1
|
Coelho MM, Moreira FC, Zuccherato LW, Ventura LHDA, Camatta GC, Starling-Soares B, Torres L, Durso DF, Sato HI, da Costa MS, Guimarães HC, Barbuto RC, Júnior MLO, Speziali E, Tupinambas U, Teixeira SMR, Silveira-Nunes G, Teixeira-Carvalho A, Maioli TU, Faria AMC. Living in endemic area for infectious diseases is associated to differences in immunosenescence and inflammatory signatures. Front Immunol 2025; 16:1547854. [PMID: 40165959 PMCID: PMC11955481 DOI: 10.3389/fimmu.2025.1547854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Research on aged individuals from developed countries show that lifestyle factors such as diet, physical activity, stress, smoking, and sleep quality impact aging. However, other relevant factors may influence aging in less-studied populations, such as Brazilian cohorts. This study aimed to analyze immunosenescence profile of individuals living in an endemic area for several infectious diseases in Brazil. We showed that these individuals exhibited accelerated epigenetic aging and increased production of IL-12p70, IL-17A, and IL-9. Production of inflammatory mediators IL-12p70, IL-6, IL-1β, IL-2, and IL-1ra in individuals with flu-like symptoms and those with COVID-19 was higher among residents in endemic areas than in residents from a control non-endemic area. Furthermore, residents of the endemic area had a more prominent inflammatory profile during viral infection and a different pattern of plasma mediators when compared to residents of a non-endemic area. Our data suggests that these two cohorts had specific immune signatures regardless of the presence or the type of infection at study. Therefore, we demonstrated that there were distinct patterns of immune responses and epigenetic aging depending on the environment the individuals live in. These observations add a layer of diversity to the studies of human aging by including individuals from less represented regions.
Collapse
Affiliation(s)
- Monique Macedo Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Caixeta Moreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Werneck Zuccherato
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Haniel de Araújo Ventura
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Giovanna Caliman Camatta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bernardo Starling-Soares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Fernandes Durso
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hugo Itaru Sato
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Murilo Soares da Costa
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Elaine Speziali
- Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Universidade Edson Antônio Velano, Fundação de Ensino e Tecnologia de Alfenas, Belo Horizonte, Brazil
| | - Unaí Tupinambas
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Silveira-Nunes
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | | | - Tatiani Uceli Maioli
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Li S, Wang K, Wu J, Zhu Y. The immunosenescence clock: A new method for evaluating biological age and predicting mortality risk. Ageing Res Rev 2025; 104:102653. [PMID: 39746402 DOI: 10.1016/j.arr.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Precisely assessing an individual's immune age is critical for developing targeted aging interventions. Although traditional methods for evaluating biological age, such as the use of cellular senescence markers and physiological indicators, have been widely applied, these methods inherently struggle to capture the full complexity of biological aging. We propose the concept of an 'immunosenescence clock' that evaluates immune system changes on the basis of changes in immune cell abundance and omics data (including transcriptome and proteome data), providing a complementary indicator for understanding age-related physiological transformations. Rather than claiming to definitively measure biological age, this approach can be divided into a biological age prediction clock and a mortality prediction clock. The main function of the biological age prediction clock is to reflect the physiological state through the transcriptome data of peripheral blood mononuclear cells (PBMCs), whereas the mortality prediction clock emphasizes the ability to identify people at high risk of mortality and disease. We hereby present nearly all of the immunosenescence clocks developed to date, as well as their functional differences. Critically, we explicitly acknowledge that no single diagnostic test can exhaustively capture the intricate changes associated with biological aging. Furthermore, as these biological functions are based on the acceleration or delay of immunosenescence, we also summarize the factors that accelerate immunosenescence and the methods for delaying it. A deep understanding of the regulatory mechanisms of immunosenescence can help establish more accurate immune-age models, providing support for personalized longevity interventions and improving quality of life in old age.
Collapse
Affiliation(s)
- Shuyu Li
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Wang
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zibandeh N, Li Z, Ogg G, Bottomley MJ. Cutaneous adaptive immunity and uraemia: a narrative review. Front Immunol 2024; 15:1464338. [PMID: 39399503 PMCID: PMC11466824 DOI: 10.3389/fimmu.2024.1464338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Chronic kidney disease affects 1 in 10 people globally, with a prevalence twenty times that of cancer. A subset of individuals will progress to end-stage renal disease (ESRD) where renal replacement therapy is required to maintain health. Cutaneous disease, including xerosis and pruritus, are endemic amongst patients with ESRD. In the uraemia-associated immune deficiency of ESRD, impaired circulating immune responses contribute to increased infection risk and poorer vaccination response. Clinical manifestations of dysregulated adaptive immunity within the skin have been well-described and have been posited to play a role in cutaneous features of ESRD. However, our understanding of the mechanisms by which adaptive immunity within the skin is affected by uraemia is relatively limited. We provide an overview of how the cutaneous adaptive immune system is impacted both directly and indirectly by uraemia, highlighting that much work has been extrapolated from the circulating immune system and often has not been directly evaluated in the skin compartment. We identify knowledge gaps which may be addressed by future research. Ultimately, greater understanding of these pathways may facilitate novel therapeutic approaches to ameliorate widespread cutaneous symptomatology in ESRD.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Zehua Li
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Department of Dermatology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- MRC Translational Immune Discovery Unit , University of Oxford, Oxford, United Kingdom
| | - Matthew J. Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Oxford Kidney and Transplant Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
4
|
Nga HT, Nguyen TL, Yi HS. T-Cell Senescence in Human Metabolic Diseases. Diabetes Metab J 2024; 48:864-881. [PMID: 39192822 PMCID: PMC11449820 DOI: 10.4093/dmj.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 08/29/2024] Open
Abstract
Immunosenescence denotes a state of dysregulated immune cell function characterized by a confluence of factors, including arrested cell cycle, telomere shortening, markers of cellular stress, mitochondrial dysfunction, loss of proteostasis, epigenetic reprogramming, and secretion of proinflammatory mediators. This state primarily manifests during the aging process but can also be induced in various pathological conditions, encompassing chronic viral infections, autoimmune diseases, and metabolic disorders. Age-associated immune system alterations extend to innate and adaptive immune cells, with T-cells exhibiting heightened susceptibility to immunosenescence. In particular, senescent T-cells have been identified in the context of metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Recent investigations suggest a direct link between T-cell senescence, inflammation, and insulin resistance. The perturbation of biological homeostasis by senescent T-cells appears intricately linked to the initiation and progression of metabolic diseases, particularly through inflammation-mediated insulin resistance. Consequently, senescent T-cells are emerging as a noteworthy therapeutic target. This review aims to elucidate the intricate relationship between metabolic diseases and T-cell senescence, providing insights into the potential roles of senescent T-cells in the pathogenesis of metabolic disorders. Through a comprehensive examination of current research findings, this review seeks to contribute to a deeper understanding of the complex interplay between immunosenescence and metabolic health.
Collapse
Affiliation(s)
- Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
5
|
Zhou F, Wang Z, Zhang G, Wu Y, Xiong Y. Immunosenescence and inflammaging: Conspiracies against alveolar bone turnover. Oral Dis 2024; 30:1806-1817. [PMID: 37288702 DOI: 10.1111/odi.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Inflammaging and immunosenescence are characteristics of senescent immune system alterations. This review provides insights into inflammaging and immunosenescence in periodontitis and focuses on the innerlink of inflammaging and immunosenescence in alveolar bone turnover from a perspective of cell-cell interaction. METHODS This review is conducted by a narrative approach to discuss the effect of inflammaging and immunosenescence in aging-related alveolar bone loss. A comprehensive literature research in PubMed and Google was applied to identify reports in English. RESULTS Inflammaging is concerned with abnormal M1 polarization and increasing circulating inflammatory cytokines, while immunosenescence involves reduced infection and vaccine responses, depressed antimicrobial function, and infiltration of aged B cells and memory T cells. TLR-mediated inflammaging and altered adaptive immunity significantly affect alveolar bone turnover and aggravate aging-related alveolar bone loss. Besides, energy consumption also plays a vital role in aged immune and skeletal system of periodontitis. CONCLUSIONS Senescent immune system exerts a significant function in aging-related alveolar bone loss. Inflammaging and immunosenescence interact functionally and mechanistically, which affects alveolar bone turnover. Therefore, further clinical treatment strategies targeting alveolar bone loss could be based on the specific molecular mechanism connecting inflammaging, immunosenescence, and alveolar bone turnover.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Guan Y, Cao M, Wu X, Yan J, Hao Y, Zhang C. CD28 null T cells in aging and diseases: From biology to assessment and intervention. Int Immunopharmacol 2024; 131:111807. [PMID: 38471362 DOI: 10.1016/j.intimp.2024.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
CD28null T cells, an atypical subset characterized by the loss of CD28 costimulatory molecule expression, exhibit functional variants and progressively expand with age. Moreover, T cells with these phenotypes are found in both typical and atypical humoral immune responses. Consequently, they accumulate during infectious diseases, autoimmune disorders, cardiovascular conditions, and neurodegenerative ailments. To provide an in-depth review of the current knowledge regarding CD28null T cells, we specifically focus on their phenotypic and functional characteristics as well as their physiological roles in aging and diseases. While uncertainties regarding the clinical utility remains, we will review the following two crucial research perspectives to explore clinical translational applications of the research on this specific T cell subset: 1) addressing the potential utility of CD28null T cells as immunological markers for prognosis and adverse outcomes in both aging and disease, and 2) speculating on the potential of targeting CD28null T cells as an interventional strategy for preventing or delaying immune aging processes and disease progression.
Collapse
Affiliation(s)
- Yuqi Guan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ming Cao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaofen Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yi Hao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
7
|
Boppana SB, van Boven M, Britt WJ, Gantt S, Griffiths PD, Grosse SD, Hyde TB, Lanzieri TM, Mussi-Pinhata MM, Pallas SE, Pinninti SG, Rawlinson WD, Ross SA, Vossen ACTM, Fowler KB. Vaccine value profile for cytomegalovirus. Vaccine 2023; 41 Suppl 2:S53-S75. [PMID: 37806805 DOI: 10.1016/j.vaccine.2023.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 10/10/2023]
Abstract
Cytomegalovirus (CMV) is the most common infectious cause of congenital malformation and a leading cause of developmental disabilities such as sensorineural hearing loss (SNHL), motor and cognitive deficits. The significant disease burden from congenital CMV infection (cCMV) led the US National Institute of Medicine to rank CMV vaccine development as the highest priority. An average of 6.7/1000 live births are affected by cCMV, but the prevalence varies across and within countries. In contrast to other congenital infections such as rubella and toxoplasmosis, the prevalence of cCMV increases with CMV seroprevalence rates in the population. The true global burden of cCMV disease is likely underestimated because most infected infants (85-90 %) have asymptomatic infection and are not identified. However, about 7-11 % of those with asymptomatic infection will develop SNHL throughout early childhood. Although no licensed CMV vaccine exists, several candidate vaccines are in development, including one currently in phase 3 trials. Licensure of one or more vaccine candidates is feasible within the next five years. Various models of CMV vaccine strategies employing different target populations have shown to provide substantial benefit in reducing cCMV. Although CMV can cause end-organ disease with significant morbidity and mortality in immunocompromised individuals, the focus of this vaccine value profile (VVP) is on preventing or reducing the cCMV disease burden. This CMV VVP provides a high-level, comprehensive assessment of the currently available data to inform the potential public health, economic, and societal value of CMV vaccines. The CMV VVP was developed by a working group of subject matter experts from academia, public health groups, policy organizations, and non-profit organizations. All contributors have extensive expertise on various elements of the CMV VVP and have described the state of knowledge and identified the current gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Suresh B Boppana
- Departments of Pediatrics and Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Michiel van Boven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, and Julius Center for Health Sciences and Primary Care, Department of Epidemiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - William J Britt
- Departments of Pediatrics, Microbiology, and Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, USA
| | - Soren Gantt
- Centre de recherche du CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Paul D Griffiths
- Emeritus Professor of Virology, University College London, United Kingdom
| | - Scott D Grosse
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Terri B Hyde
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tatiana M Lanzieri
- Measles, Rubella, and Cytomegalovirus Epidemiology Team, Viral Vaccine Preventable Diseases Branch / Division of Viral Diseases. National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Marisa M Mussi-Pinhata
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Sarah E Pallas
- Global Immunization Division, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Swetha G Pinninti
- Departments of Pediatrics and Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology Randwick, Prince of Wales Hospital, Sydney, Australia; School of Biotechnology and Biomolecular Sciences, and School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Shannon A Ross
- Departments of Pediatrics and Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ann C T M Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karen B Fowler
- Departments of Pediatrics and Epidemiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Laphanuwat P, Gomes DCO, Akbar AN. Senescent T cells: Beneficial and detrimental roles. Immunol Rev 2023; 316:160-175. [PMID: 37098109 PMCID: PMC10952287 DOI: 10.1111/imr.13206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
As the thymus involutes during aging, the T-cell pool has to be maintained by the periodic expansion of preexisting T cells during adulthood. A conundrum is that repeated episodes of activation and proliferation drive the differentiation of T cells toward replicative senescence, due to telomere erosion. This review discusses mechanisms that regulate the end-stage differentiation (senescence) of T cells. Although these cells, within both CD4 and CD8 compartments, lose proliferative activity after antigen-specific challenge, they acquire innate-like immune function. While this may confer broad immune protection during aging, these senescent T cells may also cause immunopathology, especially in the context of excessive inflammation in tissue microenvironments.
Collapse
Affiliation(s)
- Phatthamon Laphanuwat
- Division of MedicineUniversity College LondonLondonUK
- Department of PharmacologyFaculty of Medicine, Khon Kaen UniversityKhon KaenThailand
| | - Daniel Claudio Oliveira Gomes
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
- Núcleo de BiotecnologiaUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
9
|
Ahuja SK, Manoharan MS, Lee GC, McKinnon LR, Meunier JA, Steri M, Harper N, Fiorillo E, Smith AM, Restrepo MI, Branum AP, Bottomley MJ, Orrù V, Jimenez F, Carrillo A, Pandranki L, Winter CA, Winter LA, Gaitan AA, Moreira AG, Walter EA, Silvestri G, King CL, Zheng YT, Zheng HY, Kimani J, Blake Ball T, Plummer FA, Fowke KR, Harden PN, Wood KJ, Ferris MT, Lund JM, Heise MT, Garrett N, Canady KR, Abdool Karim SS, Little SJ, Gianella S, Smith DM, Letendre S, Richman DD, Cucca F, Trinh H, Sanchez-Reilly S, Hecht JM, Cadena Zuluaga JA, Anzueto A, Pugh JA, Agan BK, Root-Bernstein R, Clark RA, Okulicz JF, He W. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat Commun 2023; 14:3286. [PMID: 37311745 PMCID: PMC10264401 DOI: 10.1038/s41467-023-38238-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/17/2023] [Indexed: 06/15/2023] Open
Abstract
Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.
Collapse
Affiliation(s)
- Sunil K Ahuja
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Muthu Saravanan Manoharan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Grace C Lee
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Justin A Meunier
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Nathan Harper
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Alisha M Smith
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Marcos I Restrepo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anne P Branum
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Matthew J Bottomley
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Fabio Jimenez
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Andrew Carrillo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Lavanya Pandranki
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Caitlyn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lauryn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alvaro A Gaitan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Alvaro G Moreira
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Elizabeth A Walter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Guido Silvestri
- Department of Pathology, Emory University School of Medicine & Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Paul N Harden
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Kristen R Canady
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Susan J Little
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sara Gianella
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Davey M Smith
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Scott Letendre
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
| | - Douglas D Richman
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, 07100, Italy
| | - Hanh Trinh
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Sandra Sanchez-Reilly
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Joan M Hecht
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jose A Cadena Zuluaga
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jacqueline A Pugh
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian K Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | | | - Robert A Clark
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jason F Okulicz
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Medicine, Infectious Diseases Service, Brooke Army Medical Center, San Antonio, TX, 78234, USA
| | - Weijing He
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| |
Collapse
|
10
|
Tan Y, Zhang C, Li D, Huang J, Liu Z, Chen T, Zou X, Qin B. Bibliometric and visualization analysis of global research trends on immunosenescence (1970-2021). Exp Gerontol 2023; 173:112089. [PMID: 36646295 DOI: 10.1016/j.exger.2023.112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Immunosenescence, the aging of the immune system, leads to a decline in the body's adaptability to the environment and plays an important role in various diseases. Immunosenescence has been widely studied in recent years. However, to date, no relevant bibliometric analyses have been conducted. This study aimed to analyze the foundation and frontiers of immunosenescence research through bibliometric analysis. METHODS Articles and reviews on immunosenescence from 1970 to 2021 were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, references, and keywords were analyzed and visualized using VOSviewer and CiteSpace. The R language and Microsoft Excel 365 were used for statistical analyses. RESULTS In total, 3763 publications were included in the study. The global literature on immunosenescence research has increased from 1970 to 2021. The United States was the most productive country with 1409 papers and the highest H-index. Italy had the highest average number of citations per article (58.50). Among the top 10 institutions, 50 % were in the United States. The University of California was the most productive institution, with 159 articles. Kroemer G, Franceschi C, Goronzy JJ, Solana R, and Fulop T were among the top 10 most productive and co-cited authors. Experimental Gerontology (n = 170) published the most papers on immunosenescence. The analysis of keywords found that current research focuses on "inflammaging", "gut microbiota", "cellular senescence", and "COVID-19". CONCLUSIONS Immunosenescence research has increased over the years, and future cooperation and interaction between countries and institutions must be expanded. The connection between inflammaging, gut microbiota, age-related diseases, and immunosenescence is a current research priority. Individualized treatment of immunosenescence, reducing its negative effects, and promoting healthy longevity will become an emerging research direction.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Chuanhe Zhang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Deshuang Li
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Jianguo Huang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ziling Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Tianyu Chen
- Medical Department, Wuxi Second People's Hospital, Wuxi, China
| | - Xuyan Zou
- Changsha Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China.
| |
Collapse
|
11
|
Assessment of the Interferon-Lambda-3 Polymorphism in the Antibody Response to COVID-19 in Older Adults Seropositive for CMV. Vaccines (Basel) 2023; 11:vaccines11020480. [PMID: 36851357 PMCID: PMC9963200 DOI: 10.3390/vaccines11020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Here, we investigated the impact of IFN-lambda-3 polymorphism on specific IgG responses for COVID-19 in older adults seropositive for CMV. METHODS Blood samples of 25 older adults of both sexes were obtained at three different times: during a micro-outbreak (MO) of SARS-CoV-2 in 2020; eight months after (CURE); and 30 days after the administration of the second dose of ChadOx-1 vaccine (VAC). The specific IgG for both SARS-CoV-2 and CMV antigens, neutralizing antibodies against SARS-CoV-2, and also the polymorphism profile for IFN-lambda-3 (rs12979860 C > T) were assessed. RESULTS Higher levels of specific IgG for SARS-CoV-2 antigens were found in the MO and VAC than in the CURE time-point. Volunteers with specific neutralizing antibodies against SARS-CoV-2 showed better specific IgG responses for SARS-CoV-2 and lower specific IgG levels for CMV than volunteers without specific neutralizing antibodies. Significant negative correlations between the specific IgG levels for SARS-CoV-2 and CMV were found at the MO time-point, as well as in the group of individuals homozygous for allele 1 (C/C) in the MO time-point and heterozygotes (C/T) in the CURE time-point. CONCLUSION Our results suggested that both CMV seropositivity and the homozygosis for allele 1 (C/C) in IFN-lambda-3 gene can negatively impact the antibody response to COVID-19 infection and vaccination in older adults.
Collapse
|
12
|
Granic A, Martin-Ruiz C, Rimmer L, Dodds RM, Robinson LA, Spyridopoulos I, Kirkwood TBL, von Zglinicki T, Sayer AA. Immunosenescence profiles of lymphocyte compartments and multiple long-term conditions (multimorbidity) in very old adults: The Newcastle 85+ Study. Mech Ageing Dev 2022; 208:111739. [PMID: 36152894 DOI: 10.1016/j.mad.2022.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 09/18/2022] [Indexed: 12/30/2022]
Abstract
Immunosenescence, a decline in immune system function, has been linked to several age-related diseases and ageing syndromes. Very old adults (aged ≥ 85 years) live with multiple long-term conditions (MLTC, also known as multimorbidity)-a complex phenomenon of poor health defined by either counts, indices, or patterns, but little is known about the relationship between an ageing immune system and MLTC in this age group. We utilised baseline data from the Newcastle 85+ Study to investigate the associations between previously defined immunosenescence profiles of lymphocyte compartments and MLTC counts and patterns (from 16 chronic diseases/ageing syndromes). Seven hundred and three participants had MLTC and complete data for all 16 conditions, a median and mean of 5 (range 2-11) and 62.2% had ≥ 5 conditions. Three distinct MLTC patterns emerged by clustering: Cluster 1 ('Low frequency cardiometabolic-cerebrovascular diseases', n = 209), Cluster 2 ('High ageing syndromes-arthritis', n = 240), and Cluster 3 ('Hypertensive-renal impairment', n = 254). Although having a more senescent phenotype, characterised by higher frequency of CD4 and CD8 senescence-like effector memory cells and lower CD4/CD8 ratio, was not associated with MLTC compared with less senescent phenotype, the results warrant further investigation, including whether immunosenescence drives change in MLTC and influences MLTC severity in late adulthood.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carmen Martin-Ruiz
- Bio Screening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucy Rimmer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard M Dodds
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Louise A Robinson
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ioakim Spyridopoulos
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas B L Kirkwood
- National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas von Zglinicki
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Avan A Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
13
|
Lu J, Chen G, Sorokina A, Nguyen T, Wallace T, Nguyen C, Dunn C, Wang S, Ellis S, Shi G, McKelvey J, Sharov A, Liu YT, Schneck J, Weng NP. Cytomegalovirus infection reduced CD70 expression, signaling and expansion of viral specific memory CD8+ T cells in healthy human adults. IMMUNITY & AGEING 2022; 19:54. [DOI: 10.1186/s12979-022-00307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Cytomegalovirus (CMV) infection leads to effector memory CD8+ T cell expansion and is associated with immune dysfunction in older adults. However, the molecular alterations of CMV-specific CD8+ T cells in CMV infected healthy young and middle-aged adults has not been fully characterized.
Results
We compared CD8+ T cells specific for a CMV epitope (pp65495-503, NLV) and an influenza A virus (IAV) epitope (M158-66, GIL) from the same young and middle-aged healthy adults with serum positive for anti-CMV IgG. Compared to the IAV-specific CD8+ T cells, CMV-specific CD8+ T cells contained more differentiated effector memory (TEM and TEMRA) cells. Isolated CMV-specific central memory (TCM) but not naïve (TN) cells had a significant reduced activation-induced expansion in vitro compared to their IAV-specific counterparts. Furthermore, we found that CD70 expression was reduced in CMV-specific CD28+CD8+ TCM and that CD70+ TCM had better expansion in vitro than did CD70- TCM. Mechanistically, we showed that CD70 directly enhanced MAPK phosphorylation and CMV-specific CD8+ TCM cells had a reduced MAPK signaling upon activation. Lastly, we showed that age did not exacerbate reduced CD70 expression in CMV- specific CD8+ TCM cells.
Conclusion
Our findings showed that CMV infection causes mild expansion of CMV-NLV-specific CD8+ T cells, reduced CD70 expression and signaling, and proliferation of CMV-NLV-specific CD8+ TCM cells in young and middle-aged healthy adults and revealed an age-independent and CMV infection-specific impact on CD8+ memory T cells.
Collapse
|
14
|
Tizazu AM, Mengist HM, Demeke G. Aging, inflammaging and immunosenescence as risk factors of severe COVID-19. Immun Ageing 2022; 19:53. [PMID: 36369012 PMCID: PMC9650172 DOI: 10.1186/s12979-022-00309-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory infectious disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is characterized by having a heterogeneous disease course, ranging from asymptomatic and mild symptoms to more severe and critical cases. In most cases the severity of COVID-19 is related to host factors, especially deregulation of the immune response in patients. Even if COVID-19 indiscriminately affects individuals of different age group, ethnicity and economic status; most severe cases and disproportional mortality occur in elderly individuals. This point out that aging is one risk factor for unfavourable clinical outcomes among COVID-19 patients. The biology of aging is a complex process; Aging can alter the structure and function of cells, tissues, and organs resulting in impaired response to stress. Alongside with other systems, the immune system is also affected with the aging process. Immunosenescence is an age associated change in the immune system that affects the overall response to immunological challenges in the elderly. Similarly, apart from the normal inflammatory process, aging is associated with a low grade, sterile, chronic inflammation which is termed as inflammaging. We hypothesized that inflammaging and immunosenescence could play an important role in SARS-CoV-2 pathogenesis and poor recovery from COVID-19 in elderly individuals. This review summarizes the changes in the immune system with age and how these changes play part in the pathogenesis of SARS-CoV-2 and clinical outcome of COVID-19 which could add to the understanding of age associated targeted immunotherapy in the elderly.
Collapse
Affiliation(s)
- Anteneh Mehari Tizazu
- Department of Microbiology, Parasitology and Immunology, School of Medicine, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia.
| | - Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gebreselassie Demeke
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
15
|
Imoto S, Suzukawa M, Takeda K, Motohashi T, Nagase M, Enomoto Y, Kawasaki Y, Nakano E, Watanabe M, Shimada M, Takada K, Watanabe S, Nagase T, Ohta K, Teruya K, Nagai H. Evaluation of tuberculosis diagnostic biomarkers in immunocompromised hosts based on cytokine levels in QuantiFERON-TB Gold Plus. Tuberculosis (Edinb) 2022; 136:102242. [PMID: 35944309 DOI: 10.1016/j.tube.2022.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022]
Abstract
Tuberculosis (TB) remains a serious health concern globally. QuantiFERON-TB (QFT) is a diagnostic tool for TB detection, and its sensitivity is reduced in immunocompromised hosts with low T lymphocyte counts or abnormal T cell function. This study aimed to evaluate the correlation between T cell and cytokine levels in patients with active TB using QFT-Plus. Forty-five patients with active TB were enrolled, and the cytokines in QFT-Plus tube supernatants were quantified using the MAGPIX System. CD4+ T cell count negatively correlated with patient age (p < 0.001, r = -0.51). The levels of TB1-responsive interleukin-1 receptor antagonist (IL-1Ra) and IL-2 correlated with CD4+ T cell count, whereas the levels of TB2-responsive IL-1Ra and IFN-γ-induced protein 10 correlated with both CD4+ and CD8+ T cell counts. Cytokines that correlated with CD4+ and CD8+ T cell counts might not be suitable TB diagnostic biomarkers in immunocompromised hosts. Notably, cytokines that did not correlate with the T cell counts, such as monocyte chemoattractant protein-1, might be candidate biomarkers for TB in immunocompromised hosts. Our findings might help improve TB diagnosis, which could enable prompt treatment and minimize poor disease outcomes.
Collapse
Affiliation(s)
- Sahoko Imoto
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan.
| | - Keita Takeda
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Takumi Motohashi
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Maki Nagase
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Yu Enomoto
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Yuichiro Kawasaki
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Eri Nakano
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Masato Watanabe
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Masahiro Shimada
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Kazufumi Takada
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shizuka Watanabe
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, 193-0834, Japan
| | - Katsuji Teruya
- National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Hideaki Nagai
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| |
Collapse
|
16
|
Wang Y, Dong C, Han Y, Gu Z, Sun C. Immunosenescence, aging and successful aging. Front Immunol 2022; 13:942796. [PMID: 35983061 PMCID: PMC9379926 DOI: 10.3389/fimmu.2022.942796] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Aging induces a series of immune related changes, which is called immunosenescence, playing important roles in many age-related diseases, especially neurodegenerative diseases, tumors, cardiovascular diseases, autoimmune diseases and coronavirus disease 2019(COVID-19). However, the mechanism of immunosenescence, the association with aging and successful aging, and the effects on diseases are not revealed obviously. In order to provide theoretical basis for preventing or controlling diseases effectively and achieve successful aging, we conducted the review and found that changes of aging-related phenotypes, deterioration of immune organ function and alterations of immune cell subsets participated in the process of immunosenescence, which had great effects on the occurrence and development of age-related diseases.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yudian Han
- Information Center, The First People’s Hospital of Nantong City, Nantong, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| | - Chi Sun
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhifeng Gu, ; Chi Sun,
| |
Collapse
|
17
|
Del Cuore A, Pacinella G, Riolo R, Tuttolomondo A. The Role of Immunosenescence in Cerebral Small Vessel Disease: A Review. Int J Mol Sci 2022; 23:ijms23137136. [PMID: 35806140 PMCID: PMC9266569 DOI: 10.3390/ijms23137136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is one of the most important causes of vascular dementia. Immunosenescence and inflammatory response, with the involvement of the cerebrovascular system, constitute the basis of this disease. Immunosenescence identifies a condition of deterioration of the immune organs and consequent dysregulation of the immune response caused by cellular senescence, which exposes older adults to a greater vulnerability. A low-grade chronic inflammation status also accompanies it without overt infections, an “inflammaging” condition. The correlation between immunosenescence and inflammaging is fundamental in understanding the pathogenesis of age-related CSVD (ArCSVD). The production of inflammatory mediators caused by inflammaging promotes cellular senescence and the decrease of the adaptive immune response. Vice versa, the depletion of the adaptive immune mechanisms favours the stimulation of the innate immune system and the production of inflammatory mediators leading to inflammaging. Furthermore, endothelial dysfunction, chronic inflammation promoted by senescent innate immune cells, oxidative stress and impairment of microglia functions constitute, therefore, the framework within which small vessel disease develops: it is a concatenation of molecular events that promotes the decline of the central nervous system and cognitive functions slowly and progressively. Because the causative molecular mechanisms have not yet been fully elucidated, the road of scientific research is stretched in this direction, seeking to discover other aberrant processes and ensure therapeutic tools able to enhance the life expectancy of people affected by ArCSVD. Although the concept of CSVD is broader, this manuscript focuses on describing the neurobiological basis and immune system alterations behind cerebral aging. Furthermore, the purpose of our work is to detect patients with CSVD at an early stage, through the evaluation of precocious MRI changes and serum markers of inflammation, to treat untimely risk factors that influence the burden and the worsening of the cerebral disease.
Collapse
Affiliation(s)
- Alessandro Del Cuore
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-655-2197
| | - Gaetano Pacinella
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Renata Riolo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialised Medicine (PROMISE) G. D’Alessandro, University of Palermo, 90133 Palermo, Italy; (G.P.); (R.R.); (A.T.)
- Internal Medicine and Stroke Care Ward, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
18
|
Zhao G, Straub RH, Meyer-Hermann M. The transition between acute and chronic infections in light of energy control: a mathematical model of energy flow in response to infection. J R Soc Interface 2022; 19:20220206. [PMID: 35730176 PMCID: PMC9214282 DOI: 10.1098/rsif.2022.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Different parts of an organism like the gut, endocrine, nervous and immune systems constantly exchange information. Understanding the pathogenesis of various systemic chronic diseases increasingly relies on understanding how these subsystems orchestrate their activities. METHODS We started from the working hypothesis that energy is a fundamental quantity that governs activity levels of all subsystems and that interactions between subsystems control the distribution of energy according to acute needs. Based on physiological knowledge, we constructed a mathematical model for the energy flow between subsystems and analysed the resulting organismal responses to in silico infections. RESULTS The model reproduces common behaviour in acute infections and suggests several host parameters that modulate infection duration and therapeutic responsiveness. Moreover, the model allows the formulation of conditions for the induction of chronic infections and predicts that alterations in energy released from fat can lead to the transition from clearance of acute infections to a chronic inflammatory state. IMPACT These results suggest a fundamental role for brain and fat in controlling immune response through systemic energy control. In particular, it suggests that lipolysis resistance, which is known to be involved in obesity and ageing, might be a survival programme for coping with chronic infections.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany
| | - Rainer H. Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
19
|
Salumets A, Tserel L, Rumm AP, Türk L, Kingo K, Saks K, Oras A, Uibo R, Tamm R, Peterson H, Kisand K, Peterson P. Epigenetic quantification of immunosenescent CD8 + TEMRA cells in human blood. Aging Cell 2022; 21:e13607. [PMID: 35397197 PMCID: PMC9124311 DOI: 10.1111/acel.13607] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/22/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022] Open
Abstract
Age‐related changes in human T‐cell populations are important contributors to immunosenescence. In particular, terminally differentiated CD8+ effector memory CD45RA+ TEMRA cells and their subsets have characteristics of cellular senescence, accumulate in older individuals, and are increased in age‐related chronic inflammatory diseases. In a detailed T‐cell profiling among individuals over 65 years of age, we found a high interindividual variation among CD8+ TEMRA populations. CD8+ TEMRA proportions correlated positively with cytomegalovirus (CMV) antibody levels, however, not with the chronological age. In the analysis of over 90 inflammation proteins, we identified plasma TRANCE/RANKL levels to associate with several differentiated T‐cell populations, including CD8+ TEMRA and its CD28− subsets. Given the strong potential of CD8+ TEMRA cells as a biomarker for immunosenescence, we used deep‐amplicon bisulfite sequencing to match their frequencies in flow cytometry with CpG site methylation levels and developed a computational model to predict CD8+ TEMRA cell proportions from whole blood genomic DNA. Our findings confirm the association of CD8+ TEMRA and its subsets with CMV infection and provide a novel tool for their high throughput epigenetic quantification as a biomarker of immunosenescence.
Collapse
Affiliation(s)
- Ahto Salumets
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
- Institute of Computer Science University of Tartu Tartu Estonia
| | - Liina Tserel
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Anna P. Rumm
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Lehte Türk
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology Institute of Clinical Medicine University of Tartu Tartu Estonia
- Clinic of Dermatology Tartu University Hospital Tartu Estonia
| | - Kai Saks
- Department of Internal Medicine Institute of Clinical Medicine University of Tartu Tartu Estonia
| | - Astrid Oras
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Raivo Uibo
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Riin Tamm
- Laboratory of Immune Analysis United Laboratories Tartu University Hospital Tartu Estonia
| | - Hedi Peterson
- Institute of Computer Science University of Tartu Tartu Estonia
| | - Kai Kisand
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Pärt Peterson
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| |
Collapse
|
20
|
CD8 + T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int J Mol Sci 2022; 23:ijms23063374. [PMID: 35328795 PMCID: PMC8955595 DOI: 10.3390/ijms23063374] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.
Collapse
|
21
|
van den Berg SPH, Derksen LY, Drylewicz J, Nanlohy NM, Beckers L, Lanfermeijer J, Gessel SN, Vos M, Otto SA, de Boer RJ, Tesselaar K, Borghans JAM, van Baarle D. Quantification of T-cell dynamics during latent cytomegalovirus infection in humans. PLoS Pathog 2021; 17:e1010152. [PMID: 34914799 PMCID: PMC8717968 DOI: 10.1371/journal.ppat.1010152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/30/2021] [Accepted: 11/27/2021] [Indexed: 01/10/2023] Open
Abstract
Cytomegalovirus (CMV) infection has a major impact on the T-cell pool, which is thought to be associated with ageing of the immune system. The effect on the T-cell pool has been interpreted as an effect of CMV on non-CMV specific T-cells. However, it remains unclear whether the effect of CMV could simply be explained by the presence of large, immunodominant, CMV-specific memory CD8+ T-cell populations. These have been suggested to establish through gradual accumulation of long-lived cells. However, little is known about their maintenance. We investigated the effect of CMV infection on T-cell dynamics in healthy older adults, and aimed to unravel the mechanisms of maintenance of large numbers of CMV-specific CD8+ T-cells. We studied the expression of senescence, proliferation, and apoptosis markers and quantified the in vivo dynamics of CMV-specific and other memory T-cell populations using in vivo deuterium labelling. Increased expression of late-stage differentiation markers by CD8+ T-cells of CMV+ versus CMV- individuals was not solely explained by the presence of large, immunodominant CMV-specific CD8+ T-cell populations. The lifespans of circulating CMV-specific CD8+ T-cells did not differ significantly from those of bulk memory CD8+ T-cells, and the lifespans of bulk memory CD8+ T-cells did not differ significantly between CMV- and CMV+ individuals. Memory CD4+ T-cells of CMV+ individuals showed increased expression of late-stage differentiation markers and decreased Ki-67 expression. Overall, the expression of senescence markers on T-cell populations correlated positively with their expected in vivo lifespan. Together, this work suggests that i) large, immunodominant CMV-specific CD8+ T-cell populations do not explain the phenotypical differences between CMV+ and CMV- individuals, ii) CMV infection hardly affects the dynamics of the T-cell pool, and iii) large numbers of CMV-specific CD8+ T-cells are not due to longer lifespans of these cells.
Collapse
Affiliation(s)
- Sara P. H. van den Berg
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lyanne Y. Derksen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nening M. Nanlohy
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Lisa Beckers
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Josien Lanfermeijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stephanie N. Gessel
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Martijn Vos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Sigrid A. Otto
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rob J. de Boer
- Theoretical Biology, Utrecht University, Utrecht, the Netherlands
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
22
|
How Immunosenescence and Inflammaging May Contribute to Hyperinflammatory Syndrome in COVID-19. Int J Mol Sci 2021; 22:ijms222212539. [PMID: 34830421 PMCID: PMC8618618 DOI: 10.3390/ijms222212539] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Aging is characterized by the dynamic remodeling of the immune system designated “immunosenescence,” and is associated with altered hematopoiesis, thymic involution, and lifelong immune stimulation by multitudinous chronic stressors, including the cytomegalovirus (CMV). Such alterations may contribute to a lowered proportion of naïve T-cells and to reduced diversity of the T-cell repertoire. In the peripheral circulation, a shift occurs towards accumulations of T and B-cell populations with memory phenotypes, and to accumulation of putatively senescent and exhausted immune cells. The aging-related accumulations of functionally exhausted memory T lymphocytes, commonly secreting pro-inflammatory cytokines, together with mediators and factors of the innate immune system, are considered to contribute to the low-grade inflammation (inflammaging) often observed in elderly people. These senescent immune cells not only secrete inflammatory mediators, but are also able to negatively modulate their environments. In this review, we give a short summary of the ways that immunosenescence, inflammaging, and CMV infection may cause insufficient immune responses, contribute to the establishment of the hyperinflammatory syndrome and impact the severity of the coronavirus disease 2019 (COVID-19) in elderly people.
Collapse
|
23
|
Peixoto SV, Torres KCL, Teixeira-Carvalho A, Martins-Filho OA, Lima-Costa MF. [Seroprevalence and factors associated with chronic infections among community-dwelling elderly individuals]. CIENCIA & SAUDE COLETIVA 2021; 26:5109-5121. [PMID: 34787203 DOI: 10.1590/1413-812320212611.3.37062019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2025] Open
Abstract
Chronic infections can contribute to the aging process, but this issue is less studied in Latin America. The aim was to assess the prevalence and factors associated with cytomegalovirus (CMV), Herpes Simplex 1 (HSV-1), Chlamydia pneumoniae and Helicobacter pylori among the elderly. A total of 1,320 individuals participated from the baseline of the Elderly Cohort of Bambuí. IgG antibodies against infections and explanatory variables (sociodemographic factors, health behaviors and health conditions) were evaluated. Poisson regression models with robust variance were used. Seroprevalence rates were 99.4% for CMV, 96.7% for HSV-1, 56% for C. pneumoniae and 70.5% for H. pylori. Elderly men, women, smokers, diabetics, the disabled and those with high levels of IL-6 had a higher prevalence of CMV. HSV-1 was less frequent among women. The prevalence of C. pneumoniae was higher at ages >75 and among diabetics; it was lower among women and individuals with less schooling. H. pylori was less frequent among women and those with detectable levels of IL-1β, but more common among smokers. The findings show a high prevalence of chronic infection and a different epidemiologic profile for each pathogen, making it possible to detect groups that are vulnerable to these infections.
Collapse
Affiliation(s)
- Sérgio Viana Peixoto
- Núcleo de Estudos em Saúde Pública e Envelhecimento, Instituto René Rachou, Fiocruz Minas. Av. Augusto de Lima 1715, Barro Preto. 30190-009 Belo Horizonte MG Brasil. .,Departamento de Gestão em Saúde, Escola de Enfermagem, Universidade Federal de Minas Gerais. Belo Horizonte MG Brasil
| | - Karen Cecília Lima Torres
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fiocruz Minas. Belo Horizonte MG Brasil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fiocruz Minas. Belo Horizonte MG Brasil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fiocruz Minas. Belo Horizonte MG Brasil
| | | |
Collapse
|
24
|
Koppula S, Akther M, Haque ME, Kopalli SR. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents. Nutrients 2021; 13:nu13114058. [PMID: 34836313 PMCID: PMC8617641 DOI: 10.3390/nu13114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammaging, the steady development of the inflammatory state over age is an attributable characteristic of aging that potentiates the initiation of pathogenesis in many age-related disorders (ARDs) including neurodegenerative diseases, arthritis, cancer, atherosclerosis, type 2 diabetes, and osteoporosis. Inflammaging is characterized by subclinical chronic, low grade, steady inflammatory states and is considered a crucial underlying cause behind the high mortality and morbidity rate associated with ARDs. Although a coherent set of studies detailed the underlying pathomechanisms of inflammaging, the potential benefits from non-toxic nutrients from natural and synthetic sources in modulating or delaying inflammaging processes was not discussed. In this review, the available literature and recent updates of natural and synthetic nutrients that help in controlling inflammaging process was explored. Also, we discussed the clinical trial reports and patent claims on potential nutrients demonstrating therapeutic benefits in controlling inflammaging and inflammation-associated ARDs.
Collapse
Affiliation(s)
- Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Mahbuba Akther
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju 27381, Korea; (S.K.); (M.A.)
| | - Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27381, Korea;
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea
- Correspondence: ; Tel.: +82-2-6935-2619
| |
Collapse
|
25
|
Lee GC, Restrepo MI, Harper N, Manoharan MS, Smith AM, Meunier JA, Sanchez-Reilly S, Ehsan A, Branum AP, Winter C, Winter L, Jimenez F, Pandranki L, Carrillo A, Perez GL, Anzueto A, Trinh H, Lee M, Hecht JM, Martinez-Vargas C, Sehgal RT, Cadena J, Walter EA, Oakman K, Benavides R, Pugh JA, Letendre S, Steri M, Orrù V, Fiorillo E, Cucca F, Moreira AG, Zhang N, Leadbetter E, Agan BK, Richman DD, He W, Clark RA, Okulicz JF, Ahuja SK. Immunologic resilience and COVID-19 survival advantage. J Allergy Clin Immunol 2021; 148:1176-1191. [PMID: 34508765 PMCID: PMC8425719 DOI: 10.1016/j.jaci.2021.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The risk of severe coronavirus disease 2019 (COVID-19) varies significantly among persons of similar age and is higher in males. Age-independent, sex-biased differences in susceptibility to severe COVID-19 may be ascribable to deficits in a sexually dimorphic protective attribute that we termed immunologic resilience (IR). OBJECTIVE We sought to examine whether deficits in IR that antedate or are induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection independently predict COVID-19 mortality. METHODS IR levels were quantified with 2 novel metrics: immune health grades (IHG-I [best] to IHG-IV) to gauge CD8+ and CD4+ T-cell count equilibrium, and blood gene expression signatures. IR metrics were examined in a prospective COVID-19 cohort (n = 522); primary outcome was 30-day mortality. Associations of IR metrics with outcomes in non-COVID-19 cohorts (n = 13,461) provided the framework for linking pre-COVID-19 IR status to IR during COVID-19, as well as to COVID-19 outcomes. RESULTS IHG-I, tracking high-grade equilibrium between CD8+ and CD4+ T-cell counts, was the most common grade (73%) among healthy adults, particularly in females. SARS-CoV-2 infection was associated with underrepresentation of IHG-I (21%) versus overrepresentation (77%) of IHG-II or IHG-IV, especially in males versus females (P < .01). Presentation with IHG-I was associated with 88% lower mortality, after controlling for age and sex; reduced risk of hospitalization and respiratory failure; lower plasma IL-6 levels; rapid clearance of nasopharyngeal SARS-CoV-2 burden; and gene expression signatures correlating with survival that signify immunocompetence and controlled inflammation. In non-COVID-19 cohorts, IR-preserving metrics were associated with resistance to progressive influenza or HIV infection, as well as lower 9-year mortality in the Framingham Heart Study, especially in females. CONCLUSIONS Preservation of immunocompetence with controlled inflammation during antigenic challenges is a hallmark of IR and associates with longevity and AIDS resistance. Independent of age, a male-biased proclivity to degrade IR before and/or during SARS-CoV-2 infection predisposes to severe COVID-19.
Collapse
Affiliation(s)
- Grace C. Lee
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex,College of Pharmacy, The University of Texas at Austin, Austin, Tex
| | - Marcos I. Restrepo
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Nathan Harper
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,The Foundation for Advancing Veterans’ Health Research, San Antonio, Tex
| | - Muthu Saravanan Manoharan
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Alisha M. Smith
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,The Foundation for Advancing Veterans’ Health Research, San Antonio, Tex,Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Justin A. Meunier
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,The Foundation for Advancing Veterans’ Health Research, San Antonio, Tex
| | - Sandra Sanchez-Reilly
- South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Aamir Ehsan
- South Texas Veterans Health Care System, San Antonio, Tex
| | - Anne P. Branum
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,The Foundation for Advancing Veterans’ Health Research, San Antonio, Tex
| | - Caitlyn Winter
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Lauryn Winter
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Fabio Jimenez
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,The Foundation for Advancing Veterans’ Health Research, San Antonio, Tex
| | - Lavanya Pandranki
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Andrew Carrillo
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,The Foundation for Advancing Veterans’ Health Research, San Antonio, Tex
| | - Graciela L. Perez
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,The Foundation for Advancing Veterans’ Health Research, San Antonio, Tex
| | - Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Hanh Trinh
- South Texas Veterans Health Care System, San Antonio, Tex
| | - Monica Lee
- South Texas Veterans Health Care System, San Antonio, Tex
| | - Joan M. Hecht
- South Texas Veterans Health Care System, San Antonio, Tex,The Foundation for Advancing Veterans’ Health Research, San Antonio, Tex
| | | | - Raj T. Sehgal
- South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Jose Cadena
- South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Elizabeth A. Walter
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | | | - Raymond Benavides
- Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex,College of Pharmacy, The University of Texas at Austin, Austin, Tex
| | - Jacqueline A. Pugh
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | | | - Scott Letendre
- Department of Medicine, University of California, San Diego, Calif,HIV Neurobehavioral Research Center Antiviral Research Center, University of California, San Diego, Calif
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy
| | - Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Sardinia, Italy,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alvaro G. Moreira
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Nu Zhang
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Elizabeth Leadbetter
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Brian K. Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Md,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Md
| | | | - Weijing He
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,The Foundation for Advancing Veterans’ Health Research, San Antonio, Tex
| | - Robert A. Clark
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Jason F. Okulicz
- Infectious Disease Service, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, Tex
| | - Sunil K. Ahuja
- Veterans Administration Research Center for AIDS and HIV-1 Infection and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Tex,South Texas Veterans Health Care System, San Antonio, Tex,Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Tex,Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Tex,Corresponding author: Sunil K. Ahuja, MD, South Texas Veterans Health Care System, 7400 Merton Minter, San Antonio, TX 78229; Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229
| |
Collapse
|
26
|
Fleyshman DI, Wakshlag JJ, Huson HJ, Loftus JP, Olby NJ, Brodsky L, Gudkov AV, Andrianova EL. Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs. Aging (Albany NY) 2021; 13:21814-21837. [PMID: 34587118 PMCID: PMC8507265 DOI: 10.18632/aging.203600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Canines represent a valuable model for mammalian aging studies as large animals with short lifespans, allowing longitudinal analyses within a reasonable time frame. Moreover, they develop a spectrum of aging-related diseases resembling that of humans, are exposed to similar environments, and have been reasonably well studied in terms of physiology and genetics. To overcome substantial variables that complicate studies of privately-owned household dogs, we have focused on a more uniform population composed of retired Alaskan sled dogs that shared similar lifestyles, including exposure to natural stresses, and are less prone to breed-specific biases than a pure breed population. To reduce variability even further, we have collected a population of 103 retired (8-11 years-old) sled dogs from multiple North American kennels in a specialized research facility named Vaika. Vaika dogs are maintained under standardized conditions with professional veterinary care and participate in a multidisciplinary program to assess the longitudinal dynamics of aging. The established Vaika infrastructure enables periodic gathering of quantitative data reflecting physical, physiological, immunological, neurological, and cognitive decline, as well as monitoring of aging-associated genetic and epigenetic alterations occurring in somatic cells. In addition, we assess the development of age-related diseases such as arthritis and cancer. In-depth data analysis, including artificial intelligence-based approaches, will build a comprehensive, integrated model of canine aging and potentially identify aging biomarkers that will allow use of this model for future testing of antiaging therapies.
Collapse
Affiliation(s)
| | - Joseph J Wakshlag
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Heather J Huson
- Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - John P Loftus
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Natasha J Olby
- North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606, USA
| | - Leonid Brodsky
- Tauber Bioinformatic Research Center, University of Haifa, Haifa, Israel
| | - Andrei V Gudkov
- Vaika, Inc., East Aurora, NY 14052, USA.,Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | | |
Collapse
|
27
|
Vetrano DL, Triolo F, Maggi S, Malley R, Jackson TA, Poscia A, Bernabei R, Ferrucci L, Fratiglioni L. Fostering healthy aging: The interdependency of infections, immunity and frailty. Ageing Res Rev 2021; 69:101351. [PMID: 33971332 PMCID: PMC9588151 DOI: 10.1016/j.arr.2021.101351] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Untangling the interdependency of infections, immunity and frailty may help to clarify their roles in the maintenance of health in aging individuals, and the recent COVID-19 pandemic has further highlighted such priority. In this scoping review we aimed to systematically collect the evidence on 1) the impact of common infections such as influenza, pneumonia and varicella zoster on frailty development, and 2) the role played by frailty in the response to immunization of older adults. Findings are discussed under a unifying framework to identify knowledge gaps and outline their clinical and public health implications to foster a healthier aging. Twenty-nine studies (113,863 participants) selected to answer the first question provided a moderately strong evidence of an association between infections and physical as well as cognitive decline - two essential dimensions of frailty. Thirteen studies (34,520 participants) investigating the second aim, showed that frailty was associated with an impaired immune response in older ages, likely due to immunosenescence. However, the paucity of studies, the absence of tools to predict vaccine efficacy, and the lack of studies investigating the efficacy of newer vaccines in presence of frailty, strongly limit the formulation of more personalized immunization strategies for older adults. The current evidence suggests that infections and frailty repeatedly cross each other pathophysiological paths and accelerate the aging process in a vicious circle. Such evidence opens to several considerations. First, the prevention of both conditions pass through a life course approach, which includes several individual and societal aspects. Second, the maintenance of a well-functioning immune system may be accomplished by preventing frailty, and vice versa. Third, increasing the adherence to immunization may delay the onset of frailty and maintain the immune system homeostasis, beyond preventing infections.
Collapse
Affiliation(s)
- Davide L Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Centro Medicina dell'Invecchiamento, Fondazione Policlinico "A- Gemelli" IRCCS and Catholic University of Rome, Italy.
| | - Federico Triolo
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Padua, Italy
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas A Jackson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; Department of Geriatrics, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Roberto Bernabei
- Centro Medicina dell'Invecchiamento, Fondazione Policlinico "A- Gemelli" IRCCS and Catholic University of Rome, Italy
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Laura Fratiglioni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| |
Collapse
|
28
|
Abbas AA, Akbar AN. Induction of T Cell Senescence by Cytokine Induced Bystander Activation. FRONTIERS IN AGING 2021; 2:714239. [PMID: 35821998 PMCID: PMC9261416 DOI: 10.3389/fragi.2021.714239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
As people around the world continue to live longer, maintaining a good quality of life is of increasing importance. The COVID-19 pandemic revealed that the elderly are disproportionally vulnerable to infectious diseases and Immunosenescence plays a critical role in that. An ageing immune system influences the conventional activity of T cells which are at the forefront of eliminating harmful foreign antigens. With ageing, unconventional end-stage T cells, that exhibit a senescent phenotype, amass. These senescent T cells deviate from T cell receptor (TCR) signaling toward natural killer (NK) activity. The transition toward innate immune cell function from these adaptor T cells impacts antigen specificity, contributing to increased susceptibility of infection in the elderly. The mechanism by which senescent T cells arise remains largely unclear however in this review we investigate the part that bystander activation plays in driving the change in function of T cells with age. Cytokine-induced bystander activation may offer a plausible explanation for the induction of NK-like activity and senescence in T cells. Further understanding of these specific NK-like senescent T cells allows us to identify the benefits and detriments of these cells in health and disease which can be utilized or regulated, respectively. This review discusses the dynamic of senescent T cells in adopting NK-like T cells and the implications that has in an infectious disease context, predominately in the elderly.
Collapse
|
29
|
Mainali S, Darsie ME. Neurologic and Neuroscientific Evidence in Aged COVID-19 Patients. Front Aging Neurosci 2021; 13:648662. [PMID: 33833676 PMCID: PMC8021699 DOI: 10.3389/fnagi.2021.648662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic continues to prevail as a catastrophic wave infecting over 111 million people globally, claiming 2. 4 million lives to date. Aged individuals are particularly vulnerable to this disease due to their fraility, immune dysfunction, and higher rates of medical comorbidities, among other causes. Apart from the primary respiratory illness, this virus is known to cause multi-organ dysfunction including renal, cardiac, and neurologic injuries, particularly in the critically-ill cohorts. Elderly patients 65 years of age or older are known to have more severe systemic disease and higher rates of neurologic complications. Morbidity and mortality is very high in the elderly population with 6–930 times higher likelihood of death compared to younger cohorts, with the highest risk in elderly patients ≥85 years and especially those with medical comorbidities such as hypertension, diabetes, heart disease, and underlying respiratory illness. Commonly reported neurologic dysfunctions of COVID-19 include headache, fatigue, dizziness, and confusion. Elderly patients may manifest atypical presentations like fall or postural instability. Other important neurologic dysfunctions in the elderly include cerebrovascular diseases, cognitive impairment, and neuropsychiatric illnesses. Elderly patients with preexisting neurologic diseases are susceptibility to severe COVID-19 infection and higher rates of mortality. Treatment of neurologic dysfunction of COVID-19 is based on existing practice standards of specific neurologic condition in conjunction with systemic treatment of the viral illness. The physical, emotional, psychologic, and financial implications of COVID-19 pandemic have been severe. Long-term data are still needed to understand the lasting effects of this devastating pandemic.
Collapse
Affiliation(s)
- Shraddha Mainali
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Marin E Darsie
- Department of Emergency Medicine, University of Wisconsin Hospitals and Clinics, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin Hospitals and Clinics, Madison, WI, United States
| |
Collapse
|
30
|
Zhang W, Bream JH, Leng SX, Margolick JB. Validation of Preamplification to Improve Quantification of Cytomegalovirus DNA Using Droplet Digital Polymerase Chain Reaction. Anal Chem 2021; 93:3710-3716. [PMID: 33596050 PMCID: PMC10074994 DOI: 10.1021/acs.analchem.0c02890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subclinical cytomegalovirus (CMV) replication is associated with strong cellular immune response and chronic inflammation, which could contribute to aging-related conditions such as cardiovascular disease and frailty. However, because of very low levels of CMV DNA present in people with chronic CMV infection, it has been difficult to explore the virologic and immunologic mechanisms of chronic low-level CMV infection and a sensitive method to monitor CMV replication is needed. Droplet digital PCR (ddPCR) has been shown to have higher precision and reproducibility than real-time quantitative PCR (qPCR) in quantifying low levels of CMV DNA, but it is not always sensitive enough for this purpose. Through rigorous validation experiments, we demonstrated that sensitivity and precision of quantification of very low levels of CMV DNA by ddPCR can be significantly increased by preamplification of samples with 10-20 cycles of conventional PCR, especially when testing CMV DNA in the presence of cellular DNA. With preamplification, we could reliably quantify down to two copies of CMV DNA, as opposed to five copies without preamplification. Further studies are needed to determine if ddPCR with preamplification can facilitate mechanistic studies of the characteristics and consequences of chronic CMV infection in aging adults.
Collapse
Affiliation(s)
- Weiying Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sean X. Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
31
|
Delgobo M, Heinrichs M, Hapke N, Ashour D, Appel M, Srivastava M, Heckel T, Spyridopoulos I, Hofmann U, Frantz S, Ramos GC. Terminally Differentiated CD4 + T Cells Promote Myocardial Inflammaging. Front Immunol 2021; 12:584538. [PMID: 33679735 PMCID: PMC7935504 DOI: 10.3389/fimmu.2021.584538] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4+ T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4+ T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4+ T cell compartment was primarily composed of naïve cells defined as CCR7+CD45RO-. However, when transplanted into young lymphocyte-deficient mice, CD4+ T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7- CD45RO+) and terminally-differentiated phenotypes (CCR7-CD45RO-), as typically seen in elderly. Differentiated CD4+ T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4+ T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4+ T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice.
Collapse
Affiliation(s)
- Murilo Delgobo
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Margarete Heinrichs
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Nils Hapke
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - DiyaaElDin Ashour
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Marc Appel
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Mugdha Srivastava
- Core Unit Systems Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Heckel
- Core Unit Systems Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ioakim Spyridopoulos
- Freeman Hospital, Department of Cardiology, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Cardiovascular Biology and Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ulrich Hofmann
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Gustavo Campos Ramos
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Giacconi R, Maggi F, Macera L, Spezia PG, Pistello M, Provinciali M, Piacenza F, Basso A, Bürkle A, Moreno-Villanueva M, Dollé MET, Jansen E, Grune T, Stuetz W, Gonos ES, Schön C, Bernhardt J, Grubeck-Loebenstein B, Sikora E, Dudkowska M, Janiszewska D, Toussaint O, Debacq-Chainiaux F, Franceschi C, Capri M, Hervonen A, Hurme M, Slagboom E, Breusing N, Mocchegiani E, Malavolta M. Prevalence and Loads of Torquetenovirus in the European MARK-AGE Study Population. J Gerontol A Biol Sci Med Sci 2021; 75:1838-1845. [PMID: 31838498 DOI: 10.1093/gerona/glz293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Torquetenovirus (TTV) viremia has been associated with increased mortality risk in the elderly population. This work aims to investigate TTV viremia as a potential biomarker of immunosenescence. We compared levels of circulating TTV in 1813 participants of the MARK-AGE project, including human models of delayed (offspring of centenarians [GO]) and premature (Down syndrome [DS]) immunosenescence. The TTV load was positively associated with age, cytomegalovirus (CMV) antibody levels, and the Cu/Zn ratio and negatively associated with platelets, total cholesterol, and total IgM. TTV viremia was highest in DS and lowest in GO, with intermediate levels in the SGO (spouses of GO) and RASIG (Randomly Recruited Age-Stratified Individuals From The General Population) populations. In the RASIG population, TTV DNA loads showed a slight negative association with CD3+T-cells and CD4+T-cells. Finally, males with ≥4log TTV copies/mL had a higher risk of having a CD4/CD8 ratio<1 than those with lower viremia (odds ratio [OR] = 2.85, 95% confidence interval [CI]: 1.06-7.62), as well as reduced CD3+ and CD4+T-cells compared to males with lower replication rates (<4log), even after adjusting for CMV infection. In summary, differences in immune system preservation are reflected in the models of delayed and premature immunosenescence, displaying the best and worst control over TTV replication, respectively. In the general population, TTV loads were negatively associated with CD4+ cell counts, with an increased predisposition for an inverted CD4/CD8 ratio for individuals with TTV loads ≥4log copies/mL, thus promoting an immune risk phenotype.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Fabrizio Maggi
- Department of Translational Research, University of Pisa, Italy
| | - Lisa Macera
- Department of Translational Research, University of Pisa, Italy
| | | | - Mauro Pistello
- Department of Translational Research, University of Pisa, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Andrea Basso
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, Germany
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, Germany.,Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, Germany
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Wolfgang Stuetz
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | | | | | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Janiszewska
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Claudio Franceschi
- CIG-Interdepartmental Center "L. Galvani," Alma Mater Studiorum, University of Bologna, Italy
| | - Miriam Capri
- CIG-Interdepartmental Center "L. Galvani," Alma Mater Studiorum, University of Bologna, Italy
| | | | - Mikko Hurme
- Faculty of Medicine and Biosciences, University of Tampere, Finland
| | - Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, The Netherlands
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
33
|
Willis EL, Eberle R, Wolf RF, White GL, McFarlane D. Effects of Chronic Viral Infection on Lymphocyte Populations in Middle-aged Baboons ( Papio anubis). Comp Med 2021; 71:177-187. [PMID: 33579397 DOI: 10.30802/aalas-cm-20-000068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aging of the immune system is characterized by the loss of naïve T-cells, increased inflammation, and immune function impairment. Chronic infection with cytomegalovirus is thought to play a role in age-related changes in immunity. Therefore, to assess the effect of pathogens such as cytomegalovirus on the immune system, we determined lymphocyte populations and inflammatory markers over a 3-y period in captive, middle-age baboons, with various exposure to pathogens and shedding pressure. Groups included SPF (i.e., pathogen-negative; n = 14); large-group, conventionally housed (CONV LG; pathogen- positive; n = 14), and small-group, conventionally housed (CONV SM; pathogen-positive; n = 7). All baboon groups showed a decrease in CD45RA+ CD28+ (i.e., naive) cells over time during middle age, but the rate of decline appeared faster in CONV LG baboons than in the other groups. In addition, the reduction in CD45RA+ CD28+ cells in the CONV LG baboons coincided with higher IgG levels against baboon cytomegalovirus, increased serum cortisol concentration, and a greater inflammatory phenotype. The results of this project support a role for cytomegalovirus infection in immune system alterations in middle-aged baboons.
Collapse
Affiliation(s)
- Erin L Willis
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| | - Richard Eberle
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| | - Roman F Wolf
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Current Address: Oklahoma City Veterans Administration Health Care System, Oklahoma City, Oklahoma
| | - Gary L White
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Current Address: Primate Consulting, Edmond, Oklahoma
| | - Dianne McFarlane
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma;,
| |
Collapse
|
34
|
Ziegler DV, Vindrieux D, Goehrig D, Jaber S, Collin G, Griveau A, Wiel C, Bendridi N, Djebali S, Farfariello V, Prevarskaya N, Payen L, Marvel J, Aubert S, Flaman JM, Rieusset J, Martin N, Bernard D. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat Commun 2021; 12:720. [PMID: 33526781 PMCID: PMC7851384 DOI: 10.1038/s41467-021-20993-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/15/2020] [Indexed: 12/29/2022] Open
Abstract
Cellular senescence is induced by stresses and results in a stable proliferation arrest accompanied by a pro-inflammatory secretome. Senescent cells accumulate during aging, promoting various age-related pathologies and limiting lifespan. The endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) calcium-release channel and calcium fluxes from the ER to the mitochondria are drivers of senescence in human cells. Here we show that Itpr2 knockout (KO) mice display improved aging such as increased lifespan, a better response to metabolic stress, less immunosenescence, as well as less liver steatosis and fibrosis. Cellular senescence, which is known to promote these alterations, is decreased in Itpr2 KO mice and Itpr2 KO embryo-derived cells. Interestingly, ablation of ITPR2 in vivo and in vitro decreases the number of contacts between the mitochondria and the ER and their forced contacts induce premature senescence. These findings shed light on the role of contacts and facilitated exchanges between the ER and the mitochondria through ITPR2 in regulating senescence and aging.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - David Vindrieux
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Delphine Goehrig
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Sara Jaber
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Guillaume Collin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Audrey Griveau
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Clotilde Wiel
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Nadia Bendridi
- CarMeN Laboratory, INSERM UMR-1060, Lyon 1 University, INRA U1397, F-69921, Oullins, France
| | - Sophia Djebali
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Valerio Farfariello
- INSERM U1003, Laboratoire d'Excellence, Canaux Ioniques d'Intérêt Thérapeutique, Équipe Labellisée Par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Natacha Prevarskaya
- INSERM U1003, Laboratoire d'Excellence, Canaux Ioniques d'Intérêt Thérapeutique, Équipe Labellisée Par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Léa Payen
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sébastien Aubert
- Institut de Pathologie, Centre de Biologie Pathologie, CHRU de Lille, Faculté de Médecine, Université de Lille, Lille Cedex, France
| | - Jean-Michel Flaman
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Jennifer Rieusset
- CarMeN Laboratory, INSERM UMR-1060, Lyon 1 University, INRA U1397, F-69921, Oullins, France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France.
| |
Collapse
|
35
|
Elyahu Y, Monsonego A. Thymus involution sets the clock of the aging T-cell landscape: Implications for declined immunity and tissue repair. Ageing Res Rev 2021; 65:101231. [PMID: 33248315 DOI: 10.1016/j.arr.2020.101231] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Aging is generally characterized as a gradual increase in tissue damage, which is associated with senescence and chronic systemic inflammation and is evident in a variety of age-related diseases. The extent to which such tissue damage is a result of a gradual decline in immune regulation, which consequently compromises the capacity of the body to repair damages, has not been fully explored. Whereas CD4 T lymphocytes play a critical role in the orchestration of immunity, thymus involution initiates gradual changes in the CD4 T-cell landscape, which may significantly compromise tissue repair. In this review, we describe the lifespan accumulation of specific dysregulated CD4 T-cell subsets and their coevolution with systemic inflammation in the process of declined immunity and tissue repair capacity with age. Then, we discuss the process of thymus involution-which appears to be most pronounced around puberty-as a possible driver of the aging T-cell landscape. Finally, we identify individualized T cell-based early diagnostic biomarkers and therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
- Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
36
|
Crépin T, Legendre M, Carron C, Vachey C, Courivaud C, Rebibou JM, Ferrand C, Laheurte C, Vauchy C, Gaiffe E, Saas P, Ducloux D, Bamoulid J. Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients. Nephrol Dial Transplant 2020; 35:624-632. [PMID: 30202981 DOI: 10.1093/ndt/gfy276] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) are more prone to develop premature age-related diseases. Data on immune senescence are scarce in CKD populations, except in end-stage renal disease and dialysis. We designed a longitudinal prospective study to evaluate immune senescence at different CKD stages and its influence on CKD patient outcomes. METHODS Clinical and biological data collections were performed on 222 patients at different CKD stages [1-2 (n = 85), 4 (n = 53) and 5 (n = 84)]. Immune senescence biomarkers were measured by cytometry on T cells (CD28, CD57, CD45RA, CD31, γH2A.X) or by quantitative polymerase chain reaction [relative telomere length (RTL)] on peripheral blood mononuclear cells and analysed according to CKD stages and outcomes. RESULTS CKD was associated with an increase in immune senescence and inflammation biomarkers, as follows: low thymic output (197 ± 25 versus 88 ± 13 versus 73 ± 21 CD4+CD45RA+CD31+ T cells/mm3), an increased proportion of terminally differentiated T cells (CD8+CD28-CD57+) (24 ± 18 versus 32 ± 17 versus 35 ± 19%) restricted to cytomegalovirus-positive patients, telomere shortening (1.11 ± 0.36 versus 0.78 ± 0.24 versus 0.97 ± 0.21 telomere:single copy ratio) and an increase in C-reactive protein levels [median 2.9 (range 1.8-4.9) versus 5.1 (27-9.6) versus 6.2 (3.4-10.5) mg/L]. In multivariate analysis, shorter RTL was associated with death {hazard ratio [HR] 4.12 [95% confidence interval (CI) 1.44-11.75]}. Low thymic output was associated with infections [HR 1.79 (95% CI (1.34-9.58)] and terminally differentiated CD8+ T-cell expansion with a risk of cardiovascular events [CEs; HR 4.86 (95% CI 1.72-13.72)]. CONCLUSION CKD was associated with premature immune ageing. Each of these alterations increased the risk of specific age-related diseases, such as RTL and death, thymic function and infections and terminally differentiated CD8+ T-cell expansion and CEs.
Collapse
Affiliation(s)
- Thomas Crépin
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Mathieu Legendre
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France
| | - Clémence Carron
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France
| | - Clément Vachey
- CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France
| | - Cécile Courivaud
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Jean-Michel Rebibou
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France
| | - Christophe Ferrand
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC-1431/UMR1098, Besançon, France
| | - Caroline Laheurte
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC-1431/UMR1098, Besançon, France
| | - Charline Vauchy
- CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France
| | - Emilie Gaiffe
- CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France
| | - Philippe Saas
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC-1431/UMR1098, Besançon, France
| | - Didier Ducloux
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France
| | - Jamal Bamoulid
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France
| |
Collapse
|
37
|
The aging transplant population and immunobiology: any therapeutic implication? Curr Opin Organ Transplant 2020; 25:255-260. [PMID: 32374576 PMCID: PMC9366898 DOI: 10.1097/mot.0000000000000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to describe the latest investigations into the immunobiology of aging and the potential impact on outcomes after mechanical circulatory support implantation and heart transplantation. This information is relevant given the growing numbers of older patients with heart failure undergoing evaluation for mechanical circulatory support device (MCSD) or heart transplantation. RECENT FINDINGS A host of aging-associated aspects of immune dysfunction have been described in the general population including T-cell senescence, exhaustion, and terminal dedifferentiation, as well as impaired function of innate immune cells. Another important consequence of T-cell senescence is inflammation, which is known to have a strong relationship with both heart failure and frailty in older patients. Recent data on the association between T-cell and monocyte phenotypes as well as evaluation of gene expression and adverse outcomes after MCSD suggests the potential value of immunologic assessment of MCSD and heart transplant candidates and recipients. Measurement of physical frailty represents another avenue for patient evaluation that may complement immunologic assessment. Determination of immune dysfunction and frailty prior to transplantation may have implications for choice of induction and dosing of maintenance immunosuppression. SUMMARY As the age of transplant and MCSD candidates and recipients continues to increase, it is important for providers to recognize the potential impact of aging-associated immune dysfunction and how it may influence candidate selection, postintervention monitoring, and adjustment of immunosuppression.
Collapse
|
38
|
Haynes L. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. FRONTIERS IN AGING 2020; 1:602108. [PMID: 35822168 PMCID: PMC9261332 DOI: 10.3389/fragi.2020.602108] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
|
39
|
de Souza Teixeira AA, Lira FS, Rosa-Neto JC. Aging with rhythmicity. Is it possible? Physical exercise as a pacemaker. Life Sci 2020; 261:118453. [PMID: 32956663 PMCID: PMC7500276 DOI: 10.1016/j.lfs.2020.118453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Aging is associated with gradual decline in numerous physiological processes, including a reduction in metabolic functions and immunological system. The circadian rhythm plays a vital role in health, and prolonged clock disruptions are associated with chronic diseases. The relationships between clock genes, aging, and immunosenescence are not well understood. Inflammation is an immune response triggered in living organisms in response to the danger associated with pathogens and injury. The term 'inflammaging' has been used to describe the chronic low-grade-inflammation that develops with advancing age and predicts susceptibility to age-related pathologies. Equilibrium between pro-and anti-inflammatory cytokines is needed for healthy aging and longevity. Sedentary and poor nutrition style life indices a disruption in circadian rhythm promoting an increase in pro-inflammatory factors or leads for chronic low-grade inflammation. Moreover, signals mediated by pro-inflammatory cytokines, such as tumor necrosis factor-alpha and interleukin-6, might accentuate of the muscle loss during aging. Circadian clock is important to maintain the physiological functions, as maintenance of immune system. A strategy for imposes rhythmicity in the physiological systems may be adopted of exercise training routine. The lifelong regular practice of physical exercise decelerates the processes of aging, providing better quality and prolongation of life. Thus, in this review, we will focus on how aging affects circadian rhythms and its relationship to inflammatory processes (inflammaging), as well as the role of physical exercise as a regulator of the circadian rhythm, promoting aging with rhythmicity.
Collapse
Affiliation(s)
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil
| | | |
Collapse
|
40
|
Quinn KM, Kartikasari AER, Cooke RE, Koldej RM, Ritchie DS, Plebanski M. Impact of age-, cancer-, and treatment-driven inflammation on T cell function and immunotherapy. J Leukoc Biol 2020; 108:953-965. [PMID: 32678927 DOI: 10.1002/jlb.5mr0520-466r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/16/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Many cancers are predominantly diagnosed in older individuals and chronic inflammation has a major impact on the overall health and immune function of older cancer patients. Chronic inflammation is a feature of aging, it can accelerate disease in many cancers and it is often exacerbated during conventional treatments for cancer. This review will provide an overview of the factors that lead to increased inflammation in older individuals and/or individuals with cancer, as well as those that result from conventional treatments for cancer, using ovarian cancer (OC) and multiple myeloma (MM) as key examples. We will also consider the impact of chronic inflammation on immune function, with a particular focus on T cells as they are key targets for novel cancer immunotherapies. Overall, this review aims to highlight specific pathways for potential interventions that may be able to mitigate the impact of chronic inflammation in older cancer patients.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.,Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | | | - Rachel E Cooke
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Rachel M Koldej
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - David S Ritchie
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
41
|
Rozhnova G, E Kretzschmar M, van der Klis F, van Baarle D, Korndewal M, C Vossen A, van Boven M. Short- and long-term impact of vaccination against cytomegalovirus: a modeling study. BMC Med 2020; 18:174. [PMID: 32611419 PMCID: PMC7331215 DOI: 10.1186/s12916-020-01629-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Infection with cytomegalovirus (CMV) is highly prevalent worldwide and can cause severe disease in immunocompromised persons and congenitally infected infants. The disease burden caused by congenital CMV infection is high, especially in resource-limited countries. Vaccines are currently under development for various target groups. METHODS We evaluated the impact of vaccination strategies and hygiene intervention using transmission models. Model parameters were estimated from a cross-sectional serological population study (n=5179) and a retrospective birth cohort (n=31,484), providing information on the age- and sex-specific CMV prevalence and on the birth prevalence of congenital CMV (cCMV). RESULTS The analyses show that vertical transmission and infectious reactivation are the main drivers of transmission. Vaccination strategies aimed at reducing transmission from mother to child (vaccinating pregnant women or women of reproductive age) can yield substantial reductions of cCMV in 20 years (31.7-71.4% if 70% of women are effectively vaccinated). Alternatively, hygiene intervention aimed at preventing CMV infection and re-infection of women of reproductive age from young children is expected to reduce cCMV by less than 2%. The effects of large-scale vaccination on CMV prevalence can be substantial, owing to the moderate transmissibility of CMV at the population level. However, as CMV causes lifelong infection, the timescale on which reductions in CMV prevalence are expected is in the order of several decades. Elimination of CMV infection in the long run is only feasible for a vaccine with a long duration of protection and high vaccination coverage. CONCLUSIONS Vaccination is an effective intervention to reduce the birth prevalence of cCMV. Population-level reductions in CMV prevalence can only be achieved on a long timescale. Our results stress the value of vaccinating pregnant women and women of childbearing age and provide support for the development of CMV vaccines and early planning of vaccination scenarios and rollouts.
Collapse
Affiliation(s)
- Ganna Rozhnova
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands.
| | - Mirjam E Kretzschmar
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Fiona van der Klis
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Debbie van Baarle
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Marjolein Korndewal
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Ann C Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel van Boven
- Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
42
|
Cox M, Adetifa JU, Noho-Konteh F, Njie-Jobe J, Sanyang LC, Drammeh A, Plebanski M, Whittle HC, Rowland-Jones SL, Robertson I, Flanagan KL. Limited Impact of Human Cytomegalovirus Infection in African Infants on Vaccine-Specific Responses Following Diphtheria-Tetanus-Pertussis and Measles Vaccination. Front Immunol 2020; 11:1083. [PMID: 32582177 PMCID: PMC7291605 DOI: 10.3389/fimmu.2020.01083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection has a profound effect on the human immune system, causing massive clonal expansion of CD8, and to a lesser extend CD4 T cells. The few human trials that have explored the effect of HCMV infection on responses to vaccination are conflicting, with some studies suggesting no effect whilst others suggest decreased or increased immune responses. Recent studies indicate substantial differences in overall immune system reactivity to vaccines based on age and sex, particularly cellular immunity. 225 nine-month old Gambian infants were immunized with diphtheria-tetanus-whole cell pertussis and/or measles vaccines. HCMV infection status was determined by the presence of CMV DNA by PCR of urine samples prior to vaccination. The effect of HCMV infection on either protective antibody immunity or vaccine-specific and overall cellular immune responses 4 weeks post-vaccination was determined, further stratified by sex. Tetanus toxoid-specific antibody responses were significantly lower in HCMV+ infants compared to their HCMV- counterparts, while pertussis, diphtheria and measles antibody responses were generally comparable between the groups. Responses to general T cell stimulation with anti-CD3/anti-CD28 as well as antigen-specific cytokine responses to purified protein derivative (PPD) were broadly suppressed in infants infected with HCMV but, perhaps surprisingly, there was only a minimal impact on antigen-specific cellular responses to vaccine antigens. There was evidence for subtle sex differences in the effects of HCMV infection, in keeping with the emerging evidence suggesting sex differences in homeostatic immunity and in responses to vaccines. This study reassuringly suggests that the high rates of HCMV infection in low income settings have little clinically significant impact on antibody and cellular responses to early life vaccines, while confirming the importance of sex stratification in such studies.
Collapse
Affiliation(s)
- Momodou Cox
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,School of Health & Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Jane U Adetifa
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Fatou Noho-Konteh
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Jainaba Njie-Jobe
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Lady C Sanyang
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Abdoulie Drammeh
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Magdalena Plebanski
- School of Health & Biomedical Science, RMIT University, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Hilton C Whittle
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah L Rowland-Jones
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Iain Robertson
- School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Katie L Flanagan
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,School of Health & Biomedical Science, RMIT University, Melbourne, VIC, Australia.,School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|
43
|
Pereira BI, De Maeyer RPH, Covre LP, Nehar-Belaid D, Lanna A, Ward S, Marches R, Chambers ES, Gomes DCO, Riddell NE, Maini MK, Teixeira VH, Janes SM, Gilroy DW, Larbi A, Mabbott NA, Ucar D, Kuchel GA, Henson SM, Strid J, Lee JH, Banchereau J, Akbar AN. Sestrins induce natural killer function in senescent-like CD8 + T cells. Nat Immunol 2020; 21:684-694. [PMID: 32231301 PMCID: PMC10249464 DOI: 10.1038/s41590-020-0643-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
Abstract
Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8+ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27-CD28-CD8+ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27-CD28-CD8+ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27-CD28-CD8+ T cells to acquire a broad-spectrum, innate-like killing activity.
Collapse
Affiliation(s)
- Branca I Pereira
- Division of Infection and Immunity, University College London, London, UK
| | - Roel P H De Maeyer
- Division of Infection and Immunity, University College London, London, UK
| | - Luciana P Covre
- Division of Infection and Immunity, University College London, London, UK
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | - Alessio Lanna
- Division of Infection and Immunity, University College London, London, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Ward
- Department of Medicine, Imperial College London, London, UK
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emma S Chambers
- Division of Infection and Immunity, University College London, London, UK
| | - Daniel C O Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Natalie E Riddell
- Division of Infection and Immunity, University College London, London, UK
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Vitor H Teixeira
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Samuel M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Derek W Gilroy
- Division of Medicine, University College London, London, UK
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Neil A Mabbott
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - George A Kuchel
- University of Connecticut Center on Aging, University of Connecticut, Farmington, CT, USA
| | - Sian M Henson
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jessica Strid
- Department of Medicine, Imperial College London, London, UK
| | - Jun H Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Arne N Akbar
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
44
|
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020; 12:9959-9981. [PMID: 32470948 PMCID: PMC7288963 DOI: 10.18632/aging.103344] [Citation(s) in RCA: 622] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The severity and outcome of coronavirus disease 2019 (COVID-19) largely depends on a patient's age. Adults over 65 years of age represent 80% of hospitalizations and have a 23-fold greater risk of death than those under 65. In the clinic, COVID-19 patients most commonly present with fever, cough and dyspnea, and from there the disease can progress to acute respiratory distress syndrome, lung consolidation, cytokine release syndrome, endotheliitis, coagulopathy, multiple organ failure and death. Comorbidities such as cardiovascular disease, diabetes and obesity increase the chances of fatal disease, but they alone do not explain why age is an independent risk factor. Here, we present the molecular differences between young, middle-aged and older people that may explain why COVID-19 is a mild illness in some but life-threatening in others. We also discuss several biological age clocks that could be used in conjunction with genetic tests to identify both the mechanisms of the disease and individuals most at risk. Finally, based on these mechanisms, we discuss treatments that could increase the survival of older people, not simply by inhibiting the virus, but by restoring patients' ability to clear the infection and effectively regulate immune responses.
Collapse
Affiliation(s)
- Amber L. Mueller
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - Maeve S. McNamara
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - David A. Sinclair
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| |
Collapse
|
45
|
Fonseca S, Pereira V, Lau C, Teixeira MDA, Bini-Antunes M, Lima M. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells 2020; 9:cells9030729. [PMID: 32188103 PMCID: PMC7140678 DOI: 10.3390/cells9030729] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1. Despite many studies in pathological conditions, only a few have quantified the γδ Tc subsets in healthy adults, and a comprehensive review of the factors influencing its representation in the blood is missing. Here we quantified the total γδ Tc and the Vδ2/Vγ9 and Vδ1 Tc subsets in the blood from 30 healthy, Caucasian, Portuguese adults, we characterized their immunophenotype by 8-color flow cytometry, focusing in a few relevant Tc markers (CD3/TCR-γδ, CD5, CD8), and costimulatory (CD28), cytotoxic (CD16) and adhesion (CD56) molecules, and we examined the impacts of age and gender. Additionally, we reviewed the literature on the influences of race/ethnicity, age, gender, special periods of life, past infections, diet, medications and concomitant diseases on γδ Tc and their subsets. Given the multitude of factors influencing the γδ Tc repertoire and immunophenotype and the high variation observed, caution should be taken in interpreting “abnormal” γδ Tc values and repertoire deviations, and the clinical significance of small populations of “phenotypically abnormal” γδ Tc in the blood.
Collapse
Affiliation(s)
- Sónia Fonseca
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Vanessa Pereira
- Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E); 4434-502 Vila Nova de Gaia, Portugal;
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Maria dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Marika Bini-Antunes
- Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001Porto, Portugal;
| | - Margarida Lima
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
- Correspondence: ; Tel.: + 351-22-20-77-500
| |
Collapse
|
46
|
Metcalf CJE, Roth O, Graham AL. Why leveraging sex differences in immune trade-offs may illuminate the evolution of senescence. Funct Ecol 2020; 34:129-140. [PMID: 32063662 PMCID: PMC7006808 DOI: 10.1111/1365-2435.13458] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
The immune system affects senescence (declines in probabilities of survival or reproduction with age), by shaping late age vulnerability to chronic inflammatory diseases and infections. It is also a dynamic interactive system that must balance competing demands across the life course. Thus, immune system function remains an important frontier in understanding the evolution of senescence.Here, we review our expanding mechanistic understanding of immune function over the life course, in the context of theoretical predictions from life-history evolution. We are especially interested in stage- and sex-dependent costs and benefits of investment in the immune system, given differential life-history priorities of the life stages and sexes.We introduce the costs likely to govern immune allocation across the life course. We then discuss theoretical expectations for differences between the sexes and their likely consequences in terms of how the immune system is both modulated by and may modulate senescence, building on information from life-history theory, experimental immunology and demography.We argue that sex differences in immune function provide a potentially powerful probe of selection pressures on the immune system across the life course. In particular, differences in 'competing' and 'caring' between the sexes have evolved across the tree of life, providing repeated instances of divergent selection pressures on immune function occurring within the same overall bauplan.We conclude by detailing an agenda for future research, including development of theoretical predictions of the differences between the sexes under an array of existing models for sex differences in immunity, and empirical tests of such predictions across the tree of life. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13458/suppinfo can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
| | - Olivia Roth
- GEOMAR, Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Andrea L. Graham
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| |
Collapse
|
47
|
Nolan RA, Reeb KL, Rong Y, Matt SM, Johnson HS, Runner K, Gaskill PJ. Dopamine activates NF-κB and primes the NLRP3 inflammasome in primary human macrophages. Brain Behav Immun Health 2019; 2. [PMID: 33665636 PMCID: PMC7929492 DOI: 10.1016/j.bbih.2019.100030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induction of innate immune genes in the brain is thought to be a major factor in the development of addiction to substances of abuse. As the major component of the innate immune system in the brain, aberrant activation of myeloid cells such as macrophages and microglia due to substance use may mediate neuroinflammation and contribute to the development of addiction. All addictive drugs modulate the dopaminergic system and our previous studies have identified dopamine as a pro-inflammatory modulator of macrophage function. However, the mechanism that mediates this effect is currently unknown. Inflammatory activation of macrophages and induction of cytokine production is often mediated by the transcription factor NF-κB, and prior studies have shown that dopamine can modulate NF-κB activity in T-cells and other non-immune cell lines. Here we demonstrated that dopamine can activate NF-κB in primary human macrophages, resulting in the induction of its downstream targets including the NLRP3 inflammasome and the inflammatory cytokine IL-1β. These data also indicate that dopamine primes but does not activate the NLRP3 inflammasome in human macrophages. Activation of NF-κB was required for dopamine-mediated increases in IL-1β, as an inhibitor of NF-κB was able to abrogate the effects of dopamine on production of these cytokines. Connecting an increase in extracellular dopamine to NF-κB activation and inflammation suggests specific intracellular targets that could be used to ameliorate the inflammatory impact of dopamine in neuroinflammatory conditions associated with myeloid cell activation such as addiction. Dopamine exposure primes, but does not activate the NLRP3 inflammasome. Inflammasome priming can be mediated, at least partially, by a dopamine-induced increase in the activation and nuclear translocation of NF-κB in primary human macrophages. Dopamine additively increases the impact of cytomegalovirus on NF-κB activation in macrophages. Dopamine priming increases IL-1β release in response to inflammasome activation.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K L Reeb
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - Y Rong
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - H S Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102
| |
Collapse
|
48
|
Yu Y, Zheng S. Research progress on immune aging and its mechanisms affecting geriatric diseases. Aging Med (Milton) 2019; 2:216-222. [PMID: 34553108 PMCID: PMC8445044 DOI: 10.1002/agm2.12089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 01/27/2023] Open
Abstract
Immunosenescence, also known as immune aging, refers to the degeneration, compensation, and reconstruction of the immune system with aging. Immune aging is an important factor in the increased susceptibility of the elderly to infectious diseases, malignant tumors, and a variety of chronic diseases and has long been a hotspot in geriatrics and immunology research. In this paper, the characteristics and progression of immune aging are briefly reviewed for clinicians' reference.
Collapse
Affiliation(s)
- Yanping Yu
- Department of Geriatric MedicineHua Dong HospitalShanghaiChina
| | - Songbai Zheng
- Department of Geriatric MedicineHua Dong HospitalShanghaiChina
| |
Collapse
|
49
|
Quinn KM, Palchaudhuri R, Palmer CS, La Gruta NL. The clock is ticking: the impact of ageing on T cell metabolism. Clin Transl Immunology 2019; 8:e01091. [PMID: 31832191 PMCID: PMC6859487 DOI: 10.1002/cti2.1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
It is now clear that access to specific metabolic programmes controls the survival and function of various immune cell populations, including T cells. Efficient naïve and memory T cell homoeostasis requires the use of specific metabolic pathways and differentiation requires rapid and dramatic metabolic remodelling. While we are beginning to appreciate the crucial role of metabolic programming during normal T cell physiology, many of the potential impacts of ageing on metabolic homoeostasis and remodelling in T cells remain unexplored. This review will outline our current understanding of T cell metabolism and explore age‐related metabolic changes that are postulated or have been demonstrated to impact T cell function.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences RMIT University Bundoora VIC Australia.,Department of Biochemistry Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Riya Palchaudhuri
- Life Sciences Macfarlane Burnet Institute for Medical Research and Public Health Melbourne VIC Australia.,Department of Infectious Diseases Monash University Melbourne VIC Australia.,Department of Immunology and Pathology Monash University Melbourne VIC Australia
| | - Clovis S Palmer
- Life Sciences Macfarlane Burnet Institute for Medical Research and Public Health Melbourne VIC Australia.,Department of Infectious Diseases Monash University Melbourne VIC Australia
| | - Nicole L La Gruta
- Department of Biochemistry Biomedicine Discovery Institute Monash University Clayton VIC Australia
| |
Collapse
|
50
|
Frailty is associated with elevated CRP trajectories and higher numbers of neutrophils and monocytes. Exp Gerontol 2019; 125:110674. [DOI: 10.1016/j.exger.2019.110674] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
|