1
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
2
|
Heurtebize MA, Faillie JL. Drug-induced hyperglycemia and diabetes. Therapie 2024; 79:221-238. [PMID: 37985310 DOI: 10.1016/j.therap.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/14/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Drug-induced hyperglycemia and diabetes have negative and potentially serious health consequences but can often be unnoticed. METHODS We reviewed the literature searching Medline database for articles addressing drug-induced hyperglycemia and diabetes up to January 31, 2023. We also selected drugs that could induce hyperglycemia or diabetes according official data from drug information databases Thériaque and Micromedex. For each selected drug or pharmacotherapeutic class, the mechanisms of action potentially involved were investigated. For drugs considered to be at risk of hyperglycemia or diabetes, disproportionality analyses were performed using data from the international pharmacovigilance database VigiBase. In order to detect new pharmacovigilance signals, additional disproportionality analyses were carried out for drug classes with more than 100 cases reported in VigiBase, but not found in the literature or official documents. RESULTS The main drug classes found to cause hyperglycemia are glucocorticoids, HMG-coA reductase inhibitors, thiazide diuretics, beta-blockers, antipsychotics, fluoroquinolones, antiretrovirals, antineoplastic agents and immunosuppressants. The main mechanisms involved are alterations in insulin secretion and sensitivity, direct cytotoxic effects on pancreatic cells and increases in glucose production. Pharmacovigilance signal were found for a majority of drugs or pharmacological classes identified as being at risk of diabetes or hyperglycemia. We identified new pharmacovigilance signals with drugs not known to be at risk according to the literature or official data: phosphodiesterase type 5 inhibitors, endothelin receptor antagonists, sodium oxybate, biphosphonates including alendronic acid, digoxin, sartans, linosipril, diltiazem, verapamil, and darbepoetin alpha. Further studies will be needed to confirm these signals. CONCLUSIONS The risks of induced hyperglycemia vary from one drug to another, and the underlying mechanisms are multiple and potentially complex. Clinicians need to be vigilant when using at-risk drugs in order to detect and manage these adverse drug reactions. However, it is to emphasize that the benefits of appropriately prescribed treatments most often outweigh their metabolic risks.
Collapse
Affiliation(s)
- Marie-Anne Heurtebize
- CHU de Montpellier, Medical Pharmacology and Toxicology Department, 34000 Montpellier, France
| | - Jean-Luc Faillie
- CHU de Montpellier, Medical Pharmacology and Toxicology Department, 34000 Montpellier, France; IDESP, Université de Montpellier, Inserm, 34295 Montpellier, France.
| |
Collapse
|
3
|
Fonseca M, Carmo F, Martel F. Metabolic effects of atypical antipsychotics: Molecular targets. J Neuroendocrinol 2023; 35:e13347. [PMID: 37866818 DOI: 10.1111/jne.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Atypical antipsychotics (AAPs) are commonly prescribed drugs in the treatment of schizophrenia, bipolar disorder and other mental diseases with psychotic traits. Although the use of AAPs is associated with beneficial effects in these patients, they are also associated with undesired metabolic side effects, including metabolic syndrome (MetS). MeS is defined by the presence of metabolic abnormalities such as large waist circumference, dyslipidemia, fasting hyperglycemia and elevated blood pressure, which predispose to type 2 diabetes (T2D) and cardiovascular disease. In this review, the molecular and cellular mechanisms involved in these undesired metabolic abnormalities induced by AAPs are described. These mechanisms are complex as AAPs have multiple cellular targets which significantly affect the activities of several hormones and neuromodulators. Additionally, AAPs affect all the relevant metabolic organs, namely the liver, pancreas, adipose tissue, skeletal muscle and intestine, and the central and peripheral nervous system as well. A better understanding of the molecular targets linking AAPs with MetS and of the mechanisms responsible for clinically different side effects of distinct AAPs is needed. This knowledge will help in the development of novel AAPs with less adverse effects as well as of adjuvant therapies to patients receiving AAPs.
Collapse
Affiliation(s)
- Maria Fonseca
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisca Carmo
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S -Institute of Research and innovation in Health University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Zapata RC, Zhang D, Yoon D, Nasamran CA, Chilin-Fuentes DR, Libster A, Chaudry BS, Lopez-Valencia M, Ponnalagu D, Singh H, Petrascheck M, Osborn O. Targeting Clic1 for the treatment of obesity: A novel therapeutic strategy to reduce food intake and body weight. Mol Metab 2023; 76:101794. [PMID: 37604246 PMCID: PMC10480059 DOI: 10.1016/j.molmet.2023.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVE Despite great advances in obesity therapeutics in recent years, there is still a need to identify additional therapeutic targets for the treatment of this disease. We previously discovered a signature of genes, including Chloride intracellular channel 1 (Clic1), whose expression was associated with drug-induced weight gain, and in these studies, we assess the effect of Clic1 inhibition on food intake and body weight in mice. METHODS We studied the impact of Clic1 inhibition in mouse models of binge-eating, diet-induced obese mice and genetic models of obesity (Magel2 KO mice). RESULTS Clic1 knockout (KO) mice ate significantly less and had a lower body weight than WT littermates when either fed chow or high fat diet. Furthermore, pharmacological inhibition of Clic1 in diet-induced obese mice resulted in suppression of food intake and promoted highly efficacious weight loss. Clic1 inhibition also reduced food intake in binge-eating models and hyperphagic Magel2 KO mice. We observed that chronic obesity resulted in a significant change in subcellular localization of Clic1 with an increased ratio of Clic1 in the membrane in the obese state. These observations provide a novel therapeutic strategy to block Clic1 translocation as a potential mechanism to reduce food intake and lower body weight. CONCLUSIONS These studies attribute a novel role of Clic1 as a driver of food intake and overconsumption. In summary, we have identified hypothalamic expression of Clic1 plays a key role in food intake, providing a novel therapeutic target to treat overconsumption that is the root cause of modern obesity.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dongmin Yoon
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chanond A Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Daisy R Chilin-Fuentes
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Avraham Libster
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Besma S Chaudry
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mariela Lopez-Valencia
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Possidente C, Fanelli G, Serretti A, Fabbri C. Clinical insights into the cross-link between mood disorders and type 2 diabetes: A review of longitudinal studies and Mendelian randomisation analyses. Neurosci Biobehav Rev 2023; 152:105298. [PMID: 37391112 DOI: 10.1016/j.neubiorev.2023.105298] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Mood disorders and type 2 diabetes mellitus (T2DM) are prevalent conditions that often co-occur. We reviewed the available evidence from longitudinal and Mendelian randomisation (MR) studies on the relationship between major depressive disorder (MDD), bipolar disorder and T2DM. The clinical implications of this comorbidity on the course of either condition and the impact of antidepressants, mood stabilisers, and antidiabetic drugs were examined. Consistent evidence indicates a bidirectional association between mood disorders and T2DM. T2DM leads to more severe depression, whereas depression is associated with more complications and higher mortality in T2DM. MR studies demonstrated a causal effect of MDD on T2DM in Europeans, while a suggestive causal association in the opposite direction was found in East Asians. Antidepressants, but not lithium, were associated with a higher T2DM risk in the long-term, but confounders cannot be excluded. Some oral antidiabetics, such as pioglitazone and liraglutide, may be effective on depressive and cognitive symptoms. Studies in multi-ethnic populations, with a more careful assessment of confounders and appropriate power, would be important.
Collapse
Affiliation(s)
- Chiara Possidente
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
6
|
Berardo C, Calcaterra V, Mauri A, Carelli S, Messa L, Destro F, Rey F, Cordaro E, Pelizzo G, Zuccotti G, Cereda C. Subcutaneous Adipose Tissue Transcriptome Highlights Specific Expression Profiles in Severe Pediatric Obesity: A Pilot Study. Cells 2023; 12:cells12081105. [PMID: 37190014 DOI: 10.3390/cells12081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The prevalence of pediatric obesity is rising rapidly worldwide, and "omic" approaches are helpful in investigating the molecular pathophysiology of obesity. This work aims to identify transcriptional differences in the subcutaneous adipose tissue (scAT) of children with overweight (OW), obesity (OB), or severe obesity (SV) compared with those of normal weight (NW). Periumbilical scAT biopsies were collected from 20 male children aged 1-12 years. The children were stratified into the following four groups according to their BMI z-scores: SV, OB, OW, and NW. scAT RNA-Seq analyses were performed, and a differential expression analysis was conducted using the DESeq2 R package. A pathways analysis was performed to gain biological insights into gene expression. Our data highlight the significant deregulation in both coding and non-coding transcripts in the SV group when compared with the NW, OW, and OB groups. A KEGG pathway analysis showed that coding transcripts were mainly involved in lipid metabolism. A GSEA analysis revealed the upregulation of lipid degradation and metabolism in SV vs. OB and SV vs. OW. Bioenergetic processes and the catabolism of branched-chain amino acids were upregulated in SV compared with OB, OW, and NW. In conclusion, we report for the first time that a significant transcriptional deregulation occurs in the periumbilical scAT of children with severe obesity compared with those of normal weight or those with overweight or mild obesity.
Collapse
Affiliation(s)
- Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy
| | - Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Francesca Destro
- Surgery Department, Buzzi Children's Hospital, 20154 Milan, Italy
| | - Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy
| | - Erika Cordaro
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Gloria Pelizzo
- Surgery Department, Buzzi Children's Hospital, 20154 Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy
| |
Collapse
|
7
|
Ye W, Xing J, Yu Z, Hu X, Zhao Y. Mechanism and treatments of antipsychotic-induced weight gain. Int J Obes (Lond) 2023; 47:423-433. [PMID: 36959286 DOI: 10.1038/s41366-023-01291-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
The long-term use of antipsychotics (APs) may cause a variety of diseases, such as metabolic syndrome, antipsychotic-induced weight gain (AIWG), and even obesity. This paper reviews the various mechanisms of AIWG and obesity in detail, involving genetics, the central nervous system, the neuroendocrine system, and the gut microbiome. The common drug and non-drug therapies used in clinical practice are also introduced, providing the basis for research on the molecular mechanisms and the future selection of treatments.
Collapse
Affiliation(s)
- Wujie Ye
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Xing
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zekai Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingang Hu
- Internal encephalopathy of traditional Chinese medicine, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Yan Zhao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Chen H, Cao T, Zhang B, Cai H. The regulatory effects of second-generation antipsychotics on lipid metabolism: Potential mechanisms mediated by the gut microbiota and therapeutic implications. Front Pharmacol 2023; 14:1097284. [PMID: 36762113 PMCID: PMC9905135 DOI: 10.3389/fphar.2023.1097284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the mainstay of treatment for schizophrenia and other neuropsychiatric diseases but cause a high risk of disruption to lipid metabolism, which is an intractable therapeutic challenge worldwide. Although the exact mechanisms underlying this lipid disturbance are complex, an increasing body of evidence has suggested the involvement of the gut microbiota in SGA-induced lipid dysregulation since SGA treatment may alter the abundance and composition of the intestinal microflora. The subsequent effects involve the generation of different categories of signaling molecules by gut microbes such as endogenous cannabinoids, cholesterol, short-chain fatty acids (SCFAs), bile acids (BAs), and gut hormones that regulate lipid metabolism. On the one hand, these signaling molecules can directly activate the vagus nerve or be transported into the brain to influence appetite via the gut-brain axis. On the other hand, these molecules can also regulate related lipid metabolism via peripheral signaling pathways. Interestingly, therapeutic strategies directly targeting the gut microbiota and related metabolites seem to have promising efficacy in the treatment of SGA-induced lipid disturbances. Thus, this review provides a comprehensive understanding of how SGAs can induce disturbances in lipid metabolism by altering the gut microbiota.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
9
|
Zapata RC, Silver A, Yoon D, Chaudry B, Libster A, McCarthy MJ, Osborn O. Antipsychotic-induced weight gain and metabolic effects show diurnal dependence and are reversible with time restricted feeding. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:70. [PMID: 36042214 PMCID: PMC9427943 DOI: 10.1038/s41537-022-00276-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
Antipsychotic drugs (AP) are highly efficacious treatments for psychiatric disorders but are associated with significant metabolic side-effects. The circadian clock maintains metabolic homeostasis by sustaining daily rhythms in feeding, fasting and hormone regulation but how circadian rhythms interact with AP and its associated metabolic side-effects is not well-known. We hypothesized that time of AP dosing impacts the development of metabolic side-effects. Weight gain and metabolic side-effects were compared in C57Bl/6 mice and humans dosed with APs in either the morning or evening. In mice, AP dosing at the start of the light cycle/rest period (AM) resulted in significant increase in food intake and weight gain compared with equivalent dose before the onset of darkness/active period (PM). Time of AP dosing also impacted circadian gene expression, metabolic hormones and inflammatory pathways and their diurnal expression patterns. We also conducted a retrospective examination of weight and metabolic outcomes in patients who received risperidone (RIS) for the treatment of serious mental illness and observed a significant association between time of dosing and severity of RIS-induced metabolic side-effects. Time restricted feeding (TRF) has been shown in both mouse and some human studies to be an effective therapeutic intervention against obesity and metabolic disease. We demonstrate, for the first time, that TRF is an effective intervention to reduce AP-induced metabolic side effects in mice. These studies identify highly effective and translatable interventions with potential to mitigate AP-induced metabolic side effects.
Collapse
Affiliation(s)
- Rizaldy C. Zapata
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Allison Silver
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Dongmin Yoon
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Besma Chaudry
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Avraham Libster
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Michael J. McCarthy
- Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093 USA
| | - Olivia Osborn
- grid.266100.30000 0001 2107 4242Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
10
|
Martins LB, Braga Tibães JR, Berk M, Teixeira AL. Diabetes and mood disorders: shared mechanisms and therapeutic opportunities. Int J Psychiatry Clin Pract 2022; 26:183-195. [PMID: 34348557 DOI: 10.1080/13651501.2021.1957117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this manuscript is to provide a comprehensive and critical overview of the current evidence on the association between Diabetes mellitus (DM) and mood disorders [i.e., Major depressive disorder (MDD) and bipolar disorder (BD)], and therapeutic opportunities. METHODS We searched in MEDLINE (via Ovid) for placebo-controlled clinical trials published in the last 20 years that assessed drug repurposing approaches for the treatment of DM or mood disorders. RESULTS We found seven studies that aimed to verify the effects of antidepressants in patients diagnosed with DM, and eight studies that tested the effect of antidiabetic drugs in patients diagnosed with MDD or BD. Most studies published in the last two decades did not report a positive effect of antidepressants on glycemic control in patients with DM. On the other hand, antidiabetic drugs seem to have a positive effect on the treatment of MDD and BD. CONCLUSIONS While effect of antidepressants on glycemic control in patients with DM is still controversial, the use of antidiabetic drugs may be a promising strategy for patients with MDD or BD. Prospective studies are still needed.Key pointsMood disorders in patients with DM affect glycemic control, potentially increasing mortality risk.The effect of antidepressants on glycemic control in patients with DM is still controversial. The coexistence of complicated DM and a mood disorders would require a careful, individualised, and comprehensive evaluation.Insulin resistance may increase the risk of depressive symptoms and is associated with worse outcomes in BD.The use antidiabetic drugs may be a promising strategy for patients with MDD or BD. However, prospective trials are needed to prove a potential antidepressant activity of antidiabetic drugs.
Collapse
Affiliation(s)
- Laís Bhering Martins
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.,Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jenneffer Rayane Braga Tibães
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Agricultural, Food and Nutritional Science, Division of Human Nutrition, University of Alberta, Edmonton, Canada
| | - Michael Berk
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health, Parkville, Australia.,Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.,Instituto de Ensino e Pesquisa, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Bove M, Lama A, Schiavone S, Pirozzi C, Tucci P, Sikora V, Trinchese G, Corso G, Morgese MG, Trabace L. Social isolation triggers oxidative status and impairs systemic and hepatic insulin sensitivity in normoglycemic rats. Biomed Pharmacother 2022; 149:112820. [PMID: 35290886 DOI: 10.1016/j.biopha.2022.112820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 11/11/2022] Open
Abstract
Drug-naïve psychotic patients show metabolic and hepatic dysfunctions. The rat social isolation model of psychosis allows to investigate mechanisms leading to these disturbances to which oxidative stress crucially contributes. Here, we investigated isolation-induced central and peripheral dysfunctions in glucose homeostasis and insulin sensitivity, along with redox dysregulation. Social isolation did not affect basal glycemic levels and the response to glucose and insulin loads in the glucose and insulin tolerance tests. However, HOMA-Index value were increased in isolated (ISO) rats. A hypothalamic reduction of AKT phosphorylation and a trend toward an increase in AMPK phosphorylation were observed following social isolation, accompanied by reduced GLUT-4 levels. Social isolation also induced a reduction of phosphorylation of the insulin receptor, of AKT and GLUT-2, and a decreased phosphorylation of AMPK in the liver. Furthermore, a significant reduction in hepatic CPT1 and PPAR-α levels was detected. ISO rats also showed significant elevations in hepatic ROS amount, lipid peroxidation and NOX4 expression, whereas no differences were detected in NOX2 and NOX1 levels. Expression of SOD2 in the mitochondrial fraction and SOD1 in the cytosolic fraction was not altered following social isolation, whereas SOD activity was increased. Furthermore, a decrease of hepatic CAT and GSH amount was observed in ISO rats compared to GRP animals. Our data suggest that the increased oxidant status and antioxidant capacity modifications may trigger hepatic and systemic insulin resistance, by altering signal hormone pathway and sustaining subsequent alteration of glucose homeostasis and metabolic impairment observed in the social isolation model of psychosis.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy.
| | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, Naples 80131, Italy.
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy.
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, Naples 80131, Italy.
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy.
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy; Department of Pathology, Sumy State University, 2, Rymskogo-Korsakova st., Sumy 40007, Ukraine.
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, "Complesso Universitario di Monte Sant'Angelo", Cupa Nuova Cinthia 21 - Building 7, Naples 80126, Italy.
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy.
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, Foggia 71122, Italy.
| |
Collapse
|
12
|
Singh R, Stogios N, Smith E, Lee J, Maksyutynsk K, Au E, Wright DC, De Palma G, Graff-Guerrero A, Gerretsen P, Müller DJ, Remington G, Hahn M, Agarwal SM. Gut microbiome in schizophrenia and antipsychotic-induced metabolic alterations: a scoping review. Ther Adv Psychopharmacol 2022; 12:20451253221096525. [PMID: 35600753 PMCID: PMC9118432 DOI: 10.1177/20451253221096525] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SCZ) is a severe mental disorder with high morbidity and lifetime disability rates. Patients with SCZ have a higher risk of developing metabolic comorbidities such as obesity and diabetes mellitus, leading to increased mortality. Antipsychotics (APs), which are the mainstay in the treatment of SCZ, increase the risk of these metabolic perturbations. Despite extensive research, the mechanism underlying SCZ pathophysiology and associated metabolic comorbidities remains unclear. In recent years, gut microbiota (GMB) has been regarded as a 'chamber of secrets', particularly in the context of severe mental illnesses such as SCZ, depression, and bipolar disorder. In this scoping review, we aimed to investigate the underlying role of GMB in the pathophysiology of SCZ and metabolic alterations associated with APs. Furthermore, we also explored the therapeutic benefits of prebiotic and probiotic formulations in managing SCZ and AP-induced metabolic alterations. A systematic literature search yielded 46 studies from both preclinical and clinical settings that met inclusion criteria for qualitative synthesis. Preliminary evidence from preclinical and clinical studies indicates that GMB composition changes are associated with SCZ pathogenesis and AP-induced metabolic perturbations. Fecal microbiota transplantation from SCZ patients to mice has been shown to induce SCZ-like behavioral phenotypes, further supporting the plausible role of GMB in SCZ pathogenesis. This scoping review recapitulates the preclinical and clinical evidence suggesting the role of GMB in SCZ symptomatology and metabolic adverse effects associated with APs. Moreover, this scoping review also discusses the therapeutic potentials of prebiotic/probiotic formulations in improving SCZ symptoms and attenuating metabolic alterations related to APs.
Collapse
Affiliation(s)
- Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Emily Smith
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Jiwon Lee
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Kateryna Maksyutynsk
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Emily Au
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - David C Wright
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ariel Graff-Guerrero
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Philip Gerretsen
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Daniel J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Staff Psychiatrist and Clinician-Scientist, Medical Head, Clinical Research, Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen Street W, Toronto, ON M6J 1H3, Canada
| |
Collapse
|
13
|
Hakami AY, Felemban R, Ahmad RG, Al-Samadani AH, Salamatullah HK, Baljoon JM, Alghamdi LJ, Ramadani Sindi MH, Ahmed ME. The Association Between Antipsychotics and Weight Gain and the Potential Role of Metformin Concomitant Use: A Retrospective Cohort Study. Front Psychiatry 2022; 13:914165. [PMID: 35686187 PMCID: PMC9170991 DOI: 10.3389/fpsyt.2022.914165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Obesity and its complications are associated with several adverse effects that may cause a serious impact on health. Antipsychotics-induced weight gain (AIWG) is one of the major, yet often neglected side effects of first and second generations antipsychotics. Importantly, several researches have shown metformin to be effective in managing weight gain especially, with AIWG. This study investigated the effect of antipsychotics use on weight gain and the theory of metformin concomitant use on the prevention of AIWG. METHODS A retrospective cohort review of the medical records of patients from the psychiatry outpatient clinics in the King Abdulaziz Medical city, a tertiary hospital in Jeddah from May 2016 to August 2021. The population of patients in Psychiatry section was 4,141. The sampling technique was a non-random consecutive sampling technique. Moreover, the included patients' records were divided to group 1 (patients on antipsychotics) and group 2 (patients using antipsychotics with Metformin). RESULTS According to the study criteria, 395 patients' records were included. A total of 309 (78%) patients were using antipsychotics without metformin, which in this study were depicted as group 1. In addition, a total of 86 (22%) were using antipsychotics with metformin, which in this study were assigned as group 2. Out of Group 1 patients (n = 309), only 67 patients experienced weight loss (21.68%), 43 remained with no weight change (13.92%), and 199 experienced weight gain (64.4%). Out of Group 2 patients (n = 86), 35 patients experienced weight loss (40.7%), 18 patients remained with no weight change (20.93%), and 33 experienced weight gain (38.37%). In addition, group 1 had a mean weight change of 2.5 kg, whereas group 2 had a mean weight change of -0.04 kg. CONCLUSION Statistical analysis revealed that patients on antipsychotics alone experienced weight gain, whereas the concomitant use of metformin showed reduction in the weight gain tendency. Thus, study outcomes indicate that concomitant use of metformin with antipsychotics might significantly reduce the AIWG.
Collapse
Affiliation(s)
- Alqassem Y Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Razaz Felemban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Rami Ghazi Ahmad
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.,Psychiatry Section, Department of Medicine, Ministry of National Guard-Health Affairs, Jeddah, Saudi Arabia
| | | | - Hassan K Salamatullah
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Jamil M Baljoon
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Loay J Alghamdi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mostafa H Ramadani Sindi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mohamed Eldigire Ahmed
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Smith E, Singh R, Lee J, Colucci L, Graff-Guerrero A, Remington G, Hahn M, Agarwal SM. Adiposity in schizophrenia: A systematic review and meta-analysis. Acta Psychiatr Scand 2021; 144:524-536. [PMID: 34458979 DOI: 10.1111/acps.13365] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Although a relationship between schizophrenia (SCZ), antipsychotic (AP) medication, and metabolic dysregulation is now well established, the effect of adiposity is less well understood. By synthesizing findings from imaging techniques that measure adiposity, our systematic review and meta-analysis (PROSPERO CRD42020192977) aims to determine the adiposity-related effects of illness and treatment in this patient population. METHODS We searched MEDLINE, EMBASE, PsychINFO and Scopus for all relevant case-control and prospective longitudinal studies from inception until February 2021. Measures of adiposity including percent body fat (%BF), subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) were analyzed as primary outcomes. RESULTS Our search identified 29 articles that used imaging methods to quantify adiposity among patients with SCZ spectrum disorders. Analyses revealed that patients have greater %BF (mean difference (MD) = 3.09%; 95% CI: 0.75-5.44), SAT (MD = 24.29 cm2 ; 95% CI: 2.97-45.61) and VAT (MD = 33.73 cm2 , 95% CI: 4.19-63.27) compared to healthy controls. AP treatment was found to increase SAT (MD = 31.98 cm2 ; 95% CI: 11.33-52.64) and VAT (MD = 16.30 cm2 ; 95% CI: 8.17-24.44) with no effect on %BF. However, change in %BF was higher for AP-free/AP-naïve patients compared to treated patients. CONCLUSION Our findings indicate that patients with SCZ spectrum disorders have greater adiposity than healthy controls, which is increased by AP treatment. Young, AP-naïve patients may be particularly susceptible to this effect. Future studies should explore the effect of specific APs on adiposity and its relation to overall metabolic health.
Collapse
Affiliation(s)
- Emily Smith
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Jiwon Lee
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Laura Colucci
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ariel Graff-Guerrero
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Borovcanin MM, Vesic K, Jovanovic M, Mijailovic NR. Galectin-3 possible involvement in antipsychotic-induced metabolic changes of schizophrenia: A minireview. World J Diabetes 2021; 12:1731-1739. [PMID: 34754374 PMCID: PMC8554363 DOI: 10.4239/wjd.v12.i10.1731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, specific immunometabolic profiles have been postulated in patients with schizophrenia, even before full-blown disease and independent of antipsychotic treatment. Proteomic profiling studies offer a promising potential for elucidating the cellular and molecular pathways that may be involved in the onset and progression of schizophrenia symptoms, and co-occurrent metabolic changes. In view of all this, we were intrigued to explore galectin-3 (Gal-3) as a glycan, and in our previous study, we measured its elevated levels in remission of schizophrenia. The finding may be a consequence of antipsychotic treatment and may have an impact on the onset of inflammation, the development of obesity, and the presumed cognitive changes in schizophrenia. In the animal study, it was shown that downregulation of Gal-3 was beneficial in insulin regulation of obesity and cognitive preservation. Strategies involving plasma exchange are discussed in this review, particularly in the context of Gal-3 elimination.
Collapse
Affiliation(s)
- Milica M Borovcanin
- Department of Psychiatry, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| | - Katarina Vesic
- Department of Neurology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| | - Milena Jovanovic
- PhD Studies, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
- Clinic for Nephrology and Dialysis, University Clinical Center Kragujevac, Kragujevac 34000, Sumadija, Serbia
| | - Natasa R Mijailovic
- Department of Pharmacy, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Sumadija, Serbia
| |
Collapse
|
16
|
Comparison of the Metabolic Characteristics of Newer Second Generation Antipsychotics: Brexpiprazole, Lurasidone, Asenapine, Cariprazine, and Iloperidone With Olanzapine as a Comparator. J Clin Psychopharmacol 2021; 41:5-12. [PMID: 33177350 DOI: 10.1097/jcp.0000000000001318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE/BACKGROUND Extensive research has been conducted comparing the metabolic characteristics of older second-generation antipsychotics (SGAs); minimal data exist comparing the long-term metabolic effects of SGAs approved in the last 10 years. METHODS/PROCEDURES A retrospective chart review of patients treated with brexpiprazole, lurasidone, asenapine, cariprazine, and iloperidone (newer SGAs) for at least 6 weeks at an outpatient psychiatric practice was conducted. Patients treated with olanzapine, an older SGA, were included as a comparator. Metabolic characteristics were collected at baseline, approximately 6 weeks, 12 weeks, and for up to 12 months. FINDINGS/RESULTS Of the newer SGAs, there were statistically significant increases in patients' average weight at 12 weeks and 1 year or less with brexpiprazole (2.48 lb, P = 0.02; 5.97 lb, P = 0.01) and iloperidone (4.54 lb, P < 0.01; 5.13 lb, P = 0.02). Brexpiprazole and iloperidone resulted in significant increases in body mass index, up to a 0.90-kg/m2 average increase in patients taking brexpiprazole at 1 year or less. Minimal weight gain was seen with cariprazine (4.25 lb, P = 0.42) and asenapine (1.80 lb, P = 0.62) at 1 year or less after treatment initiation. Although not statistically significant, lurasidone showed an average weight loss of up to 0.60 lb at 1 year or less (P = 0.56). IMPLICATIONS/CONCLUSIONS Although some weight gain was seen with the newer SGAs, all demonstrated significantly favorable metabolic characteristics compared with olanzapine. Monitoring of weight and metabolic parameters remain important in patients treated with SGAs.
Collapse
|
17
|
Onen S, Taymur I. Evidence for the atherogenic index of plasma as a potential biomarker for cardiovascular disease in schizophrenia. J Psychopharmacol 2021; 35:1120-1126. [PMID: 34176366 DOI: 10.1177/02698811211026450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Schizophrenia is known to be accompanied with increased cardiovascular mortality, which causes reduced life expectancy. AIM The aim of the current study was to investigate if atherogenic index of plasma (AIP) could be a good marker in assessing cardiovascular disease (CVD) risk in patients with schizophrenia. METHODS Patients with schizophrenia (n = 328) and healthy controls (n = 141) were recruited. Schizophrenia patients were evaluated according to the presence of antipsychotic (AP) drug use as AP(+)Sch group and AP(-)Sch group. Atherogenic indices, such as AIP, Castelli's risk index-I (CRI-I), Castelli's risk index-II (CRI-II), and atherogenic coefficient (AC), were calculated according to the laboratory examination of serum lipid parameters. RESULTS According to the comparison of serum lipid levels, triglyceride (TG) levels were found to be highest and high-density lipoprotein-cholesterol levels were lowest in AP(+)Sch group than AP(-)Sch group and control group (CG) (p < 0.001). AIP, CRI-I, and CRI-II scores were found to be significantly higher in AP(+)Sch group than AP(-)Sch group, and in AP(-)Sch than healthy controls (p < 0.001). Mean AC scores were higher in AP(+)Sch group than both AP(-)Sch and CG and were similar in AP(-)Sch and control subjects (p < 0.001). According to the correlation analysis, AIP scores were positively correlated with duration of disease (r = 0.235; p = 0.002) and age (r = 0.226; p = 0.003) in AP(+)Sch group but not in drug-free subjects. In all groups, atherogenic indices of CRI-I, CRI-II, and AC scores were found to be positively correlated with AIP scores (p < 0.001). CONCLUSION Our results suggest that AIP is an easily calculable and reliable marker for determining the CVD risk in both drug-free schizophrenia patients and patients under AP treatment.
Collapse
Affiliation(s)
- Sinay Onen
- Department of Psychiatry, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey
| | - Ibrahim Taymur
- Department of Psychiatry, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey
| |
Collapse
|
18
|
Kucera J, Horska K, Hruska P, Kuruczova D, Micale V, Ruda-Kucerova J, Bienertova-Vasku J. Interacting effects of the MAM model of schizophrenia and antipsychotic treatment: Untargeted proteomics approach in adipose tissue. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110165. [PMID: 33152383 DOI: 10.1016/j.pnpbp.2020.110165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disease associated with substantially higher mortality. Reduced life expectancy in schizophrenia relates to an increased prevalence of metabolic disturbance, and antipsychotic medication is a major contributor. Molecular mechanisms underlying adverse metabolic effects of antipsychotics are not fully understood; however, adipose tissue homeostasis deregulation appears to be a critical factor. We employed mass spectrometry-based untargeted proteomics to assess the effect of chronic olanzapine, risperidone, and haloperidol treatment in visceral adipose tissue of prenatally methylazoxymethanol (MAM) acetate exposed rats, a well-validated neurodevelopmental animal model of schizophrenia. Bioinformatics analysis of differentially expressed proteins was performed to highlight the pathways affected by MAM and the antipsychotics treatment. MAM model was associated with the deregulation of the TOR (target of rapamycin) signalling pathway. Notably, alterations in protein expression triggered by antipsychotics were observed only in schizophrenia-like MAM animals where we revealed hundreds of affected proteins according to our two-fold threshold, but not in control animals. Treatments with all antipsychotics in MAM rats resulted in the downregulation of mRNA processing and splicing, while drug-specific effects included among others upregulation of insulin resistance (olanzapine), upregulation of fatty acid metabolism (risperidone), and upregulation of nucleic acid metabolism (haloperidol). Our data indicate that deregulation of several energetic and metabolic pathways in adipose tissue is associated with APs administration and is prominent in MAM schizophrenia-like model but not in control animals.
Collapse
Affiliation(s)
- Jan Kucera
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katerina Horska
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Pavel Hruska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Kuruczova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy; National Institute of Mental Health, Klecany, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Julie Bienertova-Vasku
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
19
|
Carli M, Kolachalam S, Longoni B, Pintaudi A, Baldini M, Aringhieri S, Fasciani I, Annibale P, Maggio R, Scarselli M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals (Basel) 2021; 14:238. [PMID: 33800403 PMCID: PMC8001502 DOI: 10.3390/ph14030238] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotics (AAPs) are commonly prescribed medications to treat schizophrenia, bipolar disorders and other psychotic disorders. However, they might cause metabolic syndrome (MetS) in terms of weight gain, dyslipidemia, type 2 diabetes (T2D), and high blood pressure, which are responsible for reduced life expectancy and poor adherence. Importantly, there is clear evidence that early metabolic disturbances can precede weight gain, even if the latter still remains the hallmark of AAPs use. In fact, AAPs interfere profoundly with glucose and lipid homeostasis acting mostly on hypothalamus, liver, pancreatic β-cells, adipose tissue, and skeletal muscle. Their actions on hypothalamic centers via dopamine, serotonin, acetylcholine, and histamine receptors affect neuropeptides and 5'AMP-activated protein kinase (AMPK) activity, thus producing a supraphysiological sympathetic outflow augmenting levels of glucagon and hepatic glucose production. In addition, altered insulin secretion, dyslipidemia, fat deposition in the liver and adipose tissues, and insulin resistance become aggravating factors for MetS. In clinical practice, among AAPs, olanzapine and clozapine are associated with the highest risk of MetS, whereas quetiapine, risperidone, asenapine and amisulpride cause moderate alterations. The new AAPs such as ziprasidone, lurasidone and the partial agonist aripiprazole seem more tolerable on the metabolic profile. However, these aspects must be considered together with the differences among AAPs in terms of their efficacy, where clozapine still remains the most effective. Intriguingly, there seems to be a correlation between AAP's higher clinical efficacy and increase risk of metabolic alterations. Finally, a multidisciplinary approach combining psychoeducation and therapeutic drug monitoring (TDM) is proposed as a first-line strategy to avoid the MetS. In addition, pharmacological treatments are discussed as well.
Collapse
Affiliation(s)
- Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Anna Pintaudi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Marco Baldini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (R.M.)
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany;
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (R.M.)
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| |
Collapse
|
20
|
Nolin MA, Demers MF, Rauzier C, Bouchard RH, Cadrin C, Després JP, Roy MA, Alméras N, Picard F. Circulating IGFBP-2 levels reveal atherogenic metabolic risk in schizophrenic patients using atypical antipsychotics. World J Biol Psychiatry 2021; 22:175-182. [PMID: 32552257 DOI: 10.1080/15622975.2020.1770858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Second generation antipsychotics (SGAs) induce weight gain and dyslipidemia, albeit with important intervariability. Insulin-like growth factor binding protein (IGFBP)-2 is proposed as a circulating biomarker negatively associated with waist circumference and hypertriglyceridemia. Thus, we tested whether metabolic alterations developed upon the use of SGAs are associated with plasma IGFBP-2 levels. METHODS A cross-sectional study was performed in 87 men newly diagnosed with schizophrenia and administered for approximately 20 months with olanzapine or risperidone as their first antipsychotic treatment. Plasma IGFBP-2 concentration, anthropometric data, as well as glucose and lipid profiles were determined at the end of the treatments. RESULTS IGFBP-2 levels were similar between patients using olanzapine or risperidone and were negatively correlated with waist circumference, insulin sensitivity, and plasma triglycerides (TG). A higher proportion of men with a hypertriglyceridemic (hyperTG) waist phenotype was found in patients with IGFBP-2 levels lower than 220 ng/mL (43% for olanzapine and 13% for risperidone) compared to those with IGFBP-2 above this threshold (10% and 0%, respectively). CONCLUSIONS IGFBP-2 may have a role in altering metabolic risk in schizophrenic patients using SGAs. Longitudinal studies are required to evaluate whether IGFBP-2 can predict the development of a hyperTG waist phenotype in this population.
Collapse
Affiliation(s)
- Marc-André Nolin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| | - Marie-France Demers
- Faculty of Pharmacy, Université Laval, Québec, Canada.,Institut Universitaire en Santé Mentale de Québec, Québec, Canada.,CERVO Brain Research Center-Université Laval, Québec, Canada
| | - Chloé Rauzier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| | - Roch-Hugo Bouchard
- Institut Universitaire en Santé Mentale de Québec, Québec, Canada.,CERVO Brain Research Center-Université Laval, Québec, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, Canada
| | - Camille Cadrin
- Institut Universitaire en Santé Mentale de Québec, Québec, Canada
| | - Jean-Pierre Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Centre de recherche sur les soins et les services de première ligne - Université Laval, Québec, Canada
| | - Marc-André Roy
- Institut Universitaire en Santé Mentale de Québec, Québec, Canada.,CERVO Brain Research Center-Université Laval, Québec, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, Canada
| | - Natalie Alméras
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
| | - Frédéric Picard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| |
Collapse
|
21
|
Yanai H, Yoshida H. Secondary dyslipidemia: its treatments and association with atherosclerosis. Glob Health Med 2021; 3:15-23. [PMID: 33688591 PMCID: PMC7936375 DOI: 10.35772/ghm.2020.01078] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 04/15/2023]
Abstract
Dyslipidemia is classified into primary and secondary types. Primary dyslipidemia is basically inherited and caused by single or multiple gene mutations that result in either overproduction or defective clearance of triglycerides and cholesterol. Secondary dyslipidemia is caused by unhealthy lifestyle factors and acquired medical conditions, including underlying diseases and applied drugs. Secondary dyslipidemia accounts for approximately 30-40% of all dyslipidemia. Secondary dyslipidemia should be treated by finding and addressing its causative diseases or drugs. For example, treatment of secondary dyslipidemia, such as hyperlipidemia due to hypothyroidism, by using statin without controlling hypothyroidism, may lead to myopathy and serious adverse events such as rhabdomyolysis. Differential diagnosis of secondary dyslipidemia is very important for safe and effective treatment. Here, we describe an overview about diseases and drugs that interfere with lipid metabolism leading to secondary dyslipidemia. Further, we show the association of each secondary dyslipidemia with atherosclerosis and the treatments for such dyslipidemia.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
- Address correspondence to:Hidekatsu Yanai, Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa, Chiba 272- 8516, Japan. E-mail:
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital, Chiba, Japan
| |
Collapse
|
22
|
Reponen EJ, Tesli M, Dieset I, Steen NE, Vedal TSJ, Szabo A, Werner MCF, Lunding SH, Johansen IT, Rødevand LN, Andreassen OA, Ueland T. Adiponectin Is Related to Cardiovascular Risk in Severe Mental Illness Independent of Antipsychotic Treatment. Front Psychiatry 2021; 12:623192. [PMID: 34122163 PMCID: PMC8192708 DOI: 10.3389/fpsyt.2021.623192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental illnesses (SMI) associated with elevated cardiovascular disease (CVD) risk, including obesity. Leptin and adiponectin are secreted by adipose tissue, with pro- and anti-inflammatory properties, respectively. The second generation antipsychotics (AP) olanzapine, clozapine, and quetiapine have been associated with high leptin levels in SMI. However, the link between inflammatory dysregulation of leptin and adiponectin and CVD risk in SMI, and how this risk is influenced by body mass and AP medication, is still not completely understood. We investigated herein if leptin, adiponectin or their ratio (L/A ratio) could predict increased CVD risk in SCZ, BD, and in subgroups according to use of antipsychotic (AP) treatment, independent of other cardio-metabolic risk factors. Methods: We measured fasting plasma levels of leptin and adiponectin, and calculated the L/A ratio in n = 1,092 patients with SCZ and BD, in subgroups according to AP treatment, and in n = 176 healthy controls (HC). Differences in the levels of adipokines and L/A between groups were examined in multivariate analysis of covariance, and the correlations between adipokines and body mass index (BMI) with linear regression. CVD risk was defined by total cholesterol/high-density lipoprotein (TC/HDL) and triglyceride/HDL (TG/HDL) ratios. The adipokines and L/A ratios ability to discriminate individuals with TG/HDL and TC/HDL ratios above threshold levels was explored by ROC analysis, and we investigated the possible influence of other cardio-metabolic risk factors on the association in logistic regression analyses. Results: We observed higher leptin levels and L/A ratios in SMI compared with HC but found no differences in adiponectin. Both adipokines were highly correlated with BMI. The low adiponectin levels showed a fair discrimination in ROC analysis of individuals with CVD risk, with AUC between 0.7 and 0.8 for both TC/HDL and TG/HDL, in all groups examined regardless of diagnosis or AP treatment. Adiponectin remained significantly associated with an elevated TC/HDL and TG/HDL ratio in SMI, also after further adjustment with other cardio-metabolic risk factors. Conclusions: Adiponectin is not dysregulated in SMI but is associated with CVD risk regardless of AP treatment regime.
Collapse
Affiliation(s)
- Elina J Reponen
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Martin Tesli
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Ingrid Dieset
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Acute Psychiatric Department, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Trude S J Vedal
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Attila Szabo
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Maren C F Werner
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Synve H Lunding
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ingrid T Johansen
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Linn N Rødevand
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
23
|
Noel JM, Jackson CW. ASHP Therapeutic Position Statement on the Use of Antipsychotic Medications in the Treatment of Adults with Schizophrenia and Schizoaffective Disorder. Am J Health Syst Pharm 2020; 77:2114-2132. [PMID: 32871013 PMCID: PMC7499485 DOI: 10.1093/ajhp/zxaa303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.
Collapse
Affiliation(s)
- Jason M Noel
- University of Maryland School of Pharmacy, Baltimore, MD
| | - Cherry W Jackson
- Auburn University Harrison School of Pharmacy, Auburn, AL.,Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL
| |
Collapse
|
24
|
Wang J, Zhang Y, Liu Z, Yang Y, Zhong Y, Ning X, Zhang Y, Zhao T, Xia L, Geng F, Tao R, Fan M, Ren Z, Liu H. Schizophrenia patients with a metabolically abnormal obese phenotype have milder negative symptoms. BMC Psychiatry 2020; 20:410. [PMID: 32811450 PMCID: PMC7437037 DOI: 10.1186/s12888-020-02809-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Schizophrenia patients with a metabolically abnormal obese (MAO) phenotype have been shown poor cardiovascular outcomes, but the characteristics of their current psychiatric symptoms have not been characterized. This study mainly explored the psychiatric symptoms of schizophrenia patients with the MAO phenotype. METHODS A total of 329 patients with schizophrenia and 175 sex- and age-matched people without schizophrenia from Anhui Province in China were enrolled. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate the mental symptoms of the schizophrenia patients. The MAO phenotype was defined as meeting 1-4 metabolic syndrome criteria (excluding waist circumference) and having a body mass index (BMI) ≥ 28 kg/m2. And, metabolically healthy normal-weight (MHNW) phenotype was defined as meeting 0 criteria for metabolic syndrome and 18.5 ≤ BMI < 24 kg/m2. RESULTS Overall, 15.8% of the schizophrenia patients and 9.1% of the control group were consistent with the MAO phenotype, and the prevalence of MAO in the schizophrenia group was higher than that in the control group. Among the patients with schizophrenia, the MAO group had lower negative factor, cognitive factor and total PANSS scores than the MHNW group. However, when confounding factors were controlled, only the negative factor remained lower significantly. CONCLUSION We found that schizophrenia patients with the MAO phenotype had reduced negative symptoms, which may indicate an internal mechanism linking metabolic disorders and negative symptoms. TRIAL REGISTRATION This study was registered in the China Clinical Trial Registration Center (No. chiCTR 1,800,017,044 ).
Collapse
Affiliation(s)
- Juan Wang
- grid.459419.4Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000 China ,grid.186775.a0000 0000 9490 772XAnhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Yulong Zhang
- grid.459419.4Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000 China ,grid.186775.a0000 0000 9490 772XAnhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Zhiwei Liu
- Department of psychiatry, Fuyang Third People’s Hospital, Anhui, China
| | - Yating Yang
- grid.459419.4Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000 China ,grid.186775.a0000 0000 9490 772XAnhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Yi Zhong
- grid.459419.4Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000 China ,grid.186775.a0000 0000 9490 772XAnhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Xiaoshuai Ning
- grid.459419.4Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000 China ,grid.186775.a0000 0000 9490 772XAnhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Yelei Zhang
- grid.459419.4Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000 China ,grid.186775.a0000 0000 9490 772XAnhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Tongtong Zhao
- grid.459419.4Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000 China ,grid.186775.a0000 0000 9490 772XAnhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Lei Xia
- grid.459419.4Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000 China ,grid.186775.a0000 0000 9490 772XAnhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Feng Geng
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei, China
| | - Rui Tao
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei, China
| | - Mei Fan
- grid.459419.4Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000 China ,grid.186775.a0000 0000 9490 772XAnhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei, 230000, China.
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Hefei, 238000, China. .,Anhui Psychiatric Center, Anhui Medical University, Hefei, China.
| |
Collapse
|
25
|
Role of TRPV1/TRPV3 channels in olanzapine-induced metabolic alteration: Possible involvement in hypothalamic energy-sensing, appetite regulation, inflammation and mesolimbic pathway. Toxicol Appl Pharmacol 2020; 402:115124. [PMID: 32652086 DOI: 10.1016/j.taap.2020.115124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022]
Abstract
Atypical antipsychotics (AAPs) have the tendency of inducing severe metabolic alterations like obesity, diabetes mellitus, insulin resistance, dyslipidemia and cardiovascular complications. These alterations have been attributed to altered hypothalamic appetite regulation, energy sensing, insulin/leptin signaling, inflammatory reactions and active reward anticipation. Line of evidence suggests that transient receptor potential vanilloid type 1 and 3 (TRPV1 and TRPV3) channels are emerging targets in treatment of obesity, diabetes mellitus and could modulate feed intake. The present study was aimed to investigate the putative role TRPV1/TRPV3 in olanzapine-induced metabolic alterations in mice. Female BALB/c mice were treated with olanzapine for six weeks to induce metabolic alterations. Non-selective TRPV1/TRPV3 antagonist (ruthenium red) and selective TRPV1 (capsazepine) and TRPV3 antagonists (2,2-diphenyltetrahydrofuran or DPTHF) were used to investigate the involvement of TRPV1/TRPV3 in chronic olanzapine-induced metabolic alterations. These metabolic alterations were differentially reversed by ruthenium red and capsazepine, while DPTHF didn't show any significant effect. Olanzapine treatment also altered the mRNA expression of hypothalamic appetite-regulating and nutrient-sensing factors, inflammatory genes and TRPV1/TRPV3, which were reversed with ruthenium red and capsazepine treatment. Furthermore, olanzapine treatment also increased expression of TRPV1/TRPV3 in nucleus accumbens (NAc), TRPV3 expression in ventral tegmental area (VTA), which were reversed by the respective antagonists. However, DPTHF treatment showed reduced feed intake in olanzapine treated mice, which might be due to TRPV3 specific antagonism and reduced hedonic feed intake. In conclusion, our results suggested the putative role TRPV1 in hypothalamic dysregulations and TRPV3 in the mesolimbic pathway; both regulate feeding in olanzapine treated mice.
Collapse
|
26
|
Frayne J, Hauck Y, Sivakumar P, Nguyen T, Liira H, Morgan VA. Nutritional status, food choices, barriers and facilitators to healthy nutrition in pregnant women with severe mental illness: a mixed methods approach. J Hum Nutr Diet 2020; 33:698-707. [PMID: 32391622 DOI: 10.1111/jhn.12752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although widely acknowledged that adequate maternal nutrition is important for mother and baby, limited research has focussed on women with severe mental illnesses (SMI) in pregnancy. The present study reports on nutritional factors and food choices and investigates barriers and facilitators to healthy nutritional choices by pregnant women with SMI. METHODS A prospective mixed method study was undertaken of 38 pregnant women with SMI, including a cross-sectional survey, a food frequency questionnaire and 12 postnatal qualitative interviews, with integrated analysis of all data. RESULTS Elevated rates of obesity (35%) were found, with 82% of women having above the recommended gestational weight gain. Despite perceived knowledge, 32% of women did not meet any of the Five Food Group serving recommendations for pregnancy and consumed above-recommended levels for processed (19%) and sugar snacks (51%). Thematic analysis identified four main barriers: a discrepancy between knowledge and action, food cravings, mental health, and physical health. During pregnancy, food cravings were reported in 66% of women, psychological distress in 71% and physical distress in 37%. Screening identified 19% with potential eating disordered behaviours. Despite the challenges, several facilitators were identified and covered three themes: access to a dietitian, information delivery and support, and comprehensive care. DISCUSSION Women with SMI in pregnancy struggle with issues of obesity, gestational weight gain, food cravings and possible eating disorder behaviours. They have additional challenges when pregnant, with management of their mental health and physical health having a direct impact. Interventional strategies in this population should incorporate findings from this research.
Collapse
Affiliation(s)
- J Frayne
- Medical School, Division of General practice, The University of Western Australia, Crawley, WA, Australia.,Department of Obstetrics, Women and Newborn Health Service, Subiaco, WA, Australia
| | - Y Hauck
- Department of Nursing and Midwifery Education and Research, Women and Newborn Health Service, Subiaco, WA, Australia.,School of Nursing, Midwifery and Paramedicine, Curtin University, Perth, WA, Australia
| | - P Sivakumar
- Department of Nutrition and Dietetics, Women and Newborn Health Service, Subiaco, WA, Australia
| | - T Nguyen
- Medical School, Division of Psychiatry, The University of Western Australia, Crawley, WA, Australia.,Peel and Rockingham, Kwinana Mental Health Services, Rockingham, WA, Australia
| | - H Liira
- Medical School, Division of General practice, The University of Western Australia, Crawley, WA, Australia
| | - V A Morgan
- Neuropsychiatric Epidemiology Research Unit, School of Population and Global Health, The University of Western Australia, Perth, WA, Australia.,Centre for Clinical Research in Neuropsychiatry, Medical School, Division of Psychiatry, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
27
|
Singh R, Bansal Y, Sodhi RK, Singh DP, Bishnoi M, Kondepudi KK, Medhi B, Kuhad A. Berberine attenuated olanzapine-induced metabolic alterations in mice: Targeting transient receptor potential vanilloid type 1 and 3 channels. Life Sci 2020; 247:117442. [PMID: 32081663 DOI: 10.1016/j.lfs.2020.117442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) channels are emerging therapeutic targets for metabolic disorders. Berberine, which is a modulator of TRPV1, has proven antiobesity and antidiabetic potentials. The present study was aimed to investigate the protective effects of berberine in olanzapine-induced alterations in hypothalamic appetite control, inflammation and metabolic aberrations in mice targeting TRPV1 channels. Female BALB/c mice (18-23 g) were treated with olanzapine (6 mg/kg, p.o.) for six weeks to induce metabolic alterations, while berberine (100 and 200 mg/kg, p.o.) and metformin (100 mg/kg, p.o) were used as test and standard interventions respectively. Weekly assessment of feed-water intake, body temperature and body weight was done, while locomotion was measured at the end of week 1 and 6. Serum glucose and lipid profile were assessed by biochemical methods, while other serum biomarkers were assessed by ELISA. qPCR was used to quantify the mRNA expression in the hypothalamus. Olanzapine treatment significantly increased the feed intake, weight gain, adiposity index, while reduced body temperature and locomotor activity which were reversed by berberine treatment. Berberine treatment reduced serum ghrelin and leptin levels as well decrease in hypothalamic mRNA expression of orexigenic neuropeptides, inflammatory markers and ghrelin receptor in olanzapine-treated mice. Olanzapine treatment increased expression of TRPV1/TRPV3 in the hypothalamus which was significantly decreased by berberine treatment. Our results suggest that berberine, by TRPV1/TRPV3 modulation, attenuated the olanzapine-induced metabolic alterations in mice. Hence berberine supplementation in psychiatric patients could be a preventive approach to reduce the metabolic adverse effects of antipsychotics.
Collapse
Affiliation(s)
- Raghunath Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Yashika Bansal
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Dhirendra Pratap Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India; Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India; ICMR-National Institute of Occupational Health (NIOH), Ahmedabad 380016, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Anurag Kuhad
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
28
|
Gohar SM, Dieset I, Steen NE, Mørch RH, Iversen TS, Steen VM, Andreassen OA, Melle I. Association between serum lipid levels, osteoprotegerin and depressive symptomatology in psychotic disorders. Eur Arch Psychiatry Clin Neurosci 2019; 269:795-802. [PMID: 29721726 PMCID: PMC6739273 DOI: 10.1007/s00406-018-0897-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Although the relationship between positive and negative symptoms of psychosis and dyslipidemia has been thoroughly investigated in recent studies, the potential link between depression and lipid status is still under-investigated. We here examined the association between lipid levels and depressive symptomatology in patients with psychotic disorders, in addition to their possible inflammatory associations. Participants (n = 652) with the following distribution: schizophrenia, schizophreniform and schizoaffective disorder (schizophrenia group, n = 344); bipolar I, II, NOS, and psychosis NOS (non-schizophrenia group, n = 308) were recruited consecutively from the Norwegian Thematically Organized Psychosis (TOP) Study. Clinical data were obtained by Positive and Negative Syndrome Scale (PANSS), and Calgary Depression Scale for Schizophrenia (CDSS). Blood samples were analyzed for total cholesterol (TC), low-density lipoprotein (LDL), triglyceride (TG), C-reactive protein (CRP), soluble tumor necrosis factor receptor 1(sTNF-R1), osteoprotegerin (OPG), and interleukin 1 receptor antagonist (IL-1Ra). After adjusting for age, gender, BMI, smoking, and dyslipidemia-inducing antipsychotics, TC and LDL scores showed significant associations with depression [β = 0.13, p = 0.007; β = 0.14, p = 0.007], and with two inflammatory markers: CRP [β = 0.14, p = 0.007; β = 0.16, p = 0.007] and OPG [β = 0.14, p = 0.007; β = 0.11, p = 0.007]. Total model variance was 17% for both analyses [F(12, 433) = 8.42, p < 0.001; F(12, 433) = 8.64, p < 0.001]. Current findings highlight a potential independent role of depression and inflammatory markers, CRP and OPG in specific, in the pathophysiology of dyslipidemia in psychotic disorders.
Collapse
Affiliation(s)
- Sherif M. Gohar
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
- Department of Psychiatry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ingrid Dieset
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| | - Nils Eiel Steen
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| | - Ragni H. Mørch
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| | - Trude S. Iversen
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| | - Vidar M. Steen
- Department of Clinical Science, K.G. Jebsen Center for Psychosis Research, NORMENT, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ole A. Andreassen
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| | - Ingrid Melle
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| |
Collapse
|
29
|
Singh R, Bansal Y, Sodhi RK, Saroj P, Medhi B, Kuhad A. Modeling of antipsychotic-induced metabolic alterations in mice: An experimental approach precluding psychosis as a predisposing factor. Toxicol Appl Pharmacol 2019; 378:114643. [DOI: 10.1016/j.taap.2019.114643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
|
30
|
Metabolic Effects of Antipsychotic Medications. J Nurse Pract 2019. [DOI: 10.1016/j.nurpra.2019.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Insulin resistance induced by olanzapine and other second-generation antipsychotics in Chinese patients with schizophrenia: a comparative review and meta-analysis. Eur J Clin Pharmacol 2019; 75:1621-1629. [PMID: 31428814 DOI: 10.1007/s00228-019-02739-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE This systematic review aimed to determine whether olanzapine is more likely than other second-generation antipsychotics (SGAs) to induce insulin resistance in patients with schizophrenia in China. METHODS We reviewed all randomized controlled trials on insulin resistance and metabolic abnormalities caused by SGAs in the PubMed, China National Knowledge Infrastructure (CNKI), VIP, and Wanfang databases. Retrieved articles were published on or before December 2018. Meta-analysis was performed to determine the effect size of the treatment on the insulin resistance index (IRI), fasting blood glucose (FBG), and fasting insulin (FINS). RESULTS Forty studies (3725 participants in total) were included. All studies contained data suitable for comparing aripiprazole vs. olanzapine, ziprasidone vs. olanzapine, and risperidone vs. olanzapine. Patients treated with olanzapine had higher IRI, FBG, and FINS levels than did patients treated with aripiprazole, ziprasidone, or risperidone, with significant differences (aripiprazole vs. olanzapine: FBG: standardized mean difference [SMD] = 0.72, 95% confidence interval [95%CI] - 0.82, - 0.61; FINS: SMD = - 0.8, 95%CI - 1.00, - 0.61; IRI: SMD = - 0.80, 95%CI - 0.99, - 0.61; ziprasidone vs. olanzapine: FBG: SMD = - 1.19, 95%CI - 1.30, - 1.08; FINS: SMD = - 0.66, 95%CI - 0.85, - 0.47; IRI: SMD = - 0.71, 95%CI - 0.88, - 0.55; risperidone vs. olanzapine: FBG: SMD = - 0.17, 95%CI - 0.34, - 0.00). CONCLUSIONS Existing data suggest that olanzapine is associated with a significantly greater risk of IRI, FBG, and FINS, while other agents are associated with relatively lower risks. Thus, olanzapine is more likely to induce insulin resistance than are other SGAs in schizophrenic patients in China.
Collapse
|
32
|
Insulin Resistance-Related Proteins Are Overexpressed in Patients and Rats Treated With Olanzapine and Are Reverted by Pueraria in the Rat Model. J Clin Psychopharmacol 2019; 39:214-219. [PMID: 30946280 DOI: 10.1097/jcp.0000000000001028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Olanzapine, a commonly used second-generation antipsychotic, causes severe metabolic adverse effects, such as elevated blood glucose and insulin resistance (IR). Previous studies have proposed that overexpression of CD36, GGPPS, PTP-1B, GRK2, and adipose triglyceride lipase may contribute to the development of metabolic syndrome, and Pueraria could eliminate the metabolic adverse effects. The study aimed to investigate the association between olanzapine-associated IR and IR-related proteins (IRRPs) and determine the role of Pueraria in protection against the metabolic adverse effects of olanzapine. METHODS The expression levels of IRRPs were examined in schizophrenia patients and rat models with long-term olanzapine treatment. The efficacy of Pueraria on anti-IR by reducing the expression of IRRPs was comprehensively evaluated. RESULTS Our study demonstrated that in schizophrenia patients chronically treated with olanzapine, the expression levels of IRRPs in patients with a high IR index significantly increased, and these phenomena were further confirmed in a rat model. The expression levels of IRRPs were reduced significantly in Pueraria-treated IR rat models. The body weight, blood glucose, and IR index were restored to levels similar to those of normal controls. CONCLUSIONS The IRRPs are closely related to IR induced by olanzapine, and Pueraria could interfere with olanzapine-associated IR and revert overexpressed IRRPs. These findings suggest that IRRPs are key players in olanzapine-associated IR and that Pueraria has potential as a clinical drug to prevent the metabolic adverse effects of olanzapine, further improving compliance of schizophrenia patients.
Collapse
|
33
|
Agarwal SM, Kowalchuk C, Castellani L, Costa-Dookhan KA, Caravaggio F, Asgariroozbehani R, Chintoh A, Graff-Guerrero A, Hahn M. Brain insulin action: Implications for the treatment of schizophrenia. Neuropharmacology 2019; 168:107655. [PMID: 31152767 DOI: 10.1016/j.neuropharm.2019.05.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Abstract
Insulin action in the central nervous system is a major regulator of energy balance and cognitive processes. The development of central insulin resistance is associated with alterations in dopaminergic reward systems and homeostatic signals affecting food intake, glucose metabolism, body weight and cognitive performance. Emerging evidence has highlighted a role for antipsychotics (APs) to modulate central insulin-mediated pathways. Although APs remain the cornerstone treatment for schizophrenia they are associated with severe metabolic complications and fail to address premorbid cognitive deficits, which characterize the disorder of schizophrenia. In this review, we first explore how the hypothesized association between schizophrenia and CNS insulin dysregulation aligns with the use of APs. We then investigate the proposed relationship between CNS insulin action and AP-mediated effects on metabolic homeostasis, and different domains of psychopathology, including cognition. We briefly discuss a potential role of CNS insulin signaling to explain the hypothesized, but somewhat controversial association between therapeutic efficacy and metabolic side effects of APs. Finally, we propose how this knowledge might inform novel treatment strategies to target difficult to treat domains of schizophrenia. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Chantel Kowalchuk
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Kenya A Costa-Dookhan
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Araba Chintoh
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Singh R, Bansal Y, Medhi B, Kuhad A. Antipsychotics-induced metabolic alterations: Recounting the mechanistic insights, therapeutic targets and pharmacological alternatives. Eur J Pharmacol 2018; 844:231-240. [PMID: 30529195 DOI: 10.1016/j.ejphar.2018.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Atypical antipsychotics (AAPs) are the drug of choice in the management of mental illnesses by virtue of their advantage over typical antipsychotics i.e. least tendency of producing extrapyramidal motor symptoms (EPS) or pseudoparkinsonism. Despite the clinical efficacy, AAPs produces troublesome adverse effects, particularly hyperphagia, hyperglycemia, dyslipidemia weight gain, diabetes mellitus, insulin resistance and QT prolongation which further develops metabolic and cardiac complications with subsequent reduction in life expectancy, poor patient compliance, and sudden death. AAPs-induced weight gain and metabolic alterations are increasing at an alarming rate and became an utmost matter of concern for psychopharmacotherapy. Diverse underlying mechanisms have been explored such as the interaction of AAPs with neurotransmitter receptors, alteration in food reward anticipation behavior, altered expressions of hypothalamic orexigenic and anorexigenic neuropeptides, histamine H1 receptor-mediated hypothalamic AMP-activated protein kinase (AMPK) activation, increased blood leptin, ghrelin, pro-inflammatory cytokines. Antipsychotics induced imbalance in energy homeostasis, reduction in energy expenditure which is linked to altered expression of uncoupling proteins (UCP-1) in brown adipose tissue and reduced hypothalamic orexin expressions are emerging insights. In addition, alteration in gut-microbiota and subsequent inflammation, dyslipidemia, obesity, and diabetes after AAPs treatment are also associated with weight gain and metabolic alterations. Oral hypoglycemics and lipid-lowering drugs are mainly prescribed in the clinical management of weight gain associated with AAPs while many other pharmacological and nonpharmacological interventions also have been explored in different clinical and preclinical studies. In this review, we critically discuss the current scenario, mechanistic insights, biomarkers, and therapeutic alternatives for metabolic alterations associated with antipsychotics.
Collapse
Affiliation(s)
- Raghunath Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Yashika Bansal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
35
|
Keinänen J, Suvisaari J, Reinikainen J, Kieseppä T, Lindgren M, Mäntylä T, Rikandi E, Sundvall J, Torniainen-Holm M, Mantere O. Low-grade inflammation in first-episode psychosis is determined by increased waist circumference. Psychiatry Res 2018; 270:547-553. [PMID: 30343240 DOI: 10.1016/j.psychres.2018.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
Abstract
Psychosis is associated with low-grade inflammation as measured by high-sensitivity C-reactive protein (hs-CRP), a risk factor for cardiovascular events and mortality in the general population. We investigated the relationship between hs-CRP and anthropometric and metabolic changes in first-episode psychosis (FEP) during the first treatment year. We recruited 95 FEP patients and 62 controls, and measured longitudinal changes in hs-CRP, weight, waist circumference, insulin resistance, and lipids. We used linear mixed models to analyze the longitudinal relationship between hs-CRP and clinical, anthropometric and metabolic measures. At baseline, patients with FEP had higher levels of insulin resistance, total and low-density lipoprotein cholesterol, apolipoprotein B, and triglycerides. Baseline weight, waist circumference, hs-CRP, fasting glucose, and high-density lipoprotein cholesterol were similar between patients and controls. Marked increases in anthropometric measures and hs-CRP were observed in FEP during the 12-month follow-up. However, glucose and lipid parameters did not change significantly. In the mixed models, waist circumference and female sex were significant predictors of hs-CRP levels in FEP. Prevention of the early development of abdominal obesity in FEP is crucial, as abdominal obesity is accompanied by chronic low-grade inflammation, which increases further the cardiovascular risk in this vulnerable population.
Collapse
Affiliation(s)
- Jaakko Keinänen
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FIN-00271 Helsinki, Finland; Faculty of Medicine, Department of Psychiatry, University of Helsinki, P.O. Box 590, FIN-00029 Helsinki, Finland.
| | - Jaana Suvisaari
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FIN-00271 Helsinki, Finland
| | - Jaakko Reinikainen
- Department of Public Health Solutions, Public Health Evaluation and Projection Unit, National Institute for Health and Welfare, P.O. Box 30, FIN-00271 Helsinki, Finland
| | - Tuula Kieseppä
- Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 590, FIN-00029 Helsinki, Finland
| | - Maija Lindgren
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FIN-00271 Helsinki, Finland
| | - Teemu Mäntylä
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FIN-00271 Helsinki, Finland; Faculty of Medicine, Department of Psychology and Logopedics, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Eva Rikandi
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FIN-00271 Helsinki, Finland; Faculty of Medicine, Department of Psychology and Logopedics, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Jouko Sundvall
- Department of Public Health Solutions, Genomics and Biomarkers Unit, National Institute for Health and Welfare, P.O. Box 30, FIN-00271 Helsinki, Finland
| | - Minna Torniainen-Holm
- Department of Public Health Solutions, Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FIN-00271 Helsinki, Finland
| | - Outi Mantere
- Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 590, FIN-00029 Helsinki, Finland; Department of Psychiatry, McGill University, 1033 Pine Avenue West, QC, H3A 1A1 Montréal, Canada; Bipolar Disorders Clinic, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, QC, H4H 1R3 Montréal, Canada
| |
Collapse
|
36
|
Siafis S, Papazisis G. Detecting a potential safety signal of antidepressants and type 2 diabetes: a pharmacovigilance-pharmacodynamic study. Br J Clin Pharmacol 2018; 84:2405-2414. [PMID: 29953643 DOI: 10.1111/bcp.13699] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/12/2018] [Accepted: 06/21/2018] [Indexed: 12/28/2022] Open
Abstract
AIMS Recent data suggest that antidepressants are associated with incident diabetes but the possible pharmacological mechanism is still questioned. The aim of the present study was to evaluate antidepressant's risk for reporting diabetes using disproportionality analysis of the FDA adverse events spontaneous reporting system (FAERS) database and to investigate possible receptor/transporter mechanisms involved. METHODS Data from 2004 to 2017 were analysed using OpenVigil2 and adjusted reporting odds ratio (aROR) for reporting diabetes was calculated for 22 antidepressants. Events included in the narrow scope of the SMQ 'hyperglycaemia/new-onset diabetes mellitus' were defined as cases and all the other events as non-cases. The pharmacodynamic profile was extracted using the PDSP and IUPHAR/BPS databases and the occupancy on receptors (serotonin, alpha adrenoreceptors, dopamine, muscarinic, histamine) and transporters (SERT, NET, DAT) was estimated. The relationship between aROR for diabetes and receptor occupancy was investigated with Pearson's correlation coefficient (r) and univariate linear regression. RESULTS Six antidepressants were associated with diabetes: nortriptyline with aROR [95% CI] of 2.01 [1.41-2.87], doxepin 1.97 [1.31-2.97], imipramine 1.82 [1.09-3.06], sertraline 1.47 [1.29-1.68], mirtazapine 1.33 [1.04-1.69] and amitriptyline 1.31 [1.09-1.59]. Strong positive correlation coefficients between occupancy and aROR for diabetes were identified for the receptors M1 , M3 , M4 , M5 and H1 . CONCLUSION Most of the tricyclic antidepressants, mirtazapine and sertraline seem to be associated with reporting diabetes in FAERS. Higher degrees of occupancy on muscarinic receptors and H1 may be a plausible pharmacological mechanism. Further clinical assessment and pharmacovigilance data is needed to validate this potential safety signal.
Collapse
Affiliation(s)
- Spyridon Siafis
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
37
|
Gjerde PB, Dieset I, Simonsen C, Hoseth EZ, Iversen T, Lagerberg TV, Lyngstad SH, Mørch RH, Skrede S, Andreassen OA, Melle I, Steen VM. Increase in serum HDL level is associated with less negative symptoms after one year of antipsychotic treatment in first-episode psychosis. Schizophr Res 2018; 197:253-260. [PMID: 29129510 DOI: 10.1016/j.schres.2017.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/16/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND A potential link between increase in total cholesterol and triglycerides and clinical improvement has been observed during antipsychotic drug treatment in chronic schizophrenia patients, possibly due to drug related effects on lipid biosynthesis. We examined whether changes in serum lipids are associated with alleviation of psychosis symptoms after one year of antipsychotic drug treatment in a cohort of first-episode psychosis (FEP) patients. METHODS A total of 132 non-affective antipsychotic-treated FEP patients were included through the Norwegian Thematically Organized Psychosis (TOP) project. Data on antipsychotic usage, serum lipids (total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglycerides (TG)), body mass index (BMI) and clinical state were obtained at baseline and after 12months. The Positive and Negative Syndrome Scale (PANSS) was used to assess psychotic symptoms. Mixed-effects models were employed to examine the relationship between serum lipids and psychotic symptoms while controlling for potential confounders including BMI. RESULTS An increase in HDL during one year of antipsychotic treatment was associated with reduction in PANSS negative subscores (B=-0.48, p=0.03). This relationship was not affected by concurrent change in BMI (adjusted HDL: B=-0.54, p=0.02). No significant associations were found between serum lipids, BMI and PANSS positive subscores. CONCLUSION We found that an increase in HDL level during antipsychotic treatment is associated with improvement in negative symptoms in FEP. These findings warrant further investigation to clarify the interaction between lipid pathways and psychosis.
Collapse
Affiliation(s)
- Priyanthi B Gjerde
- NORMENT, K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Ingrid Dieset
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Carmen Simonsen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Eva Z Hoseth
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway; Division of Mental Health and Addiction, Møre and Romsdal Health Trust, Kristiansund, Norway.
| | - Trude Iversen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Trine V Lagerberg
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Siv Hege Lyngstad
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Ragni H Mørch
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Silje Skrede
- NORMENT, K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway; Department of Clinical Medicine, University of Oslo, 0424 Oslo, Norway.
| | - Ingrid Melle
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Vidar M Steen
- NORMENT, K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
38
|
Sukasem C, Vanwong N, Srisawasdi P, Ngamsamut N, Nuntamool N, Hongkaew Y, Puangpetch A, Chamkrachangpada B, Limsila P. Pharmacogenetics of Risperidone-Induced Insulin Resistance in Children and Adolescents with Autism Spectrum Disorder. Basic Clin Pharmacol Toxicol 2018; 123:42-50. [DOI: 10.1111/bcpt.12970] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine; Department of Pathology; Faculty of Medicine Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- Laboratory for Pharmacogenomics; Somdech Phra Debaratana Medical Center (SDMC); Ramathibodi Hospital; Bangkok Thailand
| | - Natchaya Vanwong
- Division of Pharmacogenomics and Personalized Medicine; Department of Pathology; Faculty of Medicine Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- Laboratory for Pharmacogenomics; Somdech Phra Debaratana Medical Center (SDMC); Ramathibodi Hospital; Bangkok Thailand
| | - Pornpen Srisawasdi
- Division of Clinical Chemistry; Department of Pathology; Faculty of Medicine; Ramathibodi Hospital; Mahidol University; Bangkok Thailand
| | - Nattawat Ngamsamut
- Department of Mental Health Services; Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital; Ministry of Public Health; Samut Prakan Thailand
| | - Nopphadol Nuntamool
- Division of Pharmacogenomics and Personalized Medicine; Department of Pathology; Faculty of Medicine Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- Laboratory for Pharmacogenomics; Somdech Phra Debaratana Medical Center (SDMC); Ramathibodi Hospital; Bangkok Thailand
- Molecular Medicine; Faculty of Science; Mahidol University; Bangkok Thailand
| | - Yaowaluck Hongkaew
- Division of Pharmacogenomics and Personalized Medicine; Department of Pathology; Faculty of Medicine Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- Laboratory for Pharmacogenomics; Somdech Phra Debaratana Medical Center (SDMC); Ramathibodi Hospital; Bangkok Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine; Department of Pathology; Faculty of Medicine Ramathibodi Hospital; Mahidol University; Bangkok Thailand
- Laboratory for Pharmacogenomics; Somdech Phra Debaratana Medical Center (SDMC); Ramathibodi Hospital; Bangkok Thailand
| | - Bhunnada Chamkrachangpada
- Department of Mental Health Services; Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital; Ministry of Public Health; Samut Prakan Thailand
| | - Penkhae Limsila
- Department of Mental Health Services; Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital; Ministry of Public Health; Samut Prakan Thailand
| |
Collapse
|
39
|
AGUIAR-BLOEMER AC, AGLIUSSI RG, PINHO TMP, FURTADO EF, DIEZ-GARCIA RW. Eating behavior of schizophrenic patients. REV NUTR 2018. [DOI: 10.1590/1678-98652018000100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ABSTRACT Objective To assess the eating behavior, food practices, nutritional and metabolic profiles of patients with schizophrenia undergoing treatment. Methods Cross-sectional exploratory descriptive qualitative study used a semi-structured questionnaire on the eating behavior, food practices, and perception of changes after the initiation of drug therapy and a quantitative method using anthropometric and body composition measurements, metabolic parameters, and 5-day dietary records to analyze nutrient ingestion of patients with schizophrenia in an outpatient clinic at a tertiary hospital (n=33). The qualitative data were analyzed and coded by three researchers and quantitative data were analyzed using descriptive exploratory statistics. Results The results of this study showed that schizophrenic patients presented high prevalence of excess weight (71.0%), metabolic syndrome (42.0%), dyslipidemia (62.0%), changes in appetite (76.0%), and increase in energy intake (74.2%), associated with important irregularities in eating behavior and food practices (such as irregularity of meals, emotional intake, high carbohydrate and fat intake, and low energy expenditure) and lifestyle (changes in social and work routines). Conclusion This eating profile may interact synergistically with psychotropic drugs to contribute to weight gain and metabolic changes in schizophrenia. Nutrition education may prevent and monitor the risk of metabolic and nutrition problems, irrespective of the medications used.
Collapse
|
40
|
Kanji S, Fonseka TM, Marshe VS, Sriretnakumar V, Hahn MK, Müller DJ. The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain. Eur Arch Psychiatry Clin Neurosci 2018. [PMID: 28624847 DOI: 10.1007/s00406-017-0820-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the emergence of knowledge implicating the human gut microbiome in the development and regulation of several physiological systems, evidence has accumulated to suggest a role for the gut microbiome in psychiatric conditions and drug response. A complex relationship between the enteric nervous system, the gut microbiota and the central nervous system has been described which allows for the microbiota to influence and respond to a variety of behaviors and psychiatric conditions. Additionally, the use of pharmaceuticals may interact with and alter the microbiota to potentially contribute to adverse effects of the drug. The gut microbiota has been described in several psychiatric disorders including depression and anxiety, but only a few reports have discussed the role of the microbiome in schizophrenia. The following review examines the evidence surrounding the gut microbiota in behavior and psychiatric illness, the role of the microbiota in schizophrenia and the potential for antipsychotics to alter the gut microbiota and promote adverse metabolic events.
Collapse
Affiliation(s)
- S Kanji
- Pharmacogenetics Research Clinic Centre for Addiction and Mental Health, 250 College Street, R 132, Toronto, ON, Canada
| | - T M Fonseka
- Pharmacogenetics Research Clinic Centre for Addiction and Mental Health, 250 College Street, R 132, Toronto, ON, Canada
- Toronto Western Hospital, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada
| | - V S Marshe
- Pharmacogenetics Research Clinic Centre for Addiction and Mental Health, 250 College Street, R 132, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - V Sriretnakumar
- Psychiatric Neurogenetics Lab, Molecular Brain Science Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - M K Hahn
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Complex Mental Illness, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - D J Müller
- Pharmacogenetics Research Clinic Centre for Addiction and Mental Health, 250 College Street, R 132, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Siafis S, Tzachanis D, Samara M, Papazisis G. Antipsychotic Drugs: From Receptor-binding Profiles to Metabolic Side Effects. Curr Neuropharmacol 2018; 16:1210-1223. [PMID: 28676017 PMCID: PMC6187748 DOI: 10.2174/1570159x15666170630163616] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Antipsychotic-induced metabolic side effects are major concerns in psychopharmacology and clinical psychiatry. Their pathogenetic mechanisms are still not elucidated. METHODS Herein, we review the impact of neurotransmitters on metabolic regulation, providing insights into antipsychotic-induced metabolic side effects. RESULTS Antipsychotic drugs seem to interfere with feeding behaviors and energy balance, processes that control metabolic regulation. Reward and energy balance centers in central nervous system constitute the central level of metabolic regulation. The peripheral level consists of skeletal muscles, the liver, the pancreas, the adipose tissue and neuroendocrine connections. Neurotransmitter receptors have crucial roles in metabolic regulation and they are also targets of antipsychotic drugs. Interaction of antipsychotics with neurotransmitters could have both protective and harmful effects on metabolism. CONCLUSION Emerging evidence suggests that antipsychotics have different liabilities to induce obesity, diabetes and dyslipidemia. However this diversity cannot be explained merely by drugs'pharmacodynamic profiles, highlighting the need for further research.
Collapse
Affiliation(s)
| | | | | | - Georgios Papazisis
- Address correspondence to this author at the Department of Clinical
Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Tel/Fax: +30 2310 999323; E-mail:
| |
Collapse
|
42
|
Pharmacological Approaches to Minimizing Cardiometabolic Side Effects of Mood Stabilizing Medications. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40501-017-0131-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Højlund M, Elliott AF, Madsen NJ, Viuff AG, Munk-Jørgensen P, Hjorth P. Changes in antipsychotics and other psychotropic drugs during a 30-month lifestyle intervention among outpatients with schizophrenia. Nord J Psychiatry 2017; 71:598-604. [PMID: 28836471 DOI: 10.1080/08039488.2017.1365379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Patients with schizophrenia have high risk of early death from diabetes and cardiovascular diseases, partly because of poor lifestyle and partly because of long-lasting exposure to antipsychotic treatment. AIMS To investigate the influence of a lifestyle intervention program on changes in psychotropic medication in a non-selected cohort of patients with schizophrenia. METHODS Observational study of outpatients in the Central Denmark Region during a 30-month lifestyle program. RESULTS One hundred and thirty-six patients were enrolled and 130 were available for analysis. Median follow-up time was 15.9 months (range 1-31 months). Nineteen patients (15%) were not treated with antipsychotic drugs during the study period. 54% of the 111 patients exposed to antipsychotics were subject to monotherapy at index and at follow-up. The median defined daily dose (DDD) of antipsychotics was 1.33 at index (interquartile range (IQR) 0.67-2.00) and 1.07 at follow-up (IQR 0.40-1.50). 52% of the patients experienced a decrease in DDD during the study period (median change 0.33; IQR 1.00-0.43). There were no significant differences between the patients with decreased, stable or increased DDD with regard to age, sex, follow-up time and time since diagnosis. The number of prescriptions was significantly higher in the patients who decreased their DDD and the proportion of antipsychotic depot formulation was higher in those who increased their DDD. CONCLUSIONS Most patients decreased or stabilized their total dose of antipsychotic medication during the study period. Many patients were subject to antipsychotic polypharmacy. The extent of participation in the lifestyle intervention program did not correlate with the changes in dosing of antipsychotic medication.
Collapse
Affiliation(s)
- Mikkel Højlund
- a Department of Affective Disorders Research Unit , Aarhus University Hospital , Aarhus , Denmark.,b Psychiatric Research Academy , Mental Health Services Region of Southern Denmark , Odense , Denmark.,c Department of Psychiatry Aabenraa , Mental Health Services Region of Southern Denmark , Aabenraa , Denmark
| | - Anja Friis Elliott
- a Department of Affective Disorders Research Unit , Aarhus University Hospital , Aarhus , Denmark.,b Psychiatric Research Academy , Mental Health Services Region of Southern Denmark , Odense , Denmark
| | - Nikolaj Juul Madsen
- a Department of Affective Disorders Research Unit , Aarhus University Hospital , Aarhus , Denmark.,d Department of Mathematics , Aarhus University , Aarhus , Denmark
| | - Anne Grethe Viuff
- e Psychiatric Research Unit West , Regional Psychiatric Services West , Herning , Denmark
| | - Povl Munk-Jørgensen
- b Psychiatric Research Academy , Mental Health Services Region of Southern Denmark , Odense , Denmark.,f Department of Psychiatry , Odense University Hospital , Odense , Denmark
| | - Peter Hjorth
- g Regional Psychiatry Randers , Aarhus University Hospital , Aarhus , Denmark.,h Institute of Regional Health , University of Southern Denmark , Odense , Denmark
| |
Collapse
|
44
|
Monroy-Jaramillo N, Rodríguez-Agudelo Y, Aviña-Cervantes LC, Roberts DL, Velligan DI, Walss-Bass C. Leukocyte telomere length in Hispanic schizophrenia patients under treatment with olanzapine. J Psychiatr Res 2017; 90:26-30. [PMID: 28226264 DOI: 10.1016/j.jpsychires.2017.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/06/2017] [Indexed: 11/27/2022]
Abstract
Different lines of evidence indicate that patients with schizophrenia (SZ) exhibit accelerated aging. Leukocyte telomere length (TL), an aging marker, is associated with age-related and chronic pathologies, including schizophrenia. We analyzed leukocyte TL in 170 SZ patients of Hispanic ancestry grouped based on antipsychotic treatment, compared to 126 matched controls. The group under treatment with atypical antipsychotics was further subdivided according to the risk of medication to cause metabolic syndrome (MetS). Our results show significant erosion in the TL of SZ patients under treatment with the atypical antipsychotics clozapine and olanzapine, which cause high-risk for MetS, compared to healthy controls and patients under treatment with medium and low-risk antipsychotics. However, when the analysis was done separately for clozapine and olanzapine, a significant difference remained only for olanzapine. These findings suggest that atypical antipsychotics that cause high-risk for MetS, particularly olanzapine, may modulate leukocyte TL in SZ patients. Future research is required to elucidate if in fact atypical antipsychotics are involved in TL maintenance in SZ subjects and the mechanism by which this occurs.
Collapse
Affiliation(s)
- Nancy Monroy-Jaramillo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez. Insurgentes Sur 3877 Col. La Fama, Tlalpan, C. P. 14269 Mexico city, Mexico.
| | - Yaneth Rodríguez-Agudelo
- Department of Neuropsychology, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez. Insurgentes Sur 3877 Col. La Fama, Tlalpan, C. P. 14269 Mexico city, Mexico.
| | - Luis Carlos Aviña-Cervantes
- Department of Psychiatry, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez. Insurgentes Sur 3877 Col. La Fama, Tlalpan, C. P. 14269 Mexico city, Mexico.
| | - David L Roberts
- Department of Psychiatry, Division of Schizophrenia and Related Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Dawn I Velligan
- Department of Psychiatry, Division of Schizophrenia and Related Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
45
|
Time-dependent changes and potential mechanisms of glucose-lipid metabolic disorders associated with chronic clozapine or olanzapine treatment in rats. Sci Rep 2017; 7:2762. [PMID: 28584269 PMCID: PMC5459828 DOI: 10.1038/s41598-017-02884-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
Chronic treatment with second-generation antipsychotic drugs (SGAs) has been associated with an increased risk of metabolic syndrome. To evaluate the longitudinal changes in glucose-lipid homeostasis after SGA use, we studied the time-dependent effects of olanzapine (OLZ) (3 mg/kg, b.i.d.) or clozapine (CLZ) (20 mg/kg, b.i.d.) treatment on metabolic profiles for 9 weeks in rats. Although only OLZ significantly increased body weight in rats, both OLZ and CLZ elevated blood lipid levels. Chronic OLZ treatment induced significant weight gain leading to a higher fasting insulin level and impaired glucose tolerance, whereas CLZ lowered fasting insulin levels and impaired glucose tolerance independent of weight gain. Treatment with both drugs deranged AKT/GSK phosphorylation and up-regulated muscarinic M3 receptors in the rats’ livers. Consistent with an elevation in lipid levels, both OLZ and CLZ significantly increased the protein levels of nuclear sterol regulatory element-binding proteins (SREBPs) in the liver, which was associated with improvement in hepatic histamine H1R. However, enhanced carbohydrate response element binding protein (ChREBP) signalling was observed in only CLZ-treated rats. These results suggest that SGA-induced glucose-lipid metabolic disturbances could be independent of weight gain, possibly through activation of SREBP/ChREBP in the liver.
Collapse
|
46
|
Steen VM, Skrede S, Polushina T, López M, Andreassen OA, Fernø J, Hellard SL. Genetic evidence for a role of the SREBP transcription system and lipid biosynthesis in schizophrenia and antipsychotic treatment. Eur Neuropsychopharmacol 2017; 27:589-598. [PMID: 27492885 DOI: 10.1016/j.euroneuro.2016.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a serious psychotic disorder, with disabling symptoms and markedly reduced life expectancy. The onset is usually in late adolescence or early adulthood, which in time overlaps with the maturation of the brain including the myelination process. Interestingly, there seems to be a link between myelin abnormalities and schizophrenia. The oligodendrocyte-derived myelin membranes in the CNS are highly enriched for lipids (cholesterol, phospholipids and glycosphingolipids), thereby pointing at lipid homeostasis as a relevant target for studying the genetics and pathophysiology of schizophrenia. The biosynthesis of fatty acids and cholesterol is regulated by the sterol regulatory element binding protein (SREBP) transcription factors SREBP1 and SREBP2, which are encoded by the SREBF1 and SREBF2 genes on chromosome 17p11.2 and 22q13.2, respectively. Here we review the evidence for the involvement of SREBF1 and SREBF2 as genetic risk factors in schizophrenia and discuss the role of myelination and SREBP-mediated lipid biosynthesis in the etiology, pathophysiology and drug treatment of schizophrenia.
Collapse
Affiliation(s)
- Vidar M Steen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Silje Skrede
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tatiana Polushina
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Johan Fernø
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Le Hellard
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
47
|
Body and liver fat content and adipokines in schizophrenia: a magnetic resonance imaging and spectroscopy study. Psychopharmacology (Berl) 2017; 234:1923-1932. [PMID: 28315932 DOI: 10.1007/s00213-017-4598-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/11/2017] [Indexed: 12/24/2022]
Abstract
RATIONALE Although antipsychotic treatment often causes weight gain and lipid abnormalities, quantitative analyses of tissue-specific body fat content and its distribution along with adipokines have not been reported for antipsychotic-treated patients. OBJECTIVES The purposes of the present study were to quantitatively assess abdominal and liver fat in patients with schizophrenia on antipsychotic treatment and age- and body mass index (BMI)-matched healthy controls and to evaluate their associations with plasma leptin and adiponectin levels. METHODS In 13 schizophrenia patients on antipsychotic treatment and 11 age- and BMI-matched controls, we simultaneously quantified visceral and subcutaneous fat content using T1-weighted magnetic resonance imaging and liver fat content by 1H magnetic resonance spectroscopy. Associations of tissue-specific fat content with plasma levels of leptin and adiponectin were evaluated. RESULTS Plasma adiponectin level (μg/mL) was not statistically different between groups (7.02 ± 2.67 vs. 7.59 ± 2.92), whereas plasma leptin level (ng/mL) trended to be higher in patients than in controls (11.82 ± 7.89 vs. 7.93 ± 5.25). The values of liver fat (%), visceral fat (L), and subcutaneous fat (L) were 9.64 ± 8.03 vs. 7.07 ± 7.35, 4.41 ± 1.64 vs. 3.31 ± 1.97, and 8.37 ± 3.34 vs. 7.16 ± 2.99 in patients vs. controls, respectively. Liver fat content was inversely correlated with adiponectin in controls (r = - 0.87, p < 0.001) but not in patients (r = - 0.26, p = 0.39). In both groups, visceral fat was inversely associated with adiponectin (controls : r = - 0.66, p = 0.03; patients : r = - 0.65, p = 0.02), while subcutaneous fat was positively correlated with leptin (controls : r = 0.90, p < 0.001; patients : r = 0.67, p = 0.01). CONCLUSIONS These findings suggest that antipsychotic treatment may disrupt the physiological relationship between liver fat content and adiponectin but does not essentially affect the associations of adiponectin and leptin with visceral and subcutaneous compartments.
Collapse
|
48
|
Kapse S, Ando H, Fujiwara Y, Suzuki C, Ushijima K, Kitamura H, Hosohata K, Kotani K, Shimba S, Fujimura A. Effect of a dosing-time on quetiapine-induced acute hyperglycemia in mice. J Pharmacol Sci 2017; 133:139-145. [PMID: 28279595 DOI: 10.1016/j.jphs.2017.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022] Open
Abstract
Although rare, second-generation antipsychotic drugs cause severe hyperglycemia within several days after the initiation of therapy. Because glucose tolerance exhibits circadian rhythmicity, we evaluated an effect of a dosing-time on quetiapine-induced acute hyperglycemia in mice. A single intraperitoneal dose of quetiapine dosing-time-independently induced insulin resistance in fasted C57BL/6J mice. However, acute hyperglycemic effect was detected only after dosing of the drug at the beginning of an active phase. Under the conditions in which hepatic glucose production was stimulated by pyruvate administration, hyperglycemic effect of quetiapine was dosing-time-independently observed. In addition, the dosing-time-dependent hyperglycemic effect of quetiapine disappeared in the liver-specific circadian clock-disrupted mice in which circadian rhythmicity in hepatic glucose production is deranged. Furthermore, the dosing-time had little impact on the pharmacokinetics of quetiapine in normal mice. These results suggest that quetiapine acutely causes hyperglycemia only when hepatic glucose production elevates. Therefore, quetiapine therapy with once daily dosing at a rest phase might be safer than that at an active phase. Further studies are needed to confirm the hypothesis.
Collapse
Affiliation(s)
- Snehal Kapse
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Hitoshi Ando
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yuki Fujiwara
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Chisato Suzuki
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kentaro Ushijima
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Hiroko Kitamura
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Keiko Hosohata
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, Funabashi, Japan
| | - Akio Fujimura
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.
| |
Collapse
|
49
|
Dayabandara M, Hanwella R, Ratnatunga S, Seneviratne S, Suraweera C, de Silva VA. Antipsychotic-associated weight gain: management strategies and impact on treatment adherence. Neuropsychiatr Dis Treat 2017; 13:2231-2241. [PMID: 28883731 PMCID: PMC5574691 DOI: 10.2147/ndt.s113099] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic-induced weight gain is a major management problem for clinicians. It has been shown that weight gain and obesity lead to increased cardiovascular and cerebrovascular morbidity and mortality, reduced quality of life and poor drug compliance. This narrative review discusses the propensity of various antipsychotics to cause weight gain, the pharmacologic and nonpharmacologic interventions available to counteract this effect and its impact on adherence. Most antipsychotics cause weight gain. The risk appears to be highest with olanzapine and clozapine. Weight increases rapidly in the initial period after starting antipsychotics. Patients continue to gain weight in the long term. Children appear to be particularly vulnerable to antipsychotic-induced weight gain. Tailoring antipsychotics according to the needs of the individual and close monitoring of weight and other metabolic parameters are the best preventive strategies at the outset. Switching to an agent with lesser tendency to cause weight gain is an option, but carries the risk of relapse of the illness. Nonpharmacologic interventions of dietary counseling, exercise programs and cognitive and behavioral strategies appear to be equally effective in individual and group therapy formats. Both nonpharmacologic prevention and intervention strategies have shown modest effects on weight. Multiple compounds have been investigated as add-on medications to cause weight loss. Metformin has the best evidence in this respect. Burden of side effects needs to be considered when prescribing weight loss medications. There is no strong evidence to recommend routine prescription of add-on medication for weight reduction. Heterogeneity of study methodologies and other confounders such as lifestyle, genetic and illness factors make interpretation of data difficult.
Collapse
Affiliation(s)
| | - Raveen Hanwella
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Suhashini Ratnatunga
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Sudarshi Seneviratne
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Chathurie Suraweera
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Varuni A de Silva
- Department of Psychiatry, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
50
|
Association of the BDNF Val66Met polymorphism with BMI in chronic schizophrenic patients and healthy controls. Int Clin Psychopharmacol 2016; 31:353-7. [PMID: 27483421 DOI: 10.1097/yic.0000000000000142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Several lines of evidence suggest that a functional variant of the brain-derived neurotrophic factor gene (BDNF Val66Met) correlates with a number of eating disorders. Studies have also shown that the BDNF Val66Met polymorphism was associated with weight gain in patients with schizophrenia on long-term antipsychotic treatment. This study aimed to determine whether there was a relationship between the BDNF Val66Met polymorphism and BMI values in patients with chronic schizophrenia. We compared 308 Han Chinese patients with schizophrenia on long-term antipsychotic medication with 304 healthy normal controls on BDNF polymorphism. Body weight and BMI were measured before breakfast on the day blood samples were taken. The symptomatology of schizophrenia was assessed using the Positive and Negative Syndrome Scale. The results showed that the BDNF Val66Met polymorphism was associated with the BMI value, with genotype having a strong effect on the mean BMI value in male but not in female patients. Our results suggest that variation in the BDNF gene may be a risk factor for weight gain in male patients with schizophrenia on long-term antipsychotic treatment.
Collapse
|