1
|
Jordan A, Nothacker J, Paucke V, Hager KH, Hueber S, Karimzadeh A, Kötter T, Löffler C, Müller BS, Tajdar D, Lühmann D, Scherer M, Schäfer I. Association Between Self-Reported Protective Behavior and Heat-Associated Health Complaints Among Patients With Chronic Diseases in Primary Care: Results of the CLIMATE Pilot Cohort Study. JMIR Public Health Surveill 2024; 10:e58711. [PMID: 39496153 DOI: 10.2196/58711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND As a result of climate change, exposure to high temperatures is becoming more common, even in countries with temperate climates. For patients with chronic diseases, heat poses significant health risks. Empowering patients is a crucial element in protecting the population from the adverse effects of heat. In this context, self-reports of protective behavior are often used to gain a mutual understanding of patients' issues. However, the extent to which self-reported behavior is associated with health complaints remains unclear. OBJECTIVE This study aims to describe the association between light to moderate heat and health complaints in everyday life, and to analyze whether self-reported protective behavior and related psychosocial factors are linked to these complaints. METHODS We conducted a pilot cohort study using internet climate data merged with an online survey of patients with chronic diseases recruited through general practitioner practices. Patients were eligible if they were 18 years or older and had at least one chronic disease. The heat was modeled using temperature and humidity data. Health complaints were assessed through up to 7 follow-up evaluations on the hottest day of each week during the observation period. Data were analyzed using 3 nested models with mixed effects multivariable linear regression, adjusting for random effects at the climate measuring station and participant levels. Model 1 included heat exposure, sociodemographic data, and chronic diseases. Model 2 added protective behavior and health literacy, while model 3 incorporated self-efficacy and somatosensory amplification (ie, the tendency to catastrophize normal bodily sensations such as insect bites). RESULTS Of the 291 eligible patients, 61 (21.0%) participated in the study, providing 294 observations. On average, participants were 61 (SD 14) years old, and 31 (51%) were men. The most prevalent conditions were cardiovascular diseases (n=23, 38%) and diabetes mellitus (n=20, 33%). The most commonly reported symptoms were tiredness/fatigue (232/294 observations, 78.9%) and shortness of breath (142/294 observations, 48.3%). Compared with temperatures of 27°C or lower, a heat index between over 27°C and 32°C (β=1.02, 95% CI 0.08-1.96, P=.03) and over 32°C (β=1.35, 95% CI 0.35-2.35, P=.008) were associated with a higher symptom burden. Lower health literacy (β=-0.25, 95% CI -0.49 to -0.01, P=.04) and better self-reported protective behavior (β=0.65, 95% CI 0.29-1.00, P<.001) were also linked to increased symptom burden but lost statistical significance in model 3. Instead, lower self-efficacy (β=-0.39, 95% CI -0.54 to -0.23, P<.001) and higher somatosensory amplification (β=0.18, 95% CI 0.07-0.28, P=.001) were associated with a higher symptom burden. CONCLUSIONS Compared with colder weather, light and moderate heat were associated with more severe health complaints. Symptom burden was lower in participants with higher self-efficacy and less somatosensory amplification. Self-reported protective behavior was not linked to a lower symptom burden. Instead, we found that patients who tended to catastrophize normal bodily sensations reported both better protective behavior and a higher symptom burden simultaneously. TRIAL REGISTRATION ClinicalTrials.gov NCT05961163; https://clinicaltrials.gov/ct2/show/NCT05961163.
Collapse
Affiliation(s)
- Arne Jordan
- Institute and Outpatients Clinic of General Practice/Primary Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Nothacker
- Institute and Outpatients Clinic of General Practice/Primary Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valentina Paucke
- Institute and Outpatients Clinic of General Practice/Primary Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Heinz Hager
- Institute of General Practice and Palliative Care, Hannover Medical School, Hannover, Germany
| | - Susann Hueber
- Institute of General Practice, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arian Karimzadeh
- Institute of Family Medicine and General Practice, University Hospital Bonn, Bonn, Germany
| | - Thomas Kötter
- Institute of Family Medicine, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Christin Löffler
- Institute of General Practice, Rostock University Medical Center, Rostock, Germany
| | | | - Daniel Tajdar
- Institute and Outpatients Clinic of General Practice/Primary Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar Lühmann
- Institute and Outpatients Clinic of General Practice/Primary Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Scherer
- Institute and Outpatients Clinic of General Practice/Primary Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingmar Schäfer
- Institute and Outpatients Clinic of General Practice/Primary Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Mou P, Qu H, Guan J, Yao Y, Zhang Z, Dong J. Extreme temperature events, functional dependency, and cardiometabolic multimorbidity: Insights from a national cohort study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117013. [PMID: 39241607 DOI: 10.1016/j.ecoenv.2024.117013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Extreme temperature events (ETEs), including heatwaves and cold spells, are attracting increasing attention because of their impacts on human health. However, the association between ETEs and cardiometabolic multimorbidity (CMM) and the role of functional dependency in this relationship remain unclear. METHODS A prospective cohort study was conducted using data from the China Health and Retirement Longitudinal Study (CHARLS) from 2011 to 2020, considering 12 definitions each for heatwaves and cold spells, and three levels of functional dependency. Mixed Cox models with time-varying variables were used to comprehensively assess the independent and combined effects of ETEs and functional dependency on CMM. Additionally, subgroup analyses were conducted to investigate whether the relationship between ETEs and CMM was modified by the baseline characteristics. RESULTS Heatwave and cold spell exposures were associated with an increased risk of CMM (HR range: 1.028-1.102 and 1.046-1.187, respectively). Compared to participants with normal functional abilities, the risk of CMM increased with higher levels of functional dependency (HR range: 1.938-2.185). ETEs exposure and functional dependency are jointly associated with CMM risk. Participants with high-intensity ETEs exposure and high functional dependency had the greatest risk of developing CMM. Participants aged 60 and above were more susceptible to the effects of ETEs on CMM. Additionally, urban residents and those in northern regions were more vulnerable to heatwaves. CONCLUSION Both ETEs exposure and functional dependency increase the risk of developing CMM. Participants with functional dependency exposed to high-intensity ETEs faced the highest risk of developing CMM. These findings highlight the significant impact of ETEs on CMM and the importance of protecting vulnerable populations during periods of extreme temperature.
Collapse
Affiliation(s)
- Pengsen Mou
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China
| | - Huiyan Qu
- Yichang Center for Disease Control and Prevention, Yichang, PR China
| | - Jiaxin Guan
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China
| | - Yuxin Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China
| | - Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping, Shenyang 110001, PR China.
| | - Jing Dong
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang 110122, PR China.
| |
Collapse
|
3
|
Wang S, Lei Y, Wang X, Ma K, Wang C, Sun C, Han T. Association between temperatures and type 2 diabetes: A prospective study in UK Biobank. Diabetes Res Clin Pract 2024; 215:111817. [PMID: 39128563 DOI: 10.1016/j.diabres.2024.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE This study aims to prospectively examine the association between temperatures and the occurrence of type 2 diabetes (T2D). METHODS We used the CPH models to analyze 103,215 non-diabetic participants in the UK Biobank cohort who answered questions about workplace temperature, to evaluate the survival relationship, and the interaction effects of working environmental temperature and T2D-related genetic risk scores (GRS) on the occurrence of T2D. The occurrence of T2D was assessed by hospital inpatient records. The weighted T2D-related GRS were calculated. RESULTS During 1,355,200.6 person-years follow-up, a total of 2436 participants were documented as having diagnosed T2D. After adjustment, compared to the comfortable group, the participants working in non-comfortable environmental temperature had greater risk of T2D (HR: 1.27, 95 %CI: 1.04 to 1.55, for cold; HR: 1.32, 95 %CI: 1.17 to 1.48 for hot; HR: 1.51, 95 %CI: 1.38 to 1.65 for alternate). Similarly, individuals exposed to different levels of genetic risk scores in alternating hot and cold work environments had a higher risk of developing type 2 diabetes. CONCLUSIONS This study found working in single non-comfortable environmental temperatures was associated with greater risk of T2D occurrence, and exposure to alternating environmental temperatures had the highest risk of range and severity.
Collapse
Affiliation(s)
- ShengYuan Wang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, PR China
| | - YaTing Lei
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, PR China
| | - XiaoLi Wang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Kun Ma
- Department of Hygiene Toxicology, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Cheng Wang
- Department of Environmental Health, School of Public Health, Harbin Medical University, Harbin, PR China
| | - ChangHao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China.
| | - TianShu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150081, PR China.
| |
Collapse
|
4
|
Carrión D, Rush J, Colicino E, Just AC. Residential segregation and summertime air temperature across 13 northeastern U.S. states: Potential implications for energy burden. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2024; 19:084005. [PMID: 39329068 PMCID: PMC11423957 DOI: 10.1088/1748-9326/ad5b77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
High ambient summertime temperatures are an increasing health concern with climate change. This is a particular concern for minoritized households in the United States, for which differential energy burden may compromise adaptive capacity to high temperatures. Our research question was: Do minoritized groups experience hotter summers than the area average, and do non-Hispanic white people experience cooler summers? Using a fine-scaled spatiotemporal air temperature model and U.S. census data, we examined local (within-county) differences in warm season cooling degree days (CDDs) by ethnoracial group as a proxy for local energy demand for space cooling across states of the northeast and mid-Atlantic U.S. in 2003-2019. Using state-specific regression models adjusted for year and county, we found that Black and Latino people consistently experienced more CDDs, non-Hispanic white people experienced fewer CDDs, and Asian populations showed mixed results. We also explored a concentration-based measure of residential segregation for each ethnoracial group as one possible pathway towards temperature disparities. We included the segregation measure as a smooth term in a regression model adjusted for county and year. The results were nonlinear, but higher concentrations of white people were associated with lower annual CDDs and higher concentrations of Latino people were associated with higher annual CDDs than the county average. Concentrations for Black and Asian people were nonmonotonic, sometimes with bowed associations. These findings suggest that present-day residential segregation, as modeled by spatially smoothed ethnoracial subgroup concentrations, may contribute to summertime air temperature disparities and influence adaptive capacity. We hope these findings can support place-based interventions, including targeting of energy insecurity relief programs.
Collapse
Affiliation(s)
- Daniel Carrión
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT, United States
- Yale Center on Climate Change and Health, Yale University School of Public Health, New Haven, CT, United States
| | | | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Allan C Just
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States
- Institute at Brown for Environment and Society, Brown University, Providence, RI, United States
| |
Collapse
|
5
|
Kenny GP, Tetzlaff EJ, Journeay WS, Henderson SB, O’Connor FK. Indoor overheating: A review of vulnerabilities, causes, and strategies to prevent adverse human health outcomes during extreme heat events. Temperature (Austin) 2024; 11:203-246. [PMID: 39193048 PMCID: PMC11346563 DOI: 10.1080/23328940.2024.2361223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 08/29/2024] Open
Abstract
The likelihood of exposure to overheated indoor environments is increasing as climate change is exacerbating the frequency and severity of hot weather and extreme heat events (EHE). Consequently, vulnerable populations will face serious health risks from indoor overheating. While the relationship between EHE and human health has been assessed in relation to outdoor temperature, indoor temperature patterns can vary markedly from those measured outside. This is because the built environment and building characteristics can act as an important modifier of indoor temperatures. In this narrative review, we examine the physiological and behavioral determinants that influence a person's susceptibility to indoor overheating. Further, we explore how the built environment, neighborhood-level factors, and building characteristics can impact exposure to excess heat and we overview how strategies to mitigate building overheating can help reduce heat-related mortality in heat-vulnerable occupants. Finally, we discuss the effectiveness of commonly recommended personal cooling strategies that aim to mitigate dangerous increases in physiological strain during exposure to high indoor temperatures during hot weather or an EHE. As global temperatures continue to rise, the need for a research agenda specifically directed at reducing the likelihood and impact of indoor overheating on human health is paramount. This includes conducting EHE simulation studies to support the development of consensus-based heat mitigation solutions and public health messaging that provides equitable protection to heat-vulnerable people exposed to high indoor temperatures.
Collapse
Affiliation(s)
- Glen P. Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Emily J. Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - W. Shane Journeay
- Departments of Medicine and Community Health and Epidemiology, Dalhousie Medicine New Brunswick and Dalhousie University, Saint John, NB, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada
- Department of Rehabilitative Care, Providence Healthcare-Unity Health Toronto, Toronto, ON, Canada
| | - Sarah B. Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
- National Collaborating Centre for Environmental Health, Vancouver, BC, Canada
| | - Fergus K. O’Connor
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Zheng W, Chu J, Bambrick H, Wang N, Mengersen K, Guo X, Hu W. Impacts of heatwaves on type 2 diabetes mortality in China: a comparative analysis between coastal and inland cities. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:939-948. [PMID: 38407634 PMCID: PMC11058751 DOI: 10.1007/s00484-024-02638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
The impacts of extreme temperatures on diabetes have been explored in previous studies. However, it is unknown whether the impacts of heatwaves appear variations between inland and coastal regions. This study aims to quantify the associations between heat exposure and type 2 diabetes mellitus (T2DM) deaths in two cities with different climate features in Shandong Province, China. We used a case-crossover design by quasi-Poisson generalized additive regression with a distributed lag model with lag 2 weeks, controlling for relative humidity, the concentration of air pollution particles with a diameter of 2.5 µm or less (PM2.5), and seasonality. The wet- bulb temperature (Tw) was used to measure the heat stress of the heatwaves. A significant association between heatwaves and T2DM deaths was only found in the coastal city (Qingdao) at the lag of 2 weeks at the lowest Tw = 14℃ (relative risk (RR) = 1.49, 95% confidence interval (CI): 1.11-2.02; women: RR = 1.51, 95% CI: 1.02-2.24; elderly: RR = 1.50, 95% CI: 1.08-2.09). The lag-specific effects were significant associated with Tw at lag of 1 week at the lowest Tw = 14℃ (RR = 1.14, 95% CI: 1.03-1.26; women: RR = 1.15, 95% CI: 1.01-1.31; elderly: RR = 1.15, 95% CI: 1.03-1.28). However, no significant association was found in Jian city. The research suggested that Tw was significantly associated with T2DM mortality in the coastal city during heatwaves on T2DM mortality. Future strategies should be implemented with considering socio-environmental contexts in regions.
Collapse
Affiliation(s)
- Wenxiu Zheng
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Jie Chu
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China
| | - Hilary Bambrick
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ning Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kerrie Mengersen
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China
| | - Wenbiao Hu
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
7
|
Bhattacharya S, Sahay R, Afsana F, Sheikh A, Widanage NM, Maskey R, Naseri MW, Murad M, Harikumar KVS, Selim S, Aamir AH, Muthukuda D, Parajuli N, Baheer MD, Latheef A, Nagendra L, Mondal S, Kamrul-Hasan ABM, Raza SA, Somasundaram N, Shrestha D, Anne B, Ramakrishnan S, Kalra S. Global Warming and Endocrinology: The Hyderabad Declaration of the South Asian Federation of Endocrine Societies. Indian J Endocrinol Metab 2024; 28:129-136. [PMID: 38911103 PMCID: PMC11189284 DOI: 10.4103/ijem.ijem_473_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 06/25/2024] Open
Abstract
Global warming and endocrine disorders are intertwined issues posing significant challenges. Greenhouse gases emanating from human activities drive global warming, leading to temperature rise and altered weather patterns. South Asia has experienced a noticeable temperature surge over the past century. The sizable population residing in the region heightens the susceptibility to the impact of global warming. In addition to affecting agriculture, water resources, and livelihood, environmental changes interfere with endocrine functioning. Resulting lifestyle changes increase the risk of metabolic and endocrine disorders. Individuals with diabetes face heightened vulnerability to extreme weather due to impaired thermoregulation. A high ambient temperature predisposes to heat-related illnesses, infertility, and nephropathy. Additionally, essential endocrine drugs and medical devices are susceptible to temperature fluctuations. The South Asian Federation of Endocrine Societies (SAFES) calls for collaboration among stakeholders to combat climate change and promote healthy living. Comprehensive approaches, including the establishment of sustainable food systems, promotion of physical activity, and raising awareness about environmental impacts, are imperative. SAFES recommends strategies such as prioritizing plant-based diets, reducing meat consumption, optimizing medical device usage, and enhancing accessibility to endocrine care. Raising awareness and educating caregivers and people living with diabetes on necessary precautions during extreme weather conditions are paramount. The heat sensitivity of insulin, blood glucose monitoring devices, and insulin pumps necessitates proper storage and consideration of environmental conditions for optimal efficacy. The inter-connectedness of global warming and endocrine disorders underscores the necessity of international collaboration guided by national endocrine societies. SAFES urges all stakeholders to actively implement sustainable practices to improve endocrine health in the face of climate change.
Collapse
Affiliation(s)
| | - Rakesh Sahay
- Department of Endocrinology, Osmania Medical College, Hyderabad, Telangana, India
| | - Faria Afsana
- Department of Endocrinology, Bangladesh Institute of Research and Rehabilitation in Diabetes (BIRDEM), Dhaka, Bangladesh
| | - Aisha Sheikh
- Department of Endocrinology, Agha Khan University Hospital and MIDEM, Karachi, Pakistan
| | | | - Robin Maskey
- Department of Internal Medicine, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Moosa Murad
- Department of Internal Medicine, Indira Gandhi Memorial Hospital, Male, Maldives
| | - K. V. S. Harikumar
- Department of Endocrinology, Magna Centres for Obesity Diabetes and Endocrinology, Hyderabad, Telangana, India
| | - Shahjada Selim
- Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Azizul Hasan Aamir
- Department of Diabetes, Endocrine and Metabolic diseases. Khyber Girls Medical College, Hayatabad Medical Complex, Peshawar, Pakistan
| | - Dimuthu Muthukuda
- Endocrine and Diabetes Center, Sri Jayawardenepura General Hospital, Nugegoda, Sri Lanka
| | - Naresh Parajuli
- Department of Endocrinology, Institute of Medicine, Kathmandu, Nepal
| | - Mohammed Daud Baheer
- Department of Endocrinology, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| | - Ali Latheef
- Department of Internal Medicine, Indira Gandhi Memorial Hospital, Male, Maldives
| | - Lakshmi Nagendra
- Department of Endocrinology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sunetra Mondal
- Department of Endocrinology, Nil Ratan Sarkar Medical College, Kolkata, West Bengal, India
| | | | - Syed Abbas Raza
- Department of Medicine, Shaukat Khanum Cancer Hospital and Research Center, Lahore, Pakistan
| | - Noel Somasundaram
- Department of Endocrinology, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | - Dina Shrestha
- Department of Endocrinology, Norvic International Hospital, Kathmandu, Nepal
| | - Beatrice Anne
- Department of Endocrinology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Santosh Ramakrishnan
- Department of Endocrinology, Magna Centres for Obesity, Diabetes and Endocrinology, Hyderabad, Telangana, India
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| |
Collapse
|
8
|
Visaria A, Huang SP, Su CC, Robinson D, Read J, Lin CY, Nethery R, Josey K, Gandhi P, Bates B, Rua M, Parthasarathi A, Ghosh AK, Kao Yang YH, Setoguchi S. Ambient Heat and Risk of Serious Hypoglycemia in Older Adults With Diabetes Using Insulin in the U.S. and Taiwan: A Cross-National Case-Crossover Study. Diabetes Care 2024; 47:233-238. [PMID: 38060348 PMCID: PMC10834387 DOI: 10.2337/dc23-1189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/02/2023] [Indexed: 01/21/2024]
Abstract
OBJECTIVE To measure the association between ambient heat and hypoglycemia-related emergency department visit or hospitalization in insulin users. RESEARCH DESIGN AND METHODS We identified cases of serious hypoglycemia among adults using insulin aged ≥65 in the U.S. (via Medicare Part A/B/D-eligible beneficiaries) and Taiwan (via National Health Insurance Database) from June to September, 2016-2019. We then estimated odds of hypoglycemia by heat index (HI) percentile categories using conditional logistic regression with a time-stratified case-crossover design. RESULTS Among ∼2 million insulin users in the U.S. (32,461 hypoglycemia case subjects), odds ratios of hypoglycemia for HI >99th, 95-98th, 85-94th, and 75-84th percentiles compared with the 25-74th percentile were 1.38 (95% CI, 1.28-1.48), 1.14 (1.08-1.20), 1.12 (1.08-1.17), and 1.09 (1.04-1.13) respectively. Overall patterns of associations were similar for insulin users in the Taiwan sample (∼283,000 insulin users, 10,162 hypoglycemia case subjects). CONCLUSIONS In two national samples of older insulin users, higher ambient temperature was associated with increased hypoglycemia risk.
Collapse
Affiliation(s)
- Aayush Visaria
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Shu-Ping Huang
- Changhua Christian Hospital Institutional Review Board & Administrative Office, Changhua, Taiwan
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chou Su
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Innovation and Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - David Robinson
- Department of Geography, Rutgers University, Piscataway, NJ
| | - John Read
- Department of Geography, Rutgers University, Piscataway, NJ
| | - Chuan-Yao Lin
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Rachel Nethery
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kevin Josey
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Poonam Gandhi
- Center for Pharmacoepidemiology and Treatment Sciences, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ
| | - Benjamin Bates
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Pharmacoepidemiology and Treatment Sciences, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ
| | - Melanie Rua
- Center for Pharmacoepidemiology and Treatment Sciences, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ
| | - Ashwagosha Parthasarathi
- Center for Pharmacoepidemiology and Treatment Sciences, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ
| | - Arnab K. Ghosh
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY
| | - Yea-Huei Kao Yang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Soko Setoguchi
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Pharmacoepidemiology and Treatment Sciences, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ
| |
Collapse
|
9
|
Xu Z, Watzek JT, Phung D, Oberai M, Rutherford S, Bach AJE. Heat, heatwaves, and ambulance service use: a systematic review and meta-analysis of epidemiological evidence. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1523-1542. [PMID: 37495745 PMCID: PMC10457246 DOI: 10.1007/s00484-023-02525-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Ambulance data has been reported to be a sensitive indicator of health service use during hot days, but there is no comprehensive summary of the quantitative association between heat and ambulance dispatches. We conducted a systematic review and meta-analysis to retrieve and synthesise evidence published up to 31 August 2022 about the association between heat, prolonged heat (i.e. heatwaves), and the risk of ambulance dispatches. We initially identified 3628 peer-reviewed papers and included 48 papers which satisfied the inclusion criteria. The meta-analyses showed that, for each 5 °C increase in mean temperature, the risk of ambulance dispatches for all causes and for cardiovascular diseases increased by 7% (95% confidence interval (CI): 5%, 10%) and 2% (95% CI: 1%, 3%), respectively, but not for respiratory diseases. The risk of ambulance dispatches increased by 6% (95% CI: 4%, 7%), 7% (95% CI: 5%, 9%), and 18% (95% CI: 12%, 23%) under low-intensity, severe, and extreme heatwaves, respectively. We observed two potential sources of bias in the existing literature: (1) bias in temperature exposure measurement; and (2) bias in the ascertainment of ambulance dispatch causes. This review suggests that heat exposure is associated with an increased risk of ambulance dispatches, and there is a dose-response relationship between heatwave intensity and the risk of ambulance dispatches. For future studies assessing the heat-ambulance association, we recommend that (1) using data on spatially refined gridded temperature that is either very well interpolated or derived from satellite imaging may be an alternative to reduce exposure measurement bias; and (2) linking ambulance data with hospital admission data can be useful to improve health outcome classification.
Collapse
Affiliation(s)
- Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia.
- Cities Research Institute, Griffith University, Gold Coast, Australia.
| | - Jessica T Watzek
- School of Medicine and Dentistry, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia
| | - Dung Phung
- School of Public Health, The University of Queensland, Brisbane, Australia
| | - Mehak Oberai
- School of Medicine and Dentistry, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia
| | - Shannon Rutherford
- School of Medicine and Dentistry, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia
- Cities Research Institute, Griffith University, Gold Coast, Australia
| | - Aaron J E Bach
- School of Medicine and Dentistry, Griffith University, Parklands Drive, Southport, Gold Coast, QLD, 4222, Australia.
- Cities Research Institute, Griffith University, Gold Coast, Australia.
| |
Collapse
|
10
|
Ning X, Li Y, Gao G, Zhang Y, Qin Y. Temporal and spatial characteristics of high temperatures, heat waves, and population distribution risk in China from 1951 to 2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96629-96646. [PMID: 37578588 DOI: 10.1007/s11356-023-28955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/20/2023] [Indexed: 08/15/2023]
Abstract
Understanding the relationships between high temperatures (HT) and heat waves (HW) is vital for enhancing human health, especially in areas with dense population. This paper analyzes the temporal and spatial characteristics of different HT and HW intensities, their spatial influence, and the population distribution risk at different HW intensities for 844 meteorological stations between 1951 and 2019. The results indicate that (1) HT and extreme temperature (ET) days are symmetrically distributed along the Huhuanyong Line, from southeast to northwest China. The times, days, and accumulated temperatures of HW, the times, days, and accumulated temperature of strong heat waves (SHW), and the times, days, and accumulated temperature of extreme heat waves (EHW) were distributed similarly; (2) with the increase in high temperatures or heat waves from HT to ET or from HW to SHW, the proportion of stations with an upward trend was always greater in China, while stations with a downward trend were mainly located in the North China Plain and Huai River Basin. For HW, SHW, and EHW, the increasing range of times and days were less than the accumulated temperatures; (3) between 1990 and 2019, there was an expansion of the HW and SHW distribution area with an annual average of more than 10 days, and the EHW distribution area with an annual average of more than 3 days. Moreover, the number of people exposed to HW, SHW, and EHW also increased during this period; and (4) considering the population distribution characteristics and the regional HT and HW characteristics, society needs to form regional adaptation actions for different HT and HW intensities.
Collapse
Affiliation(s)
- Xiaoju Ning
- School of Resources and Environment, Henan University of Economics and Law, Zhengzhou, 450046, China
- Academician Laboratory for Urban and Rural Spatial Data Mining of Henan Province, Henan University of Economics and Law, Zhengzhou, 450046, China
| | - Yuanzheng Li
- School of Resources and Environment, Henan University of Economics and Law, Zhengzhou, 450046, China
- Academician Laboratory for Urban and Rural Spatial Data Mining of Henan Province, Henan University of Economics and Law, Zhengzhou, 450046, China
| | - Genghe Gao
- School of Resources and Environment, Henan University of Economics and Law, Zhengzhou, 450046, China
- Academician Laboratory for Urban and Rural Spatial Data Mining of Henan Province, Henan University of Economics and Law, Zhengzhou, 450046, China
| | - Yan Zhang
- Ecological Economy Research Center, Qiong Tai Normal University, Haikou, 570228, China
| | - Yaochen Qin
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education & College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization jointly built by Henan Province and Ministry of Education, Henan University, Kaifeng, 475001, China.
| |
Collapse
|
11
|
Sarkar SM, Dhar BK, Fahlevi M, Ahmed S, Hossain MJ, Rahman MM, Gazi MAI, Rajamani R. Climate Change and Aging Health in Developing Countries. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200246. [PMID: 37635700 PMCID: PMC10448126 DOI: 10.1002/gch2.202200246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/28/2023] [Indexed: 08/29/2023]
Abstract
The climate of the Earth has changed throughout history. Climate change negatively impacts human rights in a wide range of ways. The study aims to find out the impact of climate change on aging health in developing countries. The study found that public health will be devastated if climate change continues unabated. Countries that are least responsible for global warming are most susceptible to the effects of higher temperatures, such as death and disease. In low- and middle-income countries, disasters are more likely to happen to people aged 60 and over. Although climate change affects all of us, older people are especially at risk from it, as evidenced by a growing body of research. The study also offers countermeasures and suggestions to develop aging health in developing countries affected by climate change.
Collapse
Affiliation(s)
| | - Bablu Kumar Dhar
- Department of Business AdministrationDaffodil International UniversityDhakaSavar1340Bangladesh
- Business Administration DivisionMahidol University International CollegeMahidol UniversitySalaya73170Thailand
| | - Mochammad Fahlevi
- Management DepartmentBINUS Online LearningBina Nusantara UniversityJakarta11480Indonesia
| | - Selim Ahmed
- World School of BusinessWorld University of BangladeshDhakaDhaka1230Bangladesh
| | - Md. Jamal Hossain
- Department of PharmacyState University of Bangladesh77 Satmasjid Road, DhakaDhanmondi1205Bangladesh
| | - Mohammad Meshbahur Rahman
- Department of BiostatisticsNational Institute of Preventive and Social Medicine (NIPSOM)Dhaka 1212Bangladesh
| | | | - Ranjithkumar Rajamani
- Faculty of Health and Life SciencesINTI International UniversityPersiaran Perdana BBN, Putra NilaiNilaiNegeri Sembilan71800Malaysia
| |
Collapse
|
12
|
Hassan S, Gujral UP, Quarells RC, Rhodes EC, Shah MK, Obi J, Lee WH, Shamambo L, Weber MB, Narayan KMV. Disparities in diabetes prevalence and management by race and ethnicity in the USA: defining a path forward. Lancet Diabetes Endocrinol 2023; 11:509-524. [PMID: 37356445 PMCID: PMC11070656 DOI: 10.1016/s2213-8587(23)00129-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 06/27/2023]
Abstract
Type 2 diabetes disparities in the USA persist in both the prevalence of disease and diabetes-related complications. We conducted a literature review related to diabetes prevention, management, and complications across racial and ethnic groups in the USA. The objective of this review is to summarise the current understanding of diabetes disparities by examining differences between and within racial and ethnic groups and among young people (aged <18 years). We also examine the pathophysiology of diabetes as it relates to race and ethnic differences. We use a conceptual framework built on the socioecological model to categorise the causes of diabetes disparities across the lifespan looking at factors in five domains of health behaviours and social norms, public awareness, structural racism, economic development, and access to high-quality care. The range of disparities in diabetes prevalence and management in the USA calls for a community-engaged and multidisciplinary approach that must involve community partners, researchers, practitioners, health system administrators, and policy makers. We offer recommendations for each of these groups to help to promote equity in diabetes prevention and care in the USA.
Collapse
Affiliation(s)
- Saria Hassan
- Department of Medicine, Emory University, Atlanta, GA, USA; Emory Global Diabetes Research Center, Emory University, Atlanta, GA, USA; Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA.
| | - Unjali P Gujral
- Emory Global Diabetes Research Center, Emory University, Atlanta, GA, USA; Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA
| | - Rakale C Quarells
- Emory Global Diabetes Research Center, Emory University, Atlanta, GA, USA; Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| | - Elizabeth C Rhodes
- Emory Global Diabetes Research Center, Emory University, Atlanta, GA, USA; Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA
| | - Megha K Shah
- Department of Family and Preventive Medicine, Emory University, Atlanta, GA, USA; Emory Global Diabetes Research Center, Emory University, Atlanta, GA, USA
| | - Jane Obi
- Emory School of Medicine, and the Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, USA; Emory Global Diabetes Research Center, Emory University, Atlanta, GA, USA
| | - Wei-Hsuan Lee
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Luwi Shamambo
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - Mary Beth Weber
- Emory School of Medicine, and the Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, USA; Emory Global Diabetes Research Center, Emory University, Atlanta, GA, USA; Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA
| | - K M Venkat Narayan
- Department of Medicine, Emory University, Atlanta, GA, USA; Emory School of Medicine, and the Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, USA; Emory Global Diabetes Research Center, Emory University, Atlanta, GA, USA; Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|
13
|
Wen B, Ademi Z, Wu Y, Xu R, Yu P, Ye T, Coêlho MDSZS, Saldiva PHN, Guo Y, Li S. Productivity-adjusted life years lost due to non-optimum temperatures in Brazil: A nationwide time-series study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162368. [PMID: 36828065 DOI: 10.1016/j.scitotenv.2023.162368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Non-optimal temperatures are associated with premature deaths globally. However, the evidence is limited in low- and middle-income countries, and the productivity losses due to non-optimal temperatures have not been quantified. We aimed to estimate the work-related impacts and economic losses attributable to non-optimal temperatures in Brazil. We collected daily mortality data from 510 immediate regions in Brazil during 2000 and 2019. A two-stage time-series analysis was applied to evaluate the association between non-optimum temperatures and the Productivity-Adjusted Life-Years (PALYs) lost. The temperature-PALYs association was fitted for each location in the first stage and then we applied meta-analyses to obtain the national estimations. The attributable fraction (AF) of PALY lost due to ambient temperatures and the corresponding economic costs were calculated for different subgroups of the working-age population. A total of 3,629,661 of PALYs lost were attributed to non-optimal temperatures during 2000-2019 in Brazil, corresponding to 2.90 % (95 % CI: 1.82 %, 3.95 %) of the total PALYs lost. Non-optimal temperatures have led to US$104.86 billion (95 % CI: 65.95, 142.70) of economic costs related to PALYs lost and the economic burden was more substantial in males and the population aged 15-44 years. Higher risks of extreme cold temperatures were observed in the South region in Brazil while extreme hot temperatures were observed in the Central West and Northeast regions. In conclusion, non-optimal temperatures are associated with considerable labour losses as well as economic costs in Brazil. Tailored policies and adaptation strategies should be proposed to mitigate the impacts of non-optimal temperatures on the labour supply in a changing climate.
Collapse
Affiliation(s)
- Bo Wen
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Zanfina Ademi
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yao Wu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Rongbin Xu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Pei Yu
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Tingting Ye
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | | | | | - Yuming Guo
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- Climate, Air Quality Research (CARE) Unit, School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
14
|
Egea A, Linares C, Díaz J, Gómez L, Calle A, Navas MA, Ruiz-Páez R, Asensio C, Padrón-Monedero A, López-Bueno JA. How heat waves, ozone and sunlight hours affect endocrine and metabolic diseases emergency admissions? A case study in the region of Madrid (Spain). ENVIRONMENTAL RESEARCH 2023; 229:116022. [PMID: 37121348 DOI: 10.1016/j.envres.2023.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Studies which analyse the joint effect of acoustic or chemical air pollution variables and different meteorological variables on neuroendocrine disease are practically nonexistent. This study therefore sought to analyse the impact of air pollutants and environmental meteorological variables on daily unscheduled admissions due to endocrine and metabolic diseases in the Madrid Region from January 01, 2013 to December 31, 2018. MATERIAL AND METHODS We conducted a longitudinal, retrospective, ecological study of daily time series analysed by Poisson regression, with emergency neuroendocrine-disease admissions in the Madrid Region as the dependent variable. The independent variables were: mean daily concentrations of PM10, PM2.5, NO2 and O3; acoustic pollution; maximum and minimum daily temperatures; hours of sunlight; relative humidity; wind speed; and air pressure above sea level. Estimators of the statistically significant variables were used to calculate the relative risks (RRs). RESULTS A statistically significant association was found between the increase in temperatures in heat waves, RR: 1.123 95% CI (1.001-1.018), and the number of emergency admissions, making it the main risk factor. An association between a decrease in sunlight and an increase in hospital admissions, RR: 1.005 95% CI (1.002 1.008), was likewise observed. Similarly, ozone, in the form of mean daily concentrations in excess of 44 μg/m3, had an impact on admissions due to neuroendocrine disease, RR: 1.010 95% CI (1.007-1.035). The breakdown by sex showed that in the case of women, NO2 was also a risk factor, RR: 1.021 95% CI (1.007-1.035). CONCLUSION The results obtained in this study serve to identify risk factors for this disease, such as extreme temperatures in heat waves, O3 or NO2. The robust association found between the decrease in sunlight and increase in hospital admissions due to neuroendocrine disease serves to spotlight an environmental factor which has received scant attention in public health until now.
Collapse
Affiliation(s)
- A Egea
- Preventive Medicine and Public Health Resident, Albacete General University Teaching Hospital, Spain
| | - C Linares
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - J Díaz
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain.
| | - L Gómez
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - A Calle
- Preventive Medicine Department, Hospital Universitario de Móstoles, Móstoles, Spain
| | - M A Navas
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | | | - C Asensio
- Madrid Polytechnic University, Instrumentation and Applied Acoustics Research Group, Ctra. Valencia km 7 - Campus sur, 28031, Madrid, Spain
| | - A Padrón-Monedero
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - J A López-Bueno
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| |
Collapse
|
15
|
Rahat ST, Mäkelä M, Nasserinejad M, Ikäheimo TM, Hyrkäs-Palmu H, Valtonen RIP, Röning J, Sebert S, Nieminen AI, Ali N, Vainio S. Clinical-Grade Patches as a Medium for Enrichment of Sweat-Extracellular Vesicles and Facilitating Their Metabolic Analysis. Int J Mol Sci 2023; 24:ijms24087507. [PMID: 37108669 PMCID: PMC10139190 DOI: 10.3390/ijms24087507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cell-secreted extracellular vesicles (EVs), carrying components such as RNA, DNA, proteins, and metabolites, serve as candidates for developing non-invasive solutions for monitoring health and disease, owing to their capacity to cross various biological barriers and to become integrated into human sweat. However, the evidence for sweat-associated EVs providing clinically relevant information to use in disease diagnostics has not been reported. Developing cost-effective, easy, and reliable methodologies to investigate EVs' molecular load and composition in the sweat may help to validate their relevance in clinical diagnosis. We used clinical-grade dressing patches, with the aim being to accumulate, purify and characterize sweat EVs from healthy participants exposed to transient heat. The skin patch-based protocol described in this paper enables the enrichment of sweat EVs that express EV markers, such as CD63. A targeted metabolomics study of the sweat EVs identified 24 components. These are associated with amino acids, glutamate, glutathione, fatty acids, TCA, and glycolysis pathways. Furthermore, as a proof-of-concept, when comparing the metabolites' levels in sweat EVs isolated from healthy individuals with those of participants with Type 2 diabetes following heat exposure, our findings revealed that the metabolic patterns of sweat EVs may be linked with metabolic changes. Moreover, the concentration of these metabolites may reflect correlations with blood glucose and BMI. Together our data revealed that sweat EVs can be purified using routinely used clinical patches, setting the foundations for larger-scale clinical cohort work. Furthermore, the metabolites identified in sweat EVs also offer a realistic means to identify relevant disease biomarkers. This study thus provides a proof-of-concept towards a novel methodology that will focus on the use of the sweat EVs and their metabolites as a non-invasive approach, in order to monitor wellbeing and changes in diseases.
Collapse
Affiliation(s)
- Syeda Tayyiba Rahat
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Mira Mäkelä
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Maryam Nasserinejad
- Research Unit of Population Health Research, Faculty of Medicine, University of Oulu, 90570 Oulu, Finland
- Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Tiina M Ikäheimo
- Department of Community Medicine, University of Tromsø, N-9037 Tromsø, Norway
- Research Unit of Population Health, University of Oulu, 90220 Oulu, Finland
| | - Henna Hyrkäs-Palmu
- Research Unit of Population Health, University of Oulu, 90220 Oulu, Finland
| | - Rasmus I P Valtonen
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland
| | - Juha Röning
- Infotech Oulu, University of Oulu, 90014 Oulu, Finland
- Biomimetics and Intelligent Systems Group, Faculty of Information Technology and Electrical Engineering, University of Oulu, 90570 Oulu, Finland
| | - Sylvain Sebert
- Research Unit of Population Health Research, Faculty of Medicine, University of Oulu, 90570 Oulu, Finland
- Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Nsrein Ali
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
- Infotech Oulu, University of Oulu, 90014 Oulu, Finland
- Flagship GeneCellNano, University of Oulu, 90220 Oulu, Finland
| | - Seppo Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
- Infotech Oulu, University of Oulu, 90014 Oulu, Finland
- Flagship GeneCellNano, University of Oulu, 90220 Oulu, Finland
- Kvantum Institute, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
16
|
Lee MJ, McLean KE, Kuo M, Richardson GRA, Henderson SB. Chronic Diseases Associated With Mortality in British Columbia, Canada During the 2021 Western North America Extreme Heat Event. GEOHEALTH 2023; 7:e2022GH000729. [PMID: 36938119 PMCID: PMC10015851 DOI: 10.1029/2022gh000729] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Western North America experienced an unprecedented extreme heat event (EHE) in 2021, characterized by high temperatures and reduced air quality. There were approximately 740 excess deaths during the EHE in the province of British Columbia, making it one of the deadliest weather events in Canadian history. It is important to understand who is at risk of death during EHEs so that appropriate public health interventions can be developed. This study compares 1,614 deaths from 25 June to 02 July 2021 with 6,524 deaths on the same dates from 2012 to 2020 to examine differences in the prevalence of 26 chronic diseases between the two groups. Conditional logistic regression was used to estimate the odds ratio (OR) for each chronic disease, adjusted for age, sex, and all other diseases, and conditioned on geographic area. The OR [95% confidence interval] for schizophrenia among all EHE deaths was 3.07 [2.39, 3.94], and was larger than the ORs for other conditions. Chronic kidney disease and ischemic heart disease were also significantly increased among all EHE deaths, with ORs of 1.36 [1.18, 1.56] and 1.18 [1.00, 1.38], respectively. Chronic diseases associated with EHE mortality were somewhat different for deaths attributed to extreme heat, deaths with an unknown/pending cause, and non-heat-related deaths. Schizophrenia was the only condition associated with significantly increased odds of EHE mortality in all three subgroups. These results confirm the role of mental illness in EHE risk and provide further impetus for interventions that target specific groups of high-risk individuals based on underlying chronic conditions.
Collapse
Affiliation(s)
- Michael Joseph Lee
- Environmental Health ServicesBritish Columbia Centre for Disease ControlVancouverBCCanada
| | - Kathleen E. McLean
- Environmental Health ServicesBritish Columbia Centre for Disease ControlVancouverBCCanada
| | - Michael Kuo
- Environmental Health ServicesBritish Columbia Centre for Disease ControlVancouverBCCanada
| | | | - Sarah B. Henderson
- Environmental Health ServicesBritish Columbia Centre for Disease ControlVancouverBCCanada
| |
Collapse
|
17
|
Tao J, Zheng H, Ho HC, Wang X, Hossain MZ, Bai Z, Wang N, Su H, Xu Z, Cheng J. Urban-rural disparity in heatwave effects on diabetes mortality in eastern China: A case-crossover analysis in 2016-2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160026. [PMID: 36356755 DOI: 10.1016/j.scitotenv.2022.160026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Diabetics are sensitive to high ambient temperature due to impaired thermoregulation. However, available evidence on the impact of prolonged high temperature (i.e., heatwave) on diabetes deaths is limited and whether urban and rural areas differ in heatwave vulnerability remains unknown so far. A time-stratified case-crossover analysis was employed to estimate the association between heatwaves and diabetes deaths in 1486 districts (509 urban and 977 rural areas) of eastern China (Jiangsu Province), 2016-2019. For each decedent, residential heatwave exposure was measured by matching daily mean temperatures to the geocoded residential address. We adopted nine-tiered heatwave definitions incorporating intensity and duration. Stratified analyses by decedents' characteristics (gender, age, and education) were also conducted. During the study period, there were 18,685 deaths from diabetes (urban proportion: 36.95 %, p-value for urban-rural difference < 0.05). Heatwaves were associated with an increased risk of diabetes deaths, with greater and longer-lasting effects in rural areas than urban areas [e.g., rural odds ratio (OR): 1.19 (95 % confidence interval (CI): 1.14, 1.25) vs. urban OR: 1.09 (95 % CI: 1.05, 1.12)]. Risk of diabetes deaths increased with the intensity of heatwaves in rural areas (p-value for trend <0.01), but not in urban areas. Stratified analyses in rural areas suggested that females and less-educated people were more vulnerable to heatwave-related diabetes deaths. Our findings revealed the urban-rural disparity in the risk of diabetes deaths associated with heatwaves. Rural diabetics should be made aware of the increased death risk posed by heatwaves in the context of warming climate.
Collapse
Affiliation(s)
- Junwen Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hung Chak Ho
- Department of Anaesthesiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiling Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Xuhui District, Shanghai 200231, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai 200135, China
| | - Mohammad Zahid Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zhongliang Bai
- Department of Health Services Management, School of Health Services Management, Anhui Medical University, Hefei, China
| | - Ning Wang
- National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia.
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China.
| |
Collapse
|
18
|
Momeni Z, Boulé NG, Prado CM, Hinz HA, Yardley JE. The Effect of Starting Blood Glucose Levels on Serum Electrolyte Concentrations during and after Exercise in Type 1 Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2109. [PMID: 36767477 PMCID: PMC9915529 DOI: 10.3390/ijerph20032109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Fear of hypoglycemia is a major exercise barrier for people with type 1 diabetes (PWT1D). Consequently, although guidelines recommend starting exercise with blood glucose (BG) concentration at 7-10 mmol/L, PWT1D often start higher, potentially affecting hydration and serum electrolyte concentrations. To test this, we examined serum and urine electrolyte concentrations during aerobic exercise (cycling 45 min at 60%VO2peak) in 12 PWT1D (10F/2M, mean ± SEM: age 29 ± 2.3 years, VO2peak 37.9 ± 2.2 mL·kg-1·min-1) with starting BG levels: 8-10 (MOD), and 12-14 (HI) mmol/L. Age, sex, and fitness-matched controls without diabetes (CON) completed one exercise session with BG in the normal physiological range. Serum glucose was significantly higher during exercise and recovery in HI versus MOD (p = 0.0002 and p < 0.0001, respectively) and in MOD versus CON (p < 0.0001). During exercise and recovery, MOD and HI were not significantly different in serum insulin (p = 0.59 and p = 0.63), sodium (p = 0.058 and p = 0.08), potassium (p = 0.17 and p = 0.16), calcium (p = 0.75 and 0.19), and magnesium p = 0.24 and p = 0.09). Our findings suggest that exercise of moderate intensity and duration with higher BG levels may not pose an immediate risk to hydration or serum electrolyte concentrations for PWT1D.
Collapse
Affiliation(s)
- Zeinab Momeni
- Augustana Faculty, University of Alberta, 4901-46th Avenue, Camrose, AB T4V 2R3, Canada
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, 112 Street, Edmonton, AB T6G 2T9, Canada
- Women’s and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Normand G. Boulé
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, 112 Street, Edmonton, AB T6G 2T9, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 3-100 University Hall, Van Vliet Complex, Edmonton, AB T6G 2H9, Canada
| | - Carla M. Prado
- Women’s and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Human Nutrition Research Unit, Alberta Diabetes Institute, 112 Street, Edmonton, AB T6G 2T9, Canada
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Heather A. Hinz
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, 112 Street, Edmonton, AB T6G 2T9, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 3-100 University Hall, Van Vliet Complex, Edmonton, AB T6G 2H9, Canada
| | - Jane E. Yardley
- Augustana Faculty, University of Alberta, 4901-46th Avenue, Camrose, AB T4V 2R3, Canada
- Physical Activity and Diabetes Laboratory, Alberta Diabetes Institute, 112 Street, Edmonton, AB T6G 2T9, Canada
- Women’s and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 3-100 University Hall, Van Vliet Complex, Edmonton, AB T6G 2H9, Canada
| |
Collapse
|
19
|
Gao D, Friedman S, Hosler A, Sheridan S, Zhang W, Lin S. Association between extreme ambient heat exposure and diabetes-related hospital admissions and emergency department visits: A systematic review. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 4:100031. [PMID: 36777310 PMCID: PMC9914517 DOI: 10.1016/j.heha.2022.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background and objectives Diabetes is an increasing public health concern worldwide. The impact of extreme heat exposure on diabetes healthcare utilization such as diabetes-related hospital admissions and emergency department (ED) visits was understudied although extreme temperature exposure was linked with diabetes mortality. In addition, very few systematic reviews have been conducted in this field. This review aims to systematically evaluate the currently available evidence on the association between extreme ambient heat exposure and hospital admissions/ED visits for diabetes and the vulnerable population to heat extremes. Methods A systematic literature review was conducted by using the keywords/terms "ambient temperature or heatwave or heat wave or extreme temperature or high temperature effect " and "diabetes morbidity or diabetes hospital admissions or diabetes emergency room visits " for available publications until August 2022. The heat exposure was categorized into four groups using difference definitions. The outcomes were diabetes-related hospital admissions/ED visits. A meta-analysis was performed to estimate the pooled effects of relative risk (RR)/odds ratio (OR) and 95% confidence intervals (CI) for each of the associations of interest. Results Eighteen articles were selected from forty full-text, English written papers based on the inclusion and exclusion criteria. The overall pooled effect of excessive heat on diabetes, across all groups, was 1.045 (95% CI 1.024-1.066). The pooled effects for each exposure group were significant/borderline significant. Additionally, the pooled effect of the RR/OR was 1.100 (95% CI: 1.067-1.135) among adults aged 65 years or older. The most controlled confounders were air pollutants. The commonly listed limitation in those studies was misclassification of exposure. Conclusions The body of evidence supports that ambient extreme heat exposure is associated with diabetes-related hospital admissions/ED visits. Additionally, adults 65 years of age or older with diabetes are vulnerable to heat extremes. Future studies should consider controlling for various biases and confounders.
Collapse
Affiliation(s)
- Donghong Gao
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY, USA
| | | | - Akiko Hosler
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY, USA
| | - Scott Sheridan
- Department of Geography, Kent State University, Kent, OH, USA
| | - Wangjian Zhang
- Department of Medical Statistics, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shao Lin
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY, USA,Department of Environnemental Health Sciences, University at Albany, Rensselaer, NY, USA,Corresponding author at: Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, One University Place, Rm 212d, Rensselaer, NY 12144-3445, (S. Lin)
| |
Collapse
|
20
|
Cremonini L, Nardino M, Georgiadis T. The Utilization of the WMO-1234 Guidance to Improve Citizen's Wellness and Health: An Italian Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15056. [PMID: 36429774 PMCID: PMC9690893 DOI: 10.3390/ijerph192215056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
In 2019, the World Meteorological Organization published its "Guidance on Integrated Urban Hydrometeorological, Climate and Environment Services (Volume I: Concept and Methodology)" to assist WMO Members in developing and implementing the urban services that address the needs of city stakeholders in their countries. The guidance has relevant implications for not only protecting infrastructures from the impacts of climate change in the urban environment, but its proper declination strongly supports health-related policies to protect the population from direct and indirect impacts. Utilizing some principles of the guidance, the urbanized area of Bologna (Italy) was analyzed in order to furnish the municipality with tools coherent with the best practices actually emerging from the international bibliography to protect the citizens' health of this city. Specifically, the analysis concentrated on the public spaces and the potential vulnerabilities of the fragile population to high-temperature regimes in the city. Utilizing the guidance as a methodological framework, the authors developed a methodology to define the microclimate vulnerabilities of the city and specific cards to assist the policymakers in city regeneration. Because the medieval structure of the city does not allow the application of a wide set of nature-based solutions, our main attention was placed on the possibility of furnishing the city with a great number of pocket parks obtainable from spaces actually dedicated to parking lots, thus introducing new green infrastructures in a highly deprived area in order to assure safety spaces for the fragile population.
Collapse
|
21
|
Dai Y, Liu T. Spatiotemporal mechanism of urban heat island effects on human health—Evidence from Tianjin city of China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1010400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The increasingly intensifying global warming and urban heat island (UHIs) are seriously damaging the physical and mental health of urban residents. However, the spatiotemporal evolution of how high temperatures affect human health in megacities remains unclear. Therefore, in this study, with Tianjin during 2006–2020 as an example, and based on data from meteorological stations, Landsat remote sensing images, and point of interest big data, this study applied hot- and cold-spot statistics and remote sensing retrieval in numerical modeling and established an appraisal system to assess how and to what extent UHIs affect resident health. The results showed that the overall influence of UHIs on respiratory and cardiovascular diseases and mental health increased to 373 km2 in area and two levels in intensity; the influence was mainly concentrated in the downtown area, with a rising influence level. Owing to the dual-core structure of the city, the influence was distributed along the main traffic lines in Binhai New District, having a strong influence in the area mainly concentrated in the southeastern part. Many cold spots clustered in the central urban area to cool the thermal environment: the cooled area was 6.5 times larger than the area of intense cooling influence. Our study provides a method for identifying health risks in urban spaces, lays a theoretical foundation to improve the planning of urban green space systems, and offers some decision-making guidance for the planning of healthy cities.
Collapse
|
22
|
Lee S, Kim D. Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10249. [PMID: 36011887 PMCID: PMC9407880 DOI: 10.3390/ijerph191610249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
With the global acceleration of urbanization, temperatures in cities are rising continuously with global climate change, creating an imminent risk of urban heat islands and urban heating. Although much research has attempted to analyze urban heating from various perspectives, a comprehensive approach to urban planning that addresses the problem is just beginning. This study suggests a conceptual framework for multidisciplinary understanding of urban heating by reviewing 147 selected articles from various fields, published between 2007 and 2021, that discuss urban heating mitigation. From these, we identified several outdoor and indoor temperature-reduction factors and proposed area-based, zoning-based, and point-based approaches to mitigate urban heating.
Collapse
Affiliation(s)
- SangHyeok Lee
- Marine Policy Research Department, Korea Maritime Institute, 26 Haeyang-ro 301 Beon-gil, Yeongdo-gu, Busan 49111, Korea
| | - Donghyun Kim
- Department of Urban Planning and Engineering, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
23
|
Khatana SAM, Werner RM, Groeneveld PW. Association of Extreme Heat and Cardiovascular Mortality in the United States: A County-Level Longitudinal Analysis From 2008 to 2017. Circulation 2022; 146:249-261. [PMID: 35726635 DOI: 10.1161/circulationaha.122.060746] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Extreme-heat events are increasing as a result of climate change. Prior studies, typically limited to urban settings, suggest an association between extreme heat and cardiovascular mortality. However, the extent of the burden of cardiovascular deaths associated with extreme heat across the United States and in different age, sex, or race and ethnicity subgroups is unclear. METHODS County-level daily maximum heat index levels for all counties in the contiguous United States in summer months (May-September) and monthly cardiovascular mortality rates for adults ≥20 years of age were obtained. For each county, an extreme-heat day was identified if the maximum heat index was ≥90 °F (32.2 °C) and in the 99th percentile of the maximum heat index in the baseline period (1979-2007) for that day. Spatial empirical Bayes smoothed monthly cardiovascular mortality rates from 2008 to 2017 were the primary outcome. A Poisson fixed-effects regression model was estimated with the monthly number of extreme-heat days as the independent variable of interest. The model included time-fixed effects and time-varying environmental, economic, demographic, and health care-related variables. RESULTS Across 3108 counties, from 2008 to 2017, each additional extreme-heat day was associated with a 0.12% (95% CI, 0.04%-0.21%; P=0.004) higher monthly cardiovascular mortality rate. Extreme heat was associated with an estimated 5958 (95% CI, 1847-10 069) additional deaths resulting from cardiovascular disease over the study period. In subgroup analyses, extreme heat was associated with a greater relative increase in mortality rates among men compared with women (0.20% [95% CI, 0.07%-0.33%]) and non-Hispanic Black compared with non-Hispanic White adults (0.19% [95% CI, 0.01%-0.37%]). There was a greater absolute increase among elderly adults compared with nonelderly adults (16.6 [95% CI, 14.6-31.8] additional deaths per 10 million individuals per month). CONCLUSIONS Extreme-heat days were associated with higher adult cardiovascular mortality rates in the contiguous United States between 2008 and 2017. This association was heterogeneous among age, sex, race, and ethnicity subgroups. As extreme-heat events increase, the burden of cardiovascular mortality may continue to increase, and the disparities between demographic subgroups may widen.
Collapse
Affiliation(s)
- Sameed Ahmed M Khatana
- Division of Cardiovascular Medicine (S.A.M.K.), University of Pennsylvania, Philadelphia.,Penn Cardiovascular Outcomes, Quality, & Evaluative Research Center (S.A.M.K., P.W.G.), University of Pennsylvania, Philadelphia.,The Leonard Davis Institute of Health Economics (S.A.M.K., R.M.W., P.W.G.), University of Pennsylvania, Philadelphia
| | - Rachel M Werner
- Division of General Internal Medicine (R.M.W., P.W.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,The Leonard Davis Institute of Health Economics (S.A.M.K., R.M.W., P.W.G.), University of Pennsylvania, Philadelphia.,Center for Health Equity Research and Promotion, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA (R.M.W., P.W.G.)
| | - Peter W Groeneveld
- Penn Cardiovascular Outcomes, Quality, & Evaluative Research Center (S.A.M.K., P.W.G.), University of Pennsylvania, Philadelphia.,Division of General Internal Medicine (R.M.W., P.W.G.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,The Leonard Davis Institute of Health Economics (S.A.M.K., R.M.W., P.W.G.), University of Pennsylvania, Philadelphia.,Center for Health Equity Research and Promotion, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA (R.M.W., P.W.G.)
| |
Collapse
|
24
|
Conti A, Valente M, Paganini M, Farsoni M, Ragazzoni L, Barone-Adesi F. Knowledge Gaps and Research Priorities on the Health Effects of Heatwaves: A Systematic Review of Reviews. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105887. [PMID: 35627424 PMCID: PMC9140727 DOI: 10.3390/ijerph19105887] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023]
Abstract
Although extreme weather events have played a constant role in human history, heatwaves (HWs) have become more frequent and intense in the past decades, causing concern especially in light of the increasing evidence on climate change. Despite the increasing number of reviews suggesting a relationship between heat and health, these reviews focus primarily on mortality, neglecting other important aspects. This systematic review of reviews gathered the available evidence from research syntheses conducted on HWs and health. Following the PRISMA guidelines, 2232 records were retrieved, and 283 reviews were ultimately included. Information was extracted from the papers and categorized by topics. Quantitative data were extracted from meta-analyses and, when not available, evidence was collected from systematic reviews. Overall, 187 reviews were non-systematic, while 96 were systematic, of which 27 performed a meta-analysis. The majority evaluated mortality, morbidity, or vulnerability, while the other topics were scarcely addressed. The following main knowledge gaps were identified: lack of a universally accepted definition of HW; scarce evidence on the HW-mental health relationship; no meta-analyses assessing the risk perception of HWs; scarcity of studies evaluating the efficacy of adaptation strategies and interventions. Future efforts should meet these priorities to provide high-quality evidence to stakeholders.
Collapse
Affiliation(s)
- Andrea Conti
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, 28100 Novara, Italy; (M.V.); (M.P.); (F.B.-A.)
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
- Correspondence: (A.C.); (L.R.)
| | - Martina Valente
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, 28100 Novara, Italy; (M.V.); (M.P.); (F.B.-A.)
- Department of Sustainable Development and Ecological Transition, Università del Piemonte Orientale, 13100 Vercelli, Italy
| | - Matteo Paganini
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, 28100 Novara, Italy; (M.V.); (M.P.); (F.B.-A.)
| | - Marco Farsoni
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Luca Ragazzoni
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, 28100 Novara, Italy; (M.V.); (M.P.); (F.B.-A.)
- Department of Sustainable Development and Ecological Transition, Università del Piemonte Orientale, 13100 Vercelli, Italy
- Correspondence: (A.C.); (L.R.)
| | - Francesco Barone-Adesi
- CRIMEDIM—Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, 28100 Novara, Italy; (M.V.); (M.P.); (F.B.-A.)
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
25
|
Abstract
IMPORTANCE The number of extreme heat events is increasing because of climate change. Previous studies showing an association between extreme heat and higher mortality rates generally have been limited to urban areas, and whether there is heterogeneity across different populations is not well studied; understanding whether this association varies across different communities, particularly minoritized racial and ethnic groups, may allow for more targeted mitigation efforts. OBJECTIVE To the assess the association between extreme heat and all-cause mortality rates in the US. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study involved a longitudinal analysis of the association between the number of extreme heat days in summer months from 2008 to 2017 (obtained from the Centers for Disease Control and Prevention's Environmental Public Health Tracking Program) and county-level all-cause mortality rates (obtained from the National Center for Health Statistics), using a linear fixed-effects model across all counties in the contiguous US among adults aged 20 years and older. Data analysis was performed from September 2021 to March 2022. EXPOSURES The number of extreme heat days per month. Extreme heat was identified if the maximum heat index was greater than or equal to 90 °F (32.2 °C) and in the 99th percentile of the maximum heat index in the baseline period (1979 to 2007). MAIN OUTCOMES AND MEASURES County-level, age-adjusted, all-cause mortality rates. RESULTS There were 219 495 240 adults aged 20 years and older residing in the contiguous US in 2008, of whom 113 294 043 (51.6%) were female and 38 542 838 (17.6%) were older than 65 years. From 2008 to 2017, the median (IQR) number of extreme heat days during summer months in all 3108 counties in the contiguous US was 89 (61-122) days. After accounting for time-invariant confounding, secular time trends, and time-varying environmental and economic measures, each additional extreme heat day in a month was associated with 0.07 additional death per 100 000 adults (95% CI, 0.03-0.10 death per 100 000 adults; P = .001). In subgroup analyses, greater increases in mortality rates were found for older vs younger adults (0.19 death per 100 000 individuals; 95% CI, 0.04-0.34 death per 100 000 individuals), male vs female adults (0.12 death per 100 000 individuals; 95% CI, 0.05-0.18 death per 100 000 individuals), and non-Hispanic Black vs non-Hispanic White adults (0.11 death per 100 000 individuals; 95% CI, 0.02-0.20 death per 100 000 individuals). CONCLUSIONS AND RELEVANCE These findings suggest that from 2008 to 2017, extreme heat was associated with higher all-cause mortality in the contiguous US, with a greater increase noted among older adults, men, and non-Hispanic Black individuals. Without mitigation, the projected increase in extreme heat due to climate change may widen health disparities between groups.
Collapse
Affiliation(s)
- Sameed Ahmed M. Khatana
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Penn Cardiovascular Outcomes, Quality, and Evaluative Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- The Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
| | - Rachel M. Werner
- The Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
- Division of General Internal Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Center for Health Equity Research and Promotion, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Peter W. Groeneveld
- Penn Cardiovascular Outcomes, Quality, and Evaluative Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- The Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia
- Division of General Internal Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Center for Health Equity Research and Promotion, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology. LAND 2021. [DOI: 10.3390/land10080867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many novel research algorithms have been developed to analyze urban heat island (UHI) and UHI regional impacts (UHIRIP) with remotely sensed thermal data tables. We present a comprehensive review of some important aspects of UHI and UHIRIP studies that use remotely sensed thermal data, including concepts, datasets, methodologies, and applications. We focus on reviewing progress on multi-sensor image selection, preprocessing, computing, gap filling, image fusion, deep learning, and developing new metrics. This literature review shows that new satellite sensors and valuable methods have been developed for calculating land surface temperature (LST) and UHI intensity, and for assessing UHIRIP. Additionally, some of the limitations of using remotely sensed data to analyze the LST, UHI, and UHI intensity are discussed. Finally, we review a variety of applications in UHI and UHIRIP analyses. The assimilation of time-series remotely sensed data with the application of data fusion, gap filling models, and deep learning using the Google Cloud platform and Google Earth Engine platform also has the potential to improve the estimation accuracy of change patterns of UHI and UHIRIP over long time periods.
Collapse
|