1
|
Memel Z, Gold SL, Pearlman M, Muratore A, Martindale R. Impact of GLP- 1 Receptor Agonist Therapy in Patients High Risk for Sarcopenia. Curr Nutr Rep 2025; 14:63. [PMID: 40289060 DOI: 10.1007/s13668-025-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE OF REVIEW Glucagon-like peptide- 1 receptor agonists (GLP- 1 RA) are a rapidly expanding class of medications used to treat many chronic diseases. This review explores factors that may contribute to accelerated muscle loss among higher-risk patient populations and describes tailored interventions to reduce the risk of accelerated sarcopenia and frailty. RECENT FINDINGS While GLP- 1 RA can result in total weight loss upwards of 25%, recent studies show that they can also lead to significant loss of lean body mass, reaching as high as 15-40% of total weight lost. This rapid and significant decline in muscle mass while taking GLP- 1 RA places certain patient populations already predisposed to sarcopenia at higher risk for muscle loss and adverse events. Currently, there is insufficient evidence delving into the impact of GLP- 1 RA on body composition among older adults, patients with chronic kidney disease, liver disease, and inflammatory bowel disease. However, research suggests that a high protein diet and resistance training may help prevent loss of muscle mass during GLP- 1 RA usage. A targeted and individualized nutrition and physical activity regimen should be instituted for each patient with a focus on optimizing protein intake and performing frequent resistance training in order to minimize loss of muscle mass while promoting the loss of fat mass. Future research should evaluate the impact of GLP- 1 RA on sarcopenia in high-risk patient populations.
Collapse
Affiliation(s)
- Zoe Memel
- Department of Gastroenterology, University of California San Francisco, San Francisco, California, USA
| | - Stephanie L Gold
- Department of Gastroenterology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Michelle Pearlman
- Gastroenterologist and Obesity Medicine Specialist, Co-Founder Prime Institute, Coral Gables, Florida, USA
| | - Alicia Muratore
- Department of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Martindale
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Al-Regaiey K. Crosstalk between adipogenesis and aging: role of polyphenols in combating adipogenic-associated aging. Immun Ageing 2024; 21:76. [PMID: 39511615 PMCID: PMC11542427 DOI: 10.1186/s12979-024-00481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
In the last forty years, the number of people over 60 years of age has increased significantly owing to better nutrition and lower rates of infectious diseases in developing countries. Aging significantly impacts adipose tissue, which plays crucial role in hormone regulation and energy storage. This can lead to imbalances in glucose, and overall energy homeostasis within the body. Aging is irreversible phenomena and potentially causing lipid infiltration in other organs, leading to systemic inflammation, metabolic disorders. This review investigates various pathways contributing to aging-related defects in adipogenesis, such as changes in adipose tissue function and distribution. Polyphenols, a diverse group of natural compounds, can mitigate aging effects via free radicals, oxidative stress, inflammation, senescence, and age-related diseases. Polyphenols like resveratrol, quercetin and EGCG exhibit distinct mechanisms and regulate crucial pathways, such as the TGF-β, AMPK, Wnt, PPAR-γ, and C/EBP transcription factors, and influence epigenetic modifications, such as DNA methylation and histone modification. This review highlights the critical importance of understanding the intricate relationship between aging and adipogenesis for optimizing well-being with increasing age. These findings highlight the therapeutic potential of polyphenols like quercetin and resveratrol in enhancing adipose tissue function and promoting healthy aging.
Collapse
Affiliation(s)
- Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Ahmed B, Farb MG, Gokce N. Cardiometabolic implications of adipose tissue aging. Obes Rev 2024; 25:e13806. [PMID: 39076025 DOI: 10.1111/obr.13806] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Adipose tissue is a large endocrine organ that serves numerous physiological functions. As we age, adipose tissue remodels and can develop functional changes that alters its phenotype, potentially contributing to metabolic and cardiovascular disorders. Aging adipose tissue is characterized by regional redistribution of fat, accumulation of senescent cells, fibrosis, and decline in adipocyte differentiation capacities, which collectively impact adipose tissue function and whole body health. A notable transformation involves increased accumulation of intra-abdominal visceral adipose tissue and ectopic fat around internal organs such as the heart, blood vessels, liver, and kidneys that alter their functions. Other changes associated with aging include alterations in adipokine secretion and changes in adipocyte size and numbers. Aging adipocytes play a role in mediating chronic inflammation, metabolic dysfunction, and insulin resistance. Visceral adipose tissue, which increases in volume with aging, is in particular associated with inflammation, angiogenic dysfunction, and microvascular abnormalities, and mediators released by visceral fat may have adverse consequences systemically in multiple target organs, including the cardiovascular system. Understanding mechanisms underlying adipose tissue aging and its impact on cardiovascular health are important for developing interventions and treatments to promote healthy aging and reduce cardiometabolic disease risk.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Melissa G Farb
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Guo J, Wei Y, Heiland EG, Marseglia A. Differential impacts of fat and muscle mass on cardiovascular and non-cardiovascular mortality in individuals with type 2 diabetes. J Cachexia Sarcopenia Muscle 2024; 15:1930-1941. [PMID: 39001640 PMCID: PMC11446681 DOI: 10.1002/jcsm.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The distribution of fat and muscle mass in different regions of the body can reflect different pathways to mortality in individuals with diabetes. Therefore, we investigated the associations between whole-body and regional body fat and muscle mass with cardiovascular disease (CVD) and non-CVD mortality in type 2 diabetes (T2D). METHODS Within the National Health and Nutrition Examination Survey 1999-2006, 1417 adults aged ≥50 years with T2D were selected. Dual-energy X-ray absorptiometry was used to derive whole-body, trunk, arm, and leg fat mass and muscle mass indices (FMI and MMI). Mortality data until 31 December 2019 were retrieved from the National Death Index. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated from Cox proportional hazard models. RESULTS A total of 1417 participants were included in this study (weighted mean age [standard error]: 63.7 [0.3] years; 50.5% female). Over a median follow-up of 13.6 years, 797 deaths were recorded (371 CVD-related and 426 non-CVD deaths). Higher FMI in the arm was associated with increased risk of non-CVD mortality (fourth quartile [Q4] vs. first quartile [Q1]: HR 1.82 [95% CI 1.13-2.94]), whereas higher FMI in the trunk or leg was not significantly associated with CVD or non-CVD mortality. Conversely, higher arm MMI was associated with a lower risk of both CVD (Q4 vs. Q1: HR 0.51 [95% CI 0.33-0.81]) and non-CVD (Q4 vs. Q1: HR 0.56 [95% CI 0.33-0.94]) mortality. There was a significant interaction between smoking status and arm FMI on non-CVD mortality (P for interaction = 0.007). Higher arm FMI was associated with a higher risk of non-CVD mortality among current or former smokers (Q4 vs. Q1: HR 2.67 [95% CI 1.46-4.88]) but not non-smokers (Q4 vs. Q1: HR 0.85 [95% CI 0.49-1.47]). CONCLUSIONS Fat mass and muscle mass, especially in the arm, are differently associated with CVD and non-CVD mortality in people with T2D. Our findings underscore the predictive value of body compositions in the arm in forecasting mortality among older adults with T2D.
Collapse
Affiliation(s)
- Jie Guo
- Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
- Aging Research Center, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetSolnaSweden
| | - Yuxia Wei
- Institute of Environmental MedicineKarolinska InstitutetSolnaSweden
| | - Emerald G. Heiland
- Medical Epidemiology, Department of Surgical SciencesUppsala UniversityUppsalaSweden
- Department of Physical Activity and HealthThe Swedish School of Sport and Health Sciences (GIH)StockholmSweden
| | - Anna Marseglia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
| |
Collapse
|
5
|
Feng X, Zhu J, Hua Z, Yao S, Yin H, Shi Q, Zhou J. Prevalence and determinants of obesity and its association with upper gastrointestinal diseases in people aged 40-69 years in Yangzhong, southeast China. Sci Rep 2024; 14:21153. [PMID: 39256541 PMCID: PMC11387473 DOI: 10.1038/s41598-024-72313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/05/2024] [Indexed: 09/12/2024] Open
Abstract
Several international epidemiological studies have established a link between obesity and upper gastrointestinal cancer (UGC), but Chinese evidence is limited. This study aimed to determine the prevalence of obesity, especially central obesity, while investigating its association with upper gastrointestinal diseases in the high-risk population of Yangzhong, a typical high-risk area for UGC in southeastern China. We conducted a cross-sectional study from November 2017 to June 2021 involving 6736 residents aged 40-69. Multivariate logistic regression was used to assess independent factors influencing overweight/obesity and central obesity. We also analyzed the relationship between obesity and upper gastrointestinal diseases using multinomial logistic regression. The prevalence of overweight, obesity, waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR)-central obesity were 40.6%, 12.0%, 49.9%, 79.4%, and 63.7%, respectively. Gender, age, smoking, tea consumption, sufficient vegetable, pickled food, spicy food, eating speed, physical activity, family history of cancer, and family history of common chronic disease were associated with overweight /obesity and central obesity. Besides, education and missing teeth were only associated with central obesity. General and central obesity were positively associated with UGC, while general obesity was negatively associated with UGC precancerous diseases. There were no significant associations between obesity and UGC precancerous lesions. Subgroup analyses showed that general and central obesity was positively associated with gastric cancer but not significantly associated with esophageal cancer. Obesity is negatively and positively associated with gastric and esophageal precancerous diseases, respectively. In conclusion, general and central obesity were at high levels in the target population in this study. Most included factors influenced overweight/obesity and central obesity simultaneously. Policymakers should urgently develop individualized measures to reduce local obesity levels according to obesity characteristics. Besides, obesity increases the risk of UGC but decreases the risk of UGC precancerous diseases, especially in the stomach. The effect of obesity on the precancerous diseases of the gastric and esophagus appears to be the opposite. No significant association between obesity and upper gastrointestinal precancerous lesions was found in the study. This finding still needs to be validated in cohort studies.
Collapse
Affiliation(s)
- Xiang Feng
- Institute of Tumour Prevention and Control, Yangzhong People's Hospital, Yangzhong, 212200, China.
| | - Jinhua Zhu
- Institute of Tumour Prevention and Control, Yangzhong People's Hospital, Yangzhong, 212200, China.
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210000, China.
| | - Zhaolai Hua
- Institute of Tumour Prevention and Control, Yangzhong People's Hospital, Yangzhong, 212200, China
| | - Shenghua Yao
- Department of Gastroenterology, Yangzhong People's Hospital, Yangzhong, 212200, China
| | - Hongjun Yin
- Department of Gastroenterology, Yangzhong People's Hospital, Yangzhong, 212200, China
| | - Qiuping Shi
- Institute of Tumour Prevention and Control, Yangzhong People's Hospital, Yangzhong, 212200, China
| | - Jinyi Zhou
- Department of Non-Communicable Disease Prevention and Control, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, 210009, China
| |
Collapse
|
6
|
d'Avila JDC, Moreira El Nabbout TG, Georges Moreira El Nabbout H, Silva ADS, Barbosa Ramos Junior AC, Fonseca ERD, Santana Carlos A, de Azeredo Siqueira R. Correlation between low handgrip strength and metabolic syndrome in older adults: a systematic review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230026. [PMID: 38709150 PMCID: PMC11081056 DOI: 10.20945/2359-4292-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/07/2024] [Indexed: 05/07/2024]
Abstract
Muscle weakness has been associated to insulin resistance and metabolic syndrome in the general population. However, it is still unclear whether this association is maintained in older adults. This study investigated correlations between low handgrip strength (HGS) and metabolic syndrome, or some of its components, in older adults through a systematic review of the literature. Searches were conducted in the Virtual Health Library Regional Portal, Scopus, Cochrane, Embase, MEDLINE/ PubMed, SciELO, and Web of Science databases for relevant studiesinvestigating muscle weakness (measured by hand dynamometer) and metabolic syndrome or its components in older adult populations, published up to September 2023. From the 2050 references initially identified, 20 studies, comprising a total of 31,264 older adults of both genders, completely met the inclusion/exclusion criteria. Eighteen studies showed that lower HGS was associated with metabolic syndrome or some of its risk factors, such as abdominal obesity, hyperglycemia, insulin resistance, dyslipidemia, or high blood pressure. Two studies found that older men with high blood pressure had increased HGS. Most studies included in this systematic review revealed a significant correlation between reduced HGS and metabolic syndrome or some of its components, especially abdominal obesity and insulin resistance. We conclude that below-average HGS can be associated with metabolic syndrome in older adults.
Collapse
Affiliation(s)
- Joana da Costa d'Avila
- Grupo de Pesquisa em Biologia Experimental e Humana, Laboratório de Pesquisa Pré-clínica, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brasil,
| | - Talel Georges Moreira El Nabbout
- Grupo de Pesquisa em Biologia Experimental e Humana, Laboratório de Pesquisa Pré-clínica, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brasil
| | - Hayfa Georges Moreira El Nabbout
- Grupo de Pesquisa em Biologia Experimental e Humana, Laboratório de Pesquisa Pré-clínica, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brasil
| | - Aline Dos Santos Silva
- Grupo de Pesquisa em Biologia Experimental e Humana, Laboratório de Pesquisa Pré-clínica, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brasil
| | - Antonio Carlos Barbosa Ramos Junior
- Grupo de Pesquisa em Biologia Experimental e Humana, Laboratório de Pesquisa Pré-clínica, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brasil
| | - Eliana Rosa da Fonseca
- Sistema de Bibliotecas e Informação da Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil
| | - Aluana Santana Carlos
- Grupo de Pesquisa em Biologia Experimental e Humana, Laboratório de Pesquisa Pré-clínica, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brasil
| | - Rodrigo de Azeredo Siqueira
- Grupo de Pesquisa em Biologia Experimental e Humana, Laboratório de Pesquisa Pré-clínica, Universidade Iguaçu (UNIG), Nova Iguaçu, RJ, Brasil
| |
Collapse
|
7
|
Akgul YSS, Akin S, Cengiz BE, Kocaslan D, Ozer NT. Body composition assessment for sarcopenic obesity and 3-year mortality in older adults: A comparison study. JPEN J Parenter Enteral Nutr 2024; 48:460-468. [PMID: 38400558 DOI: 10.1002/jpen.2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND There is no universally accepted definition of sarcopenic obesity (SO), and its prevalence is ambiguous. This study aimed to investigate the prevalence of SO in older adults based on different definitions and determine which predicts all-cause mortality. METHODS This prospective longitudinal follow-up study included outpatients aged ≥60 years. SO was defined by sarcopenia definition based on the European Working Group on Sarcopenia in Older People 2 (EWGSOP2) criteria plus obesity. Three different methods were used to define obesity. Body mass index (BMI) ≥ 30 kg/m2, waist circumference (WC) ≥ 102 cm for men and ≥88.0 cm for women, and body fat percentage (BF%) ≥ 37.3% for men and ≥51.1% for women. Different definitions of SO and their mortality predictions were compared. RESULTS The median age of the 584 patients in the study was 70.0 (interquartile range, 66.0-76.0) years. The prevalence of sarcopenia was 38.5% (47.5% in men and 35.7% in women). The prevalence of SO based on BMI, WC, and BF% was 15.3%, 16.4%, and 10.5%, respectively. The mortality rate was 6.7%. SO based on BMI (odds ratio [OR], 2.73; 95% CI, 1.12-17.9; P = 0.024) and BF% (OR, 1.43; 95% CI, 1.19-3.02; P = 0.007) were significantly associated with 3-year mortality after adjusting for the confounding variables of age, sex, and number of comorbidities. SO based on WC was not associated with mortality (OR, 0.78; 95% CI, 0.07-1.27; P = 0.104). CONCLUSION The use of BF% and BMI for defining SO is appropriate in outpatient older adults.
Collapse
Affiliation(s)
- Yavuz Sultan Selim Akgul
- Division of Geriatrics, Department of Internal Medicine, Erciyes School of Medicine, Erciyes University, Kayseri, Türkiye
| | - Sibel Akin
- Division of Geriatrics, Department of Internal Medicine, Erciyes School of Medicine, Erciyes University, Kayseri, Türkiye
| | - Burcu Eren Cengiz
- Division of Geriatrics, Department of Internal Medicine, Erciyes School of Medicine, Erciyes University, Kayseri, Türkiye
| | - Derya Kocaslan
- Division of Geriatrics, Department of Internal Medicine, Erciyes School of Medicine, Erciyes University, Kayseri, Türkiye
| | - Nurhayat Tugra Ozer
- Department of Nutrition and Dietetic, Faculty of Health Science, Agri Ibrahim Cecen University, Agri, Türkiye
| |
Collapse
|
8
|
Kar A, Alvarez M, Garske KM, Huang H, Lee SHT, Deal M, Das SS, Koka A, Jamal Z, Mohlke KL, Laakso M, Heinonen S, Pietiläinen KH, Pajukanta P. Age-dependent genes in adipose stem and precursor cells affect regulation of fat cell differentiation and link aging to obesity via cellular and genetic interactions. Genome Med 2024; 16:19. [PMID: 38297378 PMCID: PMC10829214 DOI: 10.1186/s13073-024-01291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Age and obesity are dominant risk factors for several common cardiometabolic disorders, and both are known to impair adipose tissue function. However, the underlying cellular and genetic factors linking aging and obesity on adipose tissue function have remained elusive. Adipose stem and precursor cells (ASPCs) are an understudied, yet crucial adipose cell type due to their deterministic adipocyte differentiation potential, which impacts the capacity to store fat in a metabolically healthy manner. METHODS We integrated subcutaneous adipose tissue (SAT) bulk (n=435) and large single-nucleus RNA sequencing (n=105) data with the UK Biobank (UKB) (n=391,701) data to study age-obesity interactions originating from ASPCs by performing cell-type decomposition, differential expression testing, cell-cell communication analyses, and construction of polygenic risk scores for body mass index (BMI). RESULTS We found that the SAT ASPC proportions significantly decrease with age in an obesity-dependent way consistently in two independent cohorts, both showing that the age dependency of ASPC proportions is abolished by obesity. We further identified 76 genes (72 SAT ASPC marker genes and 4 transcription factors regulating ASPC marker genes) that are differentially expressed by age in SAT and functionally enriched for developmental processes and adipocyte differentiation (i.e., adipogenesis). The 76 age-perturbed ASPC genes include multiple negative regulators of adipogenesis, such as RORA, SMAD3, TWIST2, and ZNF521, form tight clusters of longitudinally co-expressed genes during human adipogenesis, and show age-based differences in cellular interactions between ASPCs and adipose cell types. Finally, our genetic data demonstrate that cis-regional variants of these genes interact with age as predictors of BMI in an obesity-dependent way in the large UKB, while no such gene-age interaction on BMI is observed with non-age-dependent ASPC marker genes, thus independently confirming our cellular ASPC results at the biobank level. CONCLUSIONS Overall, we discover that obesity prematurely induces a decrease in ASPC proportions and identify 76 developmentally important ASPC genes that implicate altered negative regulation of fat cell differentiation as a mechanism for aging and directly link aging to obesity via significant cellular and genetic interactions.
Collapse
Affiliation(s)
- Asha Kar
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Kristina M Garske
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Huiling Huang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, USA
| | - Seung Hyuk T Lee
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Milena Deal
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Sankha Subhra Das
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Amogha Koka
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Zoeb Jamal
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA.
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, USA.
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, USA.
| |
Collapse
|
9
|
Méndez N, Corvalan F, Halabi D, Ehrenfeld P, Maldonado R, Vergara K, Seron-Ferre M, Torres-Farfan C. From gestational chronodisruption to noncommunicable diseases: Pathophysiological mechanisms of programming of adult diseases, and the potential therapeutic role of melatonin. J Pineal Res 2023; 75:e12908. [PMID: 37650128 DOI: 10.1111/jpi.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
During gestation, the developing fetus relies on precise maternal circadian signals for optimal growth and preparation for extrauterine life. These signals regulate the daily delivery of oxygen, nutrients, hormones, and other biophysical factors while synchronizing fetal rhythms with the external photoperiod. However, modern lifestyle factors such as light pollution and shift work can induce gestational chronodisruption, leading to the desynchronization of maternal and fetal circadian rhythms. Such disruptions have been associated with adverse effects on cardiovascular, neurodevelopmental, metabolic, and endocrine functions in the fetus, increasing the susceptibility to noncommunicable diseases (NCDs) in adult life. This aligns with the Developmental Origins of Health and Disease theory, suggesting that early-life exposures can significantly influence health outcomes later in life. The consequences of gestational chronodisruption also extend into adulthood. Environmental factors like diet and stress can exacerbate the adverse effects of these disruptions, underscoring the importance of maintaining a healthy circadian rhythm across the lifespan to prevent NCDs and mitigate the impact of gestational chronodisruption on aging. Research efforts are currently aimed at identifying potential interventions to prevent or mitigate the effects of gestational chronodisruption. Melatonin supplementation during pregnancy emerges as a promising intervention, although further investigation is required to fully understand the precise mechanisms involved and to develop effective strategies for promoting health and preventing NCDs in individuals affected by gestational chronodisruption.
Collapse
Affiliation(s)
- Natalia Méndez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Corvalan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Halabi
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Maldonado
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Maria Seron-Ferre
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago de Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
10
|
AlZaim I, de Rooij LPMH, Sheikh BN, Börgeson E, Kalucka J. The evolving functions of the vasculature in regulating adipose tissue biology in health and obesity. Nat Rev Endocrinol 2023; 19:691-707. [PMID: 37749386 DOI: 10.1038/s41574-023-00893-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Adipose tissue is an endocrine organ and a crucial regulator of energy storage and systemic metabolic homeostasis. Additionally, adipose tissue is a pivotal regulator of cardiovascular health and disease, mediated in part by the endocrine and paracrine secretion of several bioactive products, such as adipokines. Adipose vasculature has an instrumental role in the modulation of adipose tissue expansion, homeostasis and metabolism. The role of the adipose vasculature has been extensively explored in the context of obesity, which is recognized as a global health problem. Obesity-induced accumulation of fat, in combination with vascular rarefaction, promotes adipocyte dysfunction and induces oxidative stress, hypoxia and inflammation. It is now recognized that obesity-associated endothelial dysfunction often precedes the development of cardiovascular diseases. Investigations have revealed heterogeneity within the vascular niche and dynamic reciprocity between vascular and adipose cells, which can become dysregulated in obesity. Here we provide a comprehensive overview of the evolving functions of the vasculature in regulating adipose tissue biology in health and obesity.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laura P M H de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Emma Börgeson
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
11
|
Zhang L, Guan Q, Wang Z, Feng J, Zou J, Gao B. Consequences of Aging on Bone. Aging Dis 2023; 15:2417-2452. [PMID: 38029404 PMCID: PMC11567267 DOI: 10.14336/ad.2023.1115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
With the aging of the global population, the incidence of musculoskeletal diseases has been increasing, seriously affecting people's health. As people age, the microenvironment within skeleton favors bone resorption and inhibits bone formation, accompanied by bone marrow fat accumulation and multiple cellular senescence. Specifically, skeletal stem/stromal cells (SSCs) during aging tend to undergo adipogenesis rather than osteogenesis. Meanwhile, osteoblasts, as well as osteocytes, showed increased apoptosis, decreased quantity, and multiple functional limitations including impaired mechanical sensing, intercellular modulation, and exosome secretion. Also, the bone resorption function of macrophage-lineage cells (including osteoclasts and preosteoclasts) was significantly enhanced, as well as impaired vascularization and innervation. In this study, we systematically reviewed the effect of aging on bone and the within microenvironment (including skeletal cells as well as their intracellular structure variations, vascular structures, innervation, marrow fat distribution, and lymphatic system) caused by aging, and mechanisms of osteoimmune regulation of the bone environment in the aging state, and the causal relationship with multiple musculoskeletal diseases in addition with their potential therapeutic strategy.
Collapse
Affiliation(s)
- Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jie Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
12
|
Gross DC, Cheever CR, Batsis JA. Understanding the development of sarcopenic obesity. Expert Rev Endocrinol Metab 2023; 18:469-488. [PMID: 37840295 PMCID: PMC10842411 DOI: 10.1080/17446651.2023.2267672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Sarcopenic obesity (SarcO) is defined as the confluence of reduced muscle mass and function and excess body fat. The scientific community is increasingly recognizing this syndrome, which affects a subgroup of persons across their lifespans and places them at synergistically higher risk of significant medical comorbidity and disability than either sarcopenia or obesity alone. Joint efforts in clinical and research settings are imperative to better understand this syndrome and drive the development of urgently needed future interventions. AREAS COVERED Herein, we describe the ongoing challenges in defining sarcopenic obesity and the current state of the science regarding its epidemiology and relationship with adverse events. The field has demonstrated an emergence of data over the past decade which we will summarize in this article. While the etiology of sarcopenic obesity is complex, we present data on the underlying pathophysiological mechanisms that are hypothesized to promote its development, including age-related changes in body composition, hormonal changes, chronic inflammation, and genetic predisposition. EXPERT OPINION We describe emerging areas of future research that will likely be needed to advance this nascent field, including changes in clinical infrastructure, an enhanced understanding of the lifecourse, and potential treatments.
Collapse
Affiliation(s)
- Danae C. Gross
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - C. Ray Cheever
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John A. Batsis
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Geriatric Medicine, UNC School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Yang X, Wang Y, Rovella V, Candi E, Jia W, Bernassola F, Bove P, Piacentini M, Scimeca M, Sica G, Tisone G, Mauriello A, Wei L, Melino G, Shi Y. Aged mesenchymal stem cells and inflammation: from pathology to potential therapeutic strategies. Biol Direct 2023; 18:40. [PMID: 37464416 PMCID: PMC10353240 DOI: 10.1186/s13062-023-00394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments.
Collapse
Affiliation(s)
- Xue Yang
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Ying Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233 China
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Pierluigi Bove
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Sica
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438 China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, 00133 Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu China
| |
Collapse
|
14
|
Chen YR, Xiao F, Tang HN, Wang T, Zhou YH, Iqbal J, Yang SB, Li L, Zhou H. Plasticity of adipose tissues in response to fasting and refeeding declines with aging in mice. Aging (Albany NY) 2023; 15:204734. [PMID: 37227808 DOI: 10.18632/aging.204734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
To explore the plasticity of adipose tissues, C57BL/6J mice at the age of 1 month, 3 months, and 15 months corresponding to adolescence, adulthood, and middle-aged transitional period, respectively, were fasted and refed subsequently at different times. Body adipose tissues ratio (BATR) was calculated, the morphology of adipose tissue and the area of adipocytes were observed by histological analysis, and the mitochondria in adipocytes were observed under the transmission electron microscope. Furthermore, the expression levels of Ucp-1, Cidea, Cox7a1, Cpt-1m, Atgl, and Hsl were detected by qRT-PCR. Our results showed a significant increase in the adipocytes area and body visceral adipose tissue (VAT) ratio in all groups of mice with aging. Moreover, body mesenteric white adipose tissue (mWAT) ratio decreased the most after 72 h fasting. In the middle-aged transitional mice, the white adipocytes did not decrease until 72 h fasting, and most of them still appeared as unaffected unilocular cells. Besides, the number of mitochondria and the expression of Ucp-1, Cidea, Cox7a1, Cpt-1m, Atgl and Hsl were lower in these mice. After 72h refeeding, the body subcutaneous white adipose tissue (sWAT) ratio returned to normal, while the VAT kept decreasing. The above results indicated an impairment in adipose tissue plasticity in mice with aging, suggesting that age modulated the metabolic adaptiveness of adipose tissues in mice.
Collapse
Affiliation(s)
- Ya-Ru Chen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hao-Neng Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Ting Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Junaid Iqbal
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shui-Bing Yang
- Department of Endocrinology, The First People's Hospital of Huaihua, Huaihua 418000, Hunan, China
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
15
|
Abstract
SUMMARY Over the past 30 years, there has been a dramatic increase in the use of autologous fat grafting for soft-tissue augmentation and to improve facial skin quality. Several studies have highlighted the impact of aging on adipose tissue, leading to a decrease of adipose tissue volume and preadipocyte proliferation and increase of fibrosis. Recently, there has been a rising interest in adipose tissue components, including adipose-derived stem/stromal cells (ASCs) because of their regenerative potential, including inflammation, fibrosis, and vascularization modulation. Because of their differentiation potential and paracrine function, ASCs have been largely used for fat grafting procedures, as they are described to be a key component in fat graft survival. However, many parameters as surgical procedures or adipose tissue biology could change clinical outcomes. Variation on fat grafting methods have led to numerous inconsistent clinical outcomes. Donor-to-donor variation could also be imputed to ASCs, tissue inflammatory state, or tissue origin. In this review, the authors aim to analyze (1) the parameters involved in graft survival, and (2) the effect of aging on adipose tissue components, especially ASCs, that could lead to a decrease of skin regeneration and fat graft retention. CLINICAL RELEVANCE STATEMENT This review aims to enlighten surgeons about known parameters that could play a role in fat graft survival. ASCs and their potential mechanism of action in regenerative medicine are more specifically described.
Collapse
|
16
|
Wołoszyn N, Brożonowicz J, Grzegorczyk J, Leszczak J, Kwolek A, Wiśniowska-Szurlej A. The Impact of Physical Exercises with Elements of Dance Movement Therapy on Anthropometric Parameters and Physical Fitness among Functionally Limited Older Nursing Home Residents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3827. [PMID: 36900835 PMCID: PMC10001087 DOI: 10.3390/ijerph20053827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Changes in the composition of the body mass of functionally limited older patients may contribute to a decrease in functional fitness and the development of chronic diseases. This research aimed to assess the differences in anthropometric parameters and physical fitness of older patients, over the age of 65, in a 12-week clinical intervention study. Method: The study participants were nursing home inhabitants aged 65-85 who were functionally limited. Persons meeting the inclusion criteria were assigned to one of the three groups: Group 1-basic exercises/BE group (n = 56); Group 2-physical exercises with elements of dancing/PED group (n = 57); Group 3-control group/CO group (n = 56) routine care. The data were collected at the beginning of the study and at the 12-week mark. The outcome was observed for hand grip strength (HGS), arm curl test (ACT), Barthel Index (BI), Berg Balance Scale (BBS), triceps skin fold (TSF), waist-to-hip-ratio (WHR), and arm muscle area (AMA). Results: The study included 98 women and 71 men. The average age of the participants was 74.40 years. The analysis of the effects of the 12-week exercise program showed the greatest changes in HGS, ACT, and BI in the exercise groups, especially in the PED group compared to the BE group. Statistically significant differences in the examined parameters of the PED vs. BE vs. CO groups were demonstrated in favour of the exercising groups. In conclusion, a 12-week program of group physical exercises, both PED and BE, improves physical fitness indicators and anthropometric indicators.
Collapse
Affiliation(s)
- Natalia Wołoszyn
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, 35-310 Rzeszów, Poland
- DONUM CORDE Rehabilitation and Medical Care Center, 36-060 Budy Głogowskie, Poland
| | - Justyna Brożonowicz
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, 35-310 Rzeszów, Poland
- DONUM CORDE Rehabilitation and Medical Care Center, 36-060 Budy Głogowskie, Poland
| | - Joanna Grzegorczyk
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Justyna Leszczak
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, 35-310 Rzeszów, Poland
- DONUM CORDE Rehabilitation and Medical Care Center, 36-060 Budy Głogowskie, Poland
| | - Andrzej Kwolek
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Agnieszka Wiśniowska-Szurlej
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, 35-310 Rzeszów, Poland
- DONUM CORDE Rehabilitation and Medical Care Center, 36-060 Budy Głogowskie, Poland
| |
Collapse
|
17
|
Sinclair AJ, Abdelhafiz AH. Metabolic Impact of Frailty Changes Diabetes Trajectory. Metabolites 2023; 13:metabo13020295. [PMID: 36837914 PMCID: PMC9960364 DOI: 10.3390/metabo13020295] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Diabetes mellitus prevalence increases with increasing age. In older people with diabetes, frailty is a newly emerging and significant complication. Frailty induces body composition changes that influence the metabolic state and affect diabetes trajectory. Frailty appears to have a wide metabolic spectrum, which can present with an anorexic malnourished phenotype and a sarcopenic obese phenotype. The sarcopenic obese phenotype individuals have significant loss of muscle mass and increased visceral fat. This phenotype is characterised by increased insulin resistance and a synergistic increase in the cardiovascular risk more than that induced by obesity or sarcopenia alone. Therefore, in this phenotype, the trajectory of diabetes is accelerated, which needs further intensification of hypoglycaemic therapy and a focus on cardiovascular risk reduction. Anorexic malnourished individuals have significant weight loss and reduced insulin resistance. In this phenotype, the trajectory of diabetes is decelerated, which needs deintensification of hypoglycaemic therapy and a focus on symptom control and quality of life. In the sarcopenic obese phenotype, the early use of sodium-glucose transporter-2 inhibitors and glucagon-like peptide-1 receptor agonists is reasonable due to their weight loss and cardio-renal protection properties. In the malnourished anorexic phenotype, the early use of long-acting insulin analogues is reasonable due to their weight gain and anabolic properties, regimen simplicity and the convenience of once-daily administration.
Collapse
Affiliation(s)
- Alan J. Sinclair
- Foundation for Diabetes Research in Older People (fDROP), King’s College, London WC2R 2LS, UK
| | - Ahmed H. Abdelhafiz
- Foundation for Diabetes Research in Older People (fDROP), King’s College, London WC2R 2LS, UK
- Department of Geriatric Medicine Rotherham General Hospital, Rotherham S60 2UD, UK
- Correspondence:
| |
Collapse
|
18
|
Bogard G, Barthelemy J, Hantute-Ghesquier A, Sencio V, Brito-Rodrigues P, Séron K, Robil C, Flourens A, Pinet F, Eberlé D, Trottein F, Duterque-Coquillaud M, Wolowczuk I. SARS-CoV-2 infection induces persistent adipose tissue damage in aged golden Syrian hamsters. Cell Death Dis 2023; 14:75. [PMID: 36725844 PMCID: PMC9891765 DOI: 10.1038/s41419-023-05574-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
Coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)) is primarily a respiratory illness. However, various extrapulmonary manifestations have been reported in patients with severe forms of COVID-19. Notably, SARS-CoV-2 was shown to directly trigger white adipose tissue (WAT) dysfunction, which in turn drives insulin resistance, dyslipidemia, and other adverse outcomes in patients with COVID-19. Although advanced age is the greatest risk factor for COVID-19 severity, published data on the impact of SARS-CoV-2 infection on WAT in aged individuals are scarce. Here, we characterized the response of subcutaneous and visceral WAT depots to SARS-CoV-2 infection in young adult and aged golden hamsters. In both age groups, infection was associated with a decrease in adipocyte size in the two WAT depots; this effect was partly due to changes in tissue's lipid metabolism and persisted for longer in aged hamsters than in young-adult hamsters. In contrast, only the subcutaneous WAT depot contained crown-like structures (CLSs) in which dead adipocytes were surrounded by SARS-CoV-2-infected macrophages, some of them forming syncytial multinucleated cells. Importantly, older age predisposed to a unique manifestation of viral disease in the subcutaneous WAT depot during SARS-CoV-2 infection; the persistence of very large CLSs was indicative of an age-associated defect in the clearance of dead adipocytes by macrophages. Moreover, we uncovered age-related differences in plasma lipid profiles during SARS-CoV-2 infection. These data suggest that the WAT's abnormal response to SARS-CoV-2 infection may contribute to the greater severity of COVID-19 observed in elderly patients.
Collapse
Affiliation(s)
- Gemma Bogard
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Johanna Barthelemy
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Aline Hantute-Ghesquier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Valentin Sencio
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Patricia Brito-Rodrigues
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Karin Séron
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Cyril Robil
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Anne Flourens
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Florence Pinet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Delphine Eberlé
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - François Trottein
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France
| | - Martine Duterque-Coquillaud
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Isabelle Wolowczuk
- Univ. Lille, Institut National de la Santé et de la Recherche Médicale (Inserm), Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019-UMR9017-Center for Infection and Immunity of Lille (CIIL), F-59000, Lille, France.
| |
Collapse
|
19
|
Liu C, Wong PY, Chung YL, Chow SKH, Cheung WH, Law SW, Chan JCN, Wong RMY. Deciphering the "obesity paradox" in the elderly: A systematic review and meta-analysis of sarcopenic obesity. Obes Rev 2023; 24:e13534. [PMID: 36443946 DOI: 10.1111/obr.13534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Aging and obesity are two global concerns in public health. Sarcopenic obesity (SO), defined as the combination of age-related sarcopenia and obesity, has become a pressing issue. This systematic review and meta-analysis summarize the current clinical evidence relevant to SO. PubMed, Embase, and Web of Science were searched, and 106 clinical studies with 167,151 elderlies were included. The estimated prevalence of SO was 9% in both men and women. Obesity was associated with 34% reduced risk of sarcopenia (odds ratio [OR] 0.66, 95% CI 0.48-0.91; p < 0.001). The pooled hazard ratio (HR) of all-cause mortality was 1.51 (95% CI 1.14-2.02; p < 0.001) for people with SO compared with healthy individuals. SO was associated with increased risk of cardiovascular disease and related mortality, metabolic disorders, cognitive impairment, arthritis, functional limitation, and lung diseases (all ORs > 1.0, p < 0.05). The attenuated risk of sarcopenia in elderlies with obesity ("obesity paradox") was dependent on higher muscle mass and strength. Apart from unifying the diagnosis of SO, more research is needed to subphenotype people with obesity and sarcopenia for individualized treatment. Meanwhile, the maintenance of proper body composition of muscle and fat may delay or attenuate the adverse outcomes of aging.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yik Lok Chung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sheung Wai Law
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Juliana Chung Ngor Chan
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Kanazashi M, Iida T, Nakanishi R, Tanaka M, Ikeda H, Takamiya N, Maeshige N, Kondo H, Nishigami T, Harada T, Fujino H. Brazilian Propolis Intake Decreases Body Fat Mass and Oxidative Stress in Community-Dwelling Elderly Females: A Randomized Placebo-Controlled Trial. Nutrients 2023; 15:nu15020364. [PMID: 36678234 PMCID: PMC9861743 DOI: 10.3390/nu15020364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
This study aimed to investigate the effects of Brazilian propolis on body fat mass and levels of adiponectin and reactive oxygen species among community-dwelling elderly females. This was a double-blind randomized placebo-controlled trial. Altogether, 78 females aged 66-84 years were randomly assigned to the propolis (PRO; n = 39) or placebo (PLA; n = 39) group. For 12 weeks, the PRO group were given three capsules containing 227 mg of propolis twice a day. Meanwhile, the PLA group were given daily placebo capsules. Of 78 participants, 53 (PLA group: n = 28, PRO group: n = 25) completed the study. Although no changes were observed in absolute or relative fat mass in the PLA group, they showed a significant decline in the PRO group. The level of serum adiponectin in the PLA group did not change, although that of the PRO group significantly increased. The level of d-ROMs in the PLA group significantly increased, whereas that of the PRO group significantly decreased. The serum SOD activity in the PLA group significantly decreased, whereas that of the PRO group tended to increase. These results suggest that propolis supplementation may decrease body fat mass and oxidative stress among community-dwelling elderly females.
Collapse
Affiliation(s)
- Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Tadayuki Iida
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Ryosuke Nakanishi
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Kobe 658-0032, Japan
| | - Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, Okayama 700-0913, Japan
| | - Hiromi Ikeda
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Naomi Takamiya
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women’s University, Nagoya 467-8611, Japan
| | - Tomohiko Nishigami
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Toshihide Harada
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
- Correspondence: ; Tel.: +81-78-796-4542
| |
Collapse
|
21
|
Chen S, Huang X. Cytosolic lipolysis in non-adipose tissues: energy provision and beyond. FEBS J 2022; 289:7385-7398. [PMID: 34407292 DOI: 10.1111/febs.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/18/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Cytosolic lipolysis is a well-defined biochemical process that plays important roles in the mobilization of stored neutral lipids. Lipid turnover, regulated by cytosolic lipolysis, has been extensively studied in adipose tissue, liver, and muscle. The storage and utilization of neutral lipids is a basic function of most, if not all, tissues and cells. In this review, we focus on the functions of cytosolic lipolysis mainly in non-adipose tissues and in several physiological processes, including cancer, longevity, and pathogen infection. The mechanisms underlying the impact of cytosolic lipolysis on these events will be discussed. Detailed understanding of cytosolic lipolysis in both adipose and non-adipose tissues will have implications for future clinical translation.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Arikawa AY, Snyder J, Ross JM, Harris M, Perez D, Bednarzyk M. Dietary Supplement Intake is Associated with Healthier Lifestyle Behaviors in College Students Attending a Regional University in the Southeast: A Cross-Sectional Study. J Diet Suppl 2022; 20:870-884. [PMID: 36255153 DOI: 10.1080/19390211.2022.2134532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The relationship between intake of dietary supplements and biomarkers such as insulin and insulin-like growth factor has not been well explored. The primary aim of this cross-sectional study was to investigate the associations between supplement intake and biological and lifestyle factors. We hypothesized that dietary supplement intake was associated with healthier lifestyle behaviors. College students attending a Southeast university were recruited between January 2018 and April 2019. Blood samples were collected to measure insulin, insulin-like growth factor 1 (IGF-1) and alanine aminotransferase (ALT). Statistical tests employed were linear regression and analysis of variance. Ninety-eight participants completed the study and 91% reported taking at least one supplement, while 5.1% reported taking 9+ supplements once per week. There were no differences in levels of insulin, IGF-1 and ALT by levels of dietary supplement intake. Although there were no differences in HEI-2015 score among the groups, those who consumed five or more supplements met a higher percentage of the recommended intake for fruits, performed aerobic exercise for longer duration, and had lower body fat percentage compared to participants who consumed two or less supplements at least once per week. These findings are consistent with previous studies and suggest that dietary supplement intake is highly prevalent in college students, and it may be related to healthy lifestyle behaviors. Future studies should employ mixed methodology to examine reasons by which college students consume dietary supplements and to assess perceived and direct health benefits associated with consumption.
Collapse
Affiliation(s)
- Andrea Y Arikawa
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, Florida, USA
| | - Jill Snyder
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, Florida, USA
| | - Jenifer M Ross
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, Florida, USA
| | - Michel Harris
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, Florida, USA
| | - Doreen Perez
- Student Health Services, University of North Florida, Jacksonville, Florida, USA
| | - Michele Bednarzyk
- School of Nursing, University of North Florida, Jacksonville, Florida, USA
| |
Collapse
|
23
|
El-Kafoury B, Mohamed F, Bahgat N, El Samad AA, Shawky M, Abdel-Hady EA. Failure of subcutaneous lipectomy to combat metabolic dysregulations in ovariectomy-induced obesity in young female rats. Hormones (Athens) 2022; 21:421-436. [PMID: 35486321 PMCID: PMC9464754 DOI: 10.1007/s42000-022-00371-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The deleterious effect of visceral adipose tissue accumulation is well known. However, the recent trend in liposuction is mal-directed toward easily accessible subcutaneous fat for the purpose of body shaping. The aim of the present study is to probe the metabolic effects of subcutaneous abdominal adipose tissue lipectomy in ovariectomized obese rats as well as the role of adipokines in these changes. METHODS The study was conducted on young female rats randomized into two main groups according to the duration of the experiment, namely, 5-week and 10-week. Both groups were subdivided as follows: sham-operated, ovariectomized, and ovariectomized lipectomized rat groups. The rats underwent measurement of body weight (BW) and determination of body mass index (BMI). Fasting blood glucose, lipid profile, liver function, plasma malondialdehyde, leptin, and adiponectin were estimated, and the content of both blood and hepatic tissue of reduced glutathione was assessed. In addition, histological study of the liver, aorta, and perirenal fat of all rat groups was performed. RESULTS Ovariectomy-induced obesity is marked by a significant increase in BW and BMI. Following subcutaneous lipectomy, the rats exhibited significant weight gain accompanied by fasting hyperglycemia, dyslipidemia, deterioration of synthetic function of the liver, and disturbed oxidant/antioxidant status. Histological examination revealed fatty infiltration of aortic and hepatic tissues. CONCLUSION Despite the immediate positive effect of subcutaneous lipectomy for weight loss and/or body shaping, multiple delayed hazards follow the procedure, which should be carefully considered.
Collapse
Affiliation(s)
- Bataa El-Kafoury
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatma Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nehal Bahgat
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abeer Abd El Samad
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona Shawky
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A Abdel-Hady
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
24
|
Fernandez NC, Shinoda K. The Role of B Lymphocyte Subsets in Adipose Tissue Development, Metabolism, and Aging. Compr Physiol 2022; 12:4133-4145. [PMID: 35950657 DOI: 10.1002/cphy.c220006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adipose tissue contains resident B lymphocytes (B cells) with varying immune functions and mechanisms, depending on the adipose depot type and location. The heterogeneity of B cells and their functions affect the immunometabolism of the adipose tissue in aging and age-associated metabolic disorders. B cells exist in categorizations of subsets that have developmental or phenotypic differences with varying functionalities. Subsets can be categorized as either protective or pathogenic depending on their secretion profile or involvement in metabolic maintenance. In this article, we summarized recent finding on the B cell heterogeneity and discuss how we can utilize our current knowledge of adipose resident B lymphocytes for potential treatment for age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 1-13, 2022.
Collapse
Affiliation(s)
- Nicole C Fernandez
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Division of Endocrinology & Diabetes, Albert Einstein College of Medicine, Bronx, New York, USA
- Fleischer Institute for Diabetes and Metabolism, Bronx, New York, USA
| |
Collapse
|
25
|
Obesity and Bone Health: A Complex Relationship. Int J Mol Sci 2022; 23:ijms23158303. [PMID: 35955431 PMCID: PMC9368241 DOI: 10.3390/ijms23158303] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Recent scientific evidence has shown an increased risk of fractures in patients with obesity, especially in those with a higher visceral adipose tissue content. This contradicts the old paradigm that obese patients were more protected than those with normal weight. Specifically, in older subjects in whom there is a redistribution of fat from subcutaneous adipose tissue to visceral adipose tissue and an infiltration of other tissues such as muscle with the consequent sarcopenia, obesity can accentuate the changes characteristic of this age group that predisposes to a greater risk of falls and fractures. Other factors that determine a greater risk in older subjects with obesity are chronic proinflammatory status, altered adipokine secretion, vitamin D deficiency, insulin resistance and reduced mobility. On the other hand, diagnostic tests may be influenced by obesity and its comorbidities as well as by body composition, and risk scales may underestimate the risk of fractures in these patients. Weight loss with physical activity programs and cessation of high-fat diets may reduce the risk. Finally, more research is needed on the efficacy of anti-osteoporotic treatments in obese patients.
Collapse
|
26
|
Chen CA, Lai MC, Huang H, Wu CE. Interventions for Body Composition and Upper and Lower Extremity Muscle Strength in Older Adults in Rural Taiwan: A Horizontal Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137869. [PMID: 35805529 PMCID: PMC9266035 DOI: 10.3390/ijerph19137869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to understand the effects of a physical activity program and high-protein supplementation on body composition and upper and lower extremity muscle strength in male older adults in rural areas. In this study, 60 healthy male older adults (mean age 77.5 ± 4.6 years) from rural areas were recruited and randomly assigned to experimental group A (intervention of the physical activity program and high-protein supplementation), experimental group B (daily routine, with only intervention of high-protein supplementation), or control group C (daily routine). Experimental group A (EGa) carried out a physical activity plan three times a week, with an exercise intensity and calorie consumption of 250 kcal (5METs × ⅔hr × 75) for 3 months and drank a high-protein supplement (1.3 g/kg BW/day) after each exercise; experimental group B (EGb) followed only the intervention of high-protein supplementation. All the participants underwent pre- and post-tests for body composition, waist–hip circumference (WC, HC), handgrip strength (HS), 30 s dominant arm curl, 30 s sit to stand, and 2 min step tests. The results of the study showed that EGa significantly decreased body mass index (BMI), body fat mass (BFM), body fat percentage (BFP), WC, HC, and waist-to-hip ratio (WHR) and increased basal metabolic rate and muscle mass. Although both EGa and EGb used high-protein supplementation, EGa’s added three-month intervention of a physical activity program made it easier for that group to increase muscle mass and muscle strength. The WHR decreased from 1.015 to 0.931, representing a decrease of 8.28%, and an obvious weight loss effect was achieved. Thus, we concluded that the best way to maintain muscle strength in older adults is through physical activity with resistance and protein supplementation, which can reduce muscle loss in older adults.
Collapse
Affiliation(s)
- Chun-An Chen
- Ph.D. Program of Technology Management, Chung Hua University, Hsinchu 30012, Taiwan; (C.-A.C.); (C.-E.W.)
| | - Ming-Chi Lai
- Ph.D. Program of Technology Management, Chung Hua University, Hsinchu 30012, Taiwan; (C.-A.C.); (C.-E.W.)
- Correspondence:
| | - Hsuan Huang
- Department of Occupational Therapy, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Cheng-En Wu
- Ph.D. Program of Technology Management, Chung Hua University, Hsinchu 30012, Taiwan; (C.-A.C.); (C.-E.W.)
| |
Collapse
|
27
|
Molecular Mechanisms of Changes in Homeostasis of the Dermal Extracellular Matrix: Both Involutional and Mediated by Ultraviolet Radiation. Int J Mol Sci 2022; 23:ijms23126655. [PMID: 35743097 PMCID: PMC9223561 DOI: 10.3390/ijms23126655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Skin aging is a multi-factorial process that affects nearly every aspect of skin biology and function. With age, an impairment of structures, quality characteristics, and functions of the dermal extracellular matrix (ECM) occurs in the skin, which leads to disrupted functioning of dermal fibroblasts (DFs), the main cells supporting morphofunctional organization of the skin. The DF functioning directly depends on the state of the surrounding collagen matrix (CM). The intact collagen matrix ensures proper adhesion and mechanical tension in DFs, which allows these cells to maintain collagen homeostasis while ECM correctly regulates cellular processes. When the integrity of CM is destroyed, mechanotransduction is disrupted, which is accompanied by impairment of DF functioning and destruction of collagen homeostasis, thereby contributing to the progression of aging processes in skin tissues. This article considers in detail the processes of skin aging and associated changes in the skin layers, as well as the mechanisms of these processes at the molecular level.
Collapse
|
28
|
Xie H, Liu X, Zhou Q, Huang T, Zhang L, Gao J, Wang Y, Liu Y, Yan T, Zhang S, Wang CY. DNA Methylation Modulates Aging Process in Adipocytes. Aging Dis 2022; 13:433-446. [PMID: 35371604 PMCID: PMC8947842 DOI: 10.14336/ad.2021.0904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Aging has been recognized to be a highly complex biological health problem with a high risk of chronic diseases, including type 2 diabetes, atherosclerosis, chronic bronchitis or emphysema, cancer and Alzheimer's disease. Particularly, age-related turnover in adipose tissue is a major contributor to metabolic syndromes and shortened lifespan. Adipocytes undergo senescence in early stage, which results in adipose tissue metabolic dysfunction, redistribution, and inflammation. The well-established association between DNA methylation (DNAm) and aging has been observed in the past few decades. Indeed, age-related alteration in DNAm is highly tissue-specific. This review intends to summarize the advancements how DNAm changes coupled with aging process in adipose tissue, by which DNAm regulates cellular senescence, metabolic function, adipokine secretion and beiging process in adipocytes. Elucidation of the effect of DNAm on adipose aging would have great potential to the development of epigenetic therapeutic strategies against aging-related diseases in clinical settings.
Collapse
Affiliation(s)
- Hao Xie
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Liu
- Department of Interventional Radiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Teng Huang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuhan Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanjun Liu
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Sichuan, China.,The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Tong Yan
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Sichuan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Correspondence should be addressed to: Drs. Cong-Yi Wang () or Shu Zhang (), the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Correspondence should be addressed to: Drs. Cong-Yi Wang () or Shu Zhang (), the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Kianfar M, Afshari P, Abedi P, Haghighizadeh M. The relationship of a weight-efficacy lifestyle with anthropometric indices among middle-aged Iranian women. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2022. [DOI: 10.1080/16070658.2022.2051305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mahbobeh Kianfar
- Midwifery Department, Menopause Andropause Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Poorandokht Afshari
- Midwifery Department, Menopause Andropause Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Midwifery Department, Nursing and Midwifery School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parvin Abedi
- Midwifery Department, Menopause Andropause Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
30
|
Pétursdóttir Maack H, Sundström Poromaa I, Segeblad B, Lindström L, Jonsson M, Junus K, Wikström AK. Waist Circumference Measurement for Prediction of Preeclampsia: A Population-Based Cohort Study. Am J Hypertens 2022; 35:200-206. [PMID: 34570167 PMCID: PMC8807166 DOI: 10.1093/ajh/hpab156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Identifying women at high risk for preeclampsia is essential for the decision to start treatment with prophylactic aspirin. Prediction models have been developed for this purpose, and these typically incorporate body mass index (BMI). As waist circumference (WC) is a better predictor for metabolic and cardiovascular outcomes than BMI in nonpregnant populations, we aimed to investigate if WC is a BMI-independent predictor for preeclampsia and if the addition of WC to a prediction model for preeclampsia improves its performance. METHODS We used a population-based cohort of 4,696 women with WC measurements taken in the first trimester. The influence of WC on the risk of developing preeclampsia was evaluated by multivariable logistic regression. We generated receiver operating characteristic curves and calculated the area under the curve (AUC) to evaluate the usefulness of WC measurements for prediction of preeclampsia. RESULTS Women who developed preeclampsia had greater early pregnancy WC than women who did not (85.8 ± 12.6 vs. 82.3 ± 11.3 cm, P < 0.001). The risk of preeclampsia increased with larger WC in a multivariate model, adjusted odds ratio 1.02 (95% confidence interval 1.01-1.03). However, when adding BMI into the model, WC was not independently associated with preeclampsia. The AUC value for preeclampsia prediction with BMI and the above variables was 0.738 and remained unchanged with the addition of WC to the model. CONCLUSIONS Large WC is associated with a higher risk of preeclampsia, but adding WC to a prediction model for preeclampsia that already includes BMI does not improve the model's performance.
Collapse
Affiliation(s)
| | | | - Birgitta Segeblad
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Linda Lindström
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Maria Jonsson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Katja Junus
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Anna-Karin Wikström
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Senolytic effects of quercetin in an in vitro model of pre-adipocytes and adipocytes induced senescence. Sci Rep 2021; 11:23237. [PMID: 34853352 PMCID: PMC8636588 DOI: 10.1038/s41598-021-02544-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The dysfunction of adipose tissue with aging and the accumulation of senescent cells has been implicated in the pathophysiology of chronic diseases. Recently interventions capable of reducing the burden of senescent cells and in particular the identification of a new class of drugs termed senolytics have been object of extensive investigation. We used an in vitro model of induced senescence by treating both pre-adipocytes as well as mature adipocytes with hydrogen peroxide (H2O2) at a sub-lethal concentration for 3 h for three consecutive days, and hereafter with 20 uM quercetin at a dose that in preliminary experiments resulted to be senolytic without cytotoxicity. H2O2 treated pre-adipocytes and adipocytes showed typical senescence-associated features including increased beta-galactosidase activity (SA-ß-gal) and p21, activation of ROS and increased expression of pro-inflammatory cytokines. The treatment with quercetin in senescent pre-adipocytes and adipocytes was associated to a significant decrease in the number of the SA-β-gal positive cells along with the suppression of ROS and of inflammatory cytokines. Besides, quercetin treatment decreased miR-155-5p expression in both models, with down-regulation of p65 and a trend toward an up-regulation of SIRT-1 in complete cell extracts. The senolytic compound quercetin could affect AT ageing by reducing senescence, induced in our in vitro model by oxidative stress. The downregulation of miRNA-155-5p, possibly through the modulation of NF-κB and SIRT-1, could have a key role in the effects of quercetin on both pre-adipocytes and adipocytes.
Collapse
|
32
|
Abstract
Obesity is a major risk factor for the development of comorbidities such as type 2 diabetes, neurodegenerative disorders, osteoarthritis, cancer, cardiovascular and renal diseases. The onset of obesity is linked to an increase of senescent cells within adipose tissue and other organs. Cellular senescence is a stress response that has been shown to be causally linked to aging and development of various age-related diseases such as obesity. The senescence-associated-secretory phenotype of senescent cells creates a chronic inflammatory milieu that leads to local and systemic dysfunction. The elimination of senescent cells using pharmacological approaches (i.e., senolytics) has been shown to delay, prevent, or alleviate obesity-related organ dysfunction.
Collapse
Affiliation(s)
- Selim Chaib
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Blachman-Braun R, Talavera JO, Pérez-Rodríguez M, Roy-García I, Rivas-Ruiz R, Huitrón-Bravo G, Salmerón-Castro J. Self-reported body silhouettes: a diagnostic instrument for anthropometric parameters. Public Health 2021; 200:39-46. [PMID: 34662752 DOI: 10.1016/j.puhe.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/15/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Routine body size measurement of anthropometric values requires professionals, standardized techniques, and calibrated tools. Therefore, there is a need for easier screening tools such as the self-reported body silhouette (Self-bosi). The aim of this study was to analyze the performance of Self-bosi as a proxy of anthropometric values. STUDY DESIGN Prospective analytic study of the Health Workers Cohort Study. METHODS Adult participants of the Health Workers Cohort Study were included. Then, through the calculation sensitivity and specificity of Self-bosi to detect abnormal waist circumference (WC) (≥90 cm for male and ≥80 cm for female participants), elevated body fat percentage (BF%) (≥25% for male and ≥35% for female participants), as well as overweight and obesity (≥25 kg/m2) and obesity (≥30 kg/m2). RESULTS A total of 2471 male and 5940 female participants were analyzed. Overall, Self-bosi discriminate high WC values (area under the curve [AUC]; male participants: 0.80, female participants: 0.82); increased BF% (AUC: male participants: 0.78, female participants: 0.83); overweight and obesity (AUC: male participants: 0.81, female participants: 0.86); and obesity (AUC: male participants: 0.83, female participants: 0.89). CONCLUSION Self-bosi is an accurate method to assess increased WC, BF%, obesity, and overweight-obesity in Mexican adults. Given its simplicity and low-cost of the self-reported body silhouette, it might be considered a useful anthropometric screening instrument in large scale epidemiological research.
Collapse
Affiliation(s)
- R Blachman-Braun
- Centro de Adiestramiento e Investigación Clínica, Hospital de Especialidades CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J O Talavera
- Jefatura de Enseñanza, Centro Médico ABC, Ciudad de México, México.
| | - M Pérez-Rodríguez
- Centro de Adiestramiento e Investigación Clínica, Hospital de Especialidades CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - I Roy-García
- Centro de Adiestramiento e Investigación Clínica, Hospital de Especialidades CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - R Rivas-Ruiz
- Centro de Adiestramiento e Investigación Clínica, Hospital de Especialidades CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - G Huitrón-Bravo
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - J Salmerón-Castro
- Centro de Investigación en Políticas, Población y Salud, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
34
|
Le Pelletier L, Mantecon M, Gorwood J, Auclair M, Foresti R, Motterlini R, Laforge M, Atlan M, Fève B, Capeau J, Lagathu C, Bereziat V. Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. eLife 2021; 10:62635. [PMID: 34544550 PMCID: PMC8526089 DOI: 10.7554/elife.62635] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Aging is associated with central fat redistribution and insulin resistance. To identify age-related adipose features, we evaluated the senescence and adipogenic potential of adipose-derived stromal cells (ASCs) from abdominal subcutaneous fat obtained from healthy normal-weight young (<25 years) or older women (>60 years). Increased cell passages of young-donor ASCs (in vitro aging) resulted in senescence but not oxidative stress. ASC-derived adipocytes presented impaired adipogenesis but no early mitochondrial dysfunction. Conversely, aged-donor ASCs at early passages displayed oxidative stress and mild senescence. ASC-derived adipocytes exhibited oxidative stress, and early mitochondrial dysfunction but adipogenesis was preserved. In vitro aging of aged-donor ASCs resulted in further increased senescence, mitochondrial dysfunction, oxidative stress, and severe adipocyte dysfunction. When in vitro aged young-donor ASCs were treated with metformin, no alteration was alleviated. Conversely, metformin treatment of aged-donor ASCs decreased oxidative stress and mitochondrial dysfunction resulting in decreased senescence. Metformin's prevention of oxidative stress and of the resulting senescence improved the cells' adipogenic capacity and insulin sensitivity. This effect was mediated by the activation of AMP-activated protein kinase as revealed by its specific inhibition and activation. Overall, aging ASC-derived adipocytes presented impaired adipogenesis and insulin sensitivity. Targeting stress-induced senescence of ASCs with metformin may improve age-related adipose tissue dysfunction.
Collapse
Affiliation(s)
- Laura Le Pelletier
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Matthieu Mantecon
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Jennifer Gorwood
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Martine Auclair
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | | | | | - Mireille Laforge
- CNRS, INSERM UMRS_1124, Faculté des sciences fondamentales et biomédicales, Université de Paris, Paris, France
| | - Michael Atlan
- AP-HP, Tenon Hospital, Department of Plastic Surgery, Paris, France
| | - Bruno Fève
- AP-HP, Saint-Antoine Hospital, Department of Endocrinology, PRISIS, Paris, France
| | - Jacqueline Capeau
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Claire Lagathu
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Veronique Bereziat
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
35
|
Age and Sex: Impact on adipose tissue metabolism and inflammation. Mech Ageing Dev 2021; 199:111563. [PMID: 34474078 DOI: 10.1016/j.mad.2021.111563] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Age associated chronic inflammation is a major contributor to diseases with advancing age. Adipose tissue function is at the nexus of processes contributing to age-related metabolic disease and mediating longevity. Hormonal fluctuations in aging potentially regulate age-associated visceral adiposity and metabolic dysfunction. Visceral adiposity in aging is linked to aberrant adipogenesis, insulin resistance, lipotoxicity and altered adipokine secretion. Age-related inflammatory phenomena depict sex differences in macrophage polarization, changes in T and B cell numbers, and types of dendritic cells. Sex differences are also observed in adipose tissue remodeling and cellular senescence suggesting a role for sex steroid hormones in the regulation of the adipose tissue microenvironment. It is crucial to investigate sex differences in aging clinical outcomes to identify and better understand physiology in at-risk individuals. Early interventions aimed at targets involved in adipose tissue adipogenesis, remodeling and inflammation in aging could facilitate a profound impact on health span and overcome age-related functional decline.
Collapse
|
36
|
Kirstein AS, Kehr S, Nebe M, Hanschkow M, Barth LAG, Lorenz J, Penke M, Breitfeld J, Le Duc D, Landgraf K, Körner A, Kovacs P, Stadler PF, Kiess W, Garten A. PTEN regulates adipose progenitor cell growth, differentiation, and replicative aging. J Biol Chem 2021; 297:100968. [PMID: 34273354 PMCID: PMC8350019 DOI: 10.1016/j.jbc.2021.100968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates the insulin signaling pathway. Germline PTEN pathogenic variants cause PTEN hamartoma tumor syndrome (PHTS), associated with lipoma development in children. Adipose progenitor cells (APCs) lose their capacity to differentiate into adipocytes during continuous culture, whereas APCs from lipomas of patients with PHTS retain their adipogenic potential over a prolonged period. It remains unclear which mechanisms trigger this aberrant adipose tissue growth. To investigate the role of PTEN in adipose tissue development, we performed functional assays and RNA-Seq of control and PTEN knockdown APCs. Reduction of PTEN levels using siRNA or CRISPR led to enhanced proliferation and differentiation of APCs. Forkhead box protein O1 (FOXO1) transcriptional activity is known to be regulated by insulin signaling, and FOXO1 was downregulated at the mRNA level while its inactivation through phosphorylation increased. FOXO1 phosphorylation initiates the expression of the lipogenesis-activating transcription factor sterol regulatory element-binding protein 1 (SREBP1). SREBP1 levels were higher after PTEN knockdown and may account for the observed enhanced adipogenesis. To validate this, we overexpressed constitutively active FOXO1 in PTEN CRISPR cells and found reduced adipogenesis, accompanied by SREBP1 downregulation. We observed that PTEN CRISPR cells showed less senescence compared with controls and the senescence marker CDKN1A (p21) was downregulated in PTEN knockdown cells. Cellular senescence was the most significantly enriched pathway found in RNA-Seq of PTEN knockdown versus control cells. These results provide evidence that PTEN is involved in the regulation of APC proliferation, differentiation, and senescence, thereby contributing to aberrant adipose tissue growth in patients with PHTS.
Collapse
Affiliation(s)
- Anna S Kirstein
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany.
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Michèle Nebe
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Martha Hanschkow
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Lisa A G Barth
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Judith Lorenz
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Melanie Penke
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Jana Breitfeld
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig University Medical Center, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kathrin Landgraf
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig University Medical Center, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany; Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Wieland Kiess
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Antje Garten
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany; Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
37
|
Evans K, Abdelhafiz D, Abdelhafiz AH. Sarcopenic obesity as a determinant of cardiovascular disease risk in older people: a systematic review. Postgrad Med 2021; 133:831-842. [PMID: 34126036 DOI: 10.1080/00325481.2021.1942934] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Aging is associated with body composition changes that include a reduction of muscle mass or sarcopenia and an increase in visceral obesity. Thus, aging involves a muscle-fat imbalance with a shift toward more fat and less muscle. Therefore, sarcopenic obesity, defined as a combination of sarcopenia and obesity, is a global health phenomenon due to the increased aging of the population combined with the increased epidemic of obesity. Previous studies have shown inconsistent association between sarcopenic obesity and the risk of cardiovascular disease (CVD). AIMS To systematically review the recent literature on the CVD risks associated with sarcopenic obesity and summarizes ways of diagnosis and prevention. METHODS A systematic review of studies that reported the association between sarcopenic obesity and CVD risk in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. RESULTS Risk factors of sarcopenic obesity included genetic factors, aging, malnutrition, sedentary lifestyle, hormonal deficiencies and other molecular changes. The muscle-fat imbalance with increasing age results in an increase in the pro-inflammatory adipokines secreted by adipocytes and a decline in the anti-inflammatory myokines secreted by myocytes. This imbalance promotes and perpetuates a chronic low-grade inflammatory state that is characteristic of sarcopenic obesity. After application of exclusion criteria, only 12 recent studies were included in this review. The recent studies have shown a consistent association between sarcopenic obesity and cardiovascular disease risk although most of the studies are of cross-sectional design that does not confirm a causal relationship. In addition, most of the population studied were of Asian origin which may limit the generalizability of the results. Non-pharmacological interventions by exercise training and adequate nutrition appear to be useful in maintenance of muscle strength and muscle mass in combination with a reduction of adiposity to promote healthy aging. CONCLUSIONS Sarcopenic obesity appears to increase the risk of CVD in older people; however, future prospective studies of diverse population are still required. Although non-pharmacologic interventions are useful in reducing the risk of sarcopenic obesity, novel specific pharmacologic agents are lacking.
Collapse
Affiliation(s)
- Katherine Evans
- Department of Geriatric Medicine, Rotherham General Hospital, Rotherham UK
| | | | - Ahmed H Abdelhafiz
- Department of Geriatric Medicine, Rotherham General Hospital, Rotherham UK
| |
Collapse
|
38
|
Song S, Luo Z, Li C, Huang X, Shiroma EJ, Simonsick EM, Chen H. Changes in Body Composition Before and After Parkinson's Disease Diagnosis. Mov Disord 2021; 36:1617-1623. [PMID: 33615545 PMCID: PMC10775470 DOI: 10.1002/mds.28536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Weight loss is common in Parkinson's disease (PD). However, little is known about when it starts, how PD changes as it progresses, and whether there is a differential loss of lean or fat mass. The objective of this study was to examine how body composition changes before and after PD diagnosis. METHODS In the Health, Aging, and Body Composition study (n = 3075; age range, 70-79 years), body composition was assessed using dual-energy x-ray absorptiometry on an annual or biennial basis from year 1 to year 10. For each PD case each year, we calculated the difference between their actual body composition measures and expected values had they not developed PD. Using linear mixed models with crossed random effects, we further examined the trend of change in body composition measures before and after PD diagnosis. RESULTS A total of 80 PD cases were identified in this cohort. Compared with their expected values, PD cases began to lose total and fat mass about 6-7 years before diagnosis, although the differences were not statistically significant until 3-5 years after diagnosis. The loss was substantial and persistent, with statistically significant trends of loss for total body mass (P = 0.008), fat mass (P = 0.001), and percentage fat (P < 0.001). In comparison, lean mass was stable throughout the follow-up (P = 0.16). Overall, 96% of the body mass loss in PD cases was from the loss of fat mass. CONCLUSIONS In this longitudinal analysis with objective measures of body composition, we found persistent weight loss in PD cases, predominantly in fat mass, starting a few years before diagnosis. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shengfang Song
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Zhehui Luo
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Chenxi Li
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Xuemei Huang
- Department of Neurology, Hersey Medical Center, Pennsylvania State University, Hersey, Pennsylvania, USA
| | - Eric J. Shiroma
- Laboratory of Epidemiology and Population Science, Intramural Research Program of the National Institutes of Health, National Institute on Aging, Bethesda, Maryland, USA
| | - Eleanor M. Simonsick
- Laboratory of Epidemiology and Population Science, Intramural Research Program of the National Institutes of Health, National Institute on Aging, Bethesda, Maryland, USA
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
39
|
Moreno-Fernandez ME, Sharma V, Stankiewicz TE, Oates JR, Doll JR, Damen MSMA, Almanan MATA, Chougnet CA, Hildeman DA, Divanovic S. Aging mitigates the severity of obesity-associated metabolic sequelae in a gender independent manner. Nutr Diabetes 2021; 11:15. [PMID: 34099626 PMCID: PMC8184786 DOI: 10.1038/s41387-021-00157-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Understanding gender-associated bias in aging and obesity-driven metabolic derangements has been hindered by the inability to model severe obesity in female mice. METHODS Here, using chow- or high fat diet (HFD)-feeding regimens at standard (TS) and thermoneutral (TN) housing temperatures, the latter to model obesity in female mice, we examined the impact of gender and aging on obesity-associated metabolic derangements and immune responsiveness. Analysis included quantification of: (i) weight gain and adiposity; (ii) the development and severity of glucose dysmetabolism and non-alcoholic fatty liver disease (NAFLD); and (iii) induction of inflammatory pathways related to metabolic dysfunction. RESULTS We show that under chow diet feeding regimen, aging was accompanied by increased body weight and white adipose tissue (WAT) expansion in a gender independent manner. HFD feeding regimen in aged, compared to young, male mice at TS, resulted in attenuated glucose dysmetabolism and hepatic steatosis. However, under TS housing conditions only aged, but not young, HFD fed female mice developed obesity. At TN however, both young and aged HFD fed female mice developed severe obesity. Independent of gender or housing conditions, aging attenuated the severity of metabolic derangements in HFD-fed obese mice. Tempered severity of metabolic derangements in aged mice was associated with increased splenic frequency of regulatory T (Treg) cells, Type I regulatory (Tr1)-like cells and circulating IL-10 levels and decreased vigor of HFD-driven induction of inflammatory pathways in adipose and liver tissues. CONCLUSION Our findings suggest that aging-associated altered immunological profile and inflammatory vigor may play a dominant role in the attenuation of obesogenic diet-driven metabolic dysfunction.
Collapse
Affiliation(s)
- Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Vishakha Sharma
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jarren R Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maha A T A Almanan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Claire A Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - David A Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Center for Transplant Immunology, and Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|
40
|
Nguyen HP, Lin F, Yi D, Xie Y, Dinh J, Xue P, Sul HS. Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Dev Cell 2021; 56:1437-1451.e3. [PMID: 33878347 PMCID: PMC8137669 DOI: 10.1016/j.devcel.2021.03.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue mass and adiposity change throughout the lifespan. During aging, while visceral adipose tissue (VAT) tends to increase, peripheral subcutaneous adipose tissue (SAT) decreases significantly. Unlike VAT, which is linked to metabolic diseases, including type 2 diabetes, SAT has beneficial effects. However, the molecular details behind the aging-associated loss of SAT remain unclear. Here, by comparing scRNA-seq of total stromal vascular cells of SAT from young and aging mice, we identify an aging-dependent regulatory cell (ARC) population that emerges only in SAT of aged mice and humans. ARCs express adipose progenitor markers but lack adipogenic capacity; they secrete high levels of pro-inflammatory chemokines, including Ccl6, to inhibit proliferation and differentiation of neighboring adipose precursors. We also found Pu.1 to be a driving factor for ARC development. We identify an ARC population and its capacity to inhibit differentiation of neighboring adipose precursors, correlating with aging-associated loss of SAT.
Collapse
Affiliation(s)
- Hai P Nguyen
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Frances Lin
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Danielle Yi
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ying Xie
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennie Dinh
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pengya Xue
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
41
|
Li C, Harris M, Tsilimingras D, Liu SZ, Sheng Y, Liu X. Sagittal abdominal diameter and its socioeconomic correlates: perspective of sex differences. BMC Public Health 2021; 21:486. [PMID: 33706753 PMCID: PMC7953618 DOI: 10.1186/s12889-020-09805-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/30/2020] [Indexed: 01/28/2023] Open
Abstract
Background Sagittal abdominal diameter (SAD) is an anthropometric index associated with visceral adiposity. It remains unclear whether SAD and its socio-economic correlates differ in women and men, which limits the epidemiological and clinical applications of the SAD measurement. The aims of this study are to examine the sex differences in SAD and its socio-economic correlates. Methods A complex stratified multistage clustered sampling design was used to select 6975 men and 7079 women aged 18 years or more from the National Health Nutrition and Examination Survey 2011–2016, representative of the US civilian non-institutionalized population. SAD was measured in accordance to the standard protocols using a two-arm abdominal caliper. The sex differences in SAD and its socio-economic correlates were evaluated by performing weighted independent t tests and weighted multiple regression. Results SAD was lower in women than in men in the entire sample, as well as in all the subgroups characterized by age, race, birth place, household income, and body mass index except for non-Hispanic blacks and those with household income < $20,000. Adjusted for other characteristics, age, birth place, household income, and body mass index were associated with SAD in both women and men. Black women were associated with higher SAD then white women (p < .0001), and Hispanic and Asian men were associated with lower SAD than white men (both p < .01). Women born in other countries were more likely to have lower SAD than women born in the US (p < .0001), and so were men (p = .0118). Both women and men with a household income of <$75,000 had higher SAD than those with an income of over $75,000. The associations of age, race, and household income with SAD differed in women and men. Conclusion SAD is lower in women than in men, in the general population as well as in the most socio-economic subgroups. While socio-economic correlates of SAD are similar in women and men, the associations of age, race, and household income with SAD vary across sex. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12889-020-09805-z.
Collapse
Affiliation(s)
- Chang Li
- Department of Systems, Population, and Leadership, University of Michigan School of Nursing, Ann Arbor, MI, 48109, USA
| | - Marcelline Harris
- Department of Systems, Population, and Leadership, University of Michigan School of Nursing, Ann Arbor, MI, 48109, USA
| | - Dennis Tsilimingras
- Department of Family Medicine, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Sophia Z Liu
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Ying Sheng
- School of Nursing, Indiana University, Indianapolis, IN, 46202, USA
| | - Xuefeng Liu
- Department of Systems, Population, and Leadership, University of Michigan School of Nursing, Ann Arbor, MI, 48109, USA. .,Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
42
|
Cai ZJ. Hypothalamic aging and hormones. VITAMINS AND HORMONES 2021; 115:15-37. [PMID: 33706947 DOI: 10.1016/bs.vh.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It is the heterogeneous changes of hypothalamic functions that determine the chronological sequence of aging in mammals. Recently, it was hypothesized by Cai the decrease in slow-wave sleep (SWS) resulting from skin aging as responsible for the degeneration of hypothalamic suprachiasmatic nucleus (SCN). It was soon hypothesized by the European people in television that the increase in body fat as responsible for the degeneration of male preoptic sexually dimorphic nucleus (SDN-POA), via the aromatase converting testosterone to estradiol as proposed by Cohen. It is the hypothalamic paraventricular nucleus (PVN) that remains unchanged in neuron number during aging for psychological stress. In this chapter, it is briefly reviewed more manifestations of hypothalamic related mammalian aging processes, including (1) the aging of ovary by lipid, estradiol and hypothalamus; (2) the aging of muscle, stomach, intestine, thymus, and the later aging of brain, regulated by growth hormone/insulin-like growth factor 1(GH/IGF1); (3) the cardiovascular hypertension from PVN activation, the bone and other peripheral aging by psychological stress, and that of kidney by vasopressin. It is classified these aging processes by the primary regulation from one of the three hypothalamic nuclei, although still necessary to investigate and supplement their secondary regulation by the hypothalamic nuclei in future. It is the hypothalamic structural changes that shift the functional balance among these three hypothalamic systems toward aging.
Collapse
Affiliation(s)
- Zi-Jian Cai
- CaiFortune Consulting, Suzhou, Jiangsu, PR China.
| |
Collapse
|
43
|
Galanin I, Nicu C, Tower JI. Facial Fat Fitness: A New Paradigm to Understand Facial Aging and Aesthetics. Aesthetic Plast Surg 2021; 45:151-163. [PMID: 32914326 DOI: 10.1007/s00266-020-01933-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022]
Abstract
Traditionally, facial adipose tissue has been perceived and treated as a homogenous volume-occupying subcutaneous depot. However, recent research from across disciplines is converging to reveal a far more anatomically organized and functionally dynamic role of facial adipose tissue. In this narrative review, we will discuss new insights into adipocyte function and facial adipose anatomy that have far-reaching implications for the practice of aesthetic facial plastic surgery. These concepts are synthesized into a "facial fat fitness" model which can be used to explain clinical observations in facial aging and aesthetic surgery. Fat fitness relates to the quality of facial adipose tissue, as opposed to quantity, and describes whether adipose tissue is in a predominantly healthy hyperplastic or unhealthy hypertrophic state. Fat fitness is modulated by lifestyle factors, and may be impacted positively or negatively by facial aesthetic treatments. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
| | - Carina Nicu
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacob I Tower
- Department of Otolaryngology-Head and Neck Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, 130 East 77th Street, 10th Floor, New York, NY, USA.
| |
Collapse
|
44
|
Bermudez V, Salazar J, Martínez MS, Olivar LC, Nava M, Rojas M, Ortega Á, Añez R, Toledo A, Rojas J, Chacín M, Rodríguez JE, D'Marco L, Cano C. Age-specific waist circumference cutoff-points for abdominal obesity diagnosis: a personalized strategy for a large Venezuelan population. J Diabetes Metab Disord 2021; 20:217-227. [PMID: 34178833 DOI: 10.1007/s40200-021-00735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Background Evidence shows that the ageing process is a determining factor in fat distribution, composition, and functionality. The goal of this research was to determine cut-off points for waist circumference according to age in the adult population from Maracaibo city, Venezuela. Methodology The Metabolic Syndrome Prevalence Study is a descriptive, cross-sectional study with multi-stage randomized sampling. In this post-hoc analysis 1902 individuals ≥18 years and from both sexes were evaluated. Waist circumference ROC curves were built for each age group and sex, using metabolic phenotypes for classification. Results 52.2% (n = 992) were women, and the mean age was 38.7 ± 2. Cut-off points obtained for the <30 years age group were: 91 cm for women (Sensitivity: 96,8%, Specificity: 97,7%) and 94 cm for men (Sensitivity:100%, Specificity: 99,2%); for 30-49 years: women 94 cm (Sensitivity: 93.7%, Specificity: 97.1%) and men 95 cm (Sensitivity: 97.3%, Specificity: 100%); for ≥50 years: women 94 cm (Sensitivity: 91.8%, Specificity: 86.7%) and men 101 cm (Sensitivity: 100%, Specificity: 100%). Conclusion The use of specific cut-off points according to age groups is proposed to determine abdominal obesity in Maracaibo city due to the underestimation seen in young people and the overestimation observed in older people when using a unique cut-off point.
Collapse
Affiliation(s)
- Valmore Bermudez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Juan Salazar
- Endocrine and Metabolic Disease Research Center. School of Medicine, University of Zulia, Maracaibo, 4004 Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Disease Research Center. School of Medicine, University of Zulia, Maracaibo, 4004 Venezuela
| | - Luis Carlos Olivar
- Endocrine and Metabolic Disease Research Center. School of Medicine, University of Zulia, Maracaibo, 4004 Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Disease Research Center. School of Medicine, University of Zulia, Maracaibo, 4004 Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Disease Research Center. School of Medicine, University of Zulia, Maracaibo, 4004 Venezuela
| | - Ángel Ortega
- Endocrine and Metabolic Disease Research Center. School of Medicine, University of Zulia, Maracaibo, 4004 Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alexandra Toledo
- Endocrine and Metabolic Disease Research Center. School of Medicine, University of Zulia, Maracaibo, 4004 Venezuela
| | - Joselyn Rojas
- Pulmonary and Critical Care Medicine Department, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Johel E Rodríguez
- Facultad de Ingenierías, Universidad Simón Bolívar, Cúcuta, Colombia
| | - Luis D'Marco
- Hospital Clínico de Valencia, INCLIVA, Servicio de Nefrología, Valencia, Spain
| | - Clímaco Cano
- Endocrine and Metabolic Disease Research Center. School of Medicine, University of Zulia, Maracaibo, 4004 Venezuela
| |
Collapse
|
45
|
Sadie-Van Gijsen H. Is Adipose Tissue the Fountain of Youth? The Impact of Adipose Stem Cell Aging on Metabolic Homeostasis, Longevity, and Cell-Based Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:225-250. [PMID: 33725357 DOI: 10.1007/978-3-030-55035-6_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aging is driven by four interlinked processes: (1) low-grade sterile inflammation; (2) macromolecular and organelle dysfunction, including DNA damage, telomere erosion, and mitochondrial dysfunction; (3) stem cell dysfunction; and (4) an accumulation of senescent cells in tissues. Adipose tissue is not immune to the effects of time, and all four of these processes contribute to a decline of adipose tissue function with advanced age. This decline is associated with an increase in metabolic disorders. Conversely, optimally functioning adipose tissue generates signals that promote longevity. As tissue-resident progenitor cells that actively participate in adipose tissue homeostasis and dysregulation, adipose stem cells (ASCs) have emerged as a key feature in the relationship between age and adipose tissue function. This review will give a mechanistic overview of the myriad ways in which age affects ASC function and, conversely, how ASC function contribute to healthspan and lifespan. A central mediator in this relationship is the degree of resilience of ASCs to maintain stemness into advanced age and the consequent preservation of adipose tissue function, in particular subcutaneous fat. The last sections of this review will discuss therapeutic options that target senescent ASCs to extend healthspan and lifespan, as well as ASC-based therapies that can be used to treat age-related pathologies, and collectively, these therapeutic applications may transform the way we age.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Parow, South Africa.
| |
Collapse
|
46
|
Merchant RA, Seetharaman S, Au L, Wong MWK, Wong BLL, Tan LF, Chen MZ, Ng SE, Soong JTY, Hui RJY, Kwek SC, Morley JE. Relationship of Fat Mass Index and Fat Free Mass Index With Body Mass Index and Association With Function, Cognition and Sarcopenia in Pre-Frail Older Adults. Front Endocrinol (Lausanne) 2021; 12:765415. [PMID: 35002957 PMCID: PMC8741276 DOI: 10.3389/fendo.2021.765415] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Body mass index (BMI) is an inadequate marker of obesity, and cannot distinguish between fat mass, fat free mass and distribution of adipose tissue. The purpose of this study was twofold. First, to assess cross-sectional relationship of BMI with fat mass index (FMI), fat free mass index (FFMI) and ratio of fat mass to fat free mass (FM/FFM). Second, to study the association of FMI, FFMI and FM/FFM with physical function including sarcopenia, and cognition in pre-frail older adults. METHODS Cross-sectional study of 191 pre-frail participants ≥ 65 years, 57.1% females. Data was collected on demographics, cognition [Montreal Cognitive Assessment (MoCA)], function, frailty, calf circumference, handgrip strength (HGS), short physical performance battery (SPPB) and gait speed. Body composition was measured using InBody S10. FMI, FFMI and FM/FFM were classified into tertiles (T1, T2, T3) with T1 classified as lowest and T3 highest tertile respectively and stratified by BMI. RESULTS Higher FFMI and lower FM/FFM in the high BMI group were associated with better functional outcomes. Prevalence of low muscle mass was higher in the normal BMI group. FMI and FM/FFM were significantly higher in females and FFMI in males with significant gender differences except for FFMI in ≥ 80 years old. Small calf circumference was significantly less prevalent in the highest tertile of FMI, FM/FMI and FFMI. Prevalence of sarcopenic obesity and low physical function (HGS, gait speed and SPPB scores) were significantly higher in the highest FMI and FM/FFM tertile. Highest FFMI tertile group had higher physical function, higher MoCA scores, lower prevalence of sarcopenic obesity and sarcopenia, After adjustment, highest tertile of FFMI was associated with lower odds of sarcopenia especially in the high BMI group. Highest tertile of FM/FFM was associated with higher odds of sarcopenia. Higher BMI was associated with lower odds of sarcopenia. CONCLUSION FFMI and FM/FFM may be a better predictor of functional outcomes in pre-frail older adults than BMI. Cut-off values for healthy BMI values and role of calf circumference as a screening tool for sarcopenia need to be validated in larger population. Health promotion intervention should focus on FFMI increment.
Collapse
Affiliation(s)
- Reshma Aziz Merchant
- Division of Geriatric Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Reshma Aziz Merchant, orcid.org/0000-0002-9032-018
| | - Santhosh Seetharaman
- Healthy Ageing Programme, Alexandra Hospital, National University Health System, Singapore, Singapore
| | - Lydia Au
- Department of Geriatrics Medicine, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Michael Wai Kit Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Beatrix Ling Ling Wong
- Division of Geriatric Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Li Feng Tan
- Healthy Ageing Programme, Alexandra Hospital, National University Health System, Singapore, Singapore
| | - Matthew Zhixuan Chen
- Division of Geriatric Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Shu Ee Ng
- Division of Geriatric Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
| | - John Tshon Yit Soong
- Division of Advanced Internal Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Richard Jor Yeong Hui
- National University Polyclinics, National University Health System, Singapore, Singapore
| | - Sing Cheer Kwek
- National University Polyclinics, National University Health System, Singapore, Singapore
| | - John E. Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
47
|
De Tollenaere M, Chapuis E, Lapierre L, Bracq M, Hubert J, Lambert C, Sandré J, Auriol D, Scandolera A, Reynaud R. Overall renewal of skin lipids with Vetiver extract for a complete anti-ageing strategy. Int J Cosmet Sci 2020; 43:165-180. [PMID: 33253416 PMCID: PMC8246832 DOI: 10.1111/ics.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Skin lipids are essential in every compartment of the skin where they play a key role in various biological functions. Interestingly, their role is central in the maintenance of hydration which is related to skin barrier function and in the skin structure through adipose tissue. It is well described today that skin lipids are affected by ageing giving skin sagging, wrinkles and dryness. Thereby, developing cosmetic actives able to reactivate skin lipids would be an efficient ant-ageing strategy. Due to the strong commitment of our scientists to innovate responsibly and create value, they designed a high value active ingredient named here as Vetiver extract, using a ground-breaking upcycling approach. We evidenced that this unique extract was able to reactivate globally the skin lipids production, bringing skin hydration and plumping effect for mature skin. METHOD In order to demonstrate the global renewal of lipids, we evaluated the lipids synthesis on cutaneous cells that produce lipids such as keratinocytes, sebocytes and adipocytes then on Reconstructed Human Epidermis and skin explants. We evaluated the expression of proteins involved in ceramides transport and barrier cornification. We then evaluated hydration and sebaceous parameters on a panel of mature volunteers. RESULTS We firstly demonstrated that Vetiver extract induced sebum production from human sebocytes cells lines but also improved its quality as observed by the production of specific antimicrobial lipids. Secondly, we demonstrated that Vetiver extract was able to restore skin barrier with the increase of skin lipids neosynthesis on Reconstructed Human Epidermis and skin explants. We also evidenced that Vetiver extract stimulated the lipids transport and epidermal cornification. Finally, Vetiver extract showed a significant effect on adipogenesis and maturation of adipocytes at in vitro and ex vivo models. We confirmed all these activities by showing that Vetiver extract improved sebum production and brought hydration through an increase of lipids content and their conformation. Vetiver extract induced an improvement of skin fatigue and a plumping effect by acting deeply on adipose tissue. CONCLUSION In conclusion, we developed an active ingredient able to bring anti-ageing effect for mature skin by a global increase of skin lipids.
Collapse
Affiliation(s)
| | - Emilie Chapuis
- Givaudan France SAS, Research and Development, Argenteuil, France
| | - Laura Lapierre
- Givaudan France SAS, Research and Development, Argenteuil, France
| | - Marine Bracq
- Givaudan France SAS, Research and Development, Argenteuil, France
| | | | - Carole Lambert
- Givaudan France SAS, Research and Development, Argenteuil, France
| | - Jérome Sandré
- Chirurgien plasticien et esthétique, Polyclinique de Courlancy, Reims, France
| | - Daniel Auriol
- Givaudan France SAS, Research and Development, Argenteuil, France
| | | | - Romain Reynaud
- Givaudan France SAS, Research and Development, Argenteuil, France
| |
Collapse
|
48
|
Xiang QY, Tian F, Du X, Xu J, Zhu LY, Guo LL, Wen T, Liu YS, Liu L. Postprandial triglyceride-rich lipoproteins-induced premature senescence of adipose-derived mesenchymal stem cells via the SIRT1/p53/Ac-p53/p21 axis through oxidative mechanism. Aging (Albany NY) 2020; 12:26080-26094. [PMID: 33316776 PMCID: PMC7803527 DOI: 10.18632/aging.202298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
The accumulation of senescent adipose-derived mesenchymal stem cells (AMSCs) in subcutaneous white adipose tissue (WAT) is the main cause for the deterioration of WAT and the subsequent age-related disorders in obesity. The number of AMSCs staining positively for senescence-associated-β-galactosidase (SA-β-Gal) increased significantly after incubation with postprandial triglyceride-rich lipoproteins (TRL), accompanied by an impaired cell proliferation capacity and increased expression of inflammatory factors. Besides, the expression of anti-aging protein, silent mating-type information regulation 2 homolog 1 (SIRT1), was downregulated significantly, while those of acetylated p53 (Ac-p53), total p53, and p21 proteins were upregulated significantly during postprandial TRL-induced premature senescence of AMSCs. Furthermore, the production of intracellular reactive oxygen species (ROS) in the TRL group increased significantly, while pretreatment with the ROS scavenger N-acetyl-L-cysteine effectively attenuated the premature senescence of AMSCs by decreasing ROS production and upregulating SIRT1 level. Thus, postprandial TRL induced premature senescence of AMSCs through the SIRT1/p53/Ac-p53/p21 axis, partly through increased oxidative stress.
Collapse
Affiliation(s)
- Qun-Yan Xiang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Feng Tian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Department of Geriatric Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China
| | - Li-Yuan Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China
| | - Li-Ling Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China
| | - Tie Wen
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha 410011, Hunan, PR China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha 410011, Hunan, PR China.,Cardiovascular Disease Research Center of Hunan Province, Changsha 410011, Hunan, PR China
| |
Collapse
|
49
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
50
|
Dietary intake, anthropometric measurements, biochemistry profile and their associations with chronic kidney disease and diabetes mellitus. J Nutr Sci 2020; 9:e45. [PMID: 33101662 PMCID: PMC7550961 DOI: 10.1017/jns.2020.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
The chronic kidney disease (CKD) and diabetes mellitus (DM) are considered a serious public health problem. The objective was investigating the association of DM with the anthropometric measures, biochemical profile and dietary intake in patients with CKD. Is a cross-sectional study done in 2017, with 51 patients previously diagnosed with CKD. We collect socio-demographic, lifestyle variables, anthropometric measurements, biochemical profile and dietary intake. We using the Kolmogorov–Smirnov test, followed by Pearson's χ2 test and Student's t test. Data were analysed using several multivariable logistic regression models, including the socio-demographic, anthropometric, dietary intake and biochemical variable. Variables with P ≤ 0⋅20 in the univariate analyses were selected and kept in the block in the simple and multiple logistic regression analysis, to determine the differences between the categories and the factors associated with the presence of DM or not, remaining in the model final, only the significant variables (P ≤ 0⋅05). Each variable was adjusted for all other variables included in the univariate analysis. The strength of the association was assessed by the odds ratio and 95% confidence intervals (CI). The multivariate logistic regression analysis evidenced that the increase of 1 cm in waist circumference and 1 mg/dl in VLDL-c values increases the chance of DM, respectively, by 8⋅4% (OR 1⋅076; P 0⋅05) and 8⋅8% (OR 1⋅102; P 0⋅01). In contrast, an increase of 1 mg/dl in total cholesterol decreases the chance of developing DM by 3⋅1% (OR 0⋅965; P 0⋅01), that is, it becomes a protective factor. The present study identified the associations between overweight, dietary intake and biochemical tests.
Collapse
|