1
|
Luo Y, Chen Y, Lin S, Hu H, Song X, Bian Q, Fang W, Lv H, Wang Q, Jiang J, Tang YW, Jin D. Genomic epidemiology of Clostridioides difficile sequence type 35 reveals intraspecies and interspecies clonal transmission. Emerg Microbes Infect 2024; 13:2408322. [PMID: 39305009 PMCID: PMC11443556 DOI: 10.1080/22221751.2024.2408322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Clostridioides difficile sequence type (ST) 35 has been found in humans and animals worldwide. However, its genomic epidemiology and clonal transmission have not been explored in detail. In this study, 176 C. difficile ST35 isolates from six countries were sequenced. Genomic diversity, clonal transmission and epidemiological data were analyzed. Sporulation and virulence capacities were measured. Four ribotypes (RT) were identified including RT046 (97.2%), RT656 (1.1%), RT427 (0.6%), and RT AI-78 (1.1%). Phylogenetic analysis of 176 ST35 genomes, along with 50 publicly available genomes, revealed two distinctive lineages without time-, region-, or source-dependent distribution. However, the distribution of antimicrobial resistance genes differed significantly between the two lineages. Nosocomial and communal transmission occurred in humans with the isolates differed by ≤ two core-genome single-nucleotide polymorphism (cgSNPs) and clonal circulation was found in pigs with the isolates differed by ≤ four cgSNPs. Notably, interspecies clonal transmission was identified among three patients with community acquired C. difficile infection and pigs with epidemiological links, differed by ≤ nine cgSNPs. Toxin B (TcdB) concentrations were significantly higher in human isolates compared to pig isolates, and ST35 isolates exhibited stronger sporulation capacities than other STs. Our study provided new genomic insights and epidemiological evidence of C. difficile ST35 intraspecies and interspecies clonal transmission, which can also be facilitated by its strong sporulation capacity.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Yu Chen
- School of Laboratory Medicine, Hangzhou Medical College, Zhejiang, People's Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Zhejiang, People's Republic of China
| | - Shan Lin
- School of Laboratory Medicine, Hangzhou Medical College, Zhejiang, People's Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Zhejiang, People's Republic of China
| | - Hui Hu
- School of Laboratory Medicine, Hangzhou Medical College, Zhejiang, People's Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Zhejiang, People's Republic of China
| | - Xiaojun Song
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, People's Republic of China
| | - Qiao Bian
- Department of Public Health Emergency Response, Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People's Republic of China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, People's Republic of China
| | - Huoyang Lv
- School of Laboratory Medicine, Hangzhou Medical College, Zhejiang, People's Republic of China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, People's Republic of China
| | - Qin Wang
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Zhejiang, People's Republic of China
| | - Jianmin Jiang
- Department of Public Health Emergency Response, Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People's Republic of China
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic Platform, Shanghai, People's Republic of China
| | - Dazhi Jin
- School of Laboratory Medicine, Hangzhou Medical College, Zhejiang, People's Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Zhejiang, People's Republic of China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang, People's Republic of China
| |
Collapse
|
2
|
Adedipe DT, Chen C, Lai RWS, Xu S, Luo Q, Zhou GJ, Boxall A, Brooks BW, Doblin MA, Wang X, Wang J, Leung KMY. Occurrence and potential risks of pharmaceutical contamination in global Estuaries: A critical review and analysis. ENVIRONMENT INTERNATIONAL 2024; 192:109031. [PMID: 39321536 DOI: 10.1016/j.envint.2024.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Input of pollutants to estuaries is one of the major threats to marine biodiversity and fishery resources, and pharmaceuticals are one of the most important contaminants of emerging concern in aquatic ecosystems. To synthesize pharmaceutical pollution levels in estuaries over the past 20 years from a global perspective, this review identified 3229 individual environmental occurrence data for 239 pharmaceuticals across 91 global estuaries distributed in 26 countries. The highest cumulative weighted average concentration level (WACL) of all detected pharmaceuticals in estuarine water was observed in Africa (145,461.86 ng/L), with 30 pharmaceuticals reported. North America (24,316.39 ng/L) was ranked second in terms of WACL, followed by South America (20,784.13 ng/L), Asia (5958.38 ng/L), Europe (4691.23 ng/L), and Oceania (2916.32 ng/L). Carbamazepine, diclofenac, and paracetamol were detected in all continents. A total of 41 functional categories of pharmaceuticals were identified, and analgesics, antibiotics, and stimulants were amongst the most ubiquitous groups in estuaries worldwide. Although many pharmaceuticals were observed to present lower than or equal to moderate ecological risk, 34 pharmaceuticals were identified with high or very high ecological risks in at least one continent. Pharmaceutical pollution in estuaries was positively correlated with regional unemployment and poverty ratios, but negatively correlated with life expectancy and GDP per capita. There are some limitations that may affect this synthesis, such as comparability of the sampling and pretreatment methodology, differences in the target pharmaceuticals for monitoring, and potentially limited number and diversity of estuaries covered, which prompt us to standardize methods for monitoring these pharmaceutical contaminants in future global studies.
Collapse
Affiliation(s)
- Demilade T Adedipe
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chong Chen
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Racliffe Weng Seng Lai
- Department of Ocean Science and Technology, Faculty of Science and Technology, The University of Macau, Macau, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qiong Luo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Guang-Jie Zhou
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Alistair Boxall
- Department of Environment and Geography, University of York, York YO10 5DD, United Kingdom
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Martina A Doblin
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia; Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, China
| | - Juying Wang
- National Marine Environment Monitoring Center, Liaoning, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Zhu X, Liu S, Gao X, Gu Y, Yu Y, Li M, Chen X, Fan M, Jia Y, Tian L, Xiang M, Yu Y. Typical emerging contaminants in sewage treatment plant effluent, and related watersheds in the Pearl River Basin: Ecological risks and source identification. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135046. [PMID: 38964038 DOI: 10.1016/j.jhazmat.2024.135046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Emerging contaminants pose a potential risk to aquatic ecosystems in the Pearl River Basin, China, owing to the high population density and active industry. This study investigated samples from eight sewage treatment plants, and five surface water bodies of related watersheds. To screen the risk of emerging contaminants (ECs), and clarify their sources, this study calculated the risk quotient of detected chemical and performed source identification/apportionment using the positive matrix factorization method. In total, 149 organic pollutants were identified. Pharmaceuticals showed significant concentrations in sewage treatment plant samples (120.87 ng/L), compared with surface water samples (1.13 ng/L). The ecological risk assessment identified three chemicals with a heightened risk to aquatic organisms: fipronil sulfide, caffeine, and roxithromycin. Four principal sources of contaminants were identified: pharmaceutical wastewater, domestic sewage, medical effluent, and agricultural runoff. Pharmaceutical wastewater was the primary contributor (60.4 %), to the cumulative EC concentration and to ECs in sewage treatment plant effluent. Agricultural drainage was the main source of ECs in surface water. This study provides a strategy to obtain comprehensive information on the aquatic risks and potential sources of EC species in areas affected by artificial activities, which is of substantial importance to pollutant management and control.
Collapse
Affiliation(s)
- Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Siyan Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xiaofeng Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yilu Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Ying Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xiaowen Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Mengqi Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yujie Jia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Liping Tian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
4
|
Rafei R, Osman M, Kassem II, Dabboussi F, Weill FX, Hamze M. Spotlight on the epidemiology and antimicrobial susceptibility profiles of Vibrio species in the MENA region, 2000-2023. Future Microbiol 2024; 19:1333-1353. [PMID: 39229784 PMCID: PMC11486259 DOI: 10.1080/17460913.2024.2392460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Recent cholera outbreaks in many countries in the Middle East and North Africa (MENA) region have raised public health concerns and focused attention on the genus Vibrio. However, the epidemiology of Vibrio species in humans, water, and seafood is often anecdotal in this region. In this review, we screened the literature and provided a comprehensive assessment of the distribution and antibiotic resistance properties of Vibrio species in different clinical and environmental samples in the region. This review will contribute to understanding closely the real burden of Vibrio species and the spread of antibiotic-resistant strains in the MENA region. The overall objective is to engage epidemiologists, sanitarians and public health stakeholders to address this problem under the One-health ethos.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| | - Marwan Osman
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT06510, USA
| | - Issmat I Kassem
- Center for Food Safety, Department of Food Science & Technology, University of Georgia, 1109 Experiment Street, Griffin, GA30223-1797, USA
| | - Fouad Dabboussi
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des vibrions et du choléra, Paris, F-75015, France
| | - Monzer Hamze
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| |
Collapse
|
5
|
Zhang Y, Li C, Zhu X, Angelidaki I. Effect of Stepwise Exposure to High-Level Erythromycin on Anaerobic Digestion. Molecules 2024; 29:3489. [PMID: 39124894 PMCID: PMC11313690 DOI: 10.3390/molecules29153489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
High-level erythromycin (ERY) fermentation wastewater will pose serious threats to lake environments. Anaerobic digestion (AD) has advantages in treating high-level antibiotic wastewater. However, the fate of antibiotic resistance genes (ARGs) and microbial communities in AD after stepwise exposure to high-level ERY remains unclear. In this study, an AD reactor was first exposed to 0, 5, 10, 50, 100 and 200 mg/L ERY and then re-exposed to 0, 50, 200 and 500 mg/L ERY to investigate the effect of ERY on AD. The results show that AD could adapt to the presence of high-level ERY (500 mg/L) and could maintain efficient CH4 production after domestication with low-level ERY (50 mg/L). The AD process could achieve higher removal of ERY (>94%), regardless of the initial ERY concentration. ErmB and mefA, conferring resistance through target alteration and efflux pumps, respectively, were dominant in the AD process. The first exposure to ERY stimulated an increase in the total ARG abundance, while the AD process seemed to discourage ARG maintenance following re-exposure to ERY. ERY inhibited the process of acetoclastic methanogenesis, but strengthened the process of hydrogenotrophic methanogenesis. This work provides useful information for treating high-level ERY fermentation wastewater by the AD process.
Collapse
Affiliation(s)
- Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China;
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Xinyu Zhu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
| |
Collapse
|
6
|
Yuan D, Pang Y, Zhai L, Yan C, Kou Y. Exploring the combination characteristics of dissolved organic matter with erythromycin in a soil infiltration system. ENVIRONMENTAL TECHNOLOGY 2024; 45:3263-3275. [PMID: 37183650 DOI: 10.1080/09593330.2023.2214855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
Erythromycin (ERY), as a common macrolides antibiotic, is widely used for sterilisation and disinfection of humans or livestock whose migration and transformation in the surface water environment are significantly related to dissolved organic matter (DOM). The characteristics of DOM can be greatly influenced by the complexation between ERY with itself in soil infiltration system. Using spectroscopic techniques (excitation-emission matrices, parallel factor analysis, Fourier infrared spectroscopy, and synchronous fluorescence spectroscopies) to explore the complexation properties of each DOM component with ERY in the system. The binding order of ERY with DOM functional groups was determined by two-dimensional correlation spectroscopy combined with FTIR. The amide I band v(C = O) exhibited stronger binding affinity. After the treatment, the DOM fluorescence intensity sharply decreased and the ERY concentration declined by 88.36%. Thus, synchronous degradation may occur between them. The result of synchronous fluorescence spectroscopy integrated with two-dimensional correlation spectroscopy indicated that the complexation sequencing and ability of DOM with ERY can be changed by a soil infiltration system. There are more binding sites exhibited in DOM with ERY in effluent than influent. A protein-like component of DOM showed priority binding order and more stable binding with ERY and had the highest Log KM value of 3.61. These results demonstrated that the binding of DOM with ERY in a soil infiltration system could take out most fluorescent DOM, and reduce the concentration and risk of ERY in the surface water body.
Collapse
Affiliation(s)
- Donghai Yuan
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yiwen Pang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Linxiao Zhai
- ZC Daring (Beijing) Smart City Science and Technology Development Co. Ltd, Beijing, People's Republic of China
| | - Chenling Yan
- Beijing Key Laboratory of Municipal Solid Waste Detection Analysis and Evaluation, Beijing Municipal Institute of City Management, Beijing, People's Republic of China
| | - Yingying Kou
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
7
|
Ortega-Muñoz M, Alvarado S, Megia-Fernandez A, Hernandez-Mateo F, Lopez-Jaramillo FJ, Santoyo-Gonzalez F. Removal of Erythromycin from Water by Ibuprofen-Driven Pre-Organized Divinyl Sulfone Cross-Linked Dextrin. Polymers (Basel) 2024; 16:1090. [PMID: 38675010 PMCID: PMC11055069 DOI: 10.3390/polym16081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Water recycling and reuse are cornerstones of water management, which can be compromised by the presence of pollutants. Among these, pharmaceuticals can overcome standard water treatments and require sophisticated approaches to remove them. Sorption is an economically viable alternative limited by the need for sorbents with a sorption coefficient (Kd) higher than 500 L/kg. The cross-linking of dextrin (Dx) with divinyl sulfone (DVS) in the presence of 1 mmol or 5 mmol of ibuprofen (IBU) yields the insoluble polymers pDx1 and pDx5 with improved affinity for IBU and high selectivity towards erythromycin (ERY) and ERY Kd higher than 4 × 103 L/kg, when tested against a cocktail of six drugs. Characterization of the polymers shows that both pDx1 and pDx5 have similar properties, fast sorption kinetics, and ERY Kd of 13.3 × 103 for pDx1 and 6.4 × 103 for pDx5, representing 26.6 and 12.0 times the 500 L/kg threshold. The fact that new affinities and improvements in Kd can be achieved by cross-linking Dx in the presence of other molecules that promote pre-organization expands the applications of DVS cross-linked polysaccharides as sustainable, scalable, and environmentally friendly sorbents with a potential application in wastewater treatment plants (WTPs).
Collapse
Affiliation(s)
- Mariano Ortega-Muñoz
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, 18073 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18073 Granada, Spain
- Biotechnology Institute, University of Granada, 18071 Granada, Spain
| | - Sarah Alvarado
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, 18073 Granada, Spain
| | - Alicia Megia-Fernandez
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, 18073 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18073 Granada, Spain
- Biotechnology Institute, University of Granada, 18071 Granada, Spain
| | - Fernando Hernandez-Mateo
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, 18073 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18073 Granada, Spain
- Biotechnology Institute, University of Granada, 18071 Granada, Spain
| | - Francisco Javier Lopez-Jaramillo
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, 18073 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18073 Granada, Spain
- Biotechnology Institute, University of Granada, 18071 Granada, Spain
| | - Francisco Santoyo-Gonzalez
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, 18073 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18073 Granada, Spain
- Biotechnology Institute, University of Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Li Z, Yu Z, Yin D. Influence of dietary status on the obesogenic effects of erythromycin antibiotic on Caenorhabditis elegans. ENVIRONMENT INTERNATIONAL 2024; 185:108458. [PMID: 38368716 DOI: 10.1016/j.envint.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
As emerging pollutants, antibiotics were widely detected in water bodies and dietary sources. Recently, their obesogenic effects raised serious concerns. So far, it remained unclear whether their obesogenic effects would be influenced by water- and diet-borne exposure routes. In present study, Caenorhabditis elegans, nematodes free-living in air-water interface and feeding on bacteria, were exposed to water- and diet-borne erythromycin antibiotic (ERY). The statuses of the bacterial food, inactivated or alive, were also considered to explore their influences on the effects. Results showed that both water- and diet-borne ERY significantly stimulated body width and triglyceride contents. Moreover, diet-borne ERY's stimulation on the triglyceride levels was greater with alive bacteria than with inactivated bacteria. Biochemical analysis showed that water-borne ERY inhibited the activities of enzymes like adipose triglyceride lipase (ATGL) in fatty acid β-oxidation. Meanwhile, diet-borne ERY inhibited the activities of acyl-CoA synthetase (ACS) and carnitine palmitoyl transferase (CPT) in lipolysis, while it stimulated the activities of fatty acid synthase (FAS) in lipogenesis. Gene expression analysis demonstrated that water-borne ERY with alive bacteria significantly upregulated the expressions of daf-2, daf-16 and nhr-49, without significant influences in other settings. Further investigation demonstrated that ERY interfered with bacterial colonization in the intestine and the permeability of the intestinal barrier. Moreover, ERY decreased total long-chained fatty acids (LCFAs) in bacteria and nematodes, while it decreased total short-chained fatty acids (SCFAs) in bacteria but increased them in nematodes. Collectively, the present study demonstrated the differences between water- and diet-borne ERY's obesogenic effects, and highlighted the involvement of insulin and nhr-49 signaling pathways, SCFAs metabolism and also the interaction between intestinal bacteria and the host.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China. %
| |
Collapse
|
9
|
Wang D, Ding Q, Zhong Y, Han X, Fu L, Yu J, Li K, You J. Effects of Erythromycin on Nereis succinea and the Intestinal Microbiome across Different Salinity Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2662-2671. [PMID: 38311984 DOI: 10.1021/acs.est.3c06984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The exposure of aquatic organisms to pollutants often occurs concomitantly with salinity fluctuations. Here, we reported the effects of erythromycin (0.250, 7.21, and 1030 μg/L) on marine invertebrate N. succinea and its intestinal microbiome under varying salinity levels (5‰, 15‰, and 30‰). The salinity elicited significant effects on the growth and intestinal microbiome of N. succinea. The susceptibility of the intestinal microbiome to erythromycin increased by 8.7- and 6.2-fold at salinities of 15‰ and 30‰, respectively, compared with that at 5‰ salinity. Erythromycin caused oxidative stress and histological changes in N. succinea intestines, and inhibited N. succinea growth in a concentration-dependent manner under 30‰ salinity with a maximum inhibition of 25%. At the intestinal microbial level, erythromycin enhanced the total cell counts at 5‰ salinity but reduced them at 15‰ salinity. Under all tested salinities, erythromycin diminished the antibiotic susceptibility of the intestinal microbiome. Two-way ANOVA revealed significant interactive effects (p < 0.05) between salinity and erythromycin on various parameters, including antibiotic susceptibility and intestinal microbial diversity. The present findings demonstrated the significant role of salinity in modulating the impacts of erythromycin, emphasizing the necessity to incorporate salinity fluctuations into environmental risk assessments.
Collapse
Affiliation(s)
- Dali Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Qi Ding
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yuheng Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xiaofeng Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Long Fu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Kunting Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
10
|
Bodle KB, Kirkland CM. Pharmaceutical impacts on aerobic granular sludge morphology and potential implications for abiotic removal. CHEMOSPHERE 2024; 350:141187. [PMID: 38211794 PMCID: PMC10843683 DOI: 10.1016/j.chemosphere.2024.141187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
The goal of this study was to investigate abiotic pharmaceutical removal and abiotic pharmaceutical effects on aerobic granular sludge morphology. For 80 days, a pharmaceutical mixture containing approximately 150 μg/L each of diclofenac, erythromycin, and gemfibrozil was fed to an aerobic granular sludge sequencing batch reactor and granule characteristics were compared with those from a control reactor. Aqueous and solid phase pharmaceutical concentrations were monitored and staining was used to assess changes in biofilm structures. Solid phase pharmaceutical concentrations were elevated over the first 12 days of dosing; however, they then dropped, indicative of desorption. The lipid content in pharmaceutical-exposed granules declined by approximately half over the dosing period, though the relative concentrations of other key biofilm components (proteins, alpha-, and beta-polysaccharides) did not change. Batch experiments were conducted to try to find an explanation for the desorption observed, but reduced solid phase pharmaceutical concentrations could not be linked with the presence of common wastewater constituents such as ammonia or phosphate. Sorption of all three compounds was modeled best by the Henry isotherm, indicating that, even at 150 μg/L, granules' sorption site coverage was incomplete. Altogether, this study demonstrates that simplified batch systems may not accurately represent the complex abiotic processes occurring in flow-through, biotic systems.
Collapse
Affiliation(s)
- Kylie B Bodle
- Department of Civil Engineering, 205 Cobleigh Hall, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, 366 Barnard Hall, Montana State University, Bozeman, MT, USA.
| | - Catherine M Kirkland
- Department of Civil Engineering, 205 Cobleigh Hall, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, 366 Barnard Hall, Montana State University, Bozeman, MT, USA
| |
Collapse
|
11
|
Stroski KM, Roelke DL, Kieley CM, Park R, Campbell KL, Klobusnik NH, Walker JR, Cagle SE, Labonté JM, Brooks BW. What, How, When, and Where: Spatiotemporal Water Quality Hazards of Cyanotoxins in Subtropical Eutrophic Reservoirs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1473-1483. [PMID: 38205949 DOI: 10.1021/acs.est.3c06798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Though toxins produced during harmful blooms of cyanobacteria present diverse risks to public health and the environment, surface water quality surveillance of cyanobacterial toxins is inconsistent, spatiotemporally limited, and routinely relies on ELISA kits to estimate total microcystins (MCs) in surface waters. Here, we employed liquid chromatography tandem mass spectrometry to examine common cyanotoxins, including five microcystins, three anatoxins, nodularin, cylindrospermopsin, and saxitoxin in 20 subtropical reservoirs spatially distributed across a pronounced annual rainfall gradient. Probabilistic environmental hazard analyses identified whether water quality values for cyanotoxins were exceeded and if these exceedances varied spatiotemporally. MC-LR was the most common congener detected, but it was not consistently observed with other toxins, including MC-YR, which was detected at the highest concentrations during spring with many observations above the California human recreation guideline (800 ng/L). Cylindrospermopsin was also quantitated in 40% of eutrophic reservoirs; these detections did not exceed a US Environmental Protection Agency swimming/advisory level (15,000 ng/L). Our observations have implications for routine water quality monitoring practices, which traditionally use ELISA kits to estimate MC levels and often limit collection of surface samples during summer months near reservoir impoundments, and further indicate that spatiotemporal surveillance efforts are necessary to understand cyanotoxins risks when harmful cyanobacteria blooms occur throughout the year.
Collapse
Affiliation(s)
- Kevin M Stroski
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Daniel L Roelke
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Crista M Kieley
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Royoung Park
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Kathryn L Campbell
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - N Hagen Klobusnik
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Jordan R Walker
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Sierra E Cagle
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University Galveston, Galveston, Texas 77554, United States
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
12
|
Ganeshbabu M, Priya JS, Manoj GM, Puneeth NPN, Shobana C, Shankar H, Selvan RK. Photocatalytic degradation of fluoroquinolone antibiotics using chitosan biopolymer functionalized copper oxide nanoparticles prepared by facile sonochemical method. Int J Biol Macromol 2023; 253:127027. [PMID: 37751823 DOI: 10.1016/j.ijbiomac.2023.127027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Photocatalytic degradation is an excellent method for removing pharmaceutical residues due to their simplicity, ecological benignity, high efficiency, and exceptional stability. Herein, we demonstrate the sonochemically synthesised chitosan biopolymer functionalized copper oxide nanoparticles as an efficient photocatalyst for the degradation of fluoroquinolone-based antibiotics. The X-ray diffraction Rietveld refinement revealed the formation of single-phase copper oxide (CuO) with a monoclinic structure. The presence of biopolymer functionalization was corroborated by Fourier Transform Infrared spectroscopy by observing the -NH2 and -OH functional groups. The high-resolution transmission electron microscopic images inferred that Chitosan functionalized copper oxide (C-CuO) particles are nano-sized with a smooth texture and aggregation-free particles. The strong absorbance and the broad photoluminescence emission in the ultraviolet-visible region confirm the suitability of CuO and C-CuO nanoparticles for photocatalytic applications. The catalytic activity was studied against fluoroquinolone-based antibiotics such as ciprofloxacin and norfloxacin under direct sunlight illumination. Interestingly, the C-CuO catalyst demonstrated 71.07 % (@140 min.) and 71.9 % (@60 min.) of degradation for ciprofloxacin and norfloxacin, respectively. The obtained photocatalytic activity of the prepared CuO and C-CuO catalysts was superior to the CuO particles prepared by the coprecipitation method (CC-CuO).
Collapse
Affiliation(s)
- M Ganeshbabu
- Energy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - J Shiva Priya
- Energy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - G Murali Manoj
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - N Prasanna Naga Puneeth
- Energy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - C Shobana
- Department of Zoology, Kongunadu Arts and Science College, G.N. Mills, Coimbatore 641 029, India
| | - H Shankar
- Department of Physics, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| | - R Kalai Selvan
- Energy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
13
|
Li NN, Xu XY, Qiu P, Li YX, Yu XS, Gao YE, Ren HX, Muddassir M, Lin WY, Zong ZA. A novel AIE material for sensing of Erythromycin in pure water by hydrogen bond in portable test strips and cellular imaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123272. [PMID: 37607455 DOI: 10.1016/j.saa.2023.123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Erythromycin could be used to treat various bacterial infection, but it was harmful to the colonic microflora. Therefore, it is highly desirable to develop a fluorescence probe that could selectively and sensitively detect Erythromycin in pure water. In this work, a fluorescent probe named EHMC, which exhibited aggregation-induced emission (AIE) characteristic in solid state and water/EtOH binary solvent was developed for "turn on" sensing Erythromycin in pure water with high selectivity and sensitivity (detection limit: 1.78 × 10-8 M). Also, there are fewer interference from other antibiotics in the detection process of probe EHMC for Erythromycin. Moreover, probe EHMC could as a portable test strips for highly selective detection of Erythromycin and identification of different concentrations of Erythromycin. In addition, living cells imaging experiments displayed that probe EHMC could detect Erythromycin in A549 cells and BEAS-2B cells successfully. Combined with the theoretical calculation results The sensing mechanisms that the CO in Erythromycin and OH in EHMC formed intermolecular hydrogen bond and further formed new aggregates were confirmed by job' plot, 1H NMR, FT-IR, ESI-MS, DLS and TEM and DFT calculation.
Collapse
Affiliation(s)
- Na-Na Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Xing-Yu Xu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Ping Qiu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Yong-X Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Xiong-Sheng Yu
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Yong-E Gao
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Hai-Xian Ren
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wan-Ying Lin
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Zi-Ao Zong
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
14
|
Hao Q, Bai Y, Zhou H, Bao X, Wang H, Zhang L, Lyu M, Wang S. Isolation and Characterization of Bacteriophage VA5 against Vibrio alginolyticus. Microorganisms 2023; 11:2822. [PMID: 38137966 PMCID: PMC10746027 DOI: 10.3390/microorganisms11122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 12/24/2023] Open
Abstract
Bacteriophages, or phages, can be used as natural biological control agents to eliminate pathogenic bacteria during aquatic product cultivation. Samples were collected from seafood aquaculture water and aquaculture environmental sewage, and phage VA5 was isolated using the double-layer agar plate method, with Vibrio alginolyticus as the host bacteria. The purified phage strain was subjected to genome sequencing analysis and morphological observation. The optimal multiplicity of infection (MOI), the one-step growth curve, temperature stability, and pH stability were analyzed. Phage VA5 was observed to have a long tail. Whole-genome sequencing revealed that the genome was circular dsDNA, with 35,866 bp length and 46% G+C content. The optimal MOI was 1, the incubation period was 20 min, the outbreak period was 30 min, and the cleavage amount was 92.26 PFU/cell. The phage showed good activity at -20 °C, 70 °C, and pH 2-10. Moreover, the phage VA5 exhibited significant inhibitory effects on V. alginolyticus-infected shrimp culture. The isolated phage VA5 has a wide range of host bacteria and is a good candidate for biological control of pathogenic bacteria.
Collapse
Affiliation(s)
- Qingfang Hao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Bai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haolong Zhou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430207, China;
| | - Xiuli Bao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huanyu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Q.H.); (Y.B.); (X.B.); (H.W.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
15
|
Gamelas SRD, Tomé JPC, Tomé AC, Lourenço LMO. Advances in photocatalytic degradation of organic pollutants in wastewaters: harnessing the power of phthalocyanines and phthalocyanine-containing materials. RSC Adv 2023; 13:33957-33993. [PMID: 38019980 PMCID: PMC10658578 DOI: 10.1039/d3ra06598g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Access to clean water is increasingly challenging worldwide due to human activities and climate change. Wastewater treatment and utilization offer a promising solution by reducing the reliance on pure underground water. However, it is crucial to develop efficient and sustainable methods for wastewater purification. Among the emerging wastewater treatment strategies, photocatalysis has gained significant attention for decomposing organic pollutants in water, especially when combined with sunlight and a recoverable photocatalyst. Heterogeneous photocatalysts have distinct advantages, as they can be recovered and reused without significant loss of activity over multiple cycles. Phthalocyanine dyes, with their exceptional photophysical properties, are particularly valuable for homogeneous and heterogeneous photocatalysis. By immobilizing these photosensitizers in various supports, hybrid materials extend their light absorption into the visible spectrum, complementing most supports' limited UV light absorption. The novelty and research importance of this review stems from its discussion of the multifaceted approach to treating contaminated wastewater with phthalocyanines and materials containing phthalocyanines. It highlights key aspects of each study, including photocatalytic efficiency, recyclability characteristics, investigation of the generation of oxygen species responsible for degradation, identification of the major degradation byproducts for each pollutant, and others. Moreover, the review includes tables that illustrate and compare the various phthalocyanines and supporting materials employed in each study for pollutant degradation. Additionally, almost all photocatalysts mentioned in this review could degrade at least 5% of the pollutant, and more than 50 photocatalysts showed photocatalytic rates above 50%. When immobilized in some support, the synergistic effect of the phthalocyanine was visible in the photocatalytic rate of the studied pollutant. However, when performing these types of works, it is necessary to understand the degradation products of each pollutant and their relative toxicities. Along with this, recyclability and stability studies are also necessary. Despite the good results presented in this review, some of the works lack those studies. Moreover, none of the works mentions any study in wastewater.
Collapse
Affiliation(s)
- Sara R D Gamelas
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - João P C Tomé
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa 1049-001 Lisboa Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
16
|
Bodle KB, Mueller RC, Pernat MR, Kirkland CM. Treatment performance and microbial community structure in an aerobic granular sludge sequencing batch reactor amended with diclofenac, erythromycin, and gemfibrozil. FRONTIERS IN MICROBIOMES 2023; 2:1242895. [PMID: 38076031 PMCID: PMC10705044 DOI: 10.3389/frmbi.2023.1242895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
This study characterizes the effects of three commonly detected pharmaceuticals-diclofenac, erythromycin, and gemfibrozil-on aerobic granular sludge. Approximately 150 μg/L of each pharmaceutical was fed in the influent to a sequencing batch reactor for 80 days, and the performance of the test reactor was compared with that of a control reactor. Wastewater treatment efficacy in the test reactor dropped by approximately 30-40%, and ammonia oxidation was particularly inhibited. The relative abundance of active Rhodocyclaceae, Nitrosomonadaceae, and Nitrospiraceae families declined throughout exposure, likely explaining reductions in wastewater treatment performance. Pharmaceuticals were temporarily removed in the first 12 days of the test via both sorption and degradation; both removal processes declined sharply thereafter. This study demonstrates that aerobic granular sludge may successfully remove pharmaceuticals in the short term, but long-term tests are necessary to confirm if pharmaceutical removal is sustainable.
Collapse
Affiliation(s)
- Kylie B. Bodle
- Department of Civil Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Rebecca C. Mueller
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- United States Department of Agriculture (USDA) Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Madeline R. Pernat
- Department of Civil Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Catherine M. Kirkland
- Department of Civil Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
17
|
Mo J, Lv R, Qin X, Wu X, Chen H, Yan N, Shi J, Wu Y, Liu W, Kong RYC, Guo J. Mechanistic insights into hormesis induced by erythromycin in the marine alga Thalassiosira weissflogii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115242. [PMID: 37441949 DOI: 10.1016/j.ecoenv.2023.115242] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Erythromycin (ERY) is a typical macrolide antibiotic with large production and extensive use on a global scale. Detection of ERY in both freshwaters and coaster seawaters, as well as relatively high ecotoxicity of ERY have been documented. Notably, hormesis has been reported on several freshwater algae under ERY stress, where growth was promoted at relatively lower exposures but inhibited at higher treatment levels. On the contrary, there is limited information of ERY toxicity in marine algae, hampering the risk assessment on ERY in the coaster waters. The presence of hormesis may challenge the current concept of dose-response adopted in chemical risk assessment. Whether and how exposure to ERY can induce dose-dependent toxicity in marine algae remain virtually unknown, especially at environmentally relevant concentrations. The present study used a model marine diatom Thalassiosira weissflogii (T. weissflogii) to reveal its toxicological responses to ERY at different biological levels and decipher the underlying mechanisms. Assessment of multiple apical endpoints shows an evident growth promotion following ERY exposure at an environmentally relevant concentration (1 µg/L), associated with increased contents reactive oxygen species (ROS) and chlorophyll-a (Chl-a), activated signaling pathways related to ribosome biosynthesis and translation, and production of total soluble protein. By contrast, growth inhibition in the 750 and 2500 µg/L treatments was attributed to reduced viability, increased ROS formation, reduced content of total soluble protein, inhibited photosynthesis, and perturbed signaling pathways involved in xenobiotic metabolism, ribosome, metabolism of amino acid, and nitrogen metabolism. Measurements of multiple apical endpoints coupled with de novo transcriptomics analysis applied in the present study, a systems biology approach, can generate detailed mechanistic information of chemical toxicity including dose-response and species sensitivity difference used in environmental risk assessment.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region.
| | - Runnan Lv
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Haibo Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Yinglin Wu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Richard Y C Kong
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
18
|
Ren J, Xu C, Shen Y, Li C, Dong L, Huhe T, Zhi J, Wang C, Jiang X, Niu D. Environmental factors induced macrolide resistance genes in composts consisting of erythromycin fermentation residue, cattle manure, and maize straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65119-65128. [PMID: 37079236 DOI: 10.1007/s11356-023-27087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
With the growing concerns about antibiotic resistance, it is more and more important to prevent the environmental pollution caused by antibiotic fermentation residues. In this study, composted erythromycin fermentation residue (EFR) with the mixture of cattle manure and maize straw at ratios of 0:10 (CK), 1:10 (T1), and 3:10 (T2) explores the effects on physicochemical characteristics, mobile genetic elements (MGEs), and antibiotic resistance genes (ARGs). Results reflected that the addition of EFR reduced the carbon/nitrogen ratio of each compost and improved the piles' temperature, which promoted the composting process. However, the contents of Na+, SO42-, and erythromycin were also significantly increased. After 30 days of composting, the degradation rates of erythromycin in CK, T1, and T2 were 72.7%, 20.3%, and 37.1%, respectively. Meanwhile, the total positive rates for 26 detected ARGs in T1 and T2 were 65.4%, whereas that of CK was only 23.1%. Further analysis revealed that ARGs responsible for ribosomal protection, such as ermF, ermT, and erm(35), dominated the composts of T1 and T2, and most were correlated with IS613, electrical conductivity (EC), nitrogen, and Zn2+. Above all, adding EFR helps to improve the nutritional value of composts, but the risks in soil salinization and ARG enrichment caused by high EC and erythromycin content should be further investigated and eliminated.
Collapse
Affiliation(s)
- Jianjun Ren
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China
| | - Chuanbao Xu
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Fermentation Residues, Yili Chuanning Biotechnology Co., Ltd, Yili, 835007, China
| | - Chunyu Li
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China
| | - Liping Dong
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Fermentation Residues, Yili Chuanning Biotechnology Co., Ltd, Yili, 835007, China
| | - Taoli Huhe
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China
| | - Junqiang Zhi
- Beijing General Station of Animal Husbandry, No. 21 Chaoqian Road, Changping District, Beijing, 100101, China
| | - Chongqing Wang
- Beijing General Station of Animal Husbandry, No. 21 Chaoqian Road, Changping District, Beijing, 100101, China
| | - Xingmei Jiang
- Bijie Institute of Animal Husbandry and Veterinary Sciences, De Gou Ma Jia Yuan, Qixingguan District, Bijie, 551700, China
| | - Dongze Niu
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
19
|
Cole AR, Brooks BW. Global occurrence of synthetic glucocorticoids and glucocorticoid receptor agonistic activity, and aquatic hazards in effluent discharges and freshwater systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121638. [PMID: 37080519 DOI: 10.1016/j.envpol.2023.121638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
With a growing global population comes an increase in pharmaceutical usage and a concentration of pharmaceutical consumption in urban areas, which release diverse chemicals and waste to the environment. Because synthetic glucocorticoids have been identified as endocrine disruptors and environmental contaminants of emerging concern, we conducted a global scanning assessment of these pharmaceuticals in wastewater effluents and freshwater systems. Thirty-seven synthetic glucocorticoids were identified, and available information on environmental occurrence of specific substances was critically reviewed from the peer-reviewed literature. We developed probabilistic environmental exposure distributions for synthetic glucocorticoids, and further considered glucocorticoid receptor agonistic activity from biomonitoring efforts using in vitro methods. When sufficient data was available, we then performed probabilistic environmental hazard assessments using predicted no effect concentrations, therapeutic hazard values and in vitro bioactivity information (AC50 values) for specific glucocorticoids. We observed pronounced differences for aquatic monitoring data among geographic regions; information is not available from many regions where most of the global population resides. We identified differences between analytical chemistry derived occurrence values for specific chemicals and biomonitoring results from seven different in vitro assays, which suggests that compounds not previously preselected for targeted analyses contribute to glucocorticoid receptor agonism in effluent discharges and aquatic systems. Our observations further identify the importance of advancing nontargeted analyses and research on in vitro to in vivo extrapolation of aquatic hazards. Though aquatic toxicology information is lacking for most of these substances, we observed diverse aquatic hazards for several synthetic glucocorticoids, and these observations varied by aquatic matrix and among geographic regions. This study identifies timely data gaps and can inform future environmentally relevant chemistry and toxicology efforts examining synthetic glucocorticoids in aquatic systems.
Collapse
Affiliation(s)
- Alexander R Cole
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA.
| |
Collapse
|
20
|
Zhang W, Wang J, Zhu L, Wang J, Mao S, Yan X, Wen S, Wang L, Dong Z, Kim YM. New insights into the effects of antibiotics and copper on microbial community diversity and carbon source utilization. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01491-1. [PMID: 36939996 DOI: 10.1007/s10653-023-01491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Residual antibiotics (ABs) and heavy metals (HMs) are continuously released from soil, reflecting their intensive use and contamination of water and soil, posing an environmental problem of great concern. Relatively few studies exist of the functional diversity of soil microorganisms under the combined action of ABs and HMs. To address this deficiency, BIOLOG ECO microplates and the Integrated Biological Responses version 2 (IBRv2) method were used to comprehensively explore the effects of single and combined actions of copper (Cu) and enrofloxacin (ENR), oxytetracycline (OTC), and sulfadimidine (SM2) on the soil microbial community. The results showed that the high concentration (0.80 mmol/kg) compound group had a significant effect on average well color development (AWCD) and OTC showed a dose-response relationship. The results of IBRv2 analysis showed that the single treatment group of ENR or SM2 had a significant effect on soil microbial communities, and the IBRv2 of E1 was 5.432. Microbes under ENR, SM2, and Cu stress had more types of available carbon sources, and all treatment groups were significantly more enriched with microorganisms having D-mannitol and L-asparagine as carbon sources. This study confirms that the combined effects of ABs and HMs can inhibit or promote the function of soil microbial communities. In addition, this paper will provide new insights into IBRv2 as an effective method to evaluate the impacts of contaminants on soil health.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Shushuai Mao
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Xiaojing Yan
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Shengfang Wen
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Lanjun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Zikun Dong
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-Gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
21
|
Ti3+ self-doped and nitrogen-annealed TiO2 nanocone arrays photoanode for efficient visible-LED-light-driven photoelectrocatalytic degradation of sulfamethazine. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
22
|
Wronski AR, Brooks BW. Global occurrence and aquatic hazards of antipsychotics in sewage influents, effluent discharges and surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121042. [PMID: 36646406 DOI: 10.1016/j.envpol.2023.121042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Despite increasing reports of pharmaceuticals in surface waters, aquatic hazard information remains limited for many contaminants, particularly for sublethal, chronic responses plausibly linked to molecular initiation events that are largely conserved across vertebrates. Here, we critically examined available refereed information on the occurrence of 67 antipsychotics in wastewater effluent and surface waters. Because the majority of sewage remains untreated around the world, we also examined occurrence in sewage influents. When sufficient information was available, we developed probabilistic environmental exposure distributions (EEDs) for each compound in each matrix by geographic region. We then performed probabilistic environmental hazard assessments (PEHAs) using therapeutic hazard values (THVs) of each compound, due to limited sublethal aquatic toxicology information for this class of pharmaceuticals. From these PEHAs, we determined predicted exceedances of the respective THVs for each chemical among matrices and regions, noting that THV values of antipsychotic contaminants are typically lower than other classes of human pharmaceuticals. Diverse exceedances were observed, and these aquatic hazards varied by compound, matrix and geographic region. In wastewater effluent discharges and surface waters, sulpiride was the most detected antipsychotic; however, percent exceedances of the THV were minimal (0.6%) for this medication. In contrast, we observed elevated aquatic hazards for chlorpromazine (30.5%), aripiprazole (37.5%), and perphenazine (68.7%) in effluent discharges, and for chlorprothixene (35.4%) and flupentixol (98.8%) in surface waters. Elevated aquatic hazards for relatively understudied antipsychotics were identified, which highlight important data gaps for future environmental chemistry and toxicology research.
Collapse
Affiliation(s)
- Adam R Wronski
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA.
| |
Collapse
|
23
|
Monahan C, Morris D, Nag R, Cummins E. Risk ranking of macrolide antibiotics - Release levels, resistance formation potential and ecological risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160022. [PMID: 36368382 DOI: 10.1016/j.scitotenv.2022.160022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/16/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance (AR) development in natural water bodies is a significant source of concern. Macrolide antibiotics in particular have been identified as pollutants of concern for AR development throughout the literature, as well as by state and international authorities. This study utilises a probabilistic model to examine the risk of AR development arising from human-use macrolide residues, utilising administration rates from Ireland as a case study. Stages modelled included level of administration, excretion, degradation in wastewater, removal in wastewater treatment, assuming conventional activated sludge (CAS) treatment, and dilution. Release estimates per day, as well as risk quotient values for antibiotic resistance development and ecological impact, are generated for erythromycin, clarithromycin, and azithromycin. In the modelled scenario in which conventional activated sludge treatment is utilised in wastewater treatment, this model ranks risk of resistance development for each antibiotic in the order clarithromycin > azithromycin > erythromycin, with mean risk quotient values of 0.50, 0.34 and 0.12, respectively. A membrane bioreactor scenario was also modelled, which reduced risk quotient values for all three macrolides by at least 50 %. Risk of ecological impact for each antibiotic was also examined, by comparing environmental concentrations predicted to safety limits based on toxicity data for cyanobacteria and other organisms from the literature, with azithromycin being identified as the macrolide of highest risk. This study compares and quantifies the risk of resistance development and ecological impact for a high-risk antibiotic group in the Irish context, and demonstrates the potential for risk reduction achieved by adoption of alternative (e.g. membrane bioreactor) technology.
Collapse
Affiliation(s)
- Ciaran Monahan
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland.
| | - Dearbhaile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Rajat Nag
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Zhang Y, Wang G, Liu H, Dai X. Application of spray-dried erythromycin fermentation residue as a soil amendment: antibiotic resistance genes, nitrogen cycling, and microbial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20547-20557. [PMID: 36255578 DOI: 10.1007/s11356-022-23361-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Erythromycin fermentation residue (EFR) after spray drying could be reused as a soil amendment. However, the effects of spray-dried EFR on antibiotic resistance genes (ARGs), nitrogen cycling, and microbial community structure in soil are rarely reported. In this study, a pot experiment was conducted by adding spray-dried EFR to soil. For the application of 1.0% spray-dried EFR, the residual erythromycin (ERY) could be rapidly removed with the half-life of 22.2 d; the total relative abundance of ARGs increased at first, but decreased to the initial level of the control group in the end; genes related to ammonium assimilation (glnA, gltB, gltD), ammonification (gdhA, gudB, cynT, cynS, ncd2), denitrification (narI, narG, narH), assimilatory nitrate reduction (nirA, nasA), and dissimilatory nitrate reduction (nirD) were enriched; soil microbial community structure presented temporary variation. Network analysis showed significant negative correlations between ARGs and nitrogen cycling genes. The addition of 6.0% spray-dried EFR resulted in the amplification of ARGs and inhibition of nitrogen cycling. This work provides new insights into the effects of spray-dried EFR on ARGs, nitrogen cycling, and microbial community structure within the fertilized soil.
Collapse
Affiliation(s)
- Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, Shandong, China
| | - Gang Wang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, Shandong, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
25
|
Mo J, Ma Z, Yan S, Cheung NK, Yang F, Yao X, Guo J. Metabolomic profiles in a green alga (Raphidocelis subcapitata) following erythromycin treatment: ABC transporters and energy metabolism. J Environ Sci (China) 2023; 124:591-601. [PMID: 36182165 DOI: 10.1016/j.jes.2021.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/16/2023]
Abstract
A recent study showed that erythromycin (ERY) exposure caused hormesis in a model alga (Raphidocelis subcapitata) where the growth was promoted at an environmentally realistic concentration (4 µg/L) but inhibited at two higher concentrations (80 and 120 µg/L), associated with opposite actions of certain signaling pathways (e.g., xenobiotic metabolism, DNA replication). However, these transcriptional alterations remain to be investigated and verified at the metabolomic level. This study uncovered metabolomic profiles and detailed toxic mechanisms of ERY in R. subcapitata using untargeted metabolomics. The metabolomic analysis showed that metabolomic pathways including ABC transporters, fatty acid biosynthesis and purine metabolism were associated with growth promotion in algae treated with 4 µg/L ERY. An overcompensation was possibly activated by the low level of ERY in algae where more resources were reallocated to efficiently restore the temporary impairments, ultimately leading to the outperformance of growth. By contrast, algal growth inhibition in the 80 and 120 µg/L ERY treatments was likely attributed to the dysfunction of metabolomic pathways related to ABC transporters, energy metabolism and metabolism of nucleosides. Apart from binding of ERY to the 50S subunit of ribosomes to inhibit protein translation as in bacteria, the data presented here indicate that inhibition of protein translation and growth performance of algae by ERY may also result from the suppression of amino acid biosynthesis and aminoacyl-tRNA biosynthesis. This study provides novel insights into the dose-dependent toxicity of ERY on R. subcapitata.
Collapse
Affiliation(s)
- Jiezhang Mo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhihua Ma
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Shiwei Yan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Napo Km Cheung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Xiunan Yao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
26
|
Sura S, Larney FJ, Charest J, McAllister TA, Headley JV, Cessna AJ. Veterinary antimicrobials in cattle feedlot environs and irrigation conveyances in a high-intensity agroecosystem in southern Alberta, Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12235-12256. [PMID: 36107301 PMCID: PMC9898329 DOI: 10.1007/s11356-022-22889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The South Saskatchewan River Basin (SSRB) is considered one of the most intensively farmed regions in Canada, with high densities of livestock and expansive areas of irrigated cropland. We measured concentrations of seven veterinary antimicrobials (VAs) in 114 surface water samples from feedlot environs and 219 samples from irrigation conveyances in the SSRB. Overall, detection frequencies in feedlot environs were 100% for chlortetracycline (CTC) and tetracycline (TC), 94% for monensin (MON), 84% for tylosin (TYL), 72% for lincomycin (LIN), 66% for erythromycin (ERY), and 23% for sulfamethazine (SMZ). For irrigation conveyances, detection frequencies for CTC and TC remained high (94-100%), but dropped to 18% for ERY, 15% for TYL, 10% for MON, and 4% for SMZ. Lincomycin was not detected in irrigation conveyance water. Maximum concentrations of VAs ranged from 1384 µg L-1 (TC) to 17 ng L-1 (SMZ) in feedlot environs while those in irrigation conveyances were 155 ng L-1 (TC) to 29 ng L-1 (ERY). High detection frequencies and median concentrations of VAs in both feedlot environs and irrigation conveyances were associated with high amounts of precipitation. However, an irrigation district (ID) with high livestock density (Lethbridge Northern) did not exhibit higher concentrations of VAs compared to IDs with less livestock, while levels of VAs in irrigation conveyances were less influenced by the degree of surface runoff. The ubiquity of CTC and TC in our study is likely a reflection of its widespread use in intensive livestock operations. Additional investigation is required to link environmental concentrations of VAs with livestock densities and increase our understanding of potential antimicrobial resistance in high-intensity agroecosystems.
Collapse
Affiliation(s)
- Srinivas Sura
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada.
| | - Francis J Larney
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - Jollin Charest
- Natural Resource Management Branch, Alberta Agriculture, Forestry, and Rural Economic Development, 5401 1st Avenue S, Lethbridge, AB, T1J 4V6, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - John V Headley
- Environment and Climate Change Canada, National Hydrology Research Centre, 11 Innovation Blvd, Saskatoon, SK, S7N 3H5, Canada
| | - Allan J Cessna
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
27
|
Yang M, Fu H, Wang WX. Responses of zebrafish (Danio rerio) cells to antibiotic erythromycin stress at the subcellular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158727. [PMID: 36108847 DOI: 10.1016/j.scitotenv.2022.158727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Erythromycin (ERY) is one of the most used antibiotics frequently detected in different aquatic environments and may bring burdens to aquatic ecosystems. However, the impacts of antibiotics on aquatic systems other than the antibiotic resistance genes remain largely unknown. In the present study, the responses to ERY exposure at the subcellular-organelle levels were for the first time investigated and imaged over 24 h. Exposure to ERY hampered the zebrafish (Danio rerio) cell growth and decreased the cell viability in a time-dependent mode. Meanwhile, exposure to a low concentration of ERY (73.4 μg L-1) induced reactive oxygen species (ROS) overproduction and lysosomal damage following lysosomal alkalization and swelling. In turn, the lysosomal stress was the major driver of altering the ROS level, superoxide dismutase (SOD) activity, and glutathione (GSH) content. Subsequently, mitochondria displayed dysfunction such as increased mitochondrial ROS, impaired mitophagy, and induced mitochondria-driven apoptosis, as well as impaired mitochondrial electron transport chain and loss of membrane potential. These results collectively demonstrated the subcellular sensitive machinery responses to ERY stress at environmentally relevant and slightly higher sub-lethal concentrations. ERY may induce switching from autophagy to apoptosis with corresponding changes in lysosomal activity, antioxidant activity, and mitochondrial activity. The findings provided important information on the physiological and subcellular responses of fish cells to ERY.
Collapse
Affiliation(s)
- Meng Yang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048 Beijing, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
28
|
Single iron atoms embedded in MOF-derived nitrogen-doped carbon as an efficient heterogeneous electro-Fenton catalyst for degradation of carbamazepine over a wide pH. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Bodle KB, Pernat MR, Kirkland CM. Pharmaceutical Sorption to Lab Materials May Overestimate Rates of Removal in Lab-Scale Bioreactors. WATER, AIR, AND SOIL POLLUTION 2022; 233:505. [PMID: 36504545 PMCID: PMC9731345 DOI: 10.1007/s11270-022-05974-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Environmental contamination from pharmaceuticals has received increased attention from researchers in the past 20 years. As such, numerous lab-scale studies have sought to characterize the effects of these contaminants on various targets, as well as determine improved removal methods. Many studies have used lab-scale bioreactors to investigate pharmaceutical effects on wastewater bacteria, as wastewater treatment plants often act as reservoirs for pharmaceuticals. However, few-if any-of these studies report the specific lab materials used during testing, such as tubing or pipette tip type. In this study, the pharmaceuticals erythromycin, diclofenac, and gemfibrozil were exposed to different micropipette tips, syringe filters, and tubing types, and losses over time were evaluated. Losses to tubing and syringe filters were particularly significant and neared 100%, depending on the pharmaceutical compound and length of exposure time. Results discussed herein indicate that pharmaceutical sorption to various lab supplies results in decreases to both dosed and quantified pharmaceutical concentrations. Studies that fail to consider this source of loss may therefore draw inaccurate conclusions about pharmaceutical effects or removal efficiencies.
Collapse
Affiliation(s)
- Kylie B Bodle
- Department of Civil Engineering, Montana State, University, 205 Cobleigh Hall, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| | - Madeline R Pernat
- Department of Civil Engineering, Montana State, University, 205 Cobleigh Hall, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| | - Catherine M Kirkland
- Department of Civil Engineering, Montana State, University, 205 Cobleigh Hall, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| |
Collapse
|
30
|
Li J, Liu K, Li W, Zhang M, Li P, Han J. Removal mechanisms of erythromycin by microalgae Chlorella pyrenoidosa and toxicity assessment during the treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157777. [PMID: 35926608 DOI: 10.1016/j.scitotenv.2022.157777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Microalgae-based biotechnology for antibiotic removal has received increasing attention as an economical and green method. This study investigated the removal mechanism of erythromycin by Chlorella pyrenoidosa and its correlation with the ecotoxic responses of microalgae. The degradation products (DPs) were identified, and their toxicity was predicted. The results indicated that only 4.04 %, 6.28 % and 23.53 % of erythromycin were left after 21-day microalgae treatment in 0.1, 1.0 and 10 mg/L treatments, respectively. Biodegradation contributed 48.62-67.01 %, 16.67-52.32 % and 6.42-24.82 %, while abiotic degradation contributed 8.76-29.61 %, 5.19-41.39 %, and 16.55-51.22 % to erythromycin attenuation in 0.1, 1.0, and 10 mg/L treatments, respectively. The growth and physiological-biochemical parameters of microalgae were slightly affected in low concentration treatment, which may be the main reason that biodegradation was the prominent removal mechanism. By contrast, oxidative damage in high concentration treatment inhibited the cell growth and chlorophyll content of microalgae, which hindered erythromycin biodegradation. In addition, eleven erythromycin degradation products (DPs) were identified during microalgae treatment of 21 days. Seven DPs including DP717, DP715, DP701A, DP701B, DP657, DP643, and DP557, represented higher toxicity to aquatic organisms than erythromycin.
Collapse
Affiliation(s)
- Jiping Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Kai Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Meng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Pingping Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
31
|
Antibiotic-Resistant Bacteria and Resistance Genes in Isolates from Ghanaian Drinking Water Sources. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:2850165. [PMID: 36246472 PMCID: PMC9560817 DOI: 10.1155/2022/2850165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/04/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
The control of infectious diseases is seriously threatened by the increase in the number of microorganisms resistant to antimicrobial agents. Antibiotic-resistant bacteria have also been identified in the water environment. A field study was performed sampling drinking water sources in seven districts of southern Ghana targeting boreholes, dams, hand-dug wells, and streams during baseflow conditions. Bacteria were isolated (N = 110) from a total of 67 water samples to investigate their antimicrobial susceptibility and to determine their carriage of select antibiotic resistance genes. Bacterial identification was performed using conventional selective media methods and the analytical profile index (API) method. Antibiotic susceptibility tests were carried out using the Kirby–Bauer method. Results indicated that all water sources tested were of poor quality based on the presence of fecal indicator organisms. The most commonly occurring bacterium isolated from water was Klebsiella spp. (N = 24, 21.8%), followed by E. coli (N = 23, 20.9%). Gram-negative bacteria isolates were most commonly resistant to cefuroxime (24.5%), while the Gram-positives were most commonly resistant to meropenem (21.3%). The highest rates of bacterial resistances to more than one antibiotic were observed in Klebsiella spp. (30.0%) followed by E. coli (27.8%). PCR was used to detect the presence of a select antibiotic resistance genes in the Gram-negative isolates. The presence of blaNDM-1, sull, tet(O), and tet(W) were observed in isolates from all water sources. In contrast, ermF was not detected in any of the Gram-negative isolates from any water source. Most (28.7%) of the resistance genes were observed in E. coli isolates. Reducing microbial contamination of the various water sources is needed to protect public health and to ensure the sustainability of this resource. This further calls for education of the citizenry.
Collapse
|
32
|
A novel molecularly imprinted electrode modified with carbon nanohorn and polydopamine for highly sensitive determination of erythrocin in food. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Bouzas‐Monroy A, Wilkinson JL, Melling M, Boxall ABA. Assessment of the Potential Ecotoxicological Effects of Pharmaceuticals in the World's Rivers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2008-2020. [PMID: 35730333 PMCID: PMC9544786 DOI: 10.1002/etc.5355] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 05/10/2023]
Abstract
During their production, use, and disposal, active pharmaceutical ingredients (APIs) are released into aquatic systems. Because they are biologically active molecules, APIs have the potential to adversely affect nontarget organisms. We used the results of a global monitoring study of 61 APIs alongside available ecotoxicological and pharmacological data to assess the potential ecotoxicological effects of APIs in rivers across the world. Approximately 43.5% (461 sites) of the 1052 sampling locations monitored across 104 countries in a recent global study had concentrations of APIs of concern based on apical, nonapical, and mode of action-related endpoints. Approximately 34.1% of the 137 sampling campaigns had at least one location where concentrations were of ecotoxicological concern. Twenty-three APIs occurred at concentrations exceeding "safe" concentrations, including substances from the antidepressant, antimicrobial, antihistamine, β-blocker, anticonvulsant, antihyperglycemic, antimalarial, antifungal, calcium channel blocker, benzodiazepine, painkiller, progestin, and lifestyle compound classes. At the most polluted sites, effects are predicted on different trophic levels and on different endpoint types. Overall, the results show that API pollution is a global problem that is likely negatively affecting the health of the world's rivers. To meet the United Nations' Sustainable Development Goals, work is urgently needed to tackle the problem and bring concentrations down to an acceptable level. Environ Toxicol Chem 2022;41:2008-2020. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Molly Melling
- Department of Environment and GeographyUniversity of YorkYorkUK
| | | |
Collapse
|
34
|
Bao Q, Wang Y, Tang S, Ye F, Yu Z, Ye Q, Wang W. Uptake and accumulation of erythromycin in leafy vegetables and induced phytotoxicity and dietary risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154785. [PMID: 35346705 DOI: 10.1016/j.scitotenv.2022.154785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Erythromycin (ERY), a widely used macrolide antibiotic, is omnipresent in soil and aquatic environments, which may potentially contaminate food crops but remains to be explored. Two leafy vegetables, pakchoi (Brassica rapa subsp. chinensis) and water spinach (Ipomoea aquatica Forsk.), were grown in laboratory-constructed soil or hydroponic systems to investigate the dynamic accumulation of ERY in edible plants. Results indicate 14C-ERY could be absorbed by water spinach and pakchoi in both systems. Autoradiographic imaging and concentration data of plant tissues suggested that ERY had limited translocation from roots to shoots in these two vegetables. The accumulation level of ERY was similar between the two vegetables in the soil system; but in the hydroponic system, pakchoi had a higher ERY accumulation than water spinach, with the bioconcentration factor of 2.74-25.98 and 3.65-11.67 L kg-1, respectively. The ERY intake via vegetable consumption was 0.01-2.17 ng kg-1 day-1, which was much lower than the maximum acceptable daily intake (700 ng kg-1 day-1), indicating negligible risks of consuming vegetables with roots exposed to ERY at environmentally relevant levels. In addition, ERY was found to cause growth inhibition and oxidative stress to pakchoi, even at low concentrations (7 and 22 μg L-1). This work contributes to a better understanding of plant uptake and translocation of ERY in soils and water, and has important implications for the reasonable evaluation of the implied risks of ERY to vegetables and human health.
Collapse
Affiliation(s)
- Qian Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yichen Wang
- Hangzhou Botanical Garden, Hangzhou 310013, China
| | - Shenghua Tang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Feiyang Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Dynamics of the Gut Microbiome and Transcriptome in Korea Native Ricefish (Oryzias latipes) during Chronic Antibiotic Exposure. Genes (Basel) 2022; 13:genes13071243. [PMID: 35886026 PMCID: PMC9322331 DOI: 10.3390/genes13071243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotics have been widely used to inhibit microbial growth and to control bacterial infection; however, they can trigger an imbalance in the gut flora of the host and dysregulate the host gene regulatory system when discharged into the aquatic environment. We investigated the effects of chronic exposure to a low concentration of erythromycin and ampicillin, focusing on gut microbiome and global gene expression profiles from Korea native ricefish (Oryzias latipes). The proportion of Proteobacteria (especially the opportunistic pathogen Aeromonas veronii) was significantly increased in the ricefish under the chronic exposure to erythromycin and ampicillin, whereas that of other bacterial phyla (i.e., Fusobacteria) decreased. In addition, the expression of genes involved in immune responses such as chemokines and immunocyte chemotaxis was significantly influenced in ricefish in the aquatic environment with antibiotics present. These results show that the internal microbial flora and the host gene expression are susceptible even at a low concentration of chronic antibiotics in the environment, supporting the importance of the appropriate use of antibiotic dose to maintain the sustainable and healthy aquaculture industry and water ecosystem.
Collapse
|
36
|
Yang P, Hao S, Han M, Xu J, Yu S, Chen C, Zhang H, Ning K. Analysis of antibiotic resistance genes reveals their important roles in influencing the community structure of ocean microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153731. [PMID: 35143795 DOI: 10.1016/j.scitotenv.2022.153731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance gene (ARG) content is a well-established driver of microbial abundance and diversity in an environment. By reanalyzing 132 metagenomic datasets from the Tara Oceans project, we aim to unveil the associations between environmental factors, the ocean microbial community structure and ARG contents. We first investigated the structural patterns of microbial communities including both prokaryotes such as bacteria and eukaryotes such as protists. Additionally, several ARG-dominant horizontal gene transfer events between Protist and Prokaryote have been identified, indicating the potential roles of ARG in shaping the ocean microbial communities. For a deeper insight into the role of ARGs in ocean microbial communities on a global scale, we identified 1926 unique types of ARGs and discovered that the ARGs are more abundant and diverse in the mesopelagic zone than other water layers, potentially caused by limited resources. Finally, we found that ARG-enriched genera were often more abundant compared to their ARG-less neighbors in the same environment (e.g. coastal oceans). A deeper understanding of the ARG-microbiome relationships could help in the conservation of the oceanic ecosystem.
Collapse
Affiliation(s)
- Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shiguang Hao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junjie Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaojun Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chaoyun Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Houjin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
37
|
Abd El-Monaem EM, Eltaweil AS, Elshishini HM, Hosny M, Abou Alsoaud MM, Attia NF, El-Subruiti GM, Omer AM. Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations. ARAB J CHEM 2022; 15:103743. [PMID: 35126797 PMCID: PMC8800501 DOI: 10.1016/j.arabjc.2022.103743] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
During COVID-19 crisis, water pollution caused by pharmaceutical residuals have enormously aggravated since millions of patients worldwide are consuming tons of drugs daily. Antibiotics are the preponderance pharmaceutical pollutants in water bodies that surely cause a real threat to human life and ecosystems. The excellent characteristics of chitosan such as nontoxicity, easy functionality, biodegradability, availability in nature and the abundant hydroxyl and amine groups onto its backbone make it a promising adsorbent. Herein, we aimed to provide a comprehensive overview of recent published research papers regarding the removal of antibiotics by chitosan composite-based adsorbents. The structure, ionic form, optimum removal pH and λmax of the most common antibiotics including Tetracycline, Ciprofloxacin, Amoxicillin, Levofloxacin, Ceftriaxone, Erythromycin, Norfloxacin, Ofloxacin, Doxycycline, Cefotaxime and Sulfamethoxazole were summarized. The development of chitosan composite-based adsorbents in order to enhance their adsorption capacity, reusability and validity were presented. Moreover, the adsorption mechanisms of these antibiotics were explored to provide more information about adsorbate-adsorbent interactions. Besides the dominant factors on the adsorption process including pH, dosage, coexisting ions, etc. were discussed. Moreover, conclusions and future recommendations are provided to inspire for further researches.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Hala M Elshishini
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163, Horrya Avenue, Alexandria, Egypt
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Mohamed M Abou Alsoaud
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Nour F Attia
- Fire Protection Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| |
Collapse
|
38
|
Ashraf A, Liu G, Yousaf B, Arif M, Ahmed R, Rashid A, Riaz L, Rashid MS. Phyto-mediated photocatalysis: a critical review of in-depth base to reactive radical generation for erythromycin degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32513-32544. [PMID: 35190984 DOI: 10.1007/s11356-022-19119-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Erythromycin (ERY), designated as a risk-prioritized macrolide antibiotic on the 2015 European Union watch list, is the third most commonly used antibiotic, most likely due to its ability to inhibit the protein. ERY has revealed record-high aquatic concentrations threatening the entire ecosystem and hence demands priority remedial measures. The inefficiency of various conventional ERY degradation methodologies opened up a gateway to advanced technologies. The conventional approach comprising of a chemically formulated, single photocatalyst has a major drawback of creating multiple environmental stresses. In this context, photocatalysis is grabbing tremendous attention as an efficient and cost-effective antibiotic treatment approach. Several studies have ascertained that ZnO, TiO2, Fe3O4, and rGO nanoparticles possess remarkable pollution minimizing operational capabilities. Additionally, composites are found much more effective in antibiotic removal than single nanoparticles. In this review, an attempt has been made to provide a comprehensive baseline for efficient reactive radical production by a phyto-mediated composite kept under a certain source of irradiation. Considerable efforts have been directed towards the in-depth investigation of rGO-embedded, phyto-mediated ZnO/TiO2/Fe3O4 photocatalyst fabrication for efficient ERY degradation, undergoing green photocatalysis. This detailed review provides photocatalytic nanocomposite individualities along with a hypothetical ERY degradation mechanism. It is assumed that derived information presented here will provoke innovative ideas for water purification incorporating green photocatalysis, initiating the construction of high-performance biogenic hierarchical nanocatalysts.
Collapse
Affiliation(s)
- Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Luqman Riaz
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
39
|
Sims JL, Stroski KM, Kim S, Killeen G, Ehalt R, Simcik MF, Brooks BW. Global occurrence and probabilistic environmental health hazard assessment of per- and polyfluoroalkyl substances (PFASs) in groundwater and surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151535. [PMID: 34762945 DOI: 10.1016/j.scitotenv.2021.151535] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been used in consumer and military products since the 1950s but are increasingly scrutinized worldwide because of inherent chemical properties, environmental contamination, and risks to public health and the environment. The United States Environmental Protection Agency (USEPA) identified 24 PFASs of interest for further study and possible regulation. We examined 371 peer-reviewed studies published since 2001 to understand the occurrence and distribution of 24 priority PFASs in global surface waters and groundwater. We identified 77,541 and 16,246 data points for surface waters and groundwater, respectively, with total PFAS concentrations ranging from low pg/L to low mg/L levels. Most data were from Asia, Europe, and North America with some reports from Oceania. PFAS information from other geographic regions is lacking. PFASs levels are consistently higher in rivers and streams followed by lakes and reservoirs and then coastal and marine systems. When sufficient data were available, probabilistic environmental hazard assessments (PEHAs) were performed from environmental exposure distributions (EEDs) to identify potential exceedances of available guideline values for each compound by matrix, region, and aquatic system. Specifically, exceedances of USEPA drinking water lifetime health advisory levels were up to 74% for PFOS in groundwater from Oceania and 69% for PFOA in North American groundwater. Our findings support selection of environmentally relevant experimental treatment levels for future toxicology, ecotoxicology and bioaccumulation studies, and potable source water exposure investigations, while highlighting PFASs and major geographic locations requiring additional study and inclusion in global monitoring and surveillance campaigns.
Collapse
Affiliation(s)
- Jaylen L Sims
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Kevin M Stroski
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Grace Killeen
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Ricardo Ehalt
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Matt F Simcik
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| |
Collapse
|
40
|
Effect of UV Irradiation on the Structural Variation of Metal Oxide-Silica Nanocomposites for Enhanced Removal of Erythromycin at Neutral pH. Catalysts 2022. [DOI: 10.3390/catal12040424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the effect of UV treatment on the physicochemical properties and structural variation of metal oxide-silica nanocomposites (Mn2O3-Fe2O3@SiO2) has been investigated. Based on the results, UV irradiation significantly affects the nanocomposite structure, where SiO2 network reconfiguration, change in surface OH group density, and surface area were observed. Erythromycin (ERY) has been chosen as a module pollutant to compare the performance of the pristine and UV-treated nanocomposites. The pristine nanocomposite had a high adsorption efficiency (99.47%) and photocatalytic activity (99.57%) at neutral pH for ERY in the first cycle, and this efficiency decreased significantly for the multiple cycles. However, different results have been observed for the UV-treated nanocomposite, where it retained its performance for ten consecutive cycles. This enhanced performance is attributed to the structural modifications after UV exposure, where increased surface area, pore volume, and OH group density resulted in an increased number of the possible mechanisms responsible for the adsorption/oxidation of ERY. Moreover, oxidation of adsorbed molecules by UV light after each cycle can also be another reason for enhanced removal. For the first time, the fate of ERY is studied using regenerated nanocomposites after the last cycle. LC/MS/MS results showed that ERY degraded in 20 min, and the produced reaction by-products were adsorbed by nanocomposites. This study could be a foundation research for the practical approaches for the regeneration of nanomaterials and the successful removal of organic pollutants from aquatic environments.
Collapse
|
41
|
Safavi MS, Walsh FC, Visai L, Khalil-Allafi J. Progress in Niobium Oxide-Containing Coatings for Biomedical Applications: A Critical Review. ACS OMEGA 2022; 7:9088-9107. [PMID: 35356687 PMCID: PMC8944537 DOI: 10.1021/acsomega.2c00440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 05/11/2023]
Abstract
Typically, pure niobium oxide coatings are deposited on metallic substrates, such as commercially pure Ti, Ti6Al4 V alloys, stainless steels, niobium, TiNb alloy, and Mg alloys using techniques such as sputter deposition, sol-gel deposition, anodizing, and wet plasma electrolytic oxidation. The relative advantages and limitations of these coating techniques are considered, with particular emphasis on biomedical applications. The properties of a wide range of pure and modified niobium oxide coatings are illustrated, including their thickness, morphology, microstructure, elemental composition, phase composition, surface roughness and hardness. The corrosion resistance, tribological characteristics and cell viability/proliferation of the coatings are illustrated using data from electrochemical, wear resistance and biological cell culture measurements. Critical R&D needs for the development of improved future niobium oxide coatings, in the laboratory and in practice, are highlighted.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
| | - F. C. Walsh
- Electrochemical
Engineering Laboratory & National Centre for Advanced Tribology,
Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Livia Visai
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Jafar Khalil-Allafi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
| |
Collapse
|
42
|
Adeola AO, Ore OT, Fapohunda O, Adewole AH, Akerele DD, Akingboye AS, Oloye FF. Psychotropic Drugs of Emerging Concerns in Aquatic Systems: Ecotoxicology and Remediation Approaches. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00334-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Luo Z, Yu Z, Yin D. Obesogenic effect of erythromycin on Caenorhabditis elegans through over-eating and lipid metabolism disturbances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118615. [PMID: 34863891 DOI: 10.1016/j.envpol.2021.118615] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Environmental obesogens contributed significantly to the obesity prevalence. Recently, antibiotics joined the list of environmental obesogens, while the underlying mechanisms remained to be explored. In the present study, effects of erythromycin (ERY), one widely used macrolide antibiotic, were measured on C. elegans to investigate the obesogenic mechanism. Results showed that ERY at 0.1 μg/L significantly increased the fat content by 17.4% more than the control and also stimulated triacylglycerol (TAG) levels by 25.7% more than the control. Regarding the obesogenic mechanisms, ERY provoked over-eating by stimulation on the pharyngeal pumping and reduction on the satiety quiescence percentage and duration. Such effects were resulted from stimulation on the neurotransmitters including serotonin (5-HT), dopamine (DA) and acetylcholine (ACh). The nervous responses involved the up-regulation of Gsα (e.g., ser-7, gsa-1, acy-1 and kin-2) signaling pathway and the down-regulation of TGFβ (daf-7) but not via cGMP-dependent regulations (e.g., egl-4). Moreover, ERY stimulated the activities of fatty acid synthase (FAS) and glycerol-3-phosphateacyl transferases (GPAT) that catalyze lipogenesis, while ERY inhibited those of acyl-CoA synthetase (ACS), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) that catalyze lipolysis. The unbalance between lipogenesis and lipolysis resulted in the fat accumulation which was consistent with up-regulation on mgl-1 and mgl-3 which are the down-steam of TGFβ regulation. Such consistence supported the close connection between nervous regulation and lipid metabolism. In addition, ERY also disturbed insulin which connects lipid with glucose in metabolism.
Collapse
Affiliation(s)
- Zhili Luo
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang Province, 3014051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang Province, 3014051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
44
|
Prevalence and Antimicrobial Resistance of Escherichia coli, Salmonella and Vibrio Derived from Farm-Raised Red Hybrid Tilapia (Oreochromis spp.) and Asian Sea Bass (Lates calcarifer, Bloch 1970) on the West Coast of Peninsular Malaysia. Antibiotics (Basel) 2022; 11:antibiotics11020136. [PMID: 35203739 PMCID: PMC8868497 DOI: 10.3390/antibiotics11020136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Antibiotics are widely used in intensive fish farming, which in turn increases the emergence of antimicrobial-resistant (AMR) bacteria in the aquatic environment. The current study investigates the prevalence and determines the antimicrobial susceptibility of E. coli, Salmonella, and Vibrio in farmed fishes on the west coast of Peninsular Malaysia. Over a period of 12 months, 32 aquaculture farms from the Malaysian states of Selangor, Negeri Sembilan, Melaka, and Perak were sampled. Both E. coli and Salmonella were highly resistant to erythromycin, ampicillin, tetracycline, and trimethoprim, while Vibrio was highly resistant to ampicillin and streptomycin. Resistance to the antibiotics listed as the highest priority and critically important for human therapy, such as colistin in E. coli (18.1%) and Salmonella (20%) in fish, is a growing public health concern. The multi-drug resistance (MDR) levels of E. coli and Salmonella in tilapia were 46.5% and 77.8%, respectively. Meanwhile, the MDR levels of E. coli, Salmonella, V. parahaemolyticus, V. vulnificus and V. cholerae in Asian seabass were 34%, 100%, 21.6%, 8.3% and 16.7%, respectively. Our findings provide much-needed information on AMR in aquaculture settings that can be used to tailor better strategies for the use of antibiotics in aquaculture production at the local and regional levels.
Collapse
|
45
|
Fedorova G, Grabic R, Grabicová K, Turek J, Van Nguyen T, Randak T, Brooks BW, Zlabek V. Water reuse for aquaculture: Comparative removal efficacy and aquatic hazard reduction of pharmaceuticals by a pond treatment system during a one year study. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126712. [PMID: 34388919 DOI: 10.1016/j.jhazmat.2021.126712] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Aquaculture is increasing at the global scale, and beneficial reuse of wastewater is becoming crucial in some regions. Here we selected a unique tertiary treatment system for study over a one-year period. This experimental ecosystem-based approach to effluent management included a treated wastewater pond (TWP), which receives 100% effluent from a wastewater treatment plant, and an aquaculture pond (AP) that receives treated water from the TWP for fish production. We examined the fate of a wide range of pharmaceutically active compounds (PhACs) in this TWP-AP system and a control pond fed by river water using traditional grab sampling and passive samplers. We then employed probabilistic approaches to examine exposure hazards. Telmisartan, carbamazepine, diclofenac and venlafaxine, exceeded ecotoxicological predicted no effect concentrations in influent wastewater to the TWP, but these water quality hazards were consistently reduced following treatment in the TWP-AP system. In addition, both grab and passive sampling approaches resulted in similar occurrence patterns of studied compounds, which highlights the potential of POCIS use for water monitoring. Based on the approach taken here, the TWP-AP system appears useful as a tertiary treatment step to reduce PhACs and decrease ecotoxicological and antibiotic resistance water quality hazards prior to beneficial reuse in aquaculture.
Collapse
Affiliation(s)
- Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Jan Turek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Tuyen Van Nguyen
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Vladimir Zlabek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
46
|
Liu D, Xu YY, Junaid M, Zhu YG, Wang J. Distribution, transfer, ecological and human health risks of antibiotics in bay ecosystems. ENVIRONMENT INTERNATIONAL 2022; 158:106949. [PMID: 34710731 DOI: 10.1016/j.envint.2021.106949] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics have been widely detected in bay ecosystems, yet little is known regarding their distribution, composition, sources, ecological and human health risks at the regional scale. We developed a systematic framework to mine data from existing publications and compiled an antibiotic concentration-based dataset containing 439 samples from 30 bays, and compared antibiotics across bays and matrices (water, sediment, and biota). Antibiotic concentrations varied considerably between bays, with hotspots occurring in East Asia. The main categories of antibiotics in waters included sulfonamide and macrolide, while tetracycline, quinolone, and macrolide antibiotics were prevalent in sediments. The main sources of antibiotics in bays included sewage treatment plant effluent, domestic sewage, agriculture runoff, and discharges from mariculture activities. Antibiotics with high ecological risks mainly included sulfamethoxazole, erythromycin, clarithromycin, and oxytetracycline. Erythromycin posed a considerable risk to human health, and the human health risks presented by other antibiotics were negligible. Regional variations of concentrations correspond to the uneven geographic consumption of antibiotics and their removal rate during wastewater treatment. Differences in antibiotics' composition between matrices are associated mainly with the physicochemical properties of antibiotics (e.g., molecular structure, solubility, and stability) and the content of total organic carbon, metal ions, chlorophyll a, and clay minerals in the sediments. To reduce the ecological and human health implications, priority should be given to the removal of erythromycin, sulfamethoxazole, oxytetracycline, and clarithromycin, with a special focus on their treatment in the Asian bay areas.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China.
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| |
Collapse
|
47
|
Grobin A, Roškar R, Trontelj J. Multi-parameter risk assessment of forty-one selected substances with endocrine disruptive properties in surface waters worldwide. CHEMOSPHERE 2022; 287:132195. [PMID: 34826907 DOI: 10.1016/j.chemosphere.2021.132195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of substances with endocrine disruptive properties (EDs) not only impacts aquatic organisms but can also have a direct negative effect on human health. In this comprehensive worldwide review, we collected ecotoxicology and concentration data observed in surface water for 53 high-potency EDs and performed a risk assessment. The compounds were selected from the EU watchlist of priority substances, expanded with new compounds of emerging concern (total 41), where quantifiable data were available for the past three years (2018-2020). The risk quotients ranged from <0.01 for 22 substances to 1974 for tamoxifen. The frequency of samples in which the predicted no-effect concentrations were exceeded also varied, from 1.8% to 92.7%. By using the comprehensive multi-parameter risk assessment in our study, the most current to date, we determined that tamoxifen, imidacloprid, clothianidin, four bisphenols (BPA, BPF, BPS, and BPAF), PFOA, amoxicillin, and three steroid hormones (estriol, estrone, and cyproterone) pose significant risks in the environment. Comparing two structurally very similar bisphenols, BPA and BPB, suggested that the risk from BPB is currently underestimated by at least four orders of magnitude due to the lack of ecotoxicological data availability. The methodological limitations encountered suggest that a standardized methodology for data selection and assessment is necessary, highlighting the fact that some substances are currently under-represented in the field of ecotoxicological research. A new prioritization system is therefore presented, which provides a potential basis for new substances to be included in environmental monitoring lists.
Collapse
Affiliation(s)
- Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
48
|
Rocha CS, Kochi LY, Ribeiro GB, Rocha DC, Carneiro DNM, Gomes MP. Evaluating aquatic macrophytes for removing erythromycin from contaminated water: floating or submerged? INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:995-1003. [PMID: 34686072 DOI: 10.1080/15226514.2021.1991268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water contamination by antibiotics is an emerging global problem, with impacts on both public health and the environment. Erythromycin has been encountered in bodies of water throughout the world, which demands the development of efficient remediation technologies. We investigated the physiological responses and phytoremediation capacity of four species of aquatic macrophytes, two floating (Salvinia molesta and Lemna minor) and two submerged (Myriophyllum aquaticum and Rotala rotundifolia). The plants were exposed to relevant environmental concentrations of erythromycin (0 and 1.7 µg l-1) in artificially contaminated water for seven days. Physiological evaluations evidenced the ability of that antibiotic to promote oxidative events in those plants, such as the activation of antioxidant enzymes (ascorbate peroxidase and/or catalase). S. molesta exposed to erythromycin demonstrated accumulations of hydrogen peroxide and oxidative damage (lipid peroxidation) that was reflected in growth reductions. The erythromycin removal efficiency of floating plants varied from 9 to 12%, while submerged species varied from 31 to 44%. As such, submerged macrophyte species demonstrated the most efficient removal of erythromycin from contaminated waters, and are therefore more indicated for antibiotic phytoremediation projects.
Collapse
Affiliation(s)
- Camila Silva Rocha
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Centro Politécnico Jardim das Américas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leticia Yoshie Kochi
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Centro Politécnico Jardim das Américas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gabriela Breternitz Ribeiro
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Centro Politécnico Jardim das Américas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Daiane Cristina Rocha
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Centro Politécnico Jardim das Américas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Centro Politécnico Jardim das Américas, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
49
|
Sun P, Zhao W. Strategies to Control Human Health Risks Arising from Antibiotics in the Environment: Molecular Modification of QNs for Enhanced Plant-Microbial Synergistic Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10610. [PMID: 34682354 PMCID: PMC8536065 DOI: 10.3390/ijerph182010610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022]
Abstract
In the present work, a comprehensive screening and evaluation system was established to improve the plant-microbial synergistic degradation effects of QNs. The study included the construction of a 3D-QSAR model, the molecular modification, environmental friendliness and functional evaluation of drugs, degradation pathway simulation, and human health risk assessment. Molecular dynamics was applied to quantify the binding capacity of QNs toward the plant degradation enzyme (peroxidase) and microbial degradation enzymes (manganese peroxidase, lignin peroxidase, and laccase). The fuzzy comprehensive evaluation method was used in combination with the weighted average method for normalization and assigning equal weights to the plant and microbial degradation effect values of the QNs. Considering the synergistic degradation effect value as the dependent variable and the molecular information of the QNs as the independent variable, a 3D-QSAR model was constructed for the plant-microbial synergistic degradation effect of QNs. The constructed model was then employed to conduct the molecular modification, environmental friendliness and functional evaluation, degradation pathway simulation, and human health risk assessment of transformation products using pharmacokinetics and toxicokinetics. The results revealed that the synergistic degradation effect 3D-QSAR (CoMSIA) model exhibited good internal and external prediction ability, fitting ability, stability, and no overfitting phenomenon. Norfloxacin (NOR) was used as the target molecule in the molecular modification. A total of 35 NOR derivatives with enhanced plant-microbial synergistic degradation effect (1.32-21.51%) were designed by introducing small-volume, strongly electronegative, and hydrophobic hydrogen bond receptor groups into the active group of the norfloxacin structure. The environment-friendliness and the functionality of NOR were evaluated prior to and after the modification, which revealed seven environment-friendly FQs derivatives exhibiting moderate improvement in stability and bactericidal efficacy. The simulation of the NOR plant and microbial degradation pathways prior to and after the modification and the calculation of the reaction energy barrier revealed Pathway A (D-17 to D-17-2) and Pathway B (D-17 to D-17-4) as the most prone degradation pathways in plants and Pathway A (D-17 to D-17-1) and Pathway B (D-17 to D-17-4) as the most prone degradation pathways in microorganisms. This demonstrated that the degradation of the modified NOR derivatives was significantly enhanced, with the hydroxylation and piperazine ring substitution reaction playing an important role in the degradation process. Finally, the parameters, including hepatotoxicity, mutagenicity, and rodent carcinogenicity, among others, predicted using the pharmacokinetics and toxicokinetics analyses revealed a significant reduction in the human health risk associated with the modified NOR, along with a considerable reduction in the toxicity of its transformation products, implying that the human health risk associated with the transformation products was reduced remarkably. The present study provides a theoretical basis for novel ideas and evaluation programs for improving the plant-microbial synergistic degradation of the QNs antibiotics for source control and drug design, thereby reducing the residues of these antibiotics and the associated hazard in the complex plant-soil environment, ultimately decreasing the potential risks to human health.
Collapse
Affiliation(s)
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China;
| |
Collapse
|
50
|
Sahulka SQ, Bhattarai B, Bhattacharjee AS, Tanner W, Mahar RB, Goel R. Differences in chlorine and peracetic acid disinfection kinetics of Enterococcus faecalis and Escherichia fergusonii and their susceptible strains based on gene expressions and genomics. WATER RESEARCH 2021; 203:117480. [PMID: 34392043 DOI: 10.1016/j.watres.2021.117480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This study was conducted to investigate mechanisms of cross-resistance to chlorine and peracetic acid (PAA) disinfectants by antibiotic-resistant bacteria. Our study evaluated chlorine and PAA based disinfection kinetics of erythromycin-resistant Enterococcus faecalis, meropenem-resistant Escherichia fergusonii, and susceptible strains of these species. Using the integrated second-order disinfectant decay model and first-order Chick-Watson's Law, it was found that the meropenem-resistant Escherichia fergusonii strain showed significantly less log inactivation compared to the susceptible E. fergusonii strain in response to both chlorine and PAA disinfection (p-value = 0.059, 3.5 × 10-6). On the other hand, the susceptible Enterococcus faecalis strain showed similar log inactivation compared to the erythromycin-resistant strain in response to either treatment (p-value = 0.075, 0.28). Meropenem-resistant E. fergusonii showed an increase in gene expression of New Delhi metallo-β-lactamase (blaNDM-1) gene to chlorine, but there was no increase in expression to PAA. Whole genome sequencing (WGS) was then conducted to elucidate the differences in genes among both resistant and susceptible table E. fergusonii strains. The average nucleotide identity (ANI) analysis of the draft genomes (>97% similarity) suggests that meropenem-resistant E. fergusonii (S1) and meropenem-susceptible E. fergusonii (S2) are the same species but different strains. Both strains have the same genes for oxidative stress pathways, oxidative scavenger genes, and nearly 40 different antibiotic efflux pump genes. The chromosomal and plasmid draft genomes of meropenem-resistant and susceptible E. fergusonii strains each have 65 and 52 antibiotic resistance genes, respectively. Of these, the resistant E. fergusonii strain harbored the extended-spectrum beta-lactamases blaCTX-M-15 and blaTEM-1 genes located on the chromosome, and a blaTEM-1 gene on the plasmid. The overall findings of this study are significant, as they reveal that antibiotic-resistant and susceptible strains of E. fergusonii exhibit different responses towards chlorine and PAA disinfection.
Collapse
Affiliation(s)
| | - Bishav Bhattarai
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ananda S Bhattacharjee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Windy Tanner
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Rasool Bux Mahar
- US.- Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, UT, USA.
| |
Collapse
|