1
|
Teglia CM, Gutierrez FA, Machado S, Hadad HR, Maine MA, Goicoechea HC. Spatial occurrence of emerging contaminants in rivers and wastewater. Analysis of environmental and human risks. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:397-409. [PMID: 39805068 DOI: 10.1093/etojnl/vgae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
This study assesses the occurrence of emerging contaminants (ECs) from agricultural and livestock production activities along the Salado River (Santa Fe province, Argentina). Of the 23 ECs studied, 8 were detected and quantified in river and wastewater samples, including ciprofloxacin, enrofloxacin, chlorpyrifos-methyl, albendazole, fenbendazole, levamisole, diazepam, and thiamethoxam. In river samples, the highest concentrations corresponded to ciprofloxacin, chlorpyrifos-methyl, and enrofloxacin. In wastewater samples, albendazole, fenbendazole, ciprofloxacin, enrofloxacin, and thiamethoxam were found. The detection frequency ranged from 4.2% to 54.2% in river samples and from 11.1% to 22.2% in wastewater samples. The spatial distribution of contaminants showed different concentrations, with higher levels often found near urban and agricultural areas, suggesting anthropogenic sources. Ecological risk assessments for different organisms were conducted. Ciprofloxacin posed the highest risk, especially affecting bacteria, cyanobacteria, and algae. Diazepam also was found to pose significant risks to algae, crustaceans, and fishes. Chlorpyrifos-methyl was identified as highly hazardous to multiple living organisms, which is in agreement with the fish mortality that occurred at the sampling sites. The risk assessment in humans showed differences among children, adolescents, and adults, with infants (6 months to 1 year) being at a higher risk than adults. Children may be at a higher daily intake of contaminants than adults, raising concerns about the long-term effects of exposure. This work underscores the critical need for monitoring and regulating ECs in aquatic environments. Further studies are necessary to fully understand their impact and to develop effective strategies for mitigating their presence in water systems.
Collapse
Affiliation(s)
- Carla Mariela Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA, Buenos Aires, Argentina
| | - Fabiana Andrea Gutierrez
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA, Buenos Aires, Argentina
| | - Selva Machado
- Práctica Hospitalaria Grandes Animales, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Hérnan Ricardo Hadad
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA, Buenos Aires, Argentina
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María Alejandra Maine
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA, Buenos Aires, Argentina
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Héctor Casimiro Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhong W, Xu L, Wang Q, Shen X. Formation of bovine serum albumin-galangin nanoparticles and their potential to inhibit reactive oxygen species-induced inflammation: Ethanol desolvation versus pH-shifting method. J Dairy Sci 2025; 108:282-297. [PMID: 39389302 DOI: 10.3168/jds.2024-25495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
The pH-shifting method, as an ecofriendly approach, is a promising alternative to the desolvation method, yet systematic comparison of their properties is still lacking. In this study, BSA-galangin nanoparticles (BSA-GA NP) were designed for alleviating reactive oxygen species (ROS)-mediated macrophage inflammation by the 2 separate methods. Compared with the desolvation method, BSA exhibited a higher loading capacity for GA under the pH-shifting method, which was attributed to the exposure of the binding site leading to enhanced affinity for GA and a more compact particle structure. Further analyses evidenced that the electron arrangement and crystal structure of GA changed with different methods. The content of the random coil of BSA was elevated after the pH-shifting method. Additionally, the smaller size rendered the pH-shifting treated BSA-GA NP easier to be taken up by macrophages, and the enhanced specific surface area conferred excellent ROS scavenging and anti-inflammatory performances. This study may provide new insights into the choice of loading methods.
Collapse
Affiliation(s)
- Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Lei Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130012, China
| | - Qi Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, China.
| |
Collapse
|
3
|
Li X, Zeng L, Jiang H, Sui J, Shuang B, Zhu L, Tang J, Dai Y. Sorption of tetracycline antibiotics by microplastics, associated mechanisms, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178054. [PMID: 39693669 DOI: 10.1016/j.scitotenv.2024.178054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
In this study, we selected polyvinyl chloride (PVC), polyethylene (PE), and polystyrene (PS) as representative microplastics (MPs) to systematically investigate the sorption behavior of tetracycline (TC) antibiotics by MPs. Scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, and adsorption experiments were applied to assess the sorption behavior of MPs. The results demonstrated that the sorption of TC by MPs was most favorable under neutral conditions, where a modest increase in the salt ion concentration enhanced the adsorption of TC by MPs. The saturation adsorption capacities for PVC, PE, and PS for TC were determined as 121.95 μg/g, 81.301 μg/g, and 178.57 μg/g, respectively. The strength of TC sorption by MPs followed the order of: PS > PVC > PE. Analysis of the sorption behavior of TC by MPs showed that the adsorption of TC by PE was weak and it readily desorbed, and thus their interaction will not lead to excessive compound pollution. By contrast, the adsorption of TC was high by PVC and PS, and they were not readily desorbed.
Collapse
Affiliation(s)
- Xiang Li
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Lingling Zeng
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Huating Jiang
- School of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jia Sui
- College of Life Sciences, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Bao Shuang
- College of Life Sciences, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Liya Zhu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Junqian Tang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| |
Collapse
|
4
|
Soriano Y, Carmona E, Renovell J, Picó Y, Brack W, Krauss M, Backhaus T, Inostroza PA. Co-occurrence and spatial distribution of organic micropollutants in surface waters of the River Aconcagua and Maipo basins in Central Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176314. [PMID: 39306134 DOI: 10.1016/j.scitotenv.2024.176314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Organic Micropollutants (OMPs) might pose significant risks to aquatic life and have potential toxic effects on humans. These chemicals typically occur as complex mixtures rather than individually. Information on their co-occurrence and their association with land use is largely lacking, even in industrialized countries. Furthermore, data on the presence of OMPs in freshwater ecosystems in South America is insufficient. Consequently, we assessed the co-occurrence and distribution of OMPs, including pharmaceuticals, pesticides, personal care products, surfactants, and other industrial OMPs, in surface waters of two river basins in central Chile. We focused on identifying and ranking quantified chemicals, classifying their mode of actions, as well as correlating their occurrence with distinct land uses. We identified and quantified 311 compounds that occurred at least once in the River Aconcagua and River Maipo basins, encompassing compounds from urban, agricultural, industrial, and pharmaceutical sectors. Pharmaceuticals were the most frequently occurring chemicals, followed by pesticides, personal care and household products. OMPs with neuroactive properties dominated surface waters in Central Chile, along with OMPs known to alter the cardiovascular and endocrine systems of humans and aquatic animals. Finally, we observed positive correlations between agricultural and urban land uses and OMPs. Our findings represent a step forward in extending current knowledge on the co-occurrence patterns of OMPs in aquatic environments, particularly in developing countries of the southern hemisphere.
Collapse
Affiliation(s)
- Yolanda Soriano
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, Valencia, Spain
| | - Eric Carmona
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Javier Renovell
- Soil and water conservation system group, Desertification Research Centre-CIDE (CSIC, GV, UV), Valencia, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, Valencia, Spain
| | - Werner Brack
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Martin Krauss
- Department Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thomas Backhaus
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Pedro A Inostroza
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany; Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Sharkey M, Stubbings WA, Harrad S, Healy MG, Wang S, Jin J, Coggins AM. Antibiotics residues in inland and transitional sediments. CHEMOSPHERE 2024; 369:143793. [PMID: 39580089 DOI: 10.1016/j.chemosphere.2024.143793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
This study assesses the concentrations of a range of antibiotics in riverine and transitional sediments in Ireland. A selection of 12 macrolide, fluoroquinolone, sulphonamide, and diaminopyrimidine antibiotics were quantified in 80 grab surficial sediment samples from around Ireland, selected to investigate areas of potentially higher pollution risk (agriculture, aquaculture, industrial emissions, and wastewater emission points) as well as isolated areas where there are no known pollution sources. Several of the macrolides and sulphonamides/trimethoprim were generally detected more frequently above limits of quantification (LoQ). Fluoroquinolones, while frequently detected above limits of detection (LoD), concentrations were mostly below method LOQs. The most prevalent antibiotic detected was clarithromycin, found at the highest mean concentration (6.65 ng/g) and detected in ∼90 % of samples. Comparing levels of quantified antibiotics to levels reported internationally, Ireland is at the lower end for all quantified antibiotics. This is with the notable exception of clarithromycin, which is higher than levels found in comparable studies in Italy, Spain, France, and Argentina. Higher levels of total antibiotics (49.3 ± 24.7 ng/g) were found to be present immediately adjacent to wastewater emission points while moderate degrees of contamination (9.0 ± 9.7 ng/g) were also linked to wastewater, aquaculture, or agricultural pressures. Based on risk quotients calculated from available sediment PNECs taken from the NORMAN ecotoxicology database, clarithromycin was also the only compound to be present at concentrations indicative of a "moderate" degree of environmental risk, with most of the remaining falling below this threshold. Ciprofloxacin was ostensibly found to be of a "high" degree of environmental risk; however, this is based on only a single sample quantified above the LoQ. Overall, antibiotic sediment concentrations suggest a low ecotoxicological risk for most of the target antibiotics, although clarithromycin, ciprofloxacin, and sulfamethoxazole warrant further monitoring in sediments. A final notable finding is the differences in partitioning behaviour of antibiotics between water and sediment: clarithromycin is more likely to be detected in sediment while sulfamethoxazole partitions more to water. Such partitioning behaviour should therefore be taken into consideration for any subsequent monitoring programmes.
Collapse
Affiliation(s)
- Martin Sharkey
- Physics, School of Natural Sciences, University of Galway, Galway City, H91 CF50, Republic of Ireland.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Mark G Healy
- Civil Engineering, College of Engineering and Informatics, University of Galway, Galway City, H91 HX31, Republic of Ireland
| | - Shijie Wang
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jingxi Jin
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Ann Marie Coggins
- Physics, School of Natural Sciences, University of Galway, Galway City, H91 CF50, Republic of Ireland
| |
Collapse
|
6
|
Jing K, Li Y, Li J, Jiang C, Li Y, Yao C. Antibiotic biotransformation potential of biofilms in streams receiving treated wastewater effluent: Biodegradation mechanism and bacterial community structure. CHEMOSPHERE 2024; 367:143636. [PMID: 39490761 DOI: 10.1016/j.chemosphere.2024.143636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Antibiotics are a widely distributed and effective antibacterial agents. Human medical treatment and livestock aquaculture are major sources of antibiotics in aquatic ecosystems, potentially damaging the biofilms that are the foundation of stream food webs. In this study, we conducted antibiotic biotransformation experiments using biofilms cultured in streams upstream and downstream of a wastewater treatment plant outlet to distinguish different fate processes of antibiotics in biofilms. It was found that stream biofilms have biotransformation potential mainly for specific sulfonamide antibiotics. Flavobacterium and Dyadobacter were identified to be associated with biofilm biotransformation of antibiotics by 16S rDNA sequencing. Besides, microorganisms released from treated wastewater integrated into downstream biofilm communities, thereby enhancing the biotransformation potential of downstream biofilm communities compared to upstream biofilm. These findings enriched the understanding of the biotransformation of micropollutants by stream biofilms, and to thus promote the development of biofilm-based monitoring technologies.
Collapse
Affiliation(s)
- Ke Jing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China.
| | - Jing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Chenxue Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Yinghao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| |
Collapse
|
7
|
González Núñez AA, Palacio MJ, Tripoli LI, Pighin AF, Ossana NA. Environmental health in the upper-middle Luján River basin from a multi-biomarker approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124541. [PMID: 39009299 DOI: 10.1016/j.envpol.2024.124541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
The objectives of this study were to evaluate the ecophysiological state of the biota using a set of biomarkers in the upper-middle Luján River. To this aim, we collected adult Cnesterodon decemmaculatus fish, biofilm and water at three sampling sites in the upper-middle Luján River (S1: rural area, S2: Luján City and S3: urban area after passing Lujan City). For each site we determined physicochemical variables, heavy metal concentration in water, 19 biomarkers in fish (morphometric, histological, genotoxic, oxidative stress, metabolic and neurotoxic) and six biomarkers in biofilm (oxidative stress and extracellular enzyme). Additionally, we compared the responses of fish and biofilm with those of laboratory controls obtained from outdoor cultures. Our results indicated increased heavy metal concentration at all sites, mainly As and Cd, and decreased dissolved oxygen at S1 and S3. In fish, genotoxic biomarkers showed significant differences with respect to the control. The comet assay indicated damage in fish at the urbanized sites (S2 and S3) and an increased frequency of erythrocytes with nuclear aberrations at all sites. The CEA index (cellular energy allocation), calculated from the metabolic biomarkers and lipid concentration were significantly increased at S1. The gill damage evaluated histologically and with three indices indicated severe damage at all sites. Gills showed thickened primary and secondary lamellae and fusion of filaments at all sites, but a significant increase in mucous cells was only found at S1 and S3. Biofilm showed increased values of extracellular enzymes (β-glucosidase and alkaline phosphatase, lipid peroxidation and oxidative stress enzymes (i.e., catalase) at S3. These results are novel in that they incorporated laboratory controls allowing for comparisons with fish and biofilm from the field. They provided information on the status of a fish population and biofilm community, indicating the negative effect of river water deterioration on the tested organisms. Moreover, results showed what biomarkers were most sensitive for each biological sample.
Collapse
Affiliation(s)
- Ayelén A González Núñez
- Applied Ecophysiology Program (PRODEA) Institute of Ecology and Sustainable Development (INEDES, CONICET-UNLu), Department of Cs. Basic, National University of Luján (B6700ZBA) Luján, Argentina.
| | - Mauro J Palacio
- Applied Ecophysiology Program (PRODEA) Institute of Ecology and Sustainable Development (INEDES, CONICET-UNLu), Department of Cs. Basic, National University of Luján (B6700ZBA) Luján, Argentina
| | - Luis I Tripoli
- Luján River Basin Committee (ComiLu), Ministry of Infrastructure and Public Services of the Province of Buenos Aires - Calle 5 N° 366, La Plata, Buenos Aires, Argentina
| | - Andres F Pighin
- Department of Basic Sciences, National University of Luján (B6700ZBA), Luján, Argentina
| | - Natalia A Ossana
- Applied Ecophysiology Program (PRODEA) Institute of Ecology and Sustainable Development (INEDES, CONICET-UNLu), Department of Cs. Basic, National University of Luján (B6700ZBA) Luján, Argentina
| |
Collapse
|
8
|
Ranjbar E, Baghdadi M, Ruhl AS. Removal of persistent and mobile organic micropollutants from drinking water utilizing a synthesized waste-derived adsorbent. CHEMOSPHERE 2024; 366:143476. [PMID: 39369739 DOI: 10.1016/j.chemosphere.2024.143476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Persistent and mobile (PM) substances refer to a wide range of organic micropollutants (OMPs) with high persistence and mobility in water. So far, only a few methods have been explored for the removal of PM substances from drinking water. In this work, a new adsorbent based on spent coffee grounds and aluminum waste was synthesized and utilized to remove 25 OMPs, including 22 PM substances, from drinking water. Different characterization methods, including powder X-ray diffraction (XRD), analyses according to Brunauer-Emmett-Teller (BET), field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS), were applied to describe the adsorbent's textural and structural characteristics. The results revealed that the adsorbent is highly effective in removing OMPs. Common OMPs (i.e. carbamazepine, sulfamethoxazole and diclofenac) were completely removed from drinking water. Also, many of the PM substances were removed by more than 80% using an adsorbent dosage of 0.1 g/L. A strong relation between abatement of ultraviolet light absorbance at 254 nm (UV254) and OMP removal was observed. Therefore, UV254 abatement is a useful surrogate for a quick estimation of OMP removals.
Collapse
Affiliation(s)
- Ehsan Ranjbar
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Chair of Water Treatment, Technische Universität Berlin, Sekr. KF4, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Majid Baghdadi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | - Aki Sebastian Ruhl
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Chair of Water Treatment, Technische Universität Berlin, Sekr. KF4, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
9
|
Tang B, Hung W, Salam M, Zhang L, Yang Y, Niu J, Li H, Zhang L. Suspended particulate matter-biofilm aggregates benefit microcystin removal in turbulent water but trigger toxicity toward Daphnia magna. WATER RESEARCH 2024; 263:122150. [PMID: 39084089 DOI: 10.1016/j.watres.2024.122150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Suspended particulate matter (SPM) and biofilm are critical in removing contaminants in aquatic environments, but the environmental behavior and ecological toxicity of SPM-biofilm aggregates modulated by turbulence intensities are largely unknown. This study determined the removal pathways of microcystin-LR (MC-LR) by SPM and its biofilm under different turbulence intensities (2.25 × 10-3, 1.01 × 10-2, and 1.80 × 10-2 m2/s3). Then, we evaluated the toxicity of SPM-biofilm aggregates to Daphnia magna. The results revealed that SPM contributed to the adsorption of MC-LR, and the removal of MC-LR can be accelerated with biofilm formation on SPM, with 95.66 % to 97.45 % reduction in MC-LR concentration under the studied turbulence intensities. Higher turbulence intensity triggered more frequent contact of SPM and MC-LR, formed compact but smaller clusters of SPM-biofilm aggregates, and enhanced the abundance of mlrA and mlrB; thus benefiting the adsorption, biosorption, and biodegradation of MC-LR. Furthermore, the SPM-biofilm aggregates formed in turbulent water triggered oxidative stress to Daphnia magna, while a weak lethal toxic effect was identified under moderate turbulence intensity. The results indicate that the toxicity of SPM-biofilm aggregates fail to display a linear relationship with turbulence intensity. These findings offer new perspectives on understanding the environmental behavior and ecological outcomes of SPM and its biofilms in turbulent aquatic environments.
Collapse
Affiliation(s)
- Bingran Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Wei Hung
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Muhammad Salam
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lixue Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yongchuan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Hong Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Lilan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
10
|
Li B, Chang C, Sun C, Zhao D, Hu E, Li M. Multi-habitat distribution and coalescence of resistomes at the watershed scale based on metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135349. [PMID: 39068887 DOI: 10.1016/j.jhazmat.2024.135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
The characteristics of the resistome distribution in rivers have been extensively studied. However, the distribution patterns of resistomes in multiple habitats and contributions of upstream habitats to the resistome profile in water bodies remains unclear. The current study explored the distribution and coalescence of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs) in four habitats (including water bodies, sediments, biofilms, and riparian soils) within the Shichuan River watershed. The results revealed significant variations in the abundances and diversity of resistomes across the four habitats and two seasons. Assembly processes of resistomes were predominated by stochastic processes in summer but deterministic processes in winter. The main source of the resistome in summer water bodies was the movement of genes from upstream water bodies. However, the main sources of resistome in downstream water bodies in winter were the movement of resistomes in upstream sediments and the input of external pollution. The physicochemical properties of winter water bodies significantly influenced the movement of the resistomes across habitats. The current study elucidated the multi-habitat distribution pattern and migration mechanism of the resistome in the river system, providing new insights for effectively monitoring and controlling bacterial resistance.
Collapse
Affiliation(s)
- Bingcong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Chao Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Changshun Sun
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China.
| | - Dan Zhao
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
11
|
Colopi A, Guida E, Cacciotti S, Fuda S, Lampitto M, Onorato A, Zucchi A, Balistreri CR, Grimaldi P, Barchi M. Dietary Exposure to Pesticide and Veterinary Drug Residues and Their Effects on Human Fertility and Embryo Development: A Global Overview. Int J Mol Sci 2024; 25:9116. [PMID: 39201802 PMCID: PMC11355024 DOI: 10.3390/ijms25169116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Drug residues that contaminate food and water represent a serious concern for human health. The major concerns regard the possible irrational use of these contaminants, since this might increase the amplitude of exposure. Multiple sources contribute to the overall exposure to contaminants, including agriculture, domestic use, personal, public and veterinary healthcare, increasing the possible origin of contamination. In this review, we focus on crop pesticides and veterinary drug residues because of their extensive use in modern agriculture and farming, which ensures food production and security for the ever-growing population around the world. We discuss crop pesticides and veterinary drug residues with respect to their worldwide distribution and impacts, with special attention on their harmful effects on human reproduction and embryo development, as well as their link to epigenetic alterations, leading to intergenerational and transgenerational diseases. Among the contaminants, the most commonly implicated in causing such disorders are organophosphates, glyphosate and antibiotics, with tetracyclines being the most frequently reported. This review highlights the importance of finding new management strategies for pesticides and veterinary drugs. Moreover, due to the still limited knowledge on inter- and transgenerational effects of these contaminants, we underlie the need to strengthen research in this field, so as to better clarify the specific effects of each contaminant and their long-term impact.
Collapse
Affiliation(s)
- Ambra Colopi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Eugenia Guida
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Silvia Cacciotti
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Serena Fuda
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Matteo Lampitto
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Angelo Onorato
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Alice Zucchi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy;
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Marco Barchi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| |
Collapse
|
12
|
Liu X, Akay C, Köpke J, Kümmel S, Richnow HH, Imfeld G. Direct Phototransformation of Sulfamethoxazole Characterized by Four-Dimensional Element Compound Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10322-10333. [PMID: 38822809 DOI: 10.1021/acs.est.4c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
The antibiotic sulfamethoxazole (SMX) undergoes direct phototransformation by sunlight, constituting a notable dissipation process in the environment. SMX exists in both neutral and anionic forms, depending on the pH conditions. To discern the direct photodegradation of SMX at various pH levels and differentiate it from other transformation processes, we conducted phototransformation of SMX under simulated sunlight at pH 7 and 3, employing both transformation product (TP) and compound-specific stable isotope analyses. At pH 7, the primary TPs were sulfanilic acid and 3A5MI, followed by sulfanilamide and (5-methylisoxazol-3-yl)-sulfamate, whereas at pH 3, a photoisomer was the dominant product, followed by sulfanilic acid and 3A5MI. Isotope fractionation patterns revealed normal 13C, 34S, and inverse 15N isotope fractionation, which exhibited significant differences between pH 7 and 3. This indicates a pH-dependent transformation process in SMX direct phototransformation. The hydrogen isotopic composition of SMX remained stable during direct phototransformation at both pH levels. Moreover, there was no variation observed in 33S between the two pH levels, indicating that the 33S mass-independent process remains unaffected by changes in pH. The analysis of main TPs and single-element isotopic fractionation suggests varying combinations of bond cleavages at different pH values, resulting in distinct patterns of isotopic fractionation. Conversely, dual-element isotope values at different pH levels did not significantly differ, indicating cleavage of several bonds in parallel. Hence, prudent interpretation of dual-element isotope analysis in these systems is warranted. These findings highlight the potential of multielement compound-specific isotope analysis in characterizing pH-dependent direct phototransformation of SMX, thereby facilitating the evaluation of its natural attenuation through sunlight photolysis in the environment.
Collapse
Affiliation(s)
- Xiao Liu
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| | - Caglar Akay
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jimmy Köpke
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| |
Collapse
|
13
|
Thibodeau AJ, Barret M, Mouchet F, Nguyen VX, Pinelli E. The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123894. [PMID: 38599270 DOI: 10.1016/j.envpol.2024.123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed.
Collapse
Affiliation(s)
- Alexandre J Thibodeau
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France.
| | - Maialen Barret
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Florence Mouchet
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Van Xuan Nguyen
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Eric Pinelli
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| |
Collapse
|
14
|
Beamud SG, Fernández H, Nichela D, Crego MP, Gonzalez-Polo M, Latini L, Aguiar MB, Diblasi L, Parolo ME, Temporetti P. Occurrence of Pharmaceutical Micropollutants in Lake Nahuel Huapi, Argentine Patagonia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1274-1284. [PMID: 38558040 DOI: 10.1002/etc.5859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Tourism is one of the most important activities for the economy of Nor Patagonia Argentina. In Bariloche City, located on the shores of Lake Nahuel Huapi, both the permanent and the temporary populations have increased significantly in recent decades, and this has not necessarily been accompanied by an improvement in sewage networks. Emerging micropollutants such as pharmaceutical compounds reach aquatic systems directly, in the absence of a domestic sewage network, or through effluents from wastewater treatment plants (WWTP), which do not efficiently remove these substances and represent a major threat to the environment. Therefore, the objective of our study was to monitor the presence of pharmaceutical compounds discharged both through wastewater effluents and diffusely from housing developments into Lake Nahuel Huapi. The results obtained demonstrate the presence of pharmaceuticals in Lake Nahuel Huapi with concentrations ranging from not detectable (ND) to 110.6 ng L-1 (caffeine). The highest pharmaceutical concentration recorded in WWTP influent corresponded to caffeine (41728 ng L-1), and the lowest concentration was paracetamol (18.8 ng L-1). The removal efficiency of pharmaceuticals in the WWTP was calculated, and ranged from 0% for carbamazepine to 66% for ciprofloxacin. This antibiotic showed the lowest % of attenuation (73%) in Lake Nahuel Huapi. These results on the occurrence of a wide variety of pharmaceuticals are the first generated in Patagonia, representing a regional baseline for this type of micropollutant and valuable information for the subsequent design of removal strategies for emerging pharmaceutical pollutants in surface water. Environ Toxicol Chem 2024;43:1274-1284. © 2024 SETAC.
Collapse
Affiliation(s)
- Sara Guadalupe Beamud
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas), Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Horacio Fernández
- Sewerage Service, Treatment Plant, Cooperativa de Electricidad Bariloche, Bariloche, Argentina
| | - Daniela Nichela
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas), Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Maria Paula Crego
- Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Marina Gonzalez-Polo
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas), Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Lorena Latini
- Centro de Investigación en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue), Neuquén, Argentina
| | - María Belén Aguiar
- Centro de Investigación en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue), Neuquén, Argentina
| | - Lorena Diblasi
- Centro de Investigación en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue), Neuquén, Argentina
| | - María Eugenia Parolo
- Centro de Investigación en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue), Neuquén, Argentina
| | - Pedro Temporetti
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas), Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
15
|
Tello JA, Leporati JL, Colombetti PL, Ortiz CG, Jofré MB, Ferrari GV, González P. Evaluation and monitoring of the water quality of an Argentinian urban river applying multivariate statistics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30009-30025. [PMID: 38598159 DOI: 10.1007/s11356-024-33205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
In this work, we present the water quality assessment of an urban river, the San Luis River, located in San Luis Province, Argentina. The San Luis River flows through two developing cities; hence, urban anthropic activities affect its water quality. The river was sampled spatially and temporally, evaluating ten physicochemical variables on each water sample. These data were used to calculate a Simplified Index of Water Quality in order to estimate river water quality and infer possible contamination sources. Data were statistically analyzed with the opensource software R, 4.1.0 version. Principal component analysis, cluster analysis, correlation matrices, and heatmap analysis were performed. Results indicated that water quality decreases in areas where anthropogenic activities take place. Robust inferential statistical analysis was performed, employing an alternative of multivariate analysis of variance (MANOVA), MANOVA.wide function. The most statistically relevant physicochemical variables associated with water quality decrease were used to develop a multiple linear regression model to estimate organic matter, reducing the variables necessary for continuous monitoring of the river and, hence, reducing costs. Given the limited information available in the region about the characteristics and recovery of this specific river category, the model developed is of vital importance since it can quickly detect anthropic alterations and contribute to the environmental management of the rivers. This model was also used to estimate organic matter at sites located in other similar rivers, obtaining satisfactory results.
Collapse
Affiliation(s)
- Jesica Alejandra Tello
- Instituto de Química San Luis (INQUISAL, CONICET), Almirante Brown 907, 5700, San Luis, Argentina.
- Departamento de Química, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Avenida Ejército de los Andes 950, 5700, San Luis, Argentina.
| | - Jorge Leandro Leporati
- Departamento de Ciencias Básicas, Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis, Ruta Provincial 55 (Ex 148) - Extremo Norte, Villa Mercedes, San Luis, Argentina
| | - Patricia Laura Colombetti
- Departamento de Biología, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Avenida Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Cynthia Gabriela Ortiz
- Departamento de Educación y Formación Docente, Facultad de Ciencias Humanas, Universidad Nacional de San Luis, Almirante Brown 951, 5700, San Luis, Argentina
| | - Mariana Beatriz Jofré
- Instituto de Química San Luis (INQUISAL, CONICET), Almirante Brown 907, 5700, San Luis, Argentina
- Departamento de Biología, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Avenida Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Gabriela Verónica Ferrari
- Instituto de Química San Luis (INQUISAL, CONICET), Almirante Brown 907, 5700, San Luis, Argentina
- Departamento de Química, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Avenida Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Patricia González
- Instituto de Química San Luis (INQUISAL, CONICET), Almirante Brown 907, 5700, San Luis, Argentina
- Departamento de Química, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Avenida Ejército de los Andes 950, 5700, San Luis, Argentina
| |
Collapse
|
16
|
Sandoval MA, Calzadilla W, Vidal J, Brillas E, Salazar-González R. Contaminants of emerging concern: Occurrence, analytical techniques, and removal with electrochemical advanced oxidation processes with special emphasis in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123397. [PMID: 38272166 DOI: 10.1016/j.envpol.2024.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas Km. 10.5, 36262, Guanajuato, Mexico
| | - Wendy Calzadilla
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water, (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Jorge Vidal
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ricardo Salazar-González
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
17
|
Zhang B, Yu W, Liang J, Yao X, Sun H, Iwata H, Guo J. Seasonal variation in structural and functional distribution of periphyton in a macrolide antibiotics-contaminated river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123495. [PMID: 38342431 DOI: 10.1016/j.envpol.2024.123495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Periphyton, a microbial assemblage of autotrophic and heterotrophic organisms, is vital to aquatic ecosystems. While exposure to macrolide antibiotics has been confirmed to reduce the biodiversity and damage the critical ecological functions in indoor microcosm bioassays, the distribution of periphyton along a macrolide antibiotic pollution gradient in a river has yet to be determined. Herein, we established the spatiotemporal distribution of five major macrolides, i.e., azithromycin (AZI), roxithromycin (ROX), erythromycin (ERY), clarithromycin (CLA), and anhydro erythromycin (ERY-H2O) in water and periphyton of Zao River (Xi'an, China), after which we evaluated the effects on the structures, photosynthetic activity, and carbon utilization capacity of periphyton in March, June, and September 2023. In contrast with the reference sites, the macrolides were identified in all sewage treatment plants (STPs) impacted sites with concentrations ranging from 0.05 to 2.18 μg/L in water and from not detected - 9.67 μg/g in periphyton. Regarding community structure, the occurrence of macrolides was negatively linked to FirmicutesExiguobacterium undae and Exiguobacterium sibiricum, CyanobacteriaOscillatoriales and Vischeria sp., and ChlorophytaMonostroma grevillei, Selenastrum sp. LU21 and Desmodesmus subspicatus. At the functional level, only the metabolism of phenolic acids was significantly decreased in river reach with high antibiotic levels in June, compared to the other five carbon sources that were not altered. The overall photosynthetic activity of periphytic photosystem II remained unchanged in both reference and STPs impacted groups throughout three seasons. Overall, the macrolides released from STPs were correlated with the altered periphytic structures in the river, whereas a similar trend was not detected for the community functions owing to the functional redundancy. A mesocosm experiments warrants further consideration to validate the field results.
Collapse
Affiliation(s)
- Baihuan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Wenqian Yu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiayi Liang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Xiunan Yao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577, Japan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
18
|
Paná S, Marinelli MV, Bonansea M, Ferral A, Valente D, Camacho Valdez V, Petrosillo I. The multiscale nexus among land use-land cover changes and water quality in the Suquía River Basin, a semi-arid region of Argentina. Sci Rep 2024; 14:4670. [PMID: 38409175 PMCID: PMC10897139 DOI: 10.1038/s41598-024-53604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Agricultural intensification and urban sprawl have led to significant alterations in riverscapes, and one of the critical consequences is the deterioration of water quality with significant implications for public health. Therefore, the objectives of this study were the assessment of the water quality of the Suquía River, the assessment of LULC change at different spatial scales, and the analysis of the potential seasonal correlation among LULC change and Water Quality Index (WQI). The Sample Sites (SS) 1 and 2 before Cordoba city had the highest WQI values while from SS3 the WQI decreased, with the lowest WQI close to the wastewater treatment plant (SS7) after Cordoba city. From SS8 in a agricultural context, the WQI increases but does not reach the original values. In light of analysis carried out, the correlation between water quality variables and the different LULC classes at the local and regional scales demonstrated that WQI is negatively affected by agricultural and urban activities, while natural classes impacted positively. The spatialization of the results can help strongly in assessing and managing the diffusion of point and non-point pollution along the riverscape. The knowledge gained from this research can play a crucial role in water resources management, which supports the provision of river ecosystem services essential for the well-being of local populations.
Collapse
Affiliation(s)
- Sofía Paná
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N, Córdoba, Argentina
- Instituto Gulich, Centro Espacial Teófilo Tabanera, Universidad Nacional de Córdoba-CONAE, Ruta 45 km 8, Falda del Cañete, 5187, Córdoba, Argentina
| | - M Victoria Marinelli
- Instituto Gulich, Centro Espacial Teófilo Tabanera, Universidad Nacional de Córdoba-CONAE, Ruta 45 km 8, Falda del Cañete, 5187, Córdoba, Argentina
| | - Matías Bonansea
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N, Córdoba, Argentina.
- Departamento de Estudios Básicos y Agropecuarios, Facultad de Agronomía y Veterinaria (FAyV), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Argentina.
| | - Anabella Ferral
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Cdad. de Valparaíso S/N, Córdoba, Argentina
- Instituto Gulich, Centro Espacial Teófilo Tabanera, Universidad Nacional de Córdoba-CONAE, Ruta 45 km 8, Falda del Cañete, 5187, Córdoba, Argentina
| | - Donatella Valente
- Laboratory of Landscape Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov. Le Lecce-Monteroni, 73100, Lecce, Italy.
| | - Vera Camacho Valdez
- CONAHCYT- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, San Cristóbal de las Casas, México
| | - Irene Petrosillo
- Laboratory of Landscape Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov. Le Lecce-Monteroni, 73100, Lecce, Italy
| |
Collapse
|
19
|
Perez-Bou L, Gonzalez-Martinez A, Gonzalez-Lopez J, Correa-Galeote D. Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123115. [PMID: 38086508 DOI: 10.1016/j.envpol.2023.123115] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain; Microbial Biotechnology Group, Microbiology and Virology Department, Faculty of Biology, University of Havana, Cuba
| | - Alejandro Gonzalez-Martinez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain.
| |
Collapse
|
20
|
Romero MB, Polizzi PS, Chiodi L, Dolagaratz A, Gerpe M. Legacy and emerging contaminants in marine mammals from Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167561. [PMID: 37802361 DOI: 10.1016/j.scitotenv.2023.167561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Marine mammals are recognized sentinels of ecosystem health. They are susceptible to the accumulation and biomagnification of pollutants, which constitute one of the greatest threats to their survival. Legacy, such as organochlorine pesticides, and emerging contaminants, like microplastics and pharmaceuticals, may have effects on marine mammals' health at individual and population levels. Therefore, the evaluation of the risks associated with pollutants in this group is of great importance. The aim of this review is to provide information on the occurrence of legacy and emerging contaminants in marine mammals that inhabit Argentine waters. Also, to identify knowledge gaps and suggest best practices for future research. Reports of legacy contaminants referring to organochlorine pesticides and polychlorinated biphenyls were found in five species of cetaceans and two of pinnipeds. With respect to emerging pollutants, the presence of plastics was only evaluated in three species. Reported data was from at least a decade ago. Therefore, it is necessary to update existing information and conduct continuous monitoring to assess temporary trends in pollutants. All the studies were carried out in the province of Buenos Aires and Northern Patagonia indicating a knowledge gap in the southern zone of the Argentine Sea. In addition, pollutants of global environmental concern that have not been studied in Argentina are discussed. Future studies should fill these gaps and a greater effort to understand the relationships between pollutants and their effects on marine mammals is suggested. This issue will make it possible to determine thresholds for all the substances and species evaluated in order to carry out more detailed risk assessments and make decisions for the conservation of marine mammals in Argentine waters.
Collapse
Affiliation(s)
- M B Romero
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina.
| | - P S Polizzi
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina
| | - L Chiodi
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina
| | - A Dolagaratz
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina
| | - M Gerpe
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Argentina; Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC7600 Mar del Plata, Argentina
| |
Collapse
|
21
|
Zeng JP, Zhang J, Zhang J, Huang XH, Zhang Y, Zhao YF, Hong GY. A novel method for predicting the emergence of toxicity interaction in ternary mixtures. ENVIRONMENTAL RESEARCH 2024; 240:117437. [PMID: 37875174 DOI: 10.1016/j.envres.2023.117437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
The environment is teeming with a wide variety of pollutants, but the complexity and diversity of their combinations make it difficult to fully assess their toxicity interaction. A novel toxicity interaction prediction method (TIPM) based on the three-dimensional (3D) surface form of the concentration addition (CA) deviation model (dCA) was proposed to predict the emergence of toxicity interaction in ternary mixtures. Doxycycline hyclate (DH), bromoacetic acid (BAA) and iodoacetic acid (IAA) were used as target pollutants. The toxicity of binary and ternary mixtures designed by the direct equipartition ray design method (EquRay) and the uniform design ray method (UD-Ray) against Escherichia coli (E. coli) was determined by using a time-dependent microplate toxicity analysis (t-MTA) method. The toxicity interaction within mixtures was characterized qualitatively and quantitatively using dCA 3D surface modeling and the emergence of DH-MAA-IAA toxicity interaction was predicted by TIPM. The results showed that the dCA 3D surface model could well characterize the toxicity interactions of the mixtures, and toxicity interaction was closely related to the components' concentration ratio (pi). TIPM could predict the emergence of DH-MAA-IAA toxicity interactions well based on the relationship. Due the model is only related to the toxicity interactions and pi value of a mixture, so it can be suggested to predict toxicity interaction within the more complex multicomponent mixtures, which provides a novel approach for the environmental risk assessment and prediction of hazardous substances.
Collapse
Affiliation(s)
- Jian-Ping Zeng
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.
| | - Jing Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Xian-Huai Huang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Ying Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Yuan-Fan Zhao
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Gui-Yun Hong
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| |
Collapse
|
22
|
Castaño-Ortiz JM, Gil-Solsona R, Ospina-Álvarez N, Alcaraz-Hernández JD, Farré M, León VM, Barceló D, Santos LHMLM, Rodríguez-Mozaz S. Fate of pharmaceuticals in the Ebro River Delta region: The combined evaluation of water, sediment, plastic litter, and biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167467. [PMID: 37778570 DOI: 10.1016/j.scitotenv.2023.167467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The increasing consumption of pharmaceuticals, alongside their limited removal in wastewater treatment plants (WWTPs), have led to their ubiquitous occurrence in receiving aquatic environments. This study addresses the occurrence of 68 pharmaceuticals (PhACs) in the Ebro River Delta region (NE Spain), as well as their distribution in different environmental compartments, including surface water, sediments, biota (river biofilm and fish tissues), and field-collected plastic litter. In addition, their concentrations in serving WWTPs, as possible sources of environmental contamination, were also determined. Our study confirmed the widespread occurrence of PhACs in riverine and, to a more limited extent, coastal environments. Most frequently detected PhACs belonged to analgesics/anti-inflammatories (e.g., ibuprofen) and psychiatric drugs (e.g., venlafaxine) therapeutic groups, followed by antihypertensives (e.g., valsartan) and antibiotics (e.g., azithromycin). Seasonal differences in cumulative levels of PhACs were reported for water and sediments (winter>summer). Despite spatial gradients were not clear along the river, a non-negligible contribution of upstream Ebro sites (reference area) was highlighted, which was unexpected based on the low anthropogenic pressure. Sediments represented a minor attenuation pathway for the selected PhACs, whereas they were more heavily accumulated in biota: fish liver (up to 166 ng/g dw), river biofilms (up to 108 ng/g dw), fish plasma (up to 63 ng/mL), and fish muscle (up to 31 ng/g dw). These findings highlight the importance of biomonitoring in the characterization of polluted areas and prioritization of hazardous substances (e.g., psychiatric drugs) in aquatic systems, and a particular interest of fish plasma as non-destructive biomonitoring matrix. PhACs were also detected on plastic litter, demonstrating their role as environmental sinks for certain PhACs (e.g., analgesics/anti-inflammatories, psychiatric drugs). Overall, the widespread detection of PhACs in a variety of biotic and abiotic matrices from the lower Ebro River and Delta warns about their possible environmental implications.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - R Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - N Ospina-Álvarez
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Atlantic International Research Centre (AIR Centre), 9700-702 Angra do Heroísmo, Azores, Portugal
| | | | - M Farré
- IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Varadero 1, San Pedro del Pinatar, 30740 Murcia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| |
Collapse
|
23
|
Jing K, Li Y, Yao C, Jiang C, Li J. Towards the fate of antibiotics and the development of related resistance genes in stream biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165554. [PMID: 37454845 DOI: 10.1016/j.scitotenv.2023.165554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Antibiotics are ubiquitously found in natural surface waters and cause great harm to aquatic organisms. Stream biofilm is a complex and active community composed of algae, bacteria, fungi and other microorganisms, which mainly adheres to solid substances such as rocks and sediments. The durability and diverse structural and metabolic characteristics of biofilms make them a representative of microbial life in aquatic micrecosystems and can reflect major ecosystem processes. Microorganisms and extracellular polymeric substances in biofilms can adsorb and actively accumulate antibiotics. Therefore, biofilms are excellent biological indicators for detecting antibiotic in polluted aquatic environments, but the biotransformation potential of stream biofilms for antibiotics has not been fully explored in the aquatic environment. The characteristics of stream biofilm, such as high abundance and activity of bacterial community, wide contact area with pollutants, etc., which increases the opportunity of biotransformation of antibiotics in biofilm and contribute to bioremediation to improve ecosystem health. Recent studies have demonstrated that both exposure to high and sub-minimum inhibitory concentrations of antibiotics may drive the development of antibiotic resistance genes (ARGs) in natural stream biofilms, which are susceptible to the effects of antibiotic residues, microbial communities and mobile genetic elements, etc. On the basis of peer-reviewed papers, this review explores the distribution behavior of antibiotics in stream biofilms and the contribution of biofilms to the acquisition and spread of antibiotic resistance. Considering that antibiotics and ARGs alter the structure and ecological functions of natural microbial communities and pose a threat to river organisms and human health, our research findings provide comprehensive insights into the migration, transformation, and bioavailability of antibiotics in biofilms.
Collapse
Affiliation(s)
- Ke Jing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China.
| | - Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Chenxue Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Jing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| |
Collapse
|
24
|
Valdés ME, Rodríguez Castro MC, Santos LHMLM, Barceló D, Giorgi ADN, Rodríguez-Mozaz S, Amé MV. Contaminants of emerging concern fate and fluvial biofilm status as pollution markers in an urban river. CHEMOSPHERE 2023; 340:139837. [PMID: 37598946 DOI: 10.1016/j.chemosphere.2023.139837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Contaminants of emerging concern (CEC) are still under research given the vast diversity of compounds reaching freshwater ecosystems and adverse effects they might cause. In this study, the environmental fate of 73 CEC, comprising sweeteners, stimulants and several pharmaceutical therapeutic classes, and changes in fluvial biofilm photosynthetic parameters were evaluated in a semi-arid urban river receiving diffuse and point sources of pollution (Suquía river, Argentina). Out of the 37 CEC detected, 30 were quantified in surface water (n.d. - 9826 ng/L), 10 in biofilm (n.d. - 204 ng/gd.w.) and 9 in the clay fraction of sediments (n.d. - 64 ng/gd.w.). CEC distribute differently among the 3 matrices: water phase presents the biggest diversity of compounds (14 CEC families), being analgesic/anti-inflammatories the most abundant family. Antibiotics largely predominated in biofilms (7 CEC families), while the stimulant caffeine and some antibiotics where the most abundant in sediments (6 CEC families). Different CEC accumulated in biofilms and sediments upstream and downstream the city, and big shifts of biofilm community occurred downstream WWTP. The shift of biofilm community upstream (F0 > 0) and downstream the WWTP (F0 = 0) shows a sensitive response of F0 to the impact of WWTP. Biofilm photosynthetic parameters responded in less impacted urban sites (sites 1, 2 and 3), where significant correlations were found between ketoprofen and some antibiotics and biofilm parameters. The diversity and amount of CEC found in the urban section of Suquía river alert to the magnitude of point and non-point sources of pollution.
Collapse
Affiliation(s)
- M Eugenia Valdés
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI- CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000, Córdoba, Argentina; Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC/ISIDSA-CONICET/UNC) and Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Juan Filloy s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Ma Carolina Rodríguez Castro
- Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET)- Programa de Ecología de Protistas y Hongos, Dpto. de Ciencias Básicas, Universidad Nacional de Luján, Av. Constitución y Ruta Nacional N° 5, 6700, Buenos Aires, Argentina
| | - Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Adonis D N Giorgi
- Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET)- Programa de Ecología de Protistas y Hongos, Dpto. de Ciencias Básicas, Universidad Nacional de Luján, Av. Constitución y Ruta Nacional N° 5, 6700, Buenos Aires, Argentina
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - M Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI- CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
25
|
Salgado Costa C, Bahl F, Natale GS, Mac Loughlin TM, Marino DJG, Venturino A, Rodriguez-Mozaz S, Santos LHMLM. First evidence of environmental bioaccumulation of pharmaceuticals on adult native anurans (Rhinella arenarum) from Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122231. [PMID: 37481029 DOI: 10.1016/j.envpol.2023.122231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The presence of pharmaceutically active compounds (PhACs) in surface water is well known, whereas their natural occurrence in biota is much less explored. The aim of this work was to evaluate the bioaccumulation of PhACs in adult toads of the neotropical species Rhinella arenarum. Three sites were selected in Buenos Aires (Argentina): a reference site (Site 1), a site with direct discharge from a secondary wastewater treatment plant (WWTP) (Site 2) and a site 300 m downstream of the WWTP discharge (Site 3). Surface water samples, as well as muscle, liver and fat bodies of toads were collected, extracted and analyzed by LC-MS/MS. Highly significant differences in total PhACs concentration in surface water (p < 0.005) were detected between Site 2 and the other sites. These concentrations ranged from 0.37 to 52.46 ng/L at Site 1, 0.71-6950.37 ng/L at Site 2, and 0.12-75.45 ng/L at Site 3. In general, bioaccumulation of PhACs in toad tissues was similar between sites and tissues of each site. The highest concentrations were detected in the muscle of toads from Site 3 (1.06-87.24 ng/g dw), followed by liver (1.77-38.10 ng/g dw) and fat bodies (0.68-20.59 ng/g dw) from Site 1. Ibuprofen (6950 ng/L), acetaminophen (3277 ng/L) and valsartan (2504 ng/L) were the compounds with the highest concentrations in surface water from Site 2, whereas acetaminophen (87.2 ng/g dw, muscle from Site 3), desloratadine (38.1 ng/g dw, liver from Site 1), and phenazone (25.9 ng/g dw, liver from Site 1) were the ones that showed the highest concentrations in biota. This is the first time a field study has examined the environmental bioaccumulation of PhACs in anurans, demonstrating their potential for monitoring the status of natural ecosystems.
Collapse
Affiliation(s)
- C Salgado Costa
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - F Bahl
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - G S Natale
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - T M Mac Loughlin
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - D J G Marino
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - A Venturino
- CITAAC, CONICET, IBAC, Facultad de Ciencias Agrarias, Universidad Nacional Del Comahue, Cinco Saltos, Río Negro, Argentina
| | - S Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
26
|
Gong J, Yang KX, Lin CY, Li Q, Han C, Tao W, Huang Y, Lin WQ, Wu CQ, Zhang SH, Wang DX. Prevalence, distribution, accumulation, and risk of environmental corticosteroids and estrogens in biofilms from the Pearl River Delta. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122192. [PMID: 37451591 DOI: 10.1016/j.envpol.2023.122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Biofilms play a significant role in the biogeochemical processing of organic matter and the environmental fate of emerging pollutants. In this study, we investigated the occurrence and distribution of 32 endocrine-disrupting chemicals (EDCs), including 24 environmental corticosteroids (ECs) and 8 environmental estrogens (EEs), in natural biofilms from the Pearl River system. Their association between biofilms and water and environmental risk were assessed. The ECs and EEs ubiquitously occurred in the biofilms, ranging from <0.61-6.57 ng/g and <0.8-2535 ng/g, respectively. Temporally, there was no obvious variance in either ECs or EEs in the biofilms during the winter and summer, and their concentrations exhibited a spatial trend of upward to midstream, descending downstream, and then seaward attenuation at the estuary. For ECs and EEs, the similar levels of field-derived bioconcentration factors (BCFs) (logarithm values: 2.42-2.86 and 2.72-2.98, respectively) and biofilm organic carbon-normalized partitioning coefficients (Kboc) (3.39-3.69 and 3.35-3.95) suggest the comparable potential of accumulation and sorption by biofilms between these two classes of EDCs. In addition, higher values of BCF and Kboc for the EEs were found in winter and were correspondingly comparable to their distribution coefficients (Kd) and Koc derived from suspended particles and sediment, revealing that biofilms are a competitive environmental compartment for capturing EDCs, particularly during the mature period. A positive logKboc-logKow relationship suggests hydrophobic partitioning as a primary interaction mechanism between the biofilm and EEs. Moreover, high risks from biofilm-associated ECs and EEs might have posed to the fluvial ecosystem. This study provides original insights into the occurrence, fate, and risk of ECs in natural biofilms for the first time and demonstrates that biofilms may not only serve as reservoirs but also serve as sentinels for fluvial EDC contamination. These results contribute to the further understanding of the behavior and fate of EDCs in aquatic environments.
Collapse
Affiliation(s)
- Jian Gong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Ke-Xin Yang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Can-Yuan Lin
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qiang Li
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Wei Tao
- South China Sea Environment Monitoring Center, State Oceanic Administration (SOA), Guangzhou, 510300, China
| | - Ying Huang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wei-Quan Lin
- School of Chemistry and Chemical Engineering/Analytical and Testing Center of Guangzhou University, Guangzhou University, Guangzhou, 510006, China
| | - Cui-Qin Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shu-Han Zhang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - De-Xin Wang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
27
|
Tawalbeh M, Mohammed S, Al-Othman A, Yusuf M, Mofijur M, Kamyab H. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. ENVIRONMENTAL RESEARCH 2023; 228:115919. [PMID: 37072081 DOI: 10.1016/j.envres.2023.115919] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
The rapid increase in the global population and its ever-rising standards of living are imposing a huge burden on global resources. Apart from the rising energy needs, the demand for freshwater is correspondingly increasing. A population of around 3.8 billion people will face water scarcity by 2030, as per the reports of the World Water Council. This may be due to global climate change and the deficiency in the treatment of wastewater. Conventional wastewater treatment technologies fail to completely remove several emerging contaminants, especially those containing pharmaceutical compounds. Hence, leading to an increase in the concentration of harmful chemicals in the human food chain and the proliferation of several diseases. MXenes are transition metal carbide/nitride ceramics that primarily structure the leading 2D material group. MXenes act as novel nanomaterials for wastewater treatment due to their high surface area, excellent adsorption properties, and unique physicochemical properties, such as high electrical conductivity and hydrophilicity. MXenes are highly hydrophilic and covered with active functional groups (i.e., hydroxyl, oxygen, fluorine, etc.), which makes them efficient adsorbents for a wide range of species and promising candidates for environmental remediation and water treatment. This work concludes that the scaling up process of MXene-based materials for water treatment is currently of high cost. The up-to-date applications are still limited because MXenes are currently produced mainly in the laboratory with limited yield. It is recommended to direct research efforts towards lower synthesis cost procedures coupled with the use of more environmentally friendly materials to avoid secondary contamination.
Collapse
Affiliation(s)
- Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Shima Mohammed
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
28
|
Castaño-Ortiz JM, Gil-Solsona R, Ospina-Alvarez N, García-Pimentel MM, León VM, Santos LHMLM, Barceló D, Rodríguez-Mozaz S. Bioaccumulation and fate of pharmaceuticals in a Mediterranean coastal lagoon: Temporal variation and impact of a flash flood event. ENVIRONMENTAL RESEARCH 2023; 228:115887. [PMID: 37054836 DOI: 10.1016/j.envres.2023.115887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
Coastal ecosystems are particularly vulnerable to terrestrial inputs from human-impacted areas. The prevalence of wastewater treatment plants, unable to remove contaminants such as pharmaceuticals (PhACs), leads to their continuous input into the marine environment. In this paper, the seasonal occurrence of PhACs in a semi-confined coastal lagoon (the Mar Menor, south-eastern Spain) was studied during 2018 and 2019 by evaluating their presence in seawater and sediments, and their bioaccumulation in aquatic organisms. Temporal variation in the contamination levels was evaluated by comparison to a previous study carried out between 2010 and 2011 before the cessation of permanent discharges of treated wastewater into the lagoon. The impact of a flash flood event (September 2019) on PhACs pollution was also assessed. A total of seven compounds (out of 69 PhACs analysed) were found in seawater during 2018-2019, with a limited detection frequency (<33%) and concentrations (up to 11 ng/L of clarithromycin). Only carbamazepine was found in sediments (ND-1.2 ng/g dw), suggesting an improved environmental quality in comparison to 2010-2011 (when 24 and 13 compounds were detected in seawater and sediments, respectively). However, the biomonitoring of fish and molluscs showed a still remarkable accumulation of analgesic/anti-inflammatory drugs, lipid regulators, psychiatric drugs and β-blocking agents, albeit not higher than in 2010. The flash flood event from 2019 increased the prevalence of PhACs in the lagoon, compared to the 2018-2019 sampling campaigns, especially in the upper water layer. After the flash flood the antibiotics clarithromycin and sulfapyridine yielded the highest concentrations ever reported in the lagoon (297 and 145 ng/L, respectively), alongside azithromycin in 2011 (155 ng/L). Flash flood events associated with sewer overflows and soil mobilisation, which are expected to increase under climate change scenarios, should be considered when assessing the risks posed by pharmaceuticals to vulnerable aquatic ecosystems in the coastal areas.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - R Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - N Ospina-Alvarez
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain; Atlantic International Research Centre (AIR Centre), 9700-702, Angra Do Heroísmo, Azores, Portugal
| | - M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/ Varadero 1, San Pedro Del Pinatar, Murcia, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/ Varadero 1, San Pedro Del Pinatar, Murcia, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain.
| | - D Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| |
Collapse
|
29
|
Bertrand L, Iturburu FG, Valdés ME, Menone ML, Amé MV. Risk evaluation and prioritization of contaminants of emerging concern and other organic micropollutants in two river basins of central Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163029. [PMID: 36990232 DOI: 10.1016/j.scitotenv.2023.163029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
A research gap exists in baseline concentrations of organic micropollutants in South American rivers. Identification of areas with different degrees of contamination and risk to the inhabitant biota is needed to improve management of freshwater resources. Here we inform the incidence and ecological risk assessment (ERA) of current used pesticides (CUPs), pharmaceutical and personal care products (PPCPs) and cyanotoxins (CTX) measured in two river basins from central Argentina (South America). Risk Quotients approach was used for ERA differentiating wet and dry seasons. High risk was associated to CUPs in both basins (45 % and 30 % of sites from Suquía and Ctalamochita rivers, respectively), mostly in the basins extremes. Main contributors to risk in water were insecticides and herbicides in Suquía river and insecticides and fungicides in Ctalamochita river. In Suquía river sediments, a very high risk was observed in the lower basin, mainly from AMPA contribution. Additionally, 36 % of the sites showed very high risk of PCPPs in Suquía river water, with the highest risk downstream the wastewater treatment plant of Córdoba city. Main contribution was from a psychiatric drug and analgesics. In sediments medium risk was observed at the same places with antibiotics and psychiatrics as main contributors. Few data of PPCPs are available in the Ctalamochita river. The risk in water was low, with one site (downstream Santa Rosa de Calamuchita town) presenting moderated risk caused by an antibiotic. CTX represented in general medium risk in San Roque reservoir, with San Antonio river mouth and the dam exit showing high risk during the wet season. The main contributor was microcystin-LR. Priority chemicals for monitoring or further management include two CUPs, two PPCPs, and one CTX, demonstrating a significant input of pollutants to water ecosystems from different sources and the need to include organic micropollutants in current and future monitoring.
Collapse
Affiliation(s)
- Lidwina Bertrand
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Fernando Gastón Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina
| | - María Eugenia Valdés
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET) and Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Juan Filloy s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Mirta Luján Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina
| | - María Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
30
|
Li J, Yu S, Cui M. Aged polyamide microplastics enhance the adsorption of trimethoprim in soil environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:669. [PMID: 37184777 DOI: 10.1007/s10661-023-11350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Microplastics (MPs) in the environment typically age. However, the influence of aged MPs on the adsorption of antibiotics in soil remains unknown. In this study, the adsorption behavior of trimethoprim (TMP) on soil and soil containing aged polyamide (PA) was investigated using batch and stirred flow chamber experiments. The adsorption of TMP on the tested soil with and without PA was fast, with the ka values ranging from 50.5 to 55.6 L (mg min)-1. The adsorption of TMP on aged PA was more than 20 times larger than that on the tested soil, which resulted in an "enrichment effect." Furthermore, aged PA altered the pH of the reaction system, thereby enhancing the adsorption of TMP. Consequently, the Kd values of TMP for soil, soil containing 5%, and 10% aged PA were 5.64, 12.38, and 23.65 L kg-1, respectively. The effect of aged PA on the adsorption of TMP on soil depended on pH values. However, TMP adsorption on soil containing 10% aged PA was constantly higher (p < 0.01) than that on soil with NaCl concentrations ranging from 0 to 50 mmol L-1. These findings provide new insights into the effect of environmental MPs on the fate and transport of antibiotics in soil environments.
Collapse
Affiliation(s)
- Jia Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Songguo Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Min Cui
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
31
|
Su Z, Wang K, Yang F, Zhuang T. Antibiotic pollution of the Yellow River in China and its relationship with dissolved organic matter: Distribution and Source identification. WATER RESEARCH 2023; 235:119867. [PMID: 36934539 DOI: 10.1016/j.watres.2023.119867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Understanding the sources of antibiotics is important for managing antibiotic contamination and preventing environmental risks in the aquatic environment. In this study, the distribution of dissolved organic matter (DOM) and 24 antibiotics from four typical classes (quinolones, macrolides, sulfonamides and tetracyclines) in the Yellow River basin containing distinct sources of pollution was investigated. In particular, relationships between the antibiotic concentrations and fluorescent properties of DOM were to be established to identify antibiotic sources. A total of 22 antibiotics were detected, with maximum concentrations ranging from 0.27 to 30.14 ng/L in the mainstream of the Yellow River. Of these antibiotics, only erythromycin (ERY) and sulfamethoxazole (SMX) posed potential risks to aquatic organisms. Spatially, tetracyclines were mainly distributed in the upstream reaches of the river, and quinolones were largely distributed in the midstream. High levels of sulfonamides were present downstream of the investigated river. Only EYR belonging to the macrolide group was detected and had a high downstream concentration. EEM-PARAFAC analysis showed that DOM was composed of visible fulvic acid-like fluorescence fraction (C1), ultraviolet fulvic acid-like fluorescence fraction (C2) and protein-like fraction (C3). Using Pearson correlation analysis, this study demonstrated a close relationship between DOM spectral parameters and antibiotic concentrations in the Yellow River basin. Specifically, r (C3, C2) was significantly and positively correlated with the concentrations of SMX, sulfadoxine (SDX), and ERY, while humification index (HIX) had an opposite relationship with these antibiotics. These results suggested that SMX, SDX and ERY were mainly discharged from wastewater treatment plants into the mainstream of the Yellow River. This work provides a powerful demonstration that DOM plays an important role in indicating the occurrence and sources of antibiotics in the aquatic environment.
Collapse
Affiliation(s)
- Zhaoxin Su
- Jinan Environmental Research Academy, Jinan, Shandong, 250100, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| | - Kun Wang
- School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Fengchun Yang
- Jinan Environmental Research Academy, Jinan, Shandong, 250100, China
| | - Tao Zhuang
- Jinan Environmental Research Academy, Jinan, Shandong, 250100, China.
| |
Collapse
|
32
|
Gu YG, Gao YP, Jiang SJ, Jordan RW, Yang YF. Ecotoxicological risk of antibiotics and their mixtures to aquatic biota with the DGT technique in sediments. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:536-543. [PMID: 37133692 DOI: 10.1007/s10646-023-02656-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Antibiotics are emerging contaminants and widely used in human healthcare, livestock, and aquaculture. The toxicity posed by antibiotics and their mixtures in sediments depends on their bioavailability. Now, the bioavailability of organic materials can be determined accurately by the diffusive gradients in thin films (DGT) technique. This technique was used for the first time ever in this study to evaluate in detail the integral toxicity of antibiotics in sediments to aquatic biota. Zhelin Bay was selected as a case study, because it is the largest mariculture area in eastern Guangdong, South China. Two antibiotics, chlortetracycline (CTC) (A) and sulfachlorpyridazine (SCP), were detected at average concentrations of 2.83 and 1.14 ng/ml, respectively. The other fifteen antibiotics were undetectable. The single risk assessment based on the risk quotient (RQ) of CTC and SCP shows that a relatively low risk has occurred. After this careful assessment of probabilistic ecotoxicological risks, the combined toxicity of antibiotic mixtures (CTC and SCP) clearly indicates that the toxicity probability of surface sediments to aquatic organisms was relatively low (0.23%).
Collapse
Affiliation(s)
- Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, China.
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
- Key Laboratory of Big Data for South China Sea Fishery Resources and Environment, Chinese Academy of Fishery Sciences, Beijing, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Yan-Peng Gao
- Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shi-Jun Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
- College of Oceanography, Hohai University, Nanjing, 245700, China
| | - Richard W Jordan
- Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Yu-Feng Yang
- College of Life Science and Technology, Key Laboratory of Philosophy and Social Science in Guangdong Province of Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| |
Collapse
|
33
|
Liu K, Li J, Zhou Y, Li W, Cheng H, Han J. Combined toxicity of erythromycin and roxithromycin and their removal by Chlorella pyrenoidosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114929. [PMID: 37084660 DOI: 10.1016/j.ecoenv.2023.114929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/12/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
The ecological effects of antibiotics in surface water have attracted increasing research attention. In this study, we investigated the combined ecotoxicity of erythromycin (ERY) and roxithromycin (ROX) on the microalgae, Chlorella pyrenoidosa, and the removal of ERY and ROX during the exposure. The calculated 96-h median effect concentration (EC50) values of ERY, ROX, and their mixture (2:1 w/w) were 7.37, 3.54, and 7.91 mg∙L-1, respectively. However, the predicted EC50 values of ERY+ROX mixture were 5.42 and 1.51 mg∙L-1, based on the concentration addition and independent action models, respectively. This demonstrated the combined toxicity of ERY+ ROX mixture showed an antagonistic effect on Chlorella pyrenoidosa. During the 14-d culture, low-concentration (EC10) treatments with ERY, ROX, and their mixture caused the growth inhibition rate to decrease during the first 12 d and increase slightly at 14 d. In contrast, high-concentration (EC50) treatments significantly inhibited microalgae growth (p < 0.05). Changes in the total chlorophyll contents, SOD and CAT activities, and MDA contents of microalgae suggested that individual treatments with ERY and ROX induced higher oxidative stress than combined treatments. After the 14-d culture time, residual Ery in low and high concentration Ery treatments were 17.75% and 74.43%, and the residual Rox were 76.54% and 87.99%, but the residuals were 8.03% and 73.53% in ERY+ ROX combined treatment. These indicated that antibiotic removal efficiency was higher in combined treatments than that in individual treatments, especially at low concentrations (EC10). Correlation analysis suggested that there was a significant negative correlation between the antibiotic removal efficiency of C. pyrenoidosa and their SOD activity and MDA content, and the enhanced antibiotic removal ability of microalgae benefited from increased cell growth and chlorophyll content. Findings in this study contribute to predicting ecological risk of coexisting antibiotics in aquatic environment, and to improving biological treatment technology of antibiotics in wastewater.
Collapse
Affiliation(s)
- Kai Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiping Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Hu Cheng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
34
|
Canales CP, Delgado S, Cáceres-Jensen L, Buason A, Kristofersson D, Urdiales C, Antilén M. Adsorption kinetics studies of ciprofloxacin in soils derived from volcanic materials by electrochemical approaches and assessment of socio-economic impact on human health. CHEMOSPHERE 2023; 321:138144. [PMID: 36804495 DOI: 10.1016/j.chemosphere.2023.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The use of antibiotics in the livestock sector has resulted in the entry of these drugs into the soil matrix through the disposal of manure as an organic amendment. To define the fate of these drugs, it is necessary to evaluate kinetic aspects regarding transport in the soil-solution. The aim of this paper is to evaluate the adsorption kinetic parameters of Ciprofloxacin (CIPRO) in Ultisol and Andisol soil which allows obtaining main kinetic parameters (pseudo-first and pseudo-second order models) and to establish the solute transport mechanism by applying kinetic models such as the Elovich equation, Intraparticle diffusion (IPD) and, the Two-site non-equilibrium models (TSNE). The adsorption kinetics of this fluoroquinolone (FQ), on both soils derived from volcanic ashes, is developed using electrochemical techniques for their determination. The experimental amount of CIPRO adsorbed over time (Qt) data best fit with the pseudo-second order kinetic models; R2 = 0.9855, Ɛ = 10.17% and R2 = 0.9959, Ɛ = 10.77% for Ultisol and Andisol, respectively; and where CIPRO adsorption was considered time dependent for both soils but the lower adsorption capacity in Ultisol; with 17.6 ± 2.8 μmol g-1; which could mean a greater risk in environmental. Subsequently, applying models to describe solute transport mechanisms showed differences in the CIPRO adsorption extent for the fast and slow phases. Adsorption isotherms were evaluated, where Ultisol occurs on heterogenous sites as multilayers and Andisol by monolayer with similar Qmax. Finally, the socio-economic impact of antibiotic usage is presented, giving the importance of antibiotics in the livestock sector and their effects on human health.
Collapse
Affiliation(s)
- Camila Pía Canales
- Science Institute & Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, VR-III, University of Iceland, Reykjavik, Iceland; Department of Economics, University of Iceland, Reykjavik, Iceland
| | - Sebastián Delgado
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Lizethly Cáceres-Jensen
- Laboratorio de Fisicoquímica & Analítica (PachemLab), Núcleo Pensamiento Computacional y Educación para el Desarrollo Sostenible (NuCES), Centro de Investigación en Educación (CIE-UMCE), Departamento de Química, Universidad Metropolitana de Ciencias de la Educación, Santiago 7760197, Chile
| | - Arnar Buason
- Department of Economics, University of Iceland, Reykjavik, Iceland
| | | | - Cristian Urdiales
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Mónica Antilén
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Vicuña Mackenna 4860, Santiago 7820436, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnologia (CEDENNA), Av. L.B. O'Higgins 3363, Santiago, 7254758, Chile.
| |
Collapse
|
35
|
Warren-Vega WM, Campos-Rodríguez A, Zárate-Guzmán AI, Romero-Cano LA. A Current Review of Water Pollutants in American Continent: Trends and Perspectives in Detection, Health Risks, and Treatment Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4499. [PMID: 36901509 PMCID: PMC10001968 DOI: 10.3390/ijerph20054499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Currently, water pollution represents a serious environmental threat, causing an impact not only to fauna and flora but also to human health. Among these pollutants, inorganic and organic pollutants are predominantly important representing high toxicity and persistence and being difficult to treat using current methodologies. For this reason, several research groups are searching for strategies to detect and remedy contaminated water bodies and effluents. Due to the above, a current review of the state of the situation has been carried out. The results obtained show that in the American continent a high diversity of contaminants is present in the water bodies affecting several aspects, in which in some cases, there exists alternatives to realize the remediation of contaminated water. It is concluded that the actual challenge is to establish sanitation measures at the local level based on the specific needs of the geographical area of interest. Therefore, water treatment plants must be designed according to the contaminants present in the water of the region and tailored to the needs of the population of interest.
Collapse
Affiliation(s)
| | | | - Ana I. Zárate-Guzmán
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| | - Luis A. Romero-Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| |
Collapse
|
36
|
Rheinheimer Dos Santos D, Camotti Bastos M, Monteiro De Castro Lima JA, Le Guet T, Vargas Brunet J, Fernandes G, Zanella R, Damian Prestes O, Mondamert L, Labanowski J. Epilithic biofilms, POCIS, and water samples as complementary sources of information for a more comprehensive view of aquatic contamination by pesticides and pharmaceuticals in southern Brazil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:273-284. [PMID: 36861268 DOI: 10.1080/03601234.2023.2182583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spatial-temporal monitoring of the presence of pesticides and pharmaceuticals in water requires rigor in the choice of matrix to be analyzed. The use of matrices, isolated or combined, may better represent the real state of contamination. In this sense, the present work contrasted the effectiveness of using epilithic biofilms with active water sampling and with a passive sampler-POCIS. A watershed representative of South American agriculture was monitored. Nine sites with different rural anthropic pressures (natural forest, intensive use of pesticides, and animal waste), and urban areas without sewage treatment, were monitored. Water and epilithic biofilms were collected during periods of intensive pesticide and animal waste application. After the harvest of the spring/summer crop, a period of low agrochemical input, the presence of pesticides and pharmaceuticals was monitored using the POCIS and epilithic biofilms. The spot water sampling leads to underestimation of the level of contamination of water resources as it does not allow discrimination of different anthropic pressures in rural areas. The use of endogenous epilithic biofilms as a matrix for the analysis of pesticides and pharmaceuticals is a viable and highly recommended alternative to diagnose the health of water sources, especially if associated with the use of POCIS.
Collapse
Affiliation(s)
| | - Marília Camotti Bastos
- Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Laboratoire E2Lim - Eau et Environnement Limoges, Université de Limoges, Limoges, France
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| | | | - Thibaut Le Guet
- Laboratoire E2Lim - Eau et Environnement Limoges, Université de Limoges, Limoges, France
| | - Jocelina Vargas Brunet
- Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| | - Gracieli Fernandes
- Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Renato Zanella
- Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Osmar Damian Prestes
- Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Leslie Mondamert
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| |
Collapse
|
37
|
Beltrán de Heredia I, Garbisu C, Alkorta I, Urra J, González-Gaya B, Ruiz-Romera E. Spatio-seasonal patterns of the impact of wastewater treatment plant effluents on antibiotic resistance in river sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120883. [PMID: 36572269 DOI: 10.1016/j.envpol.2022.120883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
There is a growing concern about the risk of antibiotic resistance emergence and dissemination in the environment. Here, we evaluated the spatio-seasonal patterns of the impact of wastewater treatment plant (WWTP) effluents on antibiotic resistance in river sediments. To this purpose, sediment samples were collected in three river basins affected by WWTP effluents in wet (high-water period) and dry (low-water period) hydrological conditions at three locations: (i) upstream the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream the WWTPs (500 m downriver from the effluent outfall). The absolute and relative abundances of 9 antibiotic resistance genes (ARGs), 3 mobile genetic element (MGE) genes, and 4 metal resistance genes (MRGs) were quantified in sediment samples, as well as a variety of physicochemical parameters, metal contents, and antibiotic concentrations in both sediment and water samples. In sediments, significantly higher relative abundances of most genes were observed in downstream vs. upstream sampling points. Seasonal changes (higher values in low-water vs. high-water period) were observed for both ARG absolute and relative abundances in sediment samples. Chemical data revealed the contribution of effluents from WWTPs as a source of antibiotic and metal contamination in river ecosystems. The observed positive correlations between ARG and MGE genes relative abundances point out to the role of horizontal gene transfer in antibiotic resistance dissemination. Monitoring plans that take into consideration spatio-temporal patterns must be implemented to properly assess the environmental fate of WWTP-related emerging contaminants in river ecosystems.
Collapse
Affiliation(s)
- Irene Beltrán de Heredia
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain.
| | - Carlos Garbisu
- Department of Conservation of Natural Resources, NEIKER-Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, P812, 48160, Derio, Spain
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Julen Urra
- Department of Conservation of Natural Resources, NEIKER-Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, P812, 48160, Derio, Spain
| | - Belén González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940, Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620, Plentzia, Spain
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| |
Collapse
|
38
|
Gil-Solsona R, Castaño-Ortiz JM, Muñoz-Mas R, Insa S, Farré M, Ospina-Alvarez N, Santos LHMLM, García-Pimentel M, Barceló D, Rodríguez-Mozaz S. A holistic assessment of the sources, prevalence, and distribution of bisphenol A and analogues in water, sediments, biota and plastic litter of the Ebro Delta (Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120310. [PMID: 36206893 DOI: 10.1016/j.envpol.2022.120310] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is one of the main ubiquitous compounds released from plastics in the environment. This compound, considered an endocrine disruptor, poses a risk to aquatic wildlife and human population, being included in multiple environmental monitoring programmes. Following the regulations restricting BPA use in the last years, BPA-like chemicals have been produced and used as BPA substitutes. However, they are not commonly included in monitoring programs yet and their presence is thus misrepresented, despite showing similar endocrine disrupting potential. In this work, an analytical method for analysing bisphenol A and five of its analogues (Bisphenol S, B, F, AF and Tetrabromobisphenol A) is described, validated for water (riverine, sea and wastewater), sediment, and biota (fish and biofilm) and applied to monitor their presence in the Ebro River Delta (NE Spain). In addition, plastic litter was also collected to evaluate their role as potential source of bisphenols. All compounds except BPF were detected in the analysed samples. Wastewater treatment plants (WWTPs) were discarded as major sources of BPs into the natural aquatic environment, as no BPs were detected in treated effluents. Indeed, the high levels of BPs in the natural environment could be related with direct discharge of raw wastewater from small rural population nucleus. The analysis of riverine plastic leachates yielded 4 out of the 6 BPs analysed, strengthening the hypothesis that plastic debris are also a source of BPs in the natural environment. Whereas Bisphenol S and BPA were detected in water and, to a limited extent, in biota, less polar analogues (mainly BPAF and TBBPA) were not found in any of the water samples. Instead, these hydrophobic BPs were found in fish tissues and biofilm, pointing out plastics and microplastics as their possible vectors. Finally, biofilm demonstrated its potential as sentinel of chemical contamination in freshwater environment.
Collapse
Affiliation(s)
- R Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Centre, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - J M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, Girona, Spain
| | - R Muñoz-Mas
- GRECO, Institute of Aquatic Ecology, University of Girona, 17003, Girona, Catalonia, Spain
| | - S Insa
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, Girona, Spain
| | - M Farré
- Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Centre, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - N Ospina-Alvarez
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, Girona, Spain; Atlantic International Research Centre (AIR Centre), Terceira Island, Azores, Portugal
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, Girona, Spain
| | - M García-Pimentel
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO-CSIC), Murcia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA) Severo Ochoa Excellence Centre, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), 17003, Girona, Spain; University of Girona, Girona, Spain.
| |
Collapse
|
39
|
Miranda CD, Concha C, Godoy FA, Lee MR. Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. Antibiotics (Basel) 2022; 11:1487. [PMID: 36358142 PMCID: PMC9687057 DOI: 10.3390/antibiotics11111487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/27/2023] Open
Abstract
The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Félix A. Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| | - Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| |
Collapse
|
40
|
Okeke ES, Chukwudozie KI, Nyaruaba R, Ita RE, Oladipo A, Ejeromedoghene O, Atakpa EO, Agu CV, Okoye CO. Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69241-69274. [PMID: 35969340 PMCID: PMC9376131 DOI: 10.1007/s11356-022-22319-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 05/13/2023]
Abstract
Aquaculture has emerged as one of the world's fastest-growing food industries in recent years, helping food security and boosting global economic status. The indiscriminate disposal of untreated or improperly managed waste and effluents from different sources including production plants, food processing sectors, and healthcare sectors release various contaminants such as bioactive compounds and unmetabolized antibiotics, and antibiotic-resistant organisms into the environment. These emerging contaminants (ECs), especially antibiotics, have the potential to pollute the environment, particularly the aquatic ecosystem due to their widespread use in aquaculture, leading to various toxicological effects on aquatic organisms as well as long-term persistence in the environment. However, various forms of nanotechnology-based technologies are now being explored to assist other remediation technologies to boost productivity, efficiency, and sustainability. In this review, we critically highlighted several ecofriendly nanotechnological methods including nanodrug and vaccine delivery, nanoformulations, and nanosensor for their antimicrobial effects in aquaculture and aquatic organisms, potential public health risks associated with nanoparticles, and their mitigation measures for sustainable management.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 41000, Enugu State, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
| | - Kingsley Ikechukwu Chukwudozie
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
- Department of Clinical Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Raphael Nyaruaba
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, China
| | - Richard Ekeng Ita
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria
| | - Abiodun Oladipo
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Onome Ejeromedoghene
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, People's Republic of China
| | - Edidiong Okokon Atakpa
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
- Department of Animal & Environmental Biology, University of Uyo, Uyo, 1017, Akwa Ibom State, Nigeria
| | | | - Charles Obinwanne Okoye
- Organisation of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi, Kenya.
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria.
- School of Environment & Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China.
- Key Laboratory of Intelligent Agricultural Machinery Equipment, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
41
|
Srivastava A, Dave H, Prasad B, Maurya DM, Kumari M, Sillanpää M, Prasad KS. Low cost iron modified syzygium cumini l. Wood biochar for adsorptive removal of ciprofloxacin and doxycycline antibiotics from aqueous solution. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Xing L, Li A, Sun J, Kong F, Kong M, Li J, Zhang R. Insights into the occurrence, elimination efficiency and ecological risk of antibiotics in rural domestic wastewater treatment facilities along the Yangtze River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155824. [PMID: 35550891 DOI: 10.1016/j.scitotenv.2022.155824] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
China is embarking on the treatment of rural domestic wastewater, but little information on the characteristics of antibiotics in the rural domestic wastewater is available. As one of the most important new-emerging pollutants, antibiotic has been explicitly proposed to be controlled and treated since the fifth plenary session of the 19th Central Committee of the Communist Party of China. Thus, the occurrence, elimination efficiency and ecological risk of antibiotics, as well as conventional wastewater quality parameters were investigated in influents and effluents from 41 rural domestic wastewater treatment facilities (RD-WWTFs) along the Yangtze River Basin. Results showed that elimination efficiencies of routinely monitored conventional pollutants in 33 RD-WWTFs (accounting for 80.5%) were effective based on conventional wastewater quality parameters. Of 39 target antibiotics selected, 26 ones were detected in the influents and effluents with a detection frequency (DF) between 2.4% and 100%. No significant decrease of antibiotics was observed in the effluents compared with that in the influents except chlortetracyclin (CTE) and tetracycline (TCs). The composition characteristics of antibiotics showed regional differences. Among the investigated antibiotics, ofloxacin (OFX), doxycycline (DOX), roxithromycin (ROX) and lincomycin (LIN) were the predominant, totally accounted for a median percentage of more than 60% of ΣAB concentrations in both influents and effluents. Ecological risk values of ΣABs showed that 11 effluents presented high risks (26.8%), 18 ones had moderate risks (43.9%), and the rest 12 ones showed low risks (29.3%). Moreover, oxytetracycline (OXY), norfloxacin (NOR), LIN and ROX was the dominant contributors to the ecological risk values. Overall, the elimination effect of antibiotics was limited in RD-WWTFs along the Yangtze River Basin, which was likely to pose potential adverse impacts on aquatic ecosystems.
Collapse
Affiliation(s)
- Liqun Xing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224000, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Jie Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China; Suzhou Capital Greinworth Environmental Protection Technology Co., Ltd, Suzhou 215216, China; Beijing Capital Eco-Environment Protection Group Co., Ltd, Beijing 100044, China
| | - Fanjie Kong
- Beijing Capital Eco-Environment Protection Group Co., Ltd, Beijing 100044, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, No.8 Jiangwangmiao Street, Nanjing 210042, China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
43
|
Wei SS, Yen CM, Marshall IPG, Hamid HA, Kamal SS, Nielsen DS, Ahmad HF. Gut microbiome and metabolome of sea cucumber (Stichopus ocellatus) as putative markers for monitoring the marine sediment pollution in Pahang, Malaysia. MARINE POLLUTION BULLETIN 2022; 182:114022. [PMID: 35963228 DOI: 10.1016/j.marpolbul.2022.114022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic contamination in the marine environment forms an emerging threat to marine ecosystems. This study aimed to compare the gut and coelomic microbiota of Stichopus ocellatus with sediments between two coastal districts of Pahang, which potentially conferring as putative biomarkers for sediment pollution monitoring. The composition of the bacteria communities was determined using 16S rRNA V3-region gene amplicon sequencing, while hybrid whole-genome sequencing was employed to analyze the genome of Vibrio parahaemolyticus. The trace elements and antibiotic compositions were access using high-throughput spectrometry. The alpha- and beta-diversity of bacteria in gut and sediment samples from Kuantan differed substantially within (p-value = 0.017604) and between samples (p-value <0.007), respectively. Vibrio genera predominated in Kuantan samples, while Flavobacterium and Synechococcus_E genera predominated in Pekan samples. Vibrio parahaemolyticus revealed the presence of tet(35) and blaCARB-33 genes that conceived resistance towards tetracycline and beta-lactam antibiotics, respectively, which were detected in sediment and gut samples.
Collapse
Affiliation(s)
- Siew Shing Wei
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Choo Mei Yen
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Ian P G Marshall
- Center for Electromicrobiology, Department of Biology, Ny Munkegade 116, 8000 Aarhus C, Denmark.
| | - Hazrulrizawati Abd Hamid
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia; Centre for Research in Advanced Tropical Bioscience (Biotropic Centre), Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.
| | - Shamrulazhar Shamzir Kamal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | | | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.
| |
Collapse
|
44
|
Tang J, Wang Y, Xue Q, Liu F, Carroll KC, Lu X, Zhou T, Wang D. A mechanistic study of ciprofloxacin adsorption by goethite in the presence of silver and titanium dioxide nanoparticles. J Environ Sci (China) 2022; 118:46-56. [PMID: 35305772 DOI: 10.1016/j.jes.2021.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 06/14/2023]
Abstract
The adsorption behaviors of ciprofloxacin (CIP), a fluoroquinolone antibiotic, onto goethite (Gt) in the presence of silver and titanium dioxide nanoparticles (AgNPs and TiO2NPs) were investigated. Results showed that CIP adsorption kinetics in Gt with or without NPs both followed the pseudo-second-order kinetic model. The presence of AgNPs or TiO2NPs inhibited the adsorption of CIP by Gt. The amount of inhibition of CIP sorption due to AgNPs was decreased with an increase of solution pH from 5.0 to 9.0. In contrast, in the presence of TiO2NPs, CIP adsorption by Gt was almost unchanged at pHs of 5.0∼6.5 but was decreased with an increase of pH from 6.5 to 9.0. The mechanisms of AgNPs and TiO2NPs in inhibiting CIP adsorption by Gt were different, which was attributed to citrate coating of AgNPs resulting in competition with CIP for adsorption sites on Gt, while TiO2NPs could compete with Gt for CIP adsorption. Additionally, CIP was adsorbed by Gt or TiO2NPs through a tridentate complex involving the bidentate inner-sphere coordination of the deprotonated carboxylic group and hydrogen bonding through the adjacent carbonyl group on the quinoline ring. These findings advance our understanding of the environmental behavior and fate of fluoroquinolone antibiotics in the presence of NPs.
Collapse
Affiliation(s)
- Jie Tang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yun Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Qiang Xue
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Fei Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Kenneth C Carroll
- Water Science and Management Program, New Mexico State University, MSC 3Q, USA; Plant & Environmental Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Xiaohua Lu
- National Institute of Metrology, Beijing 100022, China
| | - Taogeng Zhou
- Beijing Institute of Technology, Beijing 100081, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
45
|
Mastrángelo MM, Valdés ME, Eissa B, Ossana NA, Barceló D, Sabater S, Rodríguez-Mozaz S, Giorgi ADN. Occurrence and accumulation of pharmaceutical products in water and biota of urban lowland rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154303. [PMID: 35257761 DOI: 10.1016/j.scitotenv.2022.154303] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
We evaluated the distribution of eleven groups of pharmaceutically active compounds (PhACs) in surface waters and biota of different trophic levels, in five sites of two lowland urban rivers in Argentine. Twenty-nine out of 39 PhACs and two metabolites were detected in at least one water sample (2-9622 ng/L), eleven detected in biofilms (1-179 ng/g d.w.) and eight in the macrophyte Lemna gibba (4-112 ng/g d.w). The two more polluted sites had a similar distribution of the main groups of compounds. In surface waters, the largest concentrations were for the analgesic acetaminophen (9622 ng/L), the antibiotic sulfamethoxazole (326 ng/L), the antihypertensive valsartan (963 ng/L), the β-blocking agent atenolol (427 ng/L), the diuretic hydrochlorothiazide (445 ng/L) and the psychiatric drug carbamazepine (99 ng/L). The antibiotic ciprofloxacin exhibited the highest concentration in the biofilm (179 ng/g d.w.) and in the macrophyte L. gibba (112 ng/g d.w.) Several compounds were detected in the water but not in the biota (e.g., codeine and bezafibrate), and others (e.g., azithromycin and citalopram) were found in the biota but not in the surface water. Significant bioaccumulation factors (>1000 L/kg d.w.) were obtained for venlafaxine and ciprofloxacin in biofilm. Our results show that PhACs may accumulate in several biological compartments. Within an environmental compartment, similar PhACs profile and concentrations were found in different sites receiving urban pollution. Among different compartments, biofilms may be the most suitable biota matrix to monitor the immediate reception of PhACs in the biota. Our results indicate that the presence of PhACs in urban rivers and their accumulation in the biota could be incorporated as symptoms of the urban stream syndrome.
Collapse
Affiliation(s)
- M M Mastrángelo
- INEDES, Instituto de Ecología y Desarrollo Sustentable (CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Av. Constitución y Ruta Nac. N° 5, Luján, Buenos Aires B6700ZBA, Argentina.
| | - M E Valdés
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad Ciencias Químicas, Dpto. Química Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, 5016 Córdoba, Argentina
| | - B Eissa
- INEDES, Instituto de Ecología y Desarrollo Sustentable (CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Av. Constitución y Ruta Nac. N° 5, Luján, Buenos Aires B6700ZBA, Argentina
| | - N A Ossana
- INEDES, Instituto de Ecología y Desarrollo Sustentable (CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Av. Constitución y Ruta Nac. N° 5, Luján, Buenos Aires B6700ZBA, Argentina
| | - D Barceló
- ICRA-CERCA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, 17003 Girona, Spain; GRECO, Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - S Sabater
- ICRA-CERCA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, 17003 Girona, Spain; GRECO, Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain
| | - S Rodríguez-Mozaz
- ICRA-CERCA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, 17003 Girona, Spain; University of Girona (UdG), Girona, Spain
| | - A D N Giorgi
- INEDES, Instituto de Ecología y Desarrollo Sustentable (CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Av. Constitución y Ruta Nac. N° 5, Luján, Buenos Aires B6700ZBA, Argentina
| |
Collapse
|
46
|
Fluidized ZnO@BCFPs Particle Electrodes for Efficient Degradation and Detoxification of Metronidazole in 3D Electro-Peroxone Process. MATERIALS 2022; 15:ma15103731. [PMID: 35629757 PMCID: PMC9144341 DOI: 10.3390/ma15103731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023]
Abstract
A novel material of self-shaped ZnO-embedded biomass carbon foam pellets (ZnO@BCFPs) was successfully synthesized and used as fluidized particle electrodes in three-dimensional (3D) electro-peroxone systems for metronidazole degradation. Compared with 3D and 2D + O3 systems, the energy consumption was greatly reduced and the removal efficiencies of metronidazole were improved in the 3D + O3 system. The degradation rate constants increased from 0.0369 min-1 and 0.0337 min-1 to 0.0553 min-1, respectively. The removal efficiencies of metronidazole and total organic carbon reached 100% and 50.5% within 60 min under optimal conditions. It indicated that adding ZnO@BCFPs particle electrodes was beneficial to simultaneous adsorption and degradation of metronidazole due to improving mass transfer of metronidazole and forming numerous tiny electrolytic cells. In addition, the process of metronidazole degradation in 3D electro-peroxone systems involved hydroxyethyl cleavage, hydroxylation, nitro-reduction, N-denitrification and ring-opening. The active species of ·OH and ·O2- played an important role. Furthermore, the acute toxicity LD50 and the bioconcentration factor of intermediate products decreased with the increasing reaction time.
Collapse
|
47
|
Hong B, Yu S, Zhou M, Li J, Li Q, Ding J, Lin Q, Lin X, Liu X, Chen P, Zhang L. Sedimentary spectrum and potential ecological risks of residual pharmaceuticals in relation to sediment-water partitioning and land uses in a watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152979. [PMID: 35026280 DOI: 10.1016/j.scitotenv.2022.152979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical residues in river surficial sediment are prone to anthropogenic impacts and environmental factors in watershed, but the mechanisms remain unclear. This study attempted to reveal surficial sediment-water pseudo-partitioning and anthropogenic (land use) patterns of pharmaceutical residues in surficial sediment among 23 subwatersheds of Jiulong River, southeast China with a gradient of urban land use percentile in dry and wet seasons. Thirty-eight out of target 86 compounds from six-category pharmaceuticals were quantified and ranged from below the quantification limits (0.001 mg kg-1 dry mass) up to 8.19 mg kg-1 dry mass (chlortetracycline) using a developed SPE-HPLC-MS/MS protocol. Antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) collectively dominated sedimentary pharmaceutical residues for 34.5-99.8% of the total quantified compounds (median at 92%). Land uses in subwatersheds showed high consistency with sedimentary pharmaceutical residues in the dry season rather than the wet season, especially for human use only and veterinary use only compounds. Surficial sediment-water partitioning of pharmaceutical compounds influenced their sedimentary residues regardless of season, which were determined by properties of compound and surficial sediment interactively. All tetracycline compounds, trimethoprim (sulfonamides synergist), caffeine (central nervous system drug), and oxfendazole (antiparasitic drug) were quantified to pose high potential ecological risks to aquatics. Findings of this study suggest that pseudo-persistent legacy of human and veterinary pharmaceuticals requires a wider coverage of pharmaceutical compounds for a comprehensive ecological assessment in the environment and more involvement of anthropogenic impacts and socioeconomic factors in the future studies.
Collapse
Affiliation(s)
- Bing Hong
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shen Yu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Min Zhou
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Li
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ding
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiaoying Lin
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaodan Lin
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xun Liu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiji Chen
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Zhang
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
48
|
Grenni P. Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:687-714. [PMID: 35191071 DOI: 10.1002/etc.5289] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/11/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.
Collapse
Affiliation(s)
- Paola Grenni
- Water Research Institute, National Research Council of Italy, via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| |
Collapse
|
49
|
Matviichuk O, Mondamert L, Geffroy C, Gaschet M, Dagot C, Labanowski J. River Biofilms Microbiome and Resistome Responses to Wastewater Treatment Plant Effluents Containing Antibiotics. Front Microbiol 2022; 13:795206. [PMID: 35222329 PMCID: PMC8863943 DOI: 10.3389/fmicb.2022.795206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous exposure to low concentrations of antibiotics (sub-minimal inhibitory concentration: sub-MIC) is thought to lead to the development of antimicrobial resistance (AMR) in the environmental microbiota. However, the relationship between antibiotic exposure and resistance selection in environmental bacterial communities is still poorly understood and unproven. Therefore, we measured the concentration of twenty antibiotics, resistome quality, and analyzed the taxonomic composition of microorganisms in river biofilms collected upstream (UPS) and downstream (DWS) (at the point of discharge) from the wastewater treatment plant (WWTP) of Poitiers (France). The results of statistical analysis showed that the antibiotic content, resistome, and microbiome composition in biofilms collected UPS were statistically different from that collected DWS. According to Procrustes analysis, microbial community composition and antibiotics content may be determinants of antibiotic resistance genes (ARGs) composition in samples collected DWS. However, network analysis showed that the occurrence and concentration of antibiotics measured in biofilms did not correlate with the occurrence and abundance of antibiotic resistance genes and mobile genetic elements. In addition, network analysis suggested patterns of co-occurrence between several ARGs and three classes of bacteria/algae: Bacteroidetes incertae sedis, Cyanobacteria/Chloroplast, and Nitrospira, in biofilm collected UPS. The absence of a direct effect of antibiotics on the selection of resistance genes in the collected samples suggests that the emergence of antibiotic resistance is probably not only due to the presence of antibiotics but is a more complex process involving the cumulative effect of the interaction between the bacterial communities (biotic) and the abiotic matrix. Nevertheless, this study confirms that WWTP is an important reservoir of various ARGs, and additional efforts and legislation with clearly defined concentration limits for antibiotics and resistance determinants in WWTP effluents are needed to prevent their spread and persistence in the environment.
Collapse
Affiliation(s)
- Olha Matviichuk
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, Poitiers, France.,UMR INSERM 1092, Limoges, France
| | - Leslie Mondamert
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, Poitiers, France
| | - Claude Geffroy
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, Poitiers, France
| | | | | | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, Poitiers, France
| |
Collapse
|
50
|
Fu C, Xu B, Chen H, Zhao X, Li G, Zheng Y, Qiu W, Zheng C, Duan L, Wang W. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong'an New Area, China, and their relationship with antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151011. [PMID: 34715223 DOI: 10.1016/j.scitotenv.2021.151011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The emergence and pollution of antibiotics in surface water in various regions have drawn widespread concern because of the harm to aquatic ecosystems and human health. In this study, we aim to first investigate contamination and ecological risks of 39 antibiotics in Xiong'an New Area (XANA), China, and then illuminate relative abundances of antibiotic resistance genes (ARGs) and their correlations with antibiotics. The sum of antibiotic concentrations in the water circulation system, including surface water, groundwater, and sediment was 12.71-260.56 ng/L, ND-196.12 ng/L, and 38.03-406.31 ng/g, respectively. In surface water and sediment, cephalosporins and quinolones were the primary antibiotics, accounting for 45% and 16% of the total antibiotic concentrations in surface water and for 62% and 32% of the total antibiotic concentrations in sediment; this suggests a significant interaction between the two media. The antibiotic concentration was the highest in shallow groundwater at depths of <50 m (mean concentration of 79.22 ± 56.46 ng/L), indicating that surface water was a possible source of antibiotic contamination in groundwater. AMX presented the highest risk in both surface and groundwater and should be controlled as a priority. Moreover, the selection pressure of antibiotics on ARGs was discovered in the sediment in XANA, because the enrichment of sulA was significantly correlated with spiramycin and lincomycin and the enrichment of blaOXA-1 was significantly correlated with roxithromycin, ciprofloxacin, ofloxacin, and sulfapyridine. Thus, our investigation revealed potential antibiotic contamination in multiple environmental media in XANA, which should be addressed to prevent more serious pollution.
Collapse
Affiliation(s)
- Caixia Fu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - He Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanrong Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chunmiao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Lei Duan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, Xi'an 710064, China
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, Xi'an 710064, China
| |
Collapse
|