1
|
Park ES, Shin CY, Jeon SJ, Ham BJ. Is There such a Thing as Post-Viral Depression?: Implications for Precision Medicine. Biomol Ther (Seoul) 2024; 32:659-684. [PMID: 39428555 PMCID: PMC11535299 DOI: 10.4062/biomolther.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Viral infections are increasingly recognized as triggers for depressive disorders, particularly following the SARS-CoV-2 pandemic and the rise of long COVID. Viruses such as Herpes Simplex Virus (HSV), Epstein-Barr Virus (EBV), Cytomegalovirus (CMV), and Human Immunodeficiency Virus (HIV) are linked to depression through complex neurobiological mechanisms. These include immune system dysregulation, chronic inflammation, and neurotransmitter imbalances that affect brain function and mood regulation. Viral activation of the immune system leads to the release of pro-inflammatory cytokines, resulting in neuroinflammation and associated depressive symptoms. Furthermore, specific viruses can disrupt neurotransmitter systems, including serotonin, dopamine, and glutamate, all of which are essential for mood stabilization. The unique interactions of different viruses with these systems underscore the need for virus-specific therapeutic approaches. Current broad-spectrum treatments often overlook the precise neurobiological pathways involved in post-viral depression, reducing their efficacy. This review emphasizes the need to understand these virus-specific interactions to create tailored interventions that directly address the neurobiological effects induced by each type of virus. These interventions may include immunomodulatory treatments that target persistent inflammation, antiviral therapies to reduce the viral load, or neuroprotective strategies that restore neurotransmitter balance. Precision medicine offers promising avenues for the effective management of virus-induced depression, providing patient-specific approaches that address the specific biological mechanisms involved. By focusing on the development of these targeted treatments, this review aims to pave the way for a new era in psychiatric care that fully addresses the root causes of depression induced by viral infections.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Coler B, Wu TY, Carlson L, Burd N, Munson J, Dacanay M, Cervantes O, Esplin S, Kapur RP, Feltovich H, Adams Waldorf KM. Diminished antiviral innate immune gene expression in the placenta following a maternal SARS-CoV-2 infection. Am J Obstet Gynecol 2023; 228:463.e1-463.e20. [PMID: 36126729 PMCID: PMC9482164 DOI: 10.1016/j.ajog.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND COVID-19 is caused by the SARS-CoV-2 virus and is associated with critical illness requiring hospitalization, maternal mortality, stillbirth, and preterm birth. SARS-CoV-2 has been shown to induce placental pathology. However, substantial gaps exist in our understanding of the pathophysiology of COVID-19 disease in pregnancy and the long-term impact of SARS-CoV-2 on the placenta and fetus. To what extent a SARS-CoV-2 infection of the placenta alters the placental antiviral innate immune response is not well understood. A dysregulated innate immune response in the setting of maternal COVID-19 disease may increase the risk of inflammatory tissue injury or placental compromise and may contribute to deleterious pregnancy outcomes. OBJECTIVE We sought to determine the impact of a maternal SARS-CoV-2 infection on placental immune response by evaluating gene expression of a panel of 6 antiviral innate immune mediators that act as biomarkers of the antiviral and interferon cytokine response. Our hypothesis was that a SARS-CoV-2 infection during pregnancy would result in an up-regulated placental antiviral innate immune response. STUDY DESIGN We performed a case-control study on placental tissues (chorionic villous tissues and chorioamniotic membrane) collected from pregnant patients with (N=140) and without (N=24) COVID-19 disease. We performed real-time quantitative polymerase chain reaction and immunohistochemistry, and the placental histopathology was evaluated. Clinical data were abstracted. Fisher exact test, Pearson correlations, and linear regression models were used to examine proportions and continuous data between patients with active (<10 days since diagnosis) vs recovered COVID-19 (>10 days since diagnosis) at the time of delivery. Secondary regression models adjusted for labor status as a covariate and evaluated potential correlation between placental innate immune gene expression and other variables. RESULTS SARS-CoV-2 viral RNA was detected in placental tissues from 5 women with COVID-19 and from no controls (0/24, 0%). Only 1 of 5 cases with detectable SARS-CoV-2 viral RNA in placental tissues was confirmed to express SARS-CoV-2 nucleocapsid and spike proteins in syncytiotrophoblast cells. We detected a considerably lower gene expression of 5 critical innate immune mediators (IFNB, IFIT1, MXA, IL6, IL1B) in the chorionic villi and chorioamniotic membranes from women with active or recovered COVID-19 than controls, which remained significant after adjustment for labor status. There were minimal correlations between placental gene expression and other studied variables including gestational age at diagnosis, time interval between COVID-19 diagnosis and delivery, prepregnancy body mass index, COVID-19 disease severity, or placental pathology. CONCLUSION A maternal SARS-CoV-2 infection was associated with an impaired placental innate immune response in chorionic villous tissues and chorioamniotic membranes that was not correlated with gestational age at COVID-19 diagnosis, time interval from COVID-19 diagnosis to delivery, maternal obesity, disease severity, or placental pathology.
Collapse
Affiliation(s)
- Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA; Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Tsung-Yen Wu
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Lindsey Carlson
- Women and Newborn Research, Intermountain Health Care, Salt Lake City, UT
| | - Nicole Burd
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Jeff Munson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Matthew Dacanay
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | | | - Sean Esplin
- Department of Obstetrics and Gynecology, Intermountain Health Care, Salt Lake City, UT
| | - Raj P Kapur
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA; Department of Pathology, Seattle Children's Hospital, Seattle, WA
| | - Helen Feltovich
- Department of Obstetrics and Gynecology, Intermountain Health Care, Salt Lake City, UT.
| | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA; Department of Global Health, University of Washington, Seattle, WA.
| |
Collapse
|
3
|
Therapeutic Effects of a Novel Form of Biotin on Propionic Acid-Induced Autistic Features in Rats. Nutrients 2022; 14:nu14061280. [PMID: 35334937 PMCID: PMC8955994 DOI: 10.3390/nu14061280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Magnesium biotinate (MgB) is a novel biotin complex with superior absorption and anti-inflammatory effects in the brain than D-Biotin. This study aimed to investigate the impact of different doses of MgB on social behavior deficits, learning and memory alteration, and inflammatory markers in propionic acid (PPA)-exposed rats. In this case, 35 Wistar rats (3 weeks old) were distributed into five groups: 1, Control; 2, PPA treated group; 3, PPA+MgBI (10 mg, HED); 4, PPA+MgBII (100 mg, HED); 5, PPA+MgBIII (500 mg, HED). PPA was given subcutaneously at 500 mg/kg/day for five days, followed by MgB for two weeks. PPA-exposed rats showed poor sociability and a high level of anxiety-like behaviors and cognitive impairments (p < 0.001). In a dose-dependent manner, behavioral and learning-memory disorders were significantly improved by MgB supplementation (p < 0.05). PPA decreased both the numbers and the sizes of Purkinje cells in the cerebellum. However, MgB administration increased the sizes and the densities of Purkinje cells. MgB improved the brain and serum Mg, biotin, serotonin, and dopamine concentrations, as well as antioxidant enzymes (CAT, SOD, GPx, and GSH) (p < 0.05). In addition, MgB treatment significantly regulated the neurotoxicity-related cytokines and neurotransmission-related markers. For instance, MgB significantly decreased the expression level of TNF-α, IL-6, IL-17, CCL-3, CCL-5, and CXCL-16 in the brain, compared to the control group (p < 0.05). These data demonstrate that MgB may ameliorate dysfunctions in social behavior, learning and memory and reduce the oxidative stress and inflammation indexes of the brain in a rat model.
Collapse
|
4
|
Kwag R, Lee J, Kim D, Lee H, Yeom M, Woo J, Cho Y, Kim HJ, Kim J, Keum G, Jeon B, Choo H. Discovery of G Protein-Biased Antagonists against 5-HT 7R. J Med Chem 2021; 64:13766-13779. [PMID: 34519505 DOI: 10.1021/acs.jmedchem.1c01093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
5-HT7R belongs to a family of G protein-coupled receptors and is associated with a variety of physiological processes in the central nervous system via the activation of the neurotransmitter serotonin (5-HT). To develop selective and biased 5-HT7R ligands, we designed and synthesized a series of pyrazolyl-diazepanes 2 and pyrazolyl-piperazines 3, which were evaluated for binding affinities to 5-HTR subtypes and functional selectivity for G protein and β-arrestin signaling pathways of 5-HT7R. Among them, 1-(3-(3-chlorophenyl)-1H-pyrazol-4-yl)-1,4-diazepane 2c showed the best binding affinity for 5-HT7R and selectivity over other 5-HTR subtypes. It was also revealed as a G protein-biased antagonist. The self-grooming behavior test was performed with 2c in vivo with Shank3-/- transgenic (TG) mice, wherein 2c significantly reduced self-grooming duration time to the level of wild-type mice. The results suggest that 5-HT7R could be a potential therapeutic target for treating autism spectrum disorder stereotypy.
Collapse
Affiliation(s)
- Rina Kwag
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Chemistry, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jieon Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Doyoung Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Chemistry, Sogang University, Mapo-gu, Seoul 04107, Republic of Korea
| | - Haeun Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Miyoung Yeom
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Byungsun Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
5
|
Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later. Proc Natl Acad Sci U S A 2021; 118:2014464118. [PMID: 33876747 DOI: 10.1073/pnas.2014464118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.
Collapse
|
6
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|
7
|
Kępińska AP, Iyegbe CO, Vernon AC, Yolken R, Murray RM, Pollak TA. Schizophrenia and Influenza at the Centenary of the 1918-1919 Spanish Influenza Pandemic: Mechanisms of Psychosis Risk. Front Psychiatry 2020; 11:72. [PMID: 32174851 PMCID: PMC7054463 DOI: 10.3389/fpsyt.2020.00072] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Associations between influenza infection and psychosis have been reported since the eighteenth century, with acute "psychoses of influenza" documented during multiple pandemics. In the late 20th century, reports of a season-of-birth effect in schizophrenia were supported by large-scale ecological and sero-epidemiological studies suggesting that maternal influenza infection increases the risk of psychosis in offspring. We examine the evidence for the association between influenza infection and schizophrenia risk, before reviewing possible mechanisms via which this risk may be conferred. Maternal immune activation models implicate placental dysfunction, disruption of cytokine networks, and subsequent microglial activation as potentially important pathogenic processes. More recent neuroimmunological advances focusing on neuronal autoimmunity following infection provide the basis for a model of infection-induced psychosis, potentially implicating autoimmunity to schizophrenia-relevant protein targets including the N-methyl-D-aspartate receptor. Finally, we outline areas for future research and relevant experimental approaches and consider whether the current evidence provides a basis for the rational development of strategies to prevent schizophrenia.
Collapse
Affiliation(s)
- Adrianna P. Kępińska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Conrad O. Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins Medical Center, Baltimore, MD, United States
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Thomas A. Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Zheng W, Hu Y, Chen D, Li Y, Wang S. [Improvement of a mouse model of valproic acid-induced autism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:718-723. [PMID: 31270052 DOI: 10.12122/j.issn.1673-4254.2019.06.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To establish an improved mouse model of valproic acid (VPA)-induced autism that better mimics human autism. METHODS We established mouse models of autism in female C57 mice by intraperitoneal injection of sodium valproate either at a single dose (600 mg/kg) on day 12.5 after conception (conventional group) or in two doses of 300 mg/kg each on days 10 and 12 after conception (modified group), and the control mice were injected with saline only on day 12.5. The responses of the mice to VPA injection, the uterus, mortality rate, and abortion rate were compared among the 3 groups. The morphology and development of the offspring mice were assessed, and their behavioral ontogeny was evaluated using 3- chambered social test, social test, juvenil play test, and open field test. RESULTS The mortality and abortion rates were significantly lower in the modified model group than in the conventional group (P < 0.01). Compared with those in the control group, the offspring mice in both the conventional group and the modified group showed developmental disorders (P < 0.05). The mortality rate of the newborn mice was significantly lower in the modified group than in the conventional group with a rate of curvy tail of up to 100% (P < 0.001). The offspring mice in both the modified group and conventional group exhibited autism-like behavioral abnormalities, including social disorder and repetitive stereotyped behavior (P < 0.05). CONCLUSIONS The mouse model of autism established using the modified method better mimics human autism with reduced mortality and abortion rates of the pregnant mice and also decreased mortality rate of the newborn mice.
Collapse
Affiliation(s)
- Wenxia Zheng
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuling Hu
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Di Chen
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yingbo Li
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shali Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention deficit hyperactivity disorder. Pharmacol Biochem Behav 2019; 182:22-34. [PMID: 31103523 PMCID: PMC6855401 DOI: 10.1016/j.pbb.2019.05.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a persistent, and impairing pediatric-onset neurodevelopmental condition. Its high prevalence, and recurrent controversy over its widespread identification and treatment, drive strong interest in its etiology and mechanisms. Emerging evidence for a role for neuroinflammation in ADHD pathophysiology is of great interest. This evidence includes 1) the above-chance comorbidity of ADHD with inflammatory and autoimmune disorders, 2) initial studies indicating an association with ADHD and increased serum cytokines, 3) preliminary evidence from genetic studies demonstrating associations between polymorphisms in genes associated with inflammatory pathways and ADHD, 4) emerging evidence that early life exposure to environmental factors may increase risk for ADHD via an inflammatory mechanism, and 5) mechanistic evidence from animal models of maternal immune activation documenting behavioral and neural outcomes consistent with ADHD. Prenatal exposure to inflammation is associated with changes in offspring brain development including reductions in cortical gray matter volume and the volume of certain cortical areas -parallel to observations associated with ADHD. Alterations in neurotransmitter systems, including the dopaminergic, serotonergic and glutamatergic systems, are observed in ADHD populations. Animal models provide strong evidence that development and function of these neurotransmitters systems are sensitive to exposure to in utero inflammation. In summary, accumulating evidence from human studies and animal models, while still incomplete, support a potential role for neuroinflammation in the pathophysiology of ADHD. Confirmation of this association and the underlying mechanisms have become valuable targets for research. If confirmed, such a picture may be important in opening new intervention routes.
Collapse
Affiliation(s)
| | - Joel T Nigg
- Oregon Health and Science University, United States of America
| | - Elinor L Sullivan
- University of Oregon, United States of America; Oregon Health and Science University, United States of America; Oregon National Primate Research Center, United States of America.
| |
Collapse
|
10
|
Gustafsson HC, Sullivan EL, Nousen EK, Sullivan CA, Huang E, Rincon M, Nigg JT, Loftis JM. Maternal prenatal depression predicts infant negative affect via maternal inflammatory cytokine levels. Brain Behav Immun 2018; 73:470-481. [PMID: 29920327 PMCID: PMC6129422 DOI: 10.1016/j.bbi.2018.06.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Maternal depressive symptoms during pregnancy are associated with risk for offspring emotional and behavioral problems, but the mechanisms by which this association occurs are not known. Infant elevated negative affect (increased crying, irritability, fearfulness, etc.) is a key risk factor for future psychopathology, so understanding its determinants has prevention and early intervention potential. An understudied yet promising hypothesis is that maternal mood affects infant mood via maternal prenatal inflammatory mechanisms, but this has not been prospectively examined in humans. Using data from a pilot study of women followed from the second trimester of pregnancy through six months postpartum (N = 68) our goal was to initiate a prospective study as to whether maternal inflammatory cytokines mediate the association between maternal depressive symptoms and infant offspring negative affect. The study sample was designed to examine a broad range of likely self-regulation and mood-regulation problems in offspring; to that end we over-selected women with a family history or their own history of elevated symptoms of attention-deficit/hyperactivity disorder. Results supported the hypothesis: maternal pro-inflammatory cytokines during the third trimester (indexed using a latent variable that included plasma interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1 concentrations as indicators) mediated the effect, such that higher maternal depressive symptoms were associated with higher maternal inflammation, and this mediated the effect on maternal report of infant negative affect (controlling for maternal affect during the infant period). This is the first human study to demonstrate that maternal inflammatory cytokines mediate the association between prenatal depression and infant outcomes, and the first to demonstrate a biological mechanism through which depressive symptoms impact infant temperament.
Collapse
Affiliation(s)
- Hanna C Gustafsson
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Elinor L Sullivan
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, USA; University of Oregon, 1585 E 13th Ave, Eugene, OR, USA.
| | - Elizabeth K Nousen
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Ceri A Sullivan
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Elaine Huang
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, USA.
| | - Monica Rincon
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Joel T Nigg
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Jennifer M Loftis
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, USA.
| |
Collapse
|
11
|
Zhu X, Li C, Afridi SK, Zu S, Xu JW, Quanquin N, Yang H, Cheng G, Xu Z. E90 subunit vaccine protects mice from Zika virus infection and microcephaly. Acta Neuropathol Commun 2018; 6:77. [PMID: 30097059 PMCID: PMC6086021 DOI: 10.1186/s40478-018-0572-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022] Open
Abstract
Zika virus (ZIKV) became a global threat due to its unprecedented outbreak and its association with congenital malformations such as microcephaly in developing fetuses and neonates. There are currently no effective vaccines or drugs available for the prevention or treatment of ZIKV infection. Although multiple vaccine platforms have been established, their effectiveness in preventing congenital microcephaly has not been addressed. Herein, we tested a subunit vaccine containing the 450 amino acids at the N-terminus of the ZIKV envelope protein (E90) in mouse models for either in utero or neonatal ZIKV infection. In one model, embryos of vaccinated dams were challenged with a contemporary ZIKV strain at embryonic day 13.5. The other model infects neonatal mice from vaccinated dams by direct injection of ZIKV into the developing brains. The vaccine led to a substantial reduction of ZIKV-infected cells measured in the brains of fetal or suckling mice, and successfully prevented the onset of microcephaly compared to unvaccinated controls. Furthermore, E90 could protect mice from ZIKV infection even at 140 days post-immunization. This work directly demonstrates that immunization of pregnant mice protects the developing brains of offspring both in utero and in the neonatal period from subsequent ZIKV infection and microcephaly. It also supports the further development of the E90 subunit vaccine towards clinical trials.
Collapse
Affiliation(s)
- Xingliang Zhu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunfeng Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shabbir Khan Afridi
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shulong Zu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jesse W Xu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Natalie Quanquin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Heng Yang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Genhong Cheng
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, 100101, China.
| |
Collapse
|
12
|
Winter C, Greene DM, Mavrogiorgou P, Schaper H, Sohr R, Bult-Ito A, Juckel G. Altered serotonergic and GABAergic neurotransmission in a mice model of obsessive-compulsive disorder. Behav Brain Res 2018; 337:240-245. [DOI: 10.1016/j.bbr.2017.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/04/2023]
|
13
|
Hafizi S, Tseng HH, Rao N, Selvanathan T, Kenk M, Bazinet RP, Suridjan I, Wilson AA, Meyer JH, Remington G, Houle S, Rusjan PM, Mizrahi R. Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [ 18F]FEPPA. Am J Psychiatry 2017; 174:118-124. [PMID: 27609240 PMCID: PMC5342628 DOI: 10.1176/appi.ajp.2016.16020171] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [18F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. METHOD Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [18F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (VT) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). RESULTS No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [18F]FEPPA VT, in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [18F]FEPPA VT and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. CONCLUSIONS The lack of significant differences in [18F]FEPPA VT between groups suggests that microglial activation is not present in first-episode psychosis.
Collapse
Affiliation(s)
- Sina Hafizi
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Huai-Hsuan Tseng
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Naren Rao
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Thiviya Selvanathan
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Miran Kenk
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Richard P Bazinet
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Ivonne Suridjan
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Alan A Wilson
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Jeffrey H Meyer
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Gary Remington
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Sylvain Houle
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Pablo M Rusjan
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| | - Romina Mizrahi
- From the Research Imaging Centre and the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto; the Departments of Psychiatry and of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto; and the Institute of Medical Science, University of Toronto, Toronto
| |
Collapse
|
14
|
Ronovsky M, Berger S, Molz B, Berger A, Pollak DD. Animal Models of Maternal Immune Activation in Depression Research. Curr Neuropharmacol 2017; 14:688-704. [PMID: 26666733 PMCID: PMC5050397 DOI: 10.2174/1570159x14666151215095359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/24/2015] [Accepted: 11/09/2015] [Indexed: 01/17/2023] Open
Abstract
Abstract: Background Depression and schizophrenia are debilitating mental illnesses with significant socio-economic impact. The high degree of comorbidity between the two disorders, and shared symptoms and risk factors, suggest partly common pathogenic mechanisms. Supported by human and animal studies, maternal immune activation (MIA) has been intimately associated with the development of schizophrenia. However, the link between MIA and depression has remained less clear, in part due to the lack of appropriate animal models. Objective Here we aim to summarize findings obtained from studies using MIA animal models and discuss their relevance for preclinical depression research. Methods Results on molecular, cellular and behavioral phenotypes in MIA animal models were collected by literature search (PubMed) and evaluated for their significance for depression. Results Several reports on offspring depression-related behavioral alterations indicate an involvement of MIA in the development of depression later in life. Depression-related behavioral phenotypes were frequently paralleled by neurogenic and neurotrophic deficits and modulated by several genetic and environmental factors. Conclusion Literature evidence analyzed in this review supports a relevance of MIA as animal model for a specific early life adversity, which may prime an individual for the development of distinct psychopathologies later life. MIA animal models may present a unique tool for the identification of additional exogenous and endogenous factors, which are required for the manifestation of a specific neuropsychiatric disorder, such as depression, later in life. Hereby, novel insights into the molecular mechanisms involved in the pathophysiology of depression may be obtained, supporting the identification of alternative therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
15
|
Heyer DB, Meredith RM. Environmental toxicology: Sensitive periods of development and neurodevelopmental disorders. Neurotoxicology 2017; 58:23-41. [DOI: 10.1016/j.neuro.2016.10.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022]
|
16
|
Fatemi SH, Folsom TD, Liesch SB, Kneeland RE, Karkhane Yousefi M, Thuras PD. The effects of prenatal H1N1 infection at E16 on FMRP, glutamate, GABA, and reelin signaling systems in developing murine cerebellum. J Neurosci Res 2016; 95:1110-1122. [PMID: 27735078 DOI: 10.1002/jnr.23949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/28/2022]
Abstract
Prenatal viral infection has been identified as a potential risk factor for the development of neurodevelopmental disorders such as schizophrenia and autism. Additionally, dysfunction in gamma-aminobutyric acid, Reelin, and fragile X mental retardation protein (FMRP)-metabotropic glutamate receptor 5 signaling systems has also been demonstrated in these two disorders. In the current report, we have characterized the developmental profiles of selected markers for these systems in cerebella of mice born to pregnant mice infected with human influenza (H1N1) virus on embryonic day 16 or sham-infected controls using SDS-PAGE and Western blotting techniques and evaluated the presence of abnormalities in the above-mentioned markers during brain development. The cerebellum was selected in light of emerging evidence that it plays roles in learning, memory, and emotional processing-all of which are disrupted in autism and schizophrenia. We identified unique patterns of gene and protein expression at birth (postnatal day 0 [P0]), childhood (P14), adolescence (P35), and young adulthood (P56) in both exposed and control mouse progeny. We also identified significant differences in protein expression for FMRP, very-low-density lipoprotein receptor, and glutamic acid decarboxylase 65 and 67 kDa proteins at specific postnatal time points in cerebella of the offspring of exposed mice. Our results provide evidence of disrupted FMRP, glutamatergic, and Reelin signaling in the exposed mouse offspring that explains the multiple brain abnormalities observed in this animal model. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Stephanie B Liesch
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Rachel E Kneeland
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mahtab Karkhane Yousefi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Paul D Thuras
- VA Medical Center, Department of Psychiatry, Minneapolis, Minnesota
| |
Collapse
|
17
|
Lins BR, Pushie JM, Jones M, Howard DL, Howland JG, Hackett MJ. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging. PLoS One 2016; 11:e0158152. [PMID: 27351594 PMCID: PMC4924862 DOI: 10.1371/journal.pone.0158152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022] Open
Abstract
The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K+, Cl-, and Ca+ distributions unreliable. In the present study, we directly examined the distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl- and Fe while K+ levels increase further from the ventricle as Cl- levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl- surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. This study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models.
Collapse
Affiliation(s)
- Brittney R. Lins
- Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jake M. Pushie
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael Jones
- Australian Synchrotron, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, Australia
| | | | - John G. Howland
- Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark J. Hackett
- Department of Chemistry, Curtin University, Perth, WA, Australia
| |
Collapse
|
18
|
Muller CL, Anacker AMJ, Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience 2016; 321:24-41. [PMID: 26577932 PMCID: PMC4824539 DOI: 10.1016/j.neuroscience.2015.11.010] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 02/02/2023]
Abstract
Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker.
Collapse
Affiliation(s)
- C L Muller
- Vanderbilt Brain Institute, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37232, USA.
| | - A M J Anacker
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, Mail Unit 78, New York, NY 10032, USA.
| | - J Veenstra-VanderWeele
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Columbia University; Center for Autism and the Developing Brain, New York Presbyterian Hospital; New York State Psychiatric Institute, 1051 Riverside Drive, Mail Unit 78, New York, NY 10032, USA.
| |
Collapse
|
19
|
Chugani DC, Chugani HT, Wiznitzer M, Parikh S, Evans PA, Hansen RL, Nass R, Janisse JJ, Dixon-Thomas P, Behen M, Rothermel R, Parker JS, Kumar A, Muzik O, Edwards DJ, Hirtz D. Efficacy of Low-Dose Buspirone for Restricted and Repetitive Behavior in Young Children with Autism Spectrum Disorder: A Randomized Trial. J Pediatr 2016; 170:45-53.e1-4. [PMID: 26746121 DOI: 10.1016/j.jpeds.2015.11.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/05/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To determine safety and efficacy of the 5HT1A serotonin partial agonist buspirone on core autism and associated features in children with autism spectrum disorder (ASD). STUDY DESIGN Children 2-6 years of age with ASD (N = 166) were randomized to receive placebo or 2.5 or 5.0 mg of buspirone twice daily. The primary objective was to evaluate the effects of 24 weeks of buspirone on the Autism Diagnostic Observation Schedule (ADOS) Composite Total Score. Secondary objectives included evaluating the effects of buspirone on social competence, repetitive behaviors, language, sensory dysfunction, and anxiety and to assess side effects. Positron emission tomography measures of tryptophan metabolism and blood serotonin concentrations were assessed as predictors of buspirone efficacy. RESULTS There was no difference in the ADOS Composite Total Score between baseline and 24 weeks among the 3 treatment groups (P = .400); however, the ADOS Restricted and Repetitive Behavior score showed a time-by-treatment effect (P = .006); the 2.5-mg buspirone group showed significant improvement (P = .003), whereas placebo and 5.0-mg buspirone groups showed no change. Children in the 2.5-mg buspirone group were more likely to improve if they had fewer foci of increased brain tryptophan metabolism on positron emission tomography (P = .018) or if they showed normal levels of blood serotonin (P = .044). Adverse events did not differ significantly among treatment groups. CONCLUSIONS Treatment with 2.5 mg of buspirone in young children with ASD might be a useful adjunct therapy to target restrictive and repetitive behaviors in conjunction with behavioral interventions. TRIAL REGISTRATION ClinicalTrials.gov: NCT00873509.
Collapse
Affiliation(s)
- Diane C Chugani
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI.
| | - Harry T Chugani
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI; Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | - Max Wiznitzer
- Neuroscience Institute, University Hospitals Case Medical Center, Rainbow Babies and Children's Hospital, Cleveland, OH
| | - Sumit Parikh
- Cleveland Clinic Neurogenetics & Metabolism, Neuroscience Institute Lerner College of Medicine-Case Western Reserve University, Cleveland, OH
| | - Patricia A Evans
- Departments of Neurology and Pediatrics, University of Texas Southwestern Medical Center, Children's Medical Center of Dallas, Dallas, TX
| | - Robin L Hansen
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Department of Pediatrics, University of California Davis, Davis, CA
| | - Ruth Nass
- Department of Neurology, New York University Langone Medical Center, New York, NY; Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY
| | - James J Janisse
- Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Pamela Dixon-Thomas
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI
| | - Michael Behen
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI
| | - Robert Rothermel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI
| | - Jacqueline S Parker
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI
| | - Ajay Kumar
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI; Department of Neurology, Wayne State University School of Medicine, Detroit, MI; Department of Radiology, Wayne State University School of Medicine, Detroit, MI
| | - Otto Muzik
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI; Department of Neurology, Wayne State University School of Medicine, Detroit, MI; Department of Radiology, Wayne State University School of Medicine, Detroit, MI
| | - David J Edwards
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Deborah Hirtz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Benarous X, Consoli A, Milhiet V, Cohen D. Early interventions for youths at high risk for bipolar disorder: a developmental approach. Eur Child Adolesc Psychiatry 2016; 25:217-33. [PMID: 26395448 DOI: 10.1007/s00787-015-0773-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 10/23/2022]
Abstract
In recent decades, ongoing research programmes on primary prevention and early identification of bipolar disorder (BD) have been developed. The aim of this article is to review the principal forms of evidence that support preventive interventions for BD in children and adolescents and the main challenges associated with these programmes. We performed a literature review of the main computerised databases (MEDLINE, PUBMED) and a manual search of the literature relevant to prospective and retrospective studies of prodromal symptoms, premorbid stages, risk factors, and early intervention programmes for BD. Genetic and environmental risk factors of BD were identified. Most of the algorithms used to measure the risk of developing BD and the early interventions programmes focused on the familial risk. The prodromal signs varied greatly and were age dependent. During adolescence, depressive episodes associated with genetic or environmental risk factors predicted the onset of hypomanic/manic episodes over subsequent years. In prepubertal children, the lack of specificity of clinical markers and difficulties in mood assessment were seen as impeding preventive interventions at these ages. Despite encouraging results, biomarkers have not thus far been sufficiently validated in youth samples to serve as screening tools for prevention. Additional longitudinal studies in youths at high risk of developing BD should include repeated measures of putative biomarkers. Staging models have been developed as an integrative approach to specify the individual level of risk based on clinical (e.g. prodromal symptoms and familial history of BD) and non-clinical (e.g. biomarkers and neuroimaging) data. However, there is still a lack of empirically validated studies that measure the benefits of using these models to design preventive intervention programmes.
Collapse
Affiliation(s)
- Xavier Benarous
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Université Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, AP-HP, 47-83, Boulevard de l'Hôpital, 75013, Paris, France.
| | - Angèle Consoli
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Université Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, AP-HP, 47-83, Boulevard de l'Hôpital, 75013, Paris, France.,INSERM U-669, PSIGIAM, Paris, France
| | - Vanessa Milhiet
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Université Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, AP-HP, 47-83, Boulevard de l'Hôpital, 75013, Paris, France
| | - David Cohen
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Université Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, AP-HP, 47-83, Boulevard de l'Hôpital, 75013, Paris, France.,CNRS UMR 7222, Institut des Systèmes Intelligents et Robotiques, Paris, France
| |
Collapse
|
21
|
Möller M, Swanepoel T, Harvey BH. Neurodevelopmental Animal Models Reveal the Convergent Role of Neurotransmitter Systems, Inflammation, and Oxidative Stress as Biomarkers of Schizophrenia: Implications for Novel Drug Development. ACS Chem Neurosci 2015; 6:987-1016. [PMID: 25794269 DOI: 10.1021/cn5003368] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia is a life altering disease with a complex etiology and pathophysiology, and although antipsychotics are valuable in treating the disorder, certain symptoms and/or sufferers remain resistant to treatment. Our poor understanding of the underlying neuropathological mechanisms of schizophrenia hinders the discovery and development of improved pharmacological treatment, so that filling these gaps is of utmost importance for an improved outcome. A vast amount of clinical data has strongly implicated the role of inflammation and oxidative insults in the pathophysiology of schizophrenia. Preclinical studies using animal models are fundamental in our understanding of disease development and pathology as well as the discovery and development of novel treatment options. In particular, social isolation rearing (SIR) and pre- or postnatal inflammation (PPNI) have shown great promise in mimicking the biobehavioral manifestations of schizophrenia. Furthermore, the "dual-hit" hypothesis of schizophrenia states that a first adverse event such as genetic predisposition or a prenatal insult renders an individual susceptible to develop the disease, while a second insult (e.g., postnatal inflammation, environmental adversity, or drug abuse) may be necessary to precipitate the full-blown syndrome. Animal models that emphasize the "dual-hit" hypothesis therefore provide valuable insight into understanding disease progression. In this Review, we will discuss SIR, PPNI, as well as possible "dual-hit" animal models within the context of the redox-immune-inflammatory hypothesis of schizophrenia, correlating such changes with the recognized monoamine and behavioral alterations of schizophrenia. Finally, based on these models, we will review new therapeutic options, especially those targeting immune-inflammatory and redox pathways.
Collapse
Affiliation(s)
- M. Möller
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| | - T. Swanepoel
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| | - B. H. Harvey
- Department of Pharmacology and ‡Center of Excellence for Pharmaceutical Sciences,
School of Pharmacy, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
22
|
Fang SY, Wang S, Huang N, Yeh HH, Chen CY. Prenatal Infection and Autism Spectrum Disorders in Childhood: A Population-Based Case-Control Study in Taiwan. Paediatr Perinat Epidemiol 2015; 29:307-16. [PMID: 25989831 DOI: 10.1111/ppe.12194] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Infection in pregnancy has long been linked with negative postnatal development and health. This study aims to assess the association between prenatal infections and autism spectrum disorders (ASDs) across three trimesters and to probe possible sex heterogeneity in such link. METHOD A total of 4184 children with incident ASDs and 16,734 matched children were identified from the 2000-2007 National Health Insurance Research Database. For each child, information pertaining to the mother's infection during pregnancy, sociodemographics, and medical history was retrieved from healthcare records. Conditional logistic analyses were carried out to estimate the strength of associations with adjustment for multiple comparisons. RESULT Pooled analyses demonstrated that having two or more outpatient visits for genital infection [adjusted odds ratio (aOR): 1.34; 95% confidence interval (95% CI) 1.12, 1.60; false discovery rate (FDR) < 0.01] and bacterial infection (aOR: 1.24; 95% CI 1.06, 1.43; FDR < 0.05) in the third trimester were slightly associated with increased risk of ASDs. No statistically significant sex differences were found. CONCLUSION The present study contributes updated population-based evidence about the connection between prenatal infection and ASDs. Potential effect of bacterial and genital tract infections during the third trimester on risk of ASDs warrants further exploration.
Collapse
Affiliation(s)
- Shao-You Fang
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,Center of Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Nicole Huang
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Hsueh-Han Yeh
- Department of Epidemiology and Biostatistics, Michigan State University, MI
| | - Chuan-Yu Chen
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,Center of Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| |
Collapse
|
23
|
Abstract
Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.
Collapse
Affiliation(s)
- Georg Juckel
- Department of Psychiatry, Ruhr University, LWL University Hospital, Bochum, Germany
| |
Collapse
|
24
|
Wischhof L, Irrsack E, Osorio C, Koch M. Prenatal LPS-exposure--a neurodevelopmental rat model of schizophrenia--differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:17-30. [PMID: 25455585 DOI: 10.1016/j.pnpbp.2014.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023]
Abstract
Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. Gender differences can be seen in various features of the illness and sex steroid hormones (e.g. estrogen) have strongly been implicated in the disease pathology. In the present study, we evaluated sex differences in the effects of prenatal exposure to a bacterial endotoxin (lipopolysaccharide, LPS) in rats. Pregnant dams received LPS-injections (100 μg/kg) at gestational day 15 and 16. The offspring was then tested for prepulse inhibition (PPI), locomotor activity, anxiety-like behavior and object recognition memory at various developmental time points. At postnatal day (PD) 33 and 60, prenatally LPS-exposed rats showed locomotor hyperactivity which was similar in male and female offspring. Moreover, prenatal LPS-treatment caused PPI deficits in pubertal (PD45) and adult (PD90) males while PPI impairments were found only at PD45 in prenatally LPS-treated females. Following prenatal LPS-administration, recognition memory for objects was impaired in both sexes with males being more severely affected. Additionally, we assessed prenatal infection-induced alterations of parvalbumin (Parv) expression and myelin fiber density. Male offspring born to LPS-challenged mothers showed decreased myelination in cortical and limbic brain regions as well as reduced numbers of Parv-expressing cells in the medial prefrontal cortex (mPFC), hippocampus and entorhinal cortex. In contrast, LPS-exposed female rats showed only a modest decrease in myelination and Parv immunoreactivity. Collectively, our data indicate that some of the prenatal immune activation effects are sex dependent and further strengthen the importance of taking into account gender differences in animal models of schizophrenia.
Collapse
Affiliation(s)
- Lena Wischhof
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany.
| | - Ellen Irrsack
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Carmen Osorio
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Michael Koch
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| |
Collapse
|
25
|
Davis J, Moylan S, Harvey BH, Maes M, Berk M. Neuroprogression in schizophrenia: Pathways underpinning clinical staging and therapeutic corollaries. Aust N Z J Psychiatry 2014; 48:512-29. [PMID: 24803587 DOI: 10.1177/0004867414533012] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Whilst dopaminergic dysfunction remains a necessary component involved in the pathogenesis of schizophrenia, our current pharmacological armoury of dopamine antagonists does little to control the negative symptoms of schizophrenia. This suggests other pathological processes must be implicated. This paper aims to elaborate on such theories. METHODS Data for this review were sourced from the electronic database PUBMED, and was not limited by language or date of publication. RESULTS It has been suggested that multiple 'hits' may be required to unveil the clinical syndrome in susceptible individuals. Such hits potentially first occur in utero, leading to neuronal disruption, epigenetic changes and the establishment of an abnormal inflammatory response. The development of schizophrenia may therefore potentially be viewed as a neuroprogressive response to these early stressors, driven on by changes in tryptophan catabolite (TRYCAT) metabolism, reactive oxygen species handling and N-methyl d-aspartate (NMDA) circuitry. Given the potential for such progression over time, it is prudent to explore the new treatment strategies which may be implemented before such changes become established. CONCLUSIONS Outside of the dopaminergic model, the potential pathogenesis of schizophrenia has yet to be fully elucidated, but common themes include neuropil shrinkage, the development of abnormal neuronal circuitry, and a chronic inflammatory state which further disrupts neuronal function. Whilst some early non-dopaminergic treatments show promise, none have yet to be fully studied in appropriately structured randomized controlled trials and they remain little more than potential attractive targets.
Collapse
Affiliation(s)
- Justin Davis
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia
| | - Steven Moylan
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia
| | - Brian H Harvey
- Division of Pharmacology, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Michael Maes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia Orygen Youth Health Research Centre, Parkville, Australia Centre of Youth Mental Health, University of Melbourne, Parkville, Australia Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
26
|
Mattei D, Djodari-Irani A, Hadar R, Pelz A, de Cossío LF, Goetz T, Matyash M, Kettenmann H, Winter C, Wolf SA. Minocycline rescues decrease in neurogenesis, increase in microglia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia. Brain Behav Immun 2014; 38:175-84. [PMID: 24509090 DOI: 10.1016/j.bbi.2014.01.019] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/06/2014] [Accepted: 01/27/2014] [Indexed: 01/27/2023] Open
Abstract
Adult neurogenesis in the hippocampus is impaired in schizophrenic patients and in an animal model of schizophrenia. Amongst a plethora of regulators, the immune system has been shown repeatedly to strongly modulate neurogenesis under physiological and pathological conditions. It is well accepted, that schizophrenic patients have an aberrant peripheral immune status, which is also reflected in the animal model. The microglia as the intrinsic immune competent cells of the brain have recently come into focus as possible therapeutic targets in schizophrenia. We here used a maternal immune stimulation rodent model of schizophrenia in which polyinosinic-polycytidilic acid (Poly I:C) was injected into pregnant rats to mimic an anti-viral immune response. We identified microglia IL-1β and TNF-α increase constituting the factors correlating best with decreases in net-neurogenesis and impairment in pre-pulse inhibition of a startle response in the Poly I:C model. Treatment with the antibiotic minocycline (3mg/kg/day) normalized microglial cytokine production in the hippocampus and rescued neurogenesis and behavior. We could also show that enhanced microglial TNF-α and IL-1β production in the hippocampus was accompanied by a decrease in the pro-proliferative TNFR2 receptor expression on neuronal progenitor cells, which could be attenuated by minocycline. These findings strongly support the idea to use anti-inflammatory drugs to target microglia activation as an adjunctive therapy in schizophrenic patients.
Collapse
Affiliation(s)
- Daniele Mattei
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany
| | - Anaïs Djodari-Irani
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charité Campus Mitte, 10117 Berlin, Germany
| | - Ravit Hadar
- University Hospital, Clinic for Psychiatry and Psychotherapy, Experimental Psychiatry, 01307 Dresden, Germany
| | - Andreas Pelz
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany
| | | | - Thomas Goetz
- University Hospital, Clinic for Psychiatry and Psychotherapy, Experimental Psychiatry, 01307 Dresden, Germany
| | - Marina Matyash
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany
| | - Helmut Kettenmann
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany
| | - Christine Winter
- University Hospital, Clinic for Psychiatry and Psychotherapy, Experimental Psychiatry, 01307 Dresden, Germany
| | - Susanne A Wolf
- Max-Delbrück-Center of Molecular Medicine, Cellular Neuroscience, 13125 Berlin, Germany.
| |
Collapse
|
27
|
Meyer U. Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 2014; 75:307-15. [PMID: 23938317 DOI: 10.1016/j.biopsych.2013.07.011] [Citation(s) in RCA: 449] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/18/2013] [Accepted: 07/04/2013] [Indexed: 02/08/2023]
Abstract
It is increasingly appreciated that altered neuroimmune mechanisms might play a role in the development of schizophrenia and related psychotic illnesses. On the basis of human epidemiological findings, a number of translational rodent models have been established to explore the consequences of prenatal immune activation on brain and behavioral development. The currently existing models are based on maternal gestational exposure to human influenza virus, the viral mimic polyriboinosinic-polyribocytidilic acid [Poly(I:C)], the bacterial endotoxin lipopolysaccharide, the locally acting inflammatory agent turpentine, or selected inflammatory cytokines. These models are pivotal for establishing causal relationships and for identifying cellular and molecular mechanisms that affect normal brain development in the event of early-life immune exposures. An important aspect of developmental immune activation models is that they allow a multi-faceted, longitudinal monitoring of the disease process as it unfolds during the course of neurodevelopment from prenatal to adult stages of life. An important recent refinement of these models is the incorporation of multiple etiologically relevant risk factors by combining prenatal immune challenges with specific genetic manipulations or additional environmental adversities. Converging findings from such recent experimental attempts suggest that prenatal infection can act as a "neurodevelopmental disease primer" that is likely relevant for a number of chronic mental illnesses. Hence, the adverse effects induced by prenatal infection might reflect an early entry into the neuropsychiatric route, but the specificity of subsequent disease or symptoms is likely to be strongly influenced by the genetic and environmental context in which the prenatal infectious process occurs.
Collapse
Affiliation(s)
- Urs Meyer
- Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
28
|
Scumpia PO, Kelly-Scumpia K, Stevens BR. Alpha-lipoic acid effects on brain glial functions accompanying double-stranded RNA antiviral and inflammatory signaling. Neurochem Int 2013; 64:55-63. [PMID: 24269587 DOI: 10.1016/j.neuint.2013.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/23/2013] [Accepted: 11/03/2013] [Indexed: 12/19/2022]
Abstract
Double-stranded RNAs (dsRNA) serve as viral ligands that trigger innate immunity in astrocytes and microglial, as mediated through Toll-like receptor 3 (TLR3) and dsRNA-dependent protein kinase (PKR). Beneficial transient TLR3 and PKR anti-viral signaling can become deleterious when events devolve into inflammation and cytotoxicity. Viral products in the brain cause glial cell dysfunction, and are a putative etiologic factor in neuropsychiatric disorders, notably schizophrenia, bipolar disorder, Parkinson's, and autism spectrum. Alpha-lipoic acid (LA) has been proposed as a possible therapeutic neuroprotectant. The objective of this study was to test our hypothesis that LA can control untoward antiviral mechanisms associated with neural dysfunction. Utilizing rat brain glial cultures (91% astrocytes:9% microglia) treated with PKR- and TLR3-ligand/viral mimetic dsRNA, polyinosinic-polycytidylic acid (polyI:C), we report in vitro glial antiviral signaling and LA reduction of the effects of this signaling. LA blunted the dsRNA-stimulated expression of IFNα/β-inducible genes Mx1, PKR, and TLR3. And in polyI:C treated cells, LA promoted gene expression of rate-limiting steps that benefit healthy neural redox status in glutamateric systems. To this end, LA decreased dsRNA-induced inflammatory signaling by downregulating IL-1β, IL-6, TNFα, iNOS, and CAT2 transcripts. In the presence of polyI:C, LA prevented cultured glial cytotoxicity which was correlated with increased expression of factors known to cooperatively control glutamate/cystine/glutathione redox cycling, namely glutamate uptake transporter GLAST/EAAT1, γ-glutamyl cysteine ligase catalytic and regulatory subunits, and IL-10. Glutamate exporting transporter subunits 4F2hc and xCT were downregulated by LA in dsRNA-stimulated glia. l-Glutamate net uptake was inhibited by dsRNA, and this was relieved by LA. Glutathione synthetase mRNA levels were unchanged by dsRNA or LA. This study demonstrates the protective effects of LA in astroglial/microglial cultures, and suggests the potential for LA efficacy in virus-induced CNS pathologies, with the caveat that antiviral benefits are concomitantly blunted. It is concluded that LA averts key aspects of TLR3- and PKR-provoked glial dysfunction, and provides rationale for exploring LA in whole animal and human clinical studies to blunt or avert neuropsychiatric disorders.
Collapse
Affiliation(s)
- Philip O Scumpia
- University of Florida, College of Medicine, Department of Physiology and Functional Genomics, USA
| | - Kindra Kelly-Scumpia
- University of Florida, College of Medicine, Department of Physiology and Functional Genomics, USA
| | - Bruce R Stevens
- University of Florida, College of Medicine, Department of Physiology and Functional Genomics, USA.
| |
Collapse
|
29
|
Vitalis T, Ansorge MS, Dayer AG. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front Cell Neurosci 2013; 7:93. [PMID: 23801939 PMCID: PMC3686152 DOI: 10.3389/fncel.2013.00093] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/27/2013] [Indexed: 12/15/2022] Open
Abstract
Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders.
Collapse
Affiliation(s)
- Tania Vitalis
- Laboratoire de Neurobiologie, ESPCI ParisTech, Centre National de la Recherche Scientifique-UMR 7637 Paris, France
| | | | | |
Collapse
|
30
|
Gibney SM, Drexhage HA. Evidence for a dysregulated immune system in the etiology of psychiatric disorders. J Neuroimmune Pharmacol 2013; 8:900-20. [PMID: 23645137 DOI: 10.1007/s11481-013-9462-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/17/2013] [Indexed: 02/06/2023]
Abstract
There is extensive bi-directional communication between the brain and the immune system in both health and disease. In recent years, the role of an altered immune system in the etiology of major psychiatric disorders has become more apparent. Studies have demonstrated that some patients with major psychiatric disorders exhibit characteristic signs of immune dysregulation and that this may be a common pathophysiological mechanism that underlies the development and progression of these disorders. Furthermore, many psychiatric disorders are also often accompanied by chronic medical conditions related to immune dysfunction such as autoimmune diseases, diabetes and atherosclerosis. One of the major psychiatric disorders that has been associated with an altered immune system is schizophrenia, with approximately one third of patients with this disorder showing immunological abnormalities such as an altered cytokine profile in serum and cerebrospinal fluid. An altered cytokine profile is also found in a proportion of patients with major depressive disorder and is thought to be potentially related to the pathophysiology of this disorder. Emerging evidence suggests that altered immune parameters may also be implicated in the neurobiological etiology of autism spectrum disorders. Further support for a role of immune dysregulation in the pathophysiology of these psychiatric disorders comes from studies showing the immunomodulating effects of antipsychotics and antidepressants, and the mood altering effects of anti-inflammatory therapies. This review will not attempt to discuss all of the psychiatric disorders that have been associated with an augmented immune system, but will instead focus on several key disorders where dysregulation of this system has been implicated in their pathophysiology including depression, schizophrenia and autism spectrum disorder.
Collapse
Affiliation(s)
- Sinead M Gibney
- Department of Immunology, Na1101, Erasmus MC, Dr. Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands.
| | | |
Collapse
|
31
|
Anderson G, Maes M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:5-19. [PMID: 22800757 DOI: 10.1016/j.pnpbp.2012.06.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023]
Abstract
In 1995, the macrophage-T lymphocyte theory of schizophrenia (Smith and Maes, 1995) considered that activated immuno-inflammatory pathways may account for the higher neurodevelopmental pathology linked with gestational infections through the detrimental effects of activated microglia, oxidative and nitrosative stress (O&NS), cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway and consequent modulation of the N-methyl d-aspartate receptor (NMDAr) and glutamate production. The aim of the present paper is to review the current state-of-the art regarding the role of the above pathways in schizophrenia. Accumulating data suggest a powerful role for prenatal infection, both viral and microbial, in driving an early developmental etiology to schizophrenia. Models of prenatal rodent infection show maintained activation of immuno-inflammatory pathways coupled to increased microglia activation. The ensuing activation of immuno-inflammatory pathways in schizophrenia may activate the TRYCAT pathway, including increased kynurenic acid (KA) and neurotoxic TRYCATs. Increased KA, via the inhibition of the α7 nicotinic acetylcholine receptor, lowers gamma-amino-butyric-acid (GABA)ergic post-synaptic current, contributing to dysregulated glutamatergic activity. Hypofunctioning of the NMDAr on GABAergic interneurons will contribute to glutamatergic dysregulation. Many susceptibility genes for schizophrenia are predominantly expressed in early development and will interact with these early developmental driven changes in the immuno-inflammatory and TRYCAT pathways. Maternal infection and subsequent immuno-inflammatory responses are additionally associated with O&NS, including lowered antioxidants such as glutathione. This will contribute to alterations in neurogenesis and myelination. In such a scenario a) a genetic or epigenetic potentiation of immuno-inflammatory pathways may constitute a double hit on their own, stimulating wider immuno-inflammatory responses and thus potentiating the TRYCAT pathway and subsequent NMDAr dysfunction and neuroprogression; and b) antipsychotic-induced changes in immuno-inflammatory, TRYCAT and O&NS pathways would modulate the CNS glia-neuronal interactions that determine synaptic plasticity as well as myelin generation and maintenance.
Collapse
|
32
|
Kneeland RE, Fatemi SH. Viral infection, inflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:35-48. [PMID: 22349576 PMCID: PMC3408569 DOI: 10.1016/j.pnpbp.2012.02.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/06/2012] [Accepted: 02/02/2012] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a severe neurodevelopmental disorder with genetic and environmental etiologies. Prenatal viral/bacterial infections and inflammation play major roles in the genesis of schizophrenia. In this review, we describe a viral model of schizophrenia tested in mice whereby the offspring of mice prenatally infected with influenza at E7, E9, E16, and E18 show significant gene, protein, and brain structural abnormalities postnatally. Similarly, we describe data on rodents exposed to bacterial infection or injected with a synthetic viral mimic (PolyI:C) also demonstrating brain structural and behavioral abnormalities. Moreover, human serologic data has been indispensible in supporting the viral theory of schizophrenia. Individuals born seropositive for bacterial and viral agents are at a significantly elevated risk of developing schizophrenia. While the specific mechanisms of prenatal viral/bacterial infections and brain disorder are unclear, recent findings suggest that the maternal inflammatory response may be associated with fetal brain injury. Preventive and therapeutic treatment options are also proposed. This review presents data related to epidemiology, human serology, and experimental animal models which support the viral model of schizophrenia.
Collapse
Affiliation(s)
- Rachel E. Kneeland
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St. SE, MMC 392, Minneapolis, MN 55455, United States
| | - S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St. SE, MMC 392, Minneapolis, MN 55455, United States,Department of Pharmacology, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455, United States and Department of Neuroscience, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455, United States,Corresponding author at: 420 Delaware Street SE, MMC 392, Minneapolis, MN 55455. Tel.: +1 612 626 3633; fax: +1 612 624 8935. (R.E. Kneeland), (S.H. Fatemi)
| |
Collapse
|
33
|
Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:20-34. [PMID: 22122877 DOI: 10.1016/j.pnpbp.2011.11.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 11/09/2011] [Indexed: 12/27/2022]
Abstract
There is increasing interest in and evidence for altered immune factors in the etiology and pathophysiology of schizophrenia. Stimulated by various epidemiological findings reporting elevated risk of schizophrenia following prenatal exposure to infection, one line of current research aims to explore the potential contribution of immune-mediated disruption of early brain development in the precipitation of long-term psychotic disease. Since the initial formulation of the "prenatal cytokine hypothesis" more than a decade ago, extensive epidemiological research and remarkable advances in modeling prenatal immune activation effects in animal models have provided strong support for this hypothesis by underscoring the critical role of cytokine-associated inflammatory events, together with downstream pathophysiological processes such as oxidative stress, hypoferremia and zinc deficiency, in mediating the short- and long-term neurodevelopmental effects of prenatal infection. Longitudinal studies in animal models further indicate that infection-induced developmental neuroinflammation may be pathologically relevant beyond the antenatal and neonatal periods, and may contribute to disease progression associated with the gradual development of full-blown schizophrenic disease. According to this scenario, exposure to prenatal immune challenge primes early pre- and postnatal alterations in peripheral and central inflammatory response systems, which in turn may disrupt the normal development and maturation of neuronal systems from juvenile to adult stages of life. Such developmental neuroinflammation may adversely affect processes that are pivotal for normal brain maturation, including myelination, synaptic pruning, and neuronal remodeling, all of which occur to a great extent during postnatal brain maturation. Undoubtedly, our understanding of the role of developmental neuroinflammation in progressive brain changes relevant to schizophrenia is still in infancy. Identification of these mechanisms would be highly warranted because they may represent a valuable target to attenuate or even prevent the emergence of full-blown brain and behavioral pathology, especially in individuals with a history of prenatal complications such as in-utero exposure to infection and/or inflammation.
Collapse
|
34
|
Harrington RA, Lee LC, Crum RM, Zimmerman AW, Hertz-Picciotto I. Serotonin Hypothesis of Autism: Implications for Selective Serotonin Reuptake Inhibitor Use during Pregnancy. Autism Res 2013; 6:149-68. [DOI: 10.1002/aur.1288] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 02/15/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Rebecca A. Harrington
- Department of Epidemiology; Johns Hopkins Bloomberg School of Public Health; Baltimore; Maryland
| | - Li-Ching Lee
- Department of Epidemiology; Johns Hopkins Bloomberg School of Public Health; Baltimore; Maryland
| | - Rosa M. Crum
- Departments of Epidemiology, Psychiatry, and Mental Health; Johns Hopkins Medical Institutions; Baltimore; Maryland
| | - Andrew W. Zimmerman
- Lurie Center for Autism; Massachusetts General Hospital for Children; Lexington; Massachusetts
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the M.I.N.D. Institute; MS1C; University of California, Davis; Davis; California
| |
Collapse
|
35
|
Jaaro-Peled H, Niwa M, Foss CA, Murai R, de Los Reyes S, Kamiya A, Mateo Y, O'Donnell P, Cascella NG, Nabeshima T, Guilarte TR, Pomper MG, Sawa A. Subcortical dopaminergic deficits in a DISC1 mutant model: a study in direct reference to human molecular brain imaging. Hum Mol Genet 2013; 22:1574-80. [PMID: 23314019 DOI: 10.1093/hmg/ddt007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Imaging of the human brain has been an invaluable aid in understanding neuropsychopharmacology and, in particular, the role of dopamine in the striatum in mental illness. Here, we report a study in a genetic mouse model for major mental illness guided by results from human brain imaging: a systematic study using small animal positron emission tomography (PET), autoradiography, microdialysis and molecular biology in a putative dominant-negative mutant DISC1 transgenic model. This mouse model showed augmented binding of radioligands to the dopamine D2 receptor (D2R) in the striatum as well as neurochemical and behavioral changes to methamphetamine administration. Previously we reported that this model displayed deficits in the forced swim test, a representative indicator of antidepressant efficacy. By combining the results of our two studies, we propose a working hypothesis for future studies that this model might represent a mixed condition of depression and psychosis. We hope that this study will also help bridge a major gap in translational psychiatry between basic characterization of animal models and clinico-pharmacological assessment of patients mainly through PET imaging.
Collapse
Affiliation(s)
- Hanna Jaaro-Peled
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Salgado JV, Sandner G. A critical overview of animal models of psychiatric disorders: challenges and perspectives. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 2:S77-81. [DOI: 10.1590/1516-4446-2013-1156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Joao Vinicius Salgado
- Universidade Federal de Minas Gerais, Brazil; Fundacao Hospitalar do Estado de Minas Gerais, Brazil
| | | |
Collapse
|
37
|
Alzghoul L, Bortolato M, Delis F, Thanos PK, Darling RD, Godar SC, Zhang J, Grant S, Wang GJ, Simpson KL, Chen K, Volkow ND, Lin RCS, Shih JC. Altered cerebellar organization and function in monoamine oxidase A hypomorphic mice. Neuropharmacology 2012; 63:1208-17. [PMID: 22971542 PMCID: PMC3442946 DOI: 10.1016/j.neuropharm.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/27/2012] [Accepted: 08/08/2012] [Indexed: 11/26/2022]
Abstract
Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-A(Neo)), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-A(Neo) mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO-A(Neo) mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO-A(Neo) mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum.
Collapse
Affiliation(s)
- Loai Alzghoul
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Klein J, Hadar R, Götz T, Männer A, Eberhardt C, Baldassarri J, Schmidt TT, Kupsch A, Heinz A, Morgenstern R, Schneider M, Weiner I, Winter C. Mapping brain regions in which deep brain stimulation affects schizophrenia-like behavior in two rat models of schizophrenia. Brain Stimul 2012; 6:490-9. [PMID: 23085443 DOI: 10.1016/j.brs.2012.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/16/2012] [Accepted: 09/14/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The development of more efficient treatment remains a major unmet need in the realm of schizophrenia disease. Using the maternal immune stimulation and the pubertal cannabinoid administration rat model of schizophrenia, the present study aimed at testing the hypothesis that deep brain stimulation (DBS) serves as a novel therapeutic technique for this disorder. METHODS Adult offspring of dams, treated with the immune activating agent poly I:C (4 mg/kg, n = 50) or saline (n = 50), underwent bilateral stereotactic electrode implantation into one of the following brain regions: subthalamic nucleus (STN, n = 12/10), entopeduncularis nucleus (EP, n = 10/11), globus pallidus (GP, n = 10/10), medial prefrontal cortex (mPFC, n = 8/8), or dorsomedial thalamus (DM, n = 10/11). Adult rats treated with the CB1 receptor agonist WIN 55,212-2 (WIN, n = 16) or saline (n = 12) during puberty were bilaterally implanted with electrodes into either the mPFC (n = 8/6) or the DM (n = 8/6). After a post-operative recovery period of one week, all rats were tested on a well-established cross-species phenomenon that is disrupted in schizophrenia, the pre-pulse inhibition (PPI) of the acoustic startle reflex (ASR) under different DBS conditions. RESULTS Poly I:C induced deficits in PPI of the ASR were normalized upon DBS. DBS effects depended on both stimulation target and stimulation parameters. Most prominent effects were found under DBS at high frequencies in the mPFC and DM. These effects were replicated in the pubertal WIN administration rat model of schizophrenia. CONCLUSIONS Brain regions, in which DBS normalized PPI deficits, might be of therapeutic relevance to the treatment of schizophrenia. Results imply that DBS could be considered a plausible therapeutic technique in the realm of schizophrenia disease.
Collapse
Affiliation(s)
- Julia Klein
- Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Harvey L, Boksa P. Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders. Dev Neurobiol 2012; 72:1335-48. [DOI: 10.1002/dneu.22043] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/11/2022]
|
40
|
Obregon D, Parker-Athill EC, Tan J, Murphy T. Psychotropic effects of antimicrobials and immune modulation by psychotropics: implications for neuroimmune disorders. ACTA ACUST UNITED AC 2012; 2:331-343. [PMID: 23148142 DOI: 10.2217/npy.12.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antimicrobial compounds and psychotropic medications often share overlapping mechanisms of actions and pharmacological effects. The immune system appears to be an important site of interaction as several antimicrobials display neurological and, at times, direct psychotropic effects, while psychotropics have shown significant immunomodulatory properties. The isoniazid class of antibiotics for example has been shown to possess monoamine oxidase activity, while selective serotonin reuptake inhibitors have shown significant effects on leukocyte populations. As the importance of the immune system's role in CNS homeostasis and disease continues to move to the forefront of neuropsychiatric research, these shared pharmacological effects may provide an important insight, elucidating the complexities in neuroimmune pathophysiology and guiding the development of potential treatments.
Collapse
Affiliation(s)
- Demian Obregon
- Department of Psychiatry & Behavioral Neurosciences, University of South Florida, Morsani College of Medicine, Tampa, FL, USA ; Silver Child Development Center, Department of Psychiatry & Behavioral Neurosciences, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | | | | | | |
Collapse
|
41
|
Autism spectrum disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
42
|
El-Ansary AK, Bacha AB, Kotb M. Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation 2012; 9:74. [PMID: 22531301 PMCID: PMC3425128 DOI: 10.1186/1742-2094-9-74] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent clinical observations suggest that certain gut and dietary factors may transiently worsen symptoms in autism. Propionic acid (PA) is a short chain fatty acid and an important intermediate of cellular metabolism. Although PA has several beneficial biological effects, its accumulation is neurotoxic. METHODS Two groups of young Western albino male rats weighing about 45 to 60 grams (approximately 21 days old) were used in the present study. The first group consisted of oral buffered PA-treated rats that were given a neurotoxic dose of 250 mg/kg body weight/day for three days, n = eight; the second group of rats were given only phosphate buffered saline and used as a control. Biochemical parameters representing oxidative stress, energy metabolism, neuroinflammation, neurotransmission, and apoptosis were investigated in brain homogenates of both groups. RESULTS Biochemical analyses of brain homogenates from PA-treated rats showed an increase in oxidative stress markers (for example, lipid peroxidation), coupled with a decrease in glutathione (GSH) and glutathione peroxidase (GPX) and catalase activities. Impaired energy metabolism was ascertained through the decrease of lactate dehydrogenase and activation of creatine kinase (CK). Elevated IL-6, TNFα, IFNγ and heat shock protein 70 (HSP70) confirmed the neuroinflammatory effect of PA. Moreover, elevation of caspase3 and DNA fragmentation proved the pro-apoptotic and neurotoxic effect of PA to rat pups CONCLUSION By comparing the results obtained with those from animal models of autism or with clinical data on the biochemical profile of autistic patients, this study showed that the neurotoxicity of PA as an environmental factor could play a central role in the etiology of autistic biochemical features.
Collapse
Affiliation(s)
- Afaf K El-Ansary
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Malak Kotb
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
43
|
Abstract
A body of epidemiological literature has suggested an association between prenatal infection, subsequent maternal immune activation (MIA), and later risk of schizophrenia. These epidemiological studies have inspired preclinical research using rodent and primate models of prenatal infection and MIA. The findings from these preclinical studies indicate that severe infection and immune activation during pregnancy can negatively impact offspring brain development and impair adult behavior. This review aims to summarize the major epidemiological and preclinical findings addressing the connection between prenatal infection and immune activation and later risk of developing schizophrenia, as well as the more limited literature addressing the mechanisms by which this gestational insult might affect offspring neurodevelopment. Finally, directions for future research will be discussed.
Collapse
|
44
|
Grzeskowiak LE, Gilbert AL, Morrison JL. Investigating Outcomes Following the Use of Selective Serotonin Reuptake Inhibitors for Treating Depression in Pregnancy. Drug Saf 2011; 34:1027-48. [DOI: 10.2165/11593130-000000000-00000] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Piontkewitz Y, Arad M, Weiner I. Risperidone administered during asymptomatic period of adolescence prevents the emergence of brain structural pathology and behavioral abnormalities in an animal model of schizophrenia. Schizophr Bull 2011; 37:1257-69. [PMID: 20439320 PMCID: PMC3196943 DOI: 10.1093/schbul/sbq040] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schizophrenia is a disorder of a neurodevelopmental origin manifested symptomatically after puberty. Structural neuroimaging studies show that neuroanatomical aberrations precede onset of symptoms, raising a question of whether schizophrenia can be prevented. Early treatment with atypical antipsychotics may reduce the risk of transition to psychosis, but it remains unknown whether neuroanatomical abnormalities can be prevented. We have recently shown, using in vivo structural magnetic resonance imaging, that treatment with the atypical antipsychotic clozapine during an asymptomatic period of adolescence prevents the emergence of schizophrenia-like brain structural abnormalities in adult rats exposed to prenatal immune challenge, in parallel to preventing behavioral abnormalities. Here we assessed the preventive efficacy of the atypical antipsychotic risperidone (RIS). Pregnant rats were injected on gestational day 15 with the viral mimic polyriboinosinic-polyribocytidylic acid (poly I:C) or saline. Their male offspring received daily RIS (0.045 or 1.2 mg/kg) or vehicle injection in peri-adolescence (postnatal days [PND] 34-47). Structural brain changes and behavior were assessed at adulthood (from PND 90). Adult offspring of poly I:C-treated dams exhibited hallmark structural abnormalities associated with schizophrenia, enlarged lateral ventricles and smaller hippocampus. Both of these abnormalities were absent in the offspring of poly I:C dams that received RIS at peri-adolescence. This was paralleled by prevention of schizophrenia-like behavioral abnormalities, attentional deficit, and hypersensitivity to amphetamine in these offspring. We conclude that pharmacological intervention during peri-adolescence can prevent the emergence of behavioral abnormalities and brain structural pathology resulting from in utero insult. Furthermore, highly selective 5HT(2A) receptor antagonists may be promising targets for psychosis prevention.
Collapse
Affiliation(s)
| | | | - Ina Weiner
- To whom correspondence should be addressed; tel: 972-3-6408993, fax: 972-3-6409547, e-mail:
| |
Collapse
|
46
|
Sotoyama H, Zheng Y, Iwakura Y, Mizuno M, Aizawa M, Shcherbakova K, Wang R, Namba H, Nawa H. Pallidal hyperdopaminergic innervation underlying D2 receptor-dependent behavioral deficits in the schizophrenia animal model established by EGF. PLoS One 2011; 6:e25831. [PMID: 22022452 PMCID: PMC3192134 DOI: 10.1371/journal.pone.0025831] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor (EGF) is one of the ErbB receptor ligands implicated in schizophrenia neuropathology as well as in dopaminergic development. Based on the immune inflammatory hypothesis for schizophrenia, neonatal rats are exposed to this cytokine and later develop neurobehavioral abnormality such as prepulse inhibition (PPI) deficit. Here we found that the EGF-treated rats exhibited persistent increases in tyrosine hydroxylase levels and dopamine content in the globus pallidus. Furthermore, pallidal dopamine release was elevated in EGF-treated rats, but normalized by subchronic treatment with risperidone concomitant with amelioration of their PPI deficits. To evaluate pathophysiologic roles of the dopamine abnormality, we administered reserpine bilaterally to the globus pallidus to reduce the local dopamine pool. Reserpine infusion ameliorated PPI deficits of EGF-treated rats without apparent aversive effects on locomotor activity in these rats. We also administered dopamine D1-like and D2-like receptor antagonists (SCH23390 and raclopride) and a D2-like receptor agonist (quinpirole) to the globus pallidus and measured PPI and bar-hang latencies. Raclopride (0.5 and 2.0 µg/site) significantly elevated PPI levels of EGF-treated rats, but SCH23390 (0.5 and 2.0 µg/site) had no effect. The higher dose of raclopride induced catalepsy-like changes in control animals but not in EGF-treated rats. Conversely, local quinpirole administration to EGF-untreated control rats induced PPI deficits and anti-cataleptic behaviors, confirming the pathophysiologic role of the pallidal hyperdopaminergic state. These findings suggest that the pallidal dopaminergic innervation is vulnerable to circulating EGF at perinatal and/or neonatal stages and has strong impact on the D2-like receptor-dependent behavioral deficits relevant to schizophrenia.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yingjun Zheng
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Makoto Mizuno
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Miho Aizawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ksenia Shcherbakova
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ran Wang
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| |
Collapse
|
47
|
An exploration of the associations of pregnancy and perinatal features with cytokines and tryptophan/kynurenine metabolism in children with attention-deficit hyperactivity disorder (ADHD). ACTA ACUST UNITED AC 2011; 3:301-18. [PMID: 21785943 DOI: 10.1007/s12402-011-0062-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
Intra-individual variability of the characteristics of children with attention-deficit hyperactivity (ADHD) may reflect compromised glial energy supply in the synapse. We reported recently that while serum levels of a glial marker, the cytokine S100B, were not seriously altered, levels of other cytokines and tryptophan metabolites were related to symptoms, attention and variability. Here, we explore with a regression analysis whether levels of these substances were associated with features of the index pregnancy of potential aetiological significance. Serum was taken from 35 children with DSM-IV ADHD (14 on medication) and 21 typically developing controls to measure 8 cytokines (S100B, IL-2, IL-6, IL-10, IL-13, IL-16, TNF-α and IFN-γ) and 5 metabolites (Tryptophan, Kynurenine, Kynurenate [KA], 3-hydroxy-kynurenine [3HK] and 5-hydroxyindole acetic acid [5-HIAA]). The mothers received a 124-item questionnaire on features surrounding the pregnancy. (1) For children with ADHD, a shorter pregnancy and smaller birth weight were associated statistically with increased 3HK and IFN-γ and for obstetric problems with decreased TNF-α levels. (2) Maternal smoking related to decreasing kynurenine and increasing 3HK and S100B levels in ADHD children. Paternal smoking was associated with increased tryptophan in the controls and increased IL-6 levels in ADHD children. (3) The taking of supplements often related to decreasing TNF-α, increasing IL-10 and lower 5-HIAA levels in the ADHD children. Less 5-HIAA but more tryptophan was associated with earlier and later life events, respectively. (4) Increased IL-16 and 5-HIAA levels in the ADHD group related to reports of poorer infant health. Unexpectedly, more child care (seafood and time together) in ADHD than healthy families was implicated by lower tryptophan levels and an altered balance of pro-inflammatory cytokines. Across measures control families generally showed either non-significant associations or the opposite to those of the ADHD group. In ADHD children more than controls, the balance of potentially toxic or protective kynurenine metabolites and of pro- over anti-inflammatory cytokines may reflect the perinatal experience associated with stress, but not with maternal illness.
Collapse
|
48
|
Schijndel JEV, Martens GJM. Gene expression profiling in rodent models for schizophrenia. Curr Neuropharmacol 2011; 8:382-93. [PMID: 21629445 PMCID: PMC3080594 DOI: 10.2174/157015910793358132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 04/15/2010] [Accepted: 04/30/2010] [Indexed: 12/12/2022] Open
Abstract
The complex neurodevelopmental disorder schizophrenia is thought to be induced by an interaction between predisposing genes and environmental stressors. In order to get a better insight into the aetiology of this complex disorder, animal models have been developed. In this review, we summarize mRNA expression profiling studies on neurodevelopmental, pharmacological and genetic animal models for schizophrenia. We discuss parallels and contradictions among these studies, and propose strategies for future research.
Collapse
Affiliation(s)
- Jessica E Van Schijndel
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience & Nijmegen Centre for Molecular Life Sciences (NCMLS), Faculty of Science, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | | |
Collapse
|
49
|
Piontkewitz Y, Arad M, Weiner I. Tracing the development of psychosis and its prevention: what can be learned from animal models. Neuropharmacology 2011; 62:1273-89. [PMID: 21703648 DOI: 10.1016/j.neuropharm.2011.04.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder manifested symptomatically after puberty whose pharmacotherapy remains unsatisfactory. In recent years, longitudinal structural neuroimaging studies have revealed that neuroanatomical aberrations occur in this disorder and in fact precede symptom onset, raising the exciting possibility that SCZ can be prevented. There is some evidence that treatment with atypical antipsychotic drugs (APDs) prior to the development of the full clinical phenotype reduces the risk of transition to psychosis, but results remain controversial. It remains unknown whether progressive structural brain aberrations can be halted. Given the diagnostic, ethical, clinical and methodological problems of pharmacological and imaging studies in patients, getting such information remains a major challenge. Animal neurodevelopmental models of SCZ are invaluable for investigating such questions because they capture the notion that the effects of early brain damage are progressive. In recent years, data derived from such models have converged on key neuropathological and behavioral deficits documented in SCZ attesting to their strong validity, and making them ideal tools for evaluating progression of pathology following in-utero insults as well as its prevention. We review here our recent studies that use longitudinal in vivo structural imaging to achieve this aim in the prenatal immune stimulation model that is based on the association of prenatal infection and increased risk for SCZ. Pregnant rats were injected on gestational day 15 with the viral mimic polyriboinosinic-polyribocytidylic acid (poly I:C) or saline. Male and female offspring were imaged and tested behaviorally on postnatal days (PNDs) 35, 46, 56, 70 and 90. In other experiments, offspring of poly I:C- and saline-treated dams received the atypical antipsychotic drugs (APDs) clozapine or risperidone in two developmental windows: PND 34-47 and PND 48-61, and underwent behavioral testing and imaging at adulthood. Prenatal poly I:C-induced interference with fetal brain development led to aberrant postnatal brain development as manifested in structural abnormalities in the hippocampus, the striatum, the prefrontal cortex and lateral ventricles (LV), as seen in SCZ. The specific trajectories were region-, age- and sex-specific, with females having delayed onset of pathology compared to males. Brain pathology was accompanied by development of behavioral abnormalities phenotypic of SCZ, attentional deficit and hypersensitivity to amphetamine, with same sex difference. Hippocampal volume loss and LV volume expansion as well as behavioral abnormalities were prevented in the offspring of poly I:C mothers who received clozapine or risperidone during the asymptomatic period of adolescence (PND 34-47). Administration at a later window, PNDs 48-61, exerted sex-, region- and drug- specific effects. Our data show that prenatal insult leads to progressive postnatal brain pathology, which gradually gives rise to "symptoms"; that treatment with atypical APDs can prevent both brain and behavioral pathology; and that the earlier the intervention, the more pathological outcomes can be prevented.
Collapse
Affiliation(s)
- Yael Piontkewitz
- Department of Psychology, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
50
|
Carter CJ. Schizophrenia: a pathogenetic autoimmune disease caused by viruses and pathogens and dependent on genes. J Pathog 2011; 2011:128318. [PMID: 22567321 PMCID: PMC3335463 DOI: 10.4061/2011/128318] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/25/2011] [Indexed: 12/20/2022] Open
Abstract
Many genes have been implicated in schizophrenia as have viral prenatal or adult infections and toxoplasmosis or Lyme disease. Several autoantigens also target key pathology-related proteins. These factors are interrelated. Susceptibility genes encode for proteins homologous to those of the pathogens while the autoantigens are homologous to pathogens' proteins, suggesting that the risk-promoting effects of genes and risk factors are conditional upon each other, and dependent upon protein matching between pathogen and susceptibility gene products. Pathogens' proteins may act as dummy ligands, decoy receptors, or via interactome interference. Many such proteins are immunogenic suggesting that antibody mediated knockdown of multiple schizophrenia gene products could contribute to the disease, explaining the immune activation in the brain and lymphocytes in schizophrenia, and the preponderance of immune-related gene variants in the schizophrenia genome. Schizophrenia may thus be a “pathogenetic” autoimmune disorder, caused by pathogens, genes, and the immune system acting together, and perhaps preventable by pathogen elimination, or curable by the removal of culpable antibodies and antigens.
Collapse
Affiliation(s)
- C J Carter
- Polygenic Pathways, 20 Upper Maze Hill, St Leonards-on-Sea, East Sussex, TN38 OLG, UK
| |
Collapse
|