1
|
Ezz El-Arab RF, Waly HSA, Al-Salahy MB, Saleh MA, Saleh SMM. Role of gallic acid against hepatic functional and histological deteriorations in tartrazine-intoxicated rats. Food Chem Toxicol 2025; 197:115303. [PMID: 39894384 DOI: 10.1016/j.fct.2025.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Tartrazine (Tz) is one of the most commonly used artificial food colorants in the food industry, found in a wide array of products. This study investigates the protective role of gallic acid (GA), a powerful antioxidant, against the adverse effects of Tz on the liver. Over a 30-day period, 40 rats were divided into two groups: Group 1 (control group, 10 rats) received a daily administration of a vehicle, while Group 2 (30 rats) received Tz (30 mg/kg body weight). Group 2 was further subdivided into three subgroups of 10 rats each: Subgroup 1 served as a positive control for Tz; Subgroup 2 received GA (200 mg/kg body weight); and Subgroup 3 was left untreated for an additional 30 days as a recovery group (TR). Our study revealed that GA normalized liver functions markers (ALT, AST, and bilirubin), regulated lipids (cholesterol, HDL, LDL, and TG), and ameliorated the redox potentials activity of liver tissue (Catalase, GSH, SOD, LPO, Total peroxide, and Carbonyl protein), revealing its potential in mitigating the negative impact of Tz administration. Moreover, histopathological examinations, including the TUNEL assay, and histological and histochemical studies, demonstrated that GA effectively prevented the histological damage caused by Tz administration.
Collapse
Affiliation(s)
- Rahma F Ezz El-Arab
- Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| | - Hanan S A Waly
- Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| | - M Bassam Al-Salahy
- Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| | - Moustafa A Saleh
- Bioch Unit, Animal Health Research Institute, 12618, Giza, Egypt
| | - Shaimaa M M Saleh
- Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| |
Collapse
|
2
|
Singh M, Chadha P. Dose-Dependent Hepatorenal Damage Induced by Erythrosine: A Study of Biochemical, Oxidative Stress, DNA Damage, and Histopathological Effects in Wistar Rats. J Appl Toxicol 2025. [PMID: 39843243 DOI: 10.1002/jat.4754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
This study aimed to provide insights into the hepatorenal toxicity induced by erythrosine, a synthetic red dye commonly used in food and pharmaceuticals, which has raised concerns over its potential health risks. Twenty-four rats were randomly divided into four groups (n = 6). The first group was the control group and the other group received one of three doses of erythrosine based on acceptable daily intake (¼ ADI, ½ ADI, and ADI, 0.1 mg/kg body weight). This study examined biological activity via biochemical enzyme analysis, oxidative stress indices, DNA damage, and histopathology. Compared with the control group, erythrosine administration increased the serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, total protein, urea, creatinine, and uric acid at the highest erythrosine dose. The catalase and the superoxide dismutase activity decreased in both tissues at the highest dose. The glutathione-S-transferase activity increased at the ¼ ADI dose and decreased at higher doses in both tissues. In contrast, acetylcholinesterase activity was greater in erythrosine-treated rats than in control rats. Oxidative stress indices indicated increased lipid peroxidation, hydrogen peroxide content, and lactate dehydrogenase activity. The comet assay was used to assess DNA damage, revealing significant damage in the erythrosine-treated groups. Histopathological examination revealed necrotic and degenerative changes in the liver and kidney tissues. The findings underscore dose-dependent hepatorenal toxicity and highlight the novelty of demonstrating a comprehensive link between erythrosine exposure, oxidative stress, and DNA damage. These results emphasize the need for cautious evaluation of synthetic dye consumption due to potential health risks.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
3
|
Öztürk O, Uçar S, Doğanyiğit Z, Oflamaz AO, Arıkan ES, Ateş Ş, Yılmaz S. Evaluation of bone development and organs in rat fetuses exposed to tartrazine. Heliyon 2025; 11:e41456. [PMID: 39866447 PMCID: PMC11758127 DOI: 10.1016/j.heliyon.2024.e41456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Tartrazine finds widespread application in the realms of alimentation, pharmaceuticals, cosmetic formulations, and textile manufacturing. Tartrazine has a negative effect on human health such as hyperactivity, allergies and asthma in children. Substances such as tartrazine might effect the embryo in a kind of aspects, containing physical or mental disorders, and a decrease in the child's intellectual memory. In this study, Sprague dawley female rats, 70-100 days old, weighing 250-300 g, with confirmed pregnancy, were divided into two groups of 5: control and tartrazine group. Rats were sacrificed on the 20th day and heart, lung, kidney and liver tissues were removed from the fetuses. The effect of tartrazine on fetal bone development was assessed by double skeletal staining, histological analysis on organs, and IL-6, IL-1β, TNF-α, and TRPM2 gene levels. It has been observed that tartrazine, which is frequently used as a food dye, damages important fetal tissues such as liver, kidney, lung and heart. A statistically meaningful reduce was observed in the total length, total area, bone length and bone area values of the limb bones in the tartrazine group compared to the control group (p < 0.05). It was observed that the mRNA levels of IL-6, IL-1β, TNF-α and TRPM2 genes in the livers of the fetuses changed compared to the control group (p < 0.05). In this study on the use of tartrazine during pregnancy, it was observed that both organs and bone development were damaged. More studies are needed on the effects of tartrazine.
Collapse
Affiliation(s)
- Osman Öztürk
- Yozgat Bozok University, Faculty of Medicine, Department of Pediatric Health and Diseases, Yozgat, Turkey
| | - Sümeyye Uçar
- Erciyes University, Faculty of Medicine, Department of Anatomy, Kayseri, Turkey
| | - Züleyha Doğanyiğit
- Yozgat Bozok University, Faculty of Medicine, Department of Histology and Embryology, Yozgat, Turkey
| | - Aslı Okan Oflamaz
- Yozgat Bozok University, Faculty of Medicine, Department of Histology and Embryology, Yozgat, Turkey
| | - Evrim Suna Arıkan
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Medical Biology, Afyonkarahisar, Turkey
| | - Şükrü Ateş
- Yozgat Bozok University, Faculty of Medicine, Department of Anatomy, Yozgat, Turkey
| | - Seher Yılmaz
- Yozgat Bozok University, Faculty of Medicine, Department of Anatomy, Yozgat, Turkey
| |
Collapse
|
4
|
Thanh DD, Bich-Ngoc N, Paques C, Christian A, Herkenne S, Struman I, Muller M. The food dye Tartrazine disrupts vascular formation both in zebrafish larvae and in human primary endothelial cells. Sci Rep 2024; 14:30367. [PMID: 39639097 PMCID: PMC11621646 DOI: 10.1038/s41598-024-82076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Tartrazine (E102) is a controversial coloring agent whose potential impacts on human health are not fully understood. Our study reveals the vascular disrupting effects of tartrazine (TTZ) on developing zebrafish embryos in vivo and on human umbilical vein endothelial cells in vitro. The dye was shown to cause dose-dependent hemorrhages in zebrafish embryos. Analyzing transgenic zebrafish harboring fluorescent endothelial cells revealed that TTZ treatment disrupted cell organization into vessels in both the sub-intestinal vein and the brain area. Assays on human umbilical vein endothelial cells demonstrated that TTZ inhibited endothelial proliferation, tube formation, and migration in a dose-dependent manner. Taken together, our results indicate for the first time that TTZ can affect endothelial cell properties, possibly by disrupting Rho family GTPase pathways which control the cytoskeleton. Our finding provides a credible explanation for many reported human health impacts and offers prospective applications for biomedicine.
Collapse
Affiliation(s)
- Dinh Duy Thanh
- Lab. for Organogenesis and Regeneration, GIGA-Institute, Université de Liège, Liège, 4000, Belgium
- Department of Cell Biology, Faculty of Biology, VNU University of Science, Hanoi, 100000, Vietnam
| | - Nguyen Bich-Ngoc
- VNU School of Interdisciplinary Sciences and Arts, Vietnam National University, Hanoi, 100000, Vietnam
| | - Cécile Paques
- Lab. of Molecular Angiogenesis, GIGA-Institute, Université de Liège, Liège, 4000, Belgium
| | - Aurélie Christian
- Lab. of Molecular Angiogenesis, GIGA-Institute, Université de Liège, Liège, 4000, Belgium
| | - Stéphanie Herkenne
- Lab. of Molecular Angiogenesis, GIGA-Institute, Université de Liège, Liège, 4000, Belgium
| | - Ingrid Struman
- Lab. of Molecular Angiogenesis, GIGA-Institute, Université de Liège, Liège, 4000, Belgium
| | - Marc Muller
- Lab. for Organogenesis and Regeneration, GIGA-Institute, Université de Liège, Liège, 4000, Belgium.
| |
Collapse
|
5
|
Chen J, Xia P. Health effects of synthetic additives and the substitution potential of plant-based additives. Food Res Int 2024; 197:115177. [PMID: 39593388 DOI: 10.1016/j.foodres.2024.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
The growth of the world population and the rapid industrialization of food have led to food producers' increased reliance on food additives. While food additives offer numerous conveniences and advantages in food applications, the potential risks associated with synthetic additives remain a significant concern. This report examines the current status of safety assessment and toxicity studies of common synthetic additives, including flavorings (sweeteners and flavor enhancers), colorants, preservatives (antimicrobials and antioxidants), and emulsifiers. The report also examines recent advances in promising plant-based alternative additives in terms of active ingredients, sensory properties, potential health benefits, food application challenges, and their related technologies (edible coatings/films and nanoencapsulation technologies), providing valuable references and insights for the sustainable development of food additives.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Singh M, Chadha P. Gastrointestinal toxicity following sub-acute exposure of erythrosine in rats: biochemical, oxidative stress, DNA damage and histopathological studies. J Biochem Mol Toxicol 2024; 38:e70007. [PMID: 39400474 DOI: 10.1002/jbt.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Erythrosine, a synthetic food dye, has been controversial due to its potential health risks. This study examines the effect of erythrosine on activity of antioxidative enzymes, oxidative stress indices, DNA damage through comet assay, and histopathological changes on stomach, intestine, and colon over a period of 28 days in rats. Twenty-four rats were randomly divided into four groups (n = 6). The first is the control group and then one each for three doses of erythrosine based on acceptable daily intake (¼ ADI, ½ ADI, and ADI, 0.1 mg/kg body weight). The results revealed that with increasing dosages the activity of catalase decreased in stomach and intestine but in colon, the catalase activity increased. Superoxide dismutase and glutathione-S-transferase activity decreased in dose-dependent manner in all three tissues. While, in stomach and intestine, the acetylcholinesterase activity showed increment in ¼ ADI dose group and then declined in ½ ADI and ADI dose-administered rats. The oxidative stress indicators showed elevated levels of lipid peroxidation, hydrogen peroxide concentration, and lactate dehydrogenase activity suggesting heightened free radical activity and potential oxidative damage. The comet test was used to evaluate DNA damage, revealing substantial damage in the erythrosine administered groups. Histopathological examination showed inflammatory infiltration and other degenerative changes in gastrointestinal tract, highlighting the dye's adverse effects. The research underscores the need for a comprehensive reevaluation of the safety and toxicity of food dyes like erythrosine, especially considering the inconsistencies in existing studies regarding the dye's safety.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
7
|
Venkatesan M, Shanmugam G, Arumugam J. Spindle shaped Fe-Ni metal organic frameworks wrapped with f-MWCNTs for the efficacious sensing of tartrazine. Food Chem 2024; 453:139634. [PMID: 38761732 DOI: 10.1016/j.foodchem.2024.139634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
A facile hydrothermal route was employed for the synthesis of iron-nickel bimetal organic frameworks (Fe-Ni bi-MOFs) and composite with an acid functionalized multi-walled carbon nanotubes (Fe-Ni MOF/f-MWCNTs) for electrochemical detection of tartrazine. The as-prepared Fe-Ni MOF/f-MWCNTs was confirmed by the several physicochemical studies. A micro spindle shaped, highly porous, and crystalline Fe-Ni MOF/f-MWCNTs was noticed. The high sensitivity and stability of Fe-Ni MOF/f-MWCNTs/GCE modified electrode was analyzed. Due to its high porosity nature, the analyte molecule effectively gets adsorbed on the modified electrode and undergo electrochemical oxidation effectively. The modified electrode exhibits low limit of detection (LOD) and limit of quantification (LOQ) as 0.04 × 10-6 mol/L and 0.13 × 10-6 mol/L towards tartrazine. These results reveal the potential applications of Fe-Ni MOF/f-MWCNTs/GCE as modified electrode material for sensitive detection of tartrazine along with its robust reproducibility, stability, and effective sensing properties.
Collapse
Affiliation(s)
- Monisha Venkatesan
- Energy Conversion and Energy Storage Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu, Chennai, Tamil Nadu 603203, India
| | - Ganesan Shanmugam
- Energy Conversion and Energy Storage Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu, Chennai, Tamil Nadu 603203, India.
| | - Jeevanantham Arumugam
- Energy Conversion and Energy Storage Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu, Chennai, Tamil Nadu 603203, India
| |
Collapse
|
8
|
Şenol ZM, El Messaoudi N, Ciğeroglu Z, Miyah Y, Arslanoğlu H, Bağlam N, Kazan-Kaya ES, Kaur P, Georgin J. Removal of food dyes using biological materials via adsorption: A review. Food Chem 2024; 450:139398. [PMID: 38677180 DOI: 10.1016/j.foodchem.2024.139398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
It is alarming that synthetic food dyes (FD) are widely used in various industries and that these facilities discharge their wastewater into the environment without treating it. FDs mixed into industrial wastewater pose a threat to the environment and human health. Therefore, removing FDs from wastewater is very important. This review explores the burgeoning field of FD removal from wastewater through adsorption using biological materials (BMs). By synthesizing a wealth of research findings, this comprehensive review elucidates the diverse array of BMs employed, ranging from algae and fungi to agricultural residues and microbial biomass. Furthermore, this review investigates challenges in practical applications, such as process optimization and scalability, offering insights into bridging the gap between laboratory successes and real-world implementations. Harnessing the remarkable adsorptive potential of BMs, this review presents a roadmap toward transformative solutions for FD removal, promising cleaner and safer production practices in the food and beverage industry.
Collapse
Affiliation(s)
- Zeynep Mine Şenol
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zeynep Ciğeroglu
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Usak University, Usak 64300, Turkey
| | - Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez/Meknes, Morocco
| | - Hasan Arslanoğlu
- Çanakkale Onsekiz Mart University, Engineering Faculty, Chemical Engineering, Çanakkale, Turkey
| | - Nurcan Bağlam
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey
| | - Emine Sena Kazan-Kaya
- Chemical Engineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Parminder Kaur
- Circular Economy Solutions (KTR), Geological Survey of Finland, 70210 Kuopio, Finland
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
9
|
Amchova P, Siska F, Ruda-Kucerova J. Food Safety and Health Concerns of Synthetic Food Colors: An Update. TOXICS 2024; 12:466. [PMID: 39058118 PMCID: PMC11280921 DOI: 10.3390/toxics12070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024]
Abstract
The toxicity of food additives is widely studied and concerns many consumers worldwide. Synthetic food colors are often considered an unnecessary risk to consumer health. Since the European Food Safety Authority's (EFSA) re-evaluation between 2009 and 2014, the body of scientific literature on food colors has grown, and new evaluations are being published by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Therefore, this narrative review aims to review the toxicological data that have become available since 2014. The reviewed colors are Quinoline Yellow, Sunset Yellow, Azorubine, Amaranth, Ponceau 4R, Erythrosine, Allura Red, Patent Blue, Indigo Carmine, Brilliant Blue FCF, Green S, Brilliant Black, Brown HT, and Lithol Rubine BK. Tartrazine was not included in this paper; the overwhelming amount of recent data on Tartrazine toxicity requires more space than this review can provide. The issues regarding the toxicity of synthetic food colors and real population exposures are being regularly examined and reviewed by relevant authorities, such as the EFSA and JECFA. The current ADI limits set by the authorities are mostly in agreement, and they seem safe. However, the EFSA and JECFA assessments of some of the colors are more than a decade old, and new evidence will soon be required.
Collapse
Affiliation(s)
- Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.A.); (F.S.)
| | - Filip Siska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.A.); (F.S.)
- Oncology Department, Hospital of Ceske Budejovice, B. Nemcove 585/54, 370 01 Ceske Budejovice, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.A.); (F.S.)
| |
Collapse
|
10
|
ŞENSOY E. Determination of the effects of sunset yellow on mouse liver and pancreas using histological methods. Toxicol Res (Camb) 2024; 13:tfae070. [PMID: 38737341 PMCID: PMC11084755 DOI: 10.1093/toxres/tfae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Background Sunset Yellow (SY) is an azo synthetic food dye. Although the amount of SY consumed varies in different periods of life, it increases especially in children and adolescents. It may cause pathologic effects in organs at early ages. The aim of this study was to determine the effects of SY on the liver and pancreas of mice of different age groups using histological methods. Methods The study included Swiss albino mice that were divided into three treatment groups and three control groups based on age (4, 8, and 10 weeks old), with six mice in each group (n = 6/group). SY was administered at 30 mg/kg/bw/week orally for 28 days to treatment groups. The liver and pancreas tissues were kept in 10% formaldehyde, then passed through alcohol and xylene series and stained with Hematoxylin-Eosin. Results They were evaluated using light and electron microscopy. In SY groups, the mean body weight (p: 0.026) and the mean liver weight (p: 0.013) of the mice increased, and their mean pancreas weight decreased (p: 0.045).The numbers of degenerative cells in the liver tissues of the mice in the SY groups were high. Severe dilation in the sinusoids and haemorrhages focused around the Vena Cava were detected. In the pancreatic tissues of the SY groups, increases in fibroblasts and lymphocytic infiltration were observed. Conclusions Pathologies interpreted as chronic pancreatitis were more intense in the weaning group (4 weeks old). SY may be more harmful at an early age, and it may be beneficial to limit its use during this period.
Collapse
Affiliation(s)
- Erhan ŞENSOY
- Department of Midwifery, Faculty of Health Sciences, Karamanoglu Mehmetbey University, Ibrahim Okten Street, Campus, 70100 Karaman, Turkey
| |
Collapse
|
11
|
de Oliveira ZB, Silva da Costa DV, da Silva dos Santos AC, da Silva Júnior AQ, de Lima Silva A, de Santana RCF, Costa ICG, de Sousa Ramos SF, Padilla G, da Silva SKR. Synthetic Colors in Food: A Warning for Children's Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:682. [PMID: 38928929 PMCID: PMC11203549 DOI: 10.3390/ijerph21060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024]
Abstract
This study addressed the harmful effects of artificial colors in pediatric populations, including children diagnosed with Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD), as well as those without behavioral disorders. There is a consensus that synthetic food colorings have several impacts on consumers, especially pediatrics, due to their influence on sensory appeal, which can encourage preference for certain foods. The results revealed that these color additives are directly linked to a series of health problems, with a greater impact on children, including a predisposition to pathological conditions such as carcinogenic, allergenic, mutagenic, cytotoxic, and clastogenic activities, as well as gastrointestinal and respiratory problems, in addition to behavioral changes in children with and without diagnosed disorders. The harms of synthetic dyes in children with or without comorbidities are worrying and require a careful and proactive approach from parents, caregivers and public authorities.
Collapse
Affiliation(s)
- Zandleme Birino de Oliveira
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Darlene Vitória Silva da Costa
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Ana Caroline da Silva dos Santos
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Antônio Quaresma da Silva Júnior
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
| | - Amanda de Lima Silva
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Raphael Carlos Ferrer de Santana
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Isabella Cristhina Gonçalves Costa
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Sara Freitas de Sousa Ramos
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
| | - Gabriel Padilla
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Silvia Katrine Rabelo da Silva
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
- Laboratório de Microbiologia, Instituto de Saúde Coletiva, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (D.V.S.d.C.); (A.C.d.S.d.S.); (A.d.L.S.); (R.C.F.d.S.); (I.C.G.C.); (S.F.d.S.R.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil
| |
Collapse
|
12
|
Toraman E. Biochemical and molecular evaluation of oxidative stress and mitochondrial damage in fruit fly exposed to carmoisine. Mol Biol Rep 2024; 51:685. [PMID: 38796672 DOI: 10.1007/s11033-024-09616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND In today's world, appearance is an important factor in almost all areas of our lives. Therefore, it has become common to use dyes to color foods to make them look appetizing and visually appealing. However, food additives have negative effects on biochemical processes in cells at both high and low doses. METHODS AND RESULTS This study investigated the effect of carmoisine, a commonly used food coloring, on oxidative stress and damage parameters in Drosophila melanogaster in terms of both enzymatic and gene expression. The change in mitochondrial DNA copy number (mtDNA-CN), a marker of oxidative stress, was also examined. When the data obtained were analyzed, it was observed that carmoisine caused a significant decrease in GSH levels depending on the increase in dose. SOD, CAT, GPx, and AChE enzyme activities and gene expression levels were also found to be significantly decreased. All groups also showed a significant decrease in mtDNA-CN. The effect of carmoisine on Drosophila melanogaster morphology was also investigated in our study. However, no significant change was observed in terms of morphological development in any group. CONCLUSIONS When all the findings were evaluated together, it was observed that carmoisin triggered oxidative stress and these effects became more risky at high doses. Therefore, we believe that the consumer should be made more aware of the side effects of azo dyes in food and that the type and concentration of each substance added to food should be specified.
Collapse
Affiliation(s)
- Emine Toraman
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Türkiye, 25240, Turkey.
| |
Collapse
|
13
|
Zhu R, Jin L, Yang B, Ma Y, Zhou Y, Xiao R, Meng Y, Hou Y, Xie B, Jiang XJ. Synthesis of Bio-Base Fluorescence Carbon Dots for Selective Detection of Tartrazine and Sunset Yellow in Food Samples. J Fluoresc 2024:10.1007/s10895-024-03758-x. [PMID: 38789858 DOI: 10.1007/s10895-024-03758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
A green, economical and simple method for the preparation of water-soluble, high-fluorescent carbon quantum dots (CQDs) has been developed via hydrothermal process using pomelo peels as carbon source. The synthesized CQDs were characterized by transmission electron microscopy (TEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR), UV - vis absorption spectra and fluorescence spectrophotometer. The results reveal that the as-prepared C-dots were spherical shape with an average diameter of 2.64 nm and emit bright blue photoluminescence (PL) with a quantum yield of approximately 3.63%. The surface of the C-dots was rich in hydroxyl groups and presented various merits including excellent photostability, low toxicity, and satisfactory solubility. Additionally, we found that two widely used synthetic food colorants, tartrazine and sunset yellow, could result in a strong fluorescence quenching of the C-dots, The possible mechanisms are caused by different ratios of inner filter and static quenching effects. According to this property, This study attempts to establish an analytical method for the determination of tartrazine and sunset yellow using carbon quantum dots as fluorescent probe. A linear relationship was found in the range of 0-100 µM tartrazine and sunset yellow with the detection limit(3σ/k) of 0.65 nM and 1.7 nM. The relative standard deviation (RSD) was 3.5% (tartrazine) and 3.0% (sunset yellow).This observation was further successfully applied for the determination of tartrazine and sunset yellow in food samples collected from local markets, and the recovery rates of the two ranges from 79% to 117.8 and 81 -103.5%, respectively. suggesting its great potential toward food routine analysis.
Collapse
Affiliation(s)
- RongGui Zhu
- College of Biological Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - Lei Jin
- College of Biological Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - Bing Yang
- Analysis and Testing Center, Dezhou University, Dezhou, Shandong, China
| | - Yuan Ma
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - You Zhou
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - RongDan Xiao
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - YiJie Meng
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - Ye Hou
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - BenTing Xie
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - Xiu Juan Jiang
- College of Jia Sixie Agronomy, Weifang University of Science and Technology, Shouguang, Shandong, China.
| |
Collapse
|
14
|
Marumure J, Simbanegavi TT, Makuvara Z, Karidzagundi R, Alufasi R, Goredema M, Gufe C, Chaukura N, Halabowski D, Gwenzi W. Emerging organic contaminants in drinking water systems: Human intake, emerging health risks, and future research directions. CHEMOSPHERE 2024; 356:141699. [PMID: 38554874 DOI: 10.1016/j.chemosphere.2024.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (μg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (μg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.
Collapse
Affiliation(s)
- Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119 Mount Pleasant, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Marvelous Goredema
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Box CY55, 18A Borrowdale Road, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| | - Willis Gwenzi
- Currently: Biosystems and Environmental Engineering Research Group, 380, New Adylin, Westgate, Harare, Zimbabwe; Formerly: Alexander von Humboldt Fellow & Guest/Visiting Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213, Witzenhausen, Germany; Formerly: Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| |
Collapse
|
15
|
Bhatt D, Vyas K, Singh S, John PJ, Soni IP. Sunset Yellow induced biochemical and histopathological alterations in rat brain sub-regions. Acta Histochem 2024; 126:152155. [PMID: 38489857 DOI: 10.1016/j.acthis.2024.152155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 01/28/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
Sunset Yellow, a synthetic orange azo food dye was examined in this study for its impact on the Wistar rat brain sub-regions. The dye was administered orally to weanling rats at the Acceptable Daily Intake level (4 mg/kg/bw) for 40 days, and brain sub-regions viz., frontal cortex, cerebellum and hippocampus were examined for biochemical and histopathological changes. The results showed a significant decrease in tissue protein levels, superoxide dismutase, and catalase activity, as well as a significant increase in lipid peroxide levels in all brain sub-regions. Glutathione-S-transferase and Glutathione Reductase activities decreased, while Glutathione peroxidase activity increased. The biogenic amine levels and Acetylcholinesterase activity were also altered, with the frontal cortex and hippocampus being the most affected. Additionally, the dye caused histopathological damage in all brain sub-regions examined. This study indicates that the ADI level of Sunset Yellow may adversely affect brain tissue by causing oxidative damage.
Collapse
Affiliation(s)
- Diksha Bhatt
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India.
| | - Krati Vyas
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - Shakuntala Singh
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - P J John
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| | - I P Soni
- Environmental Toxicology Laboratory, Department of Zoology, University of Rajasthan, Jaipur 302004, India
| |
Collapse
|
16
|
Essawy A, Matar S, Mohamed N, Abdel-Wahab W, Abdou H. Ginkgo biloba extract protects against tartrazine-induced testicular toxicity in rats: involvement of antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15065-15077. [PMID: 38286926 DOI: 10.1007/s11356-024-32047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024]
Abstract
The use of additives, especially colorants, in food and pharmaceutical industry is increasing dramatically. Currently, additives are classified as contaminants of emerging concern (CECs). Concerns have been raised about the potential hazards of food additives to reproductive organs and fertility. The present study investigates the reproductive toxicity of tartrazine (TRZ), a synthetic colorant, in male rats and aims to explore the curative effect of Ginkgo biloba extract (EGb) against TRZ-induced testicular toxicity. Twenty-four rats were divided into four groups: the control (0.5 ml distilled water), the EGb group (100 mg/kg EGb alone), the TRZ group (7.5 mg/kg TRZ alone), and the TRZ-EGb group (7.5 mg/kg TRZ plus 100 mg/kg EGb). The doses were administered orally in distilled water once daily for 28 days. Toxicity studies of TRZ investigated testicular redox state, serum gonadotropins, and testosterone levels, testicular 17 ß-hydroxysteroid dehydrogenase activity, sperm count and quality, levels of inflammatory cytokines, and caspase-3 expression as an apoptotic marker. Also, histopathological alterations of the testes were examined. TRZ significantly affected the testicular redox status as indicated by the increase in malondialdehyde and the decrease in reduced glutathione, superoxide dismutase, and catalase. It also disrupted serum gonadotropins (follicle stimulating hormone and luteinizing hormone) and testosterone levels and the activity of testicular 17ß-hydroxysteroid dehydrogenase. Additionally, TRZ adversely affected sperm count, motility, viability, and abnormality. Levels of tumor necrosis factor-α, interleukin-1β, interleukin-6, and expression of caspase-3 were increased in the testes. Histopathological examination of the testes supported the alterations mentioned above. Administration of EGb significantly ameliorated TRZ-induced testicular toxicity in rats. In conclusion, EGb protected against TRZ-induced testicular toxicity through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Amina Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Shreen Matar
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nema Mohamed
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wessam Abdel-Wahab
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Heba Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Chaudhari SS, Patil PO, Bari SB, Khan ZG. A comprehensive exploration of tartrazine detection in food products: Leveraging fluorescence nanomaterials and electrochemical sensors: Recent progress and future trends. Food Chem 2024; 433:137425. [PMID: 37690141 DOI: 10.1016/j.foodchem.2023.137425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Azo dyes are widely used as food coloring agents because of their affordability and stability. Examples include brilliant blue, carmoisine, sunset yellow, allura red, and tartrazine (Tar), etc. Notably, Tar is often utilized in hazardous food goods. They are frequently flavoured and combined with food items, raising the likelihood and danger of exposure. Therefore, detecting Tar in food is crucial to prevent health risks. Fluorescence nanomaterials and electrochemical sensors, known for their high sensitivity, affordability, simplicity, and speed, have been widely adopted by researchers for Tar detection. This comprehensive paper delves into the detection of Tar in food products. It extensively covers the utilization of advanced carbon-based nanomaterials, including CDs, doped CDs, and functionalized CDs, for sensitive Tar detection. Additionally, the paper explores the application of electrochemical sensors. The paper concludes by addressing current challenges and prospects, emphasizing efforts to enhance sensitivity, and selectivity for improved food safety.
Collapse
Affiliation(s)
- Sharayu S Chaudhari
- Department of Quality Assurance, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India
| | - Pravin O Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India
| | - Sanjaykumar B Bari
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India
| | - Zamir G Khan
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India.
| |
Collapse
|
18
|
Nasri A, Pohjanvirta R. Comparison of in vitro Toxicities of 8-Prenylnaringenin, Tartrazine and 17β-Estradiol, Representatives of Natural and Synthetic Estrogens, in Rat and Human Hepatoma Cell Lines. Endocr Res 2024; 49:106-116. [PMID: 38597376 DOI: 10.1080/07435800.2024.2337758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17β-estradiol (E2). METHODS These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION Natural estrogens were no less toxic than a synthetic one.
Collapse
Affiliation(s)
- Atefeh Nasri
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Basavapura Ravikumar S, Prasanna SB, Shivamurthy SA, Shadakshari S, Nagaraja BM, Rajabathar JR, Al-lohedan HA, Arokiyaraj S. Individual and Simultaneous Electrochemical Detection of Allura Red and Acid Blue 9 in Food Samples Using a Novel La 2YCrO 6 Double Perovskite Decorated on HLNTs as an Electrocatalyst. ACS OMEGA 2024; 9:2568-2577. [PMID: 38250369 PMCID: PMC10795027 DOI: 10.1021/acsomega.3c07330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
The present study involved the synthesis of La2YCrO6 double perovskites using a sol-gel approach. Additionally, a sonication method was implemented to prepare La2YCrO6 double perovskites decorated on halloysites (La2YCrO6/HLNTs). The La2YCrO6/HLNTs exhibited remarkable conductivity, electrocatalytic activity, and rapid electron transfer. It is imperative to possess these characteristics when overseeing the concurrent identification of Allura red (AR) and acid blue 9 (AB) in food samples. The development of the La2YCrO6/HLNTs was verified through the utilization of diverse approaches for structural and morphological characterization. The electrochemical techniques were employed to evaluate the analytical techniques of La2YCrO6/HLNTs. Impressively, the La2YCrO6/HLNTs demonstrated exceptional sensitivity, yielding the lowest detection limit for AR at 8.99 nM and AB at 5.14 nM. Additionally, the linear concentration range was 10-120 nM (AR and AB). The sensor that was developed exhibited remarkable selectivity, and the feasibility of AR and AB in the food sample was effectively monitored, resulting in satisfactory recoveries.
Collapse
Affiliation(s)
| | - Sanjay Ballur Prasanna
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | | | - Sandeep Shadakshari
- Department
of Chemistry, SJCE, JSS Science and Technology
University, Karnataka 570006, India
| | - Bhari Mallanna Nagaraja
- Centre
for Nano and Material Science (CNMS), Jain
University, Jain Global
Campus, Bangalore 562112, India
| | - Jothi Ramalingam Rajabathar
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Hamad A. Al-lohedan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department
of Food Science and Biotechnology, Sejong
University, Seoul 05006, South Korea
| |
Collapse
|
20
|
Liu H, Wang M, Huang G. A fluorescent sensor based on sulfur nanodots encapsulated into zeolitic imidazolate framework-8 for ultrasensitive detection of tartrazine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123187. [PMID: 37499476 DOI: 10.1016/j.saa.2023.123187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
A new composite material (SDs@ZIF-8) was synthesized by integrating sulfur nanodots (SDs) into metal-organic frameworks (ZIF-8) through a facile one-step self-assembly strategy. The obtained SDs@ZIF-8 has not only the high adsorption performance of ZIF-8 but also the superior fluorescence characteristics of SDs. The composite featured good dispersibility, stable structure as well as excellent fluorescence in water solution, and can be used as an ideal fluorescent sensor for tartrazine detection. Due to the high specific surface area and adsorption performance of ZIF-8, the prepared composite material can significantly enrich tartrazine, further enhancing the sensitivity of analysis. The fluorescence of SDs @ZIF-8 composite can be effectively quenched by tartrazine through the inner filter effect. The sensing technique exhibited exceptional sensitivity, as evidenced by its impressive detection limit of 6.5 nM across a broad linear range spanning from 0.02 to 90 μM. In addition to its high sensitivity, the technique displayed rapid response times and excellent selectivity. Moreover, the fluorescent sensing technology we developed has been employed successfully for the detection of tartrazine in real samples, which is expected to promote the development of the food safety industry.
Collapse
Affiliation(s)
- Haijian Liu
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shouguang 262700, Weifang, China.
| | - Miao Wang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shouguang 262700, Weifang, China
| | - Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shouguang 262700, Weifang, China
| |
Collapse
|
21
|
Pay R, Sharrock AV, Elder R, Maré A, Bracegirdle J, Torres D, Malone N, Vorster J, Kelly L, Ryan A, Josephy PD, Allen-Vercoe E, Ackerley DF, Keyzers RA, Harvey JE. Preparation, analysis and toxicity characterisation of the redox metabolites of the azo food dye tartrazine. Food Chem Toxicol 2023; 182:114193. [PMID: 37980979 DOI: 10.1016/j.fct.2023.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Tartrazine (E102, FD&C Yellow 5) is a vibrant yellow azo dye added to many processed foods. The safety of this ubiquitous chemical has not been fully elucidated, and it has been linked to allergic reactions and ADHD in some individuals. In our study, bacterial species isolated from human stool decolourised tartrazine and, upon exposure to air, a purple compound formed. Tartrazine is known to undergo reduction in the gut to sulfanilic acid and 4-amino-3-carboxy-5-hydroxy-1-(4-sulfophenyl)pyrazole (SCAP). These metabolites and their derivatives are relevant to the toxicology of tartrazine. The toxicity of sulfanilic acid has been studied before, but the oxidative instability of SCAP has previously prevented full characterisation. We have verified the chemical identity of SCAP and confirmed that the purple-coloured oxidation derivative is 4-(3-carboxy-5-hydroxy-1-(4-sulfophenyl)-1H-pyrazol-4-yl)imino-5-oxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid (purpurazoic acid, PPA), as proposed by Westöö in 1965. A yellow derivative of SCAP is proposed to be the hydrolysed oxidation product, 4,5-dioxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid. SCAP and PPA are moderately toxic to human cells (IC50 89 and 78 μM against HEK-293, respectively), but had no apparent effect on Escherichia coli and Bacillus subtilis bacteria. These results prompt further analyses of the toxicology of tartrazine and its derivatives.
Collapse
Affiliation(s)
- Ruth Pay
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Abigail V Sharrock
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Riley Elder
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Alaigne Maré
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Joe Bracegirdle
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Dan Torres
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Niall Malone
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Jan Vorster
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Libusha Kelly
- Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ali Ryan
- Department of Biology, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK
| | - P David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - David F Ackerley
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Robert A Keyzers
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Joanne E Harvey
- School of Chemical and Physical Sciences, Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|
22
|
Kanwal A, Rehman R, Imran M, Samin G, Jahangir MM, Ali S. Phytoremediative adsorption methodologies to decontaminate water from dyes and organic pollutants. RSC Adv 2023; 13:26455-26474. [PMID: 37674490 PMCID: PMC10478504 DOI: 10.1039/d3ra02104a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Persistent organic pollutants and dyes cause major problems during ecofriendly wastewater treatment. To overcome this huge problem, several techniques have been considered and in practice for the safe disposal of organic pollutants in recent years; some of them are discussed and compared herein. This review focuses on new trends for wastewater treatment and compares them with certain other techniques alongside their pros and cons; adsorption is considered the safest among them. Adsorbents derived from agri-wastes have good capacity for the removal of these contaminants owing to their great sorption capacity, high reusability, easy operation, etc. Sometimes they need some modifications for the removal of dyes, which are also discussed in this review. This capacity of adsorbents to chelate dye molecules can be affected by factors, such as pH, the concentration of dyes and adsorbents, and temperature of the system. pH has direct influence on the ionization potential and charge on the outer surface of adsorbents. The findings on isotherms, kinetics, and desorption of plant waste-based biomaterials that are safe for the ecosystem and user friendly and are used for hazardous contaminant removal from water are summarized in this review. Finally, conclusions and future perspectives are presented, and some other materials, such as CNTs and MOFs, are also discussed as efficient adsorbents for eliminating dyes from wastewater. Finally, it is predicted that the adsorption of dyes is a more feasible solution for this dye pollution problem.
Collapse
Affiliation(s)
- Ayesha Kanwal
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Quaid-e-Azam Campus Lahore-54590 Pakistan
| | - Ghufrana Samin
- Department of Basic Sciences and Humanities, University of Engineering and Technology (Lahore) Faisalabad Campus Pakistan
| | | | - Saadat Ali
- University of Engineering and Technology Taxila Pakistan
| |
Collapse
|
23
|
Guerrero-Rubio MA, Hernández-García S, García-Carmona F, Gandía-Herrero F. Consumption of commonly used artificial food dyes increases activity and oxidative stress in the animal model Caenorhabditis elegans. Food Res Int 2023; 169:112925. [PMID: 37254351 DOI: 10.1016/j.foodres.2023.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
In recent decades, the consumption of artificial colorants in foods and beverages has increased despite of concerns in the general population raised by studies that have shown possible injurious effects. In this study, tartrazine, sunset yellow, quinoline yellow, ponceau 4R, carmoisine and allura red were employed as pure compounds to explore their effects in vivo in the animal model Caenorhabditis elegans. The exposition of C. elegans to these artificial dyes produced damage related with aging such as oxidative stress and lipofuscin accumulation, as well as a heavy shortening of lifespan, alterations in movement patterns and alterations in the production of dopamine receptors. Besides, microarray analysis performed with worms treated with tartrazine and ponceau 4R showed how the consumption of synthetic colorants is able to alter the expression of genes involved in resistance to oxidative stress and neurodegeneration.
Collapse
Affiliation(s)
- M Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
24
|
Zand A, Enkhbilguun S, Macharia JM, Budán F, Gyöngyi Z, Varjas T. Tartrazine Modifies the Activity of DNMT and HDAC Genes-Is This a Link between Cancer and Neurological Disorders? Nutrients 2023; 15:2946. [PMID: 37447272 DOI: 10.3390/nu15132946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, artificial additives, especially synthetic food colorants, were found to demonstrate wider properties compared to their natural equivalents; however, their health impact is still not totally mapped. Our study aimed to determine the long-term (30 and 90 days) exposure effect of one of the commonly used artificial food colorants, tartrazine, on NMRI mice. The applied dose of tartrazine referred to the human equivalent dose for acceptable daily intake (ADI). Further, we evaluated its impact on the transcription of a range of epigenetic effectors, members of the DNA methyltransferase (DNMT) as well as histone deacetylase (HDAC) families. Following the exposure, organ biopsies were collected from the lungs, kidneys, liver, and spleen, and the gene expression levels were determined by real-time quantitative reverse transcription PCR (RT-qPCR). Our results demonstrated significant upregulation of genes in the tested organs in various patterns followed by the intake of tartrazine on ADI. Since DNMT and HDAC genes are involved in different steps of carcinogenesis, have roles in the development of neurological disorders and the effect of dose of everyday exposure is rarely studied, further investigation is warranted to study these possible associations.
Collapse
Affiliation(s)
- Afshin Zand
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Sodbuyan Enkhbilguun
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pécs, H-7621 Pécs, Hungary
| | - Ferenc Budán
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Gyöngyi
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
25
|
Shosha HM, Ebaid HM, Toraih EA, Abdelrazek HMA, Elrayess RA. Effect of monosodium glutamate on fetal development and progesterone level in pregnant Wistar Albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49779-49797. [PMID: 36787072 PMCID: PMC10104942 DOI: 10.1007/s11356-023-25661-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
Monosodium glutamate (MSG) is a widespread flavor enhancer and stabilizer in manufactured or packaged foods that possess myriad adverse effects. This study aimed to evaluate the effect of MSG on placental progesterone receptors and fetal development. Thirty pregnant Wistar Albino rats were divided into three groups (ten/each). The control group (G1) gavaged distilled water only, low-dose treated group (G2) gavaged 3 g/kg MSG, and high-dose treated group (G3) gavaged 6 g/kg MSG from 1st to 18th days of gestation, and all pregnant rats were sacrificed on the 19th day of gestation. The effect of MSG on fetal weights, crown vertebral length (CVL), placental weight, placental ghrelin expression, and fetal skeleton examination were estimated. MSG induced a significant decrease in fetal weights, CVL lengths, placental weight, and ghrelin expression in both treatment groups compared to the control group. Several parts of the fetal skeleton showed incomplete ossification and delayed chondrification in which high-dose maternally treated fetuses were more affected. Many degenerative changes were detected in both maternal and fetal liver and kidney tissues in MSG-treated groups. Moreover, MSG caused a significant increase in serum ALT, ALP, and creatinine levels in pregnant rats' blood. Serum progesterone was only elevated in G3 on the 19th day of gestation. This study showed that the administration of MSG during pregnancy adversely influences fetal growth and skeletal development and caused several biochemical and histological changes in the maternal and fetal liver and kidney tissues which assure the toxic and teratogenic effects of MSG.
Collapse
Affiliation(s)
- Hadeer M Shosha
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia, 41522, Egypt
| | - Hala M Ebaid
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ranwa A Elrayess
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
26
|
Electrochemical aptasensor based on carboxylated graphene oxide modified carbon paste electrode for strontium ultrasensitive detection. Anal Biochem 2023; 666:115081. [PMID: 36773630 DOI: 10.1016/j.ab.2023.115081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Determination of strontium ions (Sr2+) is crucial with regard to human health and environmental protection. In this work, an electrochemical aptasensor was designed using carboxylated graphene oxide (CGO)-modified carbon paste electrode (CGO/CPE) for ultrasensitive determination of Sr2+ ions. The electrochemical determination was accomplished with employing the constructed G-quadruplex (G4) aptamer at the surface of aptasensor in presence of carmoisine (CA) as an electrochemical label. Moreover, NH2-functionalized aptamer was immobilized onto CGO/CPE via carboxylic group. Hence, differential pulse voltammetry was applied for detection of any possible signal changes of CA on the aptasensor surface. The reduction peak currents of CA in the absence and presence of Sr2+ in solution were different and this difference was linearly dependent to the concentration of Sr2+ in solution. The analytical results revealed that our novel aptasensor showed two appropriate linear ranges (0.1-8.0 pM and 3.0-20.0 nM) versus to Sr2+ ion concentrations with the limit of detection of 0.06 pM (S/N = 3). Excellent stability, selectivity and reproducibility were achieved with this new electrochemical aptasensor. Additionally, the aptasensor showed good achievements in analysis of Sr2+ in aqueous and urine real samples, which making this proposed method a promising candidate for electrochemical detection of Sr2+ in real samples.
Collapse
|
27
|
Hydrothermal synthesis of N,S-doped carbon quantum dots as a dual mode sensor for azo dye tartrazine and fluorescent ink applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Zulfajri M, Sudewi S, Damayanti R, Huang GG. Rambutan seed waste-derived nitrogen-doped carbon dots with l-aspartic acid for the sensing of Congo red dye. RSC Adv 2023; 13:6422-6432. [PMID: 36845584 PMCID: PMC9944313 DOI: 10.1039/d2ra07620a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
In this study, new nitrogen-doped carbon dots (N-CDs) were prepared by utilizing rambutan seed waste and l-aspartic acid as dual precursors (carbon and nitrogen sources) through a hydrothermal treatment method. The N-CDs showed blue emission in solution under UV light irradiation. Their optical and physicochemical properties were examined via UV-vis, TEM, FTIR spectroscopy, SEM, DSC, DTA, TGA, XRD, XPS, Raman spectroscopy, and zeta potential analyses. They showed a strong emission peak at 435 nm and excitation-dependent emission behavior with strong electronic transitions of C[double bond, length as m-dash]C/C[double bond, length as m-dash]O bonds. The N-CDs exhibited high water dispersibility and great optical properties in response to some environmental conditions such as heating temperature, light irradiation, ionic strength, and storage time. They have an average size of 3.07 nm and good thermal stability. Owing to their great properties, they have been used as a fluorescent sensor for Congo red dye. The N-CDs selectively and sensitively detected Congo red dye with a detection limit of 0.035 μM. Moreover, the N-CDs were utilized to detect Congo red in tap and lake water samples. Thus, rambutan seed waste was successfully converted into N-CDs and these functional nanomaterials are promising for use in important applications.
Collapse
Affiliation(s)
- Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah Banda Aceh Aceh 23245 Indonesia
| | - Sri Sudewi
- Department of Pharmacy, Universitas Sam Ratulangi Manado 95115 Indonesia
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| | - Rizki Damayanti
- Department of Chemistry Education, Universitas Serambi Mekkah Banda Aceh Aceh 23245 Indonesia
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| |
Collapse
|
29
|
Monisha B, Sridharan R, Kumar PS, Rangasamy G, Krishnaswamy VG, Subhashree S. Sensing of azo toxic dyes using nanomaterials and its health effects - A review. CHEMOSPHERE 2023; 313:137614. [PMID: 36565768 DOI: 10.1016/j.chemosphere.2022.137614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Development of science has taken over our lives and made it mandatory to live with science. Synthetic technology takes more than it has given for our welfare. In the process of meeting the demand of the consumers, industries supported synthetic products to meet the same. One such sector that employs synthetic azo dyes for food coloring is the food industry. The result of the process is the production of a variety of colored foods which looks more appealing and palatable. The process not only meets the consumer's demand it also has an impact on customers' health because the consumption of azo-toxic dye-treated foods regularly or in direct contact with synthetic azo dyes can also cause severe human health consequences. Nanotechnology is a rapidly evolving branch of research in which nanosensors are being developed for a variety of applications, including sensing various azo-toxic dyes in food products, which provides a wider scope in the future, with the innovation in designing different nanosensors. The current review focuses on the different types of nanosensors, their key role in sensing, and the sensing of azo toxic dyes using nanosensors, their advantages over other sensors, applications of nanomaterials, and the health impacts of azo dyes on humans, appropriate parameters for maximum permissible limits, and an Acceptable Daily Intake (ADI) of azo toxic dye to be followed. The regulations followed on the application of colorants to the food are also elaborated. The review also focuses on the application of enzyme-based biosensors in detecting azo dyes in food products.
Collapse
Affiliation(s)
- B Monisha
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Rajalakshmi Sridharan
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India.
| | - S Subhashree
- Department of Food Processing and Quality Control, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| |
Collapse
|
30
|
Essawy AE, Mohamed AI, Ali RG, Ali AM, Abdou HM. Analysis of Melatonin-Modulating Effects Against Tartrazine-Induced Neurotoxicity in Male Rats: Biochemical, Pathological and Immunohistochemical Markers. Neurochem Res 2023; 48:131-141. [PMID: 36018437 PMCID: PMC9823072 DOI: 10.1007/s11064-022-03723-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 01/11/2023]
Abstract
Tartrazine (E-102) is one of the most widely used artificial food azo-colors that can be metabolized to highly sensitizing aromatic amines such as sulphanilic acid. These metabolites are oxidized to N-hydroxy derivatives that cause neurotoxicity. Melatonin is a neurohormone. That possesses a free-radical scavenging effect. The present work was mainly designed to evaluate the possible ameliorative role of melatonin against tartrazine induced neurotoxicity in cerebral cortex and cerebellum of male rats. Adult male rats were administered orally with tartrazine (7.5 mg/kg) with or without melatonin (10 mg/kg) daily for four weeks. The data revealed that tartrazine induced redox disruptions as measured by significant (p < 0.05) increased malondialdehyde (MDA) level and inhibition of (GSH) concentration and catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) antioxidant enzyme activities. Besides, brain acetyl cholin (Ach) and gamma-aminobutyric acid (GABA) were elevated while, dopamine (DA) was depleted in trtrazine -treated rats. Moreover, tartrazine caused a significant (p < 0.05) increase in the brain interleukin-6 (IL-6), interleukin-1β (IL-1 β) and tumor necrosis factor-α (TNFα). At the tissue level, tartrazine caused severe histopathological changes in the cerebellum and cerebral cortex of rats. The immunohistochemical results elucidated strong positive expression for Caspase-3 and GFAP and weak immune reaction for BcL2 and synaptophysin in tatrazine- treated rats. The administration of melatonin to tartrazine -administered rats remarkably alleviated all the aforementioned tartrzine-induced effects. It could be concluded that, melatonin has a potent ameliorative effect against tartrazine induced neurotoxicity via the attenuation of oxidative/antioxidative responses.
Collapse
Affiliation(s)
- Amina E Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Rania Gaber Ali
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Awatef M Ali
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Heba Mohamed Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
31
|
Sultana S, Rahman MM, Aovi FI, Jahan FI, Hossain MS, Brishti SA, Yamin M, Ahmed M, Rauf A, Sharma R. Food Color Additives in Hazardous Consequences of Human Health: An Overview. Curr Top Med Chem 2023; 23:1380-1393. [PMID: 36650651 DOI: 10.2174/1568026623666230117122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/03/2022] [Accepted: 11/12/2022] [Indexed: 01/19/2023]
Abstract
Food color additives are used to make food more appetizing. The United States Food and Drug Administration (FDA) permitted nine artificial colorings in foods, drugs, and cosmetics, whereas the European Union (EU) approved five artificial colors (E-104, 122, 124, 131, and 142) for food. However, these synthetic coloring materials raise various health hazards. The present review aimed to summarize the toxic effects of these coloring food additives on the brain, liver, kidney, lungs, urinary bladder, and thyroid gland. In this respect, we aimed to highlight the scientific evidence and the crucial need to assess potential health hazards of all colors used in food on human and nonhuman biota for better scrutiny. Blue 1 causes kidney tumor in mice, and there is evidence of death due to ingestion through a feeding tube. Blue 2 and Citrus Red 2 cause brain and urinary bladder tumors, respectively, whereas other coloring additives may cause different types of cancers and numerous adverse health effects. In light of this, this review focuses on the different possible adverse health effects caused by these food coloring additives, and possible ways to mitigate or avoid the damage they may cause. We hope that the data collected from in vitro or in vivo studies and from clinical investigations related to the possible health hazards of food color additives will be helpful to both researchers and the food industry in the future.
Collapse
Affiliation(s)
- Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Farjana Islam Aovi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Farhana Israt Jahan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sakhawat Hossain
- Pharmaceutical Sciences Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | | | - Md Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
32
|
Korah BK, Thara CR, John N, John BK, Mathew S, Mathew B. Microwave abetted synthesis of carbon dots and its triple mode applications in tartrazine detection, manganese ion sensing and fluorescent ink. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Dos Santos JR, de Sousa Soares L, Soares BM, de Gomes Farias M, de Oliveira VA, de Sousa NAB, Negreiros HA, da Silva FCC, Peron AP, Pacheco ACL, Marques MMM, Gonçalves JCR, Montenegro RC, Islam MT, Sharifi-Rad J, Mubarak MS, de Melo Cavalcante AAC, de Castro E Sousa JM. Cytotoxic and mutagenic effects of the food additive tartrazine on eukaryotic cells. BMC Pharmacol Toxicol 2022; 23:95. [PMID: 36564854 PMCID: PMC9789615 DOI: 10.1186/s40360-022-00638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Among the food additives used in the food industry, food dyes are considered the most toxic. For instance, tartrazine (TRZ) is a food colorant commercially available with conflicting data regarding its cytotoxic, genotoxic, and mutagenic effects. Therefore, this study aimed to evaluate the cytotoxic and mutagenic potential of TRZ using different eukaryotic cells (in vitro). METHODS This study employed 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), brine shrimp lethality, Allium cepa and Saccharomyces cerevisiae tests. Different concentrations of TRZ and different exposure times were used in this study. RESULTS The results demonstrate that TRZ induced a concentration-dependent toxic effect on the test systems. It also exerted cytotoxicity in fibroblasts and human gastric cells. In addition, TRZ showed mutagenic effects on the A. cepa test system. However, its toxicogenic effects may not relate to the oxidizing activity, which was confirmed by the S. cerevisiae test model. CONCLUSION Taken together, TRZ exerted toxicogenic effects on the test systems. Therefore, it may be harmful to health, especially its prolonged use may trigger carcinogenesis.
Collapse
Affiliation(s)
| | - Larissa de Sousa Soares
- Laboratory of Cytogenetics and Mutagenesis of the Federal University of Piauí, Picos, Brazil
| | - Bruno Moreira Soares
- Laboratory of Human Cytogenetics and Oncology Research Center, Federal University of Pará, Belém, Brazil
| | - Marlene de Gomes Farias
- Laboratory of Cytogenetics and Mutagenesis of the Federal University of Piauí, Picos, Brazil
| | | | | | - Helber Alves Negreiros
- Laboratory of Cytogenetics and Mutagenesis of the Federal University of Piauí, Picos, Brazil
| | - Felipe Cavalcanti Carneiro da Silva
- Laboratory of Cytogenetics and Mutagenesis of the Federal University of Piauí, Picos, Brazil
- Cytogenetic and Mutagenesis Laboratory, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ana Paula Peron
- Laboratory of Cytogenetics and Mutagenesis of the Federal University of Piauí, Picos, Brazil
- Cytogenetic and Mutagenesis Laboratory, Postgraduate Program in Genetics and Improvement of the Federal University of Piauí, Teresina, Brazil
| | | | | | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj8100, Dhaka, Bangladesh.
| | | | | | | | - João Marcelo de Castro E Sousa
- Laboratory of Cytogenetics and Mutagenesis of the Federal University of Piauí, Picos, Brazil
- Cytogenetic and Mutagenesis Laboratory, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
34
|
Mohammad M, Saha I, Pal K, Karmakar P, Pandya P, Gazi HAR, Islam MM. A comparison on the biochemical activities of Fluorescein disodium, Rose Bengal and Rhodamine 101 in the light of DNA binding, antimicrobial and cytotoxic study. J Biomol Struct Dyn 2022; 40:9848-9859. [PMID: 34121614 DOI: 10.1080/07391102.2021.1936180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biochemical activities of Fluorescein, Rose Bengal and Rhodamine 101 were studied by DNA binding, antibacterial and cytotoxic studies. DNA binding studies were done using spectroscopic, thermodynamic and molecular modeling techniques. Antibacterial activities were investigated against a gram-negative bacteria Escherichia coli and a gram-positive bacteria Staphylococcus aureus. Cytotoxic activities were studied against Wi-38 cell line. We observed these dyes bound to minor groove of DNA and structural diversity of dyes affect the phenomenon. No significant antibacterial and cytotoxic activities of these dyes were found in our observations.
Collapse
Affiliation(s)
- Mukti Mohammad
- Department of Chemistry, Aliah University, Kolkata, India
| | - Ishita Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Kunal Pal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | | | | |
Collapse
|
35
|
Rajendrachari S, Basavegowda N, Adimule VM, Avar B, Somu P, R. M. SK, Baek KH. Assessing the Food Quality Using Carbon Nanomaterial Based Electrodes by Voltammetric Techniques. BIOSENSORS 2022; 12:1173. [PMID: 36551140 PMCID: PMC9775119 DOI: 10.3390/bios12121173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The world is facing a global financial loss and health effects due to food quality adulteration and contamination, which are seriously affecting human health. Synthetic colors, flavors, and preservatives are added to make food more attractive to consumers. Therefore, food safety has become one of the fundamental needs of mankind. Due to the importance of food safety, the world is in great need of developing desirable and accurate methods for determining the quality of food. In recent years, the electrochemical methods have become more popular, due to their simplicity, ease in handling, economics, and specificity in determining food safety. Common food contaminants, such as pesticides, additives, and animal drug residues, cause foods that are most vulnerable to contamination to undergo evaluation frequently. The present review article discusses the electrochemical detection of the above food contaminants using different carbon nanomaterials, such as carbon nanotubes (CNTs), graphene, ordered mesoporous carbon (OMC), carbon dots, boron doped diamond (BDD), and fullerenes. The voltammetric methods, such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV), have been proven to be potential methods for determining food contaminants. The use of carbon-based electrodes has the added advantage of electrochemically sensing the food contaminants due to their excellent sensitivity, specificity, large surface area, high porosity, antifouling, and biocompatibility.
Collapse
Affiliation(s)
- Shashanka Rajendrachari
- Department of Metallurgical and Materials Engineering, Bartin University, 74100 Bartin, Turkey
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vinayak M Adimule
- Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi 5800321, Karnataka, India
| | - Baris Avar
- Department of Metallurgical and Materials Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey
| | - Prathap Somu
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602105, Tamil Nadu, India
| | - Saravana Kumar R. M.
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602105, Tamil Nadu, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
36
|
Pérez-Aranda M, Pajuelo E, Navarro-Torre S, Pérez-Palacios P, Begines B, Rodríguez-Llorente ID, Torres Y, Alcudia A. Antimicrobial and Antibiofilm Effect of 4,4'-Dihydroxy-azobenzene against Clinically Resistant Staphylococci. Antibiotics (Basel) 2022; 11:antibiotics11121800. [PMID: 36551456 PMCID: PMC9774766 DOI: 10.3390/antibiotics11121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The spread of antibiotic resistance among human and animal pathogens is one of the more significant public health concerns. Moreover, the restrictions on the use of particular antibiotics can limit the options for the treatment of infections in veterinary clinical practice. In this context, searching for alternative antimicrobial substances is crucial nowadays. In this study, 4,4'-dihydroxy-azobenzene (DHAB) was tested for its potential in vitro as an antimicrobial agent against two relevant human and animal pathogens, namely Staphylococcus aureus and Staphylococcus pseudintermedius. The values of minimal inhibitory concentration (MIC) were 64 and 32 mg/L respectively, and they comparable to other azo compounds of probed antimicrobial activity. In addition, the minimal bactericidal concentrations (MCB) were 256 and 64 mg/L. The mechanism by which DHAB produces toxicity in staphylococci has been investigated. DHAB caused membrane damage as revealed by the increase in thiobarbituric acid reactive substances (TBARS) such as malondialdehyde. Furthermore, differential induction of the enzymes peroxidases and superoxide dismutase in S. aureus and S. pseudintermedius suggested their prevalent role in ROS-scavenging due to the oxidative burst induced by this compound in either species. In addition, this substance was able to inhibit the formation of biofilms by both bacteria as observed by colorimetric tests and scanning electron microscopy. In order to assess the relevance of DHAB against clinical strains of MRSA, 10 clinical isolates resistant to either methicillin or daptomycin were assayed; 80% of them gave values of CMI and CMB similar to those of the control S. aureus strain. Finally, cutaneous plasters containing a composite formed by an agar base supplemented with DHAB were designed. These plasters were able to inhibit in vitro the growth of S. aureus and S. pseudintermedius, particularly the later, and this suggests that this substance could be a promising candidate as an alternative to antibiotics in the treatment of animal skin infections, as it has been proven that the toxicity of this substance is very low particularly at a dermal level.
Collapse
Affiliation(s)
- María Pérez-Aranda
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Correspondence: (E.P.); (A.A.); Tel.: +34-954556924 (E.P.); +34-954556740 (A.A.)
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Patricia Pérez-Palacios
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, 41009 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Ignacio D. Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Correspondence: (E.P.); (A.A.); Tel.: +34-954556924 (E.P.); +34-954556740 (A.A.)
| |
Collapse
|
37
|
Dhaouefi Z, Lahmar A, Khlifi R, Ben Toumia I, Elgueder D, Chekir-Ghedira L. Evaluation of eventual toxicities of treated textile wastewater using anoxic-aerobic algal-bacterial photobioreactor. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4285-4297. [PMID: 34989959 DOI: 10.1007/s10653-021-01187-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the major challenges and is of serious concern in the world. Toxicities generated by industrial activities severely deteriorate aquatic and terrestrial ecosystems during their uncontrolled discharge and accentuate water scarcity problems. An adequate treatment of released effluents seems to be mandatory. This study investigated the effect of synthetic textile wastewater (STWW) before and after an innovative algal-bacterial treatment occurred under anoxic-aerobic conditions on growth and mineral contents of radish plants. The health risk assessment was performed after the consumption of irrigated plants by rats. Results revealed a significant reduction in heavy metals content in plants irrigated with treated STWW, and rats fed with these plants showed normal health status. Rats fed with plants irrigated with raw STWW showed a disturbance of their homeostasis. The innovative treatment using algal-bacteria under anoxic-aerobic conditions succeeds to reduce the toxicity of raw STWW and provide an alternative water resource able to tackle water shortage.
Collapse
Affiliation(s)
- Zaineb Dhaouefi
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie
| | - Aida Lahmar
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie
| | - Rihab Khlifi
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie
| | - Imene Ben Toumia
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie
| | - Dorra Elgueder
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie
| | - Leila Chekir-Ghedira
- Unité de Recherche des Substances Naturelles Bioactives Et Biotechnologie UR17ES49, Faculté de Médecine Dentaire, Université de Monastir, 5000, Monastir, Tunisie.
| |
Collapse
|
38
|
Yassien EE, Mohamed AMS, Mahmoud ME, Zaki AM. Sodium benzoate induced toxicities in albino male rats: mitigating effects of Ficus carica and Cymbopogon citratus leave extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90567-90579. [PMID: 35871196 DOI: 10.1007/s11356-022-22020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Herbal products have become widely used in managing and treating a wide range of illnesses. Therefore, this study aimed to evaluate the total phenolic and flavonoid contents, antioxidant and protective effects of Cymbopogon citratus ethyl acetate and Ficus carica hexane leave extract (200 mg/kg b.w for both) on sodium benzoate (SB) (200 mg/kg b.w) toxicity in rats. For 6 weeks, four groups of five rats each (control, SB, F. carica + SB, and C. citrates + SB). Blood sample (liver, kidney) tissue and histological examination were used at the end of the experiment. According to the findings, the extracts have significant concentrations of total flavonoids, total phenolics, and antioxidant activity. Oxidative stress caused by SB exposure induced an increase in ALT, AST, ALP, glucose, urea, creatinine, uric acid, TG, TC, LDL, and MDA, while insulin and SOD were decreased. Furthermore, the biochemical alterations generated by SB in the blood serum, homogenate, liver, and kidney tissue were significantly reduced by C. citratus ethyl acetate and F. carica hexane leave extracts (P < 0.05). The leaf extracts of the examined plants had significant curative and preventive effects in SB-induced liver and kidney damage, resulting in diminished liver and kidney biomarker enzymes, an improved antioxidant defense system, and lipid peroxidation inhibition.
Collapse
Affiliation(s)
- Eman E Yassien
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt.
| | - Amina M S Mohamed
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Magda E Mahmoud
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Adel M Zaki
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt
| |
Collapse
|
39
|
Ismail OI, Rashed NA. Riboflavin attenuates tartrazine toxicity in the cerebellar cortex of adult albino rat. Sci Rep 2022; 12:19346. [PMID: 36369258 PMCID: PMC9652251 DOI: 10.1038/s41598-022-23894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Tartrazine is a synthetic yellowish dye considered one of the most common food colorants. Extensive usage of tartrazine in humans led to harmful health impacts. To investigate the impact of tartrazine administration on the cerebellum and to assess the potential role of riboflavin co-administration in the adult male albino rat. Four groups of adult albino rats were included in this study. Group I was supplied with distilled water. Group II was supplied tartrazine orally at a dose of 7.5 mg/kg BW dissolved in distilled water. Group III was supplied with tartrazine at the same previously mentioned dose and riboflavin orally at a dose of 25 mg/kg BW dissolved in distilled water. Group IV was supplied with riboflavin at the same previously mentioned dose. The study was conducted for 30 days then rats were sacrificed, weighted and the cerebella extracted and handled for light, ultrastructural and immunohistochemical evaluation. It was found with tartrazine treatment focal areas of Purkinje cell loss leaving empty spaces, a broad spread of neuronal affection to the degree of the disappearance of some of the granular cells, reduced the thickness of the molecular and granular layers, and strong positive GFAP immunoreactions. With riboflavin coadministration restored continuous Purkinje layer with normal appeared Purkinje cells, but some cells were still shrunken and vacuolated as well as the molecular and granular cell layers appeared normal. Tartrazine had deleterious effects on the cerebellar cytoarchitecture, and riboflavin co-administration alleviated these neurotoxic effects.
Collapse
Affiliation(s)
- Omnia I Ismail
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Noha A Rashed
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
40
|
Lyskovtseva KA, Eldyaeva GB, Smirnova SV, Pletnev IV. Extraction and Determination of Synthetic Food Dyes in an Aqueous Biphasic System Based on Tetrabutylammonium Bromide. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Alaguprathana M, Poonkothai M, Al-Ansari MM, Al-Humaid L, Kim W. Cytogenotoxicity assessment in Allium cepa roots exposed to methyl orange treated with Oedogonium subplagiostomum AP1. ENVIRONMENTAL RESEARCH 2022; 213:113612. [PMID: 35716816 DOI: 10.1016/j.envres.2022.113612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The present study is an attempt to assess the cytogenotoxic effect of untreated and methyl orange treated with Oedogonium subplagiostomum AP1 on Allium cepa roots. On the fifth day, root growth, root length, mitotic index, mitotic inhibition/depression, and chromosomal abnormalities were measured in root cells of Allium cepa subjected to untreated and treated methyl orange dye solutions. Roots exposed to treated dye solution exhibited maximum root growth, root length and mitotic index, whereas roots exposed to untreated dye solution had the most mitotic inhibition and chromosomal abnormalities. Allium cepa exposed to untreated dye solution revealed chromosomal aberrations such as disoriented and abnormal chromosome grouping, vagrant and laggard chromosomes, chromosomal loss, sticky chain and disturbed metaphase, pulverised and disturbed anaphase, chromosomal displacement in anaphase, abnormal telophase, and chromosomal bridge at telophase, spindle disturbances and binucleate cells. The comet test was used to quantify DNA damage in the root cells of A. cepa subjected to untreated and treated methyl orange solutions in terms of tail DNA (percent) and tail length. The results concluded that A. cepa exposed to methyl orange induced DNA damage whereas meager damage was noted in the treated dye solution. As a result, the research can be used as a biomarker to detect the genotoxic effects of textile dyes on biota.
Collapse
Affiliation(s)
- M Alaguprathana
- Department of Zoology, Adhiyaman Arts and Science College for Women, Uthangarai, 635 207, Krishnagiri (Dt), Tamil Nadu, India
| | - M Poonkothai
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India.
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
42
|
Pliuta K, Snigur D. Carbon-paste electrode modified by β-cyclodextrin as sensor for voltammetric determination of Tartrazine and Carmoisine from one drop. ANAL SCI 2022; 38:1377-1384. [PMID: 35932413 DOI: 10.1007/s44211-022-00170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
Abstract
For food quality control methods, low cost, speed, and simplicity are essential. Electrochemical methods can satisfy all of these requirements. In this paper, we propose a fast and simple voltammetric method using a carbon-paste electrode modified with β-cyclodestrin for the determination of two common food azo dyes: Tartrazine and Carmoisine. To reduce the amount of sample required for analysis, in this work, we explored the prospect of another methodology similar to adsorption stripping voltammetry. The redox behavior of dyes, the influence of pH and scan rate on oxidation currents were investigated. Based on the results the scheme of oxidation of azo dyes was proposed. The use of the proposed approach in combination with the developed sensor makes it possible to determine Tartrazine and Carmoisine within their concentrations of 314-5024 ng/mL and 167-5340 ng/mL with calculation LOD 101 ng/mL and 60 ng/mL respectively. The proposed sensor was tested during analysis of model solutions and soft drinks and showed good results with high reproducibility.
Collapse
Affiliation(s)
- Konstantin Pliuta
- Department of Analytical and Toxicological Chemistry, Faculty of Chemistry and Pharmacy, Odessa I.I. Mechnikov National University, Odessa, 65082, Ukraine
| | - Denys Snigur
- Department of Analytical and Toxicological Chemistry, Faculty of Chemistry and Pharmacy, Odessa I.I. Mechnikov National University, Odessa, 65082, Ukraine.
| |
Collapse
|
43
|
Jankowska K, Su Z, Zdarta J, Jesionowski T, Pinelo M. Synergistic action of laccase treatment and membrane filtration during removal of azo dyes in an enzymatic membrane reactor upgraded with electrospun fibers. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129071. [PMID: 35650748 DOI: 10.1016/j.jhazmat.2022.129071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, the increasing amounts of dyes present in wastewaters and even water bodies is an emerging global problem. In this work we decided to fabricate new biosystems made of nanofiltration or ultrafiltration membranes combined with laccase entrapped between polystyrene electrospun fibers and apply them for decolorization of aqueous solutions of three azo dyes, C.I. Acid Yellow 23 (AY23), C.I. Direct Blue 71 (DB71) and C.I. Reactive Black 5 (RB5). Besides effective decolorization of the permeate stream, the biosystems also allowed removal of dyes from the retentate stream as a result of enzymatic action. The effect of pH and applied pressure on decolorization efficiencies was investigated, and pH 5 and pressure of 2 bar gave the highest removal efficiencies of 97% for AY23 and 100% for both DB71 and RB5 from permeate solutions while decolorization of retentate for RB5 reached 65% under these conditions. Almost 100% decolorization of all dyes was achieved after three consecutive enzyme membrane cycles. Decolorization was shown to be due to the synergistic action of membrane separation and bioconversion. The biocatalytic action also enabled significant reduction of permeate and retentate toxicity, which is one of the biggest environmental health issues for these types of streams.
Collapse
Affiliation(s)
- Katarzyna Jankowska
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 227, Kongens Lyngby DK-2800, Denmark; Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan PL-60965, Poland.
| | - Ziran Su
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 227, Kongens Lyngby DK-2800, Denmark
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan PL-60965, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan PL-60965, Poland
| | - Manuel Pinelo
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 227, Kongens Lyngby DK-2800, Denmark
| |
Collapse
|
44
|
Li Z, Zhang J, Yin S, Xi G. Toxicity effect of the edible pigment carmoisine on Polyrhachis vicina Roger (Hymenoptera: Formicidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1009-1022. [PMID: 35792963 DOI: 10.1007/s10646-022-02563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Carmoisine belongs to a water-soluble synthetic dye and is often used as a food additive. Previous research has shown that carmoisine is toxic to rats and zebrafish, but there have been few reports on the effect of carmoisine on soil-dwelling social insects. The present study evaluated carmoisine toxicity in Polyrhachis vicina Roger. We found that the effects of different concentrations of carmoisine on the mortality of workers were dose-dependent. The 10% lethal dose (LD10), 50% lethal dose (LD50) and 90% lethal dose (LD90) of carmoisine to workers at 96 h was calculated to be 0.504, 5.491 and 10.478 g/L, respectivily. LD10 of workers were selected to treat the fourth instar larvae, pupae and adults for 10 days. The results showed that the survival rate of all ants, except for females, was significantly reduced, especially larvae and workers. The body weight of larvae, pupae and males decreased significantly, while weight gain was observed in the females and workers. The appearance of larvae, pupae and workers changed after carmoisine treatment, such as body darkening and epidermis shrinking of larvae and pupae, as well as body segment expansion of workers. Furthermore, carmoisine altered the expression of the estrogen-related receptor, tailless and homothorax of P. vicina (Pv-ERR, Pv-tll and Pv-hth) to varying degrees in larvae and adults. We believe that variations in body weight can lead to a decrease in survival rate and appearance changes in the ants, which may be related to abnormal gene expressions caused by carmoisine treatment. Therefore, we confirm that carmoisine has negative effects on the growth and development of P. vicina.
Collapse
Affiliation(s)
- Ziyu Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China
| | - Jing Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China
| | - Shaoting Yin
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China
| | - Gengsi Xi
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China.
| |
Collapse
|
45
|
Sambu S, Hemaram U, Murugan R, Alsofi AA. Toxicological and Teratogenic Effect of Various Food Additives: An Updated Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6829409. [PMID: 35782077 PMCID: PMC9249520 DOI: 10.1155/2022/6829409] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Scientific evidence is mounting that synthetic chemicals used as food additives may have harmful impacts on health. Food additives are chemicals that are added to food to keep it from spoiling, as well as to improve its colour and taste. Some are linked to negative health impacts, while others are healthy and can be ingested with little danger. According to several studies, health issues such as asthma, attention deficit hyperactivity disorder (ADHD), heart difficulties, cancer, obesity, and others are caused by harmful additives and preservatives. Some food additives may interfere with hormones and influences growth and development. It is one of the reasons why so many children are overweight. Children are more likely than adults to be exposed to these types of dietary intakes. Several food additives are used by women during pregnancy and breast feeding that are not fully safe. We must take specific precaution to avoid consuming dangerous compounds before they begin to wreak havoc on our health. This study is intended to understand how the preservatives induce different health problem in the body once it is consumed. This review focuses on some specific food additives such as sodium benzoate, aspartame, tartrazine, carrageenan, and potassium benzoate, as well as vitamin A. Long-term use of food treated with the above-mentioned food preservatives resulted in teratogenicity and other allergens, according to the study. Other health issues can be avoided in the future by using natural food additives derived from plants and other natural sources.
Collapse
Affiliation(s)
- Saseendran Sambu
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Urmila Hemaram
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Rajadurai Murugan
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Ahmed A. Alsofi
- Department of Pharmacy, Faculty of Medical Sciences, Aljanad University for Science and Technology, Taiz, Yemen
| |
Collapse
|
46
|
El‐Desoky GE, Wabaidur SM, AlOthman ZA, Habila MA. Evaluation of Nano-curcumin effects against Tartrazine-induced abnormalities in liver and kidney histology and other biochemical parameters. Food Sci Nutr 2022; 10:1344-1356. [PMID: 35592283 PMCID: PMC9094471 DOI: 10.1002/fsn3.2790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/23/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
In the current study, 40 albino male rats were investigated to evaluate the impact of Nano-curcumin (Nano-CUR) administration against Tartrazine (TZ)-induced variations in kidney and liver histology and their related functions. The liver function biomarkers are (glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transaminase (GGT), alkaline phosphatase (ALP), total bilirubin (T. BiLL)), whereas the kidney biomarkers are (creatinine, uric acid, urea, globulin, total protein (TP)), as well as blood parameters of (serum glucose (sGlu), alpha-fetoprotein (AFP), protein Kinase-C (PKC)) and lipid profiles that include (total lipids (TL), triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-density L-C (HDL-C), and very-low-density L-C (VLDL-C)). The collected rats were randomly separated into four different groups (G1, G2, G3, and G4) of 10 rats each, where G1 stands for control, G2 for TZ-ingestion, G3 for Nano-CUR-ingestion, and G4 for (TZ + Nano-CUR mix.) ingestion. TZ-ingestion significantly (p < .05) increases the liver function enzymes' activity, total bilirubin and kidney biomarkers (creatinine, urea, uric acid, total protein (TP), globulin (Glu)). Also, TZ-ingestion significantly increased sGlu, PKC, AFP, as well as lipid profiles, while there were significant (p < .05) decreases in HDL-C and albumin (Alb) concentrations compared to control. Histopathological changes in liver, such as dilatation of blood sinusoids and central vein with hemorrhage and necrosis, were observed due to TZ-ingestion. Similarly, TZ-ingestion influenced kidney tissues in terms of tubular dilatation with tubular degeneration, thickened basement membrane, and dilatation of the glomerular capillaries. Markedly, the administration of Nano-CUR significantly decreased liver and kidney function enzymes as well as sGlu, AFP, and PKC, whereas it significantly increased serum Alb and HDL-C levels compared to control and TZ-ingested rats. All values arranged around normal control values. Also, the liver tissue of Nano-CUR-ingested rats showed a normal arrangement of normal blood sinusoids(s), hepatic cords, and hepatocytes as compared to controls. The same results were also found in the section of rat kidney ingested with 2.00 g of Nano-CUR/(kg B.W.) showing near-normal architecture as compared to control rats. The liver tissue of rats ingested by a mixture of (7.5 mg of TZ + 2.0 g of Nano-CUR/kg B.W.) showed little necrosis. Similarly, a section of rat kidney ingested a mixture of (7.5 mg of TZ + 2.00 g of Nano-CUR/kg B.W.) which revealed mild tubular degeneration and dilatation of the glomerular capillaries. These results support the protective and therapeutic effects of Nano-CUR on the histology of liver and kidneys and their related function biomarkers. Also, Nano-CUR corrects the imbalance in serum glucose (sGlu), AFP, PKC, and lipid profiles in TZ-ingested rats compared to control.
Collapse
Affiliation(s)
- Gaber E. El‐Desoky
- Department of ChemistryCollege of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
| | - Saikh M. Wabaidur
- Department of ChemistryCollege of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
| | - Zeid A. AlOthman
- Department of ChemistryCollege of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
| | - Mohamed A. Habila
- Department of ChemistryCollege of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
| |
Collapse
|
47
|
Karimi F, Demir E, Aydogdu N, Shojaei M, Taher MA, Asrami PN, Alizadeh M, Ghasemi Y, Cheraghi S. Advancement in electrochemical strategies for quantification of Brown HT and Carmoisine (Acid Red 14) Drom Azo Dyestuff class. Food Chem Toxicol 2022; 165:113075. [PMID: 35487338 DOI: 10.1016/j.fct.2022.113075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Brown HT and carmoisine, which are the most used dyestuffs in pharmaceuticals, textiles, cosmetics and foods, are important components of the Azo family. Although the Azo group is not toxic or carcinogenic under normal conditions, these dyestuffs require great care due to the reduction of the Azo functional group to amines. In particular, fast, reliable, easy, on-site and precise determinations of these substances are extremely necessary and important. In this review, the properties, applications, and electrochemical determinations of brown HT and carmoisine, which are used as synthetic food colorants, are discussed in detail. Up to now, sensor types, detection limits (LOD and LOQ), and analytical applications in the developed electrochemical strategies for both substances were compared. In addition, the validation parameters such as the variety of the sensors, sensitivity, selectivity and electrochemical technique in these studies were clarified one by one. While the electrochemical techniques recommended for brown HT were mostly used for the removal of dyestuff, for carmoisine they included fully quantitative centered studies. The percentiles of voltammetric techniques, which are the most widely used among these electroanalytical methods, were determined. The benefits of a robust electrochemical strategy for the determination of both food colors are summed up in this review. Finally, the brown HT and carmoisine suggestions for future perspectives in electrochemical strategy are given according to all their applications.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Quhchan University of Technology, Quchan, Iran.
| | - Ersin Demir
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey.
| | - Nida Aydogdu
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Analytical Chemistry, 03030, Afyonkarahisar, Turkey
| | - Moein Shojaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | - Mohammad A Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | | | - Marzieh Alizadeh
- Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Cheraghi
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran.
| |
Collapse
|
48
|
Marahel F, Niknam L. Application electrochemical sensor based on nanosheets G-C 3N 4/CPE by square-wave anodic stripping voltammetric for measure amounts of toxic tartrazine color residual in different drink and foodstuffs. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:489-496. [PMID: 35435151 DOI: 10.1080/03601234.2022.2064676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present work describes a method (SWASV) techniques for measure of tartrazine color a harmful compound present in real samples, and the extremely harmful to humans and animals even at low concentrations using G-C3N4 nanosheets sensor. Here, we report the use of an electrochemical approach for analytical determination of toxic tartrazine that takes 150 s. The calibration curve was linear in range of the (0.02-18.0 µmol L-1). The current response was linearly proportional to the tartrazine concentration with a R2∼ 0.999. We demonstrated a sensitivity a limit of detection of (0.022 µmol L-1). Finally, sensor nanosheets G-C3N4/CPE introduced to measure toxic tartrazine in different drink and foodstuff samples was used and the chemical nanosheets G-C3N4/CPE sensor made it possible as an excellent sensor with reproducibility for determination other samples.
Collapse
Affiliation(s)
- Farzaneh Marahel
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Leila Niknam
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| |
Collapse
|
49
|
Eteng OE, Moses CA, Ugwor EI, Enobong JE, Akamo AJ, Adeleke U, Iwara A, Ubana E. Effects of sub-acute exposure to Sudan IV-adulterated palm oil on hematology-related parameters in male albino rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2059743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ofem E. Eteng
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ceaser A. Moses
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Emmanuel I. Ugwor
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Joe E. Enobong
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Adio J. Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Usman Adeleke
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Arikpo Iwara
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Eyong Ubana
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| |
Collapse
|
50
|
Benucci I, Lombardelli C, Mazzocchi C, Esti M. Natural colorants from vegetable food waste: Recovery, regulatory aspects, and stability—A review. Compr Rev Food Sci Food Saf 2022; 21:2715-2737. [DOI: 10.1111/1541-4337.12951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Ilaria Benucci
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Claudio Lombardelli
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Caterina Mazzocchi
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| | - Marco Esti
- Department of Agriculture and Forestry Science (DAFNE) Tuscia University Viterbo Italy
| |
Collapse
|