1
|
Karaman EF, Abudayyak M, Guler ZR, Bektas S, Kaptan E, Ozden S. The effects of fumonisin B1 on intercellular communications and miRNA modulations: Non-genotoxic carcinogenesis mechanisms in human kidney cells. Toxicology 2024; 509:153968. [PMID: 39414224 DOI: 10.1016/j.tox.2024.153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Fumonisin B1 (FB1), which is produced by Fusarium species, is one of the most prevalent mycotoxins known to exert several toxic effects, particularly nephrotoxicity. While its genotoxic carcinogenic mechanisms have been extensively studied, its influence on non-genotoxic pathways including intercellular communication and microRNA (miRNA) regulation remain underexplored. The present study investigates the effects of FB1 on gap junctions, miRNA expression profiles, and their relationship in human kidney cells (HK-2 and HEK293). Both cell lines showed increased apoptosis rates at 50 and 100 µM, while FB1 exposure significantly reduced gap junctional intercellular communication (GJIC) and decreased the expression levels of related genes, including Cx43, Cx45, e-cadherin, Cadherin-2, and β-catenin. After FB1 treatments alteration on the regulation of miRNAs including let-7a-5p, miR-125a-5p, miR-222-3p, miR-92a-3p, let-7b-5p, let-7e-5p, miR-21-5p, miR-155-5p, let-7i-5p, let-7d-5p, let-7f-5p, miR-181b-5p, miR-15b-5p, miR-23b-3p, miR-20b-5p, miR-196a-5p miRNAs have been shown. Let-7a-5p was selected among the altered miRNAs to elucidate the relationship between miRNAs and GJIC after FB1 exposure as it is one of the common miRNAs that changes in both cell lines and one of its target genes is Cx45, which is an important gene for GJIC. However, transfection analysis did not show any differences, resulting in Cx45 not being a direct target of let-7a-5p in HK-2 and HEK-293 cells. Through comprehensive analysis, we elucidated that FB1's impact on intercellular signaling cascades and its regulatory role on miRNA expression profiles, offering valuable insights into carcinogenesis beyond traditional genotoxic paradigms. Understanding these mechanisms is crucial for elucidating the mechanisms of FB1-induced toxicity.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Topkapi, Istanbul 34015, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey
| | - Zeynep Rana Guler
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Engin Kaptan
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey.
| |
Collapse
|
2
|
Krska T, Twaruschek K, Valente N, Mitterbauer R, Moll D, Wiesenberger G, Berthiller F, Adam G. Development of a fumonisin-sensitive Saccharomyces cerevisiae indicator strain and utilization for activity testing of candidate detoxification genes. Appl Environ Microbiol 2023; 89:e0121123. [PMID: 38054733 PMCID: PMC10746191 DOI: 10.1128/aem.01211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Fumonisins can cause diseases in animals and humans consuming Fusarium-contaminated food or feed. The search for microbes capable of fumonisin degradation, or for enzymes that can detoxify fumonisins, currently relies primarily on chemical detection methods. Our constructed fumonisin B1-sensitive yeast strain can be used to phenotypically detect detoxification activity and should be useful in screening for novel fumonisin resistance genes and to elucidate fumonisin metabolism and resistance mechanisms in fungi and plants, and thereby, in the long term, help to mitigate the threat of fumonisins in feed and food.
Collapse
Affiliation(s)
- Tamara Krska
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Tulln, Austria
| | - Krisztian Twaruschek
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Tulln, Austria
| | - Nina Valente
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rudolf Mitterbauer
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Dieter Moll
- dsm-firmenich ANH Research Center Tulln, Tulln, Austria
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Franz Berthiller
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
3
|
Alhelaisi A, Alrezaki A, Nahdi S, Aldahmash W, Alwasel S, Harrath AH. Early-Life Exposure to the Mycotoxin Fumonisin B1 and Developmental Programming of the Ovary of the Offspring: The Possible Role of Autophagy in Fertility Recovery. TOXICS 2023; 11:980. [PMID: 38133381 PMCID: PMC10747440 DOI: 10.3390/toxics11120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Mycotoxins are produced by more than one hundred fungi and produce secondary metabolites that contaminate various agricultural commodities, especially rice and corn. Their presence in the food chain is considered a serious problem worldwide. In recent years, a link between exposure to mycotoxins and impaired fertility has been suggested. Consequently, it has become vital to investigate the interactive effects of these mycotoxins on ovarian function. In this study, we investigated the intergenerational effects of the mycotoxin fumonisin B1 (FB1) on ovarian structure and function. Virgin Wistar albino female rats were separated into control and FB1 treatment groups and examined from day 6 of pregnancy until delivery (20 and 50 mg/kg b.w./day). The obtained female rats of the first (F1) and second generations (F2) were euthanized at 4 weeks of age, and ovary samples were collected. We found that the ovary weight index increased with the high dose of the treatment (50 mg/kg b.w./day) among both F1 and F2, in a manner similar to that observed in polycystic ovary syndrome. As expected, FB1 at a high dose (50 mg/kg b.w.) reduced the number of primordial follicles in F1 and F2, leading to an accelerated age-related decline in reproductive capacity. Moreover, it reduced the fertility rate among the F1 female rats by affecting follicle growth and development, as the number of secondary and tertiary follicles decreased. Histopathological changes were evidenced by the altered structures of most of the growing follicle oocytes, as revealed by a thinning irregular zona pellucida and pyknosis in granulosa cells. These findings are concomitant with steroidogenesis- and folliculogenesis-related gene expression, as evidenced by the decrease in CYP19 activity and estrogen receptor beta (ESR2) gene expression. Additionally, GDF-9 mRNA levels were significantly decreased, and IGF-1 mRNA levels were significantly increased. However, the results from the ovaries of the F2 treatment groups were different and unexpected. While there was no significant variation in CYP19 activity compared to the control, the ESR2 significantly increased, leading to stereological and histopathological changes similar to those of the control, except for some altered follicles. The hallmark histological feature was the appearance of vacuolar structures within the oocyte and between granulosa cell layers. Interestingly, the autophagic marker LC3 was significantly increased in the F2 offspring, whereas this protein was significantly decreased in the F1 offspring. Therefore, we suggest that the promotion of autophagy in the ovaries of the F2 offspring may be considered a recovery mechanism from the effect of prenatal FB1 exposure. Thus, autophagy corrected the effect of FB1 during the early life of the F1 female rats, leading to F2 offspring with ovarian structure and function similar to those of the control. However, the offspring, treated female rats may experience early ovarian aging because their ovarian pool was affected.
Collapse
Affiliation(s)
| | | | | | | | | | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.); (S.N.); (W.A.); (S.A.)
| |
Collapse
|
4
|
Chen X, F. Abdallah M, Chen X, Rajkovic A. Current Knowledge of Individual and Combined Toxicities of Aflatoxin B1 and Fumonisin B1 In Vitro. Toxins (Basel) 2023; 15:653. [PMID: 37999516 PMCID: PMC10674195 DOI: 10.3390/toxins15110653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 11/25/2023] Open
Abstract
Mycotoxins are considered the most threating natural contaminants in food. Among these mycotoxins, aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are the most prominent fungal metabolites that represent high food safety risks, due to their widespread co-occurrence in several food commodities, and their profound toxic effects on humans. Considering the ethical and more humane animal research, the 3Rs (replacement, reduction, and refinement) principle has been promoted in the last few years. Therefore, this review aims to summarize the research studies conducted up to date on the toxicological effects that AFB1 and FB1 can induce on human health, through the examination of a selected number of in vitro studies. Although the impact of both toxins, as well as their combination, were investigated in different cell lines, the majority of the work was carried out in hepatic cell lines, especially HepG2, owing to the contaminants' liver toxicity. In all the reviewed studies, AFB1 and FB1 could invoke, after short-term exposure, cell apoptosis, by inducing several pathways (oxidative stress, the mitochondrial pathway, ER stress, the Fas/FasL signaling pathway, and the TNF-α signal pathway). Among these pathways, mitochondria are the primary target of both toxins. The interaction of AFB1 and FB1, whether additive, synergistic, or antagonistic, depends to great extent on FB1/AFB1 ratio. However, it is generally manifested synergistically, via the induction of oxidative stress and mitochondria dysfunction, through the expression of the Bcl-2 family and p53 proteins. Therefore, AFB1 and FB1 mixture may enhance more in vitro toxic effects, and carry a higher significant risk factor, than the individual presence of each toxin.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| |
Collapse
|
5
|
Sabillón L, Alvarado J, Leiva A, Mendoza R, Espinal R, Leslie JF, Bianchini A. Presence, Co-Occurrence, and Daily Intake Estimates of Aflatoxins and Fumonisins in Maize Consumed in Food-Insecure Regions of Western Honduras. Toxins (Basel) 2023; 15:559. [PMID: 37755985 PMCID: PMC10534461 DOI: 10.3390/toxins15090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Foodborne mycotoxins are a significant food safety risk in developing countries. Our objective was to determine the occurrence of and exposure levels to aflatoxins (AFs) and fumonisins (FBs) in maize intended for human and animal consumption in food-insecure regions of western Honduras. Total AFs and FBs were quantified with a monoclonal antibody-based affinity spectrofluorimetric method. FBs were detected in 614/631 samples of maize destined for human consumption at 0.3 to 41 mg/kg (mean, 2.7 mg/kg). Of the 614 positive samples, 147 had FB levels exceeding the U.S. Food and Drug Administration (FDA) advisory threshold of 4.0 mg/kg. AFs were detected in 109/631 samples of maize for human consumption with concentrations between 1.0 and 490 µg/kg (mean, 10 µg/kg). AF levels in 34 samples exceeded the FDA regulatory limit (i.e., 20 µg/kg). The average probable daily intake of AFs in western Honduras ranged from 0 to 260 ng/kg body weight/day, and for FBs, the average probable daily intake ranged from 17 to 53 μg/kg body weight/day. AFs and FBs co-occurred in 106/631 samples with 60 samples containing both toxins at levels greater than the FDA regulatory levels. Samples of maize intended for animal feed had significantly higher AF (mean, 22 µg/kg) and FB (mean, 7.6 mg/kg) contamination levels than those observed in samples destined for human consumption. Thus, the maize supply chain in western Honduras is contaminated with mycotoxins at levels that pose health risks to both humans and livestock. More effective mycotoxin surveillance and implementation of effective mitigation strategies are needed to reduce mycotoxin contamination and exposure.
Collapse
Affiliation(s)
- Luis Sabillón
- Department of Family and Consumer Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003, USA
| | - Jackeline Alvarado
- Department of Food Science and Technology, Zamorano University, San Antonio de Oriente P.O. Box 93, Honduras
| | - Alejandra Leiva
- Department of Food Science and Technology, Zamorano University, San Antonio de Oriente P.O. Box 93, Honduras
| | - Rodrigo Mendoza
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- The Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Raúl Espinal
- Department of Food Science and Technology, Zamorano University, San Antonio de Oriente P.O. Box 93, Honduras
| | - John F. Leslie
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Andréia Bianchini
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- The Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
6
|
Yu J, Pedroso IR. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals and Pets. Toxins (Basel) 2023; 15:480. [PMID: 37624237 PMCID: PMC10467131 DOI: 10.3390/toxins15080480] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Cereal grains are the most important food staples for human beings and livestock animals. They can be processed into various types of food and feed products such as bread, pasta, breakfast cereals, cake, snacks, beer, complete feed, and pet foods. However, cereal grains are vulnerable to the contamination of soil microorganisms, particularly molds. The toxigenic fungi/molds not only cause quality deterioration and grain loss, but also produce toxic secondary metabolites, mycotoxins, which can cause acute toxicity, death, and chronic diseases such as cancer, immunity suppression, growth impairment, and neural tube defects in humans, livestock animals and pets. To protect human beings and animals from these health risks, many countries have established/adopted regulations to limit exposure to mycotoxins. The purpose of this review is to update the evidence regarding the occurrence and co-occurrence of mycotoxins in cereal grains and cereal-derived food and feed products and their health impacts on human beings, livestock animals and pets. The effort for safe food and feed supplies including prevention technologies, detoxification technologies/methods and up-to-date regulation limits of frequently detected mycotoxins in cereal grains for food and feed in major cereal-producing countries are also provided. Some important areas worthy of further investigation are proposed.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | | |
Collapse
|
7
|
Karaman EF, Abudayyak M, Ozden S. The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B 1-induced toxicity in human kidney cells. Mycotoxin Res 2023:10.1007/s12550-023-00494-2. [PMID: 37328702 DOI: 10.1007/s12550-023-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010, Topkapi, Istanbul, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
8
|
Salambanga FRD, Wingert L, Valois I, Lacombe N, Gouin F, Trépanier J, Debia M, Soszczyńska E, Twarużek M, Kosicki R, Dias M, Viegas S, Caetano L, Viegas C, Marchand G. Microbial contamination and metabolite exposure assessment during waste and recyclable material collection. ENVIRONMENTAL RESEARCH 2022; 212:113597. [PMID: 35660405 DOI: 10.1016/j.envres.2022.113597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Waste workers are exposed to bioaerosols when handling, lifting and dumping garbage. Bioaerosol exposure has been linked to health problems such as asthma, airway irritant symptoms, infectious, gastrointestinal and skin diseases, and cancer. Our objective was to characterize the exposure of urban collectors and drivers to inhalable bioaerosols and to measured the cytotoxic effect of air samples in order to evaluate their health risk. Personal and ambient air sampling were conducted during the summer of 2019. Workers from 12 waste trucks collecting recyclables, organic waste or compost were evaluated. Bacteria and fungi were cultured, molecular biology methods were used to detect microbial indicators, cytotoxic assays were performed and endotoxins and mycotoxins were quantified. Domestic waste collectors were exposed to concentrations of bacteria and endotoxins above the recommended limits, and Aspergillus section Fumigati was detected at critical concentrations in their breathing zones. Cytotoxic effects were observed in many samples, demonstrating the potential health risk for these workers. This study establishes evidence that waste workers are exposed to microbial health risks during collection. It also demonstrates the relevance of cytotoxic assays in documenting the general toxic risk found in air samples. Our results also suggest that exposures differ depending on the type of waste, job title and discharge/unloading locations.
Collapse
Affiliation(s)
- Fabiola R D Salambanga
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada; Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Loïc Wingert
- Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Isabelle Valois
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Nancy Lacombe
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - François Gouin
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Julien Trépanier
- Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Ewelina Soszczyńska
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Robert Kosicki
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Marta Dias
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal
| | - Liliana Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal
| | - Geneviève Marchand
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada; Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada.
| |
Collapse
|
9
|
Karsauliya K, Yahavi C, Pandey A, Bhateria M, Sonker AK, Pandey H, Sharma M, Singh SP. Co-occurrence of mycotoxins: A review on bioanalytical methods for simultaneous analysis in human biological samples, mixture toxicity and risk assessment strategies. Toxicon 2022; 218:25-39. [PMID: 36049662 DOI: 10.1016/j.toxicon.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Mycotoxins are the toxic chemical substances that are produced by various fungal species and some of these are harmful to humans. Mycotoxins are ubiquitous in nature and humans could be exposed to multiple mycotoxins simultaneously. Unfortunately, exposure to mixed mycotoxins is not very well studied. Various studies have demonstrated the capacity of mycotoxins to show synergistic effect in the presence of other mycotoxins, thus, increasing the risk of toxicity. Hence, it is important to monitor mixed mycotoxins in human biological samples which would serve as a crucial information for risk assessment. Through this review paper, we aim to summarize the mixture toxicity of mycotoxins and the various bio-analytical techniques that are being used for the simultaneous analysis of mixed mycotoxins in human biological samples. Different sample preparation and clean-up techniques employed till date for eliminating the interferences from human biological samples without affecting the analyses of the mycotoxins are also discussed. Further, a brief introduction of risk assessment strategies that have been or could be adopted for multiple mycotoxin risk assessments is also mentioned. To the best of our knowledge, this is the first review that focuses solely on the occurrence of multiple mycotoxins in human biological samples as well as their risk assessment strategies.
Collapse
Affiliation(s)
- Kajal Karsauliya
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - C Yahavi
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anushka Pandey
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Manisha Bhateria
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Ashish Kumar Sonker
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Harshita Pandey
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Sheelendra Pratap Singh
- Toxicokinetics Laboratory/Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
10
|
Fang L, Zhao B, Zhang R, Wu P, Zhao D, Chen J, Pan X, Wang J, Wu X, Zhang H, Qi X, Zhou J, Zhou B. Occurrence and exposure assessment of aflatoxins in Zhejiang province, China. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103847. [PMID: 35283284 DOI: 10.1016/j.etap.2022.103847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to assess the risk of aflatoxins due to multiple food consumption among the Zhejiang population. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry method was used to determine aflatoxins in 792 samples. Aflatoxins were detected in 27.1% of the samples at levels between 0.07 and 262.63 μg kg-1, and aflatoxins B1 was the most frequently detected among different types of samples. 0.8% of peanut oil, 3.39% of nut products as well as 1.1% of condiments contaminated with aflatoxins B1 exceeded China national tolerance limits. Peanut oil had the highest incidence of aflatoxin, with a range from 0.17 to 22.50 μg kg-1. Using bags conferred limited advantages in reducing aflatoxin contents. Moreover, peanut and rice were the main contributors to dietary exposure to aflatoxins among Zhejiang residents. Finally, the margin of exposure values obtained by rice consumption were far from the safe margin of 10,000, indicating a potential risk to public health. The results pointed out the need for further prioritization of aflatoxins B1 risk-management actions in Zhejiang.
Collapse
Affiliation(s)
- Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Bi Zhao
- School of Medicine, Ningbo University, Ningbo, China
| | - Ronghua Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Pinggu Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Dong Zhao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jiang Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaodong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jikai Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaoli Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hexiang Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Biao Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| |
Collapse
|
11
|
Cytotoxicity of Mycotoxins and Their Combinations on Different Cell Lines: A Review. Toxins (Basel) 2022; 14:toxins14040244. [PMID: 35448853 PMCID: PMC9031280 DOI: 10.3390/toxins14040244] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are secondary metabolites of molds and mainly produced by species of the genera Aspergillus, Penicillium and Fusarium. They can be synthesized on the field, during harvest as well as during storage. They are fairly stable compounds and difficult to remove. Among several hundreds of mycotoxins, according to the WHO, ochratoxin A, aflatoxins, zearalenone, deoxynivalenol, patulin, fumonisins as well as T-2 and HT-2 toxins deserve special attention. Cytotoxicity is one of the most important adverse properties of mycotoxins and is generally assessed via the MTT assay, the neutral red assay, the LDH assay, the CCK-8 assay and the ATP test in different cell lines. The apoptotic cell ratio is mainly assessed via flow cytometry. Aside from the assessment of the toxicity of individual mycotoxins, it is important to determine the cytotoxicity of mycotoxin combinations. Such combinations often exhibit stronger cytotoxicity than individual mycotoxins. The cytotoxicity of different mycotoxins often depends on the cell line used in the experiment and is frequently time- and dose-dependent. A major drawback of assessing mycotoxin cytotoxicity in cell lines is the lack of interaction typical for complex organisms (for example, immune responses).
Collapse
|
12
|
Xia L, Rasheed H, Routledge MN, Wu H, Gong YY. Super-Sensitive LC-MS Analyses of Exposure Biomarkers for Multiple Mycotoxins in a Rural Pakistan Population. Toxins (Basel) 2022; 14:193. [PMID: 35324690 PMCID: PMC8950642 DOI: 10.3390/toxins14030193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
High levels of mycotoxin contamination have been reported in various food commodities in Pakistan, however, there has been no exposure assessment study using multiple mycotoxins' biomarkers. This study aimed to simultaneously assess the exposure to the five major mycotoxins: aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1), ochratoxin A (OTA) and zearalenone (ZEN) in a Pakistani population using an integrated approach of human biomonitoring. Human urine samples (n = 292) were analyzed by a super-sensitive liquid-chromatography tandem mass spectrometry (LC-MS/MS) method. Rice and wheat were also collected and analyzed for mycotoxins by the LC-MS/MS method. Food consumption data were collected using a 24 h recall method. A high prevalence of urinary AFM1 (66%, mean ± SD 20.8 ± 41.3 pg/mL) and OTA (99%, 134.7 ± 312.0 pg/mL) were found, whilst urinary DON, FB1 and ZEN levels were low. The probable daily intake (PDI) derived from the urinary biomarkers revealed that 89% of the participants had exposure to OTA exceeding the established tolerable daily intake (TDI = 17 ng/kg bw/day). The average PDI of AFB1 for the studied population was 43 ng/kg bw/day, with rice as the main source of AFB1 exposure. In summary, exposure to AFB1 and OTA are of health concern and require further management.
Collapse
Affiliation(s)
- Lei Xia
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Hifza Rasheed
- Pakistan Council of Research in Water Resources, Islamabad 44000, Pakistan;
| | - Michael N. Routledge
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (M.N.R.); (H.W.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang 212013, China
| | - Hang Wu
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (M.N.R.); (H.W.)
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
13
|
Nashiry MA, Sumi SS, Sharif Shohan MU, Alyami SA, Azad AKM, Moni MA. Bioinformatics and system biology approaches to identify the diseasome and comorbidities complexities of SARS-CoV-2 infection with the digestive tract disorders. Brief Bioinform 2021; 22:bbab126. [PMID: 33993223 PMCID: PMC8194728 DOI: 10.1093/bib/bbab126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), although most commonly demonstrates respiratory symptoms, but there is a growing set of evidence reporting its correlation with the digestive tract and faeces. Interestingly, recent studies have shown the association of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with gastrointestinal symptoms in infected patients but any sign of respiratory issues. Moreover, some studies have also shown that the presence of live SARS-CoV-2 virus in the faeces of patients with COVID-19. Therefore, the pathophysiology of digestive symptoms associated with COVID-19 has raised a critical need for comprehensive investigative efforts. To address this issue we have developed a bioinformatics pipeline involving a system biological framework to identify the effects of SARS-CoV-2 messenger RNA expression on deciphering its association with digestive symptoms in COVID-19 positive patients. Using two RNA-seq datasets derived from COVID-19 positive patients with celiac (CEL), Crohn's (CRO) and ulcerative colitis (ULC) as digestive disorders, we have found a significant overlap between the sets of differentially expressed genes from SARS-CoV-2 exposed tissue and digestive tract disordered tissues, reporting 7, 22 and 13 such overlapping genes, respectively. Moreover, gene set enrichment analysis, comprehensive analyses of protein-protein interaction network, gene regulatory network, protein-chemical agent interaction network revealed some critical association between SARS-CoV-2 infection and the presence of digestive disorders. The infectome, diseasome and comorbidity analyses also discover the influences of the identified signature genes in other risk factors of SARS-CoV-2 infection to human health. We hope the findings from this pathogenetic analysis may reveal important insights in deciphering the complex interplay between COVID-19 and digestive disorders and underpins its significance in therapeutic development strategy to combat against COVID-19 pandemic.
Collapse
Affiliation(s)
- Md Asif Nashiry
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shauli Sarmin Sumi
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Salem A Alyami
- Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - A K M Azad
- iThree Institute, Faculty of Science, University Technology of Sydney, Australia
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Australia
- Healthy Ageing Theme, The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
14
|
Macko P, Palosaari T, Whelan M. Extrapolating from acute to chronic toxicity in vitro. Toxicol In Vitro 2021; 76:105206. [PMID: 34186185 PMCID: PMC8434427 DOI: 10.1016/j.tiv.2021.105206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022]
Abstract
Chemical safety assessment requires information on both chronic and acute effects of toxicants. Traditionally, such information has been provided by a set of animal studies conducted over different durations, ranging from a single dose with observation of effects over a few days, to repeat daily dosing and observations made over many months. With the advent of modern mechanistic approaches to toxicology, the role of in vitro studies within alternative approaches has never been more prominent. Typical in vitro experiments are conducted over short durations with measurements of response at a single time point, with a focus on providing effect and concentration-response information as input to hazard and risk assessment. This limits the usefulness of such data since potential chronic effects that cumulate over time are not usually considered. To address this, an experimental design is presented to characterise the toxicodynamics of a response not only in terms of concentration, but also as a function of time. Generation of concentration-time-effect responses allows both the extrapolation of points of departure from an acute to chronic exposure, and the determination of a chronicity index that provides a quantitative measure of a chemical's potential to cause cumulative effects over time. In addition, the approach provides a means to characterise the dynamics of key event relationships for the development of quantitative adverse outcome pathways.
Collapse
Affiliation(s)
- Peter Macko
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Taina Palosaari
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
15
|
Bernal-Algaba E, Pulgarín-Alfaro M, Fernández-Cruz ML. Cytotoxicity of Mycotoxins Frequently Present in Aquafeeds to the Fish Cell Line RTGill-W1. Toxins (Basel) 2021; 13:581. [PMID: 34437452 PMCID: PMC8402477 DOI: 10.3390/toxins13080581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decades, the aquaculture industry has introduced plant-based ingredients as a source of protein in aquafeeds. This has led to mycotoxin contaminations, representing an ecological, health and economic problem. The aim of this study was to determine in the RTgill-W1 fish cell line the toxicity of fifteen mycotoxins of common occurrence in aquafeeds. To identify the most sensitive endpoint of toxicity, the triple assay was used. It consisted of three assays: alamarBlue, Neutral Red Uptake and CFDA-AM, which revealed the mitochondrial activity, the lysosomal integrity and the plasma membrane integrity, respectively. Most of the assayed mycotoxins were toxic predominantly at lysosomal level (enniatins, beauvericin, zearalenone, ochratoxin A, deoxynivalenol (DON) and its acetylated metabolites 15-O-acetyl-DON and 3-acetyl-DON). Aflatoxins B1 and B2 exerted the greatest effects at mitochondrial level, while fumonisins B1 and B2 and nivalenol were not toxic up to 100 µg/mL. In general, low toxicity was observed at plasma membrane level. The vast majority of the mycotoxins assayed exerted a pronounced acute effect in the fish RTgill-W1 cell line, emphasizing the need for further studies to ascertain the impact of mycotoxin contamination of fish feeds in the aquaculture industry and to establish safe limits in aquafeeds.
Collapse
Affiliation(s)
| | | | - María Luisa Fernández-Cruz
- Department of Environment and Agronomy, National Institute of Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), 28040 Madrid, Spain; (E.B.-A.); (M.P.-A.)
| |
Collapse
|
16
|
Versicolorin A enhances the genotoxicity of aflatoxin B1 in human liver cells by inducing the transactivation of the Ah-receptor. Food Chem Toxicol 2021; 153:112258. [PMID: 33984424 DOI: 10.1016/j.fct.2021.112258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Aflatoxins are a group of mycotoxins that have major adverse effects on human health. Aflatoxin B1 (AFB1) is the most important aflatoxin and a potent carcinogen once converted into a DNA-reactive form by cytochrome P450 enzymes (CYP450). AFB1 biosynthesis involves the formation of Versicolorin A (VerA) which shares structural similarities with AFB1 and can be found in contaminated commodities, often co-occurring with AFB1. This study investigated and compared the toxicity of VerA and AFB1, alone or in combination, in HepG2 human liver cells. Our results show that both toxins have similar cytotoxic effects and are genotoxic although, unlike AFB1, the main genotoxic mechanism of VerA does not involve the formation of DNA double-strand breaks. Additionally, we show that VerA activates the aryl hydrocarbon receptor (AhR) and significantly induce the expression of the CYP450-1A1 (CYP1A1) while AFB1 did not induce AhR-dependent CYP1A1 activation. Combination of VerA with AFB1 resulted in enhanced genotoxic effects, suggesting that AhR-activation by VerA influences AFB1 genotoxicity by promoting its bioactivation by CYP450s to a highly DNA-reactive metabolite. Our results emphasize the need for expanding the toxicological knowledge regarding mycotoxin biosynthetic precursors to identify those who may pose, directly or indirectly, a threat to human health.
Collapse
|
17
|
Mohammadi S, Keshavarzi M, Kazemi A, Berizi E, Mohsenpour MA, Ghaffarian‐Bahraman A. Occurrence of aflatoxin M 1 in yogurt of five countries in west Asia region: A systematic review and meta‐analysis. J Food Saf 2021. [DOI: 10.1111/jfs.12897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Salman Mohammadi
- Department of Clinical Nutrition School of Nutrition and Food Sciences, Shiraz University of Medical Sciences Shiraz Iran
| | - Majid Keshavarzi
- Department of Environmental Health Engineering School of Public Health, Sabzevar University of Medical Sciences Sabzevar Iran
| | - Asma Kazemi
- Nutrition Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Enayat Berizi
- Department of Food Hygiene and Quality Control School of Nutrition and Food Sciences, Shiraz University of Medical Sciences Shiraz Iran
| | - Mohammad Ali Mohsenpour
- Department of Clinical Nutrition School of Nutrition and Food Sciences, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Ghaffarian‐Bahraman
- Occupational Environment Research Center Rafsanjan University of Medical Sciences Rafsanjan Iran
| |
Collapse
|
18
|
Lanier C, Garon D, Heutte N, Kientz V, André V. Comparative Toxigenicity and Associated Mutagenicity of Aspergillus fumigatus and Aspergillus flavus Group Isolates Collected from the Agricultural Environment. Toxins (Basel) 2020; 12:E458. [PMID: 32709162 PMCID: PMC7404940 DOI: 10.3390/toxins12070458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
The mutagenic patterns of A. flavus, A. parasiticus and A. fumigatus extracts were evaluated. These strains of toxigenic Aspergillus were collected from the agricultural environment. The Ames test was performed on Salmonella typhimurium strains TA98, TA100 and TA102, without and with S9mix (exogenous metabolic activation system). These data were compared with the mutagenicity of the corresponding pure mycotoxins tested alone or in reconstituted mixtures with equivalent concentrations, in order to investigate the potential interactions between these molecules and/or other natural metabolites. At least 3 mechanisms are involved in the mutagenic response of these aflatoxins: firstly, the formation of AFB1-8,9-epoxide upon addition of S9mix, secondly the likely formation of oxidative damage as indicated by significant responses in TA102, and thirdly, a direct mutagenicity observed for higher doses of some extracts or associated mycotoxins, which does not therefore involve exogenously activated intermediates. Besides the identified mycotoxins (AFB1, AFB2 and AFM1), additional "natural" compounds contribute to the global mutagenicity of the extracts. On the other hand, AFB2 and AFM1 modulate negatively the mutagenicity of AFB1 when mixed in binary or tertiary mixtures. Thus, the evaluation of the mutagenicity of "natural" mixtures is an integrated parameter that better reflects the potential impact of exposure to toxigenic Aspergilli.
Collapse
Affiliation(s)
- Caroline Lanier
- Faculty of Health, Normandie University, UNICAEN, Centre F. Baclesse, UR ABTE EA4651, 14000 Caen, France; (C.L.); (D.G.)
| | - David Garon
- Faculty of Health, Normandie University, UNICAEN, Centre F. Baclesse, UR ABTE EA4651, 14000 Caen, France; (C.L.); (D.G.)
| | - Natacha Heutte
- Faculty of Sports, Normandie University, UNIROUEN, CETAPS EA3832, 76821 Mont Saint Aignan CEDEX, France;
| | - Valérie Kientz
- Laboratoire LABEO, Route de Rosel, 14280 Saint-Contest, France;
| | - Véronique André
- Faculty of Health, Normandie University, UNICAEN, Centre F. Baclesse, UR ABTE EA4651, 14000 Caen, France; (C.L.); (D.G.)
| |
Collapse
|
19
|
Gilbert‐Sandoval I, Wesseling S, Rietjens IMCM. Predicting the Acute Liver Toxicity of Aflatoxin B1 in Rats and Humans by an In Vitro-In Silico Testing Strategy. Mol Nutr Food Res 2020; 64:e2000063. [PMID: 32421213 PMCID: PMC7379280 DOI: 10.1002/mnfr.202000063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/01/2020] [Indexed: 11/14/2022]
Abstract
SCOPE High-level exposure to aflatoxin B1 (AFB1) is known to cause acute liver damage and fatality in animals and humans. The intakes actually causing this acute toxicity have so far been estimated based on AFB1 levels in contaminated foods or biomarkers in serum. The aim of the present study is to predict the doses causing acute liver toxicity of AFB1 in rats and humans by an in vitro-in silico testing strategy. METHODS AND RESULTS Physiologically based kinetic (PBK) models for AFB1 in rats and humans are developed. The models are used to translate in vitro concentration-response curves for cytotoxicity in primary rat and human hepatocytes to in vivo dose-response curves using reverse dosimetry. From these data, the dose levels at which toxicity would be expected are obtained and compared to toxic dose levels from available rat and human case studies on AFB1 toxicity. The results show that the in vitro-in silico testing strategy can predict dose levels causing acute toxicity of AFB1 in rats and human. CONCLUSIONS Quantitative in vitro in vivo extrapolation (QIVIVE) using PBK modeling-based reverse dosimetry can predict AFB1 doses that cause acute liver toxicity in rats and human.
Collapse
Affiliation(s)
- Ixchel Gilbert‐Sandoval
- Division of ToxicologyWageningen University and ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| | - Sebastiaan Wesseling
- Division of ToxicologyWageningen University and ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| | - Ivonne M. C. M. Rietjens
- Division of ToxicologyWageningen University and ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| |
Collapse
|
20
|
Insights into Aflatoxin B1 Toxicity in Cattle: An In Vitro Whole-Transcriptomic Approach. Toxins (Basel) 2020; 12:toxins12070429. [PMID: 32610656 PMCID: PMC7404968 DOI: 10.3390/toxins12070429] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Aflatoxins, and particularly aflatoxin B1 (AFB1), are toxic mycotoxins to humans and farm animal species, resulting in acute and chronic toxicities. At present, AFB1 is still considered a global concern with negative impacts on health, the economy, and social life. In farm animals, exposure to AFB1-contaminated feed may cause several untoward effects, liver damage being one of the most devastating ones. In the present study, we assessed in vitro the transcriptional changes caused by AFB1 in a bovine fetal hepatocyte-derived cell line (BFH12). To boost the cellular response to AFB1, cells were pre-treated with the co-planar PCB 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), a known aryl hydrocarbon receptor agonist. Three experimental groups were considered: cells exposed to the vehicle only, to PCB126, and to PCB126 and AFB1. A total of nine RNA-seq libraries (three replicates/group) were constructed and sequenced. The differential expression analysis showed that PCB126 induced only small transcriptional changes. On the contrary, AFB1 deeply affected the cell transcriptome, the majority of significant genes being associated with cancer, cellular damage and apoptosis, inflammation, bioactivation, and detoxification pathways. Investigating mRNA perturbations induced by AFB1 in cattle BFH12 cells will help us to better understand AFB1 toxicodynamics in this susceptible and economically important food-producing species.
Collapse
|
21
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Marko D, Oswald IP, Piersma A, Routledge M, Schlatter J, Baert K, Gergelova P, Wallace H. Risk assessment of aflatoxins in food. EFSA J 2020; 18:e06040. [PMID: 32874256 PMCID: PMC7447885 DOI: 10.2903/j.efsa.2020.6040] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
EFSA was asked to deliver a scientific opinion on the risks to public health related to the presence of aflatoxins in food. The risk assessment was confined to aflatoxin B1 (AFB1), AFB2, AFG1, AFG2 and AFM1. More than 200,000 analytical results on the occurrence of aflatoxins were used in the evaluation. Grains and grain-based products made the largest contribution to the mean chronic dietary exposure to AFB1 in all age classes, while 'liquid milk' and 'fermented milk products' were the main contributors to the AFM1 mean exposure. Aflatoxins are genotoxic and AFB1 can cause hepatocellular carcinomas (HCCs) in humans. The CONTAM Panel selected a benchmark dose lower confidence limit (BMDL) for a benchmark response of 10% of 0.4 μg/kg body weight (bw) per day for the incidence of HCC in male rats following AFB1 exposure to be used in a margin of exposure (MOE) approach. The calculation of a BMDL from the human data was not appropriate; instead, the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives in 2016 were used. For AFM1, a potency factor of 0.1 relative to AFB1 was used. For AFG1, AFB2 and AFG2, the in vivo data are not sufficient to derive potency factors and equal potency to AFB1 was assumed as in previous assessments. MOE values for AFB1 exposure ranged from 5,000 to 29 and for AFM1 from 100,000 to 508. The calculated MOEs are below 10,000 for AFB1 and also for AFM1 where some surveys, particularly for the younger age groups, have an MOE below 10,000. This raises a health concern. The estimated cancer risks in humans following exposure to AFB1 and AFM1 are in-line with the conclusion drawn from the MOEs. The conclusions also apply to the combined exposure to all five aflatoxins.
Collapse
|
22
|
Pietsch C. Risk assessment for mycotoxin contamination in fish feeds in Europe. Mycotoxin Res 2020; 36:41-62. [PMID: 31346981 PMCID: PMC6971146 DOI: 10.1007/s12550-019-00368-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023]
Abstract
Mycotoxins are difficult to monitor continuously, and a tool to assess the risk would help to judge if there is a particular risk due to the inclusion of certain feed ingredients. For this, the toxin contents of 97 commercial fish feeds have been estimated, and the most prominent toxins in fish feed are calculated to be deoxynivalenol, zearalenone, fumonisins and enniatins. These pose a risk to fish well-being, as can be calculated by the Bayesian models for determining the critical concentrations 5% (CC5) for the different toxins. Besides fishmeal, wheat, soybean products and corn are regularly used as fish feed ingredients. The calculated scenarios show that fish are at high risk of toxin contamination if feed ingredients of low quality are chosen for feed production. Due to this, specific maximum allowable levels for several mycotoxins in fish feeds should be established.
Collapse
Affiliation(s)
- Constanze Pietsch
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüental, P.O. Box, 8820, Wädenswil, Switzerland.
| |
Collapse
|
23
|
Xue KS, Tang L, Sun G, Wang S, Hu X, Wang JS. Mycotoxin exposure is associated with increased risk of esophageal squamous cell carcinoma in Huaian area, China. BMC Cancer 2019; 19:1218. [PMID: 31842816 PMCID: PMC6916103 DOI: 10.1186/s12885-019-6439-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Consumption of moldy food has previously been identified as a risk factor for esophageal squamous cell carcinoma (ESCC) in high-risk countries; however, what contributing roles these dietary carcinogenic mycotoxins play in the etiology of ESCC are largely unknown. METHODS A mycotoxin biomarker-incorporated, population-based case-control study was performed in Huaian area, Jiangsu Province, one of the two high-risk areas in China. Exposure biomarkers of aflatoxins (AF) and fumonisins (FN) were quantitatively analyzed using HPLC-fluorescence techniques. RESULTS Among the cases (n = 190), the median levels of AF biomarker, serum AFB1-lysine adduct, and FN biomarker, urinary FB1, were 1.77 pg/mg albumin and 176.13 pg/mg creatinine, respectively. Among the controls (n = 380), the median levels of AFB1-lysine adduct and urinary FB1 were 1.49 pg/mg albumin and 56.92 pg/mg creatinine, respectively. These mycotoxin exposure biomarker levels were significantly higher in cases as compared to controls (p < 0.05 and 0.01, respectively). An increased risk to ESCC was associated with exposure to both AFB1 and FB1 (p < 0.001 for both). CONCLUSIONS Mycotoxin exposure, especially to AFB1 and FB1, was associated with the risk of ESCC, and a greater-than-additive interaction between co-exposures to these two mycotoxins may contribute to the increased risk of ESCC in Huaian area, China.
Collapse
Affiliation(s)
- Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, 150 Green Street, Athens, GA, 30602, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, 150 Green Street, Athens, GA, 30602, USA
| | - Guiju Sun
- Southeast University School of Public Health, Nanjing, Jiangsu, China
| | - Shaokang Wang
- Southeast University School of Public Health, Nanjing, Jiangsu, China
| | - Xu Hu
- Huaian District Center for Disease Control and Prevention, Huaian, Jiangsu, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, 150 Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
24
|
Marijani E, Kigadye E, Okoth S. Occurrence of Fungi and Mycotoxins in Fish Feeds and Their Impact on Fish Health. Int J Microbiol 2019; 2019:6743065. [PMID: 31827520 PMCID: PMC6881585 DOI: 10.1155/2019/6743065] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/01/2019] [Indexed: 02/04/2023] Open
Abstract
The rapid population growth in developing countries has led to strong pressure on capture fisheries. However, capture fisheries have reached their maximal limits of fish production and are supplemented by farmed fish. The growth in aquaculture has led to high demand for fish feeds, which play a very important role in fish nutrition and health. Use of animal protein in fish feeds is expensive; hence, a majority of farmers from developing countries use local feed ingredients from plant origin as a source of dietary protein. However, these ingredients of plant origin provide the best natural substrates for fungi, which can be easily accompanied by mycotoxin development under suitable conditions. The locally made feed comprises ingredients such as soybeans, cottonseed cake, and wheat and maize bran which are mixed together and ground after which the compounded feed is pelleted and stored. Among the ingredients, maize and oilseeds are more susceptible for mycotoxigenic fungi compared to other ingredients. The outcomes of mycotoxin contamination in fish feeds are not different from other animal species intended for human consumption, and they are directly associated with production losses, particularly decreased weight gain and feed conversion, impaired immune system and reproductive performance, and increased fish mortality. Fish may also carry mycotoxin residues along the food chain, thus compromising human health. Hence, it is important to ensure the control of mycotoxin contamination in fish feeds, especially during the production and storage.
Collapse
Affiliation(s)
- Esther Marijani
- Open University of Tanzania, P.O. Box 23409, Dar es Salaam, Tanzania
| | - Emmanuel Kigadye
- Open University of Tanzania, P.O. Box 23409, Dar es Salaam, Tanzania
| | - Sheila Okoth
- University of Nairobi, School of Biological Science, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
25
|
Sampaolesi S, Gamba RR, De Antoni GL, León Peláez ÁM. Potentiality of yeasts obtained as beer fermentation residue to be used as probiotics. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
du Plessis B, Regnier T, Combrinck S, Heinrich P, Braunbeck T. Effect of pH on the toxicity of fumonisins towards the RTL-W1 cell line and zebrafish (Danio rerio) embryos. Toxicol Lett 2019; 313:101-107. [DOI: 10.1016/j.toxlet.2019.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
|
27
|
Abstract
Abstract
Fumonisins are strongly toxic metabolites of Fusarium proliferatum and Fusarium verticillioides commonly present in corn-based feed. The aim of the study was to evaluate bone homeostasis in experimental fumonisins B1 and B2 intoxication of rats, a vertebrate animal model of toxicological studies, as still little is known about the possible disturbing effect of fumonisins on bone homeostasis. Adolescent (5-week-old) male Wistar rats were randomly assigned into a control group and a group FB intoxicated with fumonisins by daily intragastric administration of fumonisins at the dose of 90 mg/kg of body weight per animal in the FB group for 21 days. The fumonisin intoxication did not affect body and bone mass, although the mechanical and geometric properties were decreased in fumonisin-intoxicated rats. Bone volumetric and mineral density did not differ between groups, but bone mineral content and bone ash percentage was lower in the FB group. Detailed analysis showed that Ca, Cu, Fe, Mn, Sr, and Zn bone content significantly decreased in fumonisin intoxicated rats and the alterations in structure of bone mineral phase (reduction of the apatite-bone crystals size) were noted. While the negative structural alterations in growth plate and articular cartilages were also observed, fumonisin intoxication improved histomorphometrical parameters of trabecular bone. Concluding, the dose of fumonisins used in the present study caused hepatotoxic effect, which was sufficient to trigger the disturbance in mineral homeostasis resulting in altered bone metabolism and decreased mechanical endurance.
Collapse
|
28
|
Jakšić D, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Jelić D, Kopjar N, Vágvölgyi C, Varga J, Šegvić Klarić M. Aflatoxin production and in vitro toxicity of Aspergilli section Flavi isolated from air samples collected from different environments. Mycotoxin Res 2019; 35:217-230. [PMID: 30877631 DOI: 10.1007/s12550-019-00345-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/04/2019] [Accepted: 02/22/2019] [Indexed: 01/09/2023]
Abstract
Aspergilli section Flavi, originally isolated from air samples collected from inhabited apartments (AP), unoccupied basements (BS), and processing facilities of a grain mill (GM), were analyzed for their potential to produce aflatoxin B1 (AFB1) on solid media. The isolates were further characterized with regard to their cytotoxic, genotoxic, and pro-inflammatory properties in vitro. Aspergilli were identified based on partial calmodulin (CaM) gene sequencing; the producing capacities of isolates were analyzed by HPLC/FLD and confirmed by genes in biosynthesis (aflR, norA, omtA). In the grain mill, the Aspergilli section Flavi (up to 1.3 × 106 cfu/m3) dominated by AFB1-producing Aspergillus flavus (71%, 4.5-5254 ng/ml) which showed a serious health risk for workers. Living environments were not relevant sources of exposure. After 24 h, AFB1 (1-100 μmol/l) reduced cell viability (MTT test) in both A549 cells and THP-1 macrophage-like cells without reaching IC50. In A549 cells, the extract of the AFB1-producing A. flavus significantly decreased cell viability but not below 50%. THP-1 macrophage-like cells were more sensitive to both extracts, but IC50 was obtained only for the AFB1-producing strain (0.37 mg/ml; AFB1 2.78 μmol/l). AFB1 (1 and 10 μmol/l) induced significant DNA damage (tail intensity, alkaline comet assay) in A549 cells in contrast to Aspergilli extracts. AFB1 elevated IL-6 and IL-8, while Aspergilli extracts increased IL-1β, TNF-α, and IL-17 release in THP-1 macrophages (ELISA). Chronic exposure to AFB1 and/or other metabolites in airborne A. flavus from occupational environments may stimulate epithelial damage of airways accompanied by lowered macrophage viability.
Collapse
Affiliation(s)
- Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000, Zagreb, Croatia
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Ottó Bencsik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Anita Kecskeméti
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Dubravko Jelić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - János Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Közép fasor 52, Hungary
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Schrottova 39, 10000, Zagreb, Croatia.
| |
Collapse
|
29
|
Yang X, Gao J, Liu Q, Yang D. Co-occurrence of mycotoxins in maize and maize-derived food in China and estimation of dietary intake. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 12:124-134. [DOI: 10.1080/19393210.2019.1570976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jie Gao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Qing Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
30
|
Frisvad JC, Møller LLH, Larsen TO, Kumar R, Arnau J. Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 2018; 102:9481-9515. [PMID: 30293194 PMCID: PMC6208954 DOI: 10.1007/s00253-018-9354-1] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
Abstract
This review presents an update on the current knowledge of the secondary metabolite potential of the major fungal species used in industrial biotechnology, i.e., Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. These species have a long history of safe use for enzyme production. Like most microorganisms that exist in a challenging environment in nature, these fungi can produce a large variety and number of secondary metabolites. Many of these compounds present several properties that make them attractive for different industrial and medical applications. A description of all known secondary metabolites produced by these species is presented here. Mycotoxins are a very limited group of secondary metabolites that can be produced by fungi and that pose health hazards in humans and other vertebrates when ingested in small amounts. Some mycotoxins are species-specific. Here, we present scientific basis for (1) the definition of mycotoxins including an update on their toxicity and (2) the clarity on misclassification of species and their mycotoxin potential reported in literature, e.g., A. oryzae has been wrongly reported as an aflatoxin producer, due to misclassification of Aspergillus flavus strains. It is therefore of paramount importance to accurately describe the mycotoxins that can potentially be produced by a fungal species that is to be used as a production organism and to ensure that production strains are not capable of producing mycotoxins during enzyme production. This review is intended as a reference paper for authorities, companies, and researchers dealing with secondary metabolite assessment, risk evaluation for food or feed enzyme production, or considerations on the use of these species as production hosts.
Collapse
Affiliation(s)
- Jens C Frisvad
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark.
| | - Lars L H Møller
- Department of Product Safety, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Søltofts Plads, B. 221, 2800, Kongens Lyngby, Denmark
| | - Ravi Kumar
- Department of Genomics and Bioinformatics, Novozymes Inc., 1445 Drew Ave., Davis, CA, 95618, USA
| | - José Arnau
- Department of Fungal Strain Technology and Strain Approval Support, Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, Denmark
| |
Collapse
|
31
|
Nazareth TM, Corrêa JAF, Pinto ACSM, Palma JB, Meca G, Bordin K, Luciano FB. Evaluation of gaseous allyl isothiocyanate against the growth of mycotoxigenic fungi and mycotoxin production in corn stored for 6 months. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5235-5241. [PMID: 29652439 DOI: 10.1002/jsfa.9061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/01/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Brazil produces approximately 63 million tons of corn kernels annually, which is commonly contaminated with fungi and mycotoxins. The objective of this study was to evaluate the efficacy of gaseous allyl isothiocyanate (AITC) to inhibit the growth of Aspergillus parasiticus and Fusarium verticillioides, and mycotoxin production (aflatoxins B1 , B2 , G1 and G2 , fumonisins B1 and B2 ) in corn during 180 days of storage. RESULTS AITC at 50 µL L-1 resulted in a significant reduction of the fungal population (P < 0.05) after 180 days, decreasing 3.17 log(CFU g-1 ) and 3.9 log(CFU g-1 ) of A. parasiticus and F. verticillioides respectively in comparison with the control. In addition, 10 and 50 µL L-1 treatments prevented the production of fumonisin B1 for the whole period. Aflatoxins were not detected in either control or treated groups. Residual levels of AITC in corn treated with 10 µL L-1 and 50 µL L-1 were detected up to 14 days and 30 days respectively. CONCLUSION Prophylactic treatment with AITC reduced the fungal population and inhibited fumonisin B1 production in stored corn, exhibiting great potential to be applied in corn silos to prevent fungi contamination and minimize mycotoxin levels. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tiago M Nazareth
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Jessica A F Corrêa
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Anne C S M Pinto
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Juliano B Palma
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Keliani Bordin
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Fernando B Luciano
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
32
|
Prakoso YA, Puspitasari, Rini CS, Aliviameita A, Salasia SIO, Kurniasih, Ikram AFD, Walalangi B, Utama KP, Al Huda MF, Su'udiyah NA. The Role of Sauropus androgynus (L.) Merr. Leaf Powder in the Broiler Chickens Fed a Diet Naturally Contaminated with Aflatoxin. J Toxicol 2018; 2018:2069073. [PMID: 30364039 PMCID: PMC6188729 DOI: 10.1155/2018/2069073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/12/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
Aflatoxin (AF) is the secondary metabolite of Aspergillus flavus and commonly contaminates feed during storage. AF causes lowered growth rate, stress, and increased mortality in the poultry, especially for broiler industries. The aims of this study are to determine the effects of Sauropus androgynus (L.) Merr. leaf powder (SAP) in the chickens fed a diet naturally contaminated with AF. A total of 108 chickens are divided into 6 group: group I fed with basal diet (AF not detectable); group II fed with basal diet (AF not detectable) + 5% SAP; group III with AF (>1 ppb <50 ppb); group IV with AF (>1 ppb <50 ppb) + 5% SAP; group V with AF (>51 ppb <100 ppb) + 5% SAP; group VI with AF (>101 ppb <150 ppb) + 5% SAP. The data of the body weight, feed intake and efficiency, the relative weight of liver, kidney, spleen, bursa of Fabricius (BF), histopathology, haematological profile, haemagglutination inhibition (HI) titer, AF residue, and immunohistochemistry are collected on days 7, 14, and 21. All the data were analysed using SPSS 16. The supplementation of 5% SAP in the chickens fed a diet naturally contaminated with AF showed the potential effects of the body weight performance, haematological profile protection, increase in the cellular and humoral immune responses, reduction of AF residue in the organ, protection of liver, kidney, spleen, and BF histopathology, and increase in the immune-expression of CD4+/CD8+ lymphocytes ratio (P < 0.05). It shows that 5% SAP can be used as the alternative herbal supplementation to depress the impacts of aflatoxicosis in the broiler chickens.
Collapse
Affiliation(s)
- Yos Adi Prakoso
- Faculty of Veterinary Medicine, University of Wijaya Kusuma Surabaya, East Java, Indonesia
| | - Puspitasari
- Integrated Laboratory, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Chylen Setiyo Rini
- Integrated Laboratory, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Andika Aliviameita
- Integrated Laboratory, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Siti Isrina Oktavia Salasia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Kurniasih
- Department of Pathology, Faculty of Veterinary Medicine, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Ahmad Fadhli Dzil Ikram
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Baristha Walalangi
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Kukuh Priya Utama
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Muhammad Fajar Al Huda
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | - Neneng Ayu Su'udiyah
- Undergraduate Student, Program of Medical Laboratory Technology, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| |
Collapse
|
33
|
Meneely JP, Hajšlová J, Krska R, Elliott CT. Assessing the combined toxicity of the natural toxins, aflatoxin B 1, fumonisin B 1 and microcystin-LR by high content analysis. Food Chem Toxicol 2018; 121:527-540. [PMID: 30253246 DOI: 10.1016/j.fct.2018.09.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 12/19/2022]
Abstract
As human co-exposure to natural toxins through food and water is inevitable, risk assessments to safeguard health are necessary. Aflatoxin B1 and fumonisin B1, frequent co-contaminants of maize and microcystin-LR, produced in freshwater by cyanobacteria are all naturally occurring potent toxins that threaten human health. Populations in the poorest regions of the world may suffer repeated simultaneous exposure to these contaminants. Using High Content Analysis, multiple cytotoxicity endpoints were measured for the individual toxins and mixtures in various cell lines. Results highlighted that significant cytotoxic effects were observed for aflatoxin B1 in all cell lines while no cytotoxic effects were observed for fumonisin B1 or microcystin-LR. Aflatoxin B1/microcystin-LR was cytotoxic in the order HepG2 > Caco-2 > MDBK. Fumonisin B1/microcystin-LR affected MDBK cells. The ternary mixture was cytotoxic to all cell lines. Most combinations were additive, however antagonism was observed for binary and ternary mixtures in HepG2 and MDBK cell lines at low and high concentrations. Synergy was observed in all cell lines, including at low concentrations. The combination of these natural toxins may pose a significant risk to populations in less developed countries. Furthermore, the study highlights the complexity around trying to regulate for human exposure to multiple contaminants.
Collapse
Affiliation(s)
- Julie P Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, BT7 1NN, United Kingdom.
| | - Jana Hajšlová
- Faculty of Food & Biochemical Technology, Department of Food Analysis & Nutrition, University of Chemistry & Technology, Technická 3, 166 28, Prague 6, Czech Republic
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, BT7 1NN, United Kingdom
| |
Collapse
|
34
|
Kamala A, Kimanya M, De Meulenaer B, Kolsteren P, Jacxsens L, Haesaert G, Kilango K, Magoha H, Tiisekwa B, Lachat C. Post-harvest interventions decrease aflatoxin and fumonisin contamination in maize and subsequent dietary exposure in Tanzanian infants: a cluster randomised-controlled trial. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A cluster randomised controlled trial was performed in three agro-ecological zones of Tanzania to evaluate the effectiveness of locally available post-harvest mitigation strategies in preventing and reducing aflatoxin and fumonisin contamination in maize. A total of 300 children, each from one household, were randomly selected from 30 villages (intervention: n=15). The mitigation strategies focused on hand sorting (prior to storage and use), drying maize on mat/raised platforms, proper sun drying, application of storage insecticides and de-hulling before milling. Maize sample was collected from each household at harvest (baseline) and six months after harvest. Maize intake by each child, estimated using the 24 h dietary recall technique and its body weight measured using standard procedures were taken at six months after harvest. Aflatoxins and fumonisins in the maize samples were determined using HPLC. Follow-up (six month after harvest) data were available for 261 of the 300 households (intervention: n=136). Mean concentration of aflatoxins, or fumonisins was significantly (P<0.05) lower in the intervention than in the control group: intervention effects: μg/kg (95% confidence interval (CI)) -4.9 (-7.3,-2.5), and -405, (-647,-162), respectively. The difference corresponds to 83 and 70% for aflatoxins, and fumonisins, respectively. At the end of the intervention, aflatoxin and fumonisin estimated mean intakes were lower in the intervention than in the control group by 78 and 65%, respectively. Six months after harvest, prevalence of underweight in the intervention group was 6.7% lower (P=0.014) than in the control group. Mean weight-for-age Z-score difference between the groups was 0.57 (95% CI; 0.16,-0.98; P=0.007). Post-harvest practices are effective in preventing and reducing aflatoxin and fumonisin contamination in maize and subsequent dietary exposure to infants. The interventions may be applied in these and other communities with similar environmental conditions or agricultural practices that favour production of aflatoxin and fumonisins in food crops. The trial was registered at ClinicalTrials.gov identifier: NCT02438774.
Collapse
Affiliation(s)
- A. Kamala
- Department of Food Technology, Safety and Health, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Directorate of Food Safety, Tanzania Food and Drugs Authority, P.O. Box 77150, Dar es Salaam, Tanzania
| | - M. Kimanya
- School of Life Sciences and Bio-Engineering, the Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
- Department of Rural Economy and Agriculture, African Union Commission, P.O. Box 3243, Addis Ababa, Ethiopia
| | - B. De Meulenaer
- Department of Food Technology, Safety and Health, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - P. Kolsteren
- Department of Food Technology, Safety and Health, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - L. Jacxsens
- Department of Food Technology, Safety and Health, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - G. Haesaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - K. Kilango
- Directorate of Food Safety, Tanzania Food and Drugs Authority, P.O. Box 77150, Dar es Salaam, Tanzania
| | - H. Magoha
- Department of Home Economics and Human Nutrition, Open University of Tanzania (OUT), P.O. Box 23409, Dar es Salaam, Tanzania
| | - B. Tiisekwa
- College of Agriculture, Sokoine University of Agriculture, P.O. Box 3005, Morogoro, Tanzania
| | - C. Lachat
- Department of Food Technology, Safety and Health, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
35
|
Kamala A, Shirima C, Jani B, Bakari M, Sillo H, Rusibamayila N, De Saeger S, Kimanya M, Gong Y, Simba A. Outbreak of an acute aflatoxicosis in Tanzania during 2016. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2018.2344] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In June 2016, an outbreak of an unknown disease was reported to affect clusters of families in two regions of the central part of Tanzania. A rapid epidemiological survey was conducted in the affected villages, with a detailed house-to-house survey in selected households. A total of 68 cases occurred between 14 May and 14 November 2016, of which 20 died, making a case fatality rate of 30%. Over 50% of the cases were below the age of 15 years. The cases presented with jaundice (n=60), abdominal pain (n=59), vomiting (n=56), diarrhoea (n=34) and ascites (n=32). The responsible food item appeared to be home grown maize. The rate ratio indicated that the occurrence of illnesses was associated with ingestion of food contaminated with high levels of aflatoxins (contamination range: 10-51,100 μg/kg and 2.4-285 μg/kg for case and control households, respectively). Serum aflatoxin biomarker indicated that cases were more likely to have higher than 1000 pg/mg aflatoxin-albumin adduct level in their sera compared to controls (Odds Ratio = 13.5; 95% confidence intervals = 1.5-165.3; range of aflatoxin-albumin adduct level = 36- 32,800 pg/mg for cases and 10-4020 pg/mg for controls). Beside aflatoxins, maize samples were also contaminated with high levels of fumonisins (range of contamination; 945-12,630 μg/kg) with 8 of 10 samples analysed from case households co-contaminated with both toxins at levels above the maximum limit of 5 or 10 μg/kg set for AFB1 or total aflatoxins and 2,000 μg/kg for fumonisins. Clinical presentation and high levels of aflatoxin in food samples coupled with high levels of serum aflatoxin-albumin adducts among the cases support the causal role of aflatoxins.
Collapse
Affiliation(s)
- A. Kamala
- Tanzania Food and Drugs Authority, P.O. Box 77150, Dar es Salaam, Tanzania
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - C. Shirima
- Tanzania Food and Drugs Authority, P.O. Box 77150, Dar es Salaam, Tanzania
| | - B. Jani
- World Health Organization, P.O. Box 9292, Dar es Salaam, Tanzania
| | - M. Bakari
- Ministry of Health, Community Development, Gender, Elderly and Children, University of Dodoma, P.O. Box 743, 40478 Dodoma, Tanzania
| | - H. Sillo
- Tanzania Food and Drugs Authority, P.O. Box 77150, Dar es Salaam, Tanzania
| | - N. Rusibamayila
- Ministry of Health, Community Development, Gender, Elderly and Children, University of Dodoma, P.O. Box 743, 40478 Dodoma, Tanzania
| | - S. De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent Belgium
| | - M. Kimanya
- Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Y.Y. Gong
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - A. Simba
- Ministry of Health, Community Development, Gender, Elderly and Children, University of Dodoma, P.O. Box 743, 40478 Dodoma, Tanzania
| | | |
Collapse
|
36
|
Xue KS, Qian G, Lin S, Su J, Tang L, Gelderblom WC, Riley RT, Phillips TD, Wang JS. Modulation of pre-neoplastic biomarkers induced by sequential aflatoxin B1 and fumonisin B1 exposure in F344 rats treated with UPSN clay. Food Chem Toxicol 2018; 114:316-324. [DOI: 10.1016/j.fct.2018.02.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/07/2018] [Accepted: 02/22/2018] [Indexed: 02/03/2023]
|
37
|
Toxicological effects of regulated mycotoxins and persistent organochloride pesticides: In vitro cytotoxic assessment of single and defined mixtures on MA-10 murine Leydig cell line. Toxicol In Vitro 2018; 48:93-103. [DOI: 10.1016/j.tiv.2017.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/28/2017] [Accepted: 12/30/2017] [Indexed: 01/19/2023]
|
38
|
Alassane-Kpembi I, Schatzmayr G, Taranu I, Marin D, Puel O, Oswald IP. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit Rev Food Sci Nutr 2018; 57:3489-3507. [PMID: 26918653 DOI: 10.1080/10408398.2016.1140632] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mycotoxins are secondary fungal metabolites produced mainly by Aspergillus, Penicillium, and Fusarium. As evidenced by large-scale surveys, humans and animals are simultaneously exposed to several mycotoxins. Simultaneous exposure could result in synergistic, additive or antagonistic effects. However, most toxicity studies addressed the effects of mycotoxins separately. We present the experimental designs and we discuss the conclusions drawn from in vitro experiments exploring toxicological interactions of mycotoxins. We report more than 80 publications related to mycotoxin interactions. The studies explored combinations involving the regulated groups of mycotoxins, especially aflatoxins, ochratoxins, fumonisins, zearalenone and trichothecenes, but also the "emerging" mycotoxins beauvericin and enniatins. Over 50 publications are based on the arithmetic model of additivity. Few studies used the factorial designs or the theoretical biology-based models of additivity. The latter approaches are gaining increased attention. These analyses allow determination of the type of interaction and, optionally, its magnitude. The type of interaction reported for mycotoxin combinations depended on several factors, in particular cell models and the tested dose ranges. However, synergy among Fusarium toxins was highlighted in several studies. This review indicates that well-addressed in vitro studies remain valuable tools for the screening of interactive potential in mycotoxin mixtures.
Collapse
Affiliation(s)
- Imourana Alassane-Kpembi
- a Toxalim , Research Centre in Food Toxicology Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS , Toulouse , France.,b Hôpital d'Instruction des Armées Camp Guézo , Cotonou , Bénin
| | | | - Ionelia Taranu
- d National Institute for Research and Development in Animal Biology and Nutrition (IBNA), Calea Bucuresti , Balotesti , Romania
| | - Daniela Marin
- d National Institute for Research and Development in Animal Biology and Nutrition (IBNA), Calea Bucuresti , Balotesti , Romania
| | - Olivier Puel
- a Toxalim , Research Centre in Food Toxicology Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS , Toulouse , France
| | - Isabelle Paule Oswald
- a Toxalim , Research Centre in Food Toxicology Université de Toulouse, INRA, ENVT, INP- PURPAN, UPS , Toulouse , France
| |
Collapse
|
39
|
Reduction of Aflatoxin M1 Levels during Ethiopian Traditional Fermented Milk (Ergo) Production. J FOOD QUALITY 2018. [DOI: 10.1155/2018/4570238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the reduction of aflatoxin M1 (AFM1) levels during lab-scale ergo production was investigated through determination of the residual levels of AFM1 using Enzyme Linked Immunosorbent Assay. The results showed gradual and incubation time dependent reduction of AFM1 level in the raw milk samples being fermented to ergo. The maximum reductions of 57.33 and 54.04% were recorded in AFM1 in natural and LAB inoculums initiated fermentations, respectively, in 5 days of incubation. Although a significant difference (P=0.05) in the AFM1 decrease in the two types of fermentations was recorded, such findings could vary with milk samples depending on initial load of the microorganisms as determined by hygienic conditions. However, the level of AFM1 in control (sterilized) samples showed only a 5.5% decrease during the entire period of incubation. Microbiological investigation showed increasing LAB counts with incubation time. A gradual decrease in pH of the milk samples was observed during fermentation. Considering the fact that both viable and dead bacterial cells could remove AFM1 during ergo production, the mechanism is proposed as predominantly involving noncovalent binding of the toxin with the chemical components of the bacterial cell wall.
Collapse
|
40
|
|
41
|
Kamala A, Kimanya M, Lachat C, Jacxsens L, Haesaert G, Kolsteren P, Ortiz J, Tiisekwa B, De Meulenaer B. Risk of Exposure to Multiple Mycotoxins from Maize-Based Complementary Foods in Tanzania. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7106-7114. [PMID: 28830150 DOI: 10.1021/acs.jafc.6b03429] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study estimated exposure to multiple mycotoxins in 249 infants aged between 6 and 12 months in three agro-ecological zones of Tanzania. Maize-based complementary food intakes were estimated using two 24 h dietary recalls. Using @Risk software, probabilistic exposure assessment was conducted by modeling maize intake data (kg/kg body weight/day) with previously determined multiple mycotoxin (except for ochratoxin A (OTA) and zearalenone (ZEA), present in only a few samples) contamination data (μg/kg) in maize. Maize intakes ranged from 0.13 to 185 g/child/day (average = 59 ± 36 g/child/day). The estimated mean exposures were higher for aflatoxins (6-fold), fumonisins (3-fold), and deoxynivalenol (2-fold) than health-based guidance values of 0.017 ng/kg body weight/day, 2 μg/kg body weight/day, and 1 μg/kg body weight/day, respectively. The population at risk of exposures above the limits of health concern ranged from 12% for HT-2 toxin through 35% for deoxynivalenol to 100% for aflatoxins. The exposure varied among the agro-ecological zones. Strategies targeting multiple mycotoxins in maize are urgently needed to minimize exposures in Tanzania.
Collapse
Affiliation(s)
- Analice Kamala
- nutriFOODchem unit, Department of Food Safety and Food Quality, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
- Directorate of Food Safety, Tanzania Food and Drugs Authority , P.O. Box 77150, Dar es Salaam, Tanzania
| | - Martin Kimanya
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST) , P.O. Box 447, Arusha, Tanzania
| | - Carl Lachat
- nutriFOODchem unit, Department of Food Safety and Food Quality, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Liesbeth Jacxsens
- nutriFOODchem unit, Department of Food Safety and Food Quality, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Geert Haesaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University , Valentin Vaerwyckweg 1, BE-9000 Ghent, Belgium
| | - Patrick Kolsteren
- nutriFOODchem unit, Department of Food Safety and Food Quality, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| | - Johana Ortiz
- nutriFOODchem unit, Department of Food Safety and Food Quality, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
- Department of Biosciences, Faculty of Chemical Sciences, Cuenca University , Av. 12 de Abril s/n Cdla, Universitaria, 010201 Cuenca, Ecuador
| | - Bendantuguka Tiisekwa
- College of Agriculture, Sokoine University of Agriculture , P.O. Box 3005, Morogoro, Tanzania
| | - Bruno De Meulenaer
- nutriFOODchem unit, Department of Food Safety and Food Quality, partner in Food2Know, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
42
|
Shi H, Yu P. Advanced synchrotron-based and globar-sourced molecular (micro) spectroscopy contributions to advances in food and feed research on molecular structure, mycotoxin determination, and molecular nutrition. Crit Rev Food Sci Nutr 2017; 58:2164-2175. [DOI: 10.1080/10408398.2017.1303769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Haitao Shi
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
43
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 - Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017; 4:408-414. [PMID: 28959666 PMCID: PMC5615163 DOI: 10.1016/j.toxrep.2017.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, alterations in lipid metabolism associated with acute aflatoxin B1 (AFB1) induced hepatotoxicity and gene expression changes underlying these effects were investigated. Rats were orally administered three doses (0.25 mg/kg, 0.5 mg/kg and 1.0 mg/kg) of AFB1 for seven days; after which blood was collected and liver excised. Lipid profiles of plasma and liver were determined spectrophotometrically while the expression of genes associated with lipid and lipoprotein metabolism was assayed by reverse transcriptase polymerase chain reaction. Acute exposure to AFB1 increased the levels of plasma and liver cholesterol, triglycerides and phospholipids. AFB1 at 0.5 mg/kg and 1.0 mg/kg resulted in a dose-dependent (1.2 and 1.5 fold, respectively) downregulation of hepatic Cpt1a with a concomitant 1.2 and 1.5 fold increase in the level of plasma FFA, respectively. A similar observation of 1.2 and 1.3 fold increase was also observed in plasma triglyceride concentration, at both respective doses. AFB1 also decreased the relative expression of Ahr, Lipc and Lcat whereas, it upregulated Scarb1 in a dose dependent manner. AFB1-induced dysregulation of the expression of lipid and lipoprotein metabolizing genes may be one mechanism linking AFB1 to altered lipid metabolism and ultimately risk for coronary heart disease.
Collapse
Affiliation(s)
- Oluwakemi Anuoluwapo Rotimi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Solomon Oladapo Rotimi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Chibueze Uchechukwu Duru
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Ogheneworo Joel Ebebeinwe
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Anthonia Obhio Abiodun
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Boluwaji Oluwamayowa Oyeniyi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Francis Adedayo Faduyile
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria
| |
Collapse
|
44
|
Kim S, Lee H, Lee S, Lee J, Ha J, Choi Y, Yoon Y, Choi KH. Invited review: Microbe-mediated aflatoxin decontamination of dairy products and feeds. J Dairy Sci 2017; 100:871-880. [DOI: 10.3168/jds.2016-11264] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022]
|
45
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null-- kyse] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 4117=cast((chr(113)||chr(112)||chr(98)||chr(118)||chr(113))||(select (case when (4117=4117) then 1 else 0 end))::text||(chr(113)||chr(118)||chr(106)||chr(118)||chr(113)) as numeric)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
47
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null-- yenw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null,null,null,null,null,null,null,null-- aivx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 8520=4918-- wjtc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
50
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 2315=dbms_pipe.receive_message(chr(100)||chr(120)||chr(98)||chr(72),5)-- yhhg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|