1
|
Stastna B, Dolezalova T, Matejkova K, Nemcova B, Zemankova P, Janatova M, Kleiblova P, Soukupova J, Kleibl Z. Germline pathogenic variants in the MRE11, RAD50, and NBN (MRN) genes in cancer predisposition: A systematic review and meta-analysis. Int J Cancer 2024; 155:1604-1615. [PMID: 38924040 DOI: 10.1002/ijc.35066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The MRE11, RAD50, and NBN genes encode the MRN complex sensing DNA breaks and directing their repair. While carriers of biallelic germline pathogenic variants (gPV) develop rare chromosomal instability syndromes, the cancer risk in heterozygotes remains controversial. We performed a systematic review and meta-analysis of 53 studies in patients with different cancer diagnoses to better understand the cancer risk. We found an increased risk (odds ratio, 95% confidence interval) for gPV carriers in NBN for melanoma (7.14; 3.30-15.43), pancreatic cancer (4.03; 2.14-7.58), hematological tumors (3.42; 1.14-10.22), and prostate cancer (2.44, 1.84-3.24), but a low risk for breast cancer (1.29; 1.00-1.66) and an insignificant risk for ovarian cancer (1.53; 0.76-3.09). We found no increased breast cancer risk in carriers of gPV in RAD50 (0.93; 0.74-1.16; except of c.687del carriers) and MRE11 (0.87; 0.66-1.13). The secondary burden analysis compared the frequencies of gPV in MRN genes in patients from 150 studies with those in the gnomAD database. In NBN gPV carriers, this analysis additionally showed a high risk for brain tumors (5.06; 2.39-9.52), a low risk for colorectal (1.64; 1.26-2.10) and hepatobiliary (2.16; 1.02-4.06) cancers, and no risk for endometrial, and gastric cancer. The secondary burden analysis showed also a moderate risk for ovarian cancer (3.00; 1.27-6.08) in MRE11 gPV carriers, and no risk for ovarian and hepatobiliary cancers in RAD50 gPV carriers. These findings provide a robust clinical evidence of cancer risks to guide personalized clinical management in heterozygous carriers of gPV in the MRE11, RAD50, and NBN genes.
Collapse
Affiliation(s)
- Barbora Stastna
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatana Dolezalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katerina Matejkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Nemcova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Liss MA, Zeltser N, Zheng Y, Lopez C, Liu M, Patel Y, Yamaguchi TN, Eng SE, Tian M, Semmes OJ, Lin DW, Brooks JD, Wei JT, Klein EA, Tewari AK, Mosquera JM, Khani F, Robinson BD, Aasad M, Troyer DA, Kagan J, Sanda MG, Thompson IM, Boutros PC, Leach RJ. Upgrading of Grade Group 1 Prostate Cancer at Prostatectomy: Germline Risk Factors in a Prospective Cohort. Cancer Epidemiol Biomarkers Prev 2024; 33:1500-1511. [PMID: 39158404 PMCID: PMC11528207 DOI: 10.1158/1055-9965.epi-24-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Localized prostate tumors show significant spatial heterogeneity, with regions of high-grade disease adjacent to lower grade disease. Consequently, prostate cancer biopsies are prone to sampling bias, potentially leading to underestimation of tumor grade. To study the clinical, epidemiologic, and molecular hallmarks of this phenomenon, we conducted a prospective study of grade upgrading: differences in detected prostate cancer grade between biopsy and surgery. METHODS We established a prospective, multi-institutional cohort of men with grade group 1 (GG1) prostate cancer on biopsy who underwent radical prostatectomy. Upgrading was defined as detection of GG2+ in the resected tumor. Germline DNA from 192 subjects was subjected to whole-genome sequencing to quantify ancestry, pathogenic variants in DNA damage response genes, and polygenic risk. RESULTS Of 285 men, 67% upgraded at surgery. PSA density and percent of cancer in pre-prostatectomy positive biopsy cores were significantly associated with upgrading. No assessed genetic risk factor was predictive of upgrading, including polygenic risk scores for prostate cancer diagnosis. CONCLUSIONS In a cohort of patients with low-grade prostate cancer, a majority upgraded at radical prostatectomy. PSA density and percent of cancer in pre-prostatectomy positive biopsy cores portended the presence of higher-grade disease, while germline genetics was not informative in this setting. Patients with low-risk prostate cancer, but elevated PSA density or percent cancer in positive biopsy cores, may benefit from repeat biopsy, additional imaging or other approaches to complement active surveillance. IMPACT Further risk stratification of patients with low-risk prostate cancer may provide useful context for active surveillance decision-making.
Collapse
Affiliation(s)
- Michael A. Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Nicole Zeltser
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Yingye Zheng
- Department of Biostatistics, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Camden Lopez
- Department of Biostatistics, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Menghan Liu
- Department of Biostatistics, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yash Patel
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Institute of Precision Health, University of California Los Angeles, Los Angeles, California
| | - Takafumi N. Yamaguchi
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Institute of Precision Health, University of California Los Angeles, Los Angeles, California
| | - Stefan E. Eng
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
| | - Mao Tian
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Institute of Precision Health, University of California Los Angeles, Los Angeles, California
| | - Oliver J. Semmes
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Daniel W. Lin
- Division of Public Health Sciences, Department of Urology, Fred Hutchinson Cancer Center, University of Washington, Seattle, Washington
| | - James D. Brooks
- Department of Urology, Stanford University, Palo Alto, California
| | - John T. Wei
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Ashutosh K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Muhammad Aasad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Dean A. Troyer
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
- Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jacob Kagan
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | | | - Ian M. Thompson
- The Children’s Hospital of San Antonio Foundation and Christus Health, San Antonio, Texas
| | - Paul C. Boutros
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California
- Institute of Precision Health, University of California Los Angeles, Los Angeles, California
- Department of Urology, University of California Los Angeles, Los Angeles, California
| | - Robin J. Leach
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
- Department of Pediatrics, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
3
|
Hall R, Bancroft E, Pashayan N, Kote-Jarai Z, Eeles RA. Genetics of prostate cancer: a review of latest evidence. J Med Genet 2024; 61:915-926. [PMID: 39137963 DOI: 10.1136/jmg-2024-109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Prostate cancer (PrCa) is a largely heritable and polygenic disease. It is the most common cancer in people with prostates (PwPs) in Europe and the USA, including in PwPs of African descent. In the UK in 2020, 52% of all cancers were diagnosed at stage I or II. The National Health Service (NHS) long-term plan is to increase this to 75% by 2028, to reduce absolute incidence of late-stage disease. In the absence of a UK PrCa screening programme, we should explore how to identify those at increased risk of clinically significant PrCa.Incorporating genomics into the PrCa screening, diagnostic and treatment pathway has huge potential for transforming patient care. Genomics can increase efficiency of PrCa screening by focusing on those with genetic predisposition to cancer-which when combined with risk factors such as age and ethnicity, can be used for risk stratification in risk-based screening (RBS) programmes. The goal of RBS is to facilitate early diagnosis of clinically significant PrCa and reduce overdiagnosis/overtreatment in those unlikely to experience PrCa-related symptoms in their lifetime. Genetic testing can guide PrCa management, by identifying those at risk of lethal PrCa and enabling access to novel targeted therapies.PrCa is curable if diagnosed below stage III when most people do not experience symptoms. RBS using genetic profiling could be key here if we could show better survival outcomes (or reduction in cancer-specific mortality accounting for lead-time bias), in addition to more cost efficiency than age-based screening alone. Furthermore, PrCa outcomes in underserved communities could be optimised if genetic testing was accessible, minimising health disparities.
Collapse
Affiliation(s)
- Rose Hall
- The Royal Marsden NHS Foundation Trust, London, UK
- Institute for Cancer Research, London, UK
| | | | | | | | - Rosalind A Eeles
- The Royal Marsden NHS Foundation Trust, London, UK
- Institute for Cancer Research, London, UK
| |
Collapse
|
4
|
Feng BJ, Boyle JL, Wei J, Carroll C, Snyder NA, Shi Z, Zheng SL, Xu J, Isaacs WB, Cooney KA. Using gene and gene-set association tests to identify lethal prostate cancer genes. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00879-z. [PMID: 39154125 DOI: 10.1038/s41391-024-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Recent advances in the detection and treatment of prostate cancer (PCa) have reduced morbidity and mortality from this common cancer. Despite these improvements, PCa remains the second leading cause of cancer death in men in the United States. Further understanding of the genetic underpinnings of lethal PCa is required to drive risk detection and prevention and ultimately reduce mortality. We therefore set out to identify germline variants associated with cases of lethal prostate cancer (LPCa). METHODS Using a two-stage study design, we compared whole-exome sequencing data of 550 LPCa patients to 488 healthy male controls. Men were classified as having LPCa based on medical record review. Candidate genes were identified using gene- and gene-set-based rare truncating variant association tests. Case-control burden testing through Firth's penalized logistic regression and case-gnomAD allelic burden testing through a one-sided mid-p Fisher's exact test were conducted. Each gene's p-values from these tests were combined into an omnibus p-value for candidate gene selection. In the subsequent validation stage, genes were assessed using the UK Biobank and Firth's penalized logistic regression for each ancestry, combined through meta-analysis. RESULTS Gene-based rare variant association tests identified 12 genes nominally associated with LPCa. Rare-variant association tests identified a gene set with a significantly higher burden of truncating germline mutations in LPCa patients than controls. Combining gene- and gene-set test results, four nominally significant genes (PPP1R3A, TG, PPFIBP2, and BTN3A3) were selected as candidates. Subsequent validation using the UK Biobank found that PPP1R3A was significantly associated with LPCa risk (odds ratio 2.34, CI 1.20-4.59). Specifically, pGln662ArgfsTer7 was identified as the predominant variant in PPP1R3A among LPCa patients in our dataset. CONCLUSIONS Both individual gene and gene-set analyses identified candidates associated with LPCa. The novel association of PPP1R3A and LPCa risk merits further investigation.
Collapse
Affiliation(s)
- Bing-Jian Feng
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Julie L Boyle
- Department of Family and Preventative Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Courtney Carroll
- Department of Family and Preventative Medicine, University of Utah, Salt Lake City, UT, USA
| | - Nathan A Snyder
- Department of Medicine and the Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - William B Isaacs
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen A Cooney
- Department of Medicine and the Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Foley GR, Marthick JR, Lucas SE, Raspin K, Banks A, Stanford JL, Ostrander EA, FitzGerald LM, Dickinson JL. Germline Sequencing of DNA Damage Repair Genes in Two Hereditary Prostate Cancer Cohorts Reveals New Disease Risk-Associated Gene Variants. Cancers (Basel) 2024; 16:2482. [PMID: 39001544 PMCID: PMC11240467 DOI: 10.3390/cancers16132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Rare, inherited variants in DNA damage repair (DDR) genes have a recognised role in prostate cancer (PrCa) susceptibility. In addition, these genes are therapeutically targetable. While rare variants are informing clinical management in other common cancers, defining the rare disease-associated variants in PrCa has been challenging. Here, whole-genome and -exome sequencing data from two independent, high-risk Australian and North American familial PrCa datasets were interrogated for novel DDR risk variants. Rare DDR gene variants (predicted to be damaging and present in two or more family members) were identified and subsequently genotyped in 1963 individuals (700 familial and 459 sporadic PrCa cases, 482 unaffected relatives, and 322 screened controls), and association analyses accounting for relatedness (MQLS) undertaken. In the combined datasets, rare ERCC3 (rs145201970, p = 2.57 × 10-4) and BRIP1 (rs4988345, p = 0.025) variants were significantly associated with PrCa risk. A PARP2 (rs200603922, p = 0.028) variant in the Australian dataset and a MUTYH (rs36053993, p = 0.031) variant in the North American dataset were also associated with risk. Evaluation of clinicopathological characteristics provided no evidence for a younger age or higher-grade disease at diagnosis in variant carriers, which should be taken into consideration when determining genetic screening eligibility criteria for targeted, gene-based treatments in the future. This study adds valuable knowledge to our understanding of PrCa-associated DDR genes, which will underpin effective clinical screening and treatment strategies.
Collapse
Affiliation(s)
- Georgea R Foley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - James R Marthick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Sionne E Lucas
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Annette Banks
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Janet L Stanford
- Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., M4-B874, Seattle, WA 98109, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
6
|
Saunders EJ, Dadaev T, Brook MN, Wakerell S, Govindasami K, Rageevakumar R, Hussain N, Osborne A, Keating D, Lophatananon A, Muir KR, Darst BF, Conti DV, Haiman CA, Antoniou AC, Eeles RA, Kote-Jarai Z. Identification of Genes with Rare Loss of Function Variants Associated with Aggressive Prostate Cancer and Survival. Eur Urol Oncol 2024; 7:248-257. [PMID: 38458890 DOI: 10.1016/j.euo.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Prostate cancer (PrCa) is a substantial cause of mortality among men globally. Rare germline mutations in BRCA2 have been validated robustly as increasing risk of aggressive forms with a poorer prognosis; however, evidence remains less definitive for other genes. OBJECTIVE To detect genes associated with PrCa aggressiveness, through a pooled analysis of rare variant sequencing data from six previously reported studies in the UK Genetic Prostate Cancer Study (UKGPCS). DESIGN, SETTING, AND PARTICIPANTS We accumulated a cohort of 6805 PrCa cases, in which a set of ten candidate genes had been sequenced in all samples. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We examined the association between rare putative loss of function (pLOF) variants in each gene and aggressive classification (defined as any of death from PrCa, metastatic disease, stage T4, or both stage T3 and Gleason score ≥8). Secondary analyses examined staging phenotypes individually. Cox proportional hazards modelling and Kaplan-Meier survival analyses were used to further examine the relationship between mutation status and survival. RESULTS AND LIMITATIONS We observed associations between PrCa aggressiveness and pLOF mutations in ATM, BRCA2, MSH2, and NBN (odds ratio = 2.67-18.9). These four genes and MLH1 were additionally associated with one or more secondary analysis phenotype. Carriers of germline mutations in these genes experienced shorter PrCa-specific survival (hazard ratio = 2.15, 95% confidence interval 1.79-2.59, p = 4 × 10-16) than noncarriers. CONCLUSIONS This study provides further support that rare pLOF variants in specific genes are likely to increase aggressive PrCa risk and may help define the panel of informative genes for screening and treatment considerations. PATIENT SUMMARY By combining data from several previous studies, we have been able to enhance knowledge regarding genes in which inherited mutations would be expected to increase the risk of more aggressive PrCa. This may, in the future, aid in the identification of men at an elevated risk of dying from PrCa.
Collapse
Affiliation(s)
- Edward J Saunders
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Tokhir Dadaev
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Mark N Brook
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Sarah Wakerell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Koveela Govindasami
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Reshma Rageevakumar
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Nafisa Hussain
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Andrea Osborne
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Diana Keating
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Kenneth R Muir
- Division of Population Health, University of Manchester, Manchester, UK
| | - Burcu F Darst
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David V Conti
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
7
|
Hansen EB, Karlsson Q, Merson S, Wakerell S, Rageevakumar R, Jensen JB, Borre M, Kote-Jarai Z, Eeles RA, Sørensen KD. Impact of germline DNA repair gene variants on prognosis and treatment of men with advanced prostate cancer. Sci Rep 2023; 13:19135. [PMID: 37932350 PMCID: PMC10628129 DOI: 10.1038/s41598-023-46323-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
The clinical importance of germline variants in DNA repair genes (DRGs) is becoming increasingly recognized, but their impact on advanced prostate cancer prognosis remains unclear. A cohort of 221 newly diagnosed metastatic castration-resistant prostate cancer (mCRPC) patients were screened for pathogenic germline variants in 114 DRGs. The primary endpoint was progression-free survival (PFS) on first-line androgen signaling inhibitor (ARSI) treatment for mCRPC. Secondary endpoints were time to mCRPC progression on initial androgen deprivation therapy (ADT) and overall survival (OS). Twenty-seven patients (12.2%) carried a germline DRG variant. DRG carrier status was independently associated with shorter PFS on first-line ARSI [HR 1.72 (1.06-2.81), P = 0.029]. At initiation of ADT, DRG carrier status was independently associated with shorter progression time to mCRPC [HR 1.56, (1.02-2.39), P = 0.04] and shorter OS [HR 1.99, (1.12-3.52), P = 0.02]. Investigating the contributions of individual germline DRG variants on PFS and OS revealed CHEK2 variants to have little effect. Furthermore, prior taxane treatment was associated with worse PFS on first-line ARSI for DRG carriers excluding CHEK2 (P = 0.0001), but not for noncarriers. In conclusion, germline DRG carrier status holds independent prognostic value for predicting advanced prostate cancer patient outcomes and may potentially inform on optimal treatment sequencing already at the hormone-sensitive stage.
Collapse
Affiliation(s)
- Emma B Hansen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Questa Karlsson
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Susan Merson
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Sarah Wakerell
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Reshma Rageevakumar
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Jørgen B Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Regional Hospital of West Jutland, Gødstrup Hospital, Gødstrup, Denmark
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Zsofia Kote-Jarai
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Rosalind A Eeles
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Karina D Sørensen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Darst BF, Saunders E, Dadaev T, Sheng X, Wan P, Pooler L, Xia LY, Chanock S, Berndt SI, Wang Y, Patel AV, Albanes D, Weinstein SJ, Gnanapragasam V, Huff C, Couch FJ, Wolk A, Giles GG, Nguyen-Dumont T, Milne RL, Pomerantz MM, Schmidt JA, Travis RC, Key TJ, Stopsack KH, Mucci LA, Catalona WJ, Marosy B, Hetrick KN, Doheny KF, MacInnis RJ, Southey MC, Eeles RA, Wiklund F, Conti DV, Kote-Jarai Z, Haiman CA. Germline Sequencing Analysis to Inform Clinical Gene Panel Testing for Aggressive Prostate Cancer. JAMA Oncol 2023; 9:1514-1524. [PMID: 37733366 PMCID: PMC10881219 DOI: 10.1001/jamaoncol.2023.3482] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/09/2023] [Indexed: 09/22/2023]
Abstract
Importance Germline gene panel testing is recommended for men with advanced prostate cancer (PCa) or a family history of cancer. While evidence is limited for some genes currently included in panel testing, gene panels are also likely to be incomplete and missing genes that influence PCa risk and aggressive disease. Objective To identify genes associated with aggressive PCa. Design, Setting, and Participants A 2-stage exome sequencing case-only genetic association study was conducted including men of European ancestry from 18 international studies. Data analysis was performed from January 2021 to March 2023. Participants were 9185 men with aggressive PCa (including 6033 who died of PCa and 2397 with confirmed metastasis) and 8361 men with nonaggressive PCa. Exposure Sequencing data were evaluated exome-wide and in a focused investigation of 29 DNA repair pathway and cancer susceptibility genes, many of which are included on gene panels. Main Outcomes and Measures The primary study outcomes were aggressive (category T4 or both T3 and Gleason score ≥8 tumors, metastatic PCa, or PCa death) vs nonaggressive PCa (category T1 or T2 and Gleason score ≤6 tumors without known recurrence), and metastatic vs nonaggressive PCa. Results A total of 17 546 men of European ancestry were included in the analyses; mean (SD) age at diagnosis was 65.1 (9.2) years in patients with aggressive PCa and 63.7 (8.0) years in those with nonaggressive disease. The strongest evidence of association with aggressive or metastatic PCa was noted for rare deleterious variants in known PCa risk genes BRCA2 and ATM (P ≤ 1.9 × 10-6), followed by NBN (P = 1.7 × 10-4). This study found nominal evidence (P < .05) of association with rare deleterious variants in MSH2, XRCC2, and MRE11A. Five other genes had evidence of greater risk (OR≥2) but carrier frequency differences between aggressive and nonaggressive PCa were not statistically significant: TP53, RAD51D, BARD1, GEN1, and SLX4. Deleterious variants in these 11 candidate genes were carried by 2.3% of patients with nonaggressive, 5.6% with aggressive, and 7.0% with metastatic PCa. Conclusions and Relevance The findings of this study provide further support for DNA repair and cancer susceptibility genes to better inform disease management in men with PCa and for extending testing to men with nonaggressive disease, as men carrying deleterious alleles in these genes are likely to develop more advanced disease.
Collapse
Affiliation(s)
- Burcu F. Darst
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
- Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ed Saunders
- The Institute of Cancer Research, London, United Kingdom
| | - Tokhir Dadaev
- The Institute of Cancer Research, London, United Kingdom
| | - Xin Sheng
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Peggy Wan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Loreall Pooler
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Lucy Y. Xia
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Alpa V. Patel
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J. Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vincent Gnanapragasam
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Chad Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston
| | - Fergus J. Couch
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Victoria, Australia
| | - Roger L. Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | | | - Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Aarhus N, Denmark
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | | - Lorelei A. Mucci
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - Beth Marosy
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kurt N. Hetrick
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kimberly F. Doheny
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Robert J. MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Melissa C. Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Victoria, Australia
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, Fulham Road, London, United Kingdom
| | | | - David V. Conti
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | | | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
9
|
Hanson H, Astiazaran-Symonds E, Amendola LM, Balmaña J, Foulkes WD, James P, Klugman S, Ngeow J, Schmutzler R, Voian N, Wick MJ, Pal T, Tischkowitz M, Stewart DR. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100870. [PMID: 37490054 PMCID: PMC10623578 DOI: 10.1016/j.gim.2023.100870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Although the role of CHEK2 germline pathogenic variants in cancer predisposition is well known, resources for managing CHEK2 heterozygotes in clinical practice are limited. METHODS An international workgroup developed guidance on clinical management of CHEK2 heterozygotes informed by peer-reviewed publications from PubMed. RESULTS Although CHEK2 is considered a moderate penetrance gene, cancer risks may be considered as a continuous variable, which are influenced by family history and other modifiers. Consequently, early cancer detection and prevention for CHEK2 heterozygotes should be guided by personalized risk estimates. Such estimates may result in both downgrading lifetime breast cancer risks to those similar to the general population or upgrading lifetime risk to a level at which CHEK2 heterozygotes are offered high-risk breast surveillance according to country-specific guidelines. Risk-reducing mastectomy should be guided by personalized risk estimates and shared decision making. Colorectal and prostate cancer surveillance should be considered based on assessment of family history. For CHEK2 heterozygotes who develop cancer, no specific targeted medical treatment is recommended at this time. CONCLUSION Systematic prospective data collection is needed to establish the spectrum of CHEK2-associated cancer risks and to determine yet-unanswered questions, such as the outcomes of surveillance, response to cancer treatment, and survival after cancer diagnosis.
Collapse
Affiliation(s)
- Helen Hanson
- Southwest Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Esteban Astiazaran-Symonds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD; Department of Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | | | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Medical Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - William D Foulkes
- Departments of Human Genetics, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia; Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Susan Klugman
- Division of Reproductive & Medical Genetics, Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rita Schmutzler
- Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany; Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Nicoleta Voian
- Providence Genetic Risk Clinic, Providence Cancer Institute, Portland, OR
| | - Myra J Wick
- Departments of Obstetrics and Gynecology and Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
10
|
Kim J, Li CL, Chen X, Cui Y, Golebiowski FM, Wang H, Hanaoka F, Sugasawa K, Yang W. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature 2023; 617:170-175. [PMID: 37076618 PMCID: PMC10416759 DOI: 10.1038/s41586-023-05959-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/15/2023] [Indexed: 04/21/2023]
Abstract
Nucleotide excision repair removes DNA lesions caused by ultraviolet light, cisplatin-like compounds and bulky adducts1. After initial recognition by XPC in global genome repair or a stalled RNA polymerase in transcription-coupled repair, damaged DNA is transferred to the seven-subunit TFIIH core complex (Core7) for verification and dual incisions by the XPF and XPG nucleases2. Structures capturing lesion recognition by the yeast XPC homologue Rad4 and TFIIH in transcription initiation or DNA repair have been separately reported3-7. How two different lesion recognition pathways converge and how the XPB and XPD helicases of Core7 move the DNA lesion for verification are unclear. Here we report on structures revealing DNA lesion recognition by human XPC and DNA lesion hand-off from XPC to Core7 and XPA. XPA, which binds between XPB and XPD, kinks the DNA duplex and shifts XPC and the DNA lesion by nearly a helical turn relative to Core7. The DNA lesion is thus positioned outside of Core7, as would occur with RNA polymerase. XPB and XPD, which track the lesion-containing strand but translocate DNA in opposite directions, push and pull the lesion-containing strand into XPD for verification.
Collapse
Affiliation(s)
- Jinseok Kim
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Chia-Lung Li
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Xuemin Chen
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
- School of Life Sciences, Anhui University, Hefei, China
| | - Yanxiang Cui
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Filip M Golebiowski
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
- Roche Polska, Warsaw, Poland
| | - Huaibin Wang
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | - Fumio Hanaoka
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center and Graduate School of Science, Kobe University, Kobe, Japan.
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Cardoso M, Maia S, Brandão A, Sahasrabudhe R, Lott P, Belter N, Carvajal-Carmona LG, Paulo P, Teixeira MR. Exome sequencing of affected duos and trios uncovers PRUNE2 as a novel prostate cancer predisposition gene. Br J Cancer 2023; 128:1077-1085. [PMID: 36564567 PMCID: PMC10006409 DOI: 10.1038/s41416-022-02125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prostate cancer (PrCa) is one of the most hereditable human cancers, however, only a small fraction of patients has been shown to carry deleterious variants in known cancer predisposition genes. METHODS Whole-exome sequencing was performed in multiple affected members of 45 PrCa families to select the best candidate genes behind part of the PrCa missing hereditability. Recurrently mutated genes were prioritised, and further investigated by targeted next-generation sequencing in the whole early-onset and/or familial PrCa series of 462 patients. RESULTS PRUNE2 stood out from our analysis when also considering the available data on its association with PrCa development. Ten germline pathogenic/likely pathogenic variants in the PRUNE2 gene were identified in 13 patients. The most frequent variant was found in three unrelated patients and identical-by-descent analysis revealed that the haplotype associated with the variant is shared by all the variant carriers, supporting the existence of a common ancestor. DISCUSSION This is the first report of pathogenic/likely pathogenic germline variants in PRUNE2 in PrCa patients, namely in those with early-onset/familial disease. Importantly, PRUNE2 was the most frequently mutated gene in the whole series, with a deleterious germline variant identified in 2.8% of the patients, representing a novel prostate cancer predisposition gene.
Collapse
Affiliation(s)
- Marta Cardoso
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Sofia Maia
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Andreia Brandão
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | | | - Paul Lott
- Genome Center, University of California at Davis, Davis, CA, USA
| | - Natalia Belter
- Genome Center, University of California at Davis, Davis, CA, USA
| | - Luis G Carvajal-Carmona
- Genome Center, University of California at Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, USA
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Paula Paulo
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Manuel R Teixeira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal.
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal.
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Nyberg T, Brook MN, Ficorella L, Lee A, Dennis J, Yang X, Wilcox N, Dadaev T, Govindasami K, Lush M, Leslie G, Lophatananon A, Muir K, Bancroft E, Easton DF, Tischkowitz M, Kote-Jarai Z, Eeles R, Antoniou AC. CanRisk-Prostate: A Comprehensive, Externally Validated Risk Model for the Prediction of Future Prostate Cancer. J Clin Oncol 2023; 41:1092-1104. [PMID: 36493335 PMCID: PMC9928632 DOI: 10.1200/jco.22.01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Prostate cancer (PCa) is highly heritable. No validated PCa risk model currently exists. We therefore sought to develop a genetic risk model that can provide personalized predicted PCa risks on the basis of known moderate- to high-risk pathogenic variants, low-risk common genetic variants, and explicit cancer family history, and to externally validate the model in an independent prospective cohort. MATERIALS AND METHODS We developed a risk model using a kin-cohort comprising individuals from 16,633 PCa families ascertained in the United Kingdom from 1993 to 2017 from the UK Genetic Prostate Cancer Study, and complex segregation analysis adjusting for ascertainment. The model was externally validated in 170,850 unaffected men (7,624 incident PCas) recruited from 2006 to 2010 to the independent UK Biobank prospective cohort study. RESULTS The most parsimonious model included the effects of pathogenic variants in BRCA2, HOXB13, and BRCA1, and a polygenic score on the basis of 268 common low-risk variants. Residual familial risk was modeled by a hypothetical recessively inherited variant and a polygenic component whose standard deviation decreased log-linearly with age. The model predicted familial risks that were consistent with those reported in previous observational studies. In the validation cohort, the model discriminated well between unaffected men and men with incident PCas within 5 years (C-index, 0.790; 95% CI, 0.783 to 0.797) and 10 years (C-index, 0.772; 95% CI, 0.768 to 0.777). The 50% of men with highest predicted risks captured 86.3% of PCa cases within 10 years. CONCLUSION To our knowledge, this is the first validated risk model offering personalized PCa risks. The model will assist in counseling men concerned about their risk and can facilitate future risk-stratified population screening approaches.
Collapse
Affiliation(s)
- Tommy Nyberg
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Mark N. Brook
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Lorenzo Ficorella
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Lee
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Naomi Wilcox
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Tokhir Dadaev
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Koveela Govindasami
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elizabeth Bancroft
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Zsofia Kote-Jarai
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Rosalind Eeles
- Oncogenetics Team, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Wang A, Xu Y, Yu Y, Nead KT, Kim T, Xu K, Dadaev T, Saunders E, Sheng X, Wan P, Pooler L, Xia LY, Chanock S, Berndt SI, Gapstur SM, Stevens V, Albanes D, Weinstein SJ, Gnanapragasam V, Giles GG, Nguyen-Dumont T, Milne RL, Pomerantz MM, Schmidt JA, Stopsack KH, Mucci LA, Catalona WJ, Hetrick KN, Doheny KF, MacInnis RJ, Southey MC, Eeles RA, Wiklund F, Kote-Jarai Z, de Smith AJ, Conti DV, Huff C, Haiman CA, Darst BF. Clonal hematopoiesis and risk of prostate cancer in large samples of European ancestry men. Hum Mol Genet 2023; 32:489-495. [PMID: 36018819 PMCID: PMC9851740 DOI: 10.1093/hmg/ddac214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 01/24/2023] Open
Abstract
Little is known regarding the potential relationship between clonal hematopoiesis (CH) of indeterminate potential (CHIP), which is the expansion of hematopoietic stem cells with somatic mutations, and risk of prostate cancer, the fifth leading cause of cancer death of men worldwide. We evaluated the association of age-related CHIP with overall and aggressive prostate cancer risk in two large whole-exome sequencing studies of 75 047 European ancestry men, including 7663 prostate cancer cases, 2770 of which had aggressive disease, and 3266 men carrying CHIP variants. We found that CHIP, defined by over 50 CHIP genes individually and in aggregate, was not significantly associated with overall (aggregate HR = 0.93, 95% CI = 0.76-1.13, P = 0.46) or aggressive (aggregate OR = 1.14, 95% CI = 0.92-1.41, P = 0.22) prostate cancer risk. CHIP was weakly associated with genetic risk of overall prostate cancer, measured using a polygenic risk score (OR = 1.05 per unit increase, 95% CI = 1.01-1.10, P = 0.01). CHIP was not significantly associated with carrying pathogenic/likely pathogenic/deleterious variants in DNA repair genes, which have previously been found to be associated with aggressive prostate cancer. While findings from this study suggest that CHIP is likely not a risk factor for prostate cancer, it will be important to investigate other types of CH in association with prostate cancer risk.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yili Xu
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77230, USA
| | - Kevin T Nead
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77230, USA
| | - TaeBeom Kim
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77230, USA
| | - Keren Xu
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tokhir Dadaev
- The Institute of Cancer Research, London, SM2 5NG, UK
| | - Ed Saunders
- The Institute of Cancer Research, London, SM2 5NG, UK
| | - Xin Sheng
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peggy Wan
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Loreall Pooler
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lucy Y Xia
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephen Chanock
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sonja I Berndt
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Demetrius Albanes
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Vincent Gnanapragasam
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria 3010, Australia
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria 3010, Australia
| | | | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Aarhus N, DK-8200, Denmark
| | | | - Lorelei A Mucci
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - William J Catalona
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kurt N Hetrick
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kimberly F Doheny
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria 3010, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Rosalind A Eeles
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | | | | | - Adam J de Smith
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chad Huff
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77230, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Burcu F Darst
- Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Zhang D, Xu X, Wei Y, Chen X, Li G, Lu Z, Zhang X, Ren X, Wang S, Qin C. Prognostic Role of DNA Damage Response Genes Mutations and their Association With the Sensitivity of Olaparib in Prostate Cancer Patients. Cancer Control 2022; 29:10732748221129451. [PMID: 36283420 PMCID: PMC9608002 DOI: 10.1177/10732748221129451] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective Evidence shows that gene mutation is a significant proportion of genetic factors associated with prostate cancer. The DNA damage response (DDR) is a signal cascade network that aims to maintain genomic integrity in cells. This comprehensive study was performed to determine the link between different DNA damage response gene mutations and prostate cancer. Materials and methods A systematic literature search was performed using PubMed, Web of Science, and Embase. Papers published up to February 1, 2022 were retrieved. The DDR gene mutations associated with prostate cancer were identified by referring to relevant research and review articles. Data of prostate cancer patients from multiple PCa cohorts were obtained from cBioPortal. The OR or HR and 95% CIs were calculated using both fixed-effects models (FEMs) and random-effects models (REMs). Results Seventy-four studies were included in this research, and the frequency of 13 DDR genes was examined. Through the analysis of 33 articles that focused on the risk estimates of DDR genes between normal people and PCa patients, DDR genes were found to be more common in prostate cancer patients (OR = 3.6293 95% CI [2.4992; 5.2705]). Also, patients in the mutated group had a worse OS and DFS outcome than those in the unmutated group (P < .05). Of the 13 DDR genes, the frequency of 9 DDR genes in prostate cancer was less than 1%, and despite differences in race, BRCA2 was the potential gene with the highest frequency (REM Frequency = .0400, 95% CI .0324 - .0541). The findings suggest that mutations in genes such as ATR, BLM, and MLH1 in PCa patients may increase the sensitivity of Olaparib, a PARP inhibitor. Conclusion These results demonstrate that mutation in any DDR pathway results in a poor prognosis for PCa patients. Furthermore, mutations in ATR, BLM, and MLH1 or the expression of POLR2L, PMS1, FANCE, and other genes significantly influence Olaparib sensitivity, which may be underlying therapeutic targets in the future.
Collapse
Affiliation(s)
- Dong Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinchi Xu
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuang Wei
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinglin Chen
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guangyao Li
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhongwen Lu
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xu Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaohan Ren
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shangqian Wang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China,Chao Qin, The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. ; Shangqian Wang, The State Key Lab of Reproductive; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Chao Qin
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China,Chao Qin, The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. ; Shangqian Wang, The State Key Lab of Reproductive; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
15
|
Inherited risk assessment and its clinical utility for predicting prostate cancer from diagnostic prostate biopsies. Prostate Cancer Prostatic Dis 2022; 25:422-430. [PMID: 35347252 DOI: 10.1038/s41391-021-00458-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many studies on prostate cancer (PCa) germline variants have been published in the last 15 years. This review critically assesses their clinical validity and explores their utility in prediction of PCa detection rates from prostate biopsy. METHODS An integrative review was performed to (1) critically synthesize findings on PCa germline studies from published papers since 2016, including risk-associated single nucleotide polymorphisms (SNPs), polygenic risk score methods such as genetic risk score (GRS), and rare pathogenic mutations (RPMs); (2) exemplify the findings in a large population-based cohort from the UK Biobank (UKB); (3) identify gaps for implementing inherited risk assessment in clinic based on experience from a healthcare system; (4) evaluate available GRS data on their clinical utility in predicting PCa detection rates from prostate biopsies; and (5) describe a prospective germline-based biopsy trial to address existing gaps. RESULTS SNP-based GRS and RPMs in four genes (HOXB13, BRCA2, ATM, and CHEK2) were significantly and consistently associated with PCa risk in large well-designed studies. In the UKB, positive family history, RPMs in the four implicated genes, and a high GRS (>1.5) identified 8.12%, 1.61%, and 17.38% of men to be at elevated PCa risk, respectively, with hazard ratios of 1.84, 2.74, and 2.39, respectively. Additionally, the performance of GRS for predicting PCa detection rate on prostate biopsy was consistently supported in several retrospective analyses of transrectal ultrasound (TRUS)-biopsy cohorts. Prospective studies evaluating the performance of all three inherited measures in predicting PCa detection rate from contemporary multiparametric MRI (mpMRI)-based biopsy are lacking. A multicenter germline-based biopsy trial to address these gaps is warranted. CONCLUSIONS The complementary performance of three inherited risk measures in PCa risk stratification is consistently supported. Their clinical utility in predicting PCa detection rate, if confirmed in prospective clinical trials, may improve current decision-making for prostate biopsy.
Collapse
|
16
|
Cresta Morgado P, Mateo J. Clinical implications of homologous recombination repair mutations in prostate cancer. Prostate 2022; 82 Suppl 1:S45-S59. [PMID: 35657156 DOI: 10.1002/pros.24352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022]
Abstract
Prostate cancer is a disease with significant interpatient genomics, with a proportion of patients presenting mutations in key homologous recombination repair (HRR) gene aberrations, particularly in late-stage disease. A better understanding of the genomic landscape of prostate cancer and the prognostic and predictive value of HRR mutations could lead to more precise care for prostate cancer patients. BRCA1/2 mutations are associated with a more aggressive disease course and higher risk of developing lethal prostate cancer, but also identify patients who could benefit from directed therapeutic strategies with PARP inhibitors. Other HRR mutations are also frequent but their prognostic and predictive value for prostate cancer patients is less clear. Moreover, a proportion of these mutations are associated with inherited germline defects, being relevant for the patients' risk of second malignancies but also to inform their relatives' risk of cancer through cascade testing. In this manuscript, we review current knowledge of the prognostic and predictive value for different HHR alterations across the different prostate cancer disease states. Additionally, we assess the challenges to implement genomic testing in clinical practice for prostate cancer patients.
Collapse
Affiliation(s)
- Pablo Cresta Morgado
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Prostate Cancer Translational Research Group, Barcelona, Spain
| | - Joaquin Mateo
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Prostate Cancer Translational Research Group, Barcelona, Spain
| |
Collapse
|
17
|
Burns D, Anokian E, Saunders EJ, Bristow RG, Fraser M, Reimand J, Schlomm T, Sauter G, Brors B, Korbel J, Weischenfeldt J, Waszak SM, Corcoran NM, Jung CH, Pope BJ, Hovens CM, Cancel-Tassin G, Cussenot O, Loda M, Sander C, Hayes VM, Dalsgaard Sorensen K, Lu YJ, Hamdy FC, Foster CS, Gnanapragasam V, Butler A, Lynch AG, Massie CE, Woodcock DJ, Cooper CS, Wedge DC, Brewer DS, Kote-Jarai Z, Eeles RA. Rare Germline Variants Are Associated with Rapid Biochemical Recurrence After Radical Prostate Cancer Treatment: A Pan Prostate Cancer Group Study. Eur Urol 2022; 82:201-211. [PMID: 35659150 DOI: 10.1016/j.eururo.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Germline variants explain more than a third of prostate cancer (PrCa) risk, but very few associations have been identified between heritable factors and clinical progression. OBJECTIVE To find rare germline variants that predict time to biochemical recurrence (BCR) after radical treatment in men with PrCa and understand the genetic factors associated with such progression. DESIGN, SETTING, AND PARTICIPANTS Whole-genome sequencing data from blood DNA were analysed for 850 PrCa patients with radical treatment from the Pan Prostate Cancer Group (PPCG) consortium from the UK, Canada, Germany, Australia, and France. Findings were validated using 383 patients from The Cancer Genome Atlas (TCGA) dataset. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS A total of 15,822 rare (MAF <1%) predicted-deleterious coding germline mutations were identified. Optimal multifactor and univariate Cox regression models were built to predict time to BCR after radical treatment, using germline variants grouped by functionally annotated gene sets. Models were tested for robustness using bootstrap resampling. RESULTS AND LIMITATIONS Optimal Cox regression multifactor models showed that rare predicted-deleterious germline variants in "Hallmark" gene sets were consistently associated with altered time to BCR. Three gene sets had a statistically significant association with risk-elevated outcome when modelling all samples: PI3K/AKT/mTOR, Inflammatory response, and KRAS signalling (up). PI3K/AKT/mTOR and KRAS signalling (up) were also associated among patients with higher-grade cancer, as were Pancreas-beta cells, TNFA signalling via NKFB, and Hypoxia, the latter of which was validated in the independent TCGA dataset. CONCLUSIONS We demonstrate for the first time that rare deleterious coding germline variants robustly associate with time to BCR after radical treatment, including cohort-independent validation. Our findings suggest that germline testing at diagnosis could aid clinical decisions by stratifying patients for differential clinical management. PATIENT SUMMARY Prostate cancer patients with particular genetic mutations have a higher chance of relapsing after initial radical treatment, potentially providing opportunities to identify patients who might need additional treatments earlier.
Collapse
Affiliation(s)
| | | | | | - Robert G Bristow
- Manchester Cancer Research Centre and CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Michael Fraser
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada; Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Medical Biophysics & Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Guido Sauter
- University Medical Centre Hamburg - Eppendorf, Hamburg, Germany
| | - Benedikt Brors
- German Cancer Research Center (DKFZ), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Jan Korbel
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Joachim Weischenfeldt
- Charité - Universitätsmedizin Berlin, Berlin, Germany; Biotech Research & Innovation Centre (BRIC) & Finsen Laboratory, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Niall M Corcoran
- Department of Surgery, The University of Melbourne, Grattan Street, Parkville, Victoria, Australia; Department of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Grattan Street, Victoria, Australia
| | - Chol-Hee Jung
- The University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| | - Bernard J Pope
- Department of Surgery, The University of Melbourne, Grattan Street, Parkville, Victoria, Australia; Royal Melbourne Hospital, Melbourne, Parwille, Victoria, Australia
| | - Chris M Hovens
- Melbourne Bioinformatics, The University of Melbourne, Grattan Street, Victoria, Australia; The University of Melbourne, Grattan Street, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, The Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Géraldine Cancel-Tassin
- CeRePP, Hopital Tenon, Paris, France; Sorbonne Universite, GRC n°5 Predictive Onco-Urology, APHP, Tenon Hospital, Paris, France
| | - Olivier Cussenot
- CeRePP, Hopital Tenon, Paris, France; Sorbonne Universite, GRC n°5 Predictive Onco-Urology, APHP, Tenon Hospital, Paris, France
| | - Massimo Loda
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Vanessa M Hayes
- Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia; School of Medical Sciences, University of Sydney, Charles Perkins Centre, Camperdown, NSW, Australia
| | - Karina Dalsgaard Sorensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Yong-Jie Lu
- Centre for Biomarker and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | - Adam Butler
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Andy G Lynch
- School of Medicine, University of St Andrews, St Andrews, Fife, UK; School of Mathematics & Statistics, St Andrews, Fife, UK
| | - Charlie E Massie
- CRUK Cambridge Institute, Hutchison MRC Research Centre, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | -
- CR-UK/Prostate Cancer UK, ICGC, The Pan Prostate Cancer Group, UK
| | - Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Colin S Cooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - David C Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Daniel S Brewer
- Norwich Medical School, University of East Anglia, Norwich, UK; The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Rosalind A Eeles
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
18
|
Palles C, Martin L, Domingo E, Chegwidden L, McGuire J, Cuthill V, Heitzer E, Kerr R, Kerr D, Kearsey S, Clark SK, Tomlinson I, Latchford A. The clinical features of polymerase proof-reading associated polyposis (PPAP) and recommendations for patient management. Fam Cancer 2022; 21:197-209. [PMID: 33948826 PMCID: PMC8964588 DOI: 10.1007/s10689-021-00256-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/07/2021] [Indexed: 10/28/2022]
Abstract
Pathogenic germline exonuclease domain (ED) variants of POLE and POLD1 cause the Mendelian dominant condition polymerase proof-reading associated polyposis (PPAP). We aimed to describe the clinical features of all PPAP patients with probably pathogenic variants. We identified patients with a variants mapping to the EDs of POLE or POLD1 from cancer genetics clinics, a colorectal cancer (CRC) clinical trial, and systematic review of the literature. We used multiple evidence sources to separate ED variants into those with strong evidence of pathogenicity and those of uncertain importance. We performed quantitative analysis of the risk of CRC, colorectal adenomas, endometrial cancer or any cancer in the former group. 132 individuals carried a probably pathogenic ED variant (105 POLE, 27 POLD1). The earliest malignancy was colorectal cancer at 14. The most common tumour types were colorectal, followed by endometrial in POLD1 heterozygotes and duodenal in POLE heterozygotes. POLD1-mutant cases were at a significantly higher risk of endometrial cancer than POLE heterozygotes. Five individuals with a POLE pathogenic variant, but none with a POLD1 pathogenic variant, developed ovarian cancer. Nine patients with POLE pathogenic variants and one with a POLD1 pathogenic variant developed brain tumours. Our data provide important evidence for PPAP management. Colonoscopic surveillance is recommended from age 14 and upper-gastrointestinal surveillance from age 25. The management of other tumour risks remains uncertain, but surveillance should be considered. In the absence of strong genotype-phenotype associations, these recommendations should apply to all PPAP patients.
Collapse
Affiliation(s)
- Claire Palles
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Lynn Martin
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Enric Domingo
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Laura Chegwidden
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Josh McGuire
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Vicky Cuthill
- Polyposis Registry, St Mark's Hospital, Harrow, London, HA1 3UJ, UK
| | - Ellen Heitzer
- Diagnostic and Research Institute of Human Genetics, University of Gratz, Graz, Austria
| | - Rachel Kerr
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Roosevelt Drive, Oxford, UK
| | - David Kerr
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Stephen Kearsey
- ZRAB, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Susan K Clark
- Polyposis Registry, St Mark's Hospital, Harrow, London, HA1 3UJ, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Andrew Latchford
- Polyposis Registry, St Mark's Hospital, Harrow, London, HA1 3UJ, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
19
|
Zhu Q, Meng Y, Li S, Xin J, Du M, Wang M, Cheng G. Association of genetic variants in autophagy-lysosome pathway genes with susceptibility and survival to prostate cancer. Gene 2022; 808:145953. [PMID: 34500048 DOI: 10.1016/j.gene.2021.145953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous studies have indicated the connections between autophagy-lysosome pathway genes dysfunction and prostate cancer, but few studies have investigated whether single nucleotide polymorphisms (SNPs) in autophagy-lysosome pathway genes are implicated in prostate cancer risk and survival. MATERIALS AND METHODS Logistic regression analysis and stepwise Cox regression analysis were conducted in 4,662 cases and 3,114 controls from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. The false positive rate probability (FPRP) method was applied to correct for multiple comparisons. Gene-based analysis was calculated by versatile gene-based association study approach. RESULTS We found that SLC11A1 rs7573065 significantly increased the risk of prostate cancer [adjusted odds ratio (OR) = 1.24, 95% confidence interval (CI) = 1.06-1.46, P = 7.02 × 10-3, FPRP = 0.082]. Furthermore, rs7573065 was confirmed as the independent predicator of overall survival (OS) for prostate cancer patients [Hazard ratio (HR) = 1.30, 95% CI = 1.01-1.66, P = 0.041]. The significant association between SLC11A1 and prostate cancer risk was calculated by gene-based analysis (P = 0.030). We also observed that the mRNA of SLC11A1 in prostate tumor tissues was significantly over-expressed than that in normal tissues. CONCLUSION This study suggested that rs7573065 in SLC11A1 was associated with an increased risk and poor OS of prostate cancer. Our findings may provide evidence for genetic variants in autophagy-lysosome pathway as the risk and prognostic biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Qiuyuan Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yixuan Meng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gong Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Chang HH, Lee CH, Chen YT, Huang CY, Yu CC, Lin VC, Geng JH, Lu TL, Huang SP, Bao BY. Genetic Analysis Reveals the Prognostic Significance of the DNA Mismatch Repair Gene MSH2 in Advanced Prostate Cancer. Cancers (Basel) 2022; 14:cancers14010223. [PMID: 35008387 PMCID: PMC8750592 DOI: 10.3390/cancers14010223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Androgen deprivation therapy is the most effective and widely used treatment for advanced prostate cancer, but its efficacy is highly variable among patients. Therefore, the identification of potent prognostic biomarkers is needed to determine patients at risk. We demonstrated that MSH2 rs1400633 was notably associated with patient survival during androgen deprivation therapy even after adjustment for clinical predictors and false discovery rate correction. Furthermore, our meta-analyses demonstrated that the MSH2 gene is highly expressed in prostate cancer and correlates positively with poor prognosis for this disease. Abstract DNA damage repair is frequently dysregulated in advanced prostate cancer and has been linked to cancer susceptibility and survival outcomes. The aim of this study is to assess the influence of genetic variants in DNA damage repair pathways on the prognosis of prostate cancer. Specifically, 167 single nucleotide polymorphisms (SNPs) in 18 DNA damage repair pathway genes were assessed for association with cancer-specific survival (CSS), overall survival (OS), and progression-free survival (PFS) in a cohort of 630 patients with advanced prostate cancer receiving androgen deprivation therapy. Univariate analysis identified four SNPs associated with CSS, four with OS, and two with PFS. However, only MSH2 rs1400633 C > G showed a significant association upon multivariate analysis and multiple testing adjustments (hazard ratio = 0.75, 95% confidence interval = 0.63–0.90, p = 0.002). Furthermore, rs1400633 risk allele C increased MSH2 expression in the prostate and other tissues, which correlated with more aggressive prostate cancer characteristics. A meta-analysis of 31 gene expression datasets revealed significantly higher MSH2 expression in prostate cancer than in normal tissues (p < 0.001), and this high expression was associated with a poor prognosis of prostate cancer (p = 0.002). In summary, we identified MSH2 rs1400633 as an independent prognostic biomarker for prostate cancer survival, and the association of MSH2 with cancer progression lends relevance to our findings.
Collapse
Affiliation(s)
- Hao-Han Chang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yei-Tsung Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chao-Yuan Huang
- Department of Urology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 100, Taiwan;
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Victor C. Lin
- Department of Urology, E-Da Hospital, Kaohsiung 824, Taiwan;
- School of Medicine for International Students, I-Shou University, Kaohsiung 840, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (S.-P.H.); (B.-Y.B.); Tel.: +886-7-3121101 (ext. 6694) (S.-P.H.); +886-4-22053366 (ext. 5126) (B.-Y.B.)
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
- Sex Hormone Research Center, China Medical University Hospital, Taichung 404, Taiwan
- Department of Nursing, Asia University, Taichung 413, Taiwan
- Correspondence: (S.-P.H.); (B.-Y.B.); Tel.: +886-7-3121101 (ext. 6694) (S.-P.H.); +886-4-22053366 (ext. 5126) (B.-Y.B.)
| |
Collapse
|
21
|
Heise M, Jarzemski P, Nowak D, Bąk A, Junkiert-Czarnecka A, Pilarska-Deltow M, Borysiak M, Pilarska B, Haus O. Clinical Significance of Gene Mutations and Polymorphic Variants and their Association with Prostate Cancer Risk in Polish Men. Cancer Control 2022; 29:10732748211062342. [PMID: 35638715 PMCID: PMC9160909 DOI: 10.1177/10732748211062342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: We tested the association of germline variants in BRCA1, BRCA2, CHEK2, CDKN2A, CYP1B1, HOXB13, MLH1, NBS1, NOD2 andPALB2 genes, as well as in 8q24 region, with prostate cancer (PC) risk and estimated their impact on disease clinical course, including overall survival time in Polish men with localized PC qualified for radical treatment.Materials and Methods: DNA of 110 patients with localized prostate cancer treated with radical prostatectomy (RP), from each age group and with different stages of the disease. DNA samples of the control group consisted of 111 men, volunteers, without PC (age-matched to study group). Sanger sequencing, AS-PCR, RFLP-PCR, and multiplex-PCR were used for variants detection.Results: The percentage of men with ≥1 germline variant was higher in PC group (52.7%) than in healthy men (37.8%) (P = .03). The presence of ≥2 variants was associated with shorter survival than the presence of one or no variant in the PC group (P = .14, trend). The HOXB13 G84E was detected in 2.9% of PC men and in no healthy men (P = .19, trend, OR = 7.21). A CHEK2 truncating mutation (1100delC or IVS2+1G>A) was detected in 2/110 (1.8%) PC patients and in no healthy men (P = .29, OR=5.14). The NBS1 I171V was detected in 2/110 (1.8%) PC patients and in no men from the control group (OR=5.14, P = .29, NS).Conclusions: We conclude that the presence of more than 2 germline variants was probably associated with shorter survival of patients with localized prostate cancer qualified for radical treatment. The HOXB13 (G84E), CHEK2 (1100delC or IVS2+1G>A) truncating variants and NBS1 (I171V) are associated with PC and hereditary form of the disease. The HOXB13 (G84E) and NOD2 (3020insC) single variants are associated with shorter and CYP1B1 (48CC, 119GG) single genotypes with longer overall survival.
Collapse
Affiliation(s)
- Marta Heise
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| | - Piotr Jarzemski
- Faculty of Health Sciences, Department of Urology, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Jan Biziel University Hospital in Bydgoszcz, Poland
| | - Dagmara Nowak
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| | - Aneta Bąk
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| | - Anna Junkiert-Czarnecka
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| | - Maria Pilarska-Deltow
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| | - Maciej Borysiak
- Faculty of Health Sciences, Department of Urology, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Jan Biziel University Hospital in Bydgoszcz, Poland
| | - Beata Pilarska
- Faculty of Health Sciences, Department of Urology, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Jan Biziel University Hospital in Bydgoszcz, Poland
| | - Olga Haus
- Faculty of Medicine, Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, 49604Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
22
|
Benafif S, Ni Raghallaigh H, McHugh J, Eeles R. Genetics of prostate cancer and its utility in treatment and screening. ADVANCES IN GENETICS 2021; 108:147-199. [PMID: 34844712 DOI: 10.1016/bs.adgen.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Prostate cancer heritability is attributed to a combination of rare, moderate to highly penetrant genetic variants as well as commonly occurring variants conferring modest risks [single nucleotide polymorphisms (SNPs)]. Some of the former type of variants (e.g., BRCA2 mutations) predispose particularly to aggressive prostate cancer and confer poorer prognoses compared to men who do not carry mutations. Molecularly targeted treatments such as PARP inhibitors have improved outcomes in men carrying somatic and/or germline DNA repair gene mutations. Ongoing clinical trials are exploring other molecular targeted approaches based on prostate cancer somatic alterations. Genome wide association studies have identified >250 loci that associate with prostate cancer risk. Multi-ancestry analyses have identified shared as well as population specific risk SNPs. Prostate cancer risk SNPs can be used to estimate a polygenic risk score (PRS) to determine an individual's genetic risk of prostate cancer. The odds ratio of prostate cancer development in men whose PRS lies in the top 1% of the risk profile ranges from 9 to 11. Ongoing studies are investigating the utility of a prostate cancer PRS to target population screening to those at highest risk. With the advent of personalized medicine and development of DNA sequencing technologies, access to clinical genetic testing is increasing, and oncology guidelines from bodies such as NCCN and ESMO have been updated to provide criteria for germline testing of "at risk" healthy men as well as those with prostate cancer. Both germline and somatic prostate cancer research have significantly evolved in the past decade and will lead to further development of precision medicine approaches to prostate cancer treatment as well as potentially developing precision population screening models.
Collapse
Affiliation(s)
- S Benafif
- The Institute of Cancer Research, London, United Kingdom.
| | | | - J McHugh
- The Institute of Cancer Research, London, United Kingdom
| | - R Eeles
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
23
|
Bancroft EK, Page EC, Brook MN, Thomas S, Taylor N, Pope J, McHugh J, Jones AB, Karlsson Q, Merson S, Ong KR, Hoffman J, Huber C, Maehle L, Grindedal EM, Stormorken A, Evans DG, Rothwell J, Lalloo F, Brady AF, Bartlett M, Snape K, Hanson H, James P, McKinley J, Mascarenhas L, Syngal S, Ukaegbu C, Side L, Thomas T, Barwell J, Teixeira MR, Izatt L, Suri M, Macrae FA, Poplawski N, Chen-Shtoyerman R, Ahmed M, Musgrave H, Nicolai N, Greenhalgh L, Brewer C, Pachter N, Spigelman AD, Azzabi A, Helfand BT, Halliday D, Buys S, Ramon Y Cajal T, Donaldson A, Cooney KA, Harris M, McGrath J, Davidson R, Taylor A, Cooke P, Myhill K, Hogben M, Aaronson NK, Ardern-Jones A, Bangma CH, Castro E, Dearnaley D, Dias A, Dudderidge T, Eccles DM, Green K, Eyfjord J, Falconer A, Foster CS, Gronberg H, Hamdy FC, Johannsson O, Khoo V, Lilja H, Lindeman GJ, Lubinski J, Axcrona K, Mikropoulos C, Mitra AV, Moynihan C, Ni Raghallaigh H, Rennert G, Collier R, Offman J, Kote-Jarai Z, Eeles RA. A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study. Lancet Oncol 2021; 22:1618-1631. [PMID: 34678156 PMCID: PMC8576477 DOI: 10.1016/s1470-2045(21)00522-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Lynch syndrome is a rare familial cancer syndrome caused by pathogenic variants in the mismatch repair genes MLH1, MSH2, MSH6, or PMS2, that cause predisposition to various cancers, predominantly colorectal and endometrial cancer. Data are emerging that pathogenic variants in mismatch repair genes increase the risk of early-onset aggressive prostate cancer. The IMPACT study is prospectively assessing prostate-specific antigen (PSA) screening in men with germline mismatch repair pathogenic variants. Here, we report the usefulness of PSA screening, prostate cancer incidence, and tumour characteristics after the first screening round in men with and without these germline pathogenic variants. METHODS The IMPACT study is an international, prospective study. Men aged 40-69 years without a previous prostate cancer diagnosis and with a known germline pathogenic variant in the MLH1, MSH2, or MSH6 gene, and age-matched male controls who tested negative for a familial pathogenic variant in these genes were recruited from 34 genetic and urology clinics in eight countries, and underwent a baseline PSA screening. Men who had a PSA level higher than 3·0 ng/mL were offered a transrectal, ultrasound-guided, prostate biopsy and a histopathological analysis was done. All participants are undergoing a minimum of 5 years' annual screening. The primary endpoint was to determine the incidence, stage, and pathology of screening-detected prostate cancer in carriers of pathogenic variants compared with non-carrier controls. We used Fisher's exact test to compare the number of cases, cancer incidence, and positive predictive values of the PSA cutoff and biopsy between carriers and non-carriers and the differences between disease types (ie, cancer vs no cancer, clinically significant cancer vs no cancer). We assessed screening outcomes and tumour characteristics by pathogenic variant status. Here we present results from the first round of PSA screening in the IMPACT study. This study is registered with ClinicalTrials.gov, NCT00261456, and is now closed to accrual. FINDINGS Between Sept 28, 2012, and March 1, 2020, 828 men were recruited (644 carriers of mismatch repair pathogenic variants [204 carriers of MLH1, 305 carriers of MSH2, and 135 carriers of MSH6] and 184 non-carrier controls [65 non-carriers of MLH1, 76 non-carriers of MSH2, and 43 non-carriers of MSH6]), and in order to boost the sample size for the non-carrier control groups, we randomly selected 134 non-carriers from the BRCA1 and BRCA2 cohort of the IMPACT study, who were included in all three non-carrier cohorts. Men were predominantly of European ancestry (899 [93%] of 953 with available data), with a mean age of 52·8 years (SD 8·3). Within the first screening round, 56 (6%) men had a PSA concentration of more than 3·0 ng/mL and 35 (4%) biopsies were done. The overall incidence of prostate cancer was 1·9% (18 of 962; 95% CI 1·1-2·9). The incidence among MSH2 carriers was 4·3% (13 of 305; 95% CI 2·3-7·2), MSH2 non-carrier controls was 0·5% (one of 210; 0·0-2·6), MSH6 carriers was 3·0% (four of 135; 0·8-7·4), and none were detected among the MLH1 carriers, MLH1 non-carrier controls, and MSH6 non-carrier controls. Prostate cancer incidence, using a PSA threshold of higher than 3·0 ng/mL, was higher in MSH2 carriers than in MSH2 non-carrier controls (4·3% vs 0·5%; p=0·011) and MSH6 carriers than MSH6 non-carrier controls (3·0% vs 0%; p=0·034). The overall positive predictive value of biopsy using a PSA threshold of 3·0 ng/mL was 51·4% (95% CI 34·0-68·6), and the overall positive predictive value of a PSA threshold of 3·0 ng/mL was 32·1% (20·3-46·0). INTERPRETATION After the first screening round, carriers of MSH2 and MSH6 pathogenic variants had a higher incidence of prostate cancer compared with age-matched non-carrier controls. These findings support the use of targeted PSA screening in these men to identify those with clinically significant prostate cancer. Further annual screening rounds will need to confirm these findings. FUNDING Cancer Research UK, The Ronald and Rita McAulay Foundation, the National Institute for Health Research support to Biomedical Research Centres (The Institute of Cancer Research and Royal Marsden NHS Foundation Trust; Oxford; Manchester and the Cambridge Clinical Research Centre), Mr and Mrs Jack Baker, the Cancer Council of Tasmania, Cancer Australia, Prostate Cancer Foundation of Australia, Cancer Council of Victoria, Cancer Council of South Australia, the Victorian Cancer Agency, Cancer Australia, Prostate Cancer Foundation of Australia, Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional (FEDER), the Institut Català de la Salut, Autonomous Government of Catalonia, Fundação para a Ciência e a Tecnologia, National Institutes of Health National Cancer Institute, Swedish Cancer Society, General Hospital in Malmö Foundation for Combating Cancer.
Collapse
Affiliation(s)
- Elizabeth K Bancroft
- Oncogenetics Team, Institute of Cancer Research, London, UK; Cancer Genetics Unit & Academic Urology Unit, Royal Marsden NHS Foundation Trust, London, UK
| | | | - Mark N Brook
- Oncogenetics Team, Institute of Cancer Research, London, UK
| | - Sarah Thomas
- Cancer Genetics Unit & Academic Urology Unit, Royal Marsden NHS Foundation Trust, London, UK
| | - Natalie Taylor
- Cancer Genetics Unit & Academic Urology Unit, Royal Marsden NHS Foundation Trust, London, UK
| | - Jennifer Pope
- Oncogenetics Team, Institute of Cancer Research, London, UK
| | - Jana McHugh
- Oncogenetics Team, Institute of Cancer Research, London, UK
| | | | | | - Susan Merson
- Oncogenetics Team, Institute of Cancer Research, London, UK
| | - Kai Ren Ong
- Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham, UK
| | - Jonathan Hoffman
- Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham, UK
| | - Camilla Huber
- Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham, UK
| | - Lovise Maehle
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Astrid Stormorken
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - D Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jeanette Rothwell
- Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Fiona Lalloo
- Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Angela F Brady
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Harrow, UK
| | - Marion Bartlett
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Harrow, UK
| | | | | | - Paul James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne McKinley
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lyon Mascarenhas
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sapna Syngal
- Division of Population Sciences, Dana Farber Cancer Institute, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Chinedu Ukaegbu
- Division of Population Sciences, Dana Farber Cancer Institute, Boston, MA, USA
| | - Lucy Side
- University Hospital Southampton, Southampton, UK; Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Tessy Thomas
- University Hospital Southampton, Southampton, UK; Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Julian Barwell
- Department of Genetics, University of Leicester, Leicester, UK; University Hospitals Leicester, Leicester, UK
| | - Manuel R Teixeira
- Genetics Department and Research Center, Portuguese Oncology Institute (IPO Porto), Porto, Portugal; Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal
| | - Louise Izatt
- Clinical Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Finlay A Macrae
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Parkville Familial Cancer Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia; Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Rakefet Chen-Shtoyerman
- The Genetic Institute, Kaplan Medical Center, Rehovot, Israel; Biology Department, Ariel University, Ariel, Israel
| | - Munaza Ahmed
- North East Thames Regional Genetics Service, Institute of Child Health, London, UK
| | - Hannah Musgrave
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Nicola Nicolai
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Lynn Greenhalgh
- Clinical Genetics Service, Liverpool Women's Hospital, Liverpool, UK
| | - Carole Brewer
- Peninsular Genetics, Derriford Hospital, Plymouth, UK; Royal Devon and Exeter Hospital, Exeter, UK
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia; Department of Paediatrics, University of Western Australia, Perth, WA, Australia
| | - Allan D Spigelman
- Hunter Family Cancer Service, Waratah, NSW, Australia; University of New South Wales, St Vincent's Clinical School, NSW, Australia; Cancer Genetics Clinic, The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
| | - Ashraf Azzabi
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Brian T Helfand
- John and Carol Walter Center for Urological Health, Division of Urology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Dorothy Halliday
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Saundra Buys
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | - Kathleen A Cooney
- Duke Cancer Institute and Duke University School of Medicine, Durham, NC, USA
| | - Marion Harris
- Monash Health, Clayton, VIC, Australia; Monash University, Clayton, VIC, Australia
| | - John McGrath
- Royal Devon and Exeter Hospital, Exeter, UK; University of Exeter Medical School, St Luke's Campus, Exeter, UK
| | - Rosemarie Davidson
- West of Scotland Genetic Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Amy Taylor
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | - Kathryn Myhill
- Cancer Genetics Unit & Academic Urology Unit, Royal Marsden NHS Foundation Trust, London, UK
| | - Matthew Hogben
- Cancer Genetics Unit & Academic Urology Unit, Royal Marsden NHS Foundation Trust, London, UK
| | - Neil K Aaronson
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Audrey Ardern-Jones
- Cancer Genetics Unit & Academic Urology Unit, Royal Marsden NHS Foundation Trust, London, UK
| | - Chris H Bangma
- Department of Urology, Erasmus Cancer Institute, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Elena Castro
- Spanish National Cancer Research Center, Madrid, Spain
| | - David Dearnaley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Alexander Dias
- Instituto Nacional de Cancer Jose de Alencar Gomes da Silva INCA, Rio de Janeiro, Brazil
| | | | - Diana M Eccles
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK; Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kate Green
- Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jorunn Eyfjord
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Freddie C Hamdy
- Churchill Hospital, Headington, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Oskar Johannsson
- Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland
| | - Vincent Khoo
- Cancer Genetics Unit & Academic Urology Unit, Royal Marsden NHS Foundation Trust, London, UK; St George's Hospital, Tooting, London, UK; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Hans Lilja
- Department of Translational Medicine, Lund University, Malmö, Sweden; Department of Laboratory Medicine, Department of Surgery, and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Geoffrey J Lindeman
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Parkville Familial Cancer Centre, The Royal Melbourne Hospital, Parkville, VIC, Australia; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Karol Axcrona
- Department of Urology, Akershus University Hospital, Lørenskog, Norway
| | | | - Anita V Mitra
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Clare Moynihan
- Oncogenetics Team, Institute of Cancer Research, London, UK
| | | | - Gad Rennert
- CHS National Cancer Control Center, Carmel Medical Center, Haifa, Israel
| | - Rebecca Collier
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Judith Offman
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, Guy's Cancer Centre, Guy's Hospital, London, UK
| | | | - Rosalind A Eeles
- Oncogenetics Team, Institute of Cancer Research, London, UK; Cancer Genetics Unit & Academic Urology Unit, Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
24
|
Do BARD1 Mutations Confer an Elevated Risk of Prostate Cancer? Cancers (Basel) 2021; 13:cancers13215464. [PMID: 34771627 PMCID: PMC8582358 DOI: 10.3390/cancers13215464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Current cancer testing gene panels tend to be comprehensive. One of the genes commonly included in the testing panels is BARD1. To establish whether BARD1 mutations predispose to prostate cancer, we sequenced BARD1 in 390 hereditary prostate cancer cases, genotyped 5715 men with unselected prostate cancer and 10,252 controls for three recurrent rare BARD1 variants in Poland. We did not see an elevated prostate risk cancer given p.Q564X truncating mutation, p.R658C missense mutation and p.R659= synonymous variant. Neither variant influenced prostate cancer characteristics or survival. Our study is the first to evaluate the association between BARD1 mutations and prostate cancer susceptibility. It is not justified to inform men about increased prostate cancer risk in case of identification of a BARD1 mutation. However, a female relative of a man with a BARD1 mutation may benefit from this information and be tested, because BARD1 is a breast cancer susceptibility gene. Abstract The current cancer testing gene panels tend to be comprehensive rather than site-specific. BARD1 is one of the genes commonly included in the multi-cancer testing panels. Mutations in BARD1 confer an increase in the risk for breast cancer, but it is not studied whether or not they predispose to prostate cancer. To establish if BARD1 mutations also predispose to prostate cancer, we screened BARD1 in 390 Polish patients with hereditary prostate cancer. No truncating mutations were identified by sequencing. We also genotyped 5715 men with unselected prostate cancer, and 10,252 controls for three recurrent BARD1 variants, including p.Q564X, p.R658C and p.R659=. Neither variant conferred elevated risk of prostate cancer (ORs between 0.84 and 1.15, p-values between 0.57 and 0.93) nor did they influence prostate cancer characteristics or survival. We conclude that men with a BARD1 mutation are not at elevated prostate cancer risk. It is not justified to inform men about increased prostate cancer risk in case of identification of a BARD1 mutation. However, a female relative of a man with a BARD1 mutation may benefit from this information and be tested for the mutation, because BARD1 is a breast cancer susceptibility gene.
Collapse
|
25
|
Lee DJ, Hausler R, Le AN, Kelly G, Powers J, Ding J, Feld E, Desai H, Morrison C, Doucette A, Gabriel P, Genetics Center R, Judy RL, Weaver J, Kember R, Damrauer SM, Rader DJ, Domchek SM, Narayan V, Schwartz LE, Maxwell KN. Association of Inherited Mutations in DNA Repair Genes with Localized Prostate Cancer. Eur Urol 2021; 81:559-567. [PMID: 34711450 PMCID: PMC9035481 DOI: 10.1016/j.eururo.2021.09.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Background: Identification of germline mutations in DNA repair genes has significant implications for the personalized treatment of individuals with prostate cancer (PrCa). Objective: To determine DNA repair genes associated with localized PrCa in a diverse academic biobank and to determine genetic testing burden. Design, setting, and participants: A cross-sectional study of 2391 localized PrCa patients was carried out. Outcome measurements and statistical analysis: Genetic ancestry and mutation rates (excluding somatic interference) in 17 DNA repair genes were determined in 1588 localized PrCa patients and 3273 cancer-free males. Burden testing within individuals of genetically determined European (EUR) and African (AFR) ancestry was performed between biobank PrCa cases and cancer-free biobank and gnomAD males. Results and limitations: AFR individuals with localized PrCa had lower DNA repair gene mutation rates than EUR individuals (1.4% vs 4.0%, p = 0.02). Mutation rates in localized PrCa patients were similar to those in biobank and gnomAD controls (EUR: 4.0% vs 2.8%, p = 0.15, vs 3.1%, p = 0.04; AFR: 1.4% vs 1.8%, p = 0.8, vs 2.1%, p = 0.5). Gene-based rare variant association testing revealed that only BRCA2 mutations were significantly enriched compared with gnomAD controls of EUR ancestry (1.0% vs 0.28%, p = 0.03). Of the participants, 21% and 11% met high-risk and very-high-risk criteria; of them, 3.7% and 6.2% had any germline genetic mutation and 1.0% and 2.5% had a BRCA2 mutation, respectively. Limitations of this study include an analysis of a relatively small, single-institution cohort. Conclusions: DNA repair gene germline mutation rates are low in an academic biobank cohort of localized PrCa patients, particularly among individuals of AFR genetic ancestry. Mutation rates in genes with published evidence of association with PrCa exceed 2.5% only in high-risk, very-high-risk localized, and node-positive PrCa patients. These findings highlight the importance of risk stratification in localized PrCa patients to identify appropriate patients for germline genetic testing. Patient summary: In the majority of patients who develop localized prostate cancer, germline genetic testing is unlikely to reveal an inherited DNA repair mutation, regardless of race. High-risk features increase the possibility of a germline DNA repair mutation.
Collapse
Affiliation(s)
- Daniel J Lee
- Department of Surgery, Division of Urology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Hausler
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anh N Le
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Kelly
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacquelyn Powers
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James Ding
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Feld
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heena Desai
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey Morrison
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail Doucette
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Gabriel
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Renae L Judy
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joellen Weaver
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Kember
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Damrauer
- Department of Surgery, Division of Vascular Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Domchek
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivek Narayan
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E Schwartz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N Maxwell
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Wei J, Yang W, Shi Z, Lu L, Wang Q, Resurreccion WK, Engelmann V, Zheng SL, Hulick PJ, Cooney KA, Isaacs WB, Helfand BT, Lu J, Xu J. Observed evidence for guideline-recommended genes in predicting prostate cancer risk from a large population-based cohort. Prostate 2021; 81:1002-1008. [PMID: 34254341 DOI: 10.1002/pros.24195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Germline testing for prostate cancer (PCa) is now recommended by the National Comprehensive Cancer Network. While multi-gene testing has been proposed, evidence for their association with PCa risk is not well established. METHODS We tested associations of pathogenic/likely pathogenic mutations in 10 guideline-recommended genes (ATM, BRCA1, BRCA2, CHEK2, PALB2, MLH1, MSH2, MSH6, PMS2, and HOXB13) with PCa risk in the UK Biobank, a population-based cohort. Mutations were annotated based on prostate-specific transcripts using the American College of Medical Genetics and Genomics standards. Associations were tested in 4399 PCa cases and 85,403 unaffected male controls using logistic regression adjusting for age and genetic background. p < .005 was considered significant based on Bonferroni correction. RESULTS Among the 10 tested genes, significantly higher mutation carrier rates in PCa cases versus controls were found for four genes at p < .005; HOXB13, BRCA2, ATM, and CHEK2, with odds ratios (95% confidence interval) estimated at 4.96 (3.62-6.69), 3.23 (2.23-4.56), 2.95 (2.01-4.22), 1.94 (1.43-2.58), respectively. No significant association was found between mutation carrier status and age at PCa diagnosis or family history of PCa. Despite the large sample size of this study, statistical power remains limited, especially for genes where pathogenic mutation carrier rates are extremely rare (<0.03%). CONCLUSION Observed evidence for PCa risk was found for four of the 10 guideline-recommended genes in this large population-based study. Mutations in these four genes can be interpreted with confidence in genetic counseling for PCa risk assessment. Evidence for the remaining six genes needs to be further evaluated in larger studies.
Collapse
Affiliation(s)
- Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Wancai Yang
- Department of Research and Development, GoPath Laboratories LLC, Buffalo Grove, Illinois, USA
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Lucy Lu
- Department of Research and Development, GoPath Laboratories LLC, Buffalo Grove, Illinois, USA
| | - Qiang Wang
- Department of Research and Development, GoPath Laboratories LLC, Buffalo Grove, Illinois, USA
| | - W Kyle Resurreccion
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Valentina Engelmann
- Department of Research and Development, GoPath Laboratories LLC, Buffalo Grove, Illinois, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Peter J Hulick
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Kathleen A Cooney
- School of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - William B Isaacs
- The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Jim Lu
- Department of Research and Development, GoPath Laboratories LLC, Buffalo Grove, Illinois, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois, USA
| |
Collapse
|
27
|
PALB2 mutations and prostate cancer risk and survival. Br J Cancer 2021; 125:569-575. [PMID: 34006922 PMCID: PMC8368211 DOI: 10.1038/s41416-021-01410-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The objective of this study was to establish the contribution of PALB2 mutations to prostate cancer risk and to estimate survival among PALB2 carriers. METHODS We genotyped 5472 unselected men with prostate cancer and 8016 controls for two Polish founder variants of PALB2 (c.509_510delGA and c.172_175delTTGT). In patients with prostate cancer, the survival of carriers of a PALB2 mutation was compared to that of non-carriers. RESULTS A PALB2 mutation was found in 0.29% of cases and 0.21% of controls (odds ratio (OR) = 1.38; 95% confidence interval (CI) 0.70-2.73; p = 0.45). PALB2 mutation carriers were more commonly diagnosed with aggressive cancers of high (8-10) Gleason score than non-carriers (64.3 vs 18.1%, p < 0.0001). The OR for high-grade prostate cancer was 8.05 (95% CI 3.57-18.15, p < 0.0001). After a median follow-up of 102 months, the age-adjusted hazard ratio for all-cause mortality associated with a PALB2 mutation was 2.52 (95% CI 1.40-4.54; p = 0.0023). The actuarial 5-year survival was 42% for PALB2 carriers and was 72% for non-carriers (p = 0.006). CONCLUSION In Poland, PALB2 mutations predispose to an aggressive and lethal form of prostate cancer.
Collapse
|
28
|
Helfand BT, Xu J. Germline Testing for Prostate Cancer Prognosis: Implications for Active Surveillance. Urol Clin North Am 2021; 48:401-409. [PMID: 34210494 DOI: 10.1016/j.ucl.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Available evidence supports routine implementation of germline genetic testing for many aspects of prostate cancer (PCa) decision making. The purpose of obtaining genetic testing for newly diagnosed men would be focused on identifying mutations that predispose to aggressive PCa. Based on an evidence-based review, the authors review germline rare pathogenic mutations in several genes that are significantly associated with aggressiveness, metastases, and mortality. Then recent studies of these germline mutations in predicting tumor grade reclassification among patients undergoing active surveillance are discussed. Single nucleotide polymorphisms-based polygenic risk scores in differentiating PCa aggressiveness and prognosis are reviewed.
Collapse
Affiliation(s)
- Brian T Helfand
- Program for Personalized Cancer Care, Division of Urology, NorthShore University HealthSystem, 1001 University Place, Evanston, IL 60201, USA.
| | - Jianfeng Xu
- Program for Personalized Cancer Care, Division of Urology, NorthShore University HealthSystem, 1001 University Place, Evanston, IL 60201, USA
| |
Collapse
|
29
|
Leon P, Cancel-Tassin G, Bourdon V, Buecher B, Oudard S, Brureau L, Jouffe L, Blanchet P, Stoppa-Lyonnet D, Coulet F, Sobol H, Cussenot O. Bayesian predictive model to assess BRCA2 mutational status according to clinical history: Early onset, metastatic phenotype or family history of breast/ovary cancer. Prostate 2021; 81:318-325. [PMID: 33599307 DOI: 10.1002/pros.24109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mutations of the BRCA2 gene are the most frequent alterations found in germline DNA from men with prostate cancer (PrCa), but clinical parameters that could better orientate for BRCA2 mutation screening need to be established. METHODS Germline DNA from 325 PrCa patients (median age at diagnosis: 57 years old) was screened for BRCA2 mutation. The mutation frequency was compared between three subgroups: patients with an age at diagnosis at 55 years old and under (Group I); a personal or family history of breast, uterine or ovarian cancer (Group II); or a metastatic disease (Group III). Frequency of BRCA2 mutations was established for each combination of phenotypes, and compared between patients meeting or not the criteria for each subgroup using Fisher's exact test. Mutual information, direct effect, elasticity and contribution to the mutational status of each phenotype, taking into account overlap between subgroups, were also estimated using Bayesian algorithms. RESULTS The proportion of BRCA2 mutation was 5.9% in Group I, 10.9% in Group II and 6.9% in Group III. The frequency of BRCA2 mutation was significantly higher among patients of Group II (p = .006), and reached 15.6% among patients of this group who presented a metastatic disease. Mutual information, direct effect, elasticity and contribution to the mutational status were the highest for phenotype II. Fifteen (71.4%) of the 21 BRCA2 mutation carriers had an aggressive form of the disease. Four (19%) of them died from PrCa after a median follow-up duration of 64.5 months. CONCLUSIONS Our results showed that a higher frequency of BRCA2 mutation carriers is observed, not only among PrCa patients with young onset or a metastatic disease, but also with a personal or a familial history of breast cancer.
Collapse
Affiliation(s)
- Priscilla Leon
- Department of Urology, Clinique Pasteur, Royan, France
- GRC n°5 Predictive Onco-Urology, Tenon Hospital, AP-HP, Sorbonne University, Paris, France
| | - Geraldine Cancel-Tassin
- GRC n°5 Predictive Onco-Urology, Tenon Hospital, AP-HP, Sorbonne University, Paris, France
- CeRePP, Paris, France
| | - Violaine Bourdon
- Department of Prevention and Screening Genetic Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Bruno Buecher
- Department of Genetics, Institut Curie, Paris, France
| | - Stephane Oudard
- Department of Oncology Unit, Georges Pompidou European Hospital, APHP, Paris, France
| | - Laurent Brureau
- Department of Urology, Pointe-à-Pitre/Abymes University Hospital, Pointe a Pitre, Guadeloupe
- UMR_S 1085, EHESP, Research Institute in Health, Environment and Work (IRSET), Inserm, Pointe-à-Pitre, Guadeloupe
| | | | - Pascal Blanchet
- Department of Urology, Pointe-à-Pitre/Abymes University Hospital, Pointe a Pitre, Guadeloupe
- UMR_S 1085, EHESP, Research Institute in Health, Environment and Work (IRSET), Inserm, Pointe-à-Pitre, Guadeloupe
| | | | - Florence Coulet
- Department of Genetics, Oncogenetics Consulting, Oncogenetics Functional Unit, Groupe Hospitalier Pitié-Salpêtrière APHP, Paris, France
| | - Hagay Sobol
- Department of Prevention and Screening Genetic Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Olivier Cussenot
- GRC n°5 Predictive Onco-Urology, Tenon Hospital, AP-HP, Sorbonne University, Paris, France
- CeRePP, Paris, France
| |
Collapse
|
30
|
Rare Germline Pathogenic Variants Identified by Multigene Panel Testing and the Risk of Aggressive Prostate Cancer. Cancers (Basel) 2021; 13:cancers13071495. [PMID: 33804961 PMCID: PMC8036662 DOI: 10.3390/cancers13071495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Identifying which men at the time of prostate cancer diagnosis have, or will progress to, an aggressive fatal disease will allow clinicians to assist men in making better informed treatment decisions. This will not only be important for those men whose disease is likely to remain indolent and who are currently undergoing unnecessary treatment procedures, but also for those who may need to be targeted with immediate and potentially life-saving therapy. Our case-control study confirms that men who carry BRCA1, BRCA2 and ATM germline pathogenic variants are at increased risk of aggressive disease and provides risk estimates that will be used by clinicians to improve counselling. Abstract While gene panel sequencing is becoming widely used for cancer risk prediction, its clinical utility with respect to predicting aggressive prostate cancer (PrCa) is limited by our current understanding of the genetic risk factors associated with predisposition to this potentially lethal disease phenotype. This study included 837 men diagnosed with aggressive PrCa and 7261 controls (unaffected men and men who did not meet criteria for aggressive PrCa). Rare germline pathogenic variants (including likely pathogenic variants) were identified by targeted sequencing of 26 known or putative cancer predisposition genes. We found that 85 (10%) men with aggressive PrCa and 265 (4%) controls carried a pathogenic variant (p < 0.0001). Aggressive PrCa odds ratios (ORs) were estimated using unconditional logistic regression. Increased risk of aggressive PrCa (OR (95% confidence interval)) was identified for pathogenic variants in BRCA2 (5.8 (2.7–12.4)), BRCA1 (5.5 (1.8–16.6)), and ATM (3.8 (1.6–9.1)). Our study provides further evidence that rare germline pathogenic variants in these genes are associated with increased risk of this aggressive, clinically relevant subset of PrCa. These rare genetic variants could be incorporated into risk prediction models to improve their precision to identify men at highest risk of aggressive prostate cancer and be used to identify men with newly diagnosed prostate cancer who require urgent treatment.
Collapse
|
31
|
Excision Repair Cross-Complementation Group 6 Gene Polymorphism Is Associated with the Response to FOLFIRINOX Chemotherapy in Asian Patients with Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13061196. [PMID: 33801891 PMCID: PMC7998301 DOI: 10.3390/cancers13061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary FOLFIRINOX is a platinum-based chemotherapy regimen for patients with pancreatic cancer and is known to be more effective in the presence of the BRCA mutation, one of the DNA damage repair (DDR) gene mutations. However, BRCA mutations are less common in pancreatic cancer patients, accounting for only about 5% of cases worldwide, and are known to be even rarer in Asians. Therefore, this study aimed to uncover new genetic variants of DDR genes related to the response of FOLFIRINOX by analyzing variants of DDR genes using whole exome sequencing. Multivariable Cox regression analysis adjusted for clinical variables showed that a single nucleotide polymorphism (SNP) of the ERCC6 gene is an independent predictor for progression-free survival. If validated, the ERCC6 SNP found in this study could be used as a biomarker to predict responses to FOLFIRINOX. Abstract FOLFIRINOX is currently one of the standard chemotherapy regimens for pancreatic cancer patients, but little is known about the factors that can predict a response to it. We performed a study to discover novel DNA damage repair (DDR) gene variants associated with the response to FOLFIRINOX chemotherapy in patients with pancreatic cancer. We queried a cohort of pancreatic cancer patients who received FOLFIRINOX chemotherapy as the first treatment and who had tissue obtained through an endoscopic ultrasound-guided biopsy that was suitable for DNA sequencing. We explored variants of 148 DDR genes based on whole exome sequencing and performed multivariate Cox regression to find genetic variants associated with progression-free survival (PFS). Overall, 103 patients were included. Among 2384 variants of 141 DDR genes, 612 non-synonymous variants of 123 genes were selected for Cox regression analysis. The multivariate Cox model showed that rs2228528 in ERCC6 was significantly associated with improved PFS (hazard ratio 0.54, p = 0.001). The median PFS was significantly longer in patients with rs2228528 genotype AA vs. genotype GA and GG (23.5 vs. 16.2 and 8.6 months; log-rank p < 0.001). This study suggests that rs2228528 in ERCC6 could be a potential predictor of response to FOLFIRINOX chemotherapy in patients with pancreatic cancer.
Collapse
|
32
|
Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers (Basel) 2021; 13:760. [PMID: 33673083 PMCID: PMC7917798 DOI: 10.3390/cancers13040760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PrCa) is a heterogeneous disease, which presents in individual patients across a diverse phenotypic spectrum ranging from indolent to fatal forms. No robust biomarkers are currently available to enable routine screening for PrCa or to distinguish clinically significant forms, therefore late stage identification of advanced disease and overdiagnosis plus overtreatment of insignificant disease both remain areas of concern in healthcare provision. PrCa has a substantial heritable component, and technological advances since the completion of the Human Genome Project have facilitated improved identification of inherited genetic factors influencing susceptibility to development of the disease within families and populations. These genetic markers hold promise to enable improved understanding of the biological mechanisms underpinning PrCa development, facilitate genetically informed PrCa screening programmes and guide appropriate treatment provision. However, insight remains largely lacking regarding many aspects of their manifestation; especially in relation to genes associated with aggressive phenotypes, risk factors in non-European populations and appropriate approaches to enable accurate stratification of higher and lower risk individuals. This review discusses the methodology used in the elucidation of genetic loci, genes and individual causal variants responsible for modulating PrCa susceptibility; the current state of understanding of the allelic spectrum contributing to PrCa risk; and prospective future translational applications of these discoveries in the developing eras of genomics and personalised medicine.
Collapse
Affiliation(s)
- Edward J. Saunders
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
33
|
Karlsson Q, Brook MN, Dadaev T, Wakerell S, Saunders EJ, Muir K, Neal DE, Giles GG, MacInnis RJ, Thibodeau SN, McDonnell SK, Cannon-Albright L, Teixeira MR, Paulo P, Cardoso M, Huff C, Li D, Yao Y, Scheet P, Permuth JB, Stanford JL, Dai JY, Ostrander EA, Cussenot O, Cancel-Tassin G, Hoegel J, Herkommer K, Schleutker J, Tammela TLJ, Rathinakannan V, Sipeky C, Wiklund F, Grönberg H, Aly M, Isaacs WB, Dickinson JL, FitzGerald LM, Chua MLK, Nguyen-Dumont T, Schaid DJ, Southey MC, Eeles RA, Kote-Jarai Z. Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study. Eur Urol Oncol 2021; 4:570-579. [PMID: 33436325 PMCID: PMC8381233 DOI: 10.1016/j.euo.2020.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Germline ATM mutations are suggested to contribute to predisposition to prostate cancer (PrCa). Previous studies have had inadequate power to estimate variant effect sizes. OBJECTIVE To precisely estimate the contribution of germline ATM mutations to PrCa risk. DESIGN, SETTING, AND PARTICIPANTS We analysed next-generation sequencing data from 13 PRACTICAL study groups comprising 5560 cases and 3353 controls of European ancestry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Variant Call Format files were harmonised, annotated for rare ATM variants, and classified as tier 1 (likely pathogenic) or tier 2 (potentially deleterious). Associations with overall PrCa risk and clinical subtypes were estimated. RESULTS AND LIMITATIONS PrCa risk was higher in carriers of a tier 1 germline ATM variant, with an overall odds ratio (OR) of 4.4 (95% confidence interval [CI]: 2.0-9.5). There was also evidence that PrCa cases with younger age at diagnosis (<65 yr) had elevated tier 1 variant frequencies (pdifference = 0.04). Tier 2 variants were also associated with PrCa risk, with an OR of 1.4 (95% CI: 1.1-1.7). CONCLUSIONS Carriers of pathogenic ATM variants have an elevated risk of developing PrCa and are at an increased risk for earlier-onset disease presentation. These results provide information for counselling of men and their families. PATIENT SUMMARY In this study, we estimated that men who inherit a likely pathogenic mutation in the ATM gene had an approximately a fourfold risk of developing prostate cancer. In addition, they are likely to develop the disease earlier.
Collapse
Affiliation(s)
- Questa Karlsson
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Mark N Brook
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Tokhir Dadaev
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Sarah Wakerell
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Edward J Saunders
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK; Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shannon K McDonnell
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; George E Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal; Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Paula Paulo
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Marta Cardoso
- Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Chad Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Yao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer B Permuth
- Departments of Cancer Epidemiology and Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - James Y Dai
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Olivier Cussenot
- GRC n°, AP-HP, Tenon Hospital, Sorbonne Universite, Paris, France; CeRePP, Tenon Hospital, Paris, France
| | - Géraldine Cancel-Tassin
- GRC n°, AP-HP, Tenon Hospital, Sorbonne Universite, Paris, France; CeRePP, Tenon Hospital, Paris, France
| | - Josef Hoegel
- Institute for Human Genetics, University Hospital Ulm, Ulm, Germany
| | - Kathleen Herkommer
- Department of Urology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Teuvo L J Tammela
- Department of Urology, Tampere University Hospital, Tampere, Finland; Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Csilla Sipeky
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Markus Aly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska University Hospital, Solna, Stockholm, Sweden; Department of Urology, Karolinska University Hospital, Solna, Stockholm
| | - William B Isaacs
- James Buchanan Brady Urological Institute, Johns Hopkins Hospital and Medical Institution, Baltimore, MD, USA
| | - Jo L Dickinson
- University of Tasmania, Menzies Institute for Medical Research, Hobart, Tasmania, Australia
| | - Liesel M FitzGerald
- University of Tasmania, Menzies Institute for Medical Research, Hobart, Tasmania, Australia
| | - Melvin L K Chua
- Divisions of Radiation Oncology and Medical Sciences, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Department of Clinical Pathology, The Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Department of Clinical Pathology, The Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Rosalind A Eeles
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK; Royal Marsden NHS Foundation Trust, London, UK
| | - Zsofia Kote-Jarai
- Division of Genetics & Epidemiology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
34
|
Shi Z, Platz EA, Wei J, Na R, Fantus RJ, Wang CH, Eggener SE, Hulick PJ, Duggan D, Zheng SL, Cooney KA, Isaacs WB, Helfand BT, Xu J. Performance of Three Inherited Risk Measures for Predicting Prostate Cancer Incidence and Mortality: A Population-based Prospective Analysis. Eur Urol 2020; 79:419-426. [PMID: 33257031 DOI: 10.1016/j.eururo.2020.11.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Single nucleotide polymorphism-based genetic risk score (GRS) has been developed and validated for prostate cancer (PCa) risk assessment. As GRS is population standardized, its value can be interpreted as a relative risk to the general population. OBJECTIVE To compare the performance of GRS with two guideline-recommended inherited risk measures, family history (FH) and rare pathogenic mutations (RPMs), for predicting PCa incidence and mortality. DESIGN, SETTING, AND PARTICIPANTS A prospective cohort was derived from the UK Biobank where 208 685 PCa diagnosis-free participants at recruitment were followed via the UK cancer and death registries. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Rate ratios (RRs) of PCa incidence and mortality for FH (positive vs negative), RPMs (carriers vs noncarriers), and GRS (top vs bottom quartile) were measured. RESULTS AND LIMITATIONS After a median follow-up of 9.67 yr, 6890 incident PCa cases (419 died of PCa) were identified. Each of the three measures was significantly associated with PCa incidence in univariate analyses; RR (95 % confidence interval [CI]) values were 1.88 (1.75-2.01) for FH, 2.89 (1.89-4.25) for RPMs, and 1.97(1.87-2.07) for GRS (all p < 0.001). The associations were independent in multivariable analyses. While FH and RPMs identified 11 % of men at higher PCa risk, addition of GRS identified an additional 22 % of men at higher PCa risk, and increases in C-statistic from 0.58 to 0.67 for differentiating incidence (p < 0.001) and from 0.65 to 0.71 for differentiating mortality (p = 0.002). Limitations were a small number of minority patients and short mortality follow-up. CONCLUSIONS This population-based prospective study suggests that GRS complements two guideline-recommended inherited risk measures (FH and RPMs) for stratifying the risk of PCa incidence and mortality. PATIENT SUMMARY In a large population-based prostate cancer (PCa) prospective study derived from UK Biobank, genetic risk score (GRS) complements two guideline-recommended inherited risk measures (family history and rare pathogenic mutations) in predicting PCa incidence and mortality. These results provide critical data for including GRS in PCa risk assessment.
Collapse
Affiliation(s)
- Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Rong Na
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Richard J Fantus
- Section of Urology, University of Chicago Medicine, Chicago, IL, USA
| | - Chi-Hsiung Wang
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Scott E Eggener
- Section of Urology, University of Chicago Medicine, Chicago, IL, USA
| | - Peter J Hulick
- Department of Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - David Duggan
- Translational Genomics Research Institute, Affiliate of City of Hope, Phoenix, AZ, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Kathleen A Cooney
- Duke University School of Medicine and Duke Cancer Institute, Durham, NC, USA
| | - William B Isaacs
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA.
| |
Collapse
|
35
|
Wokołorczyk D, Kluźniak W, Huzarski T, Gronwald J, Szymiczek A, Rusak B, Stempa K, Gliniewicz K, Kashyap A, Morawska S, Dębniak T, Jakubowska A, Szwiec M, Domagała P, Lubiński J, Narod SA, Akbari MR, Cybulski C. Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int J Cancer 2020; 147:2793-2800. [PMID: 32875559 DOI: 10.1002/ijc.33272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 01/04/2023]
Abstract
In designing national strategies for genetic testing, it is important to define the full spectrum of pathogenic mutations in prostate cancer (PCa) susceptibility genes. To investigate the frequency of mutations in PCa susceptibility genes in Polish familial PCa cases and to estimate gene-related PCa risks and probability of aggressive disease, we analyzed the coding regions of 14 genes by exome sequencing in 390 men with familial prostate cancer and 308 cancer-free controls. We compared the mutation frequencies between PCa cases and controls. We also compared clinical characteristics of prostate cancers between mutation carriers and noncarriers. Of the 390 PCa cases, 76 men (19.5%) carried a mutation in BRCA1, BRCA2, NBN, ATM, CHEK2, HOXB13, MSH2 or MSH6 genes. No mutations were found in BRIP1, PTEN, TP53, MLH1, PMS2 and SPOP. Significant associations with familial PCa risk were observed for CHEK2, NBN, ATM, and HOXB13. High-grade (Gleason 8-10) tumors were seen in 56% of BRCA2, NBN or ATM carriers, compared to 21% of patients who tested negative for mutations in these genes (OR = 4.7, 95% CI 2.0-10.7, P = .0003). In summary, approximately 20% of familial prostate cancer cases in Poland can be attributed to mutations in eight susceptibility genes. Carriers of mutations in BRCA2, NBN and ATM develop aggressive disease and may benefit from intensified screening and/or chemotherapy.
Collapse
Affiliation(s)
- Dominika Wokołorczyk
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wojciech Kluźniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tomasz Huzarski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland.,Department of Clinical Genetics and Pathology, University of Zielona Góra, Poland
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Agata Szymiczek
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Bogna Rusak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Klaudia Stempa
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Katarzyna Gliniewicz
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Aniruddh Kashyap
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Sylwia Morawska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tadeusz Dębniak
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland.,Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Marek Szwiec
- Clinics of Oncology, University Hospital in Zielona Góra, Zielona Góra, Poland
| | - Paweł Domagała
- Department of Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jan Lubiński
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
36
|
Darst BF, Dadaev T, Saunders E, Sheng X, Wan P, Pooler L, Xia LY, Chanock S, Berndt SI, Gapstur SM, Stevens V, Albanes D, Weinstein SJ, Gnanapragasam V, Giles GG, Nguyen-Dumont T, Milne RL, Pomerantz M, Schmidt JA, Mucci L, Catalona WJ, Hetrick KN, Doheny KF, MacInnis RJ, Southey MC, Eeles RA, Wiklund F, Kote-Jarai Z, Conti DV, Haiman CA. Germline Sequencing DNA Repair Genes in 5545 Men With Aggressive and Nonaggressive Prostate Cancer. J Natl Cancer Inst 2020; 113:616-625. [PMID: 32853339 DOI: 10.1093/jnci/djaa132] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND There is an urgent need to identify factors specifically associated with aggressive prostate cancer (PCa) risk. We investigated whether rare pathogenic, likely pathogenic, or deleterious (P/LP/D) germline variants in DNA repair genes are associated with aggressive PCa risk in a case-case study of aggressive vs nonaggressive disease. METHODS Participants were 5545 European-ancestry men, including 2775 nonaggressive and 2770 aggressive PCa cases, which included 467 metastatic cases (16.9%). Samples were assembled from 12 international studies and germline sequenced together. Rare (minor allele frequency < 0.01) P/LP/D variants were analyzed for 155 DNA repair genes. We compared single variant, gene-based, and DNA repair pathway-based burdens by disease aggressiveness. All statistical tests are 2-sided. RESULTS BRCA2 and PALB2 had the most statistically significant gene-based associations, with 2.5% of aggressive and 0.8% of nonaggressive cases carrying P/LP/D BRCA2 alleles (odds ratio [OR] = 3.19, 95% confidence interval [CI] = 1.94 to 5.25, P = 8.58 × 10-7) and 0.65% of aggressive and 0.11% of nonaggressive cases carrying P/LP/D PALB2 alleles (OR = 6.31, 95% CI = 1.83 to 21.68, P = 4.79 × 10-4). ATM had a nominal association, with 1.6% of aggressive and 0.8% of nonaggressive cases carrying P/LP/D ATM alleles (OR = 1.88, 95% CI = 1.10 to 3.22, P = .02). In aggregate, P/LP/D alleles within 24 literature-curated candidate PCa DNA repair genes were more common in aggressive than nonaggressive cases (carrier frequencies = 14.2% vs 10.6%, respectively; P = 5.56 × 10-5). However, this difference was non-statistically significant (P = .18) on excluding BRCA2, PALB2, and ATM. Among these 24 genes, P/LP/D carriers had a 1.06-year younger diagnosis age (95% CI = -1.65 to 0.48, P = 3.71 × 10-4). CONCLUSIONS Risk conveyed by DNA repair genes is largely driven by rare P/LP/D alleles within BRCA2, PALB2, and ATM. These findings support the importance of these genes in both screening and disease management considerations.
Collapse
Affiliation(s)
- Burcu F Darst
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Ed Saunders
- The Institute of Cancer Research, London, UK
| | - Xin Sheng
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peggy Wan
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loreall Pooler
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lucy Y Xia
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Chanock
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sonja I Berndt
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Demetrius Albanes
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Vincent Gnanapragasam
- Department of Surgery and Oncology, Academic Urology Group, University of Cambridge, Cambridge, UK
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Victoria, Australia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | | | | | | | | | - Kurt N Hetrick
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kimberly F Doheny
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Victoria, Australia
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, UK.,The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - David V Conti
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Okoye JO. High mortality risk of prostate cancer patients in Asia and West Africa: A systematic review. Avicenna J Med 2020; 10:93-101. [PMID: 32832424 PMCID: PMC7414604 DOI: 10.4103/ajm.ajm_19_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Globally, prostate cancer (PCa) is the second most preponderant cancer in men. It contributes to the high mortality-to-incidence ratio reported in West Africa and Asia largely due to low screening. The mortality risk is determined or predicted based on the prevalence of high-risk or aggressive PCa using a scoring or grading system such as Gleason score (GS), Gleason grade (GG), and prostate-specific antigen (PSA) level. In this review, peer-reviewed articles found on databases such as Google Scholar, Scopus, Web of Science, PubMed Central and, EMBASE were selected based on adherence to clinical guidelines for the classification of PCa. In West Africa and Asia, the result revealed that the frequency of high-risk PCa was 42% and 51.2% based on GS, 48.8% and 25.3% based on GG pattern, and 87.5% and 44.3% based on PSA level >10 ng/mL, respectively. Data revealed a high prevalence of high-risk PCa both in West Africa and Asia when compared with developed countries. However, the prevalence of high-risk PCa is higher in West Africa than in Asia. Studies have shown that high-risk PCas are associated with germline mutations and such mutations are prevalent in blacks and Asians than in whites. Thus, testing for germline mutations in patients with GS of ≥ 7, GG ≥ 3, high prostate density, low prostate volume, and PSA levels of >4.0 ng/mL may identify those at risk of developing lethal PCa and could reduce the mortality rates in Asia and West Africa.
Collapse
Affiliation(s)
- Jude O Okoye
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Medicine, Nnamdi Azikiwe University, Nnewi Campus, Anambra State, Nigeria
| |
Collapse
|
38
|
Giri VN, Knudsen KE, Kelly WK, Cheng HH, Cooney KA, Cookson MS, Dahut W, Weissman S, Soule HR, Petrylak DP, Dicker AP, AlDubayan SH, Toland AE, Pritchard CC, Pettaway CA, Daly MB, Mohler JL, Parsons JK, Carroll PR, Pilarski R, Blanco A, Woodson A, Rahm A, Taplin ME, Polascik TJ, Helfand BT, Hyatt C, Morgans AK, Feng F, Mullane M, Powers J, Concepcion R, Lin DW, Wender R, Mark JR, Costello A, Burnett AL, Sartor O, Isaacs WB, Xu J, Weitzel J, Andriole GL, Beltran H, Briganti A, Byrne L, Calvaresi A, Chandrasekar T, Chen DYT, Den RB, Dobi A, Crawford ED, Eastham J, Eggener S, Freedman ML, Garnick M, Gomella PT, Handley N, Hurwitz MD, Izes J, Karnes RJ, Lallas C, Languino L, Loeb S, Lopez AM, Loughlin KR, Lu-Yao G, Malkowicz SB, Mann M, Mille P, Miner MM, Morgan T, Moreno J, Mucci L, Myers RE, Nielsen SM, O’Neil B, Pinover W, Pinto P, Poage W, Raj GV, Rebbeck TR, Ryan C, Sandler H, Schiewer M, Scott EMD, Szymaniak B, Tester W, Trabulsi EJ, Vapiwala N, Yu EY, Zeigler-Johnson C, Gomella LG. Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus Conference 2019. J Clin Oncol 2020; 38:2798-2811. [PMID: 32516092 PMCID: PMC7430215 DOI: 10.1200/jco.20.00046] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Germline testing (GT) is a central feature of prostate cancer (PCA) treatment, management, and hereditary cancer assessment. Critical needs include optimized multigene testing strategies that incorporate evolving genetic data, consistency in GT indications and management, and alternate genetic evaluation models that address the rising demand for genetic services. METHODS A multidisciplinary consensus conference that included experts, stakeholders, and national organization leaders was convened in response to current practice challenges and to develop a genetic implementation framework. Evidence review informed questions using the modified Delphi model. The final framework included criteria with strong (> 75%) agreement (Recommend) or moderate (50% to 74%) agreement (Consider). RESULTS Large germline panels and somatic testing were recommended for metastatic PCA. Reflex testing-initial testing of priority genes followed by expanded testing-was suggested for multiple scenarios. Metastatic disease or family history suggestive of hereditary PCA was recommended for GT. Additional family history and pathologic criteria garnered moderate consensus. Priority genes to test for metastatic disease treatment included BRCA2, BRCA1, and mismatch repair genes, with broader testing, such as ATM, for clinical trial eligibility. BRCA2 was recommended for active surveillance discussions. Screening starting at age 40 years or 10 years before the youngest PCA diagnosis in a family was recommended for BRCA2 carriers, with consideration in HOXB13, BRCA1, ATM, and mismatch repair carriers. Collaborative (point-of-care) evaluation models between health care and genetic providers was endorsed to address the genetic counseling shortage. The genetic evaluation framework included optimal pretest informed consent, post-test discussion, cascade testing, and technology-based approaches. CONCLUSION This multidisciplinary, consensus-driven PCA genetic implementation framework provides novel guidance to clinicians and patients tailored to the precision era. Multiple research, education, and policy needs remain of importance.
Collapse
Affiliation(s)
- Veda N. Giri
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Karen E. Knudsen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - William K. Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Heather H. Cheng
- Department of Medicine, University of Washington, and Fred Hutchinson Cancer Research Center, Division of Clinical Research, Seattle, WA
| | - Kathleen A. Cooney
- Duke University School of Medicine and Duke Cancer Institute, Durham, NC
| | | | - William Dahut
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | - Adam P. Dicker
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Amanda E. Toland
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Colin C. Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | | | | | | | | | - Peter R. Carroll
- Department of Urology, University of California, San Francisco, San Francisco, CA
| | - Robert Pilarski
- James Comprehensive Cancer Center and Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Amie Blanco
- University of California, San Francisco, Cancer Genetics and Prevention Program, San Francisco, CA
| | - Ashley Woodson
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alanna Rahm
- Center for Health Research, Genomic Medicine Institute, Geisinger, Danville, PA
| | | | | | | | - Colette Hyatt
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Felix Feng
- Departments of Radiation Oncology, Urology, and Medicine, University of California, San Francisco, San Francisco, CA
| | | | - Jacqueline Powers
- University of Pennsylvania, Basser Center for BRCA, Philadelphia, PA
| | | | | | | | - James Ryan Mark
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Anthony Costello
- Urology at Royal Melbourne Hospital, North Melbourne, VIC, Australia
| | | | | | | | - Jianfeng Xu
- North Shore University Health System, Evanston, IL
| | | | | | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Alberto Briganti
- Unit of Urology, Division of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Anne Calvaresi
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Thenappan Chandrasekar
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Robert B. Den
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Albert Dobi
- Henry Jackson Foundation for the Advancement of Military Medicine, Center for Prostate Disease Research, Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, MD
| | | | - James Eastham
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Marc Garnick
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Nathan Handley
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Mark D. Hurwitz
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Joseph Izes
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Costas Lallas
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Lucia Languino
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Stacy Loeb
- Department of Urology and Population Health, New York University and Manhattan Veterans Affairs, New York, NY
| | - Ana Maria Lopez
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Grace Lu-Yao
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Mark Mann
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Patrick Mille
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | | | | | - Lorelei Mucci
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston MA
| | - Ronald E. Myers
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Brock O’Neil
- University of Utah, Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Peter Pinto
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Wendy Poage
- Prostate Conditions Education Council, Elizabeth, CO
| | - Ganesh V. Raj
- University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Timothy R. Rebbeck
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston MA
| | - Charles Ryan
- University of Minnesota and Masonic Cancer Center, Madison, WI
| | | | - Matthew Schiewer
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | | | - William Tester
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Edouard J. Trabulsi
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Evan Y. Yu
- University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Charnita Zeigler-Johnson
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Leonard G. Gomella
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
39
|
Parra-Medina R, López-Kleine L, Ramírez-Clavijo S, Payán-Gómez C. Identification of candidate miRNAs in early-onset and late-onset prostate cancer by network analysis. Sci Rep 2020; 10:12345. [PMID: 32704070 PMCID: PMC7378055 DOI: 10.1038/s41598-020-69290-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of patients under 55 years old diagnosed with Prostate Cancer (EO-PCa) has increased during recent years. The molecular biology of PCa cancer in this group of patients remains unclear. Here, we applied weighted gene coexpression network analysis of the expression of miRNAs from 24 EO-PCa patients (38–45 years) and 25 late-onset PCa patients (LO-PCa, 71–74 years) to identify key miRNAs in EO-PCa patients. In total, 69 differentially expressed miRNAs were identified. Specifically, 26 and 14 miRNAs were exclusively deregulated in young and elderly patients, respectively, and 29 miRNAs were shared. We identified 20 hub miRNAs for the network built for EO-PCa. Six of these hub miRNAs exhibited prognostic significance in relapse‐free or overall survival. Additionally, two of the hub miRNAs were coexpressed with mRNAs of genes previously identified as deregulated in EO-PCa and in the most aggressive forms of PCa in African-American patients compared with Caucasian patients. These genes are involved in activation of immune response pathways, increased rates of metastasis and poor prognosis in PCa patients. In conclusion, our analysis identified miRNAs that are potentially important in the molecular pathology of EO-PCa. These genes may serve as biomarkers in EO-PCa and as possible therapeutic targets.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia.,Department of Pathology, Research Institute, Fundación Universitaria de Ciencias de la Salud, Bogotá, Colombia.,Pathology Deparment, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandra Ramírez-Clavijo
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
40
|
Guan B, Qi F, Tian Y. Comprehensive analysis of competing endogenous RNA network in Wilms tumor based on the TARGET database. Transl Androl Urol 2020; 9:473-484. [PMID: 32420153 PMCID: PMC7214997 DOI: 10.21037/tau.2020.01.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Wilms tumor (WT) was the most common malignant tumor of urinary system in children. With the advances in gene sequencing, research of molecular mechanism of WT tumor was gradually increasing. However, few studies have explored the influence of competing endogenous RNA (ceRNA) in WT. Accordingly, we aimed to explore the mechanisms of ceRNA co-expression network in WT. Methods A total of 6 non-tumor controls and 127 WT patients’ RNA-seq data combined with clinical data was acquired from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Differentially expressed lncRNA, miRNA and mRNA between WT tissues and normal tissues were analyzed using “edgeR” package in R software. Weighted gene co-expression network analysis (WGCNA) was utilized to construct the ceRNA co-expression network while Molecular Complex Detection (MCODE) algorithm was used to extract the pivotal sub-network. Function annotation of mRNA was performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Survival analysis was then conducted based on long-rank test and Kaplan-Meier curves using the survival package. Results By applying the “edgeR” package in R, the transcriptome expression data of 127 WT tissues with 6 normal tissues were normalized. Moreover, 146 DElncRNAs, 62 DEmiRNAs, 287 DEmRNAs of them were involved in ceRNA network after applying WGCNA. According to MCODE, we identified that the interactions between LINC002253 (lncRNA) and TRIM71 (mRNA) was mediated by hsa-mir-301a and hsa-mir-301b (miRNA). Furthermore, we detected 13 DElncRNAs which were significantly associated with the progression of WT. Conclusions We used WGCNA method to construct the WT ceRNA network for the first time. TRIM71 was identified to be the most closely related genes involved in hub sub-network by MCDOE, suggesting it might act as a new drug target and prognostic factor based on our comprehensive results.
Collapse
Affiliation(s)
- Bo Guan
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Feng Qi
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
41
|
Nguyen-Dumont T, MacInnis RJ, Steen JA, Theys D, Tsimiklis H, Hammet F, Mahmoodi M, Pope BJ, Park DJ, Mahmood K, Severi G, Bolton D, Milne RL, Giles GG, Southey MC. Rare germline genetic variants and risk of aggressive prostate cancer. Int J Cancer 2020; 147:2142-2149. [PMID: 32338768 DOI: 10.1002/ijc.33024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 01/02/2023]
Abstract
Few genetic risk factors have been demonstrated to be specifically associated with aggressive prostate cancer (PrCa). Here, we report a case-case study of PrCa comparing the prevalence of germline pathogenic/likely pathogenic (P/LP) genetic variants in 787 men with aggressive disease and 769 with nonaggressive disease. Overall, we observed P/LP variants in 11.4% of men with aggressive PrCa and 9.8% of men with nonaggressive PrCa (two-tailed Fisher's exact tests, P = .28). The proportion of BRCA2 and ATM P/LP variant carriers in men with aggressive PrCa exceeded that observed in men with nonaggressive PrCa; 18/787 carriers (2.3%) and 4/769 carriers (0.5%), P = .004, and 14/787 carriers (0.02%) and 5/769 carriers (0.01%), P = .06, respectively. Our findings contribute to the extensive international effort to interpret the genetic variation identified in genes included on gene-panel tests, for which there is currently an insufficient evidence-base for clinical translation in the context of PrCa risk.
Collapse
Affiliation(s)
- Tú Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason A Steen
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Derrick Theys
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Helen Tsimiklis
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Fleur Hammet
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Maryam Mahmoodi
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bernard J Pope
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,The University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, Victoria, Australia.,Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel J Park
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gianluca Severi
- CESP Inserm U1018, Faculté de Médecine - Université Paris-Sud, Faculté de Médecine - UVSQ, Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Damien Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,The University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
McCann JJ, Vasilevskaya IA, Poudel Neupane N, Shafi AA, McNair C, Dylgjeri E, Mandigo AC, Schiewer MJ, Schrecengost RS, Gallagher P, Stanek TJ, McMahon SB, Berman-Booty LD, Ostrander WF, Knudsen KE. USP22 Functions as an Oncogenic Driver in Prostate Cancer by Regulating Cell Proliferation and DNA Repair. Cancer Res 2020; 80:430-443. [PMID: 31740444 PMCID: PMC7814394 DOI: 10.1158/0008-5472.can-19-1033] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/02/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Emerging evidence indicates the deubiquitinase USP22 regulates transcriptional activation and modification of target substrates to promote pro-oncogenic phenotypes. Here, in vivo characterization of tumor-associated USP22 upregulation and unbiased interrogation of USP22-regulated functions in vitro demonstrated critical roles for USP22 in prostate cancer. Specifically, clinical datasets validated that USP22 expression is elevated in prostate cancer, and a novel murine model demonstrated a hyperproliferative phenotype with prostate-specific USP22 overexpression. Accordingly, upon overexpression or depletion of USP22, enrichment of cell-cycle and DNA repair pathways was observed in the USP22-sensitive transcriptome and ubiquitylome using prostate cancer models of clinical relevance. Depletion of USP22 sensitized cells to genotoxic insult, and the role of USP22 in response to genotoxic insult was further confirmed using mouse adult fibroblasts from the novel murine model of USP22 expression. As it was hypothesized that USP22 deubiquitylates target substrates to promote protumorigenic phenotypes, analysis of the USP22-sensitive ubiquitylome identified the nucleotide excision repair protein, XPC, as a critical mediator of the USP22-mediated response to genotoxic insult. Thus, XPC undergoes deubiquitylation as a result of USP22 function and promotes USP22-mediated survival to DNA damage. Combined, these findings reveal unexpected functions of USP22 as a driver of protumorigenic phenotypes and have significant implications for the role of USP22 in therapeutic outcomes. SIGNIFICANCE: The studies herein present a novel mouse model of tumor-associated USP22 overexpression and implicate USP22 in modulation of cellular survival and DNA repair, in part through regulation of XPC.
Collapse
Affiliation(s)
- Jennifer J McCann
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Irina A Vasilevskaya
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | | | - Ayesha A Shafi
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Christopher McNair
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Amy C Mandigo
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Randy S Schrecengost
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Peter Gallagher
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Timothy J Stanek
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Steven B McMahon
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Lisa D Berman-Booty
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - William F Ostrander
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Sidney Kimmel Medical College, Philadelphia, Pennsylvania.
| |
Collapse
|
43
|
Wu Y, Yu H, Li S, Wiley K, Zheng SL, LaDuca H, Gielzak M, Na R, Sarver BAJ, Helfand BT, Walsh PC, Lotan TL, Cooney KA, Black MH, Xu J, Isaacs WB. Rare Germline Pathogenic Mutations of DNA Repair Genes Are Most Strongly Associated with Grade Group 5 Prostate Cancer. Eur Urol Oncol 2020; 3:224-230. [PMID: 31948886 DOI: 10.1016/j.euo.2019.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Rare germline mutations in several genes, primarily DNA repair genes, have been proposed to predict worse prognosis of prostate cancer (PCa). OBJECTIVE To compare the frequency of germline pathogenic mutations in commonly assayed PCa genes between high- and low-grade PCa in patients initially presenting with clinically localized disease. DESIGN, SETTING, AND PARTICIPANTS A retrospective case-case study of 1694 PCa patients who underwent radical prostatectomy at Johns Hopkins Hospital, including 706 patients with high-grade (grade group [GG] 4 and GG5) and 988 patients with low-grade (GG1) disease. Germline DNA was sequenced for 13 candidate PCa genes using a targeted next-generation sequencing assay by Ambry Genetics. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Carrier rates of pathogenic mutations were compared between high- and low-grade PCa patients using the Fisher's exact test. RESULTS AND LIMITATIONS Overall, the carrier rate of germline pathogenic mutations in the 13 genes was significantly higher in high-grade patients (8.64%) than in low-grade patients (3.54%, p = 9.98 × 10-6). Individually, significantly higher carrier rates for patients with high- versus low-grade PCa were found for three genes: ATM (2.12% and 0.20%, respectively, p = 9.35 × 10-5), BRCA2 (2.55% and 0.20%, respectively, p = 8.99 × 10-6), and MSH2 (0.57% and 0%, respectively, p = 0.03). The mutation carrier rate was significantly higher in patients with GG5 than in patients with GG1 disease for the 13 genes overall (13.07% and 3.54%, respectively, p = 1.27 × 10-9); for the three genes ATM, BRCA2, and MSH2 (7.73% and 0.40%, respectively, p = 3.20 × 10-13); and for the remaining nine DNA repair genes (5.07% and 2.43%, respectively, p = 0.02). CONCLUSIONS In men undergoing treatment for clinically localized disease, pathogenic mutations in 13 commonly assayed genes, especially ATM, BRCA2, and MSH2, are most strongly associated with GG5 PCa. These findings emphasize the importance of genetic testing in men with high-grade PCa, particularly GG5 disease, to inform both treatment decisions and familial risk assessment. PATIENT SUMMARY Prostate cancer in men with inherited mutations in 13 commonly assayed susceptibility genes is more likely to be high-grade, high-risk disease.
Collapse
Affiliation(s)
- Yishuo Wu
- Program for Personalized Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongjie Yu
- Program for Personalized Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Shuwei Li
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Kathleen Wiley
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | | | - Marta Gielzak
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rong Na
- Program for Personalized Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | | | - Brian T Helfand
- Program for Personalized Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Patrick C Walsh
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Kathleen A Cooney
- Duke University School of Medicine and Duke Cancer Institute, Durham, NC, USA
| | | | - Jianfeng Xu
- Program for Personalized Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| | - William B Isaacs
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
44
|
Re: Daniel A. Leongamornlert, Edward J. Saunders, Sarah Wakerell, et al., Germline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel. Eur Urol 2019;76:329–37. Eur Urol 2019; 76:e128-e129. [DOI: 10.1016/j.eururo.2019.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022]
|
45
|
Rusak B, Kluźniak W, Wokołorczyk D, Stempa K, Kashyap A, Rudnicka H, Gronwald J, Huzarski T, Dębniak T, Jakubowska A, Szwiec M, Akbari MR, Narod SA, Lubiński J, Cybulski C. Allelic modification of breast cancer risk in women with an NBN mutation. Breast Cancer Res Treat 2019; 178:427-431. [PMID: 31410679 DOI: 10.1007/s10549-019-05391-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND NBN 657del5 founder mutation predisposes to breast and prostate cancer. Recently, it has been reported that the pathogenicity of this mutation with regard to prostate cancer risk is modified by a missense variant of the same gene (E185Q). METHODS To evaluate the interaction of the 657del5 and E185Q founder alleles of NBN on breast cancer risk in Poland, 4964 women with breast cancer and 6152 controls were genotyped for these two recurrent variants of NBN (657del5 truncating variant and E185Q missense variant). RESULTS The NBN 657del5 mutation was detected in 57 of 4964 unselected cases and in 35 of 6152 controls (OR = 2.0, p = 0.001). The E185Q GG genotype was detected in 2167 of 4964 unselected cases and in 2617 of 6152 controls (OR = 1.04, p = 0.3). In carriers of the 657del5 deletion, the elevated cancer risk was restricted to women with the GG genotype of the E185Q variant (OR = 3.6, 95% CI 1.9-6.6; p < 0.0001). Among women with other E185Q genotypes, the OR associated with 657del5 was 1.0 (95% CI 0.5-1.8; p = 0.9). The interaction between the two alleles was statistically significant (homogeneity p = 0.003). CONCLUSION In Poland, the pathogenicity of the NBN 657del5 mutation is restricted to women with a homozygous GG genotype of missense variant of the same gene (E185Q). This is the first clear example whereby a moderate penetrance breast cancer gene is impacted by a genetic modifier.
Collapse
Affiliation(s)
- Bogna Rusak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Wojciech Kluźniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Dominika Wokołorczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Klaudia Stempa
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Aniruddh Kashyap
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Helena Rudnicka
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
- Department of Clinical Genetics and Pathology, University of Zielona Góra, Zielona Góra, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, Zielona Góra, Poland
- Department of Clinical Oncology, University of Zielona Góra, Zielona Góra, Poland
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, 6th Floor, Toronto, ON, M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, 76 Grenville St, 6th Floor, Toronto, ON, M5S 1B2, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, 71-252, Poland.
| |
Collapse
|
46
|
Kote-Jarai Z, Leongamornlert DA, Saunders EJ, Conti DV, Eeles RA. Reply to Xiaoling Lin, Brian T. Helfand, and Jianfeng Xu's Letter to the Editor re: Daniel A. Leongamornlert, Edward J. Saunders, Sarah Wakerell, et al. Germline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel. Eur Urol 2019;76:329-37. Eur Urol 2019; 76:e130-e131. [PMID: 31235193 DOI: 10.1016/j.eururo.2019.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 11/18/2022]
Affiliation(s)
| | | | | | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
47
|
Knudsen KE, Feng FY. Expanding Role of Germline DNA Repair Alterations in Prostate Cancer Risk and Early Onset. Eur Urol 2019; 76:338-339. [PMID: 30885533 DOI: 10.1016/j.eururo.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Karen E Knudsen
- Departments of Cancer Biology, Urology, Radiation Oncology, and Medical Oncology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Felix Y Feng
- Departments of Radiation Oncology, Urology, and Medicine and Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|