1
|
Fan XY, Lin XS, Yang BR, Zhang HW, Tang F, Tang JJ, Chi HB, Mansell T, Kartiosuo N, Xia YY, Han TL, Zhang H, Baker P, Saffery R. Relationship between prenatal metals exposure and neurodevelopment in one-year-old infants in the CLIMB study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117860. [PMID: 39919595 DOI: 10.1016/j.ecoenv.2025.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Prenatal metals exposure and its effects on infant neurodevelopment have garnered significant attention. However, most studies focus on individual metals, neglecting combined effects. OBJECTIVES We aimed to assess the effects of both single and combined prenatal metals exposure on one-year-old infants' neurodevelopment. METHODS This study included 189 mother-infant pairs from the Complex Lipids in Mothers and Babies (CLIMB) cohort. The concentrations of 21 metallic elements and 2 metalloids in umbilical cord blood (UCB) serum were measured using inductively coupled plasma mass spectrometry (ICP-MS). Neurodevelopment was measured using Chinese version of Bayley Scales of Infant Development (BSID) for the Psychomotor Development Index (PDI) and the Mental Development Index (MDI). Multiple statistical methods, including linear models, restricted cubic splines (RCS), weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR). RESULTS After adjusting for potential confounders, prenatal arsenic (As) and strontium (Sr) levels were associated with lower PDI scores (As: β = -2.324; 95 % CI: -4.61, -0.04; Sr: β = -2.426; 95 % CI: -4.67, -0.18) by linear regression, while Sr was associated with lower MDI scores (β = -2.841; 95 % CI: -5.44, -0.25). RCS models revealed nonlinear dose-response relationships between manganese (Mn) and calcium (Ca) with PDI, and for Mn, As, and zirconium (Zr) with MDI. Interactions between certain metals were also identified. Metals mixture had an overall negative effect on both PDI and MDI scores, with Mn being the primary contributor. CONCLUSION Prenatal exposure to selected metals or metal mixtures is associated with poorer neurodevelopment in one-year-old infants.
Collapse
Affiliation(s)
- Xiao-Yuan Fan
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xian-Shu Lin
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Bing-Rui Yang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Han-Wen Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Tang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jia-Jia Tang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - He-Bin Chi
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Toby Mansell
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Noora Kartiosuo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Yin-Yin Xia
- School of Public Health, Chongqing Medical University, Chongqing, China.
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Philip Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Wu W, Zhang B, Zhao J, Hu W, Li Y, Feng Y, Zhang Y, Wang S. Cadmium levels in maternal blood, placenta, and cord blood in relation to preeclampsia and fetal growth: a case-control study in China. Hypertens Res 2025:10.1038/s41440-025-02122-1. [PMID: 39843858 DOI: 10.1038/s41440-025-02122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
This study aims to delineate the levels of Cd exposure in maternal blood, placenta, and cord blood, and to explore the association between Cd levels and the risk of preeclampsia (PE), as well as its potential impact on fetal growth among affected individuals. A case-control study was performed at the First Hospital of Shanxi Medical University, involving 373 pregnant women diagnosed with PE and 485 controls. Cd was measured in maternal blood, placenta, and cord blood using ICP-MS. The association between Cd and birth weight z-score was analyzed by multivariate linear regression. Logistic regression analysis was used to investigate the relationships between Cd and the risk of PE, and Cd and the risk of fetal growth. The concentration of Cd in the placenta was higher than that in maternal blood and cord blood. The highest tertile of placental Cd was identified as a risk factor for PE (OR = 2.704, 95% CI: 1.865, 3.921). Among pregnant women with PE, higher levels of Cd exposure in the placenta were negatively associated with birth weight z-scores (per doubling: β = -0.134, 95% CI: -0.264, -0.004), and the highest tertile of placental Cd was associated with an elevated risk of SGA (OR = 2.103, 95% CI: 1.164, 3.801). Furthermore, an interaction between Cd and PE was identified. In conclusion, Cd can accumulate in the placenta of pregnant women, and high placental Cd exposure not only increases the risk of PE but also exacerbates the risk of SGA outcome in PE pregnant women.
Collapse
Affiliation(s)
- Weiwei Wu
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China.
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Bole Zhang
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Zhao
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weixuan Hu
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulin Li
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Suping Wang
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China.
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Frazzoli C, Bocca B, Battistini B, Ruggieri F, Rovira J, Amadi CN, Offor SJ, Orisakwe OE. Rare Earth and Platinum Group Elements In Sub-Saharan Africa and Global Health: The Dark Side of the Burgeoning of Technology. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241271553. [PMID: 39282214 PMCID: PMC11393805 DOI: 10.1177/11786302241271553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024]
Abstract
Despite steady progress in the development and promotion of the circular economy as a model, an overwhelming proportion of technological devices discarded by the Global North still finds its way to the Global South, where technology-related environmental health problems start from the predation of resources and continue all the way to recycling and disposal. We reviewed literature on TCEs in sub-Saharan Africa (SSA), focussing on: the sources and levels of environmental pollution; the extent of human exposure to these substances; their role in the aetiology of human diseases; their effects on the environment. Our review shows that even minor and often neglected technology-critical elements (TCEs), like rare earth elements (REEs) and platinum group elements (PGEs), reveal the environmental damage and detrimental health effects caused by the massive mining of raw materials, exacerbated by improper disposal of e-waste (from dumping to improper recycling and open burning). We draw attention of local research on knowledge gaps such as workable safer methods for TCE recovery from end-of-life products, secondary materials and e-waste, environmental bioremediation and human detoxification. The technical and political shortcomings in the management of TCEs in SSA is all the more alarming against the background of unfavourable determinants of health and a resulting higher susceptibility to diseases, especially among children who work in mines and e-waste recycling sites or who reside in dumping sites.This paper demonstrates, for the first time, that the role of unjust North-South dynamics is evident even in the environmental levels of minor trace elements and that the premise underlying attempts to solve the problem of e-waste dumped in Africa through recycling and disposal technology is in fact misleading. The influx of foreign electrical and electronic equipments should be controlled and limited by clearly defining what is a 'useful' second-hand device and what is e-waste; risks arising from device components or processing by-products should be managed differently, and scientific uncertainty and One Health thinking should be incorporated in risk assessment.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Environmental Engineering Laboratory, Department d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Turkey
| |
Collapse
|
4
|
Rouzi L, El-Hamri H, Cherkani-Hassani A, Benbounou N, El Kari K, Bouhya S, Aguenaou H, Jouhadi Z, Fekhaoui M. Lead in umbilical cord blood and associated factors in Casablanca Morocco: A preliminary results. J Trace Elem Med Biol 2024; 85:127494. [PMID: 39024849 DOI: 10.1016/j.jtemb.2024.127494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Lead is the most common toxic metal to which Moroccans are exposed. Given the susceptibility of the fetus to lead, it is crucial to assess prenatal lead exposure. However, in Morocco, no study has assessed prenatal exposure to lead. The main goals of the present study are to determine lead concentration in umbilical cord blood and identify risk factors for prenatal lead exposure in Casablanca, Morocco. METHODS To achieve these purposes, 87 cord blood lead samples were collected from mothers-baby pairs from January to December 2019. Indeed, a structured questionnaire was used to collect socio-demographic characteristics, obstetric data, leisure, cultural habits, and environmental information. Cord blood lead level was analyzed by inductively coupled plasma-mass spectrometry. RESULTS The median lead concentration was 4.902 µg/dl with a minimum and maximum of 0.833 µg/dl and 23.593 µg/dl, respectively. A high proportion of the newborns (65.52 %) had cord blood lead levels above the Centers for Disease Control (CDC) allowable threshold limit (3.5 µg/dl). Statistical analysis was performed to assess the association between blood levels and the above factors. Lead levels in cord blood were significantly associated with the maternal educational level, anemia history, delivery mode, passive smoking during pregnancy as well as with the frequency of consumption of tea. CONCLUSION This study provides the first data on lead levels in newborns. Cord blood lead levels were high in the majority of the participants, these results reinforce the need to establish health surveillance programs in Morocco.
Collapse
Affiliation(s)
- Latifa Rouzi
- Department of Zoology and Animal Ecology, Scientific Institute, Mohammed V University in Rabat, B.P. 1040, Ibn Battuta Av, Rabat 10100, Morocco.
| | | | - Abha Cherkani-Hassani
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10100, Morocco
| | - Nadia Benbounou
- Laboratory LIMAT, Hassan II University, B.P 7955, Casablanca, Morocco; The Multi laboratory LC2A, N°182, Industrial Zone Mohammedia, Morocco
| | | | - Said Bouhya
- Department of Maternity, Children's Ibn Rochd University Hospital, Hassan II University, Casablanca, Morocco
| | - Hassan Aguenaou
- Ibn Tofail University- CNESTEN, Joint, Unit of Nutrition, Health and Environment, Laboratory of Biology and Health, FSK, Regional Designated Center for Nutrition, AFRA/IAEA), Kenitra 14000, Morocco
| | - Zineb Jouhadi
- Department of Pediatric Infectious Diseases, Children's Ibn Rochd University Hospital, Hassan II University, Casablanca, Morocco
| | - Mohammed Fekhaoui
- Department of Zoology and Animal Ecology, Scientific Institute, Mohammed V University in Rabat, B.P. 1040, Ibn Battuta Av, Rabat 10100, Morocco
| |
Collapse
|
5
|
Guo X, Song J, Wang X, Huang Q, Wei C, Yang Y, Li N, Cheng S, Li J, Li Q, Wang J. Urinary concentrations of mineral elements and their predictors in pregnant women in Jinan, China. J Trace Elem Med Biol 2024; 85:127496. [PMID: 39032317 DOI: 10.1016/j.jtemb.2024.127496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The essential mineral elements play important roles in proper growth, development and maintenance of physiological homeostasis of an organism. Women are at greater risk of mineral deficiency during pregnancy. However, the predictors of mineral element levels in pregnant women remain unclear. This study was conducted to determine the urinary levels of calcium (Ca), iron (Fe), copper (Cu), manganese (Mn) and selenium (Se) in women during early pregnancy and to explore the predictors of urinary exposure to each mineral element and high co-exposure to mineral element mixture. METHODS 298 pregnant women in first trimester were recruited when they attended antenatal care in a hospital in Jinan, Shandong Province, China. We collected their spot urine samples and questionnaire data on their sociodemographic characteristics, lifestyle habits, food and dietary supplement intake, and residential environment. The concentrations of Ca, Fe, Cu, Mn and Se in all urine samples were measured. LASSO regression, multiple linear regression and binary logistic regression were used to analyze the predictors affecting mineral element levels. RESULTS The geometric means of creatinine-corrected Ca, Fe, Cu, Mn and Se concentrations were 99.37 mg/g, 1.75 µg/g, 8.97 µg/g, 0.16 µg/g and 16.83 µg/g creatinine, respectively. Factors that influenced the concentrations of individual mineral element were as follows: (1) Se and Ca concentrations increased with maternal age; (2) women taking tap water as family drinking water had higher Ca levels and those taking polyunsaturated fatty acids intermittently had higher Cu levels; (3) Fe was adversely related to consumption frequency of barbecued foods; (4) Pregnant women with more frequent consumption of shellfish/shrimp/crab and living near green spaces or parks had higher Mn exposure, and those with higher frequency of meat consumption had lower Mn exposure. In addition, maternal age and the frequency of egg consumption were associated with odds of exposure to a mixture of high Ca, Fe, Cu and Se. CONCLUSIONS The pregnant women in this study had comparable concentrations of urinary Cu and Se but lower concentrations of Ca, Fe and Mn compared with those in other areas. Predictors of urinary mineral elements included maternal age (Se and Ca), type of domestic drinking water (Ca), consumption frequency of barbecued food (Fe), polyunsaturated fatty acid use (Cu), the presence of urban green spaces or parks near the home and frequency of meat and shellfish/shrimp/crab intake (Mn). Moreover, maternal age and egg consumption frequency were significant predictors of high-level co-exposure to urinary Ca, Fe, Cu and Se.
Collapse
Affiliation(s)
- Xiaohui Guo
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Jiayi Song
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Xiang Wang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Qichen Huang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Chuanling Wei
- Department of Gynecology, Jinan Zhangqiu District People's Hospital, Jinan, Shandong 250200, China
| | - Yujie Yang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Nan Li
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong 250000, China
| | - Shuang Cheng
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Jiao Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Qi Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China
| | - Ju Wang
- School of Nursing and Rehabilitation, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Lv H, Jiang Y, Ye K, Wang J, Wang W, Du J, Hu L, Guo W, Qin R, Xu X, Dou Y, Sun T, Liu X, Xu B, Han X, Zhou K, Tao S, Lu Q, Jiang T, Zhao Y, Jin G, Ma H, Xia Y, Li J, Shen H, Chi X, Lin Y, Hu Z, Jiangsu Birth Cohort Jbc Study Group. Prenatal Parental Exposure to Metals and Birth Defects: A Prospective Birth Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14110-14120. [PMID: 39019030 PMCID: PMC11326437 DOI: 10.1021/acs.est.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
While maternal exposure to high metal levels during pregnancy is an established risk factor for birth defects, the role of paternal exposure remains largely unknown. We aimed to assess the associations of prenatal paternal and maternal metal exposure and parental coexposure with birth defects in singletons. This study conducted within the Jiangsu Birth Cohort recruited couples in early pregnancy. We measured their urinary concentrations for 25 metals. A total of 1675 parent-offspring trios were included. The prevalence of any birth defects among infants by one year of age was 7.82%. Paternal-specific gravity-corrected urinary concentrations of titanium, vanadium, chromium, manganese, cobalt, nickel, copper, and selenium and maternal vanadium, chromium, nickel, copper, selenium, and antimony were associated with a 21-91% increased risk of birth defects after adjusting for covariates. These effects persisted after mutual adjustment for the spouse's exposure. Notably, when assessing the parental mixture effect by Bayesian kernel machine regression, paternal and maternal chromium exposure ranked the highest in relative importance. Parental coexposure to metal mixture showed a pronounced joint effect on the risk of overall birth defects, as well as for some specific subtypes. Our findings suggested a couple-based prevention strategy for metal exposure to reduce birth defects in offspring.
Collapse
Affiliation(s)
- Hong Lv
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kan Ye
- Department of Child Health Care, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Jinghan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiting Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Lingmin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Reproduction, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Wenhui Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyan Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tianyu Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyu Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiong Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Xia Chi
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
- Department of Maternal, Child and Adolescent Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | | |
Collapse
|
7
|
Stojsavljević A, Marković K, Lukač A, Ristanović A, Marić N, Marković S, Šarac I, Ščančar J. Quantitative profiling and baseline intervals of trace elements in healthy lung tissues. J Trace Elem Med Biol 2024; 84:127440. [PMID: 38522290 DOI: 10.1016/j.jtemb.2024.127440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Human lung tissue, as an interface with the environment, is susceptible to various environmental pollutants, including trace metals. However, quantitative data on trace metals in human lung tissues remain poorly described. METHODS This study aimed to characterize the elemental composition of histologically healthy, unaffected parts of human lung tissues, associated with non-infective, non-infiltrative, and non-malignant diseases (n = 60) for essential (Cr, Mn, Fe, Co, Cu, Zn, and Se) and toxic trace elements (Sr, Ni, As, Cd, and Pb). Additionally, we investigated the influence of personal factors (sex, age, and smoking habits) on the examined trace element profiles, as well as between the trace elements correlations in the healthy human lungs. RESULTS Among the analyzed trace elements, Fe was the most prevalent, while As was the least prevalent in healthy lung tissues. Stratifying by age revealed significantly higher Cr and Co (less Sr, Ni, and Pb) and lower Se levels in older individuals (above 65 years) compared to their younger counterparts. Sex-based differences were also notable, with Cu and Co 1.2- and 2.3-fold higher levels in females than in males. Exploring the impact of smoking habits revealed a striking 10-fold increase in Cd levels in the lung tissues of smokers compared to non-smokers. Correlation analyses showed significant positive associations between concentrations of certain toxic and essential trace elements in healthy lung tissues. CONCLUSIONS This study could contribute to the establishment of baseline intervals for essential and toxic trace elements, valuable for toxicological and clinical assessment, in healthy, unaffected human lungs, and indicates the influence of sex, age, and smoking. However, further larger-scale studies are needed to make more stable conclusions.
Collapse
Affiliation(s)
| | - Katarina Marković
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleksandar Lukač
- Military Medical Academy Medical Faculty, University of Defence, Belgrade, Serbia
| | | | - Nebojša Marić
- Military Medical Academy Medical Faculty, University of Defence, Belgrade, Serbia
| | - Stefan Marković
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Ivana Šarac
- Centre of Research Excellence in Nutrition and Metabolism, Group for Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, University of Belgrade, Belgrade, Serbia
| | - Janez Ščančar
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| |
Collapse
|
8
|
Luo Y, Zhang H, Gui F, Fang J, Lin H, Qiu D, Ge L, Wang Q, Xu P, Tang J. Concentrations and influencing factors of 17 elements in placenta, cord blood, and maternal blood of women from an e-waste recycling area. J Trace Elem Med Biol 2024; 84:127449. [PMID: 38640746 DOI: 10.1016/j.jtemb.2024.127449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/16/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND The effects of prenatal element exposure on mothers and fetuses have generated concern. Profiles of trace and toxic elements in biological material are urgently desired, especially for women who reside near e-waste recycling facilities. The aim of this study was to investigate elements concentrations in placenta, cord blood, and maternal blood of women and to evaluate the influencing factors. METHODS A group of 48 women from an e-waste recycling site and a group of 31 women from a non-e-waste recycling site were recruited. Basic characteristics were collected by questionnaire and the concentrations of 17 elements in placenta, cord blood, and maternal blood samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Finally, the generalized linear model regression analysis (GLM) was used to test the association between element concentrations and possible factors. RESULTS Compared to the control group, the exposed group had significantly elevated cadmium (Cd), zinc (Zn), nickel (Ni), and antimony (Sb) in placenta, and higher lead (Pb) in maternal blood and cord blood (P<0.05). Sb concentration in maternal blood was significantly lower than in the control group (P<0.05). GLM analysis showed that element concentrations were mainly associated with maternal age [chromium (Cr), iron (Fe), selenium (Se), cobalt (Co), mercury (Hg) in placenta, copper (Cu) in maternal blood], education (Se, Sb in placenta), family income (Cu in maternal blood and Ni in placenta), passive smoking [Cu and Zn in placenta, Pb in maternal blood], and e-waste contact history (Hg in cord blood, Cu, Zn, and Cd in maternal blood). CONCLUSIONS Women in the e-waste recycling area had higher toxic element levels in the placenta and blood samples. More preventive measures were needed to reduce the risk of element exposure for mothers and fetuses in these areas.
Collapse
Affiliation(s)
- Yacui Luo
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Haijun Zhang
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Fangzhong Gui
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Jiayang Fang
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Haijiang Lin
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Danhong Qiu
- Taizhou Municipal Center for Disease Control and Prevention, 608 Donghai Road, Jiaojiang District, Taizhou 318000, China
| | - Lingfei Ge
- Luqiao School District, Taizhou Hospital, No.1 east of Tongyang Road, Luqiao District, Taizhou 318050, China
| | - Qiong Wang
- Luqiao Hospital of Traditional Chinese Medicine, No. 88 Yingbin Avenue, Luqiao District, Taizhou 318050, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou 310051, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou 310051, China.
| |
Collapse
|
9
|
Stanek LW, Grokhowsky N, George BJ, Thomas KW. Assessing lead exposure in U.S. pregnant women using biological and residential measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167135. [PMID: 37739076 PMCID: PMC11351066 DOI: 10.1016/j.scitotenv.2023.167135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
There is strong scientific evidence for multiple pathways of human exposure to lead (Pb) in residential settings, particularly for young children; however, less is known about maternal exposure during pregnancy and children's exposure during early lifestages. A robust, multi-faceted secondary analysis was conducted using data collected by the National Institute of Child Health and Human Development in the 2009-2014 National Children's Study Vanguard Studies. Descriptive statistics summarized Pb concentrations of maternal blood, maternal urine, and house dust vacuum samples collected during pregnancy and residence surface wipes collected both during pregnancy and six months post-partum. The maternal blood Pb level geometric mean was 0.44 μg/dL (n = 426), with no women having values ≥ 5 μg/dL; creatinine-adjusted maternal urinary Pb geometric mean was 0.43 μg/g (n = 366). These blood and urine concentrations are similar to those observed for females in the general U.S. population in the National Health and Nutrition Examination Survey 2010-2011 cycle. A modest correlation between maternal blood Pb and surface wipe measurements during pregnancy was observed (Spearman r = 0.35, p < 0.0001). Surface wipe Pb loadings obtained in mother's homes during pregnancy (n = 640) and from areas where children spent the most time at roughly 6 months of age (n = 99) ranged from 0.02 to 71.8 ng/cm2, with geometric means of 0.47 and 0.49 ng/cm2, respectively, which were relatively low compared to other national studies. Survey responses of demographic, lifestyle, and residence characteristics were assessed for associations with blood concentration and surface wipe loading. Demographic (e.g., race/ethnicity, income, education, marital status) and housing characteristics (e.g., year home built, paint condition, own or rent home, attached garage) were associated with both maternal blood and surface wipe loadings during pregnancy. The availability of residential environmental media and extensive survey data provided enhanced understanding of Pb exposure during pregnancy and early life.
Collapse
Affiliation(s)
- Lindsay W Stanek
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, NC, USA.
| | - Nicholas Grokhowsky
- Formerly of Oak Ridge Institute for Science and Education, Research Triangle Park, NC, USA
| | - Barbara J George
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, NC, USA
| | - Kent W Thomas
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Kou X, Bulló M, Rovira J, Díaz-López A, Arija V. Dietary intake of metals, metalloids, and persistent organic pollutants in Spanish pregnant women. ECLIPSES study. CHEMOSPHERE 2023; 344:140319. [PMID: 37802481 DOI: 10.1016/j.chemosphere.2023.140319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE This study aimed to describe dietary intake and important dietary sources to pollutants as well as to identify maternal socio-economic and lifestyle factors associated with high intake during pregnancy in women residing in a Mediterranean city with heavy industrial activity. METHODS Dietary intake during pregnancy of As, InAs, Cd, MeHg, Pb, PCDD/Fs, DL-PCBs, and NDL-PCBs in 701 pregnant women participating in the longitudinal ECLIPSES study was calculated based on a 45-item food-frequency questionnaire and a database of pollutants in food of the Catalan Food Safety Agency. Details on socio-economic, lifestyle, and anthropometric variables were also collected. RESULTS The mean dietary intake of pollutants per day and the food group that contributed the most (%) was: 286.51 μg of As (71.27% from white fish), 4.14 μg of InAs (70.16% from cereals-tubers), 6.27 μg of Cd (47.51% from seafood), 5.00 μg of MeHg (52.88% from blue fish), 3.32 μg of Pb (30.15% from cereals-tubers), 9.93 pg of PCDD/Fs (from many food categories), 18.39 pg of DL-PCBs (59.74% from blue fish) and 181.00 ng of NDL-PCBs (44.58% from blue fish). Adjusted multivariate analysis revealed that older age was associated with high As intake, higher educational level was related to low InAs, Cd, and DL-PCBs intake, and alcohol use and smoking were linked with high Pb intake. CONCLUSION The dietary intake of pollutants including As and DL-PCBs among pregnant women exceeds or almost reaches the EFSA safety threshold. These findings support the urgent need for local governments to pay special attention to this situation and develop specific prevention strategies for this vulnerable group.
Collapse
Affiliation(s)
- Xiruo Kou
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; Institute of Health Pere Virgili, 43204 Reus, Spain
| | - Monica Bulló
- Institute of Health Pere Virgili, 43204 Reus, Spain; Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029, Madrid, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Joaquim Rovira
- Institute of Health Pere Virgili, 43204 Reus, Spain; Laboratory of Toxicology and Environmental Health, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia, Spain
| | - Andrés Díaz-López
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; Institute of Health Pere Virgili, 43204 Reus, Spain; CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029, Madrid, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; Institute of Health Pere Virgili, 43204 Reus, Spain; Collaborative Research Group on Lifestyles, Nutrition and Smoking (CENIT). Tarragona-Reus Research Support Unit, Jordi Gol Primary Care Research Institute, 43003 Tarragona, Spain.
| |
Collapse
|
11
|
Bracchi I, Guimarães J, Rodrigues C, Azevedo R, Coelho CM, Pinheiro C, Morais J, Barreiros-Mota I, Fernandes VC, Delerue-Matos C, Pinto E, Moreira-Rosário A, de Azevedo LFR, Dias CC, Lima J, Sapinho I, Ramalho C, Calhau C, Leite JC, Almeida A, Pestana D, Keating E. Essential Trace Elements Status in Portuguese Pregnant Women and Their Association with Maternal and Neonatal Outcomes: A Prospective Study from the IoMum Cohort. BIOLOGY 2023; 12:1351. [PMID: 37887061 PMCID: PMC10604833 DOI: 10.3390/biology12101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Cobalt (Co), copper (Cu), manganese (Mn), molybdenum (Mo), and zinc (Zn) are essential trace elements (ETEs) and important cofactors for intermediary metabolism or redox balance. These ETEs are crucial during pregnancy, their role on specific pregnancy outcomes is largely unknown. This prospective study (#NCT04010708) aimed to assess urinary levels of these ETEs in pregnancy and to evaluate their association with pregnancy outcomes. First trimester pregnant women of Porto and Lisbon provided a random spot urine sample, and sociodemographic and lifestyle data. Clinical data were obtained from clinical records. Urinary ETEs were quantified by inductively coupled plasma mass spectrometry (ICP-MS). A total of 635 mother:child pairs were included. Having urinary Zn levels above the 50th percentile (P50) was an independent risk factor for pre-eclampsia (PE) (aOR [95% CI]: 5.350 [1.044-27.423], p = 0.044). Urinary Zn levels above the P50 decreased the risk of small for gestational age (SGA) birth head circumference (aOR [95% CI]: 0.315 [0.113-0.883], p = 0.028), but it increased the risk SGA length (aOR [95% CI]: 2.531 [1.057-6.062], p = 0.037). This study may provide valuable information for public health policies related to prenatal nutrition, while informing future efforts to de-fine urinary reference intervals for ETEs in pregnant women.
Collapse
Affiliation(s)
- Isabella Bracchi
- Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS, Center for Health Technology and Services Research, 4200-319 Porto, Portugal
| | - Juliana Guimarães
- Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS, Center for Health Technology and Services Research, 4200-319 Porto, Portugal
| | - Catarina Rodrigues
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
| | - Rui Azevedo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Matta Coelho
- Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS, Center for Health Technology and Services Research, 4200-319 Porto, Portugal
| | - Cátia Pinheiro
- Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS, Center for Health Technology and Services Research, 4200-319 Porto, Portugal
| | - Juliana Morais
- CINTESIS@RISE, Nutrition & Metabolism, NOVA Medical School|FCM, NOVA University Lisbon, 1169-056 Lisbon, Portugal
- UniC@RISE, Unidade de Investigação e Desenvolvimento Cardiovascular, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Inês Barreiros-Mota
- CINTESIS@RISE, Nutrition & Metabolism, NOVA Medical School|FCM, NOVA University Lisbon, 1169-056 Lisbon, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Edgar Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Departamento de Saúde Ambiental, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - André Moreira-Rosário
- CINTESIS@RISE, Nutrition & Metabolism, NOVA Medical School|FCM, NOVA University Lisbon, 1169-056 Lisbon, Portugal
| | - Luís Filipe Ribeiro de Azevedo
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cláudia Camila Dias
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Jorge Lima
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal
- Immunology, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- Department of Obstetrics and Gynecology, Hospital da Luz Lisboa, 1500-650 Lisboa, Portugal
| | - Inês Sapinho
- Endocrinology Service, CUF Descobertas Hospital, 1998-018 Lisbon, Portugal
| | - Carla Ramalho
- Department of Obstetrics, São João Hospital Center, 4200-319 Porto, Portugal
- Department of Ginecology-Obstetrics and Pediatrics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health, i3S, University of Porto, 4200-135 Porto, Portugal
| | - Conceição Calhau
- CINTESIS@RISE, Nutrition & Metabolism, NOVA Medical School|FCM, NOVA University Lisbon, 1169-056 Lisbon, Portugal
| | - João Costa Leite
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Diogo Pestana
- CINTESIS@RISE, Nutrition & Metabolism, NOVA Medical School|FCM, NOVA University Lisbon, 1169-056 Lisbon, Portugal
| | - Elisa Keating
- Unit of Biochemistry, Department Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
12
|
Liu B, Cai F, Tang B, Li J, Yan X, Du D, Zheng J, Ren M, Yu Y. Maternal hair segments reveal metal(loid) levels over the course of pregnancy: a preliminary study in Southern China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1684-1693. [PMID: 37705410 DOI: 10.1039/d3em00279a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Characterization of metal(loid) variation during pregnancy and identification of the affecting factors are important for assessing pregnancy exposures in epidemiological studies. In this study, maternal hair was collected in three segments (each 3 cm) from pregnant women in Guangzhou, China. Ten metal(loid)s, including six essential trace metal(loid)s and four toxic trace metal(loid)s, were analyzed to investigate the levels of various metal(loid)s during pregnancy and the factors that influence them. Strong pairwise correlations were observed between manganese (Mn), cobalt (Co), and vanadium (V), between selenium (Se), arsenic (As), and antimony (Sb), and between cadmium (Cd) and lead (Pb). All metal(loid)s except for Se, Mn, and Co showed strong correlations among the three hair segments, and most of the metal(loid)s had good reproducibility, with intraclass correlation coefficients (ICCs) ranging from 0.510 to 0.931, except for As (ICC = 0.334), Mn (ICC = 0.231), and Co (ICC = 0.235). Zn levels decreased, while Sb increased, in maternal hair during pregnancy. Maternal sociodemographic characteristics and dietary intake affected metal(loid) levels in maternal hair. These results provide foundational data for using maternal hair segmental analysis to evaluate exposure variation to metal(loid)s during pregnancy and the potential factors associated with them.
Collapse
Affiliation(s)
- Bingqing Liu
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
| | - Fengshan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
| | - Jialu Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Dongwei Du
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
- School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, P. R. China
| | - Mingzhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, P. R. China.
| |
Collapse
|
13
|
Dahiri B, Hinojosa MG, Carbonero-Aguilar P, Cerrillos L, Ostos R, Bautista J, Moreno I. Assessment of the oxidative status in mother-child couples from Seville (Spain): A prospective cohort study. Free Radic Biol Med 2023; 207:308-319. [PMID: 37597786 DOI: 10.1016/j.freeradbiomed.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Pregnancy requires a high demand of energy, which leads to an increase of oxidative stress. The aim of this study was to assess the oxidative status in 200 couples of pregnant women-newborns at the time of delivery, for the first time, who gave birth in two University Hospitals from the province of Seville. Recruited women filled an epidemiological questionnaire with their demographic characteristics and dietary habits during pregnancy. At the time of delivery, both maternal and cord blood samples were collected. Protein oxidation, superoxide dismutase, and catalase levels were measured to assess the oxidative status of these women, together with the levels of vitamins D, B12, Zn, Se, and Cu. Our results showed a tendency for all biomarkers measured to be higher in cord blood than in maternal blood. For the correlations established between the OS markers and sociodemographic characteristics, only significant differences for carbonyl groups values were found on both maternal and cord blood, relating these higher values to the use of insecticides in the women's homes. For newborns, only a significant correlation was detected between antioxidant enzymes and the newborn's weight, specifically for superoxide dismutase activity. Additionally, the higher values obtained in cord blood might suggest metabolization, while a higher production of ROS and antioxidant enzymes might be required to maintain the balance. Measured levels for Se were similar in both maternal and cord blood, unlike Cu and Zn, where higher levels were found for maternal blood than cord blood, indicating a correlation between maternal Se values and SOD as OS biomarker. Furthermore, vitamin D levels were around the optimum values established, finding a relationship between vitamin D and new-born's height, unlike for vitamin B12 values, where a correlation with maternal food consumption characteristics was established. Overall values were inside normal ranges and consistent for our population.
Collapse
Affiliation(s)
- Bouchra Dahiri
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain
| | - María G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, Institutionen för biokemi och biofysik, 106 91, Stockholm, Sweden.
| | - Pilar Carbonero-Aguilar
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain
| | - Lucas Cerrillos
- Department of Gynaecology and Obstretrics, Hospital Universitario Virgen de Valme, Ctra. de Cádiz, 41014, Sevilla, Spain
| | - Rosa Ostos
- Department of Genetics, Reproduction and Fetal Medicine, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot, 41013, Sevilla, Spain
| | - Juan Bautista
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain
| | - Isabel Moreno
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain
| |
Collapse
|
14
|
Xia YY, de Seymour JV, Yang XJ, Zhou LW, Liu Y, Yang Y, Beck KL, Conlon CA, Mansell T, Novakovic B, Saffery R, Han TL, Zhang H, Baker PN. Hair and cord blood element levels and their relationship with air pollution, dietary intake, gestational diabetes mellitus, and infant neurodevelopment. Clin Nutr 2023; 42:1875-1888. [PMID: 37625317 DOI: 10.1016/j.clnu.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND & AIMS Exposure to a range of elements, air pollution, and specific dietary components in pregnancy has variously been associated with gestational diabetes mellitus (GDM) risk or infant neurodevelopmental problems. We measured a range of pregnancy exposures in maternal hair and/or infant cord serum and tested their relationship to GDM and infant neurodevelopment. METHODS A total of 843 pregnant women (GDM = 224, Non-GDM = 619) were selected from the Complex Lipids in Mothers and Babies cohort study. Forty-eight elements in hair and cord serum were quantified using inductively coupled plasma-mass spectrometry analysis. Binary logistic regression was used to estimate the associations between hair element concentrations and GDM risk, while multiple linear regression was performed to analyze the relationship between hair/cord serum elements and air pollutants, diet exposures, and Bayley Scales of infant neurodevelopment at 12 months of age. RESULTS After adjusting for maternal age, BMI, and primiparity, we observed that fourteen elements in maternal hair were associated with a significantly increased risk of GDM, particularly Ta (OR = 9.49, 95% CI: 6.71, 13.42), Re (OR = 5.21, 95% CI: 3.84, 7.07), and Se (OR = 5.37, 95% CI: 3.48, 8.28). In the adjusted linear regression model, three elements (Rb, Er, and Tm) in maternal hair and infant cord serum were negatively associated with Mental Development Index scores. For dietary exposures, elements were positively associated with noodles (Nb), sweetened beverages (Rb), poultry (Cs), oils and condiments (Ca), and other seafood (Gd). In addition, air pollutants PM2.5 (LUR) and PM10 were negatively associated with Ta and Re in maternal hair. CONCLUSIONS Our findings highlight the potential influence of maternal element exposure on GDM risk and infant neurodevelopment. We identified links between levels of these elements in both maternal hair and infant cord serum related to air pollutants and dietary factors.
Collapse
Affiliation(s)
- Yin-Yin Xia
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jamie V de Seymour
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Xiao-Jia Yang
- Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Lin-Wei Zhou
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Liu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Kathryn L Beck
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Cathryn A Conlon
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Toby Mansell
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Ting-Li Han
- Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China; Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Mass Spectrometry Center of Maternal Fetal Medicine, Chongqing Medical University, Chongqing, China.
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
15
|
Herrero M, Rovira J, González N, Marquès M, Barbosa F, Sierra J, Domingo JL, Nadal M, Souza MCO. Clothing as a potential exposure source of trace elements during early life. ENVIRONMENTAL RESEARCH 2023; 233:116479. [PMID: 37348630 DOI: 10.1016/j.envres.2023.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
In recent years, the interest in determining the chemical composition of textile products has increased among the scientific community and regulatory agencies, driven by toxicological issues and environmental concerns. Chemical elements are naturally present in clothing as natural fibers or intentionally added during manufacture. Some of them show physical-chemical properties that allow their absorption through the skin. In addition, chronic situations increase the dermal exposure capacity. Because of age-specific behavioral characteristics and underdeveloped physiological function, children may be especially sensitive to exposure to trace elements. This study aimed to analyze the levels of twenty trace elements in 120 clothing items commercialized in Spain. Textile products for pregnant women and children <36 months old were included. The potential health implication of this dermal exposure in early life was also evaluated. Aluminum, zinc, and titanium showed the highest concentrations, with median levels of 27.6, 5.6, and 4.2 mg/kg, respectively. Since chromium is employed as a metal complex dye in synthetic fibers, high levels of this element were found in black polyester. Dermal exposure to titanium, which is a ubiquitous element in clothes made of synthetic fibers, was associated with a hazard quotient (HQ) higher than the threshold value (HQ > 1), with values of 1.13 for pregnant women and 1.22 for newborns. On the other hand, HQ values of other elements and cancer risks were lower than the recommended values. Assessing early-life exposure to toxic elements can help to identify potential sources and to prevent or reduce human exposure, mainly in vulnerable groups.
Collapse
Affiliation(s)
- Marta Herrero
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament D'Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain.
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament D'Enginyeria Quimica, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida Do Cafe S/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Jordi Sierra
- Faculty of Pharmacy, University de Barcelona, Joan XXIII Avenue S/n, 08028, Barcelona, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain
| | - Marilia Cristina Oliveira Souza
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira I Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut D'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain; University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida Do Cafe S/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
16
|
Stojsavljević A, Lakićević N, Pavlović S. Does Lead Have a Connection to Autism? A Systematic Review and Meta-Analysis. TOXICS 2023; 11:753. [PMID: 37755763 PMCID: PMC10536388 DOI: 10.3390/toxics11090753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Environmental pollutants, particularly toxic trace metals with neurotoxic potential, have been related to the genesis of autism. One of these metals that stands out, in particular, is lead (Pb). We conducted an in-depth systematic review and meta-analysis of peer-reviewed studies on Pb levels in biological materials retrieved from autistic children (cases) and neurotypical children (controls) in this work. A systematic review was conducted after the careful selection of published studies according to established criteria to gain a broad insight into the higher or lower levels of Pb in the biological materials of cases and controls, and the findings were then strengthened by a meta-analysis. The meta-analysis included 17 studies (hair), 13 studies (whole blood), and 8 studies (urine). The overall number of controls/cases was 869/915 (hair), 670/755 (whole blood), and 344/373 (urine). This meta-analysis showed significantly higher Pb levels in all three types of biological material in cases than in controls, suggesting a higher body Pb burden in autistic children. Thus, environmental Pb exposure could be related to the genesis of autism. Since no level of Pb can be considered safe, the data from this study undoubtedly point to the importance of regularly monitoring Pb levels in autistic children.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| | - Novak Lakićević
- Clinical Centre of Montenegro, Clinic for Neurosurgery, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| |
Collapse
|
17
|
Miyazaki J, Ikehara S, Tanigawa K, Kimura T, Ueda K, Ozono K, Kimura T, Kobayashi Y, Yamazaki S, Kamijima M, Sobue T, Iso H. Prenatal exposure to selenium, mercury, and manganese during pregnancy and allergic diseases in early childhood: The Japan Environment and Children's study. ENVIRONMENT INTERNATIONAL 2023; 179:108123. [PMID: 37595534 DOI: 10.1016/j.envint.2023.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Prenatal exposure to metallic elements may adversely affect early childhood health. However, more evidence is needed as population-based cohort studies are currently limited. OBJECTIVES We aimed to examine the associations between prenatal metallic (mercury, selenium, and manganese) exposure and the risk of allergic diseases in early childhood until three years of age. METHODS The data from 94,794 mother-infant pairs, who participated in the Japan Environment and Children's study, were used in this study. Prenatal metallic element exposure was measured in maternal blood collected during mid-pregnancy. The incidence of atopic dermatitis, food allergies, asthma, and allergic rhinitis during the first three years of life was prospectively investigated using self-reports of physician-diagnosed allergies. A multivariable modified Poisson regression model was used to estimate the cumulative incidence ratio and their 95% confidence intervals of allergic diseases associated with prenatal exposure to mercury, selenium, and manganese. We further evaluated the interaction between mercury and selenium exposures in this association. RESULTS We confirmed 26,238 cases of childhood allergic diseases: atopic dermatitis, food allergies, asthma, and allergic rhinitis in 9,715 (10.3%), 10,897 (11.5%), and 9,857 (10.4%), 4,630 (4.9%), respectively. No association was found between prenatal mercury or manganese exposure and the risk of allergic diseases. Prenatal selenium exposure was inversely associated with atopic dermatitis, food allergies, allergic rhinitis, and any allergic diseases, but not with asthma. These inverse associations were more pronounced for lower mercury exposures than for higher exposures. CONCLUSIONS Our findings suggest that prenatal exposure to selenium may be beneficial for reducing the risk of atopic dermatitis, food allergies, allergic rhinitis, and any allergic diseases in early childhood, especially with lower prenatal mercury exposure.
Collapse
Affiliation(s)
- Junji Miyazaki
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Department of Preventive Medicine and Public Health, School of Medicine, Keio University, 35, Shinano-cho, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoyo Ikehara
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Kanami Tanigawa
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Maternal and Child Health Information Center, Osaka Women's and Children's Hospital, 840, Murodo-cho, Izumi-shi, Osaka 594-1101, Japan
| | - Takashi Kimura
- Department of Public Health, Faculty of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo-shi, Hokkaido 060-8638, Japan
| | - Kimiko Ueda
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Faculty of Health and Well-being, Kansai University, 1-11-1 Kaorigaoka-cho, Sakai-ku, Sakai, Osaka, 590-8515, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yayoi Kobayashi
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba-shi, Ibaraki 305-8506, Japan
| | - Shin Yamazaki
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba-shi, Ibaraki 305-8506, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-Cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tomotaka Sobue
- Division of Environmental Medicine and Population Sciences, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroyasu Iso
- Osaka Regional Center for Japan Environment and Children's Study (JECS), Osaka University, 1-3, Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Institute for Global Health Policy Research, Bureau of International Health Cooperation, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| |
Collapse
|
18
|
Grzesik-Gąsior J, Sawicki J, Pieczykolan A, Bień A. Content of selected heavy metals in the umbilical cord blood and anthropometric data of mothers and newborns in Poland: preliminary data. Sci Rep 2023; 13:14077. [PMID: 37640776 PMCID: PMC10462749 DOI: 10.1038/s41598-023-41249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
The ability to accumulate metals in organs and tissues leads to disturbances in the physiological functioning of the body, causing oxidative stress. This negatively affects the functioning of the placenta and may result in miscarriages, premature birth and fetal growth disorders. The aim of the study was to examine the relationship between the levels of selected heavy metals in umbilical cord blood and anthropometric parameters of mothers and the newborns. Content of elements in umbilical cord blood has been assessed by high-resolution inductively coupled plasma optical emission spectroscopy (ICP-OES). The study results were collected and statistically analyzed using IBM SPSS Statistics software (PS IMAGO). The Pearson correlation coefficient was used to test for associations between selected variables. Regression analysis was conducted to identify predictors of anthropometric parameters of studied women and newborns. The study group consisted of women aged 19-41, whose pregnancy was uncomplicated and were not exposed to heavy metals due to their work or smoking. The following metals were identified in all collected cord blood samples: lead (26.25 ± 9.32 µg/L), zinc (2025.24 ± 717.83 µg/L), copper (749.85 ± 203.86 µg/L), manganese (32.55 ± 13.58 µg/L), chromium (8.34 ± 2.16 µg/L) and selenium (158.46 ± 41.58 µg/L). The conducted statistical analysis indicated the relationship between the copper content in the umbilical cord blood and the weight gain of pregnant women. A significant relationship was observed between newborn head circumference and chromium content. In addition, significant positive correlations were found between the content of zinc and copper, manganese and lead, manganese and selenium, lead and selenium, and lead and chromium in umbilical cord blood. The ratio of zinc to copper concentrations was related to neonatal head circumference. Weight gain in pregnant women is positively correlated with the copper level in umbilical cord blood. There is an association between head circumference at birth and the chromium concentration in umbilical cord blood. Copper and zinc levels in umbilical cord blood are positively correlated with head circumference at birth.
Collapse
Affiliation(s)
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, 20-059, Lublin, Poland
| | - Agnieszka Pieczykolan
- Department of Coordinated Maternity Care, Faculty of Health Sciences, Medical University of Lublin, 20-059, Lublin, Poland
| | - Agnieszka Bień
- Department of Coordinated Maternity Care, Faculty of Health Sciences, Medical University of Lublin, 20-059, Lublin, Poland
| |
Collapse
|
19
|
Piasek M, Škrgatić L, Sulimanec A, Orct T, Sekovanić A, Kovačić J, Katić A, Branović Čakanić K, Pizent A, Brajenović N, Jurič A, Brčić Karačonji I, Kljaković-Gašpić Z, Tariba Lovaković B, Lazarus M, Stasenko S, Miškulin I, Jurasović J. Effects of Maternal Cigarette Smoking on Trace Element Levels and Steroidogenesis in the Maternal-Placental-Fetal Unit. TOXICS 2023; 11:714. [PMID: 37624219 PMCID: PMC10459679 DOI: 10.3390/toxics11080714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
This study evaluates the interaction of toxic elements cadmium (Cd) and lead (Pb) due to exposure from cigarette smoking, essential elements, and steroidogenesis in the maternal-placental-fetal unit. In a cohort of 155 healthy, postpartum women with vaginal term deliveries in clinical hospitals in Zagreb, Croatia, samples of maternal blood/serum and urine, placental tissue, and umbilical cord blood/serum were collected at childbirth. The biomarkers determined were concentrations of Cd, Pb, iron (Fe), zinc (Zn), copper (Cu), and selenium (Se), and steroid hormones progesterone and estradiol in maternal and umbilical cord blood and the placenta. Three study groups were designated based on self-reported data on cigarette smoking habits and confirmed by urine cotinine levels: never smokers (n = 71), former smokers (n = 48), and active smokers (n = 36). Metal(loid)s, steroid hormones, urine cotinine, and creatinine levels were analyzed by ICP-MS, ELISA, GC-MS, and spectrophotometry. Cigarette smoking during pregnancy was associated with increased Cd levels in maternal, placental, and fetal compartments, Pb in the placenta, and with decreased Fe in the placenta. In active smokers, decreased progesterone and estradiol concentrations in cord blood serum were found, while sex steroid hormones did not change in either maternal serum or placenta. This study provides further evidence regarding toxic and essential metal(loid) interactions during prenatal life, and new data on sex steroid disruption in cord serum related to cigarette smoking. The results indicate that umbilical cord sex steroid levels may be a putative early marker of developmental origins of the future burden of disease related to harmful prenatal exposure to cigarette smoke.
Collapse
Affiliation(s)
- Martina Piasek
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Lana Škrgatić
- University Hospital Centre, Petrova 13, 10000 Zagreb, Croatia; (L.Š.); (I.M.)
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Antonija Sulimanec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Tatjana Orct
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Ankica Sekovanić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Jelena Kovačić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Anja Katić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | | | - Alica Pizent
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Nataša Brajenović
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Andreja Jurič
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Irena Brčić Karačonji
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Zorana Kljaković-Gašpić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Blanka Tariba Lovaković
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Maja Lazarus
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| | - Sandra Stasenko
- Merkur University Hospital, Zajčeva ulica 19, 10000 Zagreb, Croatia;
| | - Iva Miškulin
- University Hospital Centre, Petrova 13, 10000 Zagreb, Croatia; (L.Š.); (I.M.)
| | - Jasna Jurasović
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.P.); (A.S.); (T.O.); (A.S.); (J.K.); (A.K.); (A.P.); (N.B.); (A.J.); (I.B.K.); (Z.K.-G.); (B.T.L.); (M.L.)
| |
Collapse
|
20
|
Gai S, He L, He M, Zhong X, Jiang C, Qin Y, Jiang M. Anticancer Activity and Mode of Action of Cu(II), Zn(II), and Mn(II) Complexes with 5-Chloro-2- N-(2-quinolylmethylene)aminophenol. Molecules 2023; 28:4876. [PMID: 37375431 DOI: 10.3390/molecules28124876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Developing a new generation of anticancer metal-based drugs that can both kill tumor cells and inhibit cell migration is a promising strategy. Herein, we synthesized three Cu(II), Zn(II), and Mn(II) complexes derived from 5-chloro-2-N-(2-quinolylmethylene)aminophenol (C1-C3). Among these complexes, the Cu(II) complex (C1) showed significantly greater cytotoxicity toward lung cancer cell lines than cisplatin. C1 inhibited A549 cell metastasis and suppressed the growth of the A549 tumor in vivo. In addition, we confirmed the anticancer mechanism of C1 by triggering multiple mechanisms, including inducing mitochondrial apoptosis, acting on DNA, blocking cell cycle arrest, inducing cell senescence, and inducing DNA damage.
Collapse
Affiliation(s)
- Shuangshuang Gai
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| | - Liqin He
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| | - Mingxian He
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| | - Xuwei Zhong
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| | - Caiyun Jiang
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| | - Yiming Qin
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| | - Ming Jiang
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| |
Collapse
|
21
|
Zhang Z, Guo S, Hua L, Wang B, Chen Q, Liu L, Xiang L, Sun H, Zhao H. Urinary Levels of 14 Metal Elements in General Population: A Region-Based Exploratory Study in China. TOXICS 2023; 11:488. [PMID: 37368588 DOI: 10.3390/toxics11060488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Metal pollution may lead to a variety of diseases; for this reason, it has become a matter of public concern worldwide. However, it is necessary to use biomonitoring approaches to assess the risks posed to human health by metals. In this study, the concentrations of 14 metal elements in 181 urine samples obtained from the general population of Gansu Province, China, were analyzed using inductively coupled plasma mass spectrometry. Eleven out of fourteen target elements had detection frequencies above 85%, namely, Cr, Ni, As, Se, Cd, Al, Fe, Cu and Rb. The concentrations of most metal elements in the urine of our subjects corresponded to the medium levels of subjects in other regional studies. Gender exerted a significant influence (p < 0.05) on the concentrations of Tl, Rb and Zn. The concentrations of Ni, As, Pb, Sr, Tl, Zn, Cu and Se showed significant differences among different age groups and the age-related concentration trends varied among these elements. There were significant differences in the urine concentrations of Zn and Sr between those subjects in the group who were frequently exposed to soil (exposed soil > 20 min/day) and those in the group who were not, indicating that people in regular contact with soil may be more exposed to metals. This study provides useful information for evaluating the levels of metal exposure among general populations.
Collapse
Affiliation(s)
- Zining Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiusheng Chen
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Lu Liu
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
22
|
Association of Maternal Plasma Manganese with the Risk of Spontaneous Preterm Birth: A Nested Case–Control Study Based on the Beijing Birth Cohort Study (BBCS) in China. Nutrients 2023; 15:nu15061413. [PMID: 36986144 PMCID: PMC10053178 DOI: 10.3390/nu15061413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
We performed this study to clarify the dynamic changes in maternal manganese (Mn) concentration during pregnancy and its association with spontaneous preterm birth (SPB). A nested case–control study was conducted based on the Beijing Birth Cohort Study (BBCS) from 2018 to 2020. Singleton pregnancy women aged 18–44 (n = 488) were involved in the study, including 244 cases of SPB and 244 controls. All of the participants provided blood samples twice (in their first and third trimesters). Inductively coupled plasma mass spectrometry (ICP-MS) was used for the laboratory analysis, and unconditional logistic regression was used for the statistical analysis. We found that the maternal Mn levels were significantly higher in the third trimester than those in the first trimester (median: 1.23 vs. 0.81 ng/mL). The SPB risk was increased to 1.65 (95% CI: 1.04–2.62, p = 0.035) in the highest Mn level (third tertile) in the third trimester, especially in normal-weight women (OR: 2.07, 95% CI: 1.18–3.61, p = 0.011) or non-premature rupture of membrane (PROM) women (OR: 3.93, 95% CI: 2.00–7.74, p < 0.001). Moreover, a dose-dependent relationship exists between the SPB risk and maternal Mn concentration in non-PROM women (P trend < 0.001). In conclusion, dynamic monitoring of maternal Mn level during pregnancy would be helpful for SPB prevention, especially in normal-weight and non-PROM women.
Collapse
|
23
|
Dahiri B, Martín-Carrasco I, Carbonero-Aguilar P, Cerrillos L, Ostos R, Fernández-Palacín A, Bautista J, Moreno I. Monitoring of metals and metalloids from maternal and cord blood samples in a population from Seville (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158687. [PMID: 36099946 DOI: 10.1016/j.scitotenv.2022.158687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nowadays there is an increasing concern about exposition during prenatal stage to environmental pollutants such as metals, that make pregnant women a vulnerable group of population. Numerous studies have shown associations between the prenatal exposition to some metals and an impact on cognitive, motor and intellectual development of the child. Metals and metalloid are ubiquitous in the environment and pregnant women are exposed to them though their diet, lifestyle factors or occupational and environmental sources. One hundred of maternal and one hundred of cord blood samples were obtained at delivery from pregnant women after signing of the informed consent to determine simultaneously levels of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Se and Zn by ICP-MS. Among these metals, essential ones (Cu, Mn, Se and Zn) can have health beneficial effects at low levels, however, in high concentration are potentially toxic. On the other hand, elements such as Al, As, Cd, Hg, Pb are classified as toxic metals, no matter what its concentration was. The aim of this study was to find the potential relationships between these metals and metalloid levels, newborn's parameters, pregnancy details and the epidemiologic information obtained using a questionnaire data from the participant pregnant women from Seville (Spain). A n = 100 of participants have been enrolled, 15.6 % of the women from Virgen del Rocio Hospital were smokers during pregnancy but only 11.1 % from Virgen de Valme had the habit. Dietary habits of all participants from both hospital were quite similar in average rice, fish and canned food consumption. The characteristics of newborns were also quite similar for both hospitals. A positive correlation between maternal and cord blood was found between all metals except for Cr and Cu. The strongest correlation was found for Hg (r = 0.779, p < 0.005). Positive but weaker correlations between maternal blood and lifestyle habits were also established.
Collapse
Affiliation(s)
- Bouchra Dahiri
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Irene Martín-Carrasco
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| | - Pilar Carbonero-Aguilar
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| | - Lucas Cerrillos
- Department of Genetics, Reproduction and Fetal Medicine, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot, 41013 Sevilla, Spain.
| | - Rosa Ostos
- Department of Gynaecology and Obstretrics, Hospital Universitario Virgen de Valme, Ctra. de Cádiz, 41014 Sevilla, Spain.
| | - Ana Fernández-Palacín
- Area of Preventive Medicine and Public Health, Facultad de Medicina, Avda. Dr. Fedriani, s/n, 41009 Sevilla, Spain.
| | - Juan Bautista
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| | - Isabel Moreno
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
24
|
Michael T, Kohn E, Daniel S, Hazan A, Berkovitch M, Brik A, Hochwald O, Borenstein-Levin L, Betser M, Moskovich M, Livne A, Keidar R, Rorman E, Groisman L, Weiner Z, Rabin AM, Solt I, Levy A. Prenatal exposure to heavy metal mixtures and anthropometric birth outcomes: a cross-sectional study. Environ Health 2022; 21:139. [PMID: 36581953 PMCID: PMC9798586 DOI: 10.1186/s12940-022-00950-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Numerous studies have suggested significant associations between prenatal exposure to heavy metals and newborn anthropometric measures. However, little is known about the effect of various heavy metal mixtures at relatively low concentrations. Hence, this study aimed to investigate associations between prenatal exposures to a wide range of individual heavy metals and heavy metal mixtures with anthropometric measures of newborns. METHODS We recruited 975 mother-term infant pairs from two major hospitals in Israel. Associations between eight heavy metals (arsenic, cadmium, chromium, mercury, nickel, lead, selenium, and thallium) detected in maternal urine samples on the day of delivery with weight, length, and head circumference at birth were estimated using linear and Bayesian kernel machine regression (BKMR) models. RESULTS Most heavy metals examined in our study were observed in lower concentrations than in other studies, except for selenium. In the linear as well as the BKMR models, birth weight and length were negatively associated with levels of chromium. Birth weight was found to be negatively associated with thallium and positively associated with nickel. CONCLUSION By using a large sample size and advanced statistical models, we could examine the association between prenatal exposure to metals in relatively low concentrations and anthropometric measures of newborns. Chromium was suggested to be the most influential metal in the mixture, and its associations with birth weight and length were found negative. Head circumference was neither associated with any of the metals, yet the levels of metals detected in our sample were relatively low. The suggested associations should be further investigated and could shed light on complex biochemical processes involved in intrauterine fetal development.
Collapse
Affiliation(s)
- Tal Michael
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sharon Daniel
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
- Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Ariela Hazan
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anna Brik
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ori Hochwald
- Neonatal Intensive Care Unit, Rambam Health Care Campus, and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Liron Borenstein-Levin
- Neonatal Intensive Care Unit, Rambam Health Care Campus, and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Moshe Betser
- Delivery Rooms and Maternity Ward, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Miki Moskovich
- Delivery Rooms and Maternity Ward, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ayelet Livne
- Neonatal Intensive Care Unit, Shamir (Assaf Harofeh) Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rimona Keidar
- Neonatal Intensive Care Unit, Shamir (Assaf Harofeh) Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Rorman
- National Public Health Laboratory, Ministry of Health, Tel-Aviv, Israel
| | - Luda Groisman
- National Public Health Laboratory, Ministry of Health, Tel-Aviv, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, POB 9602, 31096, Haifa, Israel
| | - Adi Malkoff Rabin
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, POB 9602, 31096, Haifa, Israel
| | - Ido Solt
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, POB 9602, 31096, Haifa, Israel.
| | - Amalia Levy
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
- Environment and Health Epidemiology Research Center, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
25
|
Wang Z, Huang S, Zhang W, Zeng X, Chu C, Li Q, Cui X, Wu Q, Dong G, Huang J, Liu L, Tan W, Shang X, Kong M, Deng F. Chemical element concentrations in cord whole blood and the risk of preterm birth for pregnant women in Guangdong, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114228. [PMID: 36306619 DOI: 10.1016/j.ecoenv.2022.114228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Maternal exposure to chemical elements, including essential and non-essential elements, have been found to be associated with preterm births (PTB). However, few studies have measured element concentrations in cord whole blood, which reflects activity at the maternal-fetal interface and may be biologically associated with PTBs. In this study, we determined concentrations of 21 elements in cord whole blood and explored the associations between element concentrations and PTB in a nested case-control study within a birth cohort in Guangdong, China. Finally, 515 preterm infants and 595 full-term infants were included. We performed single-element and multi-element logistic regressions to evaluate linear relationships between element concentrations and PTB. According to the results of single-element models, most essential elements (including K, Ca, Si, Zn, Se, Sr and Fe) were negatively associated with PTB, while Cu, V, Co and Sn were positively associated with PTB. Of the non-essential elements, Sb, Tl, and U were positively associated with PTB, while Pb was negatively associated with PTB. The multi-element model results for most elements were similar, except that the association between Mg and PTB was shown to be significantly positive, and the association for Cu became much larger. A possible explanation is that the effects of Mg and Cu may be influenced by other elements. We performed restricted cubic spline (RCS) regressions and found significantly non-linear exposure-response relationships for Mg, Se, Sr, K and Sb, indicating that the effects of these elements on PTB are not simply detrimental or beneficial. We also examined the joint effect using a Bayesian kernel machine regression (BKMR) model and found the risk of PTB decreased significantly with element mixture concentration when lnC was larger than the median. Bivariate interaction analysis suggested antagonistic effects of Sb on Zn and Sr, which may be attributed to Sb negating the antioxidant capacity of Zn and Sr. This study provides additional evidence for the effect of element exposures on PTB, and will have implications for the prevention of excessive exposures or inappropriate element supplementation during pregnancy.
Collapse
Affiliation(s)
- Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shaodan Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xiaowen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingqing Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinxin Cui
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qizhen Wu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinbo Huang
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Maoming City, Maoming 525000, China
| | - Liling Liu
- Department of Reproductive Medicine and Genetics Center. The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530016, Guangxi, China
| | - Weihong Tan
- Department of Reproductive Medicine and Genetics Center. The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning, 530016, Guangxi, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Minli Kong
- Department of Gynaecology and Obstetrics, Maternal and Child Health Hospital of Maoming City, Maoming 525000, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
26
|
Bloom MS, Varde M, Newman RB. Environmental toxicants and placental function. Best Pract Res Clin Obstet Gynaecol 2022; 85:105-120. [PMID: 36274037 PMCID: PMC11184919 DOI: 10.1016/j.bpobgyn.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
The placenta is a temporary endocrine organ that facilitates gas, nutrient, and waste exchange between maternal and fetal compartments, partially shielding the fetus from potentially hazardous environmental toxicants. However, rather than being "opaque", the placenta is translucent or even transparent to some potential fetal developmental hazards, including toxic trace elements (TEs), perfluoroalkyl and polyfluoroalkyl substances (PFAS), and environmental phenols (EPs) to which women with pregnancy are frequently exposed. These agents are both passively and actively transferred to the fetal compartment, where endocrine disruption, oxidative stress, and epigenetic changes may occur. These pathologies may directly impact the fetus or deposit and accumulate in the placenta to indirectly impact fetal development. Thus, it is critical for clinicians to understand the potential placental toxicity and transfer of widely distributed environmental agents ubiquitous during pregnancy. With such knowledge, targeted interventions and clinical recommendations can be developed to limit those risks.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, George Mason University, 4400 University Dr., MS 5B7, Fairfax, VA 22030, USA.
| | - Meghana Varde
- Department of Global and Community Health, George Mason University, 4400 University Dr., MS 5B7, Fairfax, VA 22030, USA.
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Rm 634, Clinical Science Bldg., 96 Jonathan Lucas St., Charleston, SC 29425, USA.
| |
Collapse
|
27
|
Gu T, Jia X, Shi H, Gong X, Ma J, Gan Z, Yu Z, Li Z, Wei Y. An Evaluation of Exposure to 18 Toxic and/or Essential Trace Elements Exposure in Maternal and Cord Plasma during Pregnancy at Advanced Maternal Age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14485. [PMID: 36361359 PMCID: PMC9659256 DOI: 10.3390/ijerph192114485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Pregnant women of advanced maternal age (AMA) are vulnerable to exposure to the surrounding environment. Assessment of trace elements in pregnant women living in specific areas is important for biomonitoring. However, exposure levels and variation patterns during pregnancy remains controversial and attracts extensive public concern. Therefore, we aimed to evaluate exposure of 18 toxic and/or essential trace elements in maternal plasma and in paired cord plasma during pregnancy at AMA. A total of 48 pregnant women of AMA were recruited in Peking University Third Hospital from 2018 to 2021. Eighteen elements found in maternal plasma during the 1st, 2nd, or 3rd trimester of pregnancy and paired cord plasma were measured by 7700x ICP-MS (Agilent Technologies, Palo Alto, CA, USA) and Elan DRC type II ICP-MS (The Perkin-Elmer Corporation, Waltham, MA USA). Concentrations of Pb, Se, Fe, Zn, and Mo all decreased during pregnancy, while Cu increased. Interestingly, concentrations of Rb decreased initially but then increased. Elements as Al, Co, Se, Cu, and Ni showed significantly lower levels in cord than in maternal plasma, while elements as Sr, Fe, Rb, Mn and Zn displayed significantly higher levels in cord than in maternal plasma. Moreover, positively- interacted clusters were found in Ni-Co-Cu-Al-Rb-Zn and Zn-Mn-Al-Pb in maternal blood. Similar positively-interacted clusters were found in Zn-Ni-Co, Zn-Ni-Fe, Mn-Al-Pb, Fe-Pb-Mn, Fe-Ni-Cu, and Rb-Cu-Sb-Fe-Mn in cord plasma. Furthermore, correlations between paired maternal and cord blood samples for As, Sr, and Mo were statistically significant, indicating that the fetus burden may reflect maternal exposure to some extent. Admittedly, levels of toxic and essential elements in our cohort study were comparatively lower than those in the scientific literature.
Collapse
Affiliation(s)
- Tingfei Gu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Xiaoqian Jia
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Huifeng Shi
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing 100191, China
| | - Xiaoli Gong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing 100191, China
| | - Jinxi Ma
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Zhihang Gan
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Zhixin Yu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, China
- Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Center for Healthcare Quality Management in Obstetrics, Beijing 100191, China
| |
Collapse
|
28
|
Park J, Kim J, Kim E, Won S, Kim WJ. Association between prenatal cadmium exposure and cord blood DNA methylation. ENVIRONMENTAL RESEARCH 2022; 212:113268. [PMID: 35405126 DOI: 10.1016/j.envres.2022.113268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/13/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Prenatal cadmium exposure is known to affect infant growth and organ development. Nonetheless, the role of DNA methylation in cadmium-related health effects has yet to be determined. To this end, we investigated the relationship between prenatal cadmium exposure and cord blood DNA methylation in Korean infants through an epigenome-wide association study. Cadmium concentrations in maternal blood during early and late pregnancy and in cord blood collected from newborns were measured using atomic adsorption spectrometry and DNA methylation analysis was conducted using HumanMethylationEPIC BeadChip kits. After adjusting for infant sex, maternal pregnancy body mass index, smoking status, and estimated leukocyte composition, we analyzed the association between CpG methylation and cadmium concentration in 364 samples. Among 835,252 CpG sites, maternal blood cadmium concentration in early pregnancy was significantly associated with two differentially methylated CpG sites, cg05537752 and cg24904393, which were annotated ATP9A and no gene, respectively. The study findings indicate that prenatal cadmium exposure is significantly associated with methylation statuses of several CpG sites and regions in Korean infants, especially during early pregnancy.
Collapse
Affiliation(s)
- Jaehyun Park
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| | - Esther Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Public Health Sciences, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea; RexSoft Corp, Seoul, South Korea.
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
29
|
Vuoti E, Palosaari S, Peräniemi S, Tervahauta A, Kokki H, Kokki M, Tuukkanen J, Lehenkari P. In utero deposition of trace elements and metals in tissues. J Trace Elem Med Biol 2022; 73:127042. [PMID: 35905605 DOI: 10.1016/j.jtemb.2022.127042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/14/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION All animals, including humans, are exposed to heavy metals which are known to accumulate in different tissues, especially in bone. During pregnancy, the maternal bone turnover is increased and the metals in the mother's body can be mobilized into the bloodstream. Heavy metals in maternal blood are known to pass through the placenta to the fetal blood and finally, deposited to bone tissue. However, there are no studies on the concentration of metals in the fetal solid tissues and until now, the rate of metal transfer from mother to fetus is not exactly known. MATERIALS AND METHODS Samples of the blood, liver, placenta, and three different bones were collected from 17 pregnant ewes and their 27 fetuses. The animals had no known exposure to heavy metals. The concentrations of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Sb, Sn, Sr, Te, Ti, Tl, V, and Zn were analyzed using ICP-MS. RESULTS AND DISCUSSION The concentration of Sb, Sn, Te, and Tl were under the detection limit in all the samples. The other metals were found in all maternal and fetal tissues, suggesting that all detectable metals cross the placenta. Blood concentrations were low compared to solid tissue concentrations. The concentrations of essential elements varied between maternal and fetal tissues, which could be explained by biological differences. The differences in concentrations of non-essential elements between the ewe and fetuses were smaller. The most significant differences were between maternal and fetal concentrations of Ba and Sr, which is at least partly explained by the mineralization degree of the bone. CONCLUSION Heavy metals accumulate in fetal solid tissues in sheep that are not directly exposed to heavy metals. Because of the differences in anatomy between human and sheep placenta, the accumulation in the tissue of human fetuses should be extrapolated cautiously. However, there might be some clinical relevance for fertile aged women who are exposed to heavy metals, such as women who work in the metal industry or who have undergone joint replacement surgery.
Collapse
Affiliation(s)
- Ella Vuoti
- Medical Faculty, Cancer and Translational Medicine Research Unit, University of Oulu, P.O. Box 5000, FI-90014, Finland.
| | - Sanna Palosaari
- Medical Faculty, Cancer and Translational Medicine Research Unit, University of Oulu, P.O. Box 5000, FI-90014, Finland; Medical Research Center, Oulu University and Oulu University Hospital, Oulu, Finland
| | - Sirpa Peräniemi
- University of Eastern Finland, School of Pharmacy, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Arja Tervahauta
- University of Eastern Finland, School of Pharmacy, P.O. Box 1627, FI-70210 Kuopio, Finland; University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Hannu Kokki
- University of Eastern Finland, School of Medicine, P.O. Box 1627, FI-70210 Kuopio, Finland
| | - Merja Kokki
- Kuopio University Hospital, Department of Anesthesia and Intensive Care Medicine, P.O. Box 100, FI-70029, Finland
| | - Juha Tuukkanen
- Medical Faculty, Cancer and Translational Medicine Research Unit, University of Oulu, P.O. Box 5000, FI-90014, Finland
| | - Petri Lehenkari
- Medical Faculty, Cancer and Translational Medicine Research Unit, University of Oulu, P.O. Box 5000, FI-90014, Finland; Medical Research Center, Oulu University and Oulu University Hospital, Oulu, Finland; Division of Orthopedic Surgery, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
30
|
Frazzoli C, Ruggieri F, Battistini B, Orisakwe OE, Igbo JK, Bocca B. E-WASTE threatens health: The scientific solution adopts the one health strategy. ENVIRONMENTAL RESEARCH 2022; 212:113227. [PMID: 35378120 DOI: 10.1016/j.envres.2022.113227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The aggressively extractive advanced technology industry thrives on intensive use of non-renewable resources and hyper-consumeristic culture. The environmental impact of its exponential growth means extreme mining, hazardous labour practices including child labour, and exposure burden to inorganic and organic hazardous chemicals for the environment and current and future human generations. Globally, processes such as in-country reduce, reuse and recycle have so far received less attention than outer-circle strategies like the uncontrolled dumping of e-waste in countries that are unprotected by regulatory frameworks. Here, in the absence of infrastructures for sound hazardous e-waste management, the crude recycling, open burning and dumping into landfills of e-waste severely expose people, animal and the environment. Along with economic, political, social, and cultural solutions to the e-waste global problem, the scientific approach based on risk analysis encompassing risk assessment, risk management and risk communication can foster a technical support to resist transgenerational e-waste exposure and health inequalities. This paper presents the latest public health strategies based on the use of integrated human and animal biomonitoring and appropriate biomarkers to assess and manage the risk of e-waste embracing the One Health approach. Advantages and challenges of integrated biomonitoring are described, along with ad-hoc biomarkers of exposure, effect and susceptibility with special focus on metals and metalloids. Indeed, the safe and sustainable management of novel technologies will benefit of the integration and coordination of human and animal biomonitoring.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Rivers State, Nigeria; African Centre of Excellence, Centre for Public Health and Toxicological Research, University of Port Harcourt, Rivers State, Nigeria
| | | | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
31
|
Domínguez-Morueco N, Pedraza-Díaz S, González-Caballero MDC, Esteban-López M, de Alba-González M, Katsonouri A, Santonen T, Cañas-Portilla A, Castaño A. Methylmercury Risk Assessment Based on European Human Biomonitoring Data. TOXICS 2022; 10:toxics10080427. [PMID: 36006106 PMCID: PMC9416112 DOI: 10.3390/toxics10080427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
A risk assessment (RA) was conducted to estimate the risk associated with methylmercury (MeHg) exposure of vulnerable European populations, using Human Biomonitoring (HBM) data. This RA was performed integrating published data from European HBM surveys and earlier EFSA approaches (EFSA 2012). Children/adolescents (3 to 17 years old) and women of childbearing age (18 to 50 years old) were selected as relevant study population groups for this RA. Two types of HBM datasets were selected: HBM studies (n = 18) with mercury (Hg) levels (blood and hair, total Hg and/or MeHg) in the general population in different EU countries and the DEMOCOPHES harmonized study in child–mother pairs (hair, total Hg) in 17 EU countries as a reference. Two approaches were included in the RA strategy: the first one was based on estimations of the fraction of children/adolescents and women of childbearing age, respectively, from the EU general population exceeding the HBM-I value established by the German Human Biomonitoring Commission, measured as Hazard Quotients (HQ); and the second approach was based on estimations of the fraction of the two population groups exceeding the Tolerable Weekly Intake (TWI) (or their equivalent to Tolerable Daily Intake (TDI)) defined by EFSA in 2012. The HQ approach showed that for both groups, the risk varies across EU countries and that some EU areas are close to or exceeding the exposure guidance values. This is the case of Spain and Portugal, which showed the highest HQ (GM and/or P95), probably due to their higher fish consumption. Results from the EFSA approach show that hair values of children/adolescents and women of childbearing age (both in selected HBM studies and in DEMOCOPHES study) are below the TDI of 1.9 µg/g; therefore, in general, the European population does not exceed the daily average/intake dose for MeHg and/or Hg. A possible risk underestimation was identified in our assessment since for many studies no data on P95 were available, causing loss of relevant information for risk characterization on the upper bound. In addition, data from other European countries also with high seafood consumption, such as France, Greece or Iceland, were not available. For this reason, further RA refinement is needed with harmonized and more widespread HBM data to account for differences in European exposure and associated risks, so that interventions to protect vulnerable citizens, can be applied.
Collapse
Affiliation(s)
- Noelia Domínguez-Morueco
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.D.-M.); (M.d.C.G.-C.); (M.E.-L.); (M.d.A.-G.); (A.C.)
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.D.-M.); (M.d.C.G.-C.); (M.E.-L.); (M.d.A.-G.); (A.C.)
- Correspondence: (S.P.-D.); (A.C.-P.)
| | - María del Carmen González-Caballero
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.D.-M.); (M.d.C.G.-C.); (M.E.-L.); (M.d.A.-G.); (A.C.)
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.D.-M.); (M.d.C.G.-C.); (M.E.-L.); (M.d.A.-G.); (A.C.)
| | - Mercedes de Alba-González
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.D.-M.); (M.d.C.G.-C.); (M.E.-L.); (M.d.A.-G.); (A.C.)
| | - Andromachi Katsonouri
- Cyprus State General Laboratory, Ministry of Health, P.O. Box 28648, Nicosia 2081, Cyprus;
| | - Tiina Santonen
- Finnish Institute of Occupational Health, P.O. Box 40, 00032 Työterveyslaitos, Finland;
| | - Ana Cañas-Portilla
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.D.-M.); (M.d.C.G.-C.); (M.E.-L.); (M.d.A.-G.); (A.C.)
- Correspondence: (S.P.-D.); (A.C.-P.)
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.D.-M.); (M.d.C.G.-C.); (M.E.-L.); (M.d.A.-G.); (A.C.)
| |
Collapse
|
32
|
Jagodić J, Pavlović S, Borković-Mitić S, Perović M, Miković Ž, Đurđić S, Manojlović D, Stojsavljević A. Examination of Trace Metals and Their Potential Transplacental Transfer in Pregnancy. Int J Mol Sci 2022; 23:8078. [PMID: 35897677 PMCID: PMC9330144 DOI: 10.3390/ijms23158078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
With the ever-growing concern for human health and wellbeing, the prenatal period of development requires special attention since fetuses can be exposed to various metals through the mother. Therefore, this study explored the status of selected toxic (Pb, Cd, Ni, As, Pt, Ce, Rb, Sr, U) and essential trace metals (Mn, Co, Cu, Zn, Se) in the umbilical cord (UC) sera, maternal sera, and placental tissue samples of 92 healthy women with normal pregnancies. A further aim focuses on the potential transplacental transfer of these trace metals. Based on the obtained levels of investigated elements in clinical samples, it was observed that all of the trace metals cross the placental barrier and reach the fetus. Furthermore, statistical analysis revealed significant differences in levels of toxic Ni, As, Cd, U, Sr, Rb, and essential Mn, Cu, and Zn between all three types of analyzed clinical samples. Correlation analysis highlighted As to be an element with levels that differed significantly between all tested samples. Principal component analysis (PCA) was used to enhance these findings. PCA demonstrated that Cd, Mn, Zn, Rb, Ce, U, and Sr were the most influential trace metals in distinguishing placenta from maternal and UC serum samples. As, Co, and Cu were responsible for the clustering of maternal serum samples, and PCA demonstrated that the Pt level in UC sera was responsible for the clustering of these samples. Overall, the findings of this study could contribute to a better understanding of transplacental transfer of these trace metals, and shed a light on overall levels of metal exposure in the population of healthy pregnant women and their fetuses.
Collapse
Affiliation(s)
- Jovana Jagodić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.J.); (S.Đ.); (D.M.)
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.P.); (S.B.-M.)
| | - Slavica Borković-Mitić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (S.P.); (S.B.-M.)
| | - Milan Perović
- Clinic for Gynecology and Obstetrics Narodni Front, Faculty of Medicine University of Belgrade, Kraljice Natalije 62, 11000 Belgrade, Serbia; (M.P.); (Ž.M.)
| | - Željko Miković
- Clinic for Gynecology and Obstetrics Narodni Front, Faculty of Medicine University of Belgrade, Kraljice Natalije 62, 11000 Belgrade, Serbia; (M.P.); (Ž.M.)
| | - Slađana Đurđić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.J.); (S.Đ.); (D.M.)
| | - Dragan Manojlović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.J.); (S.Đ.); (D.M.)
| | - Aleksandar Stojsavljević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.J.); (S.Đ.); (D.M.)
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
33
|
Stojsavljević A, Perović M, Nešić A, Miković Ž, Manojlović D. Levels of non-essential trace metals and their impact on placental health: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43662-43674. [PMID: 35426027 DOI: 10.1007/s11356-022-20205-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
According to recent research, even low levels of environmental chemicals, particularly heavy metals, can considerably disrupt placental homeostasis. This review aims to explore the profile of non-essential trace metals in placental tissues across the globe and to specify trace metal(s) that can be candidates for impaired placental health. Accordingly, we conducted an extensive survey on relevant databases of peer-reviewed papers published in the last two decades. Among a considerable number of non-essential trace metals, arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg) were identified as the most detrimental to placental health. Comparative analysis showed remarkable differences in placental levels of these trace metals worldwide. Based on current data reported across the globe, a median (min-max) range from 0.55 to 15 ng/g for placental As levels could be deemed safe. The placental Cd and Pb levels were markedly higher in smokers than in non-smokers. Occupationally exposed pregnant women had several orders of magnitude higher Cd, Pb, and Hg levels in placental tissues than non-occupationally exposed women. Also, we concluded that even low-level exposure to As, Cd, Pb, and Hg could be deleterious to proper fetal development. This review implies the need to reduce exposure to non-essential trace metals to preserve placental health and prevent numerous poor pregnancy outcomes. Overall, the information presented is expected to help plan future fundamental and applied investigations on the placental toxicity of As, Cd, Pb, and Hg.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia.
- Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia.
| | - Milan Perović
- Clinic for Gynecology and Obstetrics Narodni Front, Kraljice Natalije 62, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, dr Subotića starijeg 8, Belgrade, Serbia
| | - Andrijana Nešić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Željko Miković
- Clinic for Gynecology and Obstetrics Narodni Front, Kraljice Natalije 62, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, dr Subotića starijeg 8, Belgrade, Serbia
| | - Dragan Manojlović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
- South Ural State University, Lenin prospect 76, Chelyabinsk, Russia
| |
Collapse
|
34
|
Stojsavljević A, Rovčanin M, Miković Ž, Perović M, Jeremić A, Zečević N, Manojlović D. Analysis of essential, toxic, rare earth, and noble elements in maternal and umbilical cord blood. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37375-37383. [PMID: 35060029 DOI: 10.1007/s11356-021-18190-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Progressive industrialization in recent decades has contributed to the increase of metal levels in the environment, which has a dangerous impact on human health, primarily pregnant women. In this study, we aimed to compare levels of various elements in maternal and umbilical cord (UC) plasma samples collected from 125 healthy pregnant women, conduct correlation analysis among paired plasma samples, and compare our data with other populations worldwide. The study design included the following elements: essential (Mn, Co, Cu, Zn, Se, Mo), non-essential (Be, Al, Ni, As, Rb, Sr, Cd, Sb, Pb, U), rare earth (La, Pr, Ce, Nd, Sm, Eu, Gd, Dy, Ho, Er), and noble metals (Ru, Rh, Re, Pt). Levels of 30 elements were higher in maternal plasma than in UC plasma samples. However, no disparities at the statistically significant level were found for Be, Zn, Rb, Cd, Ce, and Ho. Correlation analysis among paired plasma samples revealed only positive/synergistic correlations of different strengths between most elements. Compared to other countries across the globe, our participants had considerably lower plasma levels of Zn and higher levels of Co, Ni, and As. This study provides not only a new and deeper comprehension, but also the first insight into the levels, correlation, distribution, and potential transplacental transfer of 30 elements.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
- Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| | - Marija Rovčanin
- Clinic for Gynecology and Obstetrics Narodni front, Kraljice Natalije 62, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, dr Subotića starijeg 8, Belgrade, Serbia
| | - Željko Miković
- Clinic for Gynecology and Obstetrics Narodni front, Kraljice Natalije 62, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, dr Subotića starijeg 8, Belgrade, Serbia
| | - Milan Perović
- Clinic for Gynecology and Obstetrics Narodni front, Kraljice Natalije 62, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, dr Subotića starijeg 8, Belgrade, Serbia
| | - Ana Jeremić
- Clinic for Gynecology and Obstetrics Narodni front, Kraljice Natalije 62, Belgrade, Serbia
| | - Nebojša Zečević
- Clinic for Gynecology and Obstetrics Narodni front, Kraljice Natalije 62, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, dr Subotića starijeg 8, Belgrade, Serbia
| | - Dragan Manojlović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia
- South Ural State University, Chelyabinsk, Lenin prospect 76, Russia
| |
Collapse
|
35
|
de Assis Araujo MS, Froes-Asmus CIR, de Figueiredo ND, Camara VM, Luiz RR, Prata-Barbosa A, Martins MM, Jacob SDC, dos Santos LMG, Vicentini Neto SA, de Rezende Filho JF, Amim Junior J. Prenatal Exposure to Metals and Neurodevelopment in Infants at Six Months: Rio Birth Cohort Study of Environmental Exposure and Childhood Development (PIPA Project). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4295. [PMID: 35409976 PMCID: PMC8998578 DOI: 10.3390/ijerph19074295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022]
Abstract
The PIPA Project is a prospective birth cohort study based in Rio de Janeiro, Brazil, whose pilot study was carried out between October 2017 and August 2018. Arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) concentrations were determined in maternal (n = 49) and umbilical cord blood (n = 46). The Denver Developmental Screening Test II (DDST-II) was applied in 50 six-month-old infants. Metals were detected in 100% of the mother and newborn samples above the limits of detection. Maternal blood lead concentrations were higher in premature newborns (GM: 5.72 µg/dL; p = 0.05). One-third of the infants (n = 17-35.4%) exhibited at least one fail in the neurodevelopment evaluation (fail group). Maternal blood arsenic concentrations were significantly (p = 0.03) higher in the "fail group" (GM: 11.85 µg/L) compared to infants who did not fail (not fail group) (GM: 8.47 µg/L). Maternal and umbilical cord blood arsenic concentrations were higher in all Denver Test's domains in the "fail group", albeit non-statistically significant, showing a tendency for the gross motor domain and maternal blood (p = 0.07). These findings indicate the need to further investigate the toxic effects of prenatal exposure to metals on infant neurodevelopment.
Collapse
Affiliation(s)
| | - Carmen Ildes Rodrigues Froes-Asmus
- Postgraduate Program in Perinatal Health, Faculty of Medicine, Maternity School of Rio de Janeiro, Federal University of Rio de Janeiro, Rio de Janeiro 22240-000, Brazil; (C.I.R.F.-A.); (N.D.d.F.); (A.P.-B.); (J.F.d.R.F.); (J.A.J.)
| | - Nataly Damasceno de Figueiredo
- Postgraduate Program in Perinatal Health, Faculty of Medicine, Maternity School of Rio de Janeiro, Federal University of Rio de Janeiro, Rio de Janeiro 22240-000, Brazil; (C.I.R.F.-A.); (N.D.d.F.); (A.P.-B.); (J.F.d.R.F.); (J.A.J.)
| | - Volney Magalhães Camara
- Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-592, Brazil; (V.M.C.); (R.R.L.)
| | - Ronir Raggio Luiz
- Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-592, Brazil; (V.M.C.); (R.R.L.)
| | - Arnaldo Prata-Barbosa
- Postgraduate Program in Perinatal Health, Faculty of Medicine, Maternity School of Rio de Janeiro, Federal University of Rio de Janeiro, Rio de Janeiro 22240-000, Brazil; (C.I.R.F.-A.); (N.D.d.F.); (A.P.-B.); (J.F.d.R.F.); (J.A.J.)
- D’Or Institute for Research & Education (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Marlos Melo Martins
- School Maternity Hospital, Federal University of Rio de Janeiro, Rio de Janeiro 22240-000, Brazil;
| | - Silvana do Couto Jacob
- Oswaldo Cruz Foundation, National Institute of Quality Control in Health, Rio de Janeiro 21040-900, Brazil; (S.d.C.J.); (L.M.G.d.S.); (S.A.V.N.)
| | - Lisia Maria Gobbo dos Santos
- Oswaldo Cruz Foundation, National Institute of Quality Control in Health, Rio de Janeiro 21040-900, Brazil; (S.d.C.J.); (L.M.G.d.S.); (S.A.V.N.)
| | - Santos Alves Vicentini Neto
- Oswaldo Cruz Foundation, National Institute of Quality Control in Health, Rio de Janeiro 21040-900, Brazil; (S.d.C.J.); (L.M.G.d.S.); (S.A.V.N.)
| | - Jorge Fonte de Rezende Filho
- Postgraduate Program in Perinatal Health, Faculty of Medicine, Maternity School of Rio de Janeiro, Federal University of Rio de Janeiro, Rio de Janeiro 22240-000, Brazil; (C.I.R.F.-A.); (N.D.d.F.); (A.P.-B.); (J.F.d.R.F.); (J.A.J.)
| | - Joffre Amim Junior
- Postgraduate Program in Perinatal Health, Faculty of Medicine, Maternity School of Rio de Janeiro, Federal University of Rio de Janeiro, Rio de Janeiro 22240-000, Brazil; (C.I.R.F.-A.); (N.D.d.F.); (A.P.-B.); (J.F.d.R.F.); (J.A.J.)
| |
Collapse
|
36
|
Cavalheiro Paulelli AC, Cesila CA, Devóz PP, Ruella de Oliveira S, Bianchi Ximenez JP, Pedreira Filho WDR, Barbosa F. Fundão tailings dam failure in Brazil: Evidence of a population exposed to high levels of Al, As, Hg, and Ni after a human biomonitoring study. ENVIRONMENTAL RESEARCH 2022; 205:112524. [PMID: 34883078 DOI: 10.1016/j.envres.2021.112524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND On November 5th, 2015, the Fundão mine tailings dam in Minas Gerais State, Brazil, failed, releasing more than 50 million m3 of mud, rich in toxic metals. After that, a massive environmental disaster began with the mud wave flowing more than 600 km, until the mouth of Doce River, in Espírito Santo State, and finally reaching the Atlantic Ocean. A vast area was contaminated, affecting the ecosystem and several communities. Despite the tremendous environmental disaster, little is known concerning the population's exposure to toxic elements yet. METHODS Thus, a cross-sectional study was for the first time conducted in three communities directly affected by the disaster (Regência, Povoação, and Campo Grande) in Espírito Santo State, to evaluate the levels of 11 chemical elements (Al, As, Cd, Co, Cu, Hg, Mn, Ni, Pb, Se, and Zn) in blood. Sample analysis (n = 300) was performed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). RESULTS Our data show high levels of exposure to Al, As, Hg, and Ni. Mean values in blood were 60 μg/L (ranging from 9 to 434 μg/L), 10.9 μg/L (ranging from 5.81 to 269 μg/L), 6.4 μg/L (ranging from 0.05 to 103 μg/L) and 2.7 μg/L (ranging from 0.08 to 21 μg/L) for Al, As, Hg and Ni, respectively. Moreover, after applying a multiple regression model, we found community, drinking water, fish, seafood consumption, and smoking habits associated with metal/metalloid levels in their body. Well and tap water intake were identified as important sources of exposure to aluminum and nickel. CONCLUSIONS Our findings represent health risks to the groups living in the areas affected by the tailings dam failure, calling for further studies to evaluate the potential health effects of high exposure to metals and remediation actions from public health Brazilian authorities.
Collapse
Affiliation(s)
- Ana Carolina Cavalheiro Paulelli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cibele Aparecida Cesila
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paula Pícoli Devóz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Silvana Ruella de Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo Bianchi Ximenez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Walter Dos Reis Pedreira Filho
- Fundação Jorge Duprat Figueiredo de Segurança e Medicina do Trabalho, Ministério do Trabalho e Previdência Social, São Paulo, SP, Brazil
| | - Fernando Barbosa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
37
|
Fragki S, Hoogenveen R, van Oostrom C, Schwillens P, Piersma AH, Zeilmaker MJ. Integrating in vitro chemical transplacental passage into a generic PBK model: A QIVIVE approach. Toxicology 2022; 465:153060. [PMID: 34871708 DOI: 10.1016/j.tox.2021.153060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
With the increasing application of cell culture models as primary tools for predicting chemical safety, the quantitative extrapolation of the effective dose from in vitro to in vivo (QIVIVE) is of increasing importance. For developmental toxicity this requires scaling the in vitro observed dose-response characteristics to in vivo fetal exposure, while integrating maternal in vivo kinetics during pregnancy, in particular transplacental transfer. Here the transfer of substances across the placental barrier, has been studied using the in vitro BeWo cell assay and six embryotoxic compounds of different kinetic complexity. The BeWo assay results were incorporated in an existing generic Physiologically Based Kinetic (PBK) model which for this purpose was extended with rat pregnancy. Finally, as a "proof of principle", the BeWo PBK model was used to perform a QIVIVE based on developmental toxicity as observed in various different in vitro toxicity assays. The BeWo results illustrated different transport profiles of the chemicals across the BeWo monolayer, allocating the substances into two distinct groups: the 'quickly-transported' and the 'slowly-transported'. BeWo PBK exposure simulations during gestation were compared to experimentally measured maternal blood and fetal concentrations and a reverse dosimetry approach was applied to translate in vitro observed embryotoxicity into equivalent in vivo dose-response curves. This approach allowed for a direct comparison of the in vitro dose-response characteristics as observed in the Whole Embryo Culture (WEC), and the Embryonic Stem Cell test (cardiac:ESTc and neural:ESTn) with in vivo rat developmental toxicity data. Overall, the in vitro to in vivo comparisons suggest a promising future for the application of such QIVIVE methodologies for screening and prioritization purposes of developmental toxicants. Nevertheless, the clear need for further improvements is acknowledged for a wider application of the approach in chemical safety assessment.
Collapse
Affiliation(s)
- Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Rudolf Hoogenveen
- Centre for Statistics, Informatics and Modelling, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Conny van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Paul Schwillens
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD, Utrecht, the Netherlands
| | - Marco J Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
38
|
Cao Y, Liang C, Shen L, Zhang Z, Jiang T, Li D, Zou W, Wang J, Zong K, Liang D, Ji D, Cao Y. The association between essential trace element (copper, zinc, selenium, and cobalt) status and the risk of early embryonic arrest among women undergoing assisted reproductive techniques. Front Endocrinol (Lausanne) 2022; 13:906849. [PMID: 36387879 PMCID: PMC9643704 DOI: 10.3389/fendo.2022.906849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Early embryonic arrest (EEA) leads to repeated cessation of fresh cycles among infertile women undergoing in vitro fertilization (IVF). Whether the levels of some essential trace elements [copper (Cu), zinc (Zn), selenium (Se) and cobalt (Co)] in the bodies of women are related to the risk of EEA warrants study. OBJECTIVE Our study aimed to investigate the associations of peripheral blood levels of Cu, Zn, Se, and Co and their mixtures with the risk of EEA. METHODS A total of 74 EEA cases (123 IVF cycles) and 157 controls (180 IVF cycles) from the reproductive center of the First Affiliated Hospital of Anhui Medical University in Hefei, China, between June 2017 and March 2020 were included in our study. Demographic and clinical data were collected from electronic medical records. Cu, Zn, Se, and Co levels were measured in blood samples collected on the day of oocyte retrieval when infertile women entered clinical treatment for the first time using an inductively coupled plasma mass spectrometer (ICP-MS). Generalized estimating equation (GEE) models were used to evaluate the associations of four essential trace element concentrations individually with the risk of EEA, and Bayesian kernel machine regression (BKMR) was used to explore the associations between four essential trace element mixtures and the risk of EEA. RESULTS Se concentrations of infertile women were significantly lower in the case group compared with the control group. Co levels were significantly higher in the case group compared with the control group. The differences in Cu and Zn concentrations between the two groups were not significant. Based on single-metal models, Co was positively associated with the risk of EEA before and after adjustment for all confounders (odd ratio (OR) = 1.72, 95% confidence interval (CI): 1.18-2.52; OR = 2.27, 95% CI: 1.37-3.77, respectively), and Se was negatively associated with the risk of EEA before adjustment for all confounders (OR = 0.18, 95% CI: 0.07-0.51). BKMR analyses showed that Se was significantly and negatively associated with the risk of EEA when all the other three metals (Cu, Zn, and Co) were fixed at the 25th, 50th, or 75th percentiles, whereas Zn displayed a significant and positive association with the risk of EEA when all the other three metals (Cu, Se and Co) were fixed at the 25th, 50th, or 75th percentiles. Co did not show any effect on the risk of EEA when all the other metals (Cu, Zn, and Se) were fixed at the 25th, 50th, or 75th percentiles. In addition, an increasing trend of the joint effect of four essential trace elements on the risk of EEA was found, although it was not statistically significant. CONCLUSION The levels of essential trace elements (Cu, Zn, Se, and Co) might correlate with the risk of EEA to some extent. The present study might provide a real-world perspective on the relationship between essential trace elements and the risk of EEA when considering them as a single element or as mixtures.
Collapse
Affiliation(s)
- Yu Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Chunmei Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lingchao Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Zhikang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Danyang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jieyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Kai Zong
- Technical Center of Hefei Customs District, Hefei, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
- *Correspondence: Dongmei Ji, ; Yunxia Cao,
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
- *Correspondence: Dongmei Ji, ; Yunxia Cao,
| |
Collapse
|
39
|
Sáez C, Sánchez A, Yusà V, Dualde P, Fernández SF, López A, Corpas-Burgos F, Aguirre MÁ, Coscollà C. Health Risk Assessment of Exposure to 15 Essential and Toxic Elements in Spanish Women of Reproductive Age: A Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13012. [PMID: 34948623 PMCID: PMC8701213 DOI: 10.3390/ijerph182413012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
This case study investigates the exposure of 119 Spanish women of reproductive age to 5 essential (Co, Cu, Mn, V, Zn) and 10 toxic (Ba, Be, Cs, Ni, Pb, Pt, Sb, Th, Al, U) elements and assesses their risk. The essential elements (Co, Cu, Mn, V, and Zn) showed average concentrations (GM: geometric mean) of 0.8, 35, 0.5, 0.2, and 347 μg/L, respectively. Five of the toxic elements (Ba, Cs, Ni, Al, U) exhibited detection frequencies of 100%. The GM concentrations of the novel toxic elements were 12 μg/L (Al), 0.01 μg/L (Pt), 0.02 μg/L (U), 0.12 μg/L (Th), 0.009 μg/L (Be) and 4 μg/L (Cs). The urine analysis was combined with a survey to assess any variations between subgroups and potential predictors of exposure to elements in the female population. Significant differences were obtained between the rural and urban areas studied for the toxic element Cs, with higher levels found in mothers living in urban areas. In relation to diet, statistically significantly higher levels of essential (Cu) and toxic (Ba) elements were detected in women with a high consumption of fish, while mothers who consumed a large quantity of legumes presented higher levels of the toxic element Ni (p = 0.0134). In a risk-assessment context, hazard quotients (HQs) greater than 1 were only observed for the essential elements Zn and Cu in P95. No deficiency was found regarding the only essential element for which a biomonitoring equivalent for nutritional deficit is available (Zn). For the less-studied toxic elements (Al, Pt, U, Th, Be, and Cs), HQs were lower than 1, and thus, the health risk due to exposure to these elements is expected to be low for the female population under study.
Collapse
Affiliation(s)
- Carmen Sáez
- Public Health Laboratory of Alicante, 6 Plaza de España, 03010 Alicante, Spain; (C.S.); (A.S.)
- Department of Analytical Chemistry, Nutrition and Food Science, Institute of Materials, University of Alicante, 03080 Alicante, Spain;
| | - Alfredo Sánchez
- Public Health Laboratory of Alicante, 6 Plaza de España, 03010 Alicante, Spain; (C.S.); (A.S.)
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
- Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020 Valencia, Spain
- Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
| | - Sandra F. Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
- Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
| | - Francisca Corpas-Burgos
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
| | - Miguel Ángel Aguirre
- Department of Analytical Chemistry, Nutrition and Food Science, Institute of Materials, University of Alicante, 03080 Alicante, Spain;
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
| |
Collapse
|
40
|
Tindula G, Mukherjee SK, Ekramullah SM, Arman DM, Biswas SK, Islam J, Obrycki JF, Christiani DC, Liang L, Warf BC, Mazumdar M. Parental metal exposures as potential risk factors for spina bifida in Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 157:106800. [PMID: 34358915 PMCID: PMC9008873 DOI: 10.1016/j.envint.2021.106800] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neural tube defects are a pressing public health concern despite advances in prevention from folic acid-based strategies. Numerous chemicals, in particular arsenic, have been associated with neural tube defects in animal models and could influence risk in humans. OBJECTIVES We investigated the relationship between parental exposure to arsenic and 17 metals and risk of neural tube defects (myelomeningocele and meningocele) in a case control study in Bangladesh. METHODS Exposure assessment included analysis of maternal and paternal toenail samples using inductively coupled plasma mass spectrometry (ICP-MS). A total of 278 participants (155 cases and 123 controls) with data collected from 2016 to 2020 were included in the analysis. RESULTS In the paternal models, a one-unit increase in the natural logarithm of paternal toenail arsenic was associated with a 74% (odds ratio: 1.74, 95% confidence interval: 1.26-2.42) greater odds of having a child with spina bifida, after adjusting for relevant covariates. Additionally, paternal exposure to aluminum, cobalt, chromium, iron, selenium, and vanadium was associated with increased odds of having a child with spina bifida in the adjusted models. In the maternal models, a one-unit increase in the natural logarithm of maternal toenail selenium and zinc levels was related to a 382% greater (odds ratio: 4.82, 95% confidence interval: 1.32-17.60) and 89% lower (odds ratio: 0.11, 95% confidence interval: 0.03-0.42) odds of having a child with spina bifida in the adjusted models, respectively. Results did not suggest an interaction between parental toenail metals and maternal serum folate. DISCUSSION Parental toenail levels of numerous metals were associated with increased risk of spina bifida in Bangladeshi infants. Paternal arsenic exposure was positively associated with neural tube defects in children and is of particular concern given the widespread arsenic poisoning of groundwater resources in Bangladesh and the lack of nutritional interventions aimed to mitigate paternal arsenic exposure. The findings add to the growing body of literature of the impact of metals, especially paternal environmental factors, on child health.
Collapse
Affiliation(s)
- Gwen Tindula
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States
| | - Sudipta Kumer Mukherjee
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - Sheikh Muhammad Ekramullah
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - D M Arman
- Department of Paediatric Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - Subrata Kumar Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka 1000, Bangladesh
| | - Joynul Islam
- Department of Clinical Neurosurgery, National Institute of Neurosciences and Hospital (NINS), Sher-e-Bangla Nagar, Agargoan, Dhaka 1207, Bangladesh
| | - John F Obrycki
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States
| | - Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, United States; Department of Neurology, Harvard Medical School, 25 Shattuck St, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, United States.
| |
Collapse
|
41
|
Selected Metal Concentration in Maternal and Cord Blood. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312407. [PMID: 34886132 PMCID: PMC8656657 DOI: 10.3390/ijerph182312407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022]
Abstract
Essential and non-essential elements deficiencies may lead to various birth complications. The aim of this paper was to determine calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), lead (Pb), strontium (Sr), and zinc (Zn) concentrations in maternal blood and cord blood. Whole blood and cord blood samples collected from pregnant women (n = 136) were analyzed for the concentration of the elements by spectrophotometric atomic absorption in inductively coupled argon plasma (ICP-OES). The results showed that Ca, Pb, and Sr concentrations were similar in maternal and cord blood, while Fe and K levels were higher in cord blood than in maternal blood. The cord blood Cu, Na, and Zn concentrations were lower than those in maternal blood, suggesting transplacental transfer of these elements were limited. Moreover, checking the influence of studied elements on the anthropometric parameters of the newborns, we found that the highest number of associations was between Cu in cord blood. Due to the fact that the pregnant women were healthy, and the newborns were without any disorders, we suggest that the values obtained in our study are normal values of studied elements in whole blood and cord blood in patients from Poland.
Collapse
|
42
|
Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int J Hyg Environ Health 2021; 238:113855. [PMID: 34655857 DOI: 10.1016/j.ijheh.2021.113855] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Lead (Pb) is a ubiquitous environmental pollutant and a potent toxic compound. Humans are exposed to Pb through inhalation, ingestion, and skin contact via food, water, tobacco smoke, air, dust, and soil. Pb accumulates in bones, brain, liver and kidney. Fetal exposure occurs via transplacental transmission. The most critical health effects are developmental neurotoxicity in infants and cardiovascular effects and nephrotoxicity in adults. Pb exposure has been steadily decreasing over the past decades, but there are few recent exposure data from the general European population; moreover, no safe Pb limit has been set. Sensitive biomarkers of exposure, effect and susceptibility, that reliably and timely indicate Pb-associated toxicity are required to assess human exposure-health relationships in a situation of low to moderate exposure. Therefore, a systematic literature review based on PubMed entries published before July 2019 that addressed Pb exposure and biomarkers of effect and susceptibility, neurodevelopmental toxicity, epigenetic modifications, and transcriptomics was conducted. Finally included were 58 original papers on Pb exposure and 17 studies on biomarkers. The biomarkers that are linked to Pb exposure and neurodevelopment were grouped into effect biomarkers (serum brain-derived neurotrophic factor (BDNF) and serum/saliva cortisol), susceptibility markers (epigenetic markers and gene sequence variants) and other biomarkers (serum high-density lipoprotein (HDL), maternal iron (Fe) and calcium (Ca) status). Serum BDNF and plasma HDL are potential candidates to be further validated as effect markers for routine use in HBM studies of Pb, complemented by markers of Fe and Ca status to also address nutritional interactions related to neurodevelopmental disorders. For several markers, a causal relationship with Pb-induced neurodevelopmental toxicity is likely. Results on BDNF are discussed in relation to Adverse Outcome Pathway (AOP) 13 ("Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities") of the AOP-Wiki. Further studies are needed to validate sensitive, reliable, and timely effect biomarkers, especially for low to moderate Pb exposure scenarios.
Collapse
|
43
|
Li K, Wang B, Yan L, Jin Y, Li Z, An H, Ren M, Pang Y, Lan C, Chen J, Zhang Y, Zhang L, Ye R, Li Z, Ren A. Associations between blood heavy metal(loid)s and serum heme oxygenase-1 in pregnant women: Do their distribution patterns matter? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117249. [PMID: 33975215 DOI: 10.1016/j.envpol.2021.117249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The relationship between heavy metal(loid)s exposure and oxidative stress damage is a matter of research interest. Our study aimed to investigate the distribution patterns of the nine heavy metal(loid)s in blood of pregnant women, including four toxic heavy metal(loid)s [arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg)] and five typical heavy metal(loid)s [manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn), and selenium (Se)] in blood. Blood samples of 348 women were collected and their concentrations in the serum (sr) and blood cells (bc) were measured, as well as serum heme oxygenase-1 (HO-1) (an oxidative stress marker). Total blood (tb) concentrations of these metal(loid)s and serum-to-blood cell concentration ratios (sr/bc) were further calculated. We found Cu mainly accumulated in the serum compared to the blood cells with Cusr/bc = 2.30, whereas Co, Se, and As evenly distributed between these two fractions. Other metal(loid)s mainly concentrated in the blood cells. Cosr, Cusr, Cubc, Mnbc, Znbc, Cdbc, Cotb, Cutb, Mntb, Zntb, Cdtb, and Cusr/bc were negatively associated with serum HO-1, whereas Assr, Asbc, Astb, Znsr/bc, Cdsr/bc, and Hgsr/bc were positively, indicating of their potential toxicity. We concluded that the distribution patterns of blood heavy metal(loid)s, in particular for Cd, Hg and Zn, which either increased in serum or decreased in blood cells, might be associated with elevated serum oxidative stress, should be considered in environmental health assessments.
Collapse
Affiliation(s)
- Kexin Li
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, PR China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China.
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yu Jin
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Zhiyi Li
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, PR China
| | - Hang An
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Mengyuan Ren
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yiming Pang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Changxin Lan
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Junxi Chen
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Yali Zhang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Rongwei Ye
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| |
Collapse
|
44
|
Weyde KVF, Olsen AK, Duale N, Kamstra JH, Skogheim TS, Caspersen IH, Engel SM, Biele G, Xia Y, Meltzer HM, Aase H, Villanger GD. Gestational blood levels of toxic metal and essential element mixtures and associations with global DNA methylation in pregnant women and their infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147621. [PMID: 34000534 DOI: 10.1016/j.scitotenv.2021.147621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pregnant women and their fetuses are exposed to multiple toxic metals that together with variations in essential element levels may alter epigenetic regulation, such as DNA methylation. OBJECTIVES The aim of the study was to investigate the associations between gestational levels of toxic metals and essential elements and mixtures thereof, with global DNA methylation levels in pregnant women and their newborn children. METHODS Using 631 mother-child pairs from a prospective birth cohort (The Norwegian Mother, Father and Child Cohort Study), we measured maternal blood concentration (gestation week ~18) of five toxic metals and seven essential elements. We investigated associations as individual exposures and two-way interactions, using elastic net regression, and total mixture, using quantile g-computation, with blood levels of 5-methylcytocine (5mC) and 5-hydroxymethylcytosine (5hmC) in mothers during pregnancy and their newborn children (cord blood). Multiple testing was adjusted for using the Benjamini and Hochberg false discovery rate (FDR) approach. RESULTS The most sensitive marker of DNA methylation appeared to be 5mC levels. In pregnant mothers, elastic net regression indicated associations between 5mC and selenium and lead (non-linear), while in newborns results indicated relationships between maternal selenium, cobalt (non-linear) and mercury and 5mC, as well as copper (non-linear) and 5hmC levels. Several possible two-way interactions were identified (e.g. arsenic and mercury, and selenium and maternal smoking in newborns). None of these findings met the FDR threshold for multiple testing. No net effect was observed in the joint (mixture) exposure-approach using quantile g-computation. CONCLUSION We identified few associations between gestational levels of several toxic metals and essential elements and global DNA methylation in pregnant mothers and their newborn children. As DNA methylation dysregulation might be a key mechanism in disease development and thus of high importance for public health, our results should be considered as important candidates to investigate in future studies.
Collapse
Affiliation(s)
| | | | - Nur Duale
- Norwegian Institute of Public Health, Oslo, Norway
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | | | | | - Stephanie M Engel
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Guido Biele
- Norwegian Institute of Public Health, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Heidi Aase
- Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
45
|
Mohammadi-Moghadam F, Karami Horestani M, Nourmoradi H, Heidari M, Sadeghi M, Ahmadi A, Fadaei A, Hemati S, Bagherzadeh F. Toxic and essential elements in drinking water, blood, hair and intestinal tissues of ulcerative colitis patients: probabilistic health risk assessment for drinking water consumers. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1895840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fazel Mohammadi-Moghadam
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Karami Horestani
- Department of Gastroenterology and Hepatology, Shahrekord University of Medical Sciences, Shahrkord, Iran
| | - Heshmatollah Nourmoradi
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidari
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Sadeghi
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Ahmadi
- Department of Epidemiology, Modeling in Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abdolmajid Fadaei
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sara Hemati
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farideh Bagherzadeh
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
46
|
Ojeda ML, Nogales F, Romero-Herrera I, Carreras O. Fetal Programming Is Deeply Related to Maternal Selenium Status and Oxidative Balance; Experimental Offspring Health Repercussions. Nutrients 2021; 13:nu13062085. [PMID: 34207090 PMCID: PMC8233903 DOI: 10.3390/nu13062085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nutrients consumed by mothers during pregnancy and lactation can exert permanent effects upon infant developing tissues, which could represent an important risk factor for diseases during adulthood. One of the important nutrients that contributes to regulating the cell cycle and tissue development and functionality is the trace element selenium (Se). Maternal Se requirements increase during gestation and lactation. Se performs its biological action by forming part of 25 selenoproteins, most of which have antioxidant properties, such as glutathione peroxidases (GPxs) and selenoprotein P (SELENOP). These are also related to endocrine regulation, appetite, growth and energy homeostasis. In experimental studies, it has been found that low dietary maternal Se supply leads to an important oxidative disruption in dams and in their progeny. This oxidative stress deeply affects gestational parameters, and leads to intrauterine growth retardation and abnormal development of tissues, which is related to endocrine metabolic imbalance. Childhood pathologies related to oxidative stress during pregnancy and/or lactation, leading to metabolic programing disorders like fetal alcohol spectrum disorders (FASD), have been associated with a low maternal Se status and intrauterine growth retardation. In this context, Se supplementation therapy to alcoholic dams avoids growth retardation, hepatic oxidation and improves gestational and breastfeeding parameters in FASD pups. This review is focused on the important role that Se plays during intrauterine and breastfeeding development, in order to highlight it as a marker and/or a nutritional strategy to avoid diverse fetal programming disorders related to oxidative stress.
Collapse
|
47
|
Gong L, Yang Q, Liu CWB, Wang X, Zeng HL. Assessment of 12 Essential and Toxic Elements in Whole Blood of Pregnant and Non-pregnant Women Living in Wuhan of China. Biol Trace Elem Res 2021; 199:2121-2130. [PMID: 32780203 DOI: 10.1007/s12011-020-02337-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Exposures to toxic trace elements and deficiencies of essential elements during pregnancy are associated to various birth complications. Assessment of the trace elements in pregnant women living in specific areas is important for biomonitoring. A total of 196 healthy pregnant women absent of pregnancy complications living in Wuhan of China and 210 healthy non-pregnant women were enrolled. The whole blood were collected. The toxic element chromium (Cr), arsenic (As), cadmium (Cd), mercury (Hg), thallium (Tl), and lead (Pb) and essential elements magnesium (Mg), calcium (Ca), manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn) were determined by using a inductively coupled plasma mass spectrometry (ICP-MS)-based method. All the metal(loid)s, except for Cd, Hg, and Tl, showed different levels in whole blood of the pregnant women compared with the non-pregnant women (p < 0.05), among which Mg, Fe, As, and Pb were lower while Ca, Cr, Mn, Cu, and Zn were higher. Moreover, whole blood levels of Mg, Mn, Fe, Cu, and Zn showed significant variations among different gestational ages, while As and Cd showed significant variations among different maternal ages. In addition, Fe-Mg, Fe-Zn, Cu-Ca, and Hg-As were found to be correlated positively in whole blood of the pregnant women, while Fe-Ca, Zn-Ca, and Fe-Cu were correlated negatively. The systematic information of toxic and essential elements in whole blood of pregnant women living in Wuhan of China can provide important guidance for the supplementation of essential elements during pregnancy and for biomonitoring of environmental overexposure.
Collapse
Affiliation(s)
- Lu Gong
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Yang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Chang-Wen-Bo Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
48
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
49
|
Martínez MÁ, González N, Martí A, Marquès M, Rovira J, Kumar V, Nadal M. Human biomonitoring of bisphenol A along pregnancy: An exposure reconstruction of the EXHES-Spain cohort. ENVIRONMENTAL RESEARCH 2021; 196:110941. [PMID: 33647302 DOI: 10.1016/j.envres.2021.110941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed at reconstructing the exposure to bisphenol (BPA) of 60 pregnant women from the EXHES-Spain cohort. A biomonitoring study was conducted by determining BPA levels in urine samples over the three trimesters of pregnancy. Moreover, the correlations between BPA levels and the role of different potential exposure sources, with special emphasis on the dietary intake, were also studied. Urine samples were subjected to dispersive liquid-liquid microextraction and the subsequent analysis via gas chromatography-mass spectrometry. BPA was detected in 76% of the urine samples. A significant decrease of urinary BPA levels was observed along pregnancy, as mean concentrations of creatinine-adjusted BPA were 4.64, 4.84 and 2.51 μg/g in the first, second and third trimester, respectively. This decrease was essentially associated with changes in the dietary habits of the pregnant women, including a lower intake of canned food and drinks. However, the potential role of other pregnancy-related biochemical or physiological factors should not be disregarded. Very interestingly, significant differences in urine BPA levels were found according to the fruit consumption pattern, as women who ate more citrus fruits showed lower BPA concentrations in urine. The reconstructed exposure to BPA was estimated in 0.072, 0.069 and 0.038 μg BPA/kg of body weight/day in the first, second and third trimesters, respectively. These values are far below the temporary tolerable daily intake (t-TDI) established by the EFSA.
Collapse
Affiliation(s)
- María Ángeles Martínez
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana. Hospital Sant Joan de Reus, Reus, Spain. Institut d'Investigació Pere Virgili (IISPV). Reus, Spain
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Anna Martí
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
50
|
Naderi M, Puar P, Zonouzi-Marand M, Chivers DP, Niyogi S, Kwong RWM. A comprehensive review on the neuropathophysiology of selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144329. [PMID: 33445002 DOI: 10.1016/j.scitotenv.2020.144329] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 05/25/2023]
Abstract
As an essential micronutrient, selenium (Se) exerts its biological function as a catalytic entity in a variety of enzymes. From a toxicological perspective, however, Se can become extremely toxic at concentrations slightly above its nutritional levels. Over the last few decades, there has been a growing level of concern worldwide regarding the adverse effects of both inorganic and organic Se compounds on a broad spectrum of neurological functions. A wealth of evidence has shown that exposure to excess Se may compromise the normal functioning of various key proteins, neurotransmitter systems (the glutamatergic, dopaminergic, serotonergic, and cholinergic systems), and signaling molecules involved in the control and regulation of cognitive, behavioral, and neuroendocrine functions. Elevated Se exposure has also been suspected to be a risk factor for the development of several neurodegenerative and neuropsychiatric diseases. Nonetheless, despite the various deleterious effects of excess Se on the central nervous system (CNS), Se neurotoxicity and negative behavioral outcomes are still disregarded at the expense of its beneficial health effects. This review focuses on the current state of knowledge regarding the neurobehavioral effects of Se and discusses its potential mode of action on different aspects of the central and peripheral nervous systems. This review also provides a brief history of Se discovery and uses, its physicochemical properties, biological roles in the CNS, environmental occurrence, and toxicity. We also review potential links between exposure to different forms of Se compounds and aberrant neurobehavioral functions in humans and animals, and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Pankaj Puar
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | | |
Collapse
|