1
|
Basumatary S, Adhikari PP, Das AK, Raaman N, Sharma GD, Sarmah J, Dihingia A, Baishya R, Manna P, Kalita J. Antihyperglycemic and antihyperlipidemic effects of fruit extract of Hodgsonia heteroclita (Roxb.) Hook. f. & Thomson in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118094. [PMID: 38521433 DOI: 10.1016/j.jep.2024.118094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hodgsonia heteroclita has been known as an important traditionally consumed medicinal plant of North-East India known to have antidiabetic properties. This study aims to investigate the effects of the ethanolic fruit extract of Hodgsonia heteroclita against hyperglycemia and hyperlipidemia by using streptozotocin (STZ) treated diabetic mice. MATERIALS AND METHODS The fruits of H. heteroclita were collected from the various parts of Kokrajhar district, Assam India (Geographic coordinates: 26°24'3.85″ N 90°16'22.30″ E). Basic morphological evaluations were carried out by the Botanical Survey of India, Eastern circle, Shillong, who also certified and identified the plant. Hexane, chloroform, and ethanolic extracts of the fruit of H. heteroclita were investigated for α-amylase inhibition assay as a rapid screening tool for examining anti-diabetic activity. The efficacy of ethanolic extract at a dose of 100, 200, and 300 mg/kg body weight was tested for 21 days in STZ-induced diabetic mice. The body weight, fasting plasma glucose and serum lipids, and hepatic glycogen levels were measured in experimental animals to examine the antihyperglycemic and antihyperlipidemic efficacy of the extract. Both HPTLC and LC-MS analysis was performed to examine the phyotochemicals present in the ethanolic extract of H. heteroclita. RESULTS It has been observed that treatment with the ethanolic extract dose-dependently reduced the plasma glucose levels, total cholesterol, low density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol, triglyceride, and increased the body weight, liver glycogens and high-density lipoprotein-cholesterol in STZ treated diabetic mice. HPTLC demonstrated the presence of triterpene compounds and LC-MS analysis revealed the presence Cucurbitacin I, Cucurbitacin E, and Kuguacin G as the triterpene phytoconstituents. CONCLUSION The present study demonstrated that ethanolic fruit extract of H. heteroclita improved both glycemic and lipid parameters in mice model of diabetes.
Collapse
Affiliation(s)
- Silu Basumatary
- Laboratory of Ethnobotany and Medicinal Plants Conservation, Department of Ecology and Environmental Science, Assam University, Silchar, 788011, India
| | - Partha Pradip Adhikari
- Laboratory of Natural Product and Synthetic Organic Chemistry, Department of Chemistry, Assam University, Silchar, 788011, India; Genoine Research Laboratory Pvt. Ltd., Subhash Nagar, Karimganj, 788710, Assam, India
| | - Ajit Kumar Das
- Laboratory of Ethnobotany and Medicinal Plants Conservation, Department of Ecology and Environmental Science, Assam University, Silchar, 788011, India
| | - Nanjian Raaman
- Center for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Gauri Dutt Sharma
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India; Bilaspur Vishwavidyalaya, Bilaspur, 495001, Chhattisgarh, India
| | - Jatin Sarmah
- Department of Biotechnology, Bodoland University, Assam, 783370, India
| | - Anjum Dihingia
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rinku Baishya
- Centre for Preclinical Studies, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Prasenjit Manna
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
| | - Jatin Kalita
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
| |
Collapse
|
2
|
Giuliani ME, Bigossi G, Lai G, Marcozzi S, Brunetti D, Malavolta M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar Drugs 2024; 22:210. [PMID: 38786601 PMCID: PMC11123485 DOI: 10.3390/md22050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Ageing represents a main risk factor for several pathologies. Among them, cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM) are predominant in the elderly population and often require prolonged use of multiple drugs due to their chronic nature and the high proportion of co-morbidities. Hence, research is constantly looking for novel, effective molecules to treat CVD and T2DM with minimal side effects. Marine active compounds, holding a great diversity of chemical structures and biological properties, represent interesting therapeutic candidates to treat these age-related diseases. This review summarizes the current state of research on marine compounds for the treatment of CVD and T2DM, from pre-clinical studies to clinical investigations and approved drugs, highlighting the potential of marine compounds in the development of new therapies, together with the limitations in translating pre-clinical results into human application.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20126 Milano, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| |
Collapse
|
3
|
Wu JY, Tso R, Teo HS, Haldar S. The utility of algae as sources of high value nutritional ingredients, particularly for alternative/complementary proteins to improve human health. Front Nutr 2023; 10:1277343. [PMID: 37904788 PMCID: PMC10613476 DOI: 10.3389/fnut.2023.1277343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
As the global population continues to grow, the demand for dietary protein is rapidly increasing, necessitating the exploration of sustainable and nutritious protein sources. Algae has emerged as a promising food source due to their high value ingredients such as proteins, as well as for their environmental sustainability and abundance. However, knowledge gaps surrounding dietary recommendations and food applications restrict algae's utilization as a viable protein source. This review aims to address these gaps by assessing the suitability of both microalgae and macroalgae as alternative/complementary protein sources and exploring their potential applications in food products. The first section examines the potential suitability of algae as a major food source by analyzing the composition and bioavailability of key components in algal biomass, including proteins, lipids, dietary fiber, and micronutrients. Secondly, the biological effects of algae, particularly their impact on metabolic health are investigated with an emphasis on available clinical evidence. While evidence reveals protective effects of algae on glucose and lipid homeostasis as well as anti-inflammatory properties, further research is required to understand the longer-term impact of consuming algal protein, protein isolates, and concentrates on metabolic health, including protein metabolism. The review then explores the potential of algal proteins in food applications, including ways to overcome their sensory limitations, such as their dark pigmentation, taste, and odor, in order to improve consumer acceptance. To maximize algae's potential as a valuable protein source in the food sector, future research should prioritize the production of more acceptable algal biomass and explore new advances in food sciences and technology for improved consumer acceptance. Overall, this paper supports the potential utility of algae as a sustainable and healthy ingredient source for widespread use in future food production.
Collapse
Affiliation(s)
- Jia Yee Wu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rachel Tso
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hwee Sze Teo
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sumanto Haldar
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| |
Collapse
|
4
|
Atiq-Ur-Rehman. GC-MS analysis of n-hexane extract of Fagonia indica Burm.f. with hypoglycaemic potential. Nat Prod Res 2023; 37:3702-3710. [PMID: 35776099 DOI: 10.1080/14786419.2022.2092731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022]
Abstract
The present study was aimed at gas chromatography-mass spectrometry (GC-MS) analytical investigation of n-hexane extract of the aerial parts of Fagonia indica to identify hypoglycaemic compounds. Also, to investigate this extract for lactase enzyme inhibition responsible for hypoglycaemic activity. Phytochemical screening, GC-MS analysis and lactase inhibition of n-hexane extract was performed by the standard methods. GC-MS analytical study identified 15 compounds in this extract. The maximum percentage of lactase enzyme inhibition of n-hexane extract was 26.21 ± 1.25% (IC50 value of 311.2 ± 16.09 μg/mL) at 100 μg/mL concentration. The standard acarbose showed lactase inhibition of 63.21 ± 0.92% (IC50 value of 32.51 ± 0.85 µg/mL) at the same concentration. n-Hexane extract can be a potential source in the management of diabetes due to the presence of biologically active hypoglycaemic compounds.
Collapse
Affiliation(s)
- Atiq-Ur-Rehman
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Faculty of Pharmacy, Hajvery University Lahore, Lahore, Pakistan
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Simón L, Arazo-Rusindo M, Quest AFG, Mariotti-Celis MS. Phlorotannins: Novel Orally Administrated Bioactive Compounds That Induce Mitochondrial Dysfunction and Oxidative Stress in Cancer. Antioxidants (Basel) 2023; 12:1734. [PMID: 37760037 PMCID: PMC10525198 DOI: 10.3390/antiox12091734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is an interesting therapeutic target to help reduce cancer deaths, and the use of bioactive compounds has emerged as a novel and safe approach to solve this problem. Here, we discuss the information available related to phlorotannins, a type of polyphenol present in brown seaweeds that reportedly functions as antioxidants/pro-oxidants and anti-inflammatory and anti-tumorigenic agents. Specifically, available evidence indicates that dieckol and phloroglucinol promote mitochondrial membrane depolarization and mitochondria-dependent apoptosis. Phlorotannins also reduce pro-tumorigenic, -inflammatory, and -angiogenic signaling mechanisms involving RAS/MAPK/ERK, PI3K/Akt/mTOR, NF-κB, and VEGF. In doing so, they inhibit pathways that favor cancer development and progression. Unfortunately, these compounds are rather labile and, therefore, this review also summarizes approaches permitting the encapsulation of bioactive compounds, like phlorotannins, and their subsequent oral administration as novel and non-invasive therapeutic alternatives for cancer treatment.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Migdalia Arazo-Rusindo
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Andrew F. G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | | |
Collapse
|
6
|
Salim R, Nehvi IB, Mir RA, Tyagi A, Ali S, Bhat OM. A review on anti-nutritional factors: unraveling the natural gateways to human health. Front Nutr 2023; 10:1215873. [PMID: 37720376 PMCID: PMC10501406 DOI: 10.3389/fnut.2023.1215873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Humans are constantly facing multiple health challenges from both communicable and non-communicable diseases that significantly affect their health. Additionally, drug resistance or failure has made the situation even worse and poses serious challenges for researchers to develop new drugs. Hence, to address these problems, there is an urgent need to discover and develop timely and long-term-based therapeutic treatments from different sources. One such approach is harnessing the potential of plant secondary metabolites. Plants have been utilized for therapeutic purposes in addition to being used for nutritional benefits. In the last two decades, plant-based drug developments have been one of the effective means of treating human diseases owing to their multiple functions. More recently, anti-nutritional factors (ANFs) have emerged as one of the important targets for novel plant-based drug development due to their multifaceted and potential pharmacological properties. However, their anti-nutritional properties have been the major setback for their limited success in the pharmacological sector. In this review, we provide an overview of ANFs and their beneficial roles in preventing human diseases with multiple case studies. We also highlight the recent developments and applications of ANFs in the food industry, agriculture, and pharmaceutics with future perspectives. Furthermore, we evaluate meta-analyses on ANFs from the last 30 years in relation to their function in human health benefits. This review is an endeavor to reevaluate the merit of these natural compounds and explore their potential for both human and animal health.
Collapse
Affiliation(s)
- Rehana Salim
- Division of Food Science and Technology, SKUAST, Shalimar, India
| | | | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Owais M. Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
7
|
Chen J, Zhou Z, Li P, Ye S, Li W, Li M, Zhu L, Ding Y. Investigation of the Potential Phlorotannins and Mechanism of Six Brown Algae in Treating Type II Diabetes Mellitus Based on Biological Activity, UPLC-QE-MS/MS, and Network Pharmacology. Foods 2023; 12:3000. [PMID: 37627999 PMCID: PMC10453309 DOI: 10.3390/foods12163000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has developed into an important health concern worldwide. The discovery of phlorotannins and their efficacy in the treatment of T2DM has become a hotspot for research in various fields. In this study, the potential phlorotannins and mechanism of six brown algae against T2DM were in-depth investigated using biological activity assays, LC-MS, and network pharmacology. First, the ethyl acetate fraction (EA frac.) showed high polyphenolic content and possessed significantly antioxidant and enzyme inhibitory abilities. Further, a total of fifty-nine peaks were obtained from six EA fracs. via UPLC-QE-MS/MS analysis, and fifteen of them were identified as phlorotannins and their isomers or derivatives. In detail, the chemical structures of six phlorotannins were inferred as dibenzodioxine-1,3,6,8-tetraol, bifuhalol, dioxinodehydroeckol, eckol, fucofurodiphlorethol, and fucotriphlorethol; three phlorotannin isomers were deduced to be fucophlorethol, trifucol, triphlorethol A, or triphlorethol B; and the phlorotannin derivative of m/z 263 was determined to be dibenzodioxine-1,2,3,6,8-pentanol or dibenzodioxine-1,2,4,5,7-pentanol. Moreover, 43 T2DM-related targets acted on by these chemicals were identified, and the function of phlorotannin to prevent and treat T2DM was elucidated in a holistic way based on the established compound-target-disease network, and GO function and KEGG pathway enrichment analysis.
Collapse
Affiliation(s)
- Jialiang Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.C.); (P.L.); (S.Y.); (L.Z.)
| | - Zheng Zhou
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| | - Ping Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.C.); (P.L.); (S.Y.); (L.Z.)
| | - Shuhong Ye
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.C.); (P.L.); (S.Y.); (L.Z.)
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China;
| | - Lin Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.C.); (P.L.); (S.Y.); (L.Z.)
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.C.); (P.L.); (S.Y.); (L.Z.)
| |
Collapse
|
8
|
Chellappan DK, Chellian J, Rahmah NSN, Gan WJ, Banerjee P, Sanyal S, Banerjee P, Ghosh N, Guith T, Das A, Gupta G, Singh SK, Dua K, Kunnath AP, Norhashim NA, Ong KH, Palaniveloo K. Hypoglycaemic Molecules for the Management of Diabetes Mellitus from Marine Sources. Diabetes Metab Syndr Obes 2023; 16:2187-2223. [PMID: 37521747 PMCID: PMC10386840 DOI: 10.2147/dmso.s390741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder recognized as a major health problem globally. A defective insulin activity contributes to the prevalence and expansion of DM. Treatment of DM is often hampered by limited options of conventional therapies and adverse effects associated with existing procedures. This has led to a spike in the exploration for potential therapeutic agents from various natural resources for clinical applications. The marine environment is a huge store of unexplored diversity of chemicals produced by a multitude of organisms. To date, marine microorganisms, microalgae, macroalgae, corals, sponges, and fishes have been evaluated for their anti-diabetic properties. The structural diversity of bioactive metabolites discovered has shown promising hypoglycaemic potential through in vitro and in vivo screenings via various mechanisms of action, such as PTP1B, α-glucosidase, α-amylase, β-glucosidase, and aldose reductase inhibition as well as PPAR alpha/gamma dual agonists activities. On the other hand, hypoglycaemic effect is also shown to be exerted through the balance of antioxidants and free radicals. This review highlights marine-derived chemicals with hypoglycaemic effects and their respective mechanisms of action in the management of DM in humans.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | | | - Wee Jin Gan
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Priyanka Banerjee
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | - Saptarshi Sanyal
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | | | - Nandini Ghosh
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tanner Guith
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amitava Das
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, 302017, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Nur Azeyanti Norhashim
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Technology Facility, The University of Manchester, Manchester, M13 9NT, UK
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kuan Hung Ong
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
9
|
Golovinskaia O, Wang CK. The hypoglycemic potential of phenolics from functional foods and their mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Gisbert M, Franco D, Sineiro J, Moreira R. Antioxidant and Antidiabetic Properties of Phlorotannins from Ascophyllum nodosum Seaweed Extracts. Molecules 2023; 28:4937. [PMID: 37446599 PMCID: PMC10343254 DOI: 10.3390/molecules28134937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Seaweeds have gained considerable attention in recent years due to their potential health benefits and high contents of bioactive compounds. This review focuses on the exploration of seaweed's health-promoting properties, with particular emphasis on phlorotannins, a class of bioactive compounds known for their antioxidant and antidiabetic properties. Various novel and ecofriendly extraction methods, including solid-liquid extraction, ultrasound-assisted extraction, and microwave-assisted extraction are examined for their effectiveness in isolating phlorotannins. The chemical structure and isolation of phlorotannins are discussed, along with methods for their characterization, such as spectrophotometry, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and chromatography. Special attention is given to the antioxidant activity of phlorotannins. The inhibitory capacities of polyphenols, specifically phlorotannins from Ascophyllum nodosum against digestive enzymes, such as α-amylase and α-glucosidase, are explored. The results suggest that polyphenols from Ascophyllum nodosum seaweed hold significant potential as enzyme inhibitors, although the inhibitory activity may vary depending on the extraction conditions and the specific enzyme involved. In conclusion, seaweed exhibits great potential as a functional food ingredient for promoting health and preventing chronic diseases. Overall, this review aims to condense a comprehensive collection of high-yield, low-cost, and ecofriendly extraction methods for obtaining phlorotannins with remarkable antioxidant and antidiabetic capacities.
Collapse
Affiliation(s)
- Mauro Gisbert
- Chemical Engineering Department, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (M.G.); (D.F.); (J.S.)
- School of Mechanical and Materials Engineering, University College Dublin, Stillorgan Rd, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Daniel Franco
- Chemical Engineering Department, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (M.G.); (D.F.); (J.S.)
| | - Jorge Sineiro
- Chemical Engineering Department, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (M.G.); (D.F.); (J.S.)
| | - Ramón Moreira
- Chemical Engineering Department, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (M.G.); (D.F.); (J.S.)
| |
Collapse
|
11
|
Magwaza SN, Islam MS. Roles of Marine Macroalgae or Seaweeds and Their Bioactive Compounds in Combating Overweight, Obesity and Diabetes: A Comprehensive Review. Mar Drugs 2023; 21:md21040258. [PMID: 37103396 PMCID: PMC10142144 DOI: 10.3390/md21040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Obesity and diabetes are matters of serious concern in the health sector due to their rapid increase in prevalence over the last three decades. Obesity is a severe metabolic problem that results in energy imbalance that is persistent over a long period of time, and it is characterized by insulin resistance, suggesting a strong association with type 2 diabetes (T2D). The available therapies for these diseases have side effects and some still need to be approved by the Food and Drug Administration (FDA), and they are expensive for underdeveloped countries. Hence, the need for natural anti-obesity and anti-diabetic drugs has increased in recent years due to their lower costs and having virtually no or negligible side effects. This review thoroughly examined the anti-obesity and anti-diabetic effects of various marine macroalgae or seaweeds and their bioactive compounds in different experimental settings. According to the findings of this review, seaweeds and their bioactive compounds have been shown to have strong potential to alleviate obesity and diabetes in both in vitro and in vivo or animal-model studies. However, the number of clinical trials in this regard is limited. Hence, further studies investigating the effects of marine algal extracts and their bioactive compounds in clinical settings are required for developing anti-obesity and anti-diabetic medicines with better efficacy but lower or no side effects.
Collapse
Affiliation(s)
- S'thandiwe Nozibusiso Magwaza
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| |
Collapse
|
12
|
Huang X, Wen Y, Chen Y, Liu Y, Zhao C. Structural characterization of Euglena gracilis polysaccharide and its in vitro hypoglycemic effects by alleviating insulin resistance. Int J Biol Macromol 2023; 236:123984. [PMID: 36906209 DOI: 10.1016/j.ijbiomac.2023.123984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Diabetes mellitus, characterized by hyperglycemia and insulin resistance, is a disorder of the endocrine metabolic system which has emerged as a common chronic disease worldwide. Euglena gracilis polysaccharides have ideal development potential in the treatment of diabetes. However, their structure and bioactivity are largely unclear. A novel purified water-soluble polysaccharide (EGP-2A-2A) from E. gracilis with a molecular weight of 130.8 kDa consisted of xylose, rhamnose, galactose, fucose, glucose, arabinose, and glucosamine hydrochloride. The SEM image for EGP-2A-2A suggested a rough surface with the presence of globule-like protrusions. Methylation and NMR spectral analyses revealed that EGP-2A-2A was mainly composed of →6)-β-D-Galp-(1 → 2)-α-D-Glcp-(1 → 2)-α-L-Rhap-(1 → 3)-α-L-Araf-(1 → 6)-β-D-Galp-(1 → 3)-α-D-Araf-(1 → 3)-α-L-Rhap-(1 → 4)-β-D-Xylp-(1 → 6)-β-D-Galp-(1 → with complex branching structure. EGP-2A-2A significantly increased glucose consumption and glycogen content in IR-HeoG2 cells and modulates glucose metabolism disorders by regulating PI3K, AKT, and GLUT4 signaling pathways. EGP-2A-2A significantly suppressed TC, TG, and LDL-c levels, and enhanced that of HDL-c. EGP-2A-2A ameliorated abnormalities caused by disorders of glucose metabolism and the hypoglycemic activity of EGP-2A-2A may be mainly positively related to its high glucose content and the β-configuration in the main chain. These results suggested that EGP-2A-2A played an important role in alleviating disorders of glucose metabolism through insulin resistance and has the potential for development as a novel functional food with nutritional and health benefits.
Collapse
Affiliation(s)
- Xiaozhou Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China
| | - Yuxi Wen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Yihan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Liu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Son MJ, Kim T, Lee SW. Facile synthesis of fluorescent mesoporous nanocarriers with pH-sensitive controlled release of naturally derived dieckol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Kim HS, Je JG, An H, Baek K, Lee JM, Yim MJ, Ko SC, Kim JY, Oh GW, Kang MC, Ham YM, Jeon YJ, Lee DS. Isolation and Characterization of Efficient Active Compounds Using High-Performance Centrifugal Partition Chromatography (CPC) from Anti-Inflammatory Activity Fraction of Ecklonia maxima in South Africa. Mar Drugs 2022; 20:471. [PMID: 35892939 PMCID: PMC9394317 DOI: 10.3390/md20080471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ecklonia maxima is a brown seaweed, which is abundantly distributed in South Africa. This study investigated an efficient approach using high-performance centrifugal partition chromatography (HPCPC), which has been successfully developed for the isolation and purification of phlorotannins, eckmaxol, and dieckol from the ethyl acetate fraction of E. maxima (EEM). We evaluated EEM for its inhibitory effect against lipopolysaccharide (LPS)-induced inflammatory responses in zebrafish embryos. The separation of eckmaxol and dieckol from samples of EEM using HPCPC was found to be of high purity and yield under an optimal solvent system composed of n-hexane:ethyl acetate:methanol:water (2:7:3:7, v/v/v/v). To evaluate the anti-inflammatory efficacy of EEM containing active compounds, zebrafish embryos exposed to LPS were compared with and without EEM treatment for nitric oxide (NO) production, reactive oxygen species (ROS) generation, and cell death two days after fertilization. These evaluations indicate that EEM alleviated inflammation by inhibiting cell death, ROS, and NO generation induced by LPS treatment. According to these results, eckmaxol and dieckol isolated from brown seaweed E. maxima could be considered effective anti-inflammatory agents as pharmaceutical and functional food ingredients.
Collapse
Affiliation(s)
- Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Jun-Geon Je
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Hyesuck An
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Kyunghwa Baek
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Jeong Min Lee
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Seok-Chun Ko
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| | - Min-Cheol Kang
- Research Group of Food Processing Research Division of Strategic Food Technology, Wanju-gun 55365, Korea;
| | - Young Min Ham
- Korea Jeju Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea; (H.-S.K.); (H.A.); (K.B.); (J.M.L.); (M.-J.Y.); (S.-C.K.); (J.-Y.K.); (G.-W.O.)
| |
Collapse
|
15
|
Subbiah V, Xie C, Dunshea FR, Barrow CJ, Suleria HAR. The Quest for Phenolic Compounds from Seaweed: Nutrition, Biological Activities and Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2094406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vigasini Subbiah
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Hafiz A. R. Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Rahman M, Islam R, Rabbi F, Islam MT, Sultana S, Ahmed M, Sehgal A, Singh S, Sharma N, Behl T. Bioactive Compounds and Diabetes Mellitus: Prospects and Future Challenges. Curr Pharm Des 2022; 28:1304-1320. [PMID: 35418280 DOI: 10.2174/1381612828666220412090808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic condition that influences the endocrine framework. Hyperglycemia and hyperlipidemia are two of the most widely recognized metabolic irregularities in diabetes, just as two of the most well-known reasons for diabetic intricacies. Diabetes mellitus is a persistent illness brought about by metabolic irregularities in hyperglycemic pancreatic cells. Hyperglycemia can be brought about by an absence of insulin-producing beta cells in the pancreas (Type 1 diabetes mellitus) or inadequate insulin creation that does not work effectively (Type 2 diabetes mellitus). Present diabetes medication is directed toward directing blood glucose levels in the systemic circulation to the typical levels. Numerous advanced prescription medicines have many negative results that can bring about unexpected severe issues during treatment of the bioactive compound from a different source that is beneficially affected by controlling, adjusting metabolic pathways or cycles. Moreover, a few new bioactive medications disengaged from plants have shown antidiabetic action with more noteworthy adequacy than the oral hypoglycemic agent that specialists have utilized in clinical treatment lately. Since bioactive mixtures are collected from familiar sources, they have a great activity in controlling diabetes mellitus. This study discusses bioactive compounds and their activity to manage diabetes mellitus and their prospects. Though bioactive compound has many health beneficial properties, adequate clinical studies still need to gain large acknowledge that they are effective in the management of diabetes mellitus.
Collapse
Affiliation(s)
- Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fazle Rabbi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
17
|
Agarwal S, Singh V, Chauhan K. Antidiabetic potential of seaweed and their bioactive compounds: a review of developments in last decade. Crit Rev Food Sci Nutr 2022; 63:5739-5770. [PMID: 35048763 DOI: 10.1080/10408398.2021.2024130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes Mellitus is a public health problem worldwide due to high morbidity and mortality rate associated with it. Diabetes can be managed by synthetic hypoglycemic drugs, although their persistent uses have several side effects. Hence, there is a paradigm shift toward the use of natural products having antidiabetic potential. Seaweeds, large marine benthic algae, are an affluent source of various bioactive compounds, including phytochemicals and antioxidants thus exhibiting various health promoting properties. Seaweed extracts and its bioactive compounds have antidiabetic potential as they inhibit carbohydrate hydrolyzing enzymes in vitro and exhibit blood glucose lowering effect in random and post prandial blood glucose tests in vivo. In addition, they have been associated with reduced weight gain in animals probably by decreasing mRNA expression of pro-inflammatory cytokines with concomitant increase in mRNA expression levels of anti-inflammatory cytokines. Their beneficial effect has been seen in serum and hepatic lipid profile and antioxidant enzymes indicating the protective role of seaweeds against free radicals mediated oxidative stress induced hyperglycemia and associated hyperlipidemia. However, the detailed and in-depth studies of seaweeds as whole, their bioactive isolates and their extracts need to be explored further for their health benefits and wide application in food, nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Surbhi Agarwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipet, India
| | - Vikas Singh
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology Entrepreneurship and Management, Kundli, India
| | - Komal Chauhan
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipet, India
| |
Collapse
|
18
|
Therapeutic Potential of Seaweed-Derived Bioactive Compounds for Cardiovascular Disease Treatment. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiovascular diseases are closely related to hypertension, type 2 diabetes mellitus, obesity, and hyperlipidemia. Many studies have reported that an unhealthy diet and sedentary lifestyle are critical factors that enhance these diseases. Recently, many bioactive compounds isolated from marine seaweeds have been studied for their benefits in improving human health. In particular, several unique bioactive metabolites such as polyphenols, polysaccharides, peptides, carotene, and sterol are the most effective components responsible for these activities. This review summarizes the current in vitro, in vivo, and clinical studies related to the protective effects of bioactive compounds isolated from seaweeds against cardiovascular disorders, including anti-diabetic, anti-hypertensive, anti-hyperlipidemia, and anti-obesity effects. Therefore, this present review summarizes these concepts and provides a basis for further in-depth research.
Collapse
|
19
|
Okeke ES, Nweze EJ, Chibuogwu CC, Anaduaka EG, Chukwudozie KI, Ezeorba TPC. Aquatic Phlorotannins and Human Health: Bioavailability, Toxicity, and Future Prospects. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemists and pharmacognosists have relied on terrestrial sources for bioactive phytochemicals to manage and treat disease conditions. However, minimal interest is given to sea life, especially macroalgae and their inherent phytochemical reserves. Phlorotannins are a special class of phytochemicals mainly predominant in brown algae of marine and estuarine habitats. Phlorotannins are formed through the polymerization of phloroglucinol residues and derivatives via the polyketide (acetate–malonate) pathway. Studies over the past decades have implicated phlorotannins with several bioactivities, including anti-herbivory, antioxidants, anti-inflammatory, anti-microbial, anti-proliferative, anti-diabetic, radio-protective, adipogenic, anti-allergic, and anti-human immunodeficiency virus (anti-HIV) properties. All these activities are reflected in their applications as nutraceuticals and cosmeceutical agents. This article reviews the chemical composition of phlorotannins, their biological roles, and their applications. Moreover, very few studies on phlorotannin bioavailability, safety, and toxicity have been thoroughly reviewed. The paper concludes by suggesting exciting research questions for further studies.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of General Studies, University of Nigeria, Nsukka, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, P.R. China
- Organization of African Academic Doctor, Nairobi, Kenya
| | - Ekene John Nweze
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | | | | | | | - Timothy Prince Chidike Ezeorba
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Rajan DK, Mohan K, Zhang S, Ganesan AR. Dieckol: a brown algal phlorotannin with biological potential. Biomed Pharmacother 2021; 142:111988. [PMID: 34371307 DOI: 10.1016/j.biopha.2021.111988] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Dieckol [C36H22O18], is a naturally occurring phlorotannin found in some brown algal species. Dieckol is gaining more attention in the scientific community for its potential biological activities. It has been exhibited a broad spectrum of therapeutic functions including anti-bacterial, anti-cancer, anti-oxidant, anti-aging, anti-diabetic, neuroprotective, and other medicinal applications. Distinct emphasis has been given to extraction, purification, and biomedical applications of dieckol. This critical review comprises of in vitro, in vivo, and in silico biological properties of dieckol. An attempt has been made to evaluate the effectiveness, therapeutical application, and mechanism of dieckol against various diseases. The pharmacological significance, current status and the dosage of multifunctional dieckol and its mechanisms have been discussed in this review. Dieckol plays an important role in apoptosis induction via inhibiting the PI3K, AKT, mTOR and FAK signaling molecules. Dieckol remarkably inhibited the lipid accumulation in high fat diet induced animal models. Dieckol, a multifaceted compound will be beneficial in attenuating the action of various diseases and it could be a potential pharmaceutical and nutraceutical compound. Therefore, the combined effects of dieckol with existing drugs and natural compounds will be studied in future to optimize its benefits. Besides limited information on the toxicological action and dosage administration of dieckol on the human was reported to date. Overall, dieckol is a prospective health-promoting compound for the development of a novel drug against numerous diseases.
Collapse
Affiliation(s)
- Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode 638316, Tamil Nadu, India.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Laimburg 6, I-39040 Post Auer, BZ, Italy
| |
Collapse
|
21
|
Zhang S, Ren H, Sun H, Cao S. Dieckol exerts anticancer activity in human osteosarcoma (MG-63) cells through the inhibition of PI3K/AKT/mTOR signaling pathway. Saudi J Biol Sci 2021; 28:4908-4915. [PMID: 34466065 PMCID: PMC8381078 DOI: 10.1016/j.sjbs.2021.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/06/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common malignant bone cancer with more metastasis and increased occurrence in children and teen-agers and being responsible for more number of morbidity and mortality worldwide. Objective The current exploration was planned study the in vitro anticancer actions of dieckol against human OS MG-63 cells via PI3K/AKT/mTOR signaling inhibition. Methodology The cytotoxicity of dieckol was scrutinized by MTT assay. Effects of dieckol on the ROS accumulation, apoptotic cell death, and MMP level in the MG-63 cells were studied by respective fluorescence staining assays. The levels of proliferative, inflammatory, and apoptotic markers in the dieckol treated MG-63 cells were scrutinized by marker specific kits. The expressions of PI3K, AKT, and mTOR was assayed by RT-PCR. Results The MTT assay revealed that the dieckol dose dependently prevented MG-63 cells viability and the IC50 was found at 15 µM. Dieckol treatment effectively reduced the MMP level and improved the ROS generation and apoptosis in MG-63 cells. Dieckol also regulated the proliferative (cyclin D1), inflammatory (COX-2, IL-6, TNF-α, and NF-κB), and apoptotic (caspase-3, Bax, Bcl-2) markers in the MG-63 cells. The PI3K/AKT/mTOR signaling in the MG-63 cells were effectively inhibited by the dieckol treatment. Conclusion In conclusion, our findings from this study recommends that the dieckol could be a talented anticancer candidate for the OS management in the future.
Collapse
Affiliation(s)
- Shouqiang Zhang
- Department of Orthopaedic & Trauma Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong 250033, China
| | - Hui Ren
- Department of Cardiothoracic Surgery, Xinwen Mining Group Central Hospital, Xintai City, Shandong Province 271200, China
| | - Hanting Sun
- Department of Orthopaedic Surgery, ZouPing Hospital of TCM, ZouPing City, Shandong Province 256200, China
| | - Songhua Cao
- Department of Hand Surgery/Foot & Ankle Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong 250033, China
| |
Collapse
|
22
|
Menaa F, Wijesinghe U, Thiripuranathar G, Althobaiti NA, Albalawi AE, Khan BA, Menaa B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Mar Drugs 2021; 19:484. [PMID: 34564146 PMCID: PMC8469996 DOI: 10.3390/md19090484] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Marine algae are rich in bioactive nutraceuticals (e.g., carbohydrates, proteins, minerals, fatty acids, antioxidants, and pigments). Biotic (e.g., plants, microorganisms) and abiotic factors (e.g., temperature, pH, salinity, light intensity) contribute to the production of primary and secondary metabolites by algae. Easy, profitable, and sustainable recovery methods include novel solid-liquid and liquid-liquid extraction techniques (e.g., supercritical, high pressure, microwave, ultrasound, enzymatic). The spectacular findings of algal-mediated synthesis of nanotheranostics has attracted further interest because of the availability of microalgae-based natural bioactive therapeutic compounds and the cost-effective commercialization of stable microalgal drugs. Algal extracts can serve as stabilizing/capping and reducing agents for the synthesis of thermodynamically stable nanoparticles (NPs). Different types of nanotherapeutics have been synthesized using physical, chemical, and biological methods. Marine algae are a fascinating source of lead theranostics compounds, and the development of nanotheranostics has been linked to enhanced drug efficacy and safety. Indeed, algae are remarkable nanobiofactories, and their pragmatic properties reside in their (i) ease of handling; (ii) capacity to absorb/accumulate inorganic metallic ions; (iii) cost-effectiveness; and (iv) capacity of eco-friendly, rapid, and healthier synthesis of NPs. Preclinical and clinical trials shall enable to really define effective algal-based nanotherapies. This review aims to provide an overview of the main algal compounds that are nutraceuticals and that can be extracted and purified for nanotheranostic purposes.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Internal Medicine and Nanomedicine, Fluorotronics-CIC, San Diego, CA 92037, USA;
| | - Udari Wijesinghe
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10107, Sri Lanka; (U.W.); (G.T.)
| | - Gobika Thiripuranathar
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10107, Sri Lanka; (U.W.); (G.T.)
| | - Norah A. Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia;
| | - Aishah E. Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Barkat Ali Khan
- Department of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Bouzid Menaa
- Department of Internal Medicine and Nanomedicine, Fluorotronics-CIC, San Diego, CA 92037, USA;
| |
Collapse
|
23
|
Ji Y, Liu D, jin Y, Zhao J, Zhao J, Li H, Li L, Zhang H, Wang H. In vitro and in vivo inhibitory effect of anthocyanin-rich bilberry extract on α-glucosidase and α-amylase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111484] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Hwang J, Yang HW, Lu YA, Je JG, Lee HG, Fernando KHN, Jeon YJ, Ryu B. Phloroglucinol and dieckol isolated from Ecklonia cava suppress impaired diabetic angiogenesis; A study of in-vitro and in-vivo. Biomed Pharmacother 2021; 138:111431. [PMID: 33752058 DOI: 10.1016/j.biopha.2021.111431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/21/2023] Open
Abstract
Abnormalities in angiogenesis that are associated with diabetes may contribute to vascular complications and result in disabilities and death. Furthermore, an imbalance in angiogenesis in different tissues, including the retina and kidney, can play a role in the pathogenesis of diabetic microvascular complications. Phlorotannins, such as phloroglucinol (PG) and dieckol (DK), which are found in Ecklonia cava exhibit antioxidant and anti-inflammatory activities that improve endothelial function in hypertension. However, reports on the effects of these compounds on diabetes-induced angiogenesis in vivo and in vitro are scarce. In this study, we assessed the antiangiogenic effects of PG and DK on endothelial cells treated with a high concentration of glucose to mimic angiogenesis. In addition, we sought to determine the effects of these compounds on cell proliferation, cell migration, and capillary formation. In silico docking of PG and DK into VEGFR-2 revealed their potential as therapeutic agents against angiogenesis. Further, both compounds were identified to inhibit the formation of the retinal vessel in transgenic zebrafish (flk:EGFP) embryos under high glucose conditions. These findings suggested that PG and DK derived from E. cava are potential inhibitors of angiogenesis in diabetic vascular complications and could, therefore, be used to develop angiogenic agents.
Collapse
Affiliation(s)
- Jin Hwang
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea
| | - Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea
| | - Yu An Lu
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea
| | - Jun-Geon Je
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea
| | - Hyo-Geun Lee
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea
| | - K H N Fernando
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea; Marine Science Institute, Jeju National University, Jeju 63333, South Korea.
| | - BoMi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
25
|
Xiao W, Liu H, Lei Y, Gao H, Alahmadi TA, Peng H, Chen W. Chemopreventive effect of dieckol against 7,12-dimethylbenz(a)anthracene induced skin carcinogenesis model by modulatory influence on biochemical and antioxidant biomarkers. ENVIRONMENTAL TOXICOLOGY 2021; 36:800-810. [PMID: 33347706 DOI: 10.1002/tox.23082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Skin cancer is the commonly found type, which contributes to 40% of whole cancer incidences worldwide. Dieckol is an active compound occurs in the marine algae with many biological benefits. In this exploration, we intended to investigate the therapeutic potency of dieckol against the 7,12-dimethylbenz(a)anthracene (DMBA)-triggered skin carcinogenesis in mice. The skin cancer was stimulated to the animals via injecting the 25 μg of DMBA in 100 μL of acetone in shaved dorsal portion along with the 30 mg/kg of dieckol supplementation for 25 week. The antioxidant enzymes and phase-I and -II detoxifying enzymes in the test animals were inspected via standard protocols. Pro-inflammatory markers (IL-6, IL-1β, and TNF-α) level was examined via ELISA kits and the expression of inflammatory molecular markers like p-NF-ƙB, IƙBα and p-IƙBα were studied through western blotting. The expression status of pro- and anti-apoptotic proteins (p53, Bax, Bcl-2, caspase-3, caspase-9, COX-2, TGF-β1) was investigated via real-time polymerase chain reaction (RT-PCR). Our results revealed that the 30 mg/kg of dieckol supplementation noticeably regained the body and liver weight and also diminished the tumor incidence in the DMBA-incited animals. Dieckol treatment exhibited an enhanced antioxidants (SOD, CAT, GPx, and GSH) and reduced phase-I enzymes Cyt-p450 and Cyt-b5 in the DMBA-induced animals. Dieckol also diminished the pro-inflammatory modulators like IL-6, IL-1β and TNF-α. Western blotting result evidenced that the dieckol was inhibited the IƙB/NF-ƙB signaling pathway. RT-PCR study proved the enhanced expression of pro-apoptotic protein (p53, Bax, caspase-3 and -9) in the dieckol treated animals. Histological study also confirmed the therapeutic benefits of Dieckol. Altogether with these findings, it was clear that the dieckol has appreciably allayed the DMBA activated skin tumorigenesis in the mice and it could be a promising agent to treat the human skin cancer in future.
Collapse
Affiliation(s)
- Wenming Xiao
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hongyan Liu
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ying Lei
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Huawei Gao
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University, [Medical City], King Khalid University Hospital, Riyadh, Saudi Arabia
| | - Haitao Peng
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wei Chen
- Department of Pathophysiology, Basic Medical School, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
26
|
Aatif M, Muteeb G, Alsultan A, Alshoaibi A, Khelif BY. Dieckol and Its Derivatives as Potential Inhibitors of SARS-CoV-2 Spike Protein (UK Strain: VUI 202012/01): A Computational Study. Mar Drugs 2021; 19:242. [PMID: 33922914 PMCID: PMC8145291 DOI: 10.3390/md19050242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The high risk of morbidity and mortality associated with SARS-CoV-2 has accelerated the development of many potential vaccines. However, these vaccines are designed against SARS-CoV-2 isolated in Wuhan, China, and thereby may not be effective against other SARS-CoV-2 variants such as the United Kingdom variant (VUI-202012/01). The UK SARS-CoV-2 variant possesses D614G mutation in the Spike protein, which impart it a high rate of infection. Therefore, newer strategies are warranted to design novel vaccines and drug candidates specifically designed against the mutated forms of SARS-CoV-2. One such strategy is to target ACE2 (angiotensin-converting enzyme2)-Spike protein RBD (receptor binding domain) interaction. Here, we generated a homology model of Spike protein RBD of SARS-CoV-2 UK strain and screened a marine seaweed database employing different computational approaches. On the basis of high-throughput virtual screening, standard precision, and extra precision molecular docking, we identified BE011 (Dieckol) as the most potent compounds against RBD. However, Dieckol did not display drug-like properties, and thus different derivatives of it were generated in silico and evaluated for binding potential and drug-like properties. One Dieckol derivative (DK07) displayed good binding affinity for RBD along with acceptable physicochemical, pharmacokinetic, drug-likeness, and ADMET properties. Analysis of the RBD-DK07 interaction suggested the formation of hydrogen bonds, electrostatic interactions, and hydrophobic interactions with key residues mediating the ACE2-RBD interaction. Molecular dynamics simulation confirmed the stability of the RBD-DK07 complex. Free energy calculations suggested the primary role of electrostatic and Van der Waals' interaction in stabilizing the RBD-DK07 complex. Thus, DK07 may be developed as a potential inhibitor of the RBD-ACE2 interaction. However, these results warrant further validation by in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Abdulrahman Alsultan
- Department of Biomedical Sciences, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Adil Alshoaibi
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Bachir Yahia Khelif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
27
|
Sugiura Y, Usui M, Katsuzaki H, Imai K, Tanaka R, Matsushita T, Miyata M. Dieckol isolated from a brown alga, Eisenia nipponica, suppresses ear swelling from allergic inflammation in mouse. J Food Biochem 2021; 45:e13659. [PMID: 33595108 DOI: 10.1111/jfbc.13659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/26/2020] [Accepted: 01/29/2021] [Indexed: 11/29/2022]
Abstract
We previously found a lipophilic fraction of the methanol/chloroform extract of a brown alga, Eisenia nipponica, that had an antiallergic effect in a murine ear swelling test. In this study, we purified the active component from the lipophilic fraction using high performance liquid chromatography and analyzed the mass and nuclear magnetic resonance spectra. This uncovered the phlorotannin dieckol, which exhibited antiallergic effects in an ear swelling test using mice sensitized by arachidonic acid, 12-O-tetradecanoylphorbol-13-acetate, and oxazolone. Mechanistic investigations indicated that dieckol suppressed degranulation, chemical mediator release, and the expression of mRNA such as cyclooxygenase-2, interleukin-6, and tumor necrosis factor-α in rat basophilic leukemia-2H3 cells. In summary, we isolated dieckol from E. nipponica and demonstrated its antiallergic mechanisms. PRACTICAL APPLICATIONS: As the incidence of allergies increases worldwide, so too does the demand for food components with antiallergic and anti-inflammatory properties. Given this trend, we focused on a brown alga that displays a variety of bioactivities. Here, we have isolated dieckol from the antiallergic lipophilic fraction of E. nipponica and found that it possesses diverse physiological activities that may prevent lifestyle-related diseases. Consequently, dieckol or the alga containing this phlorotannin could be used as a health food ingredient to combat not only allergies, but also variety of disorders including the undesirable effects of aging.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Masakatsu Usui
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Ryusuke Tanaka
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Teruo Matsushita
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Masaaki Miyata
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| |
Collapse
|
28
|
Dieckol, an Algae-Derived Phenolic Compound, Suppresses UVB-Induced Skin Damage in Human Dermal Fibroblasts and Its Underlying Mechanisms. Antioxidants (Basel) 2021; 10:antiox10030352. [PMID: 33652913 PMCID: PMC7996756 DOI: 10.3390/antiox10030352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Abstract
Ultraviolet (UV) irradiation is considered to be the primary environmental factor that causes skin damage. In the present study, we investigated the protective effect of dieckol (DK), a compound isolated from the brown seaweed Ecklonia cava, against UVB-induced skin damage in human dermal fibroblasts (HDF cells). The results indicated that DK effectively inhibited the activity of collagenase. DK remarkably reduced the intracellular reactive oxygen species level and improved the viability of UVB-irradiated HDF cells. Besides, DK significantly and dose-dependently improved collagen synthesis and inhibited intracellular collagenase activity in UVB-irradiated HDF cells. In addition, DK markedly reduced the expression of proinflammatory cytokines and matrix metalloproteinases. Further analyses revealed that these processes were mediated through the regulation of nuclear factor kappa B, activator protein 1, and mitogen-activated protein kinase signaling pathways in the UVB-irradiated HDF cells. In conclusion, these results indicate that DK possesses strong in vitro photoprotective effects and therefore has the potential to be used as an ingredient in the cosmeceutical industry.
Collapse
|
29
|
Shrestha S, Zhang W, Smid S. Phlorotannins: A review on biosynthesis, chemistry and bioactivity. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100832] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Jayawardena B, Madushika Wariyapperuma WAN, Thammitiyagodage M, Karunakaran R, Sisira Kumara WGS. Hypoglycemic and anti-lipidemic properties of Cinnamomum zeylanicum (”Sri Wijaya” accession) water-soluble nutraceutical in streptozotocin-induced diabetic and healthy wistar rats. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_334_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2020; 26:E37. [PMID: 33374738 PMCID: PMC7793479 DOI: 10.3390/molecules26010037] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to cancer and diabetes, inflammatory and ROS-related diseases represent one of the major health problems worldwide. Currently, several synthetic drugs are used to reduce oxidative stress; nevertheless, these approaches often have side effects. Therefore, to overcome these issues, the search for alternative therapies has gained importance in recent times. Natural bioactive compounds have represented, and they still do, an important source of drugs with high therapeutic efficacy. In the ''synthetic'' era, terrestrial and aquatic photosynthetic organisms have been shown to be an essential source of natural compounds, some of which might play a leading role in pharmaceutical drug development. Marine organisms constitute nearly half of the worldwide biodiversity. In the marine environment, algae, seaweeds, and seagrasses are the first reported sources of marine natural products for discovering novel pharmacophores. The algal bioactive compounds are a potential source of novel antioxidant and anticancer (through modulation of the cell cycle, metastasis, and apoptosis) compounds. Secondary metabolites in marine Algae, such as phenolic acids, flavonoids, and tannins, could have great therapeutic implications against several diseases. In this context, this review focuses on the diversity of functional compounds extracted from algae and their potential beneficial effects in fighting cancer, diabetes, and inflammatory diseases.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769001, India;
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Science, Ansari Nagar, New Delhi 110023, India;
| | - Andrea Ragusa
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, via Monteroni, 73100 Lecce, Italy
- CNR-Nanotec, Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Brahmapur 760007, India; (B.P.); (R.N.)
| |
Collapse
|
32
|
Potential Anti-Aging Substances Derived from Seaweeds. Mar Drugs 2020; 18:md18110564. [PMID: 33218066 PMCID: PMC7698806 DOI: 10.3390/md18110564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Aging is a major risk factor for many chronic diseases, such as cancer, cardiovascular disease, and diabetes. The exact mechanisms underlying the aging process are not fully elucidated. However, a growing body of evidence suggests that several pathways, such as sirtuin, AMP-activated protein kinase, insulin-like growth factor, autophagy, and nuclear factor erythroid 2-related factor 2 play critical roles in regulating aging. Furthermore, genetic or dietary interventions of these pathways can extend lifespan by delaying the aging process. Seaweeds are a food source rich in many nutrients, including fibers, polyunsaturated fatty acids, vitamins, minerals, and other bioactive compounds. The health benefits of seaweeds include, but are not limited to, antioxidant, anti-inflammatory, and anti-obese activities. Interestingly, a body of studies shows that some seaweed-derived extracts or isolated compounds, can modulate these aging-regulating pathways or even extend lifespans of various animal models. However, few such studies have been conducted on higher animals or even humans. In this review, we focused on potential anti-aging bioactive substances in seaweeds that have been studied in cells and animals mainly based on their anti-aging cellular and molecular mechanisms.
Collapse
|
33
|
Erpel F, Mateos R, Pérez-Jiménez J, Pérez-Correa JR. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res Int 2020; 137:109589. [PMID: 33233195 DOI: 10.1016/j.foodres.2020.109589] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Phlorotannins are phenolic characteristic compounds of brown seaweeds that are only constituted by phloroglucinol (1,3,5-trihydroxybenzene). They are chain- and net-like structures of diverse molecular weights and have been widely identified in Ecklonia, Eisenia, and Ishige species. Since the time they were discovered in the '70 s, phlorotannins have been suggested as a main factor responsible for the antimicrobial activities attributed to algae extracts. Currently, cumulative in vitro and in vivo research evidence the diverse bioactivities of phlorotannin extracts -such as antidiabetic, anticancer, and antibacterial- pointing out their potential pharmacological and food applications. However, metabolomic studies and clinical trials are scarce, and thus many phlorotannins health-beneficial effects in humans are not yet confirmed. This article reviews recent studies assessing the antidiabetic and anticancer activities of phlorotannins. Particularly, their potential to prevent and control the progression of these non-communicable diseases is discussed, considering in vitro and animal studies, as well as clinical interventions. In contrast to other approaches, we only included investigations with isolated phlorotannins or phlorotannin-rich extracts. Thus, phlorotannin extraction, purification and characterization procedures are briefly addressed. Overall, although considerable research showing the antidiabetic and anticancer potential of phlorotannins is now available, further clinical trials are still necessary to conclusively demonstrate the efficacy of these compounds as adjuvants for diabetes and cancer prevention or treatment.
Collapse
Affiliation(s)
- Fernanda Erpel
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| |
Collapse
|
34
|
Mateos R, Pérez-Correa JR, Domínguez H. Bioactive Properties of Marine Phenolics. Mar Drugs 2020; 18:E501. [PMID: 33007997 PMCID: PMC7601137 DOI: 10.3390/md18100501] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds from marine organisms are far less studied than those from terrestrial sources since their structural diversity and variability require powerful analytical tools. However, both their biological relevance and potential properties make them an attractive group deserving increasing scientific interest. The use of efficient extraction and, in some cases, purification techniques can provide novel bioactives useful for food, nutraceutical, cosmeceutical and pharmaceutical applications. The bioactivity of marine phenolics is the consequence of their enzyme inhibitory effect and antimicrobial, antiviral, anticancer, antidiabetic, antioxidant, or anti-inflammatory activities. This review presents a survey of the major types of phenolic compounds found in marine sources, as well as their reputed effect in relation to the occurrence of dietary and lifestyle-related diseases, notably type 2 diabetes mellitus, obesity, metabolic syndrome, cancer and Alzheimer's disease. In addition, the influence of marine phenolics on gut microbiota and other pathologies is also addressed.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain;
| | - José Ricardo Pérez-Correa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Macul, Santiago 7810000, Chile;
| | - Herminia Domínguez
- CINBIO, Department of Chemical Engineering, Faculty of Sciences, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
35
|
Gabbia D, De Martin S. Brown Seaweeds for the Management of Metabolic Syndrome and Associated Diseases. Molecules 2020; 25:E4182. [PMID: 32932674 PMCID: PMC7570850 DOI: 10.3390/molecules25184182] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome is characterized by the coexistence of different metabolic disorders which increase the risk of developing type 2 diabetes mellitus and cardiovascular diseases. Therefore, metabolic syndrome leads to a reduction in patients' quality of life as well as to an increase in morbidity and mortality. In the last few decades, it has been demonstrated that seaweeds exert multiple beneficial effects by virtue of their micro- and macronutrient content, which could help in the management of cardiovascular and metabolic diseases. This review aims to provide an updated overview on the potential of brown seaweeds for the prevention and management of metabolic syndrome and its associated diseases, based on the most recent evidence obtained from in vitro and in vivo preclinical and clinical studies. Owing to their great potential for health benefits, brown seaweeds are successfully used in some nutraceuticals and functional foods for treating metabolic syndrome comorbidities. However, some issues still need to be tackled and deepened to improve the knowledge of their ADME/Tox profile in humans, in particular by finding validated indexes of their absorption and obtaining reliable information on their efficacy and long-term safety.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
36
|
|
37
|
Cotas J, Leandro A, Monteiro P, Pacheco D, Figueirinha A, Gonçalves AMM, da Silva GJ, Pereira L. Seaweed Phenolics: From Extraction to Applications. Mar Drugs 2020; 18:E384. [PMID: 32722220 PMCID: PMC7460554 DOI: 10.3390/md18080384] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Seaweeds have attracted high interest in recent years due to their chemical and bioactive properties to find new molecules with valuable applications for humankind. Phenolic compounds are the group of metabolites with the most structural variation and the highest content in seaweeds. The most researched seaweed polyphenol class is the phlorotannins, which are specifically synthesized by brown seaweeds, but there are other polyphenolic compounds, such as bromophenols, flavonoids, phenolic terpenoids, and mycosporine-like amino acids. The compounds already discovered and characterized demonstrate a full range of bioactivities and potential future applications in various industrial sectors. This review focuses on the extraction, purification, and future applications of seaweed phenolic compounds based on the bioactive properties described in the literature. It also intends to provide a comprehensive insight into the phenolic compounds in seaweed.
Collapse
Affiliation(s)
- João Cotas
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Pedro Monteiro
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.M.); (G.J.d.S.)
| | - Diana Pacheco
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Artur Figueirinha
- LAQV, REQUIMTE, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Faculty of Pharmacy of University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana M. M. Gonçalves
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.M.); (G.J.d.S.)
| | - Leonel Pereira
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
38
|
Anti-allergy effect of mojabanchromanol isolated from Sargassum horneri in bone marrow-derived cultured mast cells. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Nasab SB, Homaei A, Pletschke BI, Salinas-Salazar C, Castillo-Zacarias C, Parra-Saldívar R. Marine resources effective in controlling and treating diabetes and its associated complications. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Usman B, Sharma N, Satija S, Mehta M, Vyas M, Khatik GL, Khurana N, Hansbro PM, Williams K, Dua K. Recent Developments in Alpha-Glucosidase Inhibitors for Management of Type-2 Diabetes: An Update. Curr Pharm Des 2020; 25:2510-2525. [PMID: 31333110 DOI: 10.2174/1381612825666190717104547] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
The incidence of diabetes has increased globally in recent years and figures of diabetic patients were estimated to rise up to 642 million by 2040. The disorder is accompanied with various complications if not managed at the early stages, and interlinked high mortality rate and morbidity with time. Different classes of drugs are available for the management of type 2 diabetes but were having certain limitations of their safety. Alphaglucosidase is a family of enzyme originated from the pancreas which plays a role in the anabolism of 80-90% of carbohydrate consumed into glucose. This glucose is absorbed into the blood and results in frank postprandial hyperglycemia and worsens the conditions of diabetic patients which precipitate complications. Inhibition of these enzymes helps to prevent postprandial hyperglycemia and the formation of glycated end products. Alphaglucosidase inhibitors are reported to be more important in adequate control of type 2, but marketed drugs have various side effects, such as poor patient compliance and also expensive. This proves the needs for other class of drugs with better efficacy, safety, patient compliance and economic. In this review, we have emphasized the recent advances in the field of new alpha-glucosidase inhibitors with improved safety and pharmacological profile.
Collapse
Affiliation(s)
- Bashir Usman
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab (144411), India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab (144411), India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab (144411), India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab (144411), India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab (144411), India
| | - Gopal L Khatik
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab (144411), India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab (144411), India
| | - Philip M Hansbro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kylie Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
41
|
Volatile profiling and UHPLC-QqQ-MS/MS polyphenol analysis of Passiflora leschenaultii DC. fruits and its anti-radical and anti-diabetic properties. Food Res Int 2020; 133:109202. [PMID: 32466913 DOI: 10.1016/j.foodres.2020.109202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 01/12/2023]
Abstract
Twenty-four phenolic compounds including daidzein, epicatechin and artepillin C were identified in Passiflora leschenaultii DC. fruit by UHPLC-QqQ-MS/MS analysis. The aroma profile has been studied using the HS-SPME/GC-MS which revealed 67 volatile compounds including 13 terpenes, 18 alcoholics, 15 esters, ketones and phenolic acids. Further, the proximate composition, anti-radical and anti-diabetic activities of fruit pulp were also determined. The fresh fruit pulp of P. leschenaultii registered higher total phenolic (691.90 mg GAE/g extract) and tannin (313.81 mg GAE/g extract) contents and it also exhibited maximum DPPH (IC50 of 6.69 µg/ml) and ABTS+ (9760.44 µM trolox equivalent/g extract) scavenging activities. The fresh fruit pulp showed a strong inhibition towards the α-Amylase and α-Glucosidase (IC50 of 32.20 and 19.81 µg/mL, respectively) enzymes. Thus, the work stipulates that phenolic compounds rich P. leschenaultii fruit can serve as a potential nutraceutical, antioxidative and anti-diabetic agent in food and pharmaceutical formulations.
Collapse
|
42
|
Fernando IPS, Ryu B, Ahn G, Yeo IK, Jeon YJ. Therapeutic potential of algal natural products against metabolic syndrome: A review of recent developments. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Nasab SB, Homaei A, Karami L. Kinetic of α-amylase inhibition by Gracilaria corticata and Sargassum angustifolium extracts and zinc oxide nanoparticles. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Çelenk FG, Sukatar A. Macroalgae of Izmir Gulf: Cystoseira barbata, Cystoseira compressa and Cystoseira crinita species have high α-glucosidase and Moderate Pancreatic Lipase Inhibition Activities. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:391-402. [PMID: 33224246 PMCID: PMC7667568 DOI: 10.22037/ijpr.2020.1100953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hyperglycemia and hyperlipidemia have been symptoms of many serious diseases such as diabetes and atherosclerosis overall the world. Thus, drug researchers have focused on new, natural and healthy drug alternatives. Marine macroalgae is a great source of hypoglycemic, hypolipidemic or hypocholesterolemic agents. In this study, we investigated that hypoglycemic, hypolipidemic and cytotoxic potentials of 22 marine macroalgae from the Gulf of Izmir. According to our results, the cold methanol extract of Polysiphonia denudata exhibited the highest antioxidant activity (93.6%) compared to BHA (95.3%). Three Cystoseira species, Cystoseria crinita (91.9%), Cystoseria barbata (90.7%), Cystoseria compressa (89.8%) showed higher α-glucosidase inhibition rates than oral antidiabetic acarbose (79.5%). It has also been observed that same species are potent inhibitors of pancreatic lipase. Cytotoxicity test revealed that these extracts did not cause viability inhibition on MCF-7. The results of maltose- glucose assay indirectly displayed that Cystoseira cold methanolic extracts inhibited maltose consumption better than acarbose on HT29. The results of this screening study show that these Cystoseira species may provide non- toxic bioactive agents to control non-communicable diseases (NCDs) such as cardiovascular disease and diabetes mellitus.
Collapse
Affiliation(s)
- Fatma Gül Çelenk
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, 35040, Turkey.
| | - Atakan Sukatar
- Department of Biology, Faculty of Science, Ege University, Izmir, 35040, Turkey.
| |
Collapse
|
45
|
Park SJ, Lee D, Kim D, Lee M, In G, Han ST, Kim SW, Lee MH, Kim OK, Lee J. The non-saponin fraction of Korean Red Ginseng (KGC05P0) decreases glucose uptake and transport in vitro and modulates glucose production via down-regulation of the PI3K/AKT pathway in vivo. J Ginseng Res 2019; 44:362-372. [PMID: 32148419 PMCID: PMC7031776 DOI: 10.1016/j.jgr.2019.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/08/2019] [Accepted: 12/10/2019] [Indexed: 01/26/2023] Open
Abstract
Background The non-saponin fraction of Korean Red Ginseng has been reported to have many biological activities. However, the effect of this fraction on anti-diabetic activity has not been elucidated in detail. In this study, we investigated the effects of KGC05P0, a non-saponin fraction of Korean Red Ginseng, on anti-diabetic activity in vitro and in vivo. Methods We measured the inhibition of commercially obtained α-glucosidase and α-amylase activities in vitro and measured the glucose uptake and transport rate in Caco-2 cells. C57BL/6J mice and C57BLKS/Jdb/db (diabetic) mice were fed diets with or without KGC05P0 for eight weeks. To perform the experiments, the groups were divided as follows: normal control (C57BL/6J mice), db/db control (C57BLKS/Jdb/db mice), positive control (inulin 400 mg/kg b.w.), low (KGC05P0 100 mg/kg b.w.), medium (KGC05P0 200 mg/kg b.w.), and high (KGC05P0 400 mg/kg b.w.). Results KGC05P0 inhibited α-glucosidase and α-amylase activities in vitro, and decreased glucose uptake and transport rate in Caco-2 cells. In addition, KGC05P0 regulated fasting glucose level, glucose tolerance, insulin, HbA1c, carbonyl contents, and proinflammatory cytokines in blood from diabetic mice and significantly reduced urinary glucose excretion levels. Moreover, we found that KGC05P0 regulated glucose production by down-regulation of the PI3K/AKT pathway, which inhibited gluconeogenesis. Conclusion Our study thereby demonstrated that KGC05P0 exerted anti-diabetic effects through inhibition of glucose absorption and the PI3K/AKT pathway in in vitro and in vivo models of diabetes. Our results suggest that KGC05P0 could be developed as a complementary food to help prevent T2DM and its complications.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Dasom Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Gyo In
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Sung-Tai Han
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Sung Won Kim
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Mi-Hyang Lee
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Research Institute for Human Ecology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| |
Collapse
|
46
|
Bermano G, Stoyanova T, Hennequart F, Wainwright CL. Seaweed-derived bioactives as potential energy regulators in obesity and type 2 diabetes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 87:205-256. [PMID: 32089234 DOI: 10.1016/bs.apha.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is epidemiological evidence that dietary intake of seaweeds is associated with a lower prevalence of chronic diseases. While seaweeds are of high nutritious value, due to their high content of fiber, polyunsaturated fatty acids and minerals, they also contain an abundance of bioactive compounds. There is a growing body of scientific data that these bioactive moieties exert effects that could correct the metabolic dysregulation that is present in obesity and Type 2 diabetes (T2D). In this review we describe how the molecular mechanisms, specific to different tissues, that underly obesity and T2D are influenced by both seaweed extracts and seaweed-derived bioactive molecules. In obesity, modulation of antioxidant capacity and reduction of intracellular ROS levels within tissues, and regulation of signaling pathways involved in enhancing browning of white adipose tissue, have been highlighted as key mechanism and identified as a potential target for optimal energy metabolism. In T2D, management of post-prandial blood glucose by modulating α-glucosidase or α-amylase activities, modulation of the AMPK signaling pathway, and similarly to obesity, reduction of ROS and NO production with subsequent increased expression of antioxidant enzymes have been shown to play a key role in glucose metabolism and insulin signaling. Future studies aimed at discovering new therapeutic drugs from marine natural products should, therefore, focus on bioactive compounds from seaweed that exert antioxidant activity and regulate the expression of key signaling pathways involved in glucose homeostasis, mechanisms that are common to both obesity and T2D management. In addition, more data is required to provide evidence of clinical benefit.
Collapse
Affiliation(s)
- Giovanna Bermano
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Teodora Stoyanova
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | | | - Cherry L Wainwright
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom.
| |
Collapse
|
47
|
Salehi B, Sharifi-Rad J, Seca AML, Pinto DCGA, Michalak I, Trincone A, Mishra AP, Nigam M, Zam W, Martins N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019; 24:E4182. [PMID: 31752200 PMCID: PMC6891420 DOI: 10.3390/molecules24224182] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Seaweeds have received huge interest in recent years given their promising potentialities. Their antioxidant, anti-inflammatory, antitumor, hypolipemic, and anticoagulant effects are among the most renowned and studied bioactivities so far, and these effects have been increasingly associated with their content and richness in both primary and secondary metabolites. Although primary metabolites have a pivotal importance such as their content in polysaccharides (fucoidans, agars, carragenans, ulvans, alginates, and laminarin), recent data have shown that the content in some secondary metabolites largely determines the effective bioactive potential of seaweeds. Among these secondary metabolites, phenolic compounds feature prominently. The present review provides the most remarkable insights into seaweed research, specifically addressing its chemical composition, phytopharmacology, and cosmetic applications.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, Bam University of Medical Sciences, Bam 4340847, Iran;
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| | - Ana M. L. Seca
- cE3c- Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Portugal;
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Diana C. G. A. Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland;
| | - Antonio Trincone
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Naples, Italy;
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal-246174, Uttarakhand, India;
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal-246174, Uttarakhand, India;
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | - Natália Martins
- Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
48
|
Ganesan AR, Tiwari U, Rajauria G. Seaweed nutraceuticals and their therapeutic role in disease prevention. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Chen M, Wang K, Zhang Y, Zhang M, Ma Y, Sun H, Jin Z, Zheng H, Jiang H, Yu P, Zhang Y, Sun H. New insights into the biological activities of Chrysanthemum morifolium: Natural flavonoids alleviate diabetes by targeting α-glucosidase and the PTP-1B signaling pathway. Eur J Med Chem 2019; 178:108-115. [DOI: 10.1016/j.ejmech.2019.05.083] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022]
|
50
|
Xi M, Dragsted LO. Biomarkers of seaweed intake. GENES & NUTRITION 2019; 14:24. [PMID: 31428206 PMCID: PMC6694598 DOI: 10.1186/s12263-019-0648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/19/2019] [Indexed: 01/18/2023]
Abstract
Seaweeds are marine macroalgae, some of which are edible. They are rich in specific dietary fibers and also contain other characteristic biological constituents. Biological activities have been investigated mainly in animal studies, while very few results are available from human studies. Biomarkers of food intake (BFIs) specific to seaweed could play an important role as objective measurements in observational studies and dietary intervention studies. Thus, the health effects of seaweeds can be explored and understood by discovering and applying BFIs. This review summarizes studies to identify candidate BFIs of seaweed intake. These BFIs are evaluated by a structured validation scheme. Hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol, diphloroethol, fucophloroethol, dioxinodehydroeckol, and/or their glucuronides or sulfate esters which all belong to the phlorotannins are considered candidate biomarkers for brown seaweed. Fucoxanthinol, the main metabolite of fucoxanthin, is also regarded as a candidate biomarker for brown seaweed. Further validation will be needed due to the very limited number of human studies. Further studies are also needed to identify additional candidate biomarkers, relevant specifically for the red and green seaweeds, for which no candidate biomarkers emerged from the literature search. Reliable BFIs should also ideally be found for the whole seaweed food group.
Collapse
Affiliation(s)
- Muyao Xi
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|