1
|
Lv JJ, Zhang YC, Li XY, Zhang LJ, Yixi ZM, Yang CH, Wang XH. The association between brominated flame retardants exposure with Parkinson's disease in US adults: a cross-sectional study of the National Health and Nutrition Examination Survey 2009-2016. Front Public Health 2024; 12:1451686. [PMID: 39498114 PMCID: PMC11532090 DOI: 10.3389/fpubh.2024.1451686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Background Increasing evidence suggests that environmental factors play a crucial role in the pathogenesis of Parkinson's disease (PD). Humans are simultaneously exposed to multiple brominated flame retardants (BFRs) in the environment. However, the relationship between BFRs and PD remains unclear. This study was designed to investigate the overall association between BFRs and PD in a nationally representative US population and to further identify significant chemicals. Methods This study used data from 7,161 NHANES participants from 2009 through 2016. The serum BFRs registry included PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE-100, PBDE-153, PBDE-154, PBDE-183, PBDE-209, and PBB-153. A survey-weighted generalized logistic regression model with restricted cubic splines (RCS) was used to evaluate the association between single BFRs exposure and periodontitis. Meanwhile, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to evaluate the overall association of mixed frankincense powder with periodontitis and to identify significant chemicals. Sensitivity analysis was performed to evaluate the robustness of the results. Results Among the 7,161 participants, 65 had PD. PD patients were older (mean age 57.79 vs. 46.57 years) and had a higher proportion of females (70.86%) compared to non-PD participants. Serum levels of PBB-153 were significantly higher in those with PD. Logistic regression analyses revealed a non-linear, inverted U-shaped relationship between serum PBB-153 and PD risk. The risk of PD increased with higher PBB-153 levels up to the 3rd quartile (Q3), beyond which the risk declined (Q3 vs. Q1: OR = 4.98, 95% CI = 1.79-13.86; Q4 vs. Q1: OR = 3.23, 95% CI = 1.03-10.08). PBB-153 (43.40%), PBDE-153 (24.75%), and PBDE-85 (19.51%) contributed most to the weighted quantile sum index associated with PD risk. Bayesian kernel machine regression confirmed the inverted U-shaped dose-response pattern for PBB-153 and the overall BFR mixture. Restricted cubic spline analyses corroborated the non-linear relationship between PBB-153 and PD, which was more pronounced among women and those aged 37-58 years. Sensitivity analyses substantiated these findings. Conclusion This nationally representative cross-sectional study revealed a novel non-linear, inverted U-shaped relationship between serum levels of the brominated flame retardant PBB-153 and Parkinson's disease risk in U.S. adults. The risk increased with higher PBB-153 exposure up to a point, beyond which it declined. This complex dose-response pattern highlights the importance of considering potential hormetic mechanisms and effect modifiers when evaluating environmental exposures and neurodegenerative diseases. Further research is warranted to elucidate the underlying biological pathways and inform risk mitigation strategies.
Collapse
Affiliation(s)
- Jia-jie Lv
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-chi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-yu Li
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-jie Zhang
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo-ma Yixi
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-hao Yang
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xu-hui Wang
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Ren X, Liu Z, Zhang R, Shao Y, Duan X, Sun B, Zhao X. Nanoplastics aggravated TDCIPP-induced transgenerational developmental neurotoxicity in zebrafish depending on the involvement of the dopamine signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104436. [PMID: 38599507 DOI: 10.1016/j.etap.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Plastics pose a hazard to the environment. Although plastics have toxicity, microplastics (MPs) and nanoplastics (NPs) are capable of interacting with the rest pollutants in the environment, so they serve as the carriers and interact with organic pollutants to modulate their toxicity, thus resulting in unpredictable ecological risks. PS-NPs and TDCIPP were used expose from 2 h post-fertilization (hpf) to 150 days post-fertilization (dpf) to determine the bioaccumulation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its potential effects on neurodevelopment in F1 zebrafish (Danio rerio) offspring under the action of polystyrene nano plastics (PS-NPs). The exposure groups were assigned to TDCIPP (0, 0.4, 2 or 10 µg/L) alone group and the PS-NPs (100 µg/L) and TDCIPP co-exposed group. F1 embryos were collected and grown in clean water to 5 dpf post-fertilization. PS-NPs facilitated the bioaccumulation of TDCIPP in the gut, gill, head,gonad and liver of zebrafish in a sex-dependent manner and promoted the transfer of TDCIPP to their offspring, thus contributing to PS-NPs aggravated the inhibition of offspring development and neurobehavior of TDCIPP-induced. In comparison with TDCIPP exposure alone, the combination could notably down-regulate the levels of the dopamine neurotransmitter, whereas the levels of serotonin or acetylcholine were not notably different. This result was achieved probably because PS-NPs interfered with the TDCIPP neurotoxic response of zebrafish F1 offspring not through the serotonin or acetylcholine neurotransmitter pathway. The increased transfer of TDCIPP to the offspring under the action of PS-NPs increased TDCIPP-induced transgenerational developmental neurotoxicity, which was proven by a further up-regulation/down-regulation the key gene and protein expression related to dopamine synthesis, transport, and metabolism in F1 larvae, in contrast to TDCIPP exposure alone. The above findings suggested that dopaminergic signaling involvement could be conducive to the transgenerational neurodevelopmental toxicity of F1 larval upon parental early co-exposure to PS-NPs and TDCIPP.
Collapse
Affiliation(s)
- Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Zhibo Liu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ruiqi Zhang
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yuting Shao
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Bo Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xuesong Zhao
- College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China.
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
4
|
Neal ML, Beier EE, Hossain MM, Boyle A, Zheng J, Kim C, Mhatre-Winters I, Wu LJ, Richardson JR. Voltage-Gated Proton Channel Hv1 Regulates Neuroinflammation and Dopaminergic Neurodegeneration in Parkinson's Disease Models. Antioxidants (Basel) 2023; 12:582. [PMID: 36978830 PMCID: PMC10044828 DOI: 10.3390/antiox12030582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Although the precise mechanisms for neurodegeneration in Parkinson's disease (PD) are unknown, evidence suggests that neuroinflammation is a critical factor in the pathogenic process. Here, we sought to determine whether the voltage-gated proton channel, Hv1 (HVCN1), which is expressed in microglia and regulates NADPH oxidase, is associated with dopaminergic neurodegeneration. We utilized data mining to evaluate the mRNA expression of HVCN1 in the brains of PD patients and controls and uncovered increased expression of the gene encoding Hv1, HVCN1, in the brains of PD patients compared to controls, specifically in male PD patients. In an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 × 16 mg/kg) mouse model of PD, Hvcn1 gene expression was increased 2-fold in the striatum. MPTP administration to wild-type (WT) mice resulted in a ~65% loss of tyrosine hydroxylase positive neurons (TH+) in the substantia nigra (SN), while a ~39% loss was observed in Hv1 knockout (KO) mice. Comparable neuroprotective effects of Hv1 deficiency were found in a repeated-dose LPS model. Neuroprotection was associated with decreased pro-inflammatory cytokine levels and pro-oxidant factors in both neurotoxicant animal models. These in vivo results were confirmed in primary microglial cultures, with LPS treatment increasing Hvcn1 mRNA levels and Hv1 KO microglia failing to exhibit the LPS-mediated inflammatory response. Conditioned media from Hv1 KO microglia treated with LPS resulted in an attenuated loss of cultured dopamine neuron cell viability compared to WT microglia. Taken together, these data suggest that Hv1 is upregulated and mediates microglial pro-inflammatory cytokine production in parkinsonian models and therefore represents a novel target for neuroprotection.
Collapse
Affiliation(s)
- Matthew L. Neal
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Eric E. Beier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Alexa Boyle
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44201, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chunki Kim
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason R. Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44201, USA
| |
Collapse
|
5
|
Hilz EN, Lee HJ. Estradiol and progesterone in female reward-learning, addiction, and therapeutic interventions. Front Neuroendocrinol 2023; 68:101043. [PMID: 36356909 DOI: 10.1016/j.yfrne.2022.101043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Sex steroid hormones like estradiol (E2) and progesterone (P4) guide the sexual organization and activation of the developing brain and control female reproductive behavior throughout the lifecycle; importantly, these hormones modulate functional activity of not just the endocrine system, but most of the nervous system including the brain reward system. The effects of E2 and P4 can be seen in the processing of and memory for rewarding stimuli and in the development of compulsive reward-seeking behaviors like those seen in substance use disorders. Women are at increased risk of developing substance use disorders; however, the origins of this sex difference are not well understood and therapeutic interventions targeting ovarian hormones have produced conflicting results. This article reviews the contribution of the E2 and P4 in females to functional modulation of the brain reward system, their possible roles in origins of addiction vulnerability, and the development and treatment of compulsive reward-seeking behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- The University of Texas at Austin, Department of Pharmacology, USA.
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, USA; The University of Texas at Austin, Institute for Neuroscience, USA
| |
Collapse
|
6
|
Hilz EN, Gore AC. Sex-specific Effects of Endocrine-disrupting Chemicals on Brain Monoamines and Cognitive Behavior. Endocrinology 2022; 163:bqac128. [PMID: 35939362 PMCID: PMC9419695 DOI: 10.1210/endocr/bqac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/19/2022]
Abstract
The period of brain sexual differentiation is characterized by the development of hormone-sensitive neural circuits that govern the subsequent presentation of sexually dimorphic behavior in adulthood. Perturbations of hormones by endocrine-disrupting chemicals (EDCs) during this developmental period interfere with an organism's endocrine function and can disrupt the normative organization of male- or female-typical neural circuitry. This is well characterized for reproductive and social behaviors and their underlying circuitry in the hypothalamus and other limbic regions of the brain; however, cognitive behaviors are also sexually dimorphic, with their underlying neural circuitry potentially vulnerable to EDC exposure during critical periods of brain development. This review provides recent evidence for sex-specific changes to the brain's monoaminergic systems (dopamine, serotonin, norepinephrine) after developmental EDC exposure and relates these outcomes to sex differences in cognition such as affective, attentional, and learning/memory behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Andrea C Gore
- Correspondence: Andrea C. Gore, PhD, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St, Box C0875, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Yang L, Guo H, Kuang Y, Yang H, Zhang X, Tang R, Li D, Li L. Neurotoxicity induced by combined exposure of microcystin-LR and nitrite in male zebrafish (Danio rerio): Effects of oxidant-antioxidant system and neurotransmitter system. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109248. [PMID: 34826614 DOI: 10.1016/j.cbpc.2021.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022]
Abstract
With the intensification of water eutrophication around the world, cyanobacterial blooms have been becoming a common environmental pollution problem. The levels of microcystin-LR (MC-LR) and nitrite rise sharply during the cyanobacterial bloom period, which may have potential joint toxicity on aquatic organisms. In this study, adult male zebrafish were immersed into different joint solutions of MC-LR (0, 3, 30 μg/L) and nitrite (0, 2, 20 mg/L) for 30 days to explore the neurotoxic effects and underlying mechanisms. The results showed that single factor MC-LR or nitrite caused a concentration-dependent damage in brain ultrastructure and the effects of their joint exposure were much more intense. Downregulated expression of mbp and bdnf associated with myelination of nerve fibers further confirmed that MC-LR and nitrite could damage the structure and function of neuron. The decreases in dopamine content, acetylcholinesterase activity and related gene mRNA levels indicated that MC-LR and nitrite adversely affected the normal function of the dopaminergic and cholinergic systems in zebrafish brain. In addition, the significant increase in malondialdehyde content suggested the occurrence of oxidative stress caused by MC-LR, nitrite and their joint-exposure, which paralleled a significant decrease in antioxidant enzyme‑manganese superoxide dismutase activity and its transcription level. In conclusion, MC-LR + Nitrite joint-exposure has synergistic neurotoxic effects on the structure and neurotransmitter systems of fish brain, and antioxidant capacity disruption caused by these two factors might be one of the underlying synergistic mechanisms. Therefore, there is a risk of being induced neurotoxicity in fish during sustained cyanobacterial bloom events.
Collapse
Affiliation(s)
- Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
8
|
Guo X, Zhang S, Liu X, Lu S, Wu Q, Xie P. Evaluation of the acute toxicity and neurodevelopmental inhibition of perfluorohexanoic acid (PFHxA) in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112733. [PMID: 34478978 DOI: 10.1016/j.ecoenv.2021.112733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/27/2023]
Abstract
Perfluorohexanoic acid (PFHxA), a widely used emerging alternative for 8-carbon PFAAs, has been detected at a high level in the water environment. While its toxicity and environmental health risk are still largely unknown in aquatic life. The present study aimed to evaluated the possible developmental neurotoxicity induced by PFHxA exposure (0, 0.48, 2.4, and 12 mg/L for 120 h) in the zebrafish embryo. Here, both developmental endpoints, neurotransmitters concentrations, locomotor behavior were analyzed. No significant effects on mortality, malformation rate, and growth delay were detected in the low dose treatment groups except for in the high dose group (12 mg/L). A significant increase in swimming speed were noted in the 0.48 mg/L group. Other changes including neurotransmitters concentrations and green fluorescent protein (GFP) expression in Tg (HuC-GFP) zebrafish larvae were significantly increased in 12 mg/L group. Beyond that, genes related to neurodevelopment were significantly decreased in larvae. Moreover, downregulations of protein expression levels of α1-tubulin, elavl3, and gap43 were identified. These results demonstrate that the PFAAs alternative PFHxA have no significant neurodevelopmental effects on zebrafish larvae under acute low-dose exposure, while, it is important to note that PFHxA perform inhibiting effects on neurotransmitter and central nervous system under a relatively high dose. This in vivo study could provide reliable toxicity information for risk assessments of PFHxA on aquatic ecosystems. CAPSULE: PFHxA have no significant neurodevelopmental effects on zebrafish larvae under acute low-dose exposure, while exposed with relatively high-dose, could induced the alternations of neurotransmitter concentrations as well as the genes involved in the early developmental stages of zebrafish, leading to the impairment of the nervous system in zebrafish larvae.
Collapse
Affiliation(s)
- Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shengnan Zhang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
9
|
Bradner JM, Kalia V, Lau FK, Sharma M, Bucher ML, Johnson M, Chen M, Walker DI, Jones DP, Miller GW. Genetic or Toxicant-Induced Disruption of Vesicular Monoamine Storage and Global Metabolic Profiling in Caenorhabditis elegans. Toxicol Sci 2021; 180:313-324. [PMID: 33538833 PMCID: PMC8041460 DOI: 10.1093/toxsci/kfab011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The proper storage and release of monoamines contributes to a wide range of neuronal activity. Here, we examine the effects of altered vesicular monoamine transport in the nematode Caenorhabditis elegans. The gene cat-1 is responsible for the encoding of the vesicular monoamine transporter (VMAT) in C. elegans and is analogous to the mammalian vesicular monoamine transporter 2 (VMAT2). Our laboratory has previously shown that reduced VMAT2 activity confers vulnerability on catecholamine neurons in mice. The purpose of this article was to determine whether this function is conserved and to determine the impact of reduced VMAT activity in C. elegans. Here we show that deletion of cat-1/VMAT increases sensitivity to the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) as measured by enhanced degeneration of dopamine neurons. Reduced cat-1/VMAT also induces changes in dopamine-mediated behaviors. High-resolution mass spectrometry-based metabolomics in the whole organism reveals changes in amino acid metabolism, including tyrosine metabolism in the cat-1/VMAT mutants. Treatment with MPP+ disrupted tryptophan metabolism. Both conditions altered glycerophospholipid metabolism, suggesting a convergent pathway of neuronal dysfunction. Our results demonstrate the evolutionarily conserved nature of monoamine function in C. elegans and further suggest that high-resolution mass spectrometry-based metabolomics can be used in this model to study environmental and genetic contributors to complex human disease.
Collapse
Affiliation(s)
- Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Fion K Lau
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Monica Sharma
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Michelle Johnson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Merry Chen
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30303, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| |
Collapse
|
10
|
Holland EB, Pessah IN. Non-dioxin-like polychlorinated biphenyl neurotoxic equivalents found in environmental and human samples. Regul Toxicol Pharmacol 2021; 120:104842. [PMID: 33346014 PMCID: PMC8366267 DOI: 10.1016/j.yrtph.2020.104842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 11/01/2022]
Abstract
Non-dioxin like polychlorinated biphenyls (NDL PCB) are recognized neurotoxicants with implications on altered neurodevelopment and neurodegeneration in exposed organisms. NDL PCB neurotoxic relative potency schemes have been developed for a single mechanism, namely activity toward the ryanodine receptor (RyR), or combined mechanisms including, but not limited to, alterations of RyR and dopaminergic pathways. We compared the applicability of the two neurotoxic equivalency (NEQ) schemes and applied each scheme to PCB mixtures found in environmental and human serum samples. A multiple mechanistic NEQ predicts higher neurotoxic exposure concentrations as compared to a scheme based on the RyR alone. Predictions based on PCB ortho categorization, versus homologue categorization, lead to a higher prediction of neurotoxic exposure concentrations, especially for the mMOA. The application of the NEQ schemes to PCB concentration data suggests that PCBs found in fish from US lakes represent a considerable NEQ exposure to fish consuming individuals, that indoor air of schools contained high NEQ concentrations representing an exposure concern when inhaled by children, and that levels already detected in the serum of adults and children may contribute to neurotoxicity. With further validation and in vivo exposure data the NEQ scheme would help provide a more inclusive measure of risk presented by PCB mixtures.
Collapse
Affiliation(s)
- E B Holland
- Department of Biological Sciences, California State University of Long Beach, Long Beach, CA, USA.
| | - I N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
11
|
Black CA, Bucher ML, Bradner JM, Jonas L, Igarza K, Miller GW. Assessing Vesicular Monoamine Transport and Toxicity Using Fluorescent False Neurotransmitters. Chem Res Toxicol 2020; 34:1256-1264. [PMID: 33378168 DOI: 10.1021/acs.chemrestox.0c00380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Impairments in the vesicular packaging of dopamine result in an accumulation of dopamine in the cytosol. Cytosolic dopamine is vulnerable to two metabolic processes-enzymatic catabolism and enzymatic- or auto-oxidation-that form toxic metabolites and generate reactive oxygen species. Alterations in the expression or activity of the vesicular monoamine transporter 2 (VMAT2), which transports monoamines such as dopamine from the cytosol into the synaptic vesicle, result in dysregulated dopamine packaging. Here, we developed a series of assays using the fluorescent false neurotransmitter 206 (FFN206) to visualize VMAT2-mediated vesicular packaging at baseline and following pharmacological and toxicological manipulations. As a proof of principle, we observed a significant reduction in vesicular FFN206 packaging after treatment with the VMAT2 inhibitors reserpine (IC50: 73.1 nM), tetrabenazine (IC50: 30.4 nM), methamphetamine (IC50: 2.4 μM), and methylphenidate (IC50: 94.3 μM). We then applied the assay to investigate the consequences on vesicular packaging by environmental toxicants including the pesticides paraquat, rotenone, and chlorpyrifos, as well as the halogenated compounds unichlor, perfluorooctanesulfonic acid, Paroil, Aroclor 1260, and hexabromocyclododecane. Several of the environmental toxicants showed minor impairment of the vesicular FFN206 loading, suggesting that the toxicants are weak VMAT2 inhibitors at the concentrations tested. The assay presented here can be applied to investigate the effect of additional pharmacological compounds and environmental toxicants on vesicular function, which will provide insight into how exposures to such factors are involved in the pathogenesis of monoaminergic diseases such as Parkinson's disease, and the assay can be used to identify pharmacological agents that influence VMAT2 activity.
Collapse
Affiliation(s)
- Carlie A Black
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Joshua M Bradner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Lauren Jonas
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Kenny Igarza
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
12
|
Walley SN, Krumm EA, Yasrebi A, Kwiecinski J, Wright V, Baker C, Roepke TA. Maternal organophosphate flame-retardant exposure alters offspring energy and glucose homeostasis in a sexually dimorphic manner in mice. J Appl Toxicol 2020; 41:572-586. [PMID: 32969501 DOI: 10.1002/jat.4066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
Persistent organic pollutants such as organophosphate flame retardants (OPFRs) can accumulate in the body and interact with nuclear receptors that control energy homeostasis. One sensitive window of exposure is during development, either in utero or neonatal. Therefore, we investigated if maternal exposure to a mixture of OPFRs alters metabolism on a low-fat diet (LFD) or a high-fat diet (HFD) in both male and female offspring. Wild-type C57Bl/6J dams were orally dosed with vehicle (sesame oil) or an OPFR mixture (1 mg/kg each of tris(1,3-dichloro-2-propyl)phosphate, triphenyl phosphate, and tricresyl phosphate) from gestation day 7 to postnatal day 14. After weaning, pups were fed LFD or HFD. To assess metabolism, we measured body weight and food intake weekly and determined body composition, metabolism, activity, and glucose homeostasis at 6 months of age. Although maternal OPFR exposure did not alter body weight or adiposity, OPFR exposure altered substrate utilization and energy expenditure depending on diet in both sexes. Systolic and diastolic blood pressure was increased by OPFR in male offspring. OPFR exposure interacted with HFD to increase fasting glucose in females and alter glucose and insulin tolerance in male offspring. Plasma leptin was reduced in male and female offspring when fed HFD, whereas liver expression of Pepck was increased in females and Esr1 (estrogen receptor α) was increased in both sex. The physiological implications indicate maternal exposure to OPFRs programs peripheral organs including the liver and adipose tissue, in a sex-dependent manner, thus changing the response to an obesogenic diet and altering adult offspring energy homeostasis.
Collapse
Affiliation(s)
- Sabrina N Walley
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Justine Kwiecinski
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Victoria Wright
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Chloe Baker
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, USA.,Rutgers Center for Lipid Research, Center for Nutrition, Microbiome, and Health, and New Jersey Institute of Food, Nutrition, and Health, Rutgers, The State University of New Jersey, 61 Dudley Road, New Brunswick, NJ, USA
| |
Collapse
|
13
|
He H, Shi X, Lawrence A, Hrovat J, Turner C, Cui JY, Gu H. 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces wide metabolic changes including attenuated mitochondrial function and enhanced glycolysis in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110849. [PMID: 32559690 DOI: 10.1016/j.ecoenv.2020.110849] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are extensively used as brominated flame retardants in various factory products. As environmental pollutants, the adverse effects of PBDEs on human health have been receiving considerable attention. However, the precise fundamental mechanisms of toxicity induced by PBDEs are still not fully understood. In this study, the mechanism of cytotoxicity induced by 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) was investigated by combining Seahorse XFp analysis and mass spectrometry-based metabolomics and flux approaches in PC12 cells, one of the most widely used neuron-like cell lines for investigating cytotoxic effects. The Seahorse results suggest that BDE-47 significantly attenuated mitochondrial respiration and enhanced glycolysis in PC12 cells. Additionally, metabolomics results revealed the reduction of TCA metabolites such as citrate, succinate, aconitate, malate, fumarate, and glutamate after BDE-47 exposure. Metabolic flux analysis showed that BDE-47 exposure reduced the oxidative metabolic capacity of mitochondria in PC12 cells. Furthermore, various altered metabolites were found in multiple metabolic pathways, especially in glycine-serine-threonine metabolism and glutathione metabolism. A total of 17 metabolic features were determined in order to distinguish potentially disturbed metabolite markers of BDE-47 exposure. Our findings provide possible biomarkers of cytotoxic effects induced by BDE-47 exposure, and elicit a deeper understanding of the intramolecular mechanisms that could be used in further studies to validate the potential neurotoxicity of PBDEs in vivo. Based on our results, therapeutic approaches targeting mitochondrial function and the glycolysis pathway may be a promising direction against PBDE exposure.
Collapse
Affiliation(s)
- Hailang He
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, PR China; Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Alex Lawrence
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Jonathan Hrovat
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Cassidy Turner
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA.
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
14
|
Vuong AM, Yolton K, Braun JM, Sjodin A, Calafat AM, Xu Y, Dietrich KN, Lanphear BP, Chen A. Polybrominated diphenyl ether (PBDE) and poly- and perfluoroalkyl substance (PFAS) exposures during pregnancy and maternal depression. ENVIRONMENT INTERNATIONAL 2020; 139:105694. [PMID: 32259757 PMCID: PMC7275897 DOI: 10.1016/j.envint.2020.105694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Experimental studies in rodents suggest that polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkyl substances (PFAS) may contribute to depressive symptoms. Few studies have examined the impact of these chemicals on depression in adults. OBJECTIVE To examine the associations between serum PBDE and PFAS concentrations during pregnancy and repeated measures of depressive symptoms in women assessed from pregnancy to 8 years postpartum. METHODS This study was based on 377 women from the Health Outcomes and Measures of the Environment Study, a birth cohort in Cincinnati, OH (USA). PBDEs (BDE-28, -47, -99, -100, -153, and ∑PBDEs) and PFAS (perfluorooctanoate [PFOA], perfluorooctane sulfonate [PFOS], perfluorohexane sulfonate [PFHxS], perfluorononanoate [PFNA]) were quantified in maternal serum at 16 ± 3 weeks gestation. Depressive symptoms were measured using the Beck Depression Inventory-II (BDI-II) at ~20 weeks gestation and up to seven times during postpartum visits (4 weeks, 1, 2, 3, 4, 5, and 8 years). We used linear mixed models to estimate covariate-adjusted associations between chemical concentrations and repeated measures of BDI-II. Multinomial logistic regression models were used to estimate the relative risk ratios of having a medium or high depression trajectory. RESULTS We found that a 10-fold increase in BDE-28 at 16 ± 3 weeks gestation was associated with significantly increased BDI-II scores (β = 2.5 points, 95% confidence interval [CI] 0.8, 4.2) from pregnancy to 8 years postpartum. Significant positive associations were also observed with BDE-47, -100, -153, and ∑PBDEs. A 10-fold increase in ∑PBDEs was associated with a 4.6-fold increased risk (95% CI 1.8, 11.8) of a high trajectory for BDI-II compared to a low trajectory. We observed no significant associations between PFAS and BDI-II scores. CONCLUSION PBDEs during pregnancy were associated with more depressive symptoms among women in this cohort.
Collapse
Affiliation(s)
- Ann M Vuong
- Department of Environmental and Occupational Health, University of Nevada, Las Vegas School of Public Health, 4700 S. Maryland Parkway, Suite 335, MS 3063, Las Vegas, NV 89119-3063, USA; Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA.
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St, Box G-S121-2, Providence, RI 02912, USA
| | - Andreas Sjodin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Yingying Xu
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Blockley Hall 231, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Ji F, Sreenivasmurthy SG, Wei J, Shao X, Luan H, Zhu L, Song J, Liu L, Li M, Cai Z. Study of BDE-47 induced Parkinson's disease-like metabolic changes in C57BL/6 mice by integrated metabolomic, lipidomic and proteomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120738. [PMID: 31203119 DOI: 10.1016/j.jhazmat.2019.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/19/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
As the predominant congener of polybrominated diphenyl ethers (PBDEs) detected in human serum, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) has been reported to induce neurotoxicity. However, the possible linkage between BDE-47 and typical neurodegenerative diseases such as Parkinson's disease (PD) is still unclear. Here we carried out omics studies using liquid chromatography-orbitrap mass spectrometry (LC-orbitrap MS) to depict the BDE-47 induced metabolic changes in C57BJ/L mice to explore the possible contribution of BDE-47 exposure to PD pathology. BDE-47 dissolved in corn oil was orally administered to mice for 30 consecutive days. Results of metabolomics and lipidomics studies of PD-related brain regions revealed significant metabolite changes in pathways involved in oxidative stress and neurotransmitter production. Moreover, isobaric tags for relative and absolute quantitation (iTRAQ) proteomics study of the striatum, which is the part of brain that is most intensively studied in PD pathogenesis, revealed that BDE-47 could induce neurotransmitter system disturbance, abnormal phosphorylation, mitochondrial dysfunction and oxidative stress. Overall, this study depicts the possible contribution of BDE-47 exposure to PD pathology and highlights the powerfulness of omics platforms to deepen the mechanistic understanding of environmental pollutant-caused toxicity.
Collapse
Affiliation(s)
- Fenfen Ji
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | | | - Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaojian Shao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hemi Luan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Juxian Song
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangfeng Liu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
16
|
de Water E, Curtin P, Zilverstand A, Sjödin A, Bonilla A, Herbstman JB, Ramirez J, Margolis AE, Bansal R, Whyatt RM, Peterson BS, Factor-Litvak P, Horton MK. A preliminary study on prenatal polybrominated diphenyl ether serum concentrations and intrinsic functional network organization and executive functioning in childhood. J Child Psychol Psychiatry 2019; 60:1010-1020. [PMID: 30882909 PMCID: PMC7105394 DOI: 10.1111/jcpp.13040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The prenatal period is a period of vulnerability during which neurotoxic exposures exert persistent changes in brain development and behavior. Polybrominated diphenyl ethers (PBDEs), used as flame retardants in commercial products, are known to be developmental neurotoxicants. PBDEs were phased out of use in the United States a decade ago, but exposure remains widespread due to their release from existing products and biopersistence. Despite consistent animal and epidemiological evidence of developmental neurotoxicity, the neural substrates linking prenatal PBDE serum concentrations to impaired neurodevelopment are poorly understood. METHODS In the present study, we used resting state functional magnetic resonance imaging (fMRI) to examine associations between prenatal PBDE concentrations measured in maternal serum and intrinsic functional network organization (i.e., global and local efficiency; estimated using a graph-theoretical approach) in 5-year-old children (n = 34). We explored whether PBDE serum concentrations were associated with executive functioning (EF) assessed using a parent-report questionnaire (BRIEF-P) (n = 106) and whether changes in intrinsic functional network organization linked the association between prenatal PBDE serum concentrations and EF problems. RESULTS Children with higher prenatal PBDE serum concentrations showed: (a) increased global efficiency of brain areas involved in visual attention (e.g., inferior occipital gyrus) (β's = .01, FDR-corrected p's ≤ .05); (b) more reported EF problems (β's = .001, FDR-corrected p's ≤ .05). Higher global efficiency of brain areas involved in visual attention was associated with more EF problems (β's = .01, FDR-corrected p's < .05). CONCLUSIONS Intrinsic functional network organization of visual attention brain areas linked prenatal PBDE concentrations to EF problems in childhood. Visual attention may contribute to the development of higher-order cognitive functions, such as EF, which could be explored in future studies.
Collapse
Affiliation(s)
- Erik de Water
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Zilverstand
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Sjödin
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anny Bonilla
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie B. Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
| | - Judyth Ramirez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
| | - Amy E. Margolis
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, The New York State Psychiatric Institute and the College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ravi Bansal
- Institute for the Developing Mind, Children’s Hospital Los Angeles and the Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robin M. Whyatt
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
| | - Bradley S. Peterson
- Institute for the Developing Mind, Children’s Hospital Los Angeles and the Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Chen H, Seifikar H, Larocque N, Kim Y, Khatib I, Fernandez CJ, Abello N, Robinson JF. Using a Multi-Stage hESC Model to Characterize BDE-47 Toxicity during Neurogenesis. Toxicol Sci 2019; 171:221-234. [PMID: 31173147 PMCID: PMC6736394 DOI: 10.1093/toxsci/kfz136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/20/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
While the ramifications associated with polybrominated diphenyl ethers (PBDE) exposures during human pregnancy have yet to be determined, increasing evidence in humans and animal models suggests that these compounds cause neurodevelopmental toxicity. Human embryonic stem cell models (hESCs) can be used to study the effects of environmental chemicals throughout the successive stages of neuronal development. Here, using a hESC differentiation model, we investigated the effects of common PBDE congeners (BDE-47 or -99) on the successive stages of early neuronal development. First, we determined the points of vulnerability to PBDEs across four stages of in vitro neural development by using assays to assess for cytotoxicity. Differentiated neural progenitors were identified to be more sensitive to PBDEs than their less differentiated counterparts. In follow-up investigations, we observed BDE-47 to inhibit functional processes critical for neurogenesis (e.g., proliferation, expansion) in hESC-derived neural precursor cells (NPCs) at sub-lethal concentrations. Finally, to determine the mechanism(s) underlying PBDE-toxicity, we conducted global transcriptomic and methylomic analyses of BDE-47. We identified 589 genes to be differentially expressed (DE) due to BDE-47 exposure, including molecules involved in oxidative stress mediation, cell cycle, hormone signaling, steroid metabolism, and neurodevelopmental pathways. In parallel analyses, we identified a broad significant increase in CpG methylation. In summary our results suggest, on a cellular level, PBDEs induce human neurodevelopmental toxicity in a concentration-dependent manner and sensitivity to these compounds is dependent on the developmental stage of exposure. Proposed mRNA and methylomic perturbations may underlie toxicity in early embryonic neuronal populations.
Collapse
Affiliation(s)
- Hao Chen
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Helia Seifikar
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Nicholas Larocque
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne Kim
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ibrahim Khatib
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Charles J Fernandez
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Nicomedes Abello
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
18
|
Walker DI, Marder ME, Yano Y, Terrell M, Liang Y, Barr DB, Miller GW, Jones DP, Marcus M, Pennell KD. Multigenerational metabolic profiling in the Michigan PBB registry. ENVIRONMENTAL RESEARCH 2019; 172:182-193. [PMID: 30782538 PMCID: PMC6534816 DOI: 10.1016/j.envres.2019.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 05/17/2023]
Abstract
Although polychlorinated biphenyls and polybrominated biphenyls are no longer manufactured the United States, biomonitoring in human populations show that exposure to these pollutants persist in human tissues. The objective of this study was to identify metabolic variations associated with exposure to 2,2'4,4',5,5'-hexabromobiphenyl (PBB-153) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB-153) in two generations of participants enrolled in the Michigan PBB Registry (http://pbbregistry.emory.edu/). Untargeted, high-resolution metabolomic profiling of plasma collected from 156 individuals was completed using liquid chromatography with high-resolution mass spectrometry. PBB-153 and PCB-153 levels were measured in the same individuals using targeted gas chromatography-tandem mass spectrometry and tested for dose-dependent correlation with the metabolome. Biological response to these exposures were evaluated using identified endogenous metabolites and pathway enrichment. When compared to lipid-adjusted concentrations for adults in the National Health and Nutrition Examination Survey (NHANES) for years 2003-2004, PCB-153 levels were consistent with similarly aged individuals, whereas PBB-153 concentrations were elevated (p<0.0001) in participants enrolled in the Michigan PBB Registry. Metabolic alterations were correlated with PBB-153 and PCB-153 in both generations of participants, and included changes in pathways related to catecholamine metabolism, cellular respiration, essential fatty acids, lipids and polyamine metabolism. These pathways were consistent with pathophysiological changes observed in neurodegenerative disease and included previously identified metabolomic markers of Parkinson's disease. To determine if the metabolic alterations detected in this study are replicated other cohorts, we evaluated correlation of PBB-153 and PCB-153 with plasma fatty acids measured in NHANES. Both pollutants showed similar associations with fatty acids previously linked to PCB exposure. Thus, the results from this study show metabolic alterations correlated with PBB-153 and PCB-153 exposure can be detected in human populations and are consistent with health outcomes previously reported in epidemiological and mechanistic studies.
Collapse
Affiliation(s)
- Douglas I Walker
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford MA 02155, United States; Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - M Elizabeth Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Yukiko Yano
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Ave Hall #7360, Berkeley CA 94720, United States.
| | - Metrecia Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Yongliang Liang
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Kurt D Pennell
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford MA 02155, United States.
| |
Collapse
|
19
|
Yamaguchi H, Mano N. Analysis of membrane transport mechanisms of endogenous substrates using chromatographic techniques. Biomed Chromatogr 2019; 33:e4495. [PMID: 30661254 DOI: 10.1002/bmc.4495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Membrane transporters are expressed in various bodily tissues and play essential roles in the homeostasis of endogenous substances and the absortion, distribution and/or excretion of xenobiotics. For transporter assays, radioisotope-labeled compounds have been mainly used. However, commercially available radioisotope-labeled compounds are limited in number and relatively expensive. Chromatographic analyses such as high-performance liquid chromatography with ultraviolet absorptiometry and liquid chromatography with tandem mass spectrometry have also been applied for transport assays. To elucidate the transport properties of endogenous substrates, although there is no difficulty in performing assays using radioisotope-labeled probes, the endogenous background and the metabolism of the compound after its translocation across cell membranes must be considered when the intact compound is assayed. In this review, the current state of knowledge about the transport of endogenous substrates via membrane transporters as determined by chromatographic techniques is summarized. Chromatographic techniques have contributed to our understanding of the transport of endogenous substances including amino acids, catecholamines, bile acids, prostanoids and uremic toxins via membrane transporters.
Collapse
Affiliation(s)
- Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
20
|
Guo X, Zhang S, Lu S, Zheng B, Xie P, Chen J, Li G, Liu C, Wu Q, Cheng H, Sang N. Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1018-1026. [PMID: 30029309 DOI: 10.1016/j.envpol.2018.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Perfluorododecanoic acid (PFDoA), an artificial perfluorochemical, has been widely distributed in different ambient media and has been reported to have the potential to cause developmental neurotoxicity. However, the specific mechanism is largely unknown. In the current study, zebrafish embryos were treated with 0, 0.24, 1.2, and 6 mg/L PFDoA for 120 h. Exposure to PFDoA causes serious decreases in hatching delay, body length, as well as decreased locomotor speed in zebrafish larvae. Additionally, the acetylcholine (ACh) content as well as acetylcholinesterase (AChE) activity were determined to be significantly downregulated in PFDoA treatment groups. The level of dopamine was upregulated significantly after treating with 1.2 and 6 mg/L of PFDoA. Gene expressions related to the nervous system development were also analyzed, with the exception of the gene mesencephalic astrocyte-derived neurotrophic factor (manf), which is upregulated in the 6 mg/L treatment group. All other genes were significantly downregulated in larvae in the PFDoA group in different degrees. In general, the results demonstrated that PFDoA exposure could result in the disruption of the cholinergic system, dopaminergic signaling, and the central nervous system.
Collapse
Affiliation(s)
- Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shengnan Zhang
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment and Resource, Shanxi University, Taiyuan, 030006, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Binghui Zheng
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Houcheng Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
21
|
Prenatal exposure to oxidative phosphorylation xenobiotics and late-onset Parkinson disease. Ageing Res Rev 2018; 45:24-32. [PMID: 29689408 DOI: 10.1016/j.arr.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022]
Abstract
Late-onset Parkinson disease is a multifactorial and multietiological disorder, age being one of the factors implicated. Genetic and/or environmental factors, such as pesticides, can also be involved. Up to 80% of dopaminergic neurons of the substantia nigra are lost before motor features of the disorder begin to appear. In humans, these neurons are only formed a few weeks after fertilization. Therefore, prenatal exposure to pesticides or industrial chemicals during crucial steps of brain development might also alter their proliferation and differentiation. Oxidative phosphorylation is one of the metabolic pathways sensitive to environmental toxicants and it is crucial for neuronal differentiation. Many inhibitors of this biochemical pathway, frequently found as persistent organic pollutants, affect dopaminergic neurogenesis, promote the degeneration of these neurons and increase the risk of suffering late-onset Parkinson disease. Here, we discuss how an early, prenatal, exposure to these oxidative phosphorylation xenobiotics might trigger a late-onset, old age, Parkinson disease.
Collapse
|
22
|
Mughal BB, Fini JB, Demeneix BA. Thyroid-disrupting chemicals and brain development: an update. Endocr Connect 2018; 7:R160-R186. [PMID: 29572405 PMCID: PMC5890081 DOI: 10.1530/ec-18-0029] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
This review covers recent findings on the main categories of thyroid hormone-disrupting chemicals and their effects on brain development. We draw mostly on epidemiological and experimental data published in the last decade. For each chemical class considered, we deal with not only the thyroid hormone-disrupting effects but also briefly mention the main mechanisms by which the same chemicals could modify estrogen and/or androgen signalling, thereby exacerbating adverse effects on endocrine-dependent developmental programmes. Further, we emphasize recent data showing how maternal thyroid hormone signalling during early pregnancy affects not only offspring IQ, but also neurodevelopmental disease risk. These recent findings add to established knowledge on the crucial importance of iodine and thyroid hormone for optimal brain development. We propose that prenatal exposure to mixtures of thyroid hormone-disrupting chemicals provides a plausible biological mechanism contributing to current increases in the incidence of neurodevelopmental disease and IQ loss.
Collapse
Affiliation(s)
- Bilal B Mughal
- CNRS/UMR7221Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Jean-Baptiste Fini
- CNRS/UMR7221Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Barbara A Demeneix
- CNRS/UMR7221Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| |
Collapse
|
23
|
Tatulli G, Mitro N, Cannata SM, Audano M, Caruso D, D’Arcangelo G, Lettieri-Barbato D, Aquilano K. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice. Front Cell Neurosci 2018; 12:4. [PMID: 29387000 PMCID: PMC5776087 DOI: 10.3389/fncel.2018.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/03/2018] [Indexed: 01/04/2023] Open
Abstract
Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.
Collapse
Affiliation(s)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Daniele Lettieri-Barbato
- IRCCS San Raffaele La Pisana, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- IRCCS San Raffaele La Pisana, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
24
|
Wu Q, Yan W, Cheng H, Liu C, Hung TC, Guo X, Li G. Parental transfer of microcystin-LR induced transgenerational effects of developmental neurotoxicity in zebrafish offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:471-478. [PMID: 28837927 DOI: 10.1016/j.envpol.2017.08.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/26/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Microcystin-LR (MCLR) has been reported to cause developmental neurotoxicity in zebrafish, but there are few studies on the mechanisms of MCLR-induced transgenerational effects of developmental neurotoxicity. In this study, zebrafish were exposed to 0, 1, 5, and 25 μg/L MCLR for 60 days. The F1 zebrafish embryos from the above-mentioned parents were collected and incubated in clean water for 120 h for hatching. After examining the parental zebrafish and F1 embryos, MCLR was detected in the gonad of adults and F1 embryos, indicating MCLR could potentially be transferred from parents to offspring. The larvae also showed a serious hypoactivity. The contents of dopamine, dihydroxyphenylacetic acid (DOPAC), serotonin, gamma-aminobutyric acid (GABA) and acetylcholine (ACh) were further detected, but only the first three neurotransmitters showed significant reduction in the 5 and 25 μg/L MCLR parental exposure groups. In addition, the acetylcholinesterase (AChE) activity was remarkably decreased in MCLR parental exposure groups, while the expression levels of manf, bdnf, ache, htr1ab, htr1b, htr2a, htr1aa, htr5a, DAT, TH1 and TH2 genes coincided with the decreased content of neurotransmitters (dopamine, DOPAC and serotonin) and the activity of AChE. Neuronal development related genes, α1-tubulin, syn2a, mbp, gfap, elavl3, shha and gap43 were also measured, but gap43 was the gene only up-regulated. Our results demonstrated MCLR could be transferred to offspring, and subsequently induce developmental neurotoxicity in F1 zebrafish larvae by disturbing the neurotransmitter systems and neuronal development.
Collapse
Affiliation(s)
- Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Houcheng Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Xiaochun Guo
- Chinese Research Academy of Environmental Science, State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, Beijing 100012, PR China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan 430070, PR China.
| |
Collapse
|
25
|
Beier EE, Neal M, Alam G, Edler M, Wu LJ, Richardson JR. Alternative microglial activation is associated with cessation of progressive dopamine neuron loss in mice systemically administered lipopolysaccharide. Neurobiol Dis 2017; 108:115-127. [PMID: 28823928 DOI: 10.1016/j.nbd.2017.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/17/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation arising from central and/or peripheral sources contributes to the pathogenesis of multiple neurodegenerative diseases including Parkinson's disease (PD). Emerging data suggest that differential activation of glia could lead to the pathogenesis and progression of PD. Here, we sought to determine the relationship between lipopolysaccharide (LPS) treatment, loss of dopaminergic neurons and differential activation of glia. Using a model of repeated injections with LPS (1mg/kg, i.p. for 4days), we found that LPS induced a 34% loss of dopamine neurons in the substantia nigra 19days after initiation of treatment, but no further cell loss was observed at 36days. LPS induced a strong pro-inflammatory response with increased mRNA expression of pro-inflammatory markers, including tumor necrosis factor-α (4.8-fold), inducible nitric oxide synthase (2.0-fold), interleukin-1 beta (8.9-fold), interleukin-6 (10.7-fold), and robust glial activation were observed at 1day after final dose of LPS. These pro-inflammatory genes were then reduced at 19days after treatment, when there was a rise in the anti-inflammatory genes Ym1 (1.8-fold) and arginase-1 (2.6-fold). Additionally, 36days after the last LPS injection there was a significant increase in interleukin-10 (2.1-fold) expression. The qPCR data results were supported by protein data, including cytokine measurements, western blotting, and immunofluorescence in brain microglia. Taken together, these data demonstrate that progressive neurodegeneration in the substantia nigra following LPS is likely arrested by microglia shifting to an anti-inflammatory phenotype. Thus, strategies to promote resolution of neuroinflammation may be a promising avenue to slow the progressive loss of dopamine neurons in PD.
Collapse
Affiliation(s)
- Eric E Beier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States
| | - Matthew Neal
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Gelerah Alam
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Melissa Edler
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Jason R Richardson
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States; Department of Pharmaceutical Sciences, Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH, United States.
| |
Collapse
|
26
|
Mucio-Ramírez S, Sánchez-Islas E, Sánchez-Jaramillo E, Currás-Collazo M, Juárez-González VR, Álvarez-González MY, Orser LE, Hou B, Pellicer F, Kodavanti PRS, León-Olea M. Perinatal exposure to organohalogen pollutants decreases vasopressin content and its mRNA expression in magnocellular neuroendocrine cells activated by osmotic stress in adult rats. Toxicol Appl Pharmacol 2017; 329:173-189. [PMID: 28579251 PMCID: PMC5996972 DOI: 10.1016/j.taap.2017.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that produce neurotoxicity and neuroendocrine disruption. They affect the vasopressinergic system but their disruptive mechanisms are not well understood. Our group reported that rats perinatally exposed to Aroclor-1254 (A1254) and DE-71 (commercial mixtures of PCBs and PBDEs) decrease somatodendritic vasopressin (AVP) release while increasing plasma AVP responses to osmotic activation, potentially emptying AVP reserves required for body-water balance. The aim of this research was to evaluate the effects of perinatal exposure to A1254 or DE-71 (30mgkg/day) on AVP transcription and protein content in the paraventricular and supraoptic hypothalamic nuclei, of male and female rats, by in situ hybridization and immunohistochemistry. cFOS mRNA expression was evaluated in order to determine neuroendocrine cells activation due to osmotic stimulation. Animal groups were: vehicle (control); exposed to either A1254 or DE-71; both, control and exposed, subjected to osmotic challenge. The results confirmed a physiological increase in AVP-immunoreactivity (AVP-IR) and gene expression in response to osmotic challenge as reported elsewhere. In contrast, the exposed groups did not show this response to osmotic activation, they showed significant reduction in AVP-IR neurons, and AVP mRNA expression as compared to the hyperosmotic controls. cFOS mRNA expression increased in A1254 dehydrated groups, suggesting that the AVP-IR decrease was not due to a lack of the response to the osmotic activation. Therefore, A1254 may interfere with the activation of AVP mRNA transcript levels and protein, causing a central dysfunction of vasopressinergic system.
Collapse
Affiliation(s)
- Samuel Mucio-Ramírez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco. México D.F. C.P. 14370, México.
| | - Margarita Currás-Collazo
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA.
| | - Victor R Juárez-González
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Av. Universidad #2001, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, México.
| | - Mhar Y Álvarez-González
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - L E Orser
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Borin Hou
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Francisco Pellicer
- Laboratorio de Fisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| |
Collapse
|
27
|
Pham-Lake C, Aronoff EB, Camp CR, Vester A, Peters SJ, Caudle WM. Impairment in the mesohippocampal dopamine circuit following exposure to the brominated flame retardant, HBCDD. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:167-174. [PMID: 28214749 PMCID: PMC5382642 DOI: 10.1016/j.etap.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Many chemicals have been used to increase the safety of consumer products by reducing their flammability and risk for ignition. Recent focus on brominated flame retardants, such as polybrominated diphenyl ethers (PBDEs) has shown them to contribute to neurobehavioral deficits in children, including learning and memory. As the manufacture and use of PBDEs have been reduced, replacement chemicals, such as hexabromocyclododecane (HBCDD) have been substituted. Our current study evaluated the neurotoxicity of HBCDD, concentrating on dopaminergic innervation to the hippocampus. Using an in vivo model, we exposed male mice to HBCDD and then assessed alterations to the dopamine synapse 6 weeks later. These exposures elicited significant reductions in presynaptic dopaminergic proteins, including TH, COMT, MAO-B, DAT, VMAT2, and alpha-synuclein. In contrast, postsynaptic dopamine receptors were not impaired. These findings suggest that the mesohippocampal dopamine circuit is vulnerable to HBCDD and the dopamine terminal may be a selective target for alteration.
Collapse
Affiliation(s)
- Camille Pham-Lake
- Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322-3090, USA
| | - Elizabeth B Aronoff
- Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322-3090, USA
| | - Chad R Camp
- Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322-3090, USA
| | - Aimee Vester
- Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322-3090, USA
| | - Sam J Peters
- Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322-3090, USA
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University Atlanta, GA 30322-3090, USA.
| |
Collapse
|
28
|
Lei ENY, Yau MS, Yeung CC, Murphy MB, Wong KL, Lam MHW. Profiling of Selected Functional Metabolites in the Central Nervous System of Marine Medaka (Oryzias melastigma) for Environmental Neurotoxicological Assessments. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:269-280. [PMID: 27990605 DOI: 10.1007/s00244-016-0342-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
The simultaneous profiling of 43 functional metabolites in the brain of the small model vertebrate organism, marine medaka (Oryzais melastigma), has been accomplished via dansyl chloride derivatization and LC-MS/MS quantification. This technique was applied to examine effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), one of the most abundant polybrominated diphenyl ether flame retardants in the natural environment, on the central nervous system (CNS) of vertebrates. The model teleosts were fed with bioencapsulated Artemia nauplii for up to 21 days. Multivariate statistical analysis has demonstrated that levels of numerous classical neurotransmitters and their metabolites in the CNS of the fish were perturbed even at the early phase of dietary exposure. Subsequent metabolic pathway analysis further implied potential impairment of the arginine and proline metabolism; glycine, serine and threonine metabolism; D-glutamine and D-glutamate metabolism; alanine, aspartate, and glutamate metabolism; valine, leucine, and isoleucine biosynthesis, and the cysteine and methionine metabolism in the brain of the test organism. Our results demonstrate that targeted profiling of functional metabolites in the CNS may shed light on how the various neurological pathways of vertebrates, including humans, are affected by toxicant/stress exposure.
Collapse
Affiliation(s)
- Elva Ngai-Yu Lei
- State Key Laboratory for Marine Pollution, Department of Biology & Chemistry, City University of Hong Kong, Tat Chee Ave., Kowloon, Hong Kong SAR, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Man-Shan Yau
- State Key Laboratory for Marine Pollution, Department of Biology & Chemistry, City University of Hong Kong, Tat Chee Ave., Kowloon, Hong Kong SAR, China
| | - Chi-Chung Yeung
- State Key Laboratory for Marine Pollution, Department of Biology & Chemistry, City University of Hong Kong, Tat Chee Ave., Kowloon, Hong Kong SAR, China
| | - Margaret B Murphy
- State Key Laboratory for Marine Pollution, Department of Biology & Chemistry, City University of Hong Kong, Tat Chee Ave., Kowloon, Hong Kong SAR, China
| | - Ka-Leung Wong
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Michael Hon-Wah Lam
- State Key Laboratory for Marine Pollution, Department of Biology & Chemistry, City University of Hong Kong, Tat Chee Ave., Kowloon, Hong Kong SAR, China.
| |
Collapse
|
29
|
Li X, Wang C, Wang W, Yue C, Tang Y. Neonatal exposure to BDE 209 impaired learning and memory, decreased expression of hippocampal core SNAREs and synaptophysin in adult rats. Neurotoxicology 2017; 59:40-48. [PMID: 28104350 DOI: 10.1016/j.neuro.2017.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants. While the mechanism remains unknown, the potential neurotoxic effects of PBDEs remain a relevant issue. In the present study, neonatal Sprague-Dawley rats of both sexes were administered BDE 209 (1, 10, or 20mg/kg body weight) or peanut oil once daily from postnatal day (PND) 5 to PND 10. We examined the spatial learning and memory by Morris water maze and the working and reference memory by eight-arm radial maze in the stage of adulthood. Compared with controls, significantly longer escape latencies and fewer platform-crossings in the Morris water maze were observed in rats exposed to 1, 10, and 20mg/kg BDE 209, and these effects were dose-dependent. Significantly higher working and reference memory error rates in the eight-arm radial maze were also observed in rats exposed to 10 and 20mg/kg BDE 209. Furthermore, we detected the mRNA and protein expressions of hippocampal synaptobrevin 2, syntaxin 1A, Synaptosome Associated Protein 25 (SNAP-25), and synaptophysin using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot methods. Compared with controls, the mRNA expressions of synaptobrevin 2, syntaxin 1A, SNAP-25, and synaptophysin were significantly decreased in the hippocampi of rats exposed to 1, 10, and 20 mg/kg BDE 209, and the protein expressions of synaptobrevin 2 and SNAP-25 were significantly decreased in the hippocampi of rats exposed to 10 and 20 mg/kg BDE 209, while syntaxin 1A and synaptophysin were significantly decreased in rats exposed to 1, 10, and 20 mg/kg BDE 209. Alterations that may be involved in the learning and memory deficits induced by BDE 209 reveal the possibility of synapse loss.
Collapse
Affiliation(s)
- Xiong Li
- Department of Occupational Medicine, School of Public Health, Southwest Medical University, Luzhou City 646000, PR China
| | - Chunmei Wang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou City 646000, PR China
| | - Wen Wang
- Department of Public Health, School of Public Health, Southwest Medical University, Luzhou City 646000, PR China
| | - Chengwei Yue
- Department of Prevention Medicine, School of Public Health, Southwest Medical University, Luzhou City 646000, PR China
| | - Yan Tang
- Experimental Teaching Center, School of Public Health, Southwest Medical University, Luzhou City 646000, PR China.
| |
Collapse
|
30
|
Lohr KM, Masoud ST, Salahpour A, Miller GW. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur J Neurosci 2017; 45:20-33. [PMID: 27520881 PMCID: PMC5209277 DOI: 10.1111/ejn.13357] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022]
Abstract
Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine.
Collapse
Affiliation(s)
- Kelly M Lohr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Shababa T Masoud
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, USA
- Department of Pharmacology, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
31
|
Gou YY, Que DE, Chuang CY, Chao HR, Shy CG, Hsu YC, Lin CW, Chuang KP, Tsai CC, Tayo LL. Dust levels of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in the Taiwanese elementary school classrooms: Assessment of the risk to school-age children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:734-741. [PMID: 27515016 DOI: 10.1016/j.scitotenv.2016.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Elementary school classroom dust is an important source of exposure to polybrominated dibenzo-p-dioxins/furans and diphenyl ethers (PBDD/DF/DEs) for school-age children. Our goal is thus to investigate concentrations of PBDD/DF/DEs in elementary school classroom dust to further assess the impact on school-age children via ingestion. The dust from classrooms, including both normal (NR) and computer classrooms (CR), was collected from six urban and four rural schools. Fourteen PBDEs and twelve PBDD/Fs were measured using high-resolution gas-chromatography/high-resolution mass-spectrometry. The mean levels of Σ14PBDEs in NR and CR dust from the urban classrooms were 370 and 2510ng/g and those whose dust from the rural classrooms were 464 and 1780ng/g. The means of ΣPBDD/Fs were 0.0401ng-WHO2005-TEQ/g (concentration: 4.72ng/g) in urban NR dust, 0.0636ng-WHO2005-TEQ/g (7.51ng/g) in urban CR dust, 0.0281ng-WHO2005TEQ/g (3.60ng/g) in rural NR dust, and 0.0474ng-WHO2005TEQ/g (6.28ng/g) in rural CR dust. The PBDEs pattern in NR dust was quite different from that in CR dust, but the PBDD/Fs patterns in NR and CR dust were similar. A linearly significant correlation coefficient (n=20, r=0.862, p<0.001) was found between ΣPBDEs and ΣPBDD/Fs in NR and CR dust, indicating that the PBDEs and PBDD/Fs in the dust may be from the same sources in the elementary school classrooms. This study assessed the risks (daily intake and cancer and non-cancer risks) of PBDEs and PBDD/Fs for the children from the classroom dust, and the calculated risk values did not exceed the related thresholds. With regard to the exposure scenarios for school-age children in an indoor environment, the results suggest that they might ingest more dust PBDD/DF/DEs in their homes than in the schools. In conclusion, the exposure of Taiwanese elementary school children to PBDD/DF/DEs via indoor dust was with a safe range based on our findings.
Collapse
Affiliation(s)
- Yan-You Gou
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County 912, Taiwan
| | - Danielle E Que
- School of Chemical Engineering, Chemistry, Biological Engineering and Material Science and Engineering, Mapúa Institute of Technology, Intramuros, Manila 1002, Philippines
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - How-Ran Chao
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County 912, Taiwan.
| | - Cherng-Gueih Shy
- Department of Radiology, Pingtung Christian Hospital, Pingtung City, Pingtung 900, Taiwan
| | - Yi-Chyun Hsu
- Department of Environmental Engineering, Kun Shan University, Yung-Kang Dist., Tainan City 71003, Taiwan
| | - Chun-Wen Lin
- Department of Child Care, National Pingtung University of Science and Technology, Pingtung County 912, Taiwan
| | - Kuo Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung County 912, Taiwan
| | - Chih-Chung Tsai
- Graduate Institute of Science Education and Environmental Education, National Kaohsiung Normal University, Yan-Chou District, Kaohsiung City 824, Taiwan
| | - Lemmuel L Tayo
- School of Chemical Engineering, Chemistry, Biological Engineering and Material Science and Engineering, Mapúa Institute of Technology, Intramuros, Manila 1002, Philippines
| |
Collapse
|
32
|
Patel R, Bradner JM, Stout KA, Caudle WM. Alteration to Dopaminergic Synapses Following Exposure to Perfluorooctane Sulfonate (PFOS), in Vitro and in Vivo. Med Sci (Basel) 2016; 4:medsci4030013. [PMID: 29083377 PMCID: PMC5635798 DOI: 10.3390/medsci4030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 12/30/2022] Open
Abstract
Our understanding of the contribution exposure to environmental toxicants has on neurological disease continues to evolve. Of these, Parkinson’s disease (PD) has been shown to have a strong environmental component to its etiopathogenesis. However, work is still needed to identify and characterize environmental chemicals that could alter the expression and function of the nigrostriatal dopamine system. Of particular interest is the neurotoxicological effect of perfluorinated compounds, such as perfluorooctane sulfonate (PFOS), which has been demonstrated to alter aspects of dopamine signaling. Using in vitro approaches, we have elaborated these initial findings to demonstrate the neurotoxicity of PFOS to the SH-SY5Y neuroblastoma cell line and dopaminergic primary cultured neurons. Using an in vivo model, we did not observe a deficit to dopaminergic terminals in the striatum of mice exposed to 10 mg/kg PFOS for 14 days. However, subsequent exposure to the selective dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) significantly reduced the expression of dopamine transporter (DAT) and tyrosine hydroxylase (TH), and resulted in an even greater reduction in DAT expression in animals previously exposed to PFOS. These findings suggest that PFOS is neurotoxic to the nigrostriatal dopamine circuit and this neurotoxicity could prime the dopamine terminal to more extensive damage following additional toxicological insults.
Collapse
Affiliation(s)
- Rahul Patel
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Kristen A Stout
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| | - William Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Bai X, Chen T, Gao Y, Li H, Li Z, Liu Z. The protective effects of insulin-like growth factor-1 on neurochemical phenotypes of dorsal root ganglion neurons with BDE-209-induced neurotoxicity in vitro. Toxicol Ind Health 2016; 33:250-264. [PMID: 27090441 DOI: 10.1177/0748233716638004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) exist extensively in the environment as contaminants, in which 2,2',3,3',4,4',5,5',6,6'-decabrominated diphenyl ether (BDE-209) is the most abundant PBDE found in human samples. BDE-209 has been shown to cause neurotoxicity of primary sensory neurons with few effective therapeutic options available. Here, cultured dorsal root ganglion (DRG) neurons were used to determine the therapeutic effects of insulin-like growth factor-1 (IGF-1) on BDE-209-induced neurotoxicity. The results showed that IGF-1 promoted neurite outgrowth and cell viability of DRG neurons with BDE-209-induced neurotoxicity. IGF-1 inhibited oxidative stress and apoptotic cell death caused by BDE-209 exposure. IGF-1 could reverse the decrease in growth-associated protein-43 (GAP-43) and calcitonin gene-related peptide (CGRP), but not neurofilament-200 (NF-200), expression resulting from BDE-209 exposure. The effects of IGF-1 could be blocked by the extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, either alone or in combination. IGF-1 may play an important role in neuroprotective effects on DRG neurons with BDE-209-induced neurotoxicity through inhibiting oxidative stress and apoptosis and regulating GAP-43 and CGRP expression of DRG neurons. Both ERK1/2 and PI3K/Akt signaling pathways were involved in the effects of IGF-1. Thus, IGF-1 might be one of the therapeutic agents on BDE-209-induced neurotoxicity.
Collapse
Affiliation(s)
- Xue Bai
- 1 Department of Anatomy, Shandong University School of Medicine, Jinan, China
| | - Tianhua Chen
- 1 Department of Anatomy, Shandong University School of Medicine, Jinan, China
| | - Yang Gao
- 2 Department of Human Biology, University of Toronto, Toronto, Ontario, Canada
| | - Hao Li
- 3 Department of Orthopaedics, Shandong University Qilu Hospital, Jinan, China
| | - Zhenzhong Li
- 1 Department of Anatomy, Shandong University School of Medicine, Jinan, China
| | - Zhen Liu
- 1 Department of Anatomy, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
34
|
Pinson A, Bourguignon JP, Parent AS. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Andrology 2016; 4:706-22. [PMID: 27285165 DOI: 10.1111/andr.12211] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 01/24/2023]
Abstract
The developing brain is remarkably malleable as neural circuits are formed and these circuits are strongly dependent on hormones for their development. For those reasons, the brain is very vulnerable to the effects of endocrine-disrupting chemicals (EDCs) during critical periods of development. This review focuses on three ubiquitous endocrine disruptors that are known to disrupt the thyroid function and are associated with neurobehavioral deficits: polychlorinated biphenyls, polybrominated diphenyl ethers, and bisphenol A. The human and rodent data suggesting effects of those EDCs on memory, cognition, and social behavior are discussed. Their mechanisms of action go beyond relative hypothyroidism with effects on neurotransmitter release and calcium signaling.
Collapse
Affiliation(s)
- A Pinson
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - J P Bourguignon
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - A S Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| |
Collapse
|
35
|
Wu Q, Yan W, Liu C, Li L, Yu L, Zhao S, Li G. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:793-800. [PMID: 27038211 DOI: 10.1016/j.envpol.2016.03.048] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. ɑ1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons.
Collapse
Affiliation(s)
- Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China.
| |
Collapse
|
36
|
Prenatal and childhood polybrominated diphenyl ether (PBDE) exposure and attention and executive function at 9-12 years of age. Neurotoxicol Teratol 2015; 52:151-61. [PMID: 26271888 DOI: 10.1016/j.ntt.2015.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE California children's exposures to polybrominated diphenyl ether flame retardants (PBDEs) are among the highest measured worldwide. We previously reported associations for prenatal and childhood PBDE exposures with decrements in attention, processing speed, fine motor coordination, and cognition in children at ages 5 and 7 years. Here, we investigate associations of PBDEs with attention and executive function at ages 9 to 12 years in the expanded CHAMACOS cohort. METHODS We measured PBDEs in prenatal and child age 9 year serum samples for families enrolled in the study since pregnancy ("CHAM1", N=321). In a subsequent cohort for which families were enrolled at child age 9 ("CHAM2", N=301), we measured PBDEs in maternal and child samples collected at child age 9, and used predictive modeling to estimate prenatal exposure levels. We examined associations of measured and estimated PBDE concentrations on children's attention and executive functioning at ages 9, 10½, and 12 years. RESULTS Geometric means for prenatal and childhood ΣPBDE levels (sum of PBDE-47, -99, -100, -153) for the expanded CHAMACOS cohort were 26.3 and 63.2 ng/g lipid, respectively, and did not differ significantly between CHAM1 and CHAM2 families. We found consistent associations of prenatal exposure to PBDEs with poorer attention and executive function, measured with parent report and direct neuropsychological testing of the child. For example, using GEE models of repeated outcome measures at ages 9 and 12, a 10-fold increase in prenatal ΣPBDE was associated with poorer response consistency on the Conners' Continuous Performance Test II (β=2.9; 95% CI: 0.9, 4.8) and poorer working memory on the Behavioral Rating Inventory of Executive Function (β=2.5; 95% CI: 0.5, 4.4). Child age 9 ΣPBDE levels were associated with poorer parent-reported attention and executive function for girls but not boys. CONCLUSIONS Our results suggest that the prefrontal cortex may be a potential target for PBDE exposure and add to a growing literature showing that these ubiquitous toxicants may adversely affect neurodevelopment.
Collapse
|
37
|
Comparative Proteomic Analysis of Carbonylated Proteins from the Striatum and Cortex of Pesticide-Treated Mice. PARKINSONS DISEASE 2015; 2015:812532. [PMID: 26345149 PMCID: PMC4546751 DOI: 10.1155/2015/812532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 01/28/2023]
Abstract
Epidemiological studies indicate exposures to the herbicide paraquat (PQ) and fungicide maneb (MB) are associated with increased risk of Parkinson's disease (PD). Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg), MB (30 mg/kg), or the combination of PQ and MB (PQMB). Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration.
Collapse
|
38
|
Genskow KR, Bradner JM, Hossain MM, Richardson JR, Caudle WM. Selective damage to dopaminergic transporters following exposure to the brominated flame retardant, HBCDD. Neurotoxicol Teratol 2015; 52:162-9. [PMID: 26073293 DOI: 10.1016/j.ntt.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 12/01/2022]
Abstract
Over the last several decades, the use of halogenated organic compounds has become the cause of environmental and human health concerns. Of particular notoriety has been the establishment of the neurotoxicity of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). The subsequent banning of PBDEs has led to greatly increased use of 1,2,5,6,9,10-hexabromocyclododecane (HBCDD, also known as HBCD) as a flame retardant in consumer products. The physiochemical similarities between HBCDD and PBDEs suggest that HBCDD may also be neurotoxic to the dopamine system, which is specifically damaged in Parkinson disease (PD). The purpose of this study was to assess the neurotoxicity of HBCDD on the nigrostriatal dopamine system using an in vitro and in vivo approach. We demonstrate that exposure to HBCDD (0-25 μM) for 24 h causes significant cell death in the SK-N-SH catecholaminergic cell line, as well as reductions in the growth and viability of TH+ primary cultured neurons at lower concentrations (0-10 μM) after 72 h of treatment. Assessment of the in vivo neurotoxicity of HBCDD (25 mg/kg for 30 days) resulted in significant reductions in the expression of the striatal dopamine transporter and vesicular monoamine transporter 2, both of which are integral in mediating dopamine homeostasis and neurotransmission in the dopamine circuit. However, no changes were seen in the expression of tyrosine hydroxylase in the dopamine terminal, or striatal levels of dopamine. To date, these are the first data to demonstrate that exposure to HBCDD disrupts the nigrostriatal dopamine system. Given these results and the ubiquitous nature of HBCDD in the environment, its possible role as an environmental risk factor for PD should be further investigated.
Collapse
Affiliation(s)
- Kelly R Genskow
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA
| | - Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA
| | - Muhammad M Hossain
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School Piscataway, NJ 08854, USA
| | - Jason R Richardson
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School Piscataway, NJ 08854, USA
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA.
| |
Collapse
|
39
|
Usenko CY, Abel EL, Kudela M, Janise A, Bruce ED. Comparison of PBDE congeners as inducers of oxidative stress in zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1154-1160. [PMID: 25663549 DOI: 10.1002/etc.2922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/02/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
A proposed primary pathway through which polybrominated diphenyl ethers (PBDEs) disrupt normal biological functions is oxidative stress. In the present study, 4 PBDE congeners were evaluated for their potential to initiate oxidative stress in zebrafish during development: BDE 28, BDE 47, BDE 99, and BDE 100. N-acetylcysteine (NAC) was used to increase intracellular glutathione concentrations and only decreased the effects of BDE 28 at 10 ppm and 20 ppm and BDE 47 at 20 ppm. N-acetylcysteine coexposure did not alter the rates of mortality or curved body axis compared with PBDE exposure alone. The activity of glutathione-S-transferase (GST) was not altered at 24 h postfertilization (hpf), but increased following 10 ppm BDE 28 exposure at 120 hpf. Transcription of several genes associated with stress was also evaluated. At 24 hpf, cytochrome c oxidase subunit 6a (COX6a) transcription was up-regulated in embryos exposed to BDE 99, and BDE 28 exposure up-regulated the transcription of Glutathione-S-transferase-pi (GSTpi). At 24 hpf, glutamate-cysteine ligase (GCLC) was slightly down-regulated by all congeners evaluated. At 120 hpf, TNF receptor-associated protein 1 (TRAP1) and COX6A were up-regulated by all congeners, however GSTpi was down-regulated by all congeners. The results of quantitative real-time transcription polymerase chain reaction are mixed and do not strongly support a transcriptional response to oxidative stress. According to the authors' data, PBDEs do not induce oxidative stress. Oxidative stress may occur at high exposure concentrations; however, this does not appear to be a primary mechanism of action for the PBDE congeners tested.
Collapse
|
40
|
Wang X, Yang L, Wu Y, Huang C, Wang Q, Han J, Guo Y, Shi X, Zhou B. The developmental neurotoxicity of polybrominated diphenyl ethers: Effect of DE-71 on dopamine in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1119-1126. [PMID: 25651517 DOI: 10.1002/etc.2906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/27/2014] [Accepted: 01/21/2015] [Indexed: 06/04/2023]
Abstract
The potential neurotoxicity of polybrominated diphenyl ethers (PBDEs) is still a great concern. In the present study, the authors investigated whether exposure to PBDEs could affect the neurotransmitter system and cause developmental neurotoxicity in zebrafish. Zebrafish embryos (2 h postfertilization) were exposed to different concentrations of the PBDE mixture DE-71 (0-100 μg/L). The larvae were harvested at 120 h postfertilization, and the impact on dopaminergic signaling was investigated. The results revealed significant reductions in content of whole-body dopamine and its metabolite, dihydroxyphenylacetic acid, in DE-71-exposed larvae. The transcription of genes involved in the development of dopaminergic neurons (e.g., manf, bdnf, and nr4a2b) was significantly downregulated upon exposure to DE-71. Also, DE-71 resulted in a significant decrease of tyrosine hydroxylase and dopamine transporter protein levels in dopaminergic neurons. The expression level of tyrosine hydroxylase in forebrain neurons was assessed by whole-mount immunofluorescence, and the results further demonstrated that the tyrosine hydroxylase protein expression level was reduced in dopaminergic neurons. In addition to these molecular changes, the authors observed reduced locomotor activity in DE-71-exposed larvae. Taken together, the results of the present study demonstrate that acute exposure to PBDEs can affect dopaminergic signaling by disrupting the synthesis and transportation of dopamine in zebrafish, thereby disrupting normal neurodevelopment. In accord with its experimental findings, the present study extends knowledge of the mechanisms governing PBDE-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Xianfeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
In recent years, the contribution of exposure to environmental toxicants has been recognized as a significant contributor to the etiopathogenesis of parkinsonism. Of these toxicants, exposure to pesticides, metals, solvents used in manufacturing processes, as well as flame-retardant chemicals used in consumer and commercial products, has received the greatest attention as possible risk factors. Related to this, individuals who are exposed to these compounds at high concentrations or for prolonged periods of time in an occupational setting appear to be one of the more vulnerable populations to these effects. Our understanding of which compounds are involved and the potential molecular pathways that are susceptible to these chemicals and may underlie the pathogenesis has greatly improved. However, there are still hundreds of chemicals that we are exposed to in the environment for which we do not have any information on their potential neurotoxicity on the nigrostriatal dopamine system. Thus, using our past accomplishments as a blueprint, future endeavors should focus on elaborating upon these initial findings in order to identify specific and relevant chemical toxicants in our environment that can impact the risk of parkinsonism and work towards a means to attenuate or abolish their effects on the human population.
Collapse
Affiliation(s)
- W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
42
|
Reverte I, Domingo JL, Colomina MT. Neurodevelopmental effects of decabromodiphenyl ether (BDE-209) in APOE transgenic mice. Neurotoxicol Teratol 2014; 46:10-7. [DOI: 10.1016/j.ntt.2014.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/26/2022]
|
43
|
Costa LG, de Laat R, Tagliaferri S, Pellacani C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol Lett 2014; 230:282-94. [PMID: 24270005 PMCID: PMC4028440 DOI: 10.1016/j.toxlet.2013.11.011] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/12/2013] [Indexed: 01/01/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), extensively used in the past few decades as flame retardants in a variety of consumer products, have become world-wide persistent environmental pollutants. Levels in North America are usually higher than those in Europe and Asia, and body burden is 3-to-9-fold higher in infants and toddlers than in adults. The latter has raised concern for potential developmental toxicity and neurotoxicity of PBDEs. Experimental studies in animals and epidemiological observations in humans suggest that PBDEs may be developmental neurotoxicants. Pre- and/or post-natal exposure to PBDEs may cause long-lasting behavioral abnormalities, particularly in the domains of motor activity and cognition. The mechanisms underlying the developmental neurotoxic effects of PBDEs are not known, though several hypotheses have been put forward. One general mode of action relates to the ability of PBDEs to impair thyroid hormone homeostasis, thus indirectly affecting the developing brain. An alternative or additional mode of action involves a direct effect of PBDEs on nervous system cells; PBDEs can cause oxidative stress-related damage (DNA damage, mitochondrial dysfunction, apoptosis), and interfere with signal transduction (particularly calcium signaling), and with neurotransmitter systems. Important issues such as bioavailability and metabolism of PBDEs, extrapolation of results to low level of exposures, and the potential effects of interactions among PBDE congeners and between PBDEs and other contaminants also need to be taken into account.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Neuroscience, University of Parma, Parma, Italy.
| | - Rian de Laat
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
44
|
Wilson WW, Shapiro LP, Bradner JM, Caudle WM. Developmental exposure to the organochlorine insecticide endosulfan damages the nigrostriatal dopamine system in male offspring. Neurotoxicology 2014; 44:279-87. [PMID: 25092410 PMCID: PMC4175067 DOI: 10.1016/j.neuro.2014.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/06/2014] [Accepted: 07/24/2014] [Indexed: 11/22/2022]
Abstract
The contribution of environmental toxicants to the etiology and risk of Parkinson's disease (PD) has been clearly established, with organochlorine insecticides routinely shown to damage the nigrostriatal dopamine pathway. Although PD is generally considered an adult onset disease, it has been postulated that exposure to environmental contaminants or other factors early in life during critical periods of neurodevelopment could alter the dopaminergic circuit and predispose individuals to developing PD. Recent epidemiological evidence has found exposure to the organochlorine insecticide endosulfan to be a risk factor for PD. However, the specific dopaminergic targets or vulnerable developmental time points related to endosulfan exposure have not been investigated. Thus, we sought to investigate dopaminergic neurotoxicity following developmental exposure to endosulfan as well as following an additional challenge with MPTP. Our in vitro findings demonstrate a reduction in SK-N-SH cells and ventral mesencephalic primary cultures after endosulfan treatment. Using an in vivo developmental model, exposure to endosulfan during gestation and lactation caused a reduction in DAT and TH in the striatum of male offspring. These alterations were exacerbated following subsequent treatment with MPTP. In contrast, exposure of adult mice to endosulfan did not elicit dopaminergic damage and did not appear to increase the vulnerability of the dopamine neurons to MPTP. These findings suggest that development during gestation and lactation represents a critical window of susceptibility to endosulfan exposure and development of the nigrostriatal dopamine system. Furthermore, these exposures appear to sensitize the dopamine neurons to additional insults that may occur later in life.
Collapse
Affiliation(s)
- W Wyatt Wilson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA
| | - Lauren P Shapiro
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA
| | - Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA.
| |
Collapse
|
45
|
Wilson WW, Onyenwe W, Bradner JM, Nennig SE, Caudle WM. Developmental exposure to the organochlorine insecticide endosulfan alters expression of proteins associated with neurotransmission in the frontal cortex. Synapse 2014; 68:485-97. [PMID: 25042905 DOI: 10.1002/syn.21764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/11/2014] [Indexed: 11/11/2022]
Abstract
Exposure to environmental contaminants, such as organochlorine insecticides during critical periods of neurodevelopment has been shown to be a major contributor to several neuropsychological deficits seen in children, adolescence, and adults. Although the neurobehavioral outcomes resulting from exposure to these compounds are known the neurotransmitter circuitry and molecular targets that mediate these endpoints have not been identified. Given the importance of the frontal cortex in facilitating numerous neuropsychological processes, our current study sought to investigate the effects of developmental exposure to the organochlorine insecticide, endosulfan, on the expression of specific proteins associated with neurotransmission in the frontal cortex. Utilizing in vitro models we were able to show endosulfan reduces cell viability in IMR-32 neuroblastoma cells in addition to reducing synaptic puncta and neurite outgrowth in primary cultured neurons isolated from the frontal cortex of mice. Elaborating these findings to an in vivo model we found that developmental exposure of female mice to endosulfan during gestation and lactation elicited significant alterations to the GABAergic (GAT1, vGAT, GABAA receptor), glutamatergic (vGlut and GluN2B receptor), and dopaminergic (DAT, TH, VMAT2, and D2 receptor) neurotransmitter systems in the frontal cortex of male offspring. These findings identify damage to critical neurotransmitter circuits and proteins in the frontal cortex, which may underlie the neurobehavioral deficits observed following developmental exposure to endosulfan and other organochlorine insecticides.
Collapse
Affiliation(s)
- W Wyatt Wilson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, 30322-3090
| | | | | | | | | |
Collapse
|
46
|
Yochum C, Doherty-Lyon S, Hoffman C, Hossain MM, Zelikoff JT, Richardson JR. Prenatal cigarette smoke exposure causes hyperactivity and aggressive behavior: role of altered catecholamines and BDNF. Exp Neurol 2014; 254:145-52. [PMID: 24486851 DOI: 10.1016/j.expneurol.2014.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 01/04/2023]
Abstract
Smoking during pregnancy is associated with a variety of untoward effects on the offspring. However, recent epidemiological studies have brought into question whether the association between neurobehavioral deficits and maternal smoking is causal. We utilized an animal model of maternal smoking to determine the effects of prenatal cigarette smoke (CS) exposure on neurobehavioral development. Pregnant mice were exposed to either filtered air or mainstream CS from gestation day (GD) 4 to parturition for 4h/d and 5d/wk, with each exposure producing maternal plasma concentration of cotinine equivalent to smoking <1 pack of cigarettes per day (25ng/ml plasma cotinine level). Pups were weaned at postnatal day (PND) 21 and behavior was assessed at 4weeks of age and again at 4-6months of age. Male, but not female, offspring of CS-exposed dams demonstrated a significant increase in locomotor activity during adolescence and adulthood that was ameliorated by methylphenidate treatment. Additionally, male offspring exhibited increased aggression, as evidenced by decreased latency to attack and number of attacks in a resident-intruder task. These behavioral abnormalities were accompanied by a significant decrease in striatal and cortical dopamine and serotonin and a significant reduction in brain-derived neurotrophic factor (BDNF) mRNA and protein. Taken in concert, these data demonstrate that prenatal exposure to CS produces behavioral alterations in mice that are similar to those observed in epidemiological studies linking maternal smoking to neurodevelopmental disorders. Further, these data also suggest a role for monaminergic and BDNF alterations in these effects.
Collapse
Affiliation(s)
- Carrie Yochum
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Shannon Doherty-Lyon
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Carol Hoffman
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Muhammad M Hossain
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | - Jason R Richardson
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
47
|
Persico AM, Merelli S. Environmental Factors in the Onset of Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-013-0002-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Bernstein AI, Stout KA, Miller GW. The vesicular monoamine transporter 2: an underexplored pharmacological target. Neurochem Int 2014; 73:89-97. [PMID: 24398404 DOI: 10.1016/j.neuint.2013.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022]
Abstract
Active transport of neurotransmitters into synaptic vesicles is required for their subsequent exocytotic release. In the monoamine system, this process is carried out by the vesicular monoamine transporters (VMAT1 and VMAT2). These proteins are responsible for vesicular packaging of dopamine, norepinephrine, serotonin, and histamine. These proteins are essential for proper neuronal function; however, compared to their plasma membrane counterparts, there are few drugs available that target these vesicular proteins. This is partly due to the added complexity of crossing the plasma membrane, but also to the technical difficulty of assaying for vesicular uptake in high throughput. Until recently, reagents to enable high throughput screening for function of these vesicular neurotransmitter transporters have not been available. Fortunately, novel compounds and methods are now making such screening possible; thus, a renewed focus on these transporters as potential targets is timely and necessary.
Collapse
Affiliation(s)
- Alison I Bernstein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen A Stout
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA; Department of Pharmacology, Emory University, Atlanta, GA 30322, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
49
|
Alterations to the circuitry of the frontal cortex following exposure to the polybrominated diphenyl ether mixture, DE-71. Toxicology 2013; 312:48-55. [PMID: 23916505 DOI: 10.1016/j.tox.2013.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/21/2022]
Abstract
Recent studies have identified exposure to polybrominated diphenyl ethers (PBDEs) as a risk factor for deficits in cognitive functioning seen in children as well as adults. Additionally, similar alterations in learning and memory have also been observed in animal models of PBDE exposure. However, given these findings, the molecular alterations that may underlie these neurobehavioral endpoints have not been identified. As the frontal cortex is involved in modulating several cognitive functions, the purpose of our study was to investigate the possible changes to the GABAergic and glutamatergic neurotransmitter systems located in the frontal cortex following exposure to the PBDE mixture, DE-71. Primary cultured neurons isolated from the frontal cortex showed a dose-dependent reduction in neurons as well as neurite outgrowth. Furthermore, evaluation of DE-71 neurotoxicity in the frontal cortex using an in vivo model showed alterations to specific proteins involved in mediating GABA and glutamate neurotransmission, including GAD67, vGAT, vGlut, and GABA(A) 2α receptor subunit. Interestingly, these alterations appeared to be preferential for the GABA and glutamate systems located in the frontal cortex. These findings identify specific targets of PBDE neurotoxicity and provide a possible molecular mechanism for PBDE-mediated neurobehavioral deficits that arise from the frontal cortex.
Collapse
|
50
|
Abstract
The defining motor characteristics of Parkinson's disease (PD) are mediated by the neurotransmitter dopamine (DA). Dopamine molecules spend most of their lifespan stored in intracellular vesicles awaiting release and very little time in the extracellular space or the cytosol. Without proper packaging of transmitter and trafficking of vesicles to the active zone, dopamine neurotransmission cannot occur. In the cytosol, dopamine is readily oxidized; excessive cytosolic dopamine oxidation may be pathogenic to nigral neurons in PD. Thus, factors that disrupt vesicular function may impair signaling and increase the vulnerability of dopamine neurons. This review outlines the many mechanisms by which disruption of vesicular function may contribute to the pathogenesis of PD. From direct inhibition of dopamine transport into vesicles by pharmacological or toxicological agents to alterations in vesicle trafficking by PD-related gene products, variations in the proper compartmentalization of dopamine can wreak havoc on a functional dopamine pathway. Findings from patient populations, imaging studies, transgenic models, and mechanistic studies will be presented to document the relationship between impaired vesicular function and vulnerability of the nigrostriatal dopamine system. Given the deleterious effects of impaired vesicular function, strategies aimed at enhancing vesicular function may be beneficial in the treatment of PD.
Collapse
Affiliation(s)
- Shawn P. Alter
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gina M. Lenzi
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alison I. Bernstein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gary W. Miller
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA. Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA, USA. Department of Environmental Health, Rollins School of Public Health, Claudia Nance Rollins Bldg, Room 8007, 1518 Clifton Road, NE, Atlanta, GA 30322, USA
| |
Collapse
|