prevalence in the environment. Nevertheless, the risk factors associated with maternal transmission are poorly understood. In this study, sexually mature female zebrafish were treated with TBOEP (0, 20, 100, and 500 μg/L) for 30 days and were mated with unexposed males. Reproduction impairment in exposed adults (F0), including retarded gonado-somatic index (GSI), delayed oocyte maturation, inhibition of reproductive behavior, and subfertility was found. The observed impacts on the F0 generation were linked to a marked decrease in 17β-estradiol concentrations and disruptions in the gene expression patterns along the hypothalamic-pituitary-gonadal-liver (HPGL) axis. Moreover, the accumulation of TBOEP in F0 and their embryos (F1) was observed, indicating significant maternal transfer of TBOEP to the offspring. In F1 larvae, a dose-dependent increase in developmental toxicity (decreased heart rate and swimming behavior, increased larval mortality, and deformity) was observed. Additionally, a notable reduction in protein level in eggs and the gene expression of both the hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) pathways were observed. These results indicated that subacute TBOEP exposure could induce reproductive toxicity in female zebrafish and cause transgenerational toxicity in their offspring via maternal transfer.
Collapse
Affiliation(s)
- Anqi Dong
- Fisheries College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqian Lei
- Fisheries College, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiqi Zhou
- Fisheries College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenwen Li
- Fisheries College, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- Fisheries College, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China.
| |
Collapse
|
2
|
He Y, Ouyang K, Yang H, Wang L, Zhang Q, Li D, Li L. The MC-LR induced neuroinflammation and the disorders of neurotransmitter system in zebrafish (Danio rerio): Oxidative stress as a key. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110126. [PMID: 39824299 DOI: 10.1016/j.fsi.2025.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Microcystin-leucine-arginine (MC-LR) has been shown to induce neuroinflammation and disrupt neurotransmitter system. However, little is known about the mechanism of toxicity. In this study, male adult zebrafish (Danio rerio) were exposed to MC-LR at concentrations of 0, 0.1, 1, 10 μg/L for 30 days. Histomorphological evaluation revealed thrombus formation and vacuolization in the brains of zebrafish exposed to 10 μg/L MC-LR. Additionally, this exposure led to elevated MDA levels and decreased T-SOD, CAT and GSH levels in the brain, indicating oxidative stress. MC-LR exposure also significantly increased TNF-α and IL-1β contents and altered transcriptional levels of genes associated with the NOD/NFκB pathway (nod1, nod2, tak2, ripk2, ikbkb, nfkbiaa and nfkb2), implicating that MC-LR induced neuroinflammation. Concurrently, disruptions in neurotransmitter systems were observed, manifested by reductions in ACH, DA, 5-HT contents, an increase in Glu, and changes in related genes (ache, chran7a, dat, drd2b, 5htt, htr1aa, glsa and grin2aa). Partial least squares path modeling (PLS-PM) analysis showed that the oxidative stress and antioxidant defenses directly affected the cholinergic and glutamatergic systems and inflammatory response, as well as indirectly influenced the dopaminergic system via inflammation. Thus, our results suggested that oxidative stress may be a potential mechanism underlying the neuroinflammation and disruption of neurotransmitter systems induced by MC-LR. Furthermore, BMD modeling indicated that the BMDL values for ACH, T-SOD and MDA were all greater than 1 μg/L, suggesting that long-term exposure to MC-LR concentrations below 1 μg/L pose a relatively low risk of neurotoxicity. The lowest BMDL for MDA also implies that oxidative stress is a primary concern in the brain, making MDA a preferred biomarker for MC-LR exposure.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
3
|
Yan M, Wu H, Wu T, Wang Y, Su C, Li D, Han X. Microcystin-LR Exposure Damages Neurons by Inducing α-Syn Aggregation via MAPK4/GATA2/SNCA and PP2A/GRKs Pathways. Mol Neurobiol 2024:10.1007/s12035-024-04683-7. [PMID: 39738876 DOI: 10.1007/s12035-024-04683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Microcystin-LR (MC-LR) is a natural neurotoxin with strong toxicity, and studies have demonstrated that chronic MC-LR exposure generated Parkinson-like dyskinesia in mice. Parkinson's disease (PD) is a neurologic degenerative disease mostly occurring in elderly people, and the progressive loss of dopaminergic neurons and the formation of Lewy bodies are the hallmark pathological features. The main component of Lewy bodies is α-synuclein (α-syn) encoded by the SNCA gene, and the copy number mutation of SNCA gene can promote the overexpression of α-syn. A mouse model of MC-LR exposure for 15 months was established to confirm the deposition of Lewy bodies. SH-SY5Y cells exposed to MC-LR were constructed as an in vitro model of PD, and the transcription factor that regulated the SNCA gene (the encoding gene of α-syn) was identified through the database. MC-LR enhanced the transcription level of SNCA gene and upregulated α-syn protein expression by promoting MAPK4 into the nucleus and binding to GATA2 295-480 fragment. In addition, MC-LR inhibited PP2A activity and activated GRKs kinase to promote α-syn phosphorylation at Ser129. These results suggest that MC-LR is involved in α-syn aggregate formation and PD pathogenesis by enhancing SNCA transcriptional activity to promote α-syn elevation via the MAPK4/GATA2 pathway and inducing α-syn phosphorylation via the PP2A/GRKs pathway.
Collapse
Affiliation(s)
- Minghao Yan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Huifang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Tong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuhan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Chengxiang Su
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
4
|
Wu H, Yan M, Wu T, Han X. MC-LR disrupts dopamine synthesis in the substantia nigra of midbrain by enhancing the chaperone-mediated autophagy pathway through direct binding to ERK2. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136181. [PMID: 39413523 DOI: 10.1016/j.jhazmat.2024.136181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Microcystins are environmental toxins produced by freshwater cyanobacteria. Microcystin-LR (MC-LR) is one of the most abundant and harmful isomers. MC-LR poses a serious threat to human health. MC-LR could penetrate the blood-brain barrier of mice and accumulate in the substantia nigra (SN) of the midbrain, leading to a reduction in dopamine levels and Parkinson's disease (PD)-like motor dysfunction in mice. The reduction in dopamine levels is a key factor contributing to movement disorders in humans with PD. Dopamine is synthesized in the dopaminergic neurons of the SN by the actions of tyrosine hydroxylase (TH) and dihydroxyphenylalanine decarboxylase (DDC). In this study, we found that MC-LR could enter dopaminergic neurons in the SN and directly bound to extracellular signal-regulated kinase 2 (ERK2), enhancing ERK2 stability. ERK2 further enhanced the transcriptional activity of Heat Shock Protein Family A Member 8 (HSPA8) and promoted the expression of Heat shock cognate 71 kDa protein (HSC70), which in turn amplified the chaperone-mediated autophagy (CMA) pathway and accelerated the degradation of TH and DDC. This affected the dopamine synthesis process, resulting in a significant reduction in dopamine levels. The study is the first to reveal that ERK2 was a direct target of MC-LR, and further enhanced CMA affecting dopamine synthesis, which has important theoretical and practical significance for environmental safety management.
Collapse
Affiliation(s)
- Huifang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Minghao Yan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Tong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
5
|
Liu H, Yang Q, Li G, Hung TC, Zuo J, Luan N, Liu X, Wu Q. Probiotic Lactobacillus rhamnosus modulates MCLR-induced oogenesis disorders in zebrafish: Evidence from the transcriptome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175532. [PMID: 39153614 DOI: 10.1016/j.scitotenv.2024.175532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Microcystin-LR (MCLR) produced by cyanobacterial blooms have received global attention. MCLR has been recognized as a reproductive toxin to fish and poses a threat to ecosystem stability. It has been proven that probiotic dietary management can improve reproductive performance of fish. It is worth paying attention to exploring whether probiotic management can alleviate the reproductive toxicity caused by MCLR. In this investigation, adult zebrafish were exposed to different doses of MCLR solution (0, 2.2, and 22 μg/L) with or without the Lactobacillus rhamnosus GG supplementation for a duration of 28 days. The results showed that female zebrafish spawning was reduced after exposure to MCLR, but this reduction was reversed when L. rhamnosus GG was added. To elucidate how L. rhamnosus GG mitigates reproductive toxicity caused by MCLR, we examined a series of indicators of MCLR accumulation, ovarian histology, hormones, and transcriptome levels. Our study showed that L. rhamnosus GG could alleviate oogenesis disorders and ultimately attenuate MCLR-induced reproductive toxicity by reducing MCLR accumulation in the gonads, modulating the expression of endocrine system and auto/paracrine factors. The transcriptome results revealed that single or combined exposure of MCLR and L. rhamnosus GG mainly affected the endocrine system, energy metabolism, and RNA degradation and translation. Overall, our results provide new insights for alleviating MCLR-induced reproductive toxicity and help promote healthy aquaculture.
Collapse
Affiliation(s)
- Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Luan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi, Hubei Province 435002, China
| |
Collapse
|
6
|
Zhang Y, He K, Wang Y, Guo X, Chen J, Shang N, Chen J, Zhang P, Zhang L, Niu Q, Zhang Q. Nano-alumina induced developmental and neurobehavioral toxicity in the early life stage of zebrafish, associated with mTOR. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107086. [PMID: 39277994 DOI: 10.1016/j.aquatox.2024.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
The study aims to investigate the effects of nano-alumina (AlNPs) on the early development and neurobehavior of zebrafish and the role of mTOR in this process. After embryos and grown-up larvae exposed to AlNPs from 0 to 200 μg/mL, we examined the development, neurobehavior, AlNPs content, and mTOR pathway genes. Moreover, embryos were randomly administered with control, negative control, mTOR knockdown, AlNPs, and mTOR knockdown + AlNPs, then examined for development, neurobehavior, oxidative stress, neurotransmitters, and development genes. As AlNPs increased, swimming speed and distance initially increased and then decreased; thigmotaxis and panic-avoidance reflex substantially decreased in the high-dose AlNPs group; aluminum and nanoparticles considerably accumulated in the 100 μg/mL AlNPs group; AlNPs at high dose decreased mTOR gene and protein levels, stimulating autophagy via increasing ULK1 and ULK2. mTOR knockdown exacerbated the harm to normal development rate, eye and body length, and neurobehavior induced by AlNPs through raising ROS, SOD, and ACH levels but decreasing AchE activity and development genes. Therefore, AlNPs suppress neurobehavior through downregulating mTOR, and mTOR knockdown further aggravates their early development and neurobehavior loss, suggesting mTOR could be a potential target for the toxicity of AlNPs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan, 030012, China
| | - Kaihong He
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yanhong Wang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xinyue Guo
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jin Chen
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Nan Shang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jianping Chen
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Ping Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Ling Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qiao Niu
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qinli Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Pathology, University of Mississippi Medical Center, 2500 N State St., Jackson, MS, 39216, United States.
| |
Collapse
|
7
|
Zhang Y, Guo X, Zhao J, Gao X, Zhang L, Huang T, Wang Y, Niu Q, Zhang Q. The downregulation of TREM2 exacerbates toxicity of development and neurobehavior induced by aluminum chloride and nano-alumina in adult zebrafish. Toxicol Appl Pharmacol 2024; 492:117107. [PMID: 39288838 DOI: 10.1016/j.taap.2024.117107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
To investigate the difference in the development and neurobehavior between aluminum chloride (AlCl3) and nano-alumina (AlNPs) in adult zebrafish and the role of triggering receptor expressed on myeloid cells (TREM2) in this process. Zebrafish embryos were randomly administered with control, negative control, TREM2 knockdown, AlCl3, TREM2 knockdown + AlCl3, AlNPs, and TREM2 knockdown + AlNPs, wherein AlCl3 and AlNPs were 50 mg/L and TREM2 knockdown was achieved by microinjecting lentiviral-containing TREM2 inhibitors into the yolk sac. We assessed development, neurobehavior, histopathology, ultrastructural structure, neurotransmitters (AChE, DA), SOD, genes of TREM2 and neurodevelopment (α1-tubulin, syn2a, mbp), and AD-related proteins and genes. AlCl3 significantly lowered the malformation rate than AlNPs, and further increased rates of malformation and mortality following TREM2 knockdown. The locomotor ability, learning and memory were similar between AlCl3 and AlNPs. TREM2 deficiency further exacerbated their impairment in panic reflex, microglia decrease, and nerve fibers thickening and tangling. AlCl3, rather than AlNPs, significantly elevated AChE activity and p-tau content while decreasing TREM2 and syn2a levels than the control. TREM2 loss further aggravated impairment in the AChE and SOD activity, and psen1 and p-tau levels. Therefore, AlCl3 induces greater developmental toxicity but equivalent neurobehavior toxicity than AlNPs, while their toxicity was intensified by TREM2 deficiency.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Toxicology, Shanxi Provincial Center for Disease Control and Prevention, Taiyuan 030012, China
| | - Xinyue Guo
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China; Department of Business Management, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an 710054, China
| | - Jinjin Zhao
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaocheng Gao
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Lan Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Tao Huang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Yanhong Wang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Qiao Niu
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China
| | - Qinli Zhang
- Department of Occupational Medicine, School of public health, Shanxi Medical University, Taiyuan 030001, China; Department of Pathology, University of Mississippi Medical Center, 2500 N State St., Jackson, MS 39216, United States of America.
| |
Collapse
|
8
|
David N, Ivantsova E, Konig I, English CD, Avidan L, Kreychman M, Rivera ML, Escobar C, Valle EMA, Sultan A, Martyniuk CJ. Adverse Outcomes Following Exposure to Perfluorooctanesulfonamide (PFOSA) in Larval Zebrafish ( Danio rerio): A Neurotoxic and Behavioral Perspective. TOXICS 2024; 12:723. [PMID: 39453143 PMCID: PMC11510739 DOI: 10.3390/toxics12100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Toxicity mechanisms of per- and polyfluoroalkyl substances (PFASs), a chemical class present in diverse ecosystems, as well as many of their precursors, have been increasingly characterized in aquatic species. Perfluorooctanesulfonamide (PFOSA, C8H2F17NO2S) is a common precursor of perfluorooctane sulfonic acid (PFOS), a long-chain PFAS. Here, we assessed sub-lethal endpoints related to development, oxidative stress, transcript levels, and distance moved in zebrafish embryos and larvae following continuous exposure to PFOSA beginning at 6 h post-fertilization (hpf). PFOSA decreased survival in fish treated with 1 µg/L PFOSA; however, the effect was modest relative to the controls (difference of 10%). Exposure up to 10 µg/L PFOSA did not affect hatch rate, nor did it induce ROS in 7-day-old larvae fish. The activity of larval fish treated with 100 µg/L PFOSA was reduced relative to the solvent control. Transcripts related to oxidative stress response and apoptosis were measured and BCL2-associated X, apoptosis regulator (bax), cytochrome c, somatic (cycs), catalase (cat), superoxide dismutase 2 (sod2) were induced with high concentrations of PFOSA. Genes related to neurotoxicity were also measured and transcript levels of acetylcholinesterase (ache), elav-like RNA binding protein 3 (elavl3), growth-associated protein 43 (gap43), synapsin II (syn2a), and tubulin 3 (tubb3) were all increased in larval fish with higher PFOSA exposure. These data improve our understanding of the potential sub-lethal toxicity of PFOSA in fish species.
Collapse
Affiliation(s)
- Nikita David
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
- Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Lavras 37203-202, Brazil
| | - Cole D. English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Lev Avidan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Mark Kreychman
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Mario L. Rivera
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Camilo Escobar
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Eliana Maira Agostini Valle
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
- Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema 09972-270, Brazil
| | - Amany Sultan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
- Animal Health Research Institute, Agriculture Research Centre, Giza 3751254, Egypt
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
- UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Vieira B, Amaral J, Pereira MJ, Domingues I. Cyanobacterial Blooms in City Parks: A Case Study Using Zebrafish Embryos for Toxicity Characterization. Microorganisms 2024; 12:2003. [PMID: 39458312 PMCID: PMC11509529 DOI: 10.3390/microorganisms12102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes that play an important role in the ecology of aquatic ecosystems. However, they can also produce toxins with negative effects on aquatic organisms, wildlife, livestock, domestic animals, and humans. With the increasing global temperatures, urban parks, renowned for their multifaceted contributions to society, have been largely affected by blooms of toxic cyanobacteria. In this work, the toxicity of two different stages of development of a cyanobacterial bloom from a city park was assessed, evaluating mortality, hatching, development, locomotion (total distance, slow and rapid movements, and path angles) and biochemical parameters (oxidative stress, neurological damage, and tissue damage indicators) in zebrafish embryos/larvae (Danio rerio). Results showed significant effects for the samples with more time of evolution at the developmental level (early hatching for low concentrations (144.90 mg/L), delayed hatching for high concentrations (significant values above 325.90 mg/L), and delayed development at all concentrations), behavioral level (hypoactivity), and biochemical level (cholinesterase (ChE)) activity reduction and interference with the oxidative stress system for both stages of evolution). This work highlights the toxic potential of cyanobacterial blooms in urban environments. In a climate change context where a higher frequency of cyanobacterial proliferation is expected, this topic should be properly addressed by competent entities to avoid deleterious effects on the biodiversity of urban parks and poisoning events of wildlife, pets and people.
Collapse
Affiliation(s)
- Bruna Vieira
- Department of Biology, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - João Amaral
- Department of Biology, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Mário Jorge Pereira
- Department of Biology & CESAM, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Inês Domingues
- Department of Biology & CESAM, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
10
|
Lv J, Sun F, Li Z, Qin Y, Sheng R, Sun L. Comparative Study of the Effects of Drugs Targeting Adrenergic Receptors on the Early Life Stages of Zebrafish. TOXICS 2024; 12:583. [PMID: 39195685 PMCID: PMC11359397 DOI: 10.3390/toxics12080583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Owing to the presence of drugs targeting adrenergic receptors in aquatic ecosystems, considerable attention has been directed towards their environmental distribution and fate in recent decades. However, their potential impacts on non-target aquatic organisms, particularly fish, have received relatively limited investigation. In this study, moxisylyte (MOX) and propranolol (PRO) were selected as representatives of α- or β-adrenergic receptor antagonist, respectively, and we assessed their effects on the early life stages of zebrafish, especially on the nervous and cardiovascular systems. Although both compounds exhibited marginal effects on zebrafish survival, hatching and gross abnormality following exposure to concentrations ranging from 1 to 625 μg/L, they adversely affected the development of cardiovascular and nervous systems, but through different mechanisms of action, as evidenced by variations in gene transcriptional responses and enzyme activities. Notably, cardiovascular responses appear promising for use as potential biomarkers for exposure to drugs targeting adrenergic receptors. This study enhances our understanding of the ecotoxicological risks posed by α- and β-blockers in fish. Nonetheless, further investigation is needed to elucidate the precise mechanisms underlying the impacts of drugs targeting adrenergic receptors due to our limited knowledge of the physiological functions of the adrenergic system in fish.
Collapse
Affiliation(s)
| | | | | | | | | | - Liwei Sun
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310032, China
| |
Collapse
|
11
|
Ren X, Liu Z, Zhang R, Shao Y, Duan X, Sun B, Zhao X. Nanoplastics aggravated TDCIPP-induced transgenerational developmental neurotoxicity in zebrafish depending on the involvement of the dopamine signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104436. [PMID: 38599507 DOI: 10.1016/j.etap.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Plastics pose a hazard to the environment. Although plastics have toxicity, microplastics (MPs) and nanoplastics (NPs) are capable of interacting with the rest pollutants in the environment, so they serve as the carriers and interact with organic pollutants to modulate their toxicity, thus resulting in unpredictable ecological risks. PS-NPs and TDCIPP were used expose from 2 h post-fertilization (hpf) to 150 days post-fertilization (dpf) to determine the bioaccumulation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its potential effects on neurodevelopment in F1 zebrafish (Danio rerio) offspring under the action of polystyrene nano plastics (PS-NPs). The exposure groups were assigned to TDCIPP (0, 0.4, 2 or 10 µg/L) alone group and the PS-NPs (100 µg/L) and TDCIPP co-exposed group. F1 embryos were collected and grown in clean water to 5 dpf post-fertilization. PS-NPs facilitated the bioaccumulation of TDCIPP in the gut, gill, head,gonad and liver of zebrafish in a sex-dependent manner and promoted the transfer of TDCIPP to their offspring, thus contributing to PS-NPs aggravated the inhibition of offspring development and neurobehavior of TDCIPP-induced. In comparison with TDCIPP exposure alone, the combination could notably down-regulate the levels of the dopamine neurotransmitter, whereas the levels of serotonin or acetylcholine were not notably different. This result was achieved probably because PS-NPs interfered with the TDCIPP neurotoxic response of zebrafish F1 offspring not through the serotonin or acetylcholine neurotransmitter pathway. The increased transfer of TDCIPP to the offspring under the action of PS-NPs increased TDCIPP-induced transgenerational developmental neurotoxicity, which was proven by a further up-regulation/down-regulation the key gene and protein expression related to dopamine synthesis, transport, and metabolism in F1 larvae, in contrast to TDCIPP exposure alone. The above findings suggested that dopaminergic signaling involvement could be conducive to the transgenerational neurodevelopmental toxicity of F1 larval upon parental early co-exposure to PS-NPs and TDCIPP.
Collapse
Affiliation(s)
- Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Zhibo Liu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ruiqi Zhang
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yuting Shao
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Bo Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xuesong Zhao
- College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China.
| |
Collapse
|
12
|
Li X, Zheng T, Zhang J, Chen H, Xiang C, Sun Y, Dang Y, Ding P, Hu G, Yu Y. Photoaged polystyrene microplastics result in neurotoxicity associated with neurotransmission and neurodevelopment in zebrafish larvae (Danio rerio). ENVIRONMENTAL RESEARCH 2024; 250:118524. [PMID: 38401682 DOI: 10.1016/j.envres.2024.118524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Microplastics (MPs) are emerging pollutants widely distributed in the environment, inducing toxic effects in various organisms. However, the neurotoxicity and underlying mechanisms of simulated sunlight-aged MPs have rarely been investigated. In this study, zebrafish (Danio rerio) were exposed to environmentally relevant concentrations (0, 0.1, 1, 10, and 100 μg/L) of virgin polystyrene (V-PS) and aged polystyrene (A-PS) for 120 hpf to evaluate the neurotoxicity. The results demonstrated that simulated sunlight irradiation altered the physicochemical properties (morphology, functional groups, and chemical composition) of V-PS. Exposure to A-PS causes greater toxicity on locomotor ability in larval zebrafish than V-PS. Motor neuron development was disrupted by transgenic (hb9-GFP) zebrafish larvae exposed to A-PS, with significant alterations in neurotransmitter levels (ACh, DA, 5-HT, and GABA) and enzyme activity (AChE, ChAT, and ChE). Further investigation found that exposure to A-PS had a significantly impact on the expression of neurotransmission and neurodevelopment-related genes in zebrafish. These findings suggest that A-PS induces neurotoxicity by its effects on neurotransmission and neurodevelopment. This study highlights the neurotoxic effects and mechanisms of simulated sunlight irradiation of MPs, providing new insights for assessing the ecological risks of photoaged MPs in the environment.
Collapse
Affiliation(s)
- Xintong Li
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chongdan Xiang
- Department of Public Health Emergency Preparedness and Response, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Yanan Sun
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Guocheng Hu
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
13
|
Harshaw K, Fahim A, Zi J, Chandrasekera PC, Chang X, Dixon B, MacIsaac HJ. Non-microcystin extracellular metabolites of Microcystis aeruginosa impair viability and reproductive gene expression in rainbow trout cell lines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170747. [PMID: 38340819 DOI: 10.1016/j.scitotenv.2024.170747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Microcystis aeruginosa is a ubiquitous freshwater cyanobacterium best known for producing hepatotoxic microcystins; however, this common bloom-forming species also produces myriad biologically active and potentially deleterious other metabolites. Our understanding of the effects of these non-microcystin metabolites on fish is limited. In this study, we evaluated cytotoxicity of extracellular metabolites harvested from both microcystin-producing (MC+) and non-producing (MC-) strains of M. aeruginosa on rainbow trout (Oncorhynchus mykiss) cell lines derived from tissues of the brain, pituitary, heart, gonads, gills, skin, liver, and milt. We also examined the influence of M. aeruginosa exudates (MaE) on the expression of critical reproduction-related genes using the same cell lines. We found that exudates of the MC- M. aeruginosa strain significantly reduced viability in RTBrain, RTgill-W1, and RT-milt5 cell lines and induced significant cellular stress and/or injury in six of the eight cell lines-highlighting potential target tissues of cyanobacterial cytotoxic effects. Observed sublethal consequences of Microcystis bloom exposure occurred with both MC+ and MC- strains' exudates and significantly altered expression of developmental and sex steroidogenic genes. Collectively, our results emphasize the contributions of non-MC metabolites to toxicity of Microcystis-dominated algal blooms and the need to integrate the full diversity of M. aeruginosa compounds-beyond microcystins-into ecotoxicological risk assessments.
Collapse
Affiliation(s)
- Keira Harshaw
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ambreen Fahim
- Canadian Centre for Alternatives to Animal Methods, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Jinmei Zi
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | | | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
14
|
Zhan C, Gong J. Mutations at Two Key Sites in PP2A Safeguard Caenorhabditis elegans Neurons from Microcystin-LR Toxicity. Toxins (Basel) 2024; 16:145. [PMID: 38535811 PMCID: PMC10974068 DOI: 10.3390/toxins16030145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 11/12/2024] Open
Abstract
Microcystin-LR (MC-LR) is a secondary metabolite produced by cyanobacteria, globally renowned for its potent hepatotoxicity. However, an increasing body of research suggests that it also exhibits pronounced neurotoxicity. PP2A is a fundamental intracellular phosphatase that plays a pivotal role in cell development and survival. Although extensive research has focused on the binding of MC-LR to the C subunit of PP2A, few studies have explored the key amino acid sites that can prevent the binding of MC-LR to PP2A-C. Due to the advantages of Caenorhabditis elegans (C. elegans), such as ease of genetic editing and a short lifespan, we exposed nematodes to MC-LR in a manner that simulated natural exposure conditions based on MC-LR concentrations in natural water bodies (immersion exposure). Our findings demonstrate that MC-LR exerts comprehensive toxicity on nematodes, including reducing lifespan, impairing reproductive capabilities, and diminishing sensory functions. Notably, and for the first time, we observed that MC-LR neurotoxic effects can persist up to the F3 generation, highlighting the significant threat that MC-LR poses to biological populations in natural environments. Furthermore, we identified two amino acid sites (L252 and C278) in PP2A-C through mutations that prevented MC-LR binding without affecting PP2A activity. This discovery was robustly validated through behavioral studies and neuronal calcium imaging using nematodes. In conclusion, we identified two crucial amino acid sites that could prevent MC-LR from binding to PP2A-C, which holds great significance for the future development of MC-LR detoxification drugs.
Collapse
Affiliation(s)
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
15
|
Guo XC, Lu SY, Zhang SN, Xie P, Li GY, Shi ZQ, Zhou YT, Wang YM. Combined inhibitory effects of microcystin-LR and microcystin-RR on growth and development in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109824. [PMID: 38154657 DOI: 10.1016/j.cbpc.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Microcystins (MCs) are the most widespread, frequently found, and seriously toxic cyanobacterial toxins in aquatic environments. Microcystin-leucine-arginine (MCLR) and microcystin-arginine-arginine (MCRR) are the most studied MCs. Normally, their levels are low and they coexist in the environment; however, they may also interact with each other. The developmental toxicity of MCLR in the presence of MCRR in the early life stage of zebrafish (from 2 to 120 h post fertilization) was investigated for the first time in this study. Our findings revealed that MCRR treatment marginally elevated thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels, whereas MCLR treatment alone resulted in a significant increase in T3 and T4 levels, indicating a cooperative effect. Furthermore, clear changes in the expression levels of genes involved in growth and development, accompanied by growth inhibition, were observed after co-treatment with MCRR and MCLR. In addition, zebrafish larvae subjected to MCRR and/or MCLR treatment showed increased levels of superoxide dismutase, glutathione, and malondialdehyde, and decreased levels of catalase in the MCRR + MCLR group, indicating oxidative stress and lipid peroxidation. Thus, we investigated the synergistic developmental toxicity of MCRR and MCLR during the early life stages of zebrafish development.
Collapse
Affiliation(s)
- Xiao-Chun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shao-Yong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng-Nan Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guang-Yu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zu-Qin Shi
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi-Tong Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu-Meng Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
16
|
Yang Q, Huang L, Yang N, Cui H, Zhao Y, Li Z, Tong Y. Transgenerational effects of extracts containing Microcystin-LR exposure on reproductive toxicity and offspring growth inhibition in a model organism zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106860. [PMID: 38354462 DOI: 10.1016/j.aquatox.2024.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Cyanobacteria cell lysates release numerous toxic substances (e.g., cyanotoxins) into the water, posing a serious threat to human health and aquatic ecosystems. Microcystins (MCs) are among the most abundant cyanotoxins in the cell lysates, with microcystin-LR (MC-LR) being one of the most common and highly toxic congeners. In this study, zebrafish (Danio rerio) were exposed to different levels MC-LR that from extracts of Microcystis aeruginosa. Changes in the MC-LR accumulations, organ coefficients, and antioxidant enzyme activities in the zebrafish were analyzed. Transgenerational reproductive toxicity of MC-LR in the maternal and paternal generations was further investigated, as well as the influences of extracts containing MC-LR exposures of the F1 on the growth of zebrafish. The study found that high levels of MC-LR could be detected in the major organs of adult zebrafish, particularly in spleen. Notably, concentration of MC-LR in the spermary was significantly higher than that in the ovarium. MC-LR could induce oxidative damage by affecting the activities of catalase and superoxide dismutase. Inherited from F0, MC-LR led to impaired development in the F1 generation. Difference in offspring survival rates could be observed in the groups with different MC-LR levels of maternal and paternal exposures. This study reveals transgenerational effects of MC-LR on the reproductive toxicity and offspring growth inhibition to the aquatic organisms, which should be emphasized in the future ecological risk assessment.
Collapse
Affiliation(s)
- Qing Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Lanlan Huang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Ning Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Hongyang Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300000, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| |
Collapse
|
17
|
Luan N, Zuo J, Niu Q, Yan W, Hung TC, Liu H, Wu Q, Wang G, Deng P, Ma X, Qin J, Li G. Probiotic Lactobacillus rhamnosus alleviates the neurotoxicity of microcystin-LR in zebrafish (Danio rerio) through the gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168058. [PMID: 37914124 DOI: 10.1016/j.scitotenv.2023.168058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Microcystin-LR (MCLR) is one of the most toxic cyanobacterial toxins and is harmful to the central nervous system of fish. Probiotic additives can improve neuroendocrine function in fish. Although both MCLR and probiotics aim at the nervous system, whether they interact with each other and the mechanisms remain unexplored. In the present study, 4-month-old zebrafish were exposed to 0, 2.2, and 22 μg/L of MCLR for 28 days with or without the probiotic L. rhamnosus. We found that MCLR exposure could inhibit the swimming speed of zebrafish, while the presence of L. rhamnosus mitigated this abnormality. To elucidate the mechanism of how L. rhamnosus alleviates MCLR-induced neurotoxicity, we examined the bioaccumulation of MCLR, changes in neurotransmitters, immune biochemical indicators, and hormone content of the hypothalamic-pituitary-interrenal (HPI) axis in zebrafish along the gut-brain axis. Our results showed L. rhamnosus could reverse the abnormal swimming behavior and eventually alleviate neurotoxicity in zebrafish by modulating intestinal and brain neural signaling, neuroinflammation, and HPI axis responses. This study provides implications for the application of probiotics in the aquaculture industry.
Collapse
Affiliation(s)
- Ning Luan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianping Niu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi, Hubei Province 435002, China
| | - Guoao Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Deng
- Study and practical demonstratiministryon on regime shifts and optimization of ecosystem after ecological restoration project 'turning fishpond to wetland' in Chenhu Lake, Wuhan Academy of Agricultural Sciences, Wuhan 430056, China
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhui Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Ma DD, Shi WJ, Li SY, Zhang JG, Lu ZJ, Long XB, Liu X, Huang CS, Ying GG. Ephedrine and cocaine cause developmental neurotoxicity and abnormal behavior in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106765. [PMID: 37979497 DOI: 10.1016/j.aquatox.2023.106765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Ephedrine (EPH) and cocaine (COC) are illegal stimulant drugs, and have been frequently detected in aquatic environments. EPH and COC have negative effects on the nervous system and cause abnormal behaviors in mammals and fish at high concentrations, but their mechanisms of neurotoxicity remain unclear in larvae fish at low concentrations. To address this issue, zebrafish embryos were exposed to EPH and COC for 14 days post-fertilization (dpf) at 10, 100, and 1000 ng L-1. The bioaccumulation, development, behavior, cell neurotransmitter levels and apoptosis were detected to investigate the developmental neurotoxicity (DNT) of EPH and COC. The results showed that EPH decreased heart rate, while COC increased heart rate. EPH caused cell apoptosis in the brain by AO staining. In addition, behavior analysis indicated that EPH and COC affected spontaneous movement, touch-response, swimming activity and anxiety-like behaviors. EPH and COC altered the levels of the neurotransmitters dopamine (DA) and γ-aminobutyric acid (GABA) with changes of the transcription of genes related to the DA and GABA pathways. These findings indicated that EPH and COC had noticeable DNT in the early stage of zebrafish at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| |
Collapse
|
19
|
Zhang L, Tong Y, Fang Y, Pei J, Wang Q, Li G. Exploring the hypolipidemic effects of bergenin from Saxifraga melanocentra Franch: mechanistic insights and potential for hyperlipidemia treatment. Lipids Health Dis 2023; 22:203. [PMID: 38001454 PMCID: PMC10668478 DOI: 10.1186/s12944-023-01973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVE The goal of this study was to explore the hypolipidemic effects of bergenin extracted from Saxifraga melanocentra Franch (S. melanocentra), which is a frequently utilized Tibetan medicinal plant known for its diverse bioactivities. Establishing a quality control system for black stem saxifrage is crucial to ensure the rational utilization of its medicinal resources. METHODS A one-step polyamide medium-pressure liquid chromatography technique was applied to isolate and prepare bergenin from a methanol extract of S. melanocentra. A zebrafish model of hyperlipidemia was used to investigate the potential hypolipidemic effects of bergenin. RESULTS The results revealed that bergenin exhibited substantial hypo efficacy in vivo. Specifically, bergenin significantly reduced the levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) while simultaneously increasing high-density lipoprotein cholesterol (HDL-c) levels. At the molecular level, bergenin exerted its effects by inhibiting the expression of FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-1β, and TNF while promoting the expression of IL-4 at the transcriptional level. Molecular docking analysis further demonstrated the strong binding affinity of bergenin to proteins such as FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-4, IL-1β, and TNF. CONCLUSIONS Findings indicate that bergenin modulates lipid metabolism by regulating lipid and cholesterol synthesis as well as inflammatory responses through signaling pathways associated with FASN, SREBF1, and RORα. These results position bergenin as a potential candidate for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Li Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, P. R. China
| | - Yingying Tong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, P. R. China
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Yan Fang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, P. R. China
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Jinjin Pei
- Qinba State Key Laboratory of biological resources and ecological environment, Province Key Laboratory of Bioresources, College of Bioscience and bioengineering, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, P. R. China.
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, P. R. China.
| |
Collapse
|
20
|
Zhu L, Cao P, Yang S, Lin F, Wang J. Prolonged exposure to environmental levels of microcystin-LR triggers ferroptosis in brain via the activation of Erk/MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115651. [PMID: 37913581 DOI: 10.1016/j.ecoenv.2023.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
While existing research has illuminated the environmental dangers and neurotoxic effects of MC-LR exposure, the molecular underpinnings of brain damage from environmentally-relevant MC-LR exposure remain elusive. Employing a comprehensive approach involving RNA sequencing, histopathological examination, and biochemical analyses, we discovered genes differentially expressed and enriched in the ferroptosis pathway. This finding was associated with mitochondrial structural impairment and downregulation of Gpx4 and Slc7a11 in mice brains subjected to low-dose MC-LR over 180 days. Mirroring these findings, we noted reduced cell viability and GSH/GSSH ratio, along with an increased ROS level, in HT-22, BV-2, and bEnd.3 cells following MC-LR exposure. Intriguingly, MC-LR also amplified phospho-Erk levels in both in vivo and in vitro settings, and the effects were mitigated by treatment with PD98059, an Erk inhibitor. Taken together, our findings implicate the activation of the Erk/MAPK signaling pathway in MC-LR-induced ferroptosis, shedding valuable light on the neurotoxic mechanisms of MC-LR. These insights could guide future strategies to prevent MC-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingyun Zhu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pingping Cao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Suisui Yang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
21
|
Ding P, Xiang C, Li X, Chen H, Shi X, Li X, Huang C, Yu Y, Qi J, Li AJ, Zhang L, Hu G. Photoaged microplastics induce neurotoxicity via oxidative stress and abnormal neurotransmission in zebrafish larvae (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163480. [PMID: 37068667 DOI: 10.1016/j.scitotenv.2023.163480] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants and cause neurotoxicity in various organisms. However, previous studies that analyzed the effects of MPs mainly focused on virgin polystyrene (V-PS) as representative models of MPs, and the mechanism underlying the neurotoxicity of photoaged polystyrene (P-PS) remains largely unknown. In this study, zebrafish (Danio rerio) were exposed to environmentally relevant concentrations (0.1-100 μg/L) of V-PS and P-PS(10 μm). The results indicated that UV radiation accelerated the aging process and changed physical and chemical properties of PS. Whereas exposure to both V-PS and P-PS at low concentrations (100 μg/L) significantly reduced the locomotor behavior of zebrafish larvae, P-PS caused more severe neurotoxicity compared to V-PS. The activity of antioxidant enzymes (SOD, CAT, and GST) and MDA content were significantly altered in zebrafish exposed to 10-100 μg/L of P-PS. Similarly, exposure to P-PS significantly increased neurotransmitter (5-HT, GABA, DA, and ACh) levels and activity of AChE, ChAT, and ChE. Star plots based on integrated biomarker response (IBR) values showed more incline toward neurotransmitter biomarkers in response to increasing P-PS concentration, and the behavioral parameters negatively correlated with the neurotransmitter biomarkers. Further investigations revealed that the expression of neurotransmission- (e.g., ache, drd3, 5th2c, and gat1) and oxidative stress- (e.g., cat1, sod1, gpx1a, and gstrl) related genes was significantly affected by PS in larval zebrafish. Thus, this study provides new insights on the potential risks of MPs into the environment.
Collapse
Affiliation(s)
- Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Chongdan Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Shi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chushan Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
22
|
Cao X, Fu M, Du Q, Chang Z. Developmental toxicity of black phosphorus quantum dots in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2023:139029. [PMID: 37244547 DOI: 10.1016/j.chemosphere.2023.139029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Nanomaterials have attracted much attention in the biomedical field. Black phosphorus quantum dots (BPQDs) have shown great potential in biomedical applications, but their potential risks to biosafety and environmental stability have not been fully evaluated. In the present study, zebrafish (Danio rerio) embryos were exposed to 0, 2.5, 5 and 10 mg/L BPQDs from 2 to 144 h post-fertilization (hpf) to explore developmental toxicity. The results showed that exposure to BPQDs for 96 h induced developmental malformations (tail deformation, yolk sac edema, pericardial edema, and spinal curvature) in zebrafish embryos. ROS and antioxidant enzyme activities (CAT, SOD, MDA and T-AOC) were substantially altered and the acetylcholinesterase (AChE) enzyme activity was significantly decreased in the BPQDs exposed groups. Locomotor behavior was inhibited after BPQDs exposure for 144 h in zebrafish larvae. A significant increase in 8-OHdG content indicates DNA oxidative damage in embryos. In addition, obvious apoptotic fluorescence signals were detected in the brain, spine, yolk sac and heart. At the molecular level, the mRNA transcript levels of key genes related to skeletal development (igf1, gh, MyoD and LOX), neurodevelopment (gfap, pomca, bdnf and Mbpa), cardiovascular development (Myh6, Nkx2.5, Myl7, Tbx2b, Tbx5 and Gata4) and apoptosis (p53, Bax, Bcl-2, apaf1, caspase-3 and caspase-9) were abnormal after BPQDs exposure. In conclusion, BPQDs induced morphological malformations, oxidative stress, locomotor behavior disorders, DNA oxidative damage and apoptosis in zebrafish embryos. This study provides a basis for further study on the toxic effects of BPQDs.
Collapse
Affiliation(s)
- Xiaonan Cao
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Mengxiao Fu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
23
|
Davidović P, Blagojević D, Meriluoto J, Simeunović J, Svirčev Z. Biotests in Cyanobacterial Toxicity Assessment-Efficient Enough or Not? BIOLOGY 2023; 12:biology12050711. [PMID: 37237524 DOI: 10.3390/biology12050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Cyanobacteria are a diverse group of organisms known for producing highly potent cyanotoxins that pose a threat to human, animal, and environmental health. These toxins have varying chemical structures and toxicity mechanisms and several toxin classes can be present simultaneously, making it difficult to assess their toxic effects using physico-chemical methods, even when the producing organism and its abundance are identified. To address these challenges, alternative organisms among aquatic vertebrates and invertebrates are being explored as more assays evolve and diverge from the initially established and routinely used mouse bioassay. However, detecting cyanotoxins in complex environmental samples and characterizing their toxic modes of action remain major challenges. This review provides a systematic overview of the use of some of these alternative models and their responses to harmful cyanobacterial metabolites. It also assesses the general usefulness, sensitivity, and efficiency of these models in investigating the mechanisms of cyanotoxicity expressed at different levels of biological organization. From the reported findings, it is clear that cyanotoxin testing requires a multi-level approach. While studying changes at the whole-organism level is essential, as the complexities of whole organisms are still beyond the reach of in vitro methodologies, understanding cyanotoxicity at the molecular and biochemical levels is necessary for meaningful toxicity evaluations. Further research is needed to refine and optimize bioassays for cyanotoxicity testing, which includes developing standardized protocols and identifying novel model organisms for improved understanding of the mechanisms with fewer ethical concerns. In vitro models and computational modeling can complement vertebrate bioassays and reduce animal use, leading to better risk assessment and characterization of cyanotoxins.
Collapse
Affiliation(s)
- Petar Davidović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Dajana Blagojević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Jussi Meriluoto
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| | - Jelica Simeunović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi, Tykistökatu 6 A, 20520 Turku, Finland
| |
Collapse
|
24
|
Wang W, Zhang H, Wei L, Ma Y, Jiang H, Yuen CNT, Zhang J, Wu H, Shu Y. Microcystin-leucine arginine causes brain injury and functional disorder in Lithobates catesbeianus tadpoles by oxidative stress and inflammation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106509. [PMID: 36989925 DOI: 10.1016/j.aquatox.2023.106509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a toxin commonly found in eutrophic waters worldwide, but its potential effects on amphibian brain toxicity and exposure mechanisms are unclear. In this study, Lithobates catesbeianus tadpoles were exposed to MC-LR for 30 days at realistic ambient concentrations (0, 0.5, and 2 µg/L) to reveal its effects on brain health. The MC-LR bioaccumulation in the brain increased in dependence on the concentration of MC-LR exposure. Exposure to 0.5 and 2 µg/L MC-LR resulted in a significant down-regulation of the expression of structural components of the blood-brain barrier (CLDN1), while the expression of genes associated with inflammation (NLRP3, TNF, IL-1β, and CXCL12) was significantly up-regulated with increased number of eosinophils. In the hippocampal and hypothalamic regions, the number of vacuolated neuropils increased with increasing MC-LR exposure concentration, while the expression of genes associated with neuronal development (LGALS1, CACNA2D2, and NLGN4X) and neurotransmitter transmission (SLC6A13 and AChE) was significantly down-regulated. Moreover, the levels of neurotransmitters (5-HT, glutamate, GABA, and ACh) were significantly reduced. These results provide strong evidence that MC-LR exposure at realistic ambient concentrations of 0.5 and 2 µg/L can break the blood-brain barrier and raise the accumulation of MC-LR in the brain tissue, causing structural damage and functional disorder to brain neurons. Further, based on transcriptomic and biochemical analysis, it was revealed that MC-LR exposure induces DNA damage through oxidative stress and may be an important pathway causing brain structural damage and functional disorder. Overall, this study demonstrates the significant effects of MC-LR on the brain tissue of amphibians, highlighting the sensitivity of amphibians to MC-LR.
Collapse
Affiliation(s)
- Wenchao Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Luting Wei
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yi Ma
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Calista N T Yuen
- State Key Laboratory in Marine Pollution Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jihui Zhang
- School of Food Science and Biology Engineering, Wuhu Institute of Technology, Wuhu, Anhui 241000, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
25
|
Xiang C, Chen H, Liu X, Dang Y, Li X, Yu Y, Li B, Li X, Sun Y, Ding P, Hu G. UV-aged microplastics induces neurotoxicity by affecting the neurotransmission in larval zebrafish. CHEMOSPHERE 2023; 324:138252. [PMID: 36849020 DOI: 10.1016/j.chemosphere.2023.138252] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are nearly ubiquitous in aquatic ecosystems and may affect aquatic organisms. In this study, virgin and aged polystyrene MPs (PS-MPs) of size 1 μm were selected to analyze their adverse effects on larvae zebrafish. Exposure to PS-MPs significantly reduced the average swimming speed of zebrafish, and the behavioral effects caused by aged PS-MPs on zebrafish were more pronounced. Fluorescence microscopy revealed that 10-100 μg/L of PS-MPs accumulated in tissues of zebrafish. As an endpoint of neurotransmitter concentration, exposure to aged PS-MPs at doses ranging from 0.1 to 100 μg/L significantly increased the dopamine (DA), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), and acetylcholine (ACh) levels in zebrafish. Similarly, exposure to aged PS-MPs significantly altered the expression of genes related to these neurotransmitters (e.g., dat, 5ht1aa, and gabral genes). According to Pearson correlation analyses, neurotransmissions was significantly correlated with neurotoxic effects of aged PS-MPs. Thus, aged PS-MPs cause neurotoxicity in zebrafish through their effects on DA, 5-HT, GABA, and ACh neurotransmissions. The results highlight the importance of the neurotoxicity of aged PS-MPs in zebrafish, which has important implications for the risk assessment of aged MPs and the conservation of aquatic ecosystems.
Collapse
Affiliation(s)
- Chongdan Xiang
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaolin Liu
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bei Li
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yanan Sun
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guocheng Hu
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
26
|
Yang Q, Deng P, Xing D, Liu H, Shi F, Hu L, Zou X, Nie H, Zuo J, Zhuang Z, Pan M, Chen J, Li G. Developmental Neurotoxicity of Difenoconazole in Zebrafish Embryos. TOXICS 2023; 11:353. [PMID: 37112580 PMCID: PMC10142703 DOI: 10.3390/toxics11040353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole is a type of triazole fungicide that is widely used in the treatment of plant diseases. Triazole fungicides have been shown in several studies to impair the development of the nervous system in zebrafish embryos. There is still little known about difenoconazole-induced neurotoxicity in fish. In this study, zebrafish embryos were exposed to 0.25, 0.5, and 1 mg/L of difenoconazole solution until 120 h post-fertilization (hpf). The difenoconazole-exposed groups showed concentration-dependent inhibitory tendencies in heart rate and body length. Malformation rate and spontaneous movement of zebrafish embryos increased, and the locomotor activity decreased in the highest exposure group. The content of dopamine and acetylcholine was reduced significantly in difenoconazole treatment groups. The activity of acetylcholinesterase (AChE) was also increased after treatment with difenoconazole. Furthermore, the expression of genes involved in neurodevelopment was remarkably altered, which corresponded with the alterations of neurotransmitter content and AChE activity. These results indicated that difenoconazole might affect the development of the nervous system through influencing neurotransmitter levels, enzyme activity, and the expression of neural-related genes, ultimately leading to abnormal locomotor activity in the early stages of zebrafish.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu 610016, China
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Shi
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Lian Hu
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Xi Zou
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zimeng Zhuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha 410000, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Li XP, Qiu SQ, Huang GY, Lei DQ, Wang CS, Xie L, Ying GG. Toxicity and Estrogenicity of Bisphenol TMC in Oryzias melastigma via In Vivo and In Silico Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3280-3290. [PMID: 36795899 DOI: 10.1021/acs.est.2c08009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bisphenol 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl] phenol (BPTMC), as a substitute for bisphenol A, has been detected in environments. However, the ecotoxicological data of BPTMC are extremely scarce. Here, the lethality, developmental toxicity, locomotor behavior, and estrogenic activity of BPTMC at different concentrations (0.25-2000 μg/L) in marine medaka (Oryzias melastigma) embryos were examined. In addition, the in silico binding potentials of O. melastigma estrogen receptors (omEsrs) with BPTMC were assessed by docking study. Low-concentration BPTMC exposure (including an environmentally relevant concentration, 0.25 μg/L) resulted in stimulating effects, including hatching rate, heart rate, malformation rate, and swimming velocity. However, elevated concentrations of BPTMC led to an inflammatory response, changed heart rate and swimming velocity in the embryos and larvae. In the meantime, BPTMC (including 0.25 μg/L) altered the concentrations of estrogen receptor, vitellogenin, and endogenous 17 β-estradiol as well as the transcriptional levels of estrogen-responsive genes in the embryos or/and larvae. Furthermore, elaborate tertiary structures of omEsrs were built by ab initio modeling, and BPTMC exerted potent binding potential with three omEsrs with -47.23, -49.23, and -50.30 kJ/mol for Esr1, Esr2a, and Esr2b, respectively. This work suggests that BPTMC has potent toxicity and estrogenic effects in O. melastigma.
Collapse
Affiliation(s)
- Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
28
|
Altyar AE, Bekhet AH, Kamel M, Albadrani GM, Kensara OA, Abdel-Daim MM. Dietary Thymoquinone Alone or Combined with Swimming Exercise Protect against Microcystin-LR-Induced Oxidative Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5643861. [PMID: 36874614 PMCID: PMC9977520 DOI: 10.1155/2023/5643861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/19/2022] [Indexed: 02/24/2023]
Abstract
Microcystin-leucine-arginine (MCLR) is the most abundant cyanotoxin produced by cyanobacteria. It induces potent cytotoxicity through oxidative stress and DNA damage. Thymoquinone (TQ) is a natural nutraceutical antioxidant derived from black cumin (Nigella sativa). Physical exercise (EX) improves whole-body metabolic homeostasis. Therefore, this study examined the protective role of swimming exercise and TQ against MC-induced toxicity in mice. Fifty-six healthy adult male albino mice (25-30 g) were randomized into seven groups; group (I) was the negative control and received oral physiological saline for 21 days; group (II) received water EX for 30 min daily; group (III) was intraperitoneally injected with TQ (5 mg/kg daily, for 21 days); group (IV) was intraperitoneally administered MC (10 μg/kg daily, for 14 days) and acted as the positive toxic control; group (V) was treated with MC and water EX; group (VI) was injected with MC and TQ; finally, group (VII) was treated with MC with TQ and water EX. In comparison with the control group, the results showed hepatic, renal, and cardiac toxicity in the MCLR-treated group, indicated by a significant increase (p < 0.05) in serum levels of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine transferase (ALT), cholesterol, lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase-myocardial band (CK-MB), urea, creatinine, interleukin-6, interleukin -1β, and tumor necrosis factor-α levels. In addition, there were significant elevations (p < 0.05) in malondialdehyde (MDA) and nitric oxide (NO) levels and a significant decrease in reduced glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) in hepatic, cardiac, and renal tissues. Treatment with either TQ or water EX significantly improved (p < 0.05) the MC-induced toxicity with superiority of the TQ group in the restoration of normal ranges; however, cotreatment with both TQ and swimming EX showed the most improvement and restoration to normal ranges as a result of increasing EX clinical efficacy by TQ.
Collapse
Affiliation(s)
- Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | | | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Osama A. Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
29
|
Wang Q, Chen G, Tian L, Kong C, Gao D, Chen Y, Junaid M, Wang J. Neuro- and hepato-toxicity of polystyrene nanoplastics and polybrominated diphenyl ethers on early life stages of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159567. [PMID: 36272476 DOI: 10.1016/j.scitotenv.2022.159567] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoplastics (NPs) are good carriers of persistent organic pollutants (POPs) such as polybrominated diphenyl ethers (PBDEs) and can modify their bioavailability and toxicity to aquatic organisms. This study highlights the single and combined toxic effects of polystyrene nanoplastics (PS-NPs) and 2,2 ',4,4 '-tetrabromodiphenyl ether (BDE-47, one of the major PBDE congeners) on zebrafish embryos after an exposure of up to 120 hpf. Our results showed that PS-NPs and BDE-47 formed larger particle aggregates during co-exposure, which attached to the surface of the yolk membrane and even changed its structure, and these particles also bioaccumulated in the intestine of zebrafish larvae, compared with the PS-NPs single exposure. Further, the co-exposure significantly increased mortality, accelerated voluntary movements, enhanced hatching rate, and decreased heart rate. Hepatoxicity analyses revealed that the mixture exposure induced a darker/browner liver colour, atrophied liver and greater hepatotoxicity in zebrafish larvae. In addition to increased ROS accumulation, the reduced expression of the antioxidant gpx1a gene and increased expression of cyp1a1 were found after co-treatment. Moreover, ache and chrn7α genes associated with neurocentral development, were significantly downregulated, mainly in the co-exposure group. In conclusion, simultaneous exposure to PS-NPs and BDE-47 exacerbated oxidative stress, developmental impacts, hepatotoxicity, and neurodevelopmental toxicity in zebrafish larvae. Therefore, neurotoxic effects of complex chemical interactions between PS-NPs and persistent organic pollutants in freshwater environments should be paid more attention.
Collapse
Affiliation(s)
- Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Liyan Tian
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yurou Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
30
|
Zi Y, Barker JR, MacIsaac HJ, Zhang R, Gras R, Chiang YC, Zhou Y, Lu F, Cai W, Sun C, Chang X. Identification of neurotoxic compounds in cyanobacteria exudate mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159257. [PMID: 36208737 DOI: 10.1016/j.scitotenv.2022.159257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Release of toxic cyanobacterial secondary metabolites threatens biosecurity, foodwebs and public health. Microcystis aeruginosa (Ma), the dominant species in global freshwater cyanobacterial blooms, produces exudates (MaE) that cause adverse outcomes including nerve damage. Previously, we identified > 300 chemicals in MaE. It is critical to investigate neurotoxicity mechanisms of active substances among this suite of Ma compounds. Here, we screened 103 neurotoxicity assays from the ToxCast database to reveal targets of action of MaE using machine learning. We then built a potential Adverse Outcome Pathway (AOP) to identify neurotoxicity mechanisms of MaE as well as key targets. Finally, we selected potential neurotoxins matched with those targets using molecular docking. We found 38 targets that were inhibited and eight targets that were activated, collectively mainly related to neurotransmission (i.e. cholinergic, dopaminergic and serotonergic neurotransmitter systems). The potential AOP of MaE neurotoxicity could be caused by blocking calcium voltage-gated channel (CACNA1A), because of antagonizing neurotransmitter receptors, or because of inhibiting solute carrier transporters. We identified nine neurotoxic MaE compounds with high affinity to those targets, including LysoPC(16:0), 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine, egonol glucoside, polyoxyethylene (600) monoricinoleate, and phytosphingosine. Our study enhances understanding of neurotoxicity mechanisms and identifies neurotoxins in cyanobacterial bloom exudates, which may help identify priority compounds for cyanobacteria management.
Collapse
Affiliation(s)
- Yuanyan Zi
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada
| | - Justin R Barker
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada
| | - Hugh J MacIsaac
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Robin Gras
- School of Computer Science, University of Windsor, ON N9B 3P4, Canada
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Yuan Zhou
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China
| | - Fangchi Lu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Wenwen Cai
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada
| | - Chunxiao Sun
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9 B 3P4, Canada; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China.
| |
Collapse
|
31
|
Liu Y, Guo J, Liu W, Yang F, Deng Y, Meng Y, Cheng B, Fu J, Zhang J, Liao X, Wei L, Lu H. Effects of haloxyfop-p-methyl on the developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108466. [PMID: 36462742 DOI: 10.1016/j.fsi.2022.108466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Pesticides are extensively used in agricultural production, and their residues in soil, water, and agricultural products have become a threat to aquatic ecosystem. In this study, the toxicity of haloxyfop-p-methyl, an aryloxyphenoxypropionate herbicide was studied using the model animal zebrafish. The development of zebrafish larvae was affected by haloxyfop-p-methyl including spinal deformities, decreased body length, slow heart rate, and large yolk sac area. Behavior analysis revealed that behavior activity of larvae was weakened significantly including shortened displacement distance, reduced swimming speed, increased angular speed winding degrees, in accordance with higher AChE activity. Besides, exposure to haloxyfop-p-methyl could induce oxidative stress companied by the increased intents of ROS, MDA and increased activities of CAT and SOD. In immunotoxicity, haloxyfop-p-methyl not only reduced the innate immune cells such as neutrophils and macrophages, but also affected T cells mature in thymus. Furthermore, haloxyfop-p-methyl could induce neutrophils apoptosis, accompanied with the upregulation of the expression of proapoptotic protein such as Bax and P53 and the downregulation of the expression of antiapoptotic protein Bcl-2. In addition, haloxyfop-p-methyl could induce the expression of Jak, STAT and proinflammatory cytokine genes (IFN-γ, TNF-α, and IL-8). These results indicate that haloxyfop-p-methyl induces developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish, providing a perspective on the toxicological mechanism of haloxyfop-p-methyl in teleosts.
Collapse
Affiliation(s)
- Yi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jing Guo
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Wenjin Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Fengjie Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Yunyun Deng
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Yunlong Meng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Bo Cheng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Jianping Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - June Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China.
| |
Collapse
|
32
|
Yu H, Zhang J, Chen Y, Chen J, Qiu Y, Zhao Y, Li H, Xia S, Chen S, Zhu J. The adverse effects of fluxapyroxad on the neurodevelopment of zebrafish embryos. CHEMOSPHERE 2022; 307:135751. [PMID: 35863420 DOI: 10.1016/j.chemosphere.2022.135751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Fluxapyroxad (Flu), one of the succinate dehydrogenase-inhibited (SDHI) fungicides, has been extensively used in crop fungal disease control. Despite its increasing use in modern agriculture and long-term retention in the environment, the potentially toxic effects of Flu in vivo, especially on neurodevelopment, remain under-evaluated. In this study, zebrafish embryos were exposed to Flu at concentrations of 0.5, 0.75, and 1 mg/L for 96 h to evaluate the neurotoxicity of Flu. The results showed that Flu caused concentration-dependent malformations, including shorter body length, smaller head and eyes, and yolk sac edema. After exposure to Flu, larval zebrafish exhibited severe motor aberrations. Flu at a concentration of 1 mg/L significantly decreased dopamine level and notably altered acetylcholinesterase (AChE) activity and acetylcholine (ACh) content. Abnormal central nervous system (CNS) neurogenesis and disordered motor neuron development were observed in Tg (HUC-GFP) and Tg (hb9-GFP) zebrafish in Flu-treated groups. The expression of key genes involved in neurotransmission and neurodevelopment further proved that Flu impaired the zebrafish nervous system. This work contributes to our understanding of the neurotoxic effects and mechanisms induced by Flu in zebrafish and may help us take precautions against the neurotoxicity of Flu.
Collapse
Affiliation(s)
- Huilin Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yinghong Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Juan Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yang Qiu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yan Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Honghao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shengyao Xia
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Jiajin Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
33
|
Svirčev Z, Chen L, Sántha K, Drobac Backović D, Šušak S, Vulin A, Palanački Malešević T, Codd GA, Meriluoto J. A review and assessment of cyanobacterial toxins as cardiovascular health hazards. Arch Toxicol 2022; 96:2829-2863. [PMID: 35997789 PMCID: PMC9395816 DOI: 10.1007/s00204-022-03354-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.
Collapse
Affiliation(s)
- Zorica Svirčev
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Kinga Sántha
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Stamenko Šušak
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Vulin
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Tamara Palanački Malešević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jussi Meriluoto
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
34
|
Song Y, Liu S, Jiang X, Ren Q, Deng H, Paudel YN, Wang B, Liu K, Jin M. Benzoresorcinol induces developmental neurotoxicity and injures exploratory, learning and memorizing abilities in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155268. [PMID: 35429566 DOI: 10.1016/j.scitotenv.2022.155268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Benzophenones (BPs) are a class of UV absorber commonly used in skin care products like sunscreens. With its wide range of application, its environmental and human hazards have received much attention in recent days. Previous studies on the toxicity of BPs mainly focused on its endocrine-disrupting effects, but there are limited studies on its neurodevelopment and neurotoxicity. Herein, using the zebrafish model we studied the neurodevelopmental- and neuro-toxicity of benzophenone 1 (BP1) (0.8, 1.0, 1.2, 1.6, and 2.4 μg/mL). As a result, BP1 led to an increase of embryo mortality, a decrease in hatching rate, and an increase in the rate of developmental abnormalities in a concentration-dependent manner. BP1 also caused developmental defects in the central nervous system (CNS) and dopaminergic (DA) neurons. Accordingly, BP1 injured larval zebrafish general locomotion and response to stimuli in light/dark challenge. In adult zebrafish, BP1 exposure (1, 10, 100, 1000 μg/L) caused inhibition of learning and memory abilities in the T-maze tests, and inhibited exploratory behavior and activity in the novel tank diving tests. Further, transcription levels of genes related to neurotoxicity, neurodevelopment, and anxiety revealed that BP1 may affect the development and function of the myelin sheath, inducing structural and functional defects of CNS, manifested as abnormal behaviors such as anxiety. Hence, the current study revealed the neurodevelopmental toxicity and neurotoxicity of BP1, expanded our knowledge about the toxic effects of BP1 on organisms, posing a possible threat to the environment and human health.
Collapse
Affiliation(s)
- Yang Song
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China
| | - Xin Jiang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Hongyu Deng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China.
| |
Collapse
|
35
|
Guo D, Luo L, Kong Y, Kuang Z, Wen S, Zhao M, Zhang W, Fan J. Enantioselective neurotoxicity and oxidative stress effects of paclobutrazol in zebrafish (Danio rerio). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105136. [PMID: 35772839 DOI: 10.1016/j.pestbp.2022.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Paclobutrazol is a widely used chiral plant growth regulator and its enantioselective toxicity in aquatic organisms is less explored till now. Herein, the enantioselective neurotoxicity of paclobutrazol mediated by oxidative stress in zebrafish were investigated. The oxidative stress parameters and neurotoxic biomarkers changed significantly in each exposure group, and paclobutrazol showed enantioselective toxicity in zebrafish. Firstly, (2R, 3R)-paclobutrazol exhibited a stronger oxidative stress in zebrafish than (2S, 3S)-enantiomer (P < 0.05). Then, activities of acetylcholinesterase, calcineurin, and total nitric oxide synthase in (2R, 3R)-paclobutrazol treatments were 0.61-0.89, 1.24-1.53, and 1.21-1.35-fold stronger (P < 0.05) than those in (2S, 3S)-enantiomer treatments, respectively. Next, the content variations of four neurotransmitters in zebrafish exposed to (2R, 3R)-paclobutrazol were significantly larger than those in (2S, 3S)-enantiomer treatments (P < 0.05). Moreover, (2R, 3R)-paclobutrazol had stronger binding with the receptors than (2S, 3S)-enantiomer through molecular docking. The integrated biomarker response values further demonstrated that (2R, 3R)-paclobutrazol showed stronger toxicity to zebrafish than (2S, 3S)-enantiomer. Furthermore, the neurotoxicity of paclobutrazol can be interpreted as the mediating effect of oxidative stress in zebrafish through correlation analysis, and an adverse outcome pathway for the nervous system in zebrafish induced by paclobutrazol was proposed. This work will greatly extend our understanding on the enantioselective toxic effects of paclobutrazol in aquatic organisms.
Collapse
Affiliation(s)
- Dong Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Lulu Luo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhiyang Kuang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Siyi Wen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiguang Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China.
| | - Jun Fan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
36
|
Yang X, Wang C, Yang L, Zheng Q, Liu Q, Wawryk NJP, Li XF. Neurotoxicity and transcriptome changes in embryonic zebrafish induced by halobenzoquinone exposure. J Environ Sci (China) 2022; 117:129-140. [PMID: 35725065 DOI: 10.1016/j.jes.2022.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) with a widespread presence in drinking water that exhibit much higher cytotoxicity than regulated DBPs. However, the developmental neurotoxicity of HBQs has not been studied in vivo. In this work, we studied the neurotoxicity of HBQs on zebrafish embryos, after exposure to varying concentrations (0-8 µmol/L) of three HBQs, 2,5-dichloro-1,4-benzoquinone (2,5-DCBQ), 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), and 2,5-dibromo-1,4-benzoquinone (2,5-DBBQ) for 4 to 120 hr post fertilization (hpf). HBQ exposure significantly decreased the locomotor activity of larvae, accompanied by significant reduction of neurotransmitters (dopamine and γ-aminobutyric acid) and acetylcholinesterase activity. Furthermore, the expression of genes involved in neuronal morphogenesis (gfap, α1-tubulin, mbp, and syn-2α) were downregulated by 4.4-, 5.2-, 3.0-, and 4.5-fold in the 5 µmol/L 2,5-DCBQ group and 2.0-, 1.6-, 2.1-, and 2.3-fold in the 5 µmol/L 2,5-DBBQ group, respectively. Transcriptomic analysis revealed that HBQ exposure affected the signaling pathways of neural development. This study demonstrates the significant neurotoxicity of HBQs in embryonic zebrafish and provides molecular evidence for understanding the potential mechanisms of HBQ neurotoxicity.
Collapse
Affiliation(s)
- Xue Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| | - Lihua Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Qi Zheng
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qiongyu Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Nicholas J P Wawryk
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
37
|
Yu H, Chen Q, Qiu W, Ma C, Gao Z, Chu W, Shi H. Concurrent water- and foodborne exposure to microplastics leads to differential microplastic ingestion and neurotoxic effects in zebrafish. WATER RESEARCH 2022; 219:118582. [PMID: 35580390 DOI: 10.1016/j.watres.2022.118582] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/16/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Organisms constantly ingest microplastics directly from the environment or indirectly via trophic transfer due to the pervasiveness of microplastic pollution. However, most previous studies have only focused on waterborne exposure at the individual level, while few studies have investigated the contribution of trophic transfer to the exposure in organisms. We comprehensively evaluated the differences in microplastic ingestion and toxic effects in zebrafish exposed to microplastics via two concurrent routes (waterborne and foodborne). The polyethylene microplastics (40-47 μm, 0.1-10 mg/L) concentration used here was set in a range closed to the environmentally relevant microplastic concentrations, especially considering the extreme high concentration scenarios in wastewater. The concentration of microplastics resulting from foodborne exposure (0.01±0.01 μg/mg; 0.1±0.1 particles/mg) was significantly lower than that through waterborne exposure (0.06±0.02 μg/mg; 0.8±0.3 particles/mg), suggesting the ingestion of microplastics in their tissues occurs mainly through direct environmental uptake rather than food chain transfer (though the initial microplastic concentration was 1000 folds lower). However, more sublethal impacts, including the significant abnormal hyperactive swimming behaviour (107±5% induction; p< 0.05), were observed in the foodborne group than waterborne group. Additionally, ingenuity pathway analysis predicted both exposure routes caused obvious nervous system interference but through opposite modes of action. This was further verified by the alteration of neurotransmitter biomarkers that neurotoxicity mechanisms were completely different for the two exposure routes. The neurotoxic effects of microplastics are non-negligible and can exert together through both water- and foodborne exposure routes, which deserves further attention.
Collapse
Affiliation(s)
- Hairui Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
38
|
Tandem Mass Tagging-Based Quantitative Proteomics Analysis Reveals Damage to the Liver and Brain of Hypophthalmichthys molitrix Exposed to Acute Hypoxia and Reoxygenation. Antioxidants (Basel) 2022; 11:antiox11030589. [PMID: 35326239 PMCID: PMC8945220 DOI: 10.3390/antiox11030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Aquaculture environments frequently experience hypoxia and subsequent reoxygenation conditions, which have significant effects on hypoxia-sensitive fish populations. In this study, hepatic biochemical activity indices in serum and the content of major neurotransmitters in the brain were altered markedly after acute hypoxia and reoxygenation exposure in silver carp (Hypophthalmichthys molitrix). Proteomics analysis of the liver showed that a number of immune-related and cytoskeletal organization-related proteins were downregulated, the ferroptosis pathway was activated, and several antioxidant molecules and detoxifying enzymes were upregulated. Proteomics analysis of the brain showed that somatostatin-1A (SST1A) was upregulated, dopamine-degrading enzyme catechol O methyltransferase (COMT) and ferritin, heavy subunit (FerH) were downregulated, and the levels of proteins involved in the nervous system were changed in different ways. In conclusion, these findings highlight that hypoxia–reoxygenation has potential adverse effects on growth, locomotion, immunity, and reproduction of silver carp, and represents a serious threat to liver and brain function, possibly via ferroptosis, oxidative stress, and cytoskeleton destruction in the liver, and abnormal expression of susceptibility genes for neurodegenerative disorders in the brain. Our present findings provide clues to the mechanisms of hypoxia and reoxygenation damage in the brain and liver of hypoxia-sensitive fish. They could also be used to develop methods to reduce hypoxia or reoxygenation injury to fish.
Collapse
|
39
|
Yang L, Guo H, Kuang Y, Yang H, Zhang X, Tang R, Li D, Li L. Neurotoxicity induced by combined exposure of microcystin-LR and nitrite in male zebrafish (Danio rerio): Effects of oxidant-antioxidant system and neurotransmitter system. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109248. [PMID: 34826614 DOI: 10.1016/j.cbpc.2021.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022]
Abstract
With the intensification of water eutrophication around the world, cyanobacterial blooms have been becoming a common environmental pollution problem. The levels of microcystin-LR (MC-LR) and nitrite rise sharply during the cyanobacterial bloom period, which may have potential joint toxicity on aquatic organisms. In this study, adult male zebrafish were immersed into different joint solutions of MC-LR (0, 3, 30 μg/L) and nitrite (0, 2, 20 mg/L) for 30 days to explore the neurotoxic effects and underlying mechanisms. The results showed that single factor MC-LR or nitrite caused a concentration-dependent damage in brain ultrastructure and the effects of their joint exposure were much more intense. Downregulated expression of mbp and bdnf associated with myelination of nerve fibers further confirmed that MC-LR and nitrite could damage the structure and function of neuron. The decreases in dopamine content, acetylcholinesterase activity and related gene mRNA levels indicated that MC-LR and nitrite adversely affected the normal function of the dopaminergic and cholinergic systems in zebrafish brain. In addition, the significant increase in malondialdehyde content suggested the occurrence of oxidative stress caused by MC-LR, nitrite and their joint-exposure, which paralleled a significant decrease in antioxidant enzyme‑manganese superoxide dismutase activity and its transcription level. In conclusion, MC-LR + Nitrite joint-exposure has synergistic neurotoxic effects on the structure and neurotransmitter systems of fish brain, and antioxidant capacity disruption caused by these two factors might be one of the underlying synergistic mechanisms. Therefore, there is a risk of being induced neurotoxicity in fish during sustained cyanobacterial bloom events.
Collapse
Affiliation(s)
- Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
40
|
Sergi E, Orfanakis M, Dimitriadi A, Christou M, Zachopoulou A, Kourkouta C, Printzi A, Zervou SK, Makridis P, Hiskia A, Koumoundouros G. Sublethal exposure to Microcystis aeruginosa extracts during embryonic development reduces aerobic swimming capacity in juvenile zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106074. [PMID: 35030472 DOI: 10.1016/j.aquatox.2022.106074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
In the last decades, cyanobacterial harmful algal blooms (CyanoHABs) pose an intensifying ecological threat. Microcystis aeruginosa is a common CyanoHAB species in freshwater ecosystems, with severe toxic effects in a wide range of organisms. In the present paper we examined whether transient and short (48 h) exposure of fish embryos to sublethal levels of M. aeruginosa crude extract (200 mg biomass dw L-1) affects swimming performance at later life stages (end of metamorphosis, ca 12 mm TL, 22,23 days post-fertilization). Pre-exposed metamorphosing larvae presented a significant decrease in swimming performance (9.7 ± 1.6 vs 11.4 ± 1.7 TL s-1 in the control group, p < 0.01), and a significant decrease in the ventricle length-to-depth ratio (1.23 ± 0.15 vs 1.42 ± 0.15 in control fish, p < 0.05). In addition, extract-exposed fish presented significantly elevated rates of vertebral abnormalities (82 ± 13% vs 7 ± 4% in the control group), mainly consisting of the presence of extra neural and haemal processes. No significant differences between groups were detected in survival and growth rates. Results are discussed in respect to the mechanisms that might mediate the detected cyanobacterial effects. This is the first evidence of a direct link between sublethal exposure to M. aeruginosa during the embryonic period and swimming performance at later life-stages. Decreased swimming performance, altered cardiac shape, and elevated vertebral abnormalities in response to early exposure to M. aeruginosa could have significant effects on fish populations in the wild.
Collapse
Affiliation(s)
| | | | | | - Maria Christou
- Biology Department, University of Crete, Heraklion, Greece
| | | | | | - Alice Printzi
- Biology Department, University of Crete, Heraklion, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | | |
Collapse
|
41
|
Li H, Gu X, Chen H, Mao Z, Shen R, Zeng Q, Ge Y. Co-occurrence of multiple cyanotoxins and taste-and-odor compounds in the large eutrophic Lake Taihu, China: Dynamics, driving factors, and challenges for risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118594. [PMID: 34848287 DOI: 10.1016/j.envpol.2021.118594] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/31/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms producing toxic metabolites occur frequently in freshwater, yet the environmental behaviors of complex cyanobacterial metabolites remain largely unknown. In this study, the seasonal and spatial variations of several classes of cyanotoxins (microcystins, cylindrospermopsins, saxitoxins) and taste-and-odor (T&O) compounds (β-cyclocitral, β-ionone, geosmin, 2-methylisoborneol) in Lake Taihu were simultaneously investigated for the first time. The total cyanotoxins were dominated by microcystins with concentrations highest in November (mean 2209 ng/L) and lowest in February (mean 48.7 ng/L). Cylindrospermopsins were abundant in May with the highest content of 622.8 ng/L. Saxitoxins only occurred in May (mean 19.2 ng/L) and November (mean 198.5 ng/L). Extracellular T&O compounds were most concentrated in August, the highest being extracellular β-cyclocitral (mean 240.6 ng/L) followed by 2-methylisoborneol (mean 146.6 ng/L). Environment variables play conflicting roles in modulating the dynamics of different groups of cyanotoxins and T&O compounds. Total phosphorus (TP), total nitrogen (TN), chlorophyll-a and cyanobacteria density were important factors affecting the variation of total microcystins, β-cyclocitral and β-ionone concentrations. In contrast, total cylindrospermopsins, 2-methylisoborneol and geosmin concentrations were significantly influenced by water temperature and TP. There was a significant and linear relationship between microcystins and β-cyclocitral/β-ionone, while cylindrospermopsins were positively correlated with 2-methylisoborneol and geosmin. The perceptible odors may be good indicators for the existence of cyanotoxins. Hazard quotients revealed that potential human health risks from microcystins were high in August and November. Meanwhile, the risks from cylindrospermopsins were at moderate levels. Cylindrospermopsins and saxitoxins were first identified in this lake, suggesting that diverse cyanotoxins might co-occur more commonly than previously thought. Hence, the risks from other cyanotoxins beyond microcystins shouldn't be ignored. This study also highlights that the necessity for further assessing the combination effects of these complex metabolites.
Collapse
Affiliation(s)
- Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ruijie Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - You Ge
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Gu J, Guo M, Yin X, Huang C, Qian L, Zhou L, Wang Z, Wang L, Shi L, Ji G. A systematic comparison of neurotoxicity of bisphenol A and its derivatives in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150210. [PMID: 34534871 DOI: 10.1016/j.scitotenv.2021.150210] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
As more and more countries have prohibited the manufacture and sale of plastic products with bisphenol A (BPA), a number of bisphenol analogues (BPs), including BPS, BPF and BPAF, have gradually been used as its primary substitutes. Ideally, substitutes used to replace chemicals with environmental risks should be inert, so it makes sense that the risk of the similar chemical substitutes (BPS, BPF, and BPAF) should be assessed before they used. Therefore, in the present study, the neurotoxicity of four BPs at environmentally relevant concentration (200 μg/L) were systematically compared using zebrafish as a model. Our results showed that the four BPs (BPA, BPS, BPF and BPAF) exhibited no obvious effect on the hatchability, survival rate and body length of zebrafish larvae, noteworthily a significant inhibitory effect on spontaneous movement at 24 hpf was observed in the BPA, BPF and BPAF treatment groups. Behavioral tests showed that BPAF, BPF and BPA exposure significantly reduced the locomotor activity of the larvae. Additionally, BPAF treatment adversely affected motor neuron axon length in transgenic lines hb9-GFP zebrafish and decreased central nervous system (CNS) neurogenesis in transgenic lines HuC-GFP zebrafish. Intriguingly, BPAF displayed the strongest effects on the levels and metabolism of neurotransmitters, followed by BPF and BPA, while BPS showed the weakest effects on neurotransmitters. In conclusion, our study deciphered that environmentally relevant concentrations of BPs exposure exhibited differential degrees of neurotoxicity, which ranked as below: BPAF > BPF ≈ BPA > BPS. The possible mechanisms can be partially ascribed to the dramatical changes of multiple neurotransmitters and the inhibitory effects on neuronal development. These results suggest that BPAF and BPF should be carefully considered as alternatives to BPA.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Lingling Qian
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
43
|
Lin W, Guo H, Yang L, Kuang Y, Li D, Yang P, Li L. Alleviation of microcystin-LR-induced hepatic lipidosis and apoptosis in zebrafish by use of rice straw-derived biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113054. [PMID: 34894426 DOI: 10.1016/j.ecoenv.2021.113054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Microcystin-LR (MC-LR), mainly released by Microcystis aeruginosa, is posing a tremendous risk to aquatic animals and human health. Meanwhile, biochar (BC) is gradually be used as a sustainable adsorbent to immobilize and remove water pollutants. In our study, we for the first time conducted a full-scale investigation on lipid metabolism and its regulation mechanism of female zebrafish (Danio rerio) exposed to 0, 10 μg/L MC-LR, 100 μg/L BC, and 10 μg/L MC-LR+ 100 μg/L BC. The results indicated that sub-chronic MC-LR exposure induced hepatic lipidosis and apoptosis, including the formation of lipid droplets, significantly elevation of hepatic triglyceride (TG) level as well as significant upregulated expression of lipogenesis-related genes (foxo1a, elovl5, pparγ) and pro-apoptotic genes (bax, casp3). Nevertheless, no significant alteration was observed in the single BC group and the combined exposure group, which indicated that BC may solely functioned as an absorbent agent to lower MC-LR bioaccumulation in zebrafish liver and alleviate MC-LR-induced hepatotoxicity. Our findings revealed that the utilization of rice straw-derived BC can adsorb and immobile MC-LR in the water, subsequently alleviated the MC-LR-induced hepatic lipidosis and apoptosis in female zebrafish. On the basis of fish health, it is urgent to explore the feasibility of using environmentally friendly materials like BC to adsorb pollutants in water.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
44
|
Yu Y, Zhang Q, Liu G, Deng Y, Kang J, Zhang F, Lu T, Sun L, Qian H. Proteomic analysis of zebrafish brain damage induced by Microcystis aeruginosa bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148865. [PMID: 34246136 DOI: 10.1016/j.scitotenv.2021.148865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms constitute a global ecological problem that can seriously threaten human health. One of the most common bloom-forming cyanobacteria in freshwater is Microcystis aeruginosa, whose secretion of toxic substances (microcystins, MCs) have strong liver toxicity and endanger the health of exposed people through contaminated aquatic products and drinking water. However, few studies on the neurotoxicity of M. aeruginosa to zebrafish have simulated the process of an actual cyanobacterial bloom. In this study, we used the zebrafish (Danio rerio) as an effective model organism to study the acute neurotoxicity of M. aeruginosa, and to clarify its principal mechanism of action. A total of 82 upregulated and 26 downregulated proteins were detected by quantitative proteomics analysis in zebrafish brain after exposure to M. aeruginosa. Intriguingly, these proteins with changed expression were related to Synaptic vesicle cycle and terpenoid skeleton biosynthesis pathway, such as ACAT, STX1A, and V-ATPase. The obtained results uniformly indicated that the neurotoxicity of M. aeruginosa seriously damaged the neurotransmitter conduction in the nervous system and brain information storage and transmission of zebrafish and makes it more susceptible to neurological diseases. Our study provides a new perspective on the neurotoxicity risk of cyanobacterial blooms.
Collapse
Affiliation(s)
- Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guangfu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Deng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian Kang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
45
|
Banerjee S, Maity S, Guchhait R, Chatterjee A, Biswas C, Adhikari M, Pramanick K. Toxic effects of cyanotoxins in teleost fish: A comprehensive review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105971. [PMID: 34560410 DOI: 10.1016/j.aquatox.2021.105971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The phenomenon of eutrophication leads to the global occurrence of algal blooms. Cyanotoxins as produced by many cyanobacterial species can lead to detrimental effects to the biome due to their stability and potential biomagnification along food webs. Therefore, understanding of the potential risks these toxins pose to the most susceptible organisms is an important prerequisite for ecological risks assessment of cyanobacteria blooms. Fishes are an important component of aquatic ecosystems that are prone to direct exposure to cyanotoxins. However, relatively few investigations have focused on measuring the toxic potentials of cyanotoxins in teleost fishes. This review comprehensively describes the major toxicological impacts (such as hepatotoxicity, neurotoxicity, immune toxicity, reproductive toxicity and cytogenotoxicity) of commonly occurring cyanotoxins in teleost fishes. The present work encompasses recent research progresses with special emphasis on the basic molecular mechanisms by which different cyanotoxins impose their toxicities in teleost fishes. The major research areas, which need to be focused on in future scientific investigations, have also been highlighted. Protein kinase inhibition, transcriptional dysregulation, disruption of redox homeostasis and the induction of apoptotic pathways appear to be the key drivers of the toxicological effects of cyanotoxins in fish. Analyses also showed that the impacts of cyanotoxins on specific reproductive processes are relatively less described in teleosts in comparison to mammalian systems. In fact, as compared to other toxicological effects of cyanotoxins, their reproductive toxicity (such as impacts on oocyte development, maturation and their hormonal regulation) is poorly understood in fish, and thus requires further studies. Furthermore, additonal studies characterizing the molecular mechanisms responsible for the cellular uptake of cyanotoxins need to be investigated.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Rajkumar Guchhait
- P.G. Department of Zoology, Mahishadal Raj College, Garkamalpur, Purba Medinipur, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Chayan Biswas
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
46
|
Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2021; 13:toxins13100711. [PMID: 34679003 PMCID: PMC8540411 DOI: 10.3390/toxins13100711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, they have been shown to induce deleterious effects in a wide range of organs. However, their effects on the immune system are as yet scarcely investigated. Thus, to know the impact of cyanotoxins on the immune system, due to its importance in organisms’ homeostasis, is considered of interest. A review of the scientific literature dealing with the immunotoxicity of MCs and CYN has been performed, and both in vitro and in vivo studies have been considered. Results have confirmed the scarcity of reports on the topic, particularly for CYN. Decreased cell viability, apoptosis or altered functions of immune cells, and changed levels and mRNA expression of cytokines are among the most common effects reported. Underlying mechanisms, however, are still not yet fully elucidated. Further research is needed in order to have a full picture of cyanotoxin immunotoxicity.
Collapse
|
47
|
Li R, Yang L, Han J, Zou Y, Wang Y, Feng C, Zhou B. Early-life exposure to tris (1,3-dichloro-2-propyl) phosphate caused multigenerational neurodevelopmental toxicity in zebrafish via altering maternal thyroid hormones transfer and epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117471. [PMID: 34082372 DOI: 10.1016/j.envpol.2021.117471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), an alternative to brominated flame retardants, might pose an exposure risk to humans and wild animals during fetal development. Our recent study suggested that short-term TDCIPP exposure during early development caused sex-dependent behavioral alteration in adults. In the present study, multigenerational neurodevelopmental toxicity upon early-life exposure of parental zebrafish was evaluated, and the possible underlying mechanisms were further explored. Specifically, after embryonic exposure (0-10 days post-fertilization, dpf) to TDCIPP (0, 0.01, 0.10, and 1.00 μM), zebrafish larvae were cultured in clean water until the sexually matured to produce progeny (F1). The results confirmed neurodevelopmental toxicity in F1 larvae characterized by changes of developmental endpoints, reduced thigmotaxis, as well as altered transcription of genes including myelin basic protein a (mbpa), growth associated protein (gap43) and synapsin IIa (syn2a). Sex-specific changes in thyroid hormones (THs) indicated the relationship of abnormal THs levels with previously reported neurotoxicity in adult females after early-life exposure to TDCIPP. Similar changing profiles of TH levels (increased T3 and decreased T4) in adult females and F1 eggs, but not in F1 larvae, suggested that the TH disruptions were primarily inherited from the maternal fish. Further results demonstrated hypermethylation of global DNA and key genes related to TH transport including transthyretin (ttr) and solute carrier family 16 member 2 (slc16a2), which might affect the transport of THs to target tissues, thus at least partially contributing to the neurodevelopmental toxicity in F1 larvae. Overall, our results confirmed that early-life TDCIPP exposure of parental fish could affect the early neurodevelopment of F1 offspring. The underlying mechanism could involve altered TH levels inherited from maternal zebrafish and epigenetic modifications in F1 larvae.
Collapse
Affiliation(s)
- Ruiwen Li
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment of the People's Republic of China, Wuhan, 430014, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yu Zou
- Institute of Pharmaceutical Innovation, Medical College, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yingcai Wang
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment of the People's Republic of China, Wuhan, 430014, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
48
|
Mao Y, Zong Z, Dang Y, Yu L, Liu C, Wang J. Promotion effect of microcystin-LR on liver tumor progression in kras V12 transgenic zebrafish following acute or subacute exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112673. [PMID: 34438271 DOI: 10.1016/j.ecoenv.2021.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) is widely distributed in the natural environment and causes hepatotoxicity. However, whether MC-LR promotes liver tumor progression remains controversial. krasV12 transgenic zebrafish were used as an inducible liver tumor model to evaluate the potential tumor-promoting effect of MC-LR. First, krasV12 transgenic larvae were exposed to 0, 0.1 and 1 mg/L MC-LR with 20 mg/L doxycycline (Dox) for 4 d. The gray values and histopathological examinations of the liver demonstrated that MC-LR aggravated liver tumor progression, which could be inhibited by the Protein arginine methyltransferase 5 (Prmt5) inhibitor compound 5 (CMP5). Second, 1-month-old juvenile transgenic zebrafish were exposed to 0, 20 mg/L Dox, 1 μg/L MC-LR, and 20 mg/L Dox with 0.1 or 1 μg/L MC-LR for 15 d to determine whether the exposure to environmental concentrations of MC-LR promoted hepatocellular carcinoma (HCC) progression. We found that environmental concentrations of MC-LR increased the hepatosomatic index (HSI) and gray value (intensity/area) and promoted HCC progression. The results indicate that environmental concentrations of MC-LR have the potential to promote liver tumor progression. Taken together, the present study demonstrates that MC-LR can promote tumor in krasV12 transgenic zebrafish and that the upregulation of prmt5 expression might contribute to MC-LR-mediated promotion of liver tumorigenesis.
Collapse
Affiliation(s)
- Yuchao Mao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zijing Zong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
49
|
Wu Q, Li G, Huo T, Du X, Yang Q, Hung TC, Yan W. Mechanisms of parental co-exposure to polystyrene nanoplastics and microcystin-LR aggravated hatching inhibition of zebrafish offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145766. [PMID: 33610984 DOI: 10.1016/j.scitotenv.2021.145766] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
The combined toxicity effects of microcystins-LR (MCLR) and polystyrene nanoplastics (PSNPs) on the hatching of F1 zebrafish (Danio rerio) embryos were investigated in this study due to the increasing concerns of both plastic pollution and eutrophication in aquatic environments. Three-month-old zebrafish were used to explore the molecular mechanisms underlying the combined effect of MCLR (0, 0.9, 4.5, and 22.5 μg/L) on egg hatching in the existence of PSNPs (100 μg/L). The results demonstrated the existence of PSNPs further increased the accumulation of MCLR in F1 embryos. The hatching rates of F1 embryos were inhibited after exposure to 22.5 μg/L MCLR, and the presence of PSNPs aggravated the hatching inhibition induced by MCLR. The decrease of hatching enzyme activity and the abnormality of spontaneous movement were observed. We examined the altered expression levels of the genes associated with the hatching enzyme (tox16, foxp1, ctslb, xpb1, klf4, cap1, bmp4, cd63, He1.2, zhe1, and prl), cholinergic system (ache and chrnα7), and muscle development (Wnt, MyoD, Myf5, Myogenin, and MRF4). The results suggested the existence of PSNPs exacerbated the hatching inhibition of F1 embryos through decreasing the activity of enzyme, interfering with the cholinergic system, and affecting the muscle development.
Collapse
Affiliation(s)
- Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province 435002, China; Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tangbin Huo
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Xue Du
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydro-ecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Wei Yan
- Institute of Quality Standard & Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, Hubei, China.
| |
Collapse
|
50
|
Bownik A, Wlodkowic D. Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145577. [PMID: 33770877 DOI: 10.1016/j.scitotenv.2021.145577] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Despite mounting evidence of pleiotropic ecological risks, the understanding of the eco-neurotoxic impact of most industrially relevant chemicals is still very limited. In particularly the acute and chronic exposures to industrial pollutants on nervous systems and thus potential alterations in ecological fitness remain profoundly understudied. Since the behavioral phenotype is the highest-level and functional manifestation of integrated neurological functions, the alterations in neuro-behavioral traits have been postulated as very sensitive and physiologically integrative endpoints to assess eco-neurotoxicological risks associated with industrial pollutants. Due to a considerable backlog of risk assessments of existing and new production chemicals there is a need for a paradigm shift from high cost, low throughput ecotoxicity test models to next generation systems amenable to higher throughput. In this review we concentrate on emerging aspects of laboratory-based neuro-behavioral phenotyping approaches that can be amenable for rapid prioritizing pipelines. We outline the importance of development and applications of innovative neuro-behavioral assays utilizing small aquatic biological indicators and demonstrate emerging concepts of high-throughput chemo-behavioral phenotyping. We also discuss new analytical approaches to effectively and rapidly evaluate the impact of pollutants on higher behavioral functions such as sensory-motor assays, decision-making and cognitive behaviors using innovative model organisms. Finally, we provide a snapshot of most recent analytical approaches that can be applied to elucidate mechanistic rationale that underlie the observed neuro-behavioral alterations upon exposure to pollutants. This review is intended to outline the emerging opportunities for innovative multidisciplinary research and highlight the existing challenges as well barriers to future development.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|