1
|
Shinohara S, Uchijima S, Hirosawa K, Nagaoka M, Nakano M, Nakajima M, Fukami T. Arylacetamide deacetylase regulates hepatic iron homeostasis to protect against carbon tetrachloride-induced ferroptosis. Arch Toxicol 2024; 98:4059-4075. [PMID: 39367970 DOI: 10.1007/s00204-024-03873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Arylacetamide deacetylase (AADAC) catalyzes the hydrolysis of small molecules containing ester and amide bonds. Recently, it has been reported that AADAC can suppress reactive oxygen species production in cancer cells. This study aimed to elucidate the possibility that AADAC protects against drug-induced liver injury accompanied by oxidative stress and to explore its molecular mechanisms. Intraperitoneal administration of carbon tetrachloride induced significantly more severe liver injury in Aadac knockout (KO) mice (plasma alanine aminotransferase level: 19,381 ± 10,578 U/L) than in wild-type (WT) mice (7219 ± 4729 U/L). More severe liver injury in Aadac KO mice was accompanied by higher hepatic malondialdehyde and antioxidant gene mRNA levels than those in WT mice. The increase in plasma alanine aminotransferase levels in Aadac KO mice was substantially suppressed by pretreatment with the ferroptosis inhibitors deferoxamine or ferrostatin-1, suggesting that Aadac deficiency increases susceptibility to ferroptosis. Immunoprecipitation followed by proteomic analysis revealed that AADAC interacts with ceruloplasmin (CP), which oxidizes ferrous iron to ferric iron. Hepatic CP activity was significantly lower in Aadac KO mice than that in WT mice, resulting in elevated hepatic ferrous iron levels in Aadac KO mice. Overexpression of human AADAC in Huh-7 cells significantly attenuated carbon tetrachloride-induced cytotoxicity by suppressing ferrous iron accumulation, suggesting that AADAC interacts with CP to suppress hepatic ferrous iron accumulation. The hepatoprotective role of Aadac in ferroptosis was also observed in mice with acetaminophen-induced liver injury. This study demonstrates a novel function of AADAC in protecting against ferroptosis induced by hepatotoxicants, carbon tetrachloride and acetaminophen.
Collapse
Affiliation(s)
- Soshi Shinohara
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Seijo Uchijima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Keiya Hirosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
2
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
3
|
Lambrecht R, Jansen J, Rudolf F, El-Mesery M, Caporali S, Amelio I, Stengel F, Brunner T. Drug-induced oxidative stress actively prevents caspase activation and hepatocyte apoptosis. Cell Death Dis 2024; 15:659. [PMID: 39245717 PMCID: PMC11381522 DOI: 10.1038/s41419-024-06998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Cell death is a fundamental process in health and disease. Emerging research shows the existence of numerous distinct cell death modalities with similar and intertwined signaling pathways, but resulting in different cellular outcomes, raising the need to understand the decision-making steps during cell death signaling. Paracetamol (Acetaminophen, APAP)-induced hepatocyte death includes several apoptotic processes but eventually is executed by oncotic necrosis without any caspase activation. Here, we studied this paradoxical form of cell death and revealed that APAP not only fails to activate caspases but also strongly impedes their activation upon classical apoptosis induction, thereby shifting apoptosis to necrosis. While APAP intoxication results in massive drop in mitochondrial respiration, low cellular ATP levels could be excluded as an underlying cause of missing apoptosome formation and caspase activation. In contrast, we identified oxidative stress as a key factor in APAP-induced caspase inhibition. Importantly, caspase inhibition and the associated switch from apoptotic to necrotic cell death was reversible through the administration of antioxidants. Thus, exemplified by APAP-induced cell death, our study stresses that cellular redox status is a critical component in the decision-making between apoptotic and necrotic cell death, as it directly affects caspase activity.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jasmin Jansen
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Franziska Rudolf
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
| | - Mohamed El-Mesery
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sabrina Caporali
- Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivano Amelio
- Collaborative Research Center TRR 353, Konstanz, Germany
- Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Collaborative Research Center TRR 353, Konstanz, Germany.
| |
Collapse
|
4
|
Deng X, Li Y, Chen Y, Hu Q, Zhang W, Chen L, Lu X, Zeng J, Ma X, Efferth T. Paeoniflorin protects hepatocytes from APAP-induced damage through launching autophagy via the MAPK/mTOR signaling pathway. Cell Mol Biol Lett 2024; 29:119. [PMID: 39244559 PMCID: PMC11380789 DOI: 10.1186/s11658-024-00631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Drug-induced liver injury (DILI) is gradually becoming a common global problem that causes acute liver failure, especially in acute hepatic damage caused by acetaminophen (APAP). Paeoniflorin (PF) has a wide range of therapeutic effects to alleviate a variety of hepatic diseases. However, the relationship between them is still poorly investigated in current studies. PURPOSE This work aimed to explore the protective effects of PF on APAP-induced hepatic damage and researched the potential molecular mechanisms. METHODS C57BL/6J male mice were injected with APAP to establish DILI model and were given PF for five consecutive days for treatment. Aiming to clarify the pharmacological effects, the molecular mechanisms of PF in APAP-induced DILI was elucidated by high-throughput and other techniques. RESULTS The results demonstrated that serum levels of ALP, γ-GT, AST, TBIL, and ALT were decreased in APAP mice by the preventive effects of PF. Moreover, PF notably alleviated hepatic tissue inflammation and edema. Meanwhile, the results of TUNEL staining and related apoptotic factors coincided with the results of transcriptomics, suggesting that PF inhibited hepatocyte apoptosis by regulated MAPK signaling. Besides, PF also acted on reactive oxygen species (ROS) to regulate the oxidative stress for recovery the damaged mitochondria. More importantly, transmission electron microscopy showed the generation of autophagosomes after PF treatment, and PF was also downregulated mTOR and upregulated the expression of autophagy markers such as ATG5, ATG7, and BECN1 at the mRNA level and LC3, p62, ATG5, and ATG7 at the protein level, implying that the process by which PF exerted its effects was accompanied by the occurrence of autophagy. In addition, combinined with molecular dynamics simulations and western blotting of MAPK, the results suggested p38 as a direct target for PF on APAP. Specifically, PF-activated autophagy through the downregulation of MAPK/mTOR signaling, which in turn reduced APAP injury. CONCLUSIONS Paeoniflorin mitigated liver injury by activating autophagy to suppress oxidative stress and apoptosis via the MAPK/mTOR signaling pathway. Taken together, our findings elucidate the role and mechanism of paeoniflorin in DILI, which is expected to provide a new therapeutic strategy for the development of paeoniflorin.
Collapse
Affiliation(s)
- Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lisheng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, 55128, Germany.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, 55128, Germany.
| |
Collapse
|
5
|
Shen P, Xue M, Hu Z, Han L, Deng X. Direct targeting of S100A9 with Icariin counteracted acetaminophen‑induced hepatotoxicity. Int Immunopharmacol 2024; 136:112296. [PMID: 38810310 DOI: 10.1016/j.intimp.2024.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Acetaminophen (APAP) is a widely used antipyretic and analgesic medication, but its overdose can induce acute liver failure with lack of effective therapies. Icariin is a bioactive compound derived from the herb Epimedium that displays hepatoprotective activities. Here, we explored the protective effects and mechanism of icariin on APAP-induced hepatotoxicity. Icariin (25/50 mg/kg) or N-Acetylcysteine (NAC, 300 mg/kg) were orally administered in wild-type C57BL/6 mice for 7 consecutive days before the APAP administration. Icariin attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities and hepatic apoptosis. In vitro, icariin pretreatment significantly inhibited hepatocellular damage and apoptosis by reducing the BAX/Bcl-2 ratio as well as the expression of cleaved-caspase 3 and cleaved-PARP depended on the p53 pathway. Moreover, icariin attenuated APAP-mediated inflammatory response and oxidative stress via the Nrf2 and NF-κB pathways. Importantly, icariin reduced the expression of S100A9, icariin interacts with S100A9 as a direct cellular target, which was supported by molecular dynamics simulation and surface plasmon resonance assay (equilibrium dissociation constant, KD = 1.14 μM). In addition, the genetic deletion and inhibition of S100A9 not only alleviated APAP-induced injury but also reduced the icariin's protective activity in APAP-mediated liver injury. These data indicated that icariin targeted S100A9 to alleviate APAP-induced liver damage via the following signaling pathways NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, China; Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Mei Xue
- Department of Endocrinology, Zhongnan Hospital, Wuhan University, China.
| | - Zhishuo Hu
- Department of Emergency, Wuhan No.1 Hospital, China.
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital, Wuhan University, China.
| |
Collapse
|
6
|
Jaeschke H, Ramachandran A. Central Mechanisms of Acetaminophen Hepatotoxicity: Mitochondrial Dysfunction by Protein Adducts and Oxidant Stress. Drug Metab Dispos 2024; 52:712-721. [PMID: 37567742 PMCID: PMC11257690 DOI: 10.1124/dmd.123.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Acetaminophen (APAP) is an analgesic and antipyretic drug used worldwide, which is safe at therapeutic doses. However, an overdose can induce liver injury and even liver failure. Mechanistic studies in mice beginning with the seminal papers published by B.B. Brodie's group in the 1970s have resulted in important insight into the pathophysiology. Although the metabolic activation of APAP with generation of a reactive metabolite, glutathione depletion, and protein adduct formation are critical initiating events, more recently, mitochondria have come into focus as an important target and decision point of cell death. This review provides a comprehensive overview of the induction of mitochondrial superoxide and peroxynitrite formation and its propagation through a mitogen-activated protein kinase cascade, the mitochondrial permeability transition pore opening caused by iron-catalyzed protein nitration, and the mitochondria-dependent nuclear DNA fragmentation. In addition, the role of adaptive mechanisms that can modulate the pathophysiology, including autophagy, mitophagy, nuclear erythroid 2 p45-related factor 2 activation, and mitochondrial biogenesis, are discussed. Importantly, it is outlined how the mechanisms elucidated in mice translate to human hepatocytes and APAP overdose patients, and how this mechanistic insight explains the mechanism of action of the clinically approved antidote N-acetylcysteine and led to the recent discovery of a novel compound, fomepizole, which is currently under clinical development. SIGNIFICANCE STATEMENT: Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in western countries. Extensive mechanistic research over the last several decades has revealed a central role of mitochondria in the pathophysiology of APAP hepatotoxicity. This review article provides a comprehensive discussion of a) mitochondrial protein adducts and oxidative/nitrosative stress, b) mitochondria-regulated nuclear DNA fragmentation, c) adaptive mechanisms to APAP-induced cellular stress, d) translation of cell death mechanisms to overdose patients, and e) mechanism-based antidotes against APAP-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
7
|
Chawla S, Choudhury S, Das A. Bioengineered MSC GFPCxcr2-Mmp13 Transplantation Alleviates Hepatic Fibrosis by Regulating Mammalian Target of Rapamycin Signaling. Antioxid Redox Signal 2024; 41:110-137. [PMID: 38183635 DOI: 10.1089/ars.2023.0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Aims: Hepatic fibrosis is the pathological change during chronic liver diseases (CLD) that turns into cirrhosis if not reversed timely. Allogenic mesenchymal stem cell (MSC) therapy is an alternative to liver transplantation for CLD. However, poor engraftment of the transplanted MSCs limits their therapeutic efficacy. MSCs express chemokine receptors that regulate their physiology. We observed several-fold increased expressions of Cxcl3 and decreased expression of Mmp13 in the fibrotic liver. Therefore, we bioengineered MSCs with stable overexpression of Cxcr2 (CXCL3-cognate receptor) and Mmp13, collagenase (MSCGFPCxcr2-Mmp13). Results: The CXCL3/CXCR2 axis significantly increased migration through the activation of AKT/ERK/mTOR signaling. These bioengineered MSCs transdifferentiated into hepatocyte-like cells (MSCGFPCxcr2-Mmp13-HLCs) that endured the drug-/hepatotoxicant-induced toxicity by significantly increasing the antioxidants-Nrf2 and Sod2, while decreasing the apoptosis-Cyt C, Casp3, Casp9, and drug-metabolizing enzyme-Cyp1A1, Cyp1A2, Cyp2E1 markers. Therapeutic transplantation of MSCGFPCxcr2-Mmp13 abrogated AAP-/CCl4-induced hepatic fibrosis in mice by CXCR2-mediated targeted engraftment and MMP-13-mediated reduction in collagen. Mechanistically, induction of CXCL3/CXCR2 axis-activated mTOR-p70S6K signaling led to increased targeted engraftment and modulation of the oxidative stress by increasing the expression and activity of nuclear Nrf2 and SOD2 expression in the regenerated hepatic tissues. A marked change in the fate of transplanted MSCGFPCxcr2-Mmp13 toward hepatocyte lineage demonstrated by co-immunostaining of GFP/HNF4α along with reduced COL1α1 facilitated the regeneration of the fibrotic liver. Innovation and Conclusions: Our study suggests the therapeutic role of allogenic Cxcr2/Mmp13-bioengineered MSC transplantation decreases the hepatic oxidative stress as an effective translational therapy for hepatic fibrosis mitigation-mediated liver regeneration.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Guo Z, Liu J, Liang G, Liang H, Zhong M, Tomlinson S, He S, Ouyang G, Yuan G. Identification and validation of cuproptosis-related genes in acetaminophen-induced liver injury using bioinformatics analysis and machine learning. Front Immunol 2024; 15:1371446. [PMID: 38994365 PMCID: PMC11236684 DOI: 10.3389/fimmu.2024.1371446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Background Acetaminophen (APAP) is commonly used as an antipyretic analgesic. However, acetaminophen overdose may contribute to liver injury and even liver failure. Acetaminophen-induced liver injury (AILI) is closely related to mitochondrial oxidative stress and dysfunction, which play critical roles in cuproptosis. Here, we explored the potential role of cuproptosis-related genes (CRGs) in AILI. Methods The gene expression profiles were obtained from the Gene Expression Omnibus database. The differential expression of CRGs was determined between the AILI and control samples. Protein protein interaction, correlation, and functional enrichment analyses were performed. Machine learning was used to identify hub genes. Immune infiltration was evaluated. The AILI mouse model was established by intraperitoneal injection of APAP solution. Quantitative real-time PCR and western blotting were used to validate hub gene expression in the AILI mouse model. The copper content in the mouse liver samples and AML12 cells were quantified using a colorimetric assay kit. Ammonium tetrathiomolybdate (ATTM), was administered to mouse models and AML12 cells in order to investigate the effects of copper chelator on AILI. Results The analysis identified 7,809 differentially expressed genes, 4,245 of which were downregulated and 3,564 of which were upregulated. Four optimal feature genes (OFGs; SDHB, PDHA1, NDUFB2, and NDUFB6) were identified through the intersection of two machine learning algorithms. Further nomogram, decision curve, and calibration curve analyses confirmed the diagnostic predictive efficacy of the four OFGs. Enrichment analysis indicated that the OFGs were involved in multiple pathways, such as IL-17 pathway and chemokine signaling pathway, that are related to AILI progression. Immune infiltration analysis revealed that macrophages were more abundant in AILI than in control samples, whereas eosinophils and endothelial cells were less abundant. Subsequently, the AILI mouse model was successfully established, and histopathological analysis using hematoxylin-eosin staining along with liver function tests revealed a significant induction of liver injury in the APAP group. Consistent with expectations, both mRNA and protein levels of the four OFGs exhibited a substantial decrease. The administration of ATTAM effectively mitigates copper elevation induced by APAP in both mouse model and AML12 cells. However, systemic administration of ATTM did not significantly alleviate AILI in the mouse model. Conclusion This study first revealed the potential role of CRGs in the pathological process of AILI and offered novel insights into its underlying pathogenesis.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Jiaping Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Guozhi Liang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Haifeng Liang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Mingbei Zhong
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases (Guangxi Medical University), Nanning, Guangxi, China
| |
Collapse
|
9
|
Luo J, Liu H, Xu Y, Yu N, Steiner RA, Wu X, Si S, Jin ZG. Hepatic Sirt6 activation abrogates acute liver failure. Cell Death Dis 2024; 15:283. [PMID: 38649362 PMCID: PMC11035560 DOI: 10.1038/s41419-024-06537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 04/25/2024]
Abstract
Acute liver failure (ALF) is a deadly illness due to insufficient detoxification in liver induced by drugs, toxins, and other etiologies, and the effective treatment for ALF is very limited. Among the drug-induced ALF, acetaminophen (APAP) overdose is the most common cause. However, the molecular mechanisms underlying APAP hepatoxicity remain incompletely understood. Sirtuin 6 (Sirt6) is a stress responsive protein deacetylase and plays an important role in regulation of DNA repair, genomic stability, oxidative stress, and inflammation. Here, we report that genetic and pharmacological activation of Sirt6 protects against ALF in mice. We first observed that Sirt6 expression was significantly reduced in the liver tissues of human patients with ALF and mice treated with an overdose of APAP. Then we developed an inducible Sirt6 transgenic mice for Cre-mediated overexpression of the human Sirt6 gene in systemic (Sirt6-Tg) and hepatic-specific (Sirt6-HepTg) manners. Both Sirt6-Tg mice and Sirt6-HepTg mice exhibited the significant protection against APAP hepatoxicity. In contrast, hepatic-specific Sirt6 knockout mice exaggerated APAP-induced liver damages. Mechanistically, Sirt6 attenuated APAP-induced hepatocyte necrosis and apoptosis through downregulation of oxidative stress, inflammation, the stress-activated kinase JNK activation, and apoptotic caspase activation. Moreover, Sirt6 negatively modulated the level and activity of poly (ADP-ribose) polymerase 1 (PARP1) in APAP-treated mouse liver tissues. Importantly, the specific Sirt6 activator MDL-800 exhibited better therapeutic potential for APAP hepatoxicity than the current drug acetylcysteine. Furthermore, in the model of bile duct ligation induced ALF, hepatic Sirt6-KO exacerbated, but Sirt6-HepTg mitigated liver damage. Collectively, our results demonstrate that Sirt6 protects against ALF and suggest that targeting Sirt6 activation could be a new therapeutic strategy to alleviate ALF.
Collapse
Affiliation(s)
- Jinque Luo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), No. 1 Tiantan Xili, Beijing, 100050, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Huan Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yanni Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), No. 1 Tiantan Xili, Beijing, 100050, China
| | - Nanhui Yu
- The 2nd Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Rebbeca A Steiner
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
| | - Xiaoqian Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), No. 1 Tiantan Xili, Beijing, 100050, China.
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| |
Collapse
|
10
|
Lin J, Fan A, Yifu Z, Xie Q, Hong L, Zhou W. BTF3L4 Overexpression Mediates APAP-induced Liver Injury in Mouse and Cellular Models. J Clin Transl Hepatol 2024; 12:245-256. [PMID: 38426192 PMCID: PMC10899873 DOI: 10.14218/jcth.2023.00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 03/02/2024] Open
Abstract
Background and Aims Acetaminophen (APAP)-induced liver injury (AILI) has an increasing incidence worldwide. However, the mechanisms contributing to such liver injury are largely unknown and no targeted therapy is currently available. The study aimed to investigate the effect of BTF3L4 overexpression on apoptosis and inflammation regulation in vitro and in vivo. Methods We performed a proteomic analysis of the AILI model and found basic transcription factor 3 like 4 (BTF3L4) was the only outlier transcription factor overexpressed in the AILI model in mice. BTF3L4 overexpression increased the degree of liver injury in the AILI model. Results BTF3L4 exerts its pathogenic effect by inducing an inflammatory response and damaging mitochondrial function. Increased BTF3L4 expression increases the degree of apoptosis, reactive oxygen species generation, and oxidative stress, which induces cell death and liver injury. The damage of mitochondrial function by BTF3L4 triggers a cascade of events, including reactive oxygen species accumulation and oxidative stress. According to the available AILI data, BTF3L4 expression is positively associated with inflammation and may be a potential biomarker of AILI. Conclusions Our results suggest that BTF3L4 is a pathogenic factor in AILI and may be a potential diagnostic maker for AILI.
Collapse
Affiliation(s)
- Junchao Lin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Zhujin Yifu
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Qibing Xie
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Ramzi B, Souad A, Kawthar C, Ramazan E, Ratiba M, Samir B, Fadila B, Ahmed M. Genista cephalantha Spach. protects against acetaminophen-induced liver failure via preserving the glutathione redox system, reducing inflammatory response, and inhibiting hepatocyte death in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:630-639. [PMID: 38629093 PMCID: PMC11017853 DOI: 10.22038/ijbms.2024.73804.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/03/2023] [Indexed: 04/19/2024]
Abstract
Objectives The current study was conducted to assess the protective mechanisms of n-BuOH fraction from the aerial part of Genista cephontala (BEGC) on APAP-induced liver injury compared to necrostatine-1 (Nec-1). Materials and Methods A model of APAP-induced hepatotoxicity was created in male rats by injecting a single dose; 1000 mg/kg APAP, the protective effect was performed with (200 mg/kg; 10 days) BEGC compared to Nec-1, (1.8 mg/kg). Results BEGC or NeC-1 pretreatment significantly abolished impaired effects in APAP-rats, by decreasing the generation of TBARS and ROS in mitochondrial and cytosolic fractions and maintaining liver function activities. A marked response was observed in the levels of both GSH and GSH-system enzymes in liver homogenates and mitochondrial fractions to BEGC. BEGC/ Nec-1 successfully regulated the inflammatory mediators (IL-β, TNF-α, HMGB1, and acHMGB1) and MPO levels. During APAP treatment, no caspase-3 or -8 activity was detected, and the level of fk18; M30 was higher than the levels of cck18; M65. Moreover, RIPK3 and MLKL levels were increased in the APAP group. These results suggested that necroptosis predominates during the APAP liver injury model. Interestingly, these necroptotic factors were significantly down-regulated by BEGC treatment. Both biochemical and histopathological findings were consistent with each other. Conclusion From all these findings, the hepatoprotective effect of BEGC could be due to the abundance of polyphenols identified by LC-MS/MS analysis, as well as the synergistic interactions of all contents.
Collapse
Affiliation(s)
- Boulkandoul Ramzi
- Laboratoire de Biologie et Environnement. Université Frères Mentouri Constantine 1, Algérie
| | - Ameddah Souad
- Laboratoire de Biologie et Environnement. Université Frères Mentouri Constantine 1, Algérie
| | - Chebbah Kawthar
- Unité de Recherche, Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques. Frères Mentouri Constantine 1, Algérie
| | - Erenler Ramazan
- Research Laboratory Practice and Research Center, Igdir, University Igdir, Turkiye
| | - Mekkiou Ratiba
- Unité de Recherche, Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques. Frères Mentouri Constantine 1, Algérie
| | - Benayache Samir
- Unité de Recherche, Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques. Frères Mentouri Constantine 1, Algérie
| | - Benayache Fadila
- Unité de Recherche, Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques. Frères Mentouri Constantine 1, Algérie
| | - Menad Ahmed
- Laboratoire de Biologie et Environnement. Université Frères Mentouri Constantine 1, Algérie
| |
Collapse
|
12
|
Li ZC, Xu FF, Fu JT, Ouyang SX, Cao Q, Yan YY, Li DJ, Shen FM, Ni M. Sting mutation attenuates acetaminophen-induced acute liver injury by limiting NLRP3 activation. Int Immunopharmacol 2023; 125:111133. [PMID: 38149573 DOI: 10.1016/j.intimp.2023.111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
Acetaminophen (N-acetyl-p-aminophenol; APAP), a widely used effective nonsteroidal anti-inflammatory drug, leads to acute liver injury at overdose worldwide. Evidence showed that the severity of liver injury associated with the subsequent involvement of inflammatory mediators and immune cells. The innate immune stimulator of interferon genes protein (STING) pathway was critical in modulating inflammation. Here, we show that STING was activated and inflammation was enhanced in the liver in APAP-overdosed C57BL/6J mice, and Sting mutation (Stinggt/gt) mice exhibited less liver damage. Multiplexing flow cytometry displayed that Sting mutation changed hepatic recruitment and replacement of macrophages/monocytes in APAP-overdosed mice, which was inclined to anti-inflammation. In addition, Sting mutation limited NLRP3 activation in the liver in APAP-overdosed mice, and inhibited the expression of inflammatory cytokines. Finally, MCC950, a potent and selective NLRP3 inhibitor, significantly ameliorated APAP-induced liver injury and inflammation. Besides, pretreatment of MCC950 in C57 mice resulted in changes of immune cells infiltration in the liver similar to Stinggt/gt mice. Our study revealed that STING played a crucial role in APAP-induced acute liver injury, possibly by maintaining liver immune cells homeostasis and inhibiting NLRP3 inflammasome activation, suggesting that inhibiting STING-NLRP3 pathway might be a potential therapeutic strategy for acute liver injury.
Collapse
Affiliation(s)
- Zi-Chen Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang-Fang Xu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiang-Tao Fu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Shen-Xi Ouyang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Cao
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yu-Ying Yan
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Min Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Akakpo JY, Ramachandran A, Rumack BH, Wallace DP, Jaeschke H. Lack of mitochondrial Cyp2E1 drives acetaminophen-induced ER stress-mediated apoptosis in mouse and human kidneys: Inhibition by 4-methylpyrazole but not N-acetylcysteine. Toxicology 2023; 500:153692. [PMID: 38042273 PMCID: PMC11097675 DOI: 10.1016/j.tox.2023.153692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Acetaminophen (APAP) overdose causes liver injury and acute liver failure, as well as acute kidney injury, which is not prevented by the clinical antidote N-acetyl-L-cysteine (NAC). The absence of therapeutics targeting APAP-induced nephrotoxicity is due to gaps in understanding the mechanisms of renal injury. APAP metabolism through Cyp2E1 drives cell death in both the liver and kidney. We demonstrate that Cyp2E1 is localized to the proximal tubular cells in mouse and human kidneys. Virtually all the Cyp2E1 in kidney cells is in the endoplasmic reticulum (ER), not in mitochondria. By contrast, hepatic Cyp2E1 is in both the ER and mitochondria of hepatocytes. Consistent with this subcellular localization, a dose of 600 mg/kg APAP in fasted C57BL/6J mice induced the formation of APAP protein adducts predominantly in mitochondria of hepatocytes, but the ER of the proximal tubular cells of the kidney. We found that reactive metabolite formation triggered ER stress-mediated activation of caspase-12 and apoptotic cell death in the kidney. While co-treatment with 4-methylpyrazole (4MP; fomepizole) or the caspase inhibitor Ac-DEVD-CHO prevented APAP-induced cleavage of procaspase-12 and apoptosis in the kidney, treatment with NAC had no effect. These mechanisms are clinically relevant because 4MP but not NAC also significantly attenuated APAP-induced apoptotic cell death in primary human kidney cells. We conclude that reactive metabolite formation by Cyp2E1 in the ER results in sustained ER stress that causes activation of procaspase-12, triggering apoptosis of proximal tubular cells, and that 4MP but not NAC may be an effective antidote against APAP-induced kidney injury.
Collapse
Affiliation(s)
- Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Denver, CO, USA
| | - Darren P Wallace
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
14
|
Aki T, Tanaka H, Funakoshi T, Unuma K, Uemura K. Excessive N-acetylcysteine exaggerates glutathione redox homeostasis and apoptosis during acetaminophen exposure in Huh-7 human hepatoma cells. Biochem Biophys Res Commun 2023; 676:66-72. [PMID: 37487439 DOI: 10.1016/j.bbrc.2023.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Acetaminophen (APAP) hepatotoxicity is one of the biggest drawbacks of this relatively safe and widely used drug. In addition to its hepatotoxicity, APAP also cause comparable levels of toxicity on human hepatoma cells. Here we show activation of the intrinsic caspase-9/3 pathway of apoptosis followed by gasdermin E (GSDME) cleavage and subsequent ballooning in APAP (10 mM, 72 h)-treated Huh-7 human hepatocarcinoma cells. N-acetylcysteine (NAC), an antioxidant currently used as an antidote for APAP overdose, does not alleviate APAP toxicity in Huh-7 cells; NAC overdose (10 mM) rather aggravates APAP toxicity. NAC overdose not only aggravates cell death, but also decreases the cellular GSH/GSSG ratio, an indicator of redox homeostasis of glutathione. These results show for the first time that APAP-induced apoptosis in hepatoma cells is followed by secondary necrosis via the caspase-3/GSDME pathway. NAC overdose (10 mM) not only worsens the glutathione redox status, but also accelerates this pathway.
Collapse
Affiliation(s)
- Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hiroki Tanaka
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
15
|
Yoo H, Lee HR, Kang SB, Lee J, Park K, Yoo H, Kim J, Chung TD, Lee KM, Lim HH, Son CY, Sun JY, Oh SS. G-Quadruplex-Filtered Selective Ion-to-Ion Current Amplification for Non-Invasive Ion Monitoring in Real Time. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303655. [PMID: 37433455 DOI: 10.1002/adma.202303655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Living cells efflux intracellular ions for maintaining cellular life, so intravital measurements of specific ion signals are of significant importance for studying cellular functions and pharmacokinetics. In this work, de novo synthesis of artificial K+ -selective membrane and its integration with polyelectrolyte hydrogel-based open-junction ionic diode (OJID) is demonstrated, achieving a real-time K+ -selective ion-to-ion current amplification in complex bioenvironments. By mimicking biological K+ channels and nerve impulse transmitters, in-line K+ -binding G-quartets are introduced across freestanding lipid bilayers by G-specific hexylation of monolithic G-quadruplex, and the pre-filtered K+ flow is directly converted to amplified ionic currents by the OJID with a fast response time at 100 ms intervals. By the synergistic combination of charge repulsion, sieving, and ion recognition, the synthetic membrane allows K+ transport exclusively without water leakage; it is 250× and 17× more permeable toward K+ than monovalent anion, Cl- , and polyatomic cation, N-methyl-d-glucamine+ , respectively. The molecular recognition-mediated ion channeling provides a 500% larger signal for K+ as compared to Li+ (0.6× smaller than K+ ) despite the same valence. Using the miniaturized device, non-invasive, direct, and real-time K+ efflux monitoring from living cell spheroids is achieved with minimal crosstalk, specifically in identifying osmotic shock-induced necrosis and drug-antidote dynamics.
Collapse
Affiliation(s)
- Hyebin Yoo
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Hyun-Ro Lee
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Soon-Bo Kang
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Juhwa Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Kunwoong Park
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Hyunjae Yoo
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jinmin Kim
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon, 21983, South Korea
| | - Jeong-Yun Sun
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, South Korea
| | - Seung Soo Oh
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon, 21983, South Korea
| |
Collapse
|
16
|
Madkhali OA, Moni SS, Sultan MH, Bakkari MA, Almoshari Y, Shaheen ES, Alshammari A. Design and characterization of Lactotransferrin peptide-loaded dextran-docosahexaenoic acid nanoparticles: an immune modulator for hepatic damage. Sci Rep 2023; 13:13537. [PMID: 37598258 PMCID: PMC10439908 DOI: 10.1038/s41598-023-40674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
The primary objective of this research was to create injectable delivery formulations using Lactotransferrin (LTF) peptide-loaded dextran nanoparticles coated with docosahexaenoic acid. These nanoparticles, designated as LLDDNP, underwent a lyophilization process. The study encompassed a comprehensive investigation, including physicochemical characterization, in vivo assessment of biomarkers, and an examination of immune response through cytokine modulation. The zeta potential of LLDDNP was - 24.5 ± 12 mV, while their average particle size was 334.9 z.d.nm. The particles exhibited a conductivity of 2.10 mS/cm, while their mobility in the injectable dosage form was measured at - 3.65 µm cm/Vs. The scanning electron microscopy investigation, the lyophilization processes resulted in discrete particles forming particle aggregations. However, transmission electron microscopy analysis revealed that LLDDNP is spherical and smooth. The thermogram showed that about 95% of LLDDNP's weight was lost at 270 °C, indicating that the particles are extremely thermal stable. The XRD analysis of LLDDNP exhibited clear and distinctive peaks at 2θ angles, specifically at 9.6°, 20.3°, 21.1°, 22°, 24.6°, 25.2°, 36°, and 44.08°, providing compelling evidence of the crystalline nature of the particles. According to proton NMR studies, the proton dimension fingerprint region of LLDDNP ranges from 1.00 to 1.03 ppm. The in vitro release of LTF from LLDDNP was found to follow zero-order kinetics, with a commendable R2 value of 0.942, indicating a consistent and predictable release pattern over time. The in vivo investigation revealed a significant impact of hepatotoxicity on the elevation of various cytokines, including IL-1β, IL-6, IL-8R, TNF-α, IL-2, IL-4, IL-10, and IFN-γ. Additionally, the presence of hepatotoxicity led to an increase in apoptosis markers, namely caspase 3 and caspase 9, as well as elevated levels of liver biomarkers such as CRP, ALP, ALT, and AST. In contrast, the treatment with LLDDNP modulated the levels of all biomarkers, including cytokines level in the treatment group extremely high significant at p < 0.001.
Collapse
Affiliation(s)
- Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Sivakumar S Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.
| | - Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Ali Bakkari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Zhou Q, Zhou Q, Xia R, Zhang P, Xie Y, Yang Z, Khan A, Zhou Z, Tan W, Liu L. Swertiamarin or heat-transformed products alleviated APAP-induced hepatotoxicity via modulation of apoptotic and Nrf-2/NF- κB pathways. Heliyon 2023; 9:e18746. [PMID: 37554797 PMCID: PMC10404768 DOI: 10.1016/j.heliyon.2023.e18746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE Swertiamarin (STM) belongs to iridoid class of compounds, and the heat-transformed products (HTPS) are produced by STM in the process of drug processing. The purpose of this study was to explore the protective effect and mechanism of STM or HTPS on acetaminophen (APAP)-induced hepatotoxicity. METHODS Mice and L-O2 cells were given APAP to establish the hepatotoxicity model in vivo and in vitro. The effects of STM or HTPS on oxidative stress, inflammation, and apoptosis induced by APAP were evaluated, with N-acetylcysteine (NAC) as a positive control. RESULTS STM or HTPS reduced the APAP-induced apoptosis of L-O2 cells and significantly alleviated the liver injury index induced by APAP (p < 0.01, 0.005) Interestingly, HTPS had better protective effect against APAP-induced hepatotoxicity than STM (p < 0.05). In addition STM or HTPS improved the histological abnormalities; inhibited lipid peroxidation and reduced the level of inflammatory mediators. They also activated the defense system of nuclear factor erythroid 2 related factor 2 (Nrf-2) and inhibited nuclear factor-κ B (NF-κB).
Collapse
Affiliation(s)
- Qian Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Qixiu Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Rui Xia
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Peng Zhang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Yanqing Xie
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Zhuya Yang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zhihong Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Wenhong Tan
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Lu Liu
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| |
Collapse
|
18
|
Huffman AM, Syed M, Rezq S, Anderson CD, Yanes Cardozo LL, Romero DG. Loss of microRNA-21 protects against acetaminophen-induced hepatotoxicity in mice. Arch Toxicol 2023; 97:1907-1925. [PMID: 37179516 PMCID: PMC10919897 DOI: 10.1007/s00204-023-03499-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Acetaminophen (APAP)-induced Acute Liver Failure (ALF) is recognized as the most common cause of ALF in Western societies. APAP-induced ALF is characterized by coagulopathy, hepatic encephalopathy, multi-organ failure, and death. MicroRNAs are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. MicroRNA-21 (miR-21) is dynamically expressed in the liver and is involved in the pathophysiology of both acute and chronic liver injury models. We hypothesize that miR-21genetic ablation attenuates hepatotoxicity following acetaminophen intoxication. Eight-week old miR-21knockout (miR21KO) or wild-type (WT) C57BL/6N male mice were injected with acetaminophen (APAP, 300 mg/kg BW) or saline. Mice were sacrificed 6 or 24 h post-injection. MiR21KO mice presented attenuation of liver enzymes ALT, AST, LDH compared with WT mice 24 h post-APAP treatment. Moreover, miR21KO mice had decreased hepatic DNA fragmentation and necrosis than WT mice after 24 h of APAP treatment. APAP-treated miR21KO mice showed increased levels of cell cycle regulators CYCLIN D1 and PCNA, increased autophagy markers expression (Map1LC3a, Sqstm1) and protein (LC3AB II/I, p62), and an attenuation of the APAP-induced hypofibrinolytic state via (PAI-1) compared with WT mice 24 post-APAP treatment. MiR-21 inhibition could be a novel therapeutic approach to mitigate APAP-induced hepatotoxicity and enhance survival during the regenerative phase, particularly to alter regeneration, autophagy, and fibrinolysis. Specifically, miR-21 inhibition could be particularly useful when APAP intoxication is detected at its late stages and the only available therapy is minimally effective.
Collapse
Affiliation(s)
- Alexandra M Huffman
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Maryam Syed
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Samar Rezq
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Christopher D Anderson
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Licy L Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
19
|
Zhao J, Shi S, Zhang X, Liu Y, Yuan M, Cheng G, Wang Y. Confusoside, a dihydrochalcone glucoside, prevents acetaminophen-induced liver injury by modulating the Nrf2/NF-κB/caspase signaling pathway. Food Funct 2023; 14:2432-2443. [PMID: 36786681 DOI: 10.1039/d2fo03497b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dihydrochalcones are important bioactive ingredients in plants. Anneslea fragrans is an edible and medicinal plant, and its leaves are rich in dihydrochalcones. Confusoside (CF) is the most abundant dihydrochalcone in A. fragrans leaves, which is traditionally used in the treatment of liver diseases. The aim of this study was to investigate the hepatoprotective effect of CF on acetaminophen (APAP)-induced hepatic injury in mice. CF could reduce the levels of AST, ALT, and LDH in the serum and enhance the antioxidant activity by activating the Nrf2 signaling pathway to increase the activities of antioxidant enzymes (SOD and CAT), and the GSH content but decrease the MDA accumulation in liver tissues. Immunofluorescence assay and western blotting analysis showed that CF can regulate Nrf2 into the cell nucleus, thereby promoting the expression of downstream antioxidant-related proteins, including NQO1 and HO-1. In addition, CF could inhibit the liver inflammatory response by suppressing the activation of the NF-κB signaling pathway to reduce the expressions of TNF-α, IL-1β, IL-6, and NO. Molecular docking results showed that there was good binding between the CF and Keap1-Nrf2 protein. Western blotting and TUNEL analysis also revealed CF-inhibited cell apoptosis-related protein expression (Bcl2 and caspase-3/9 proteins). Thus, the CF from A. fragrans leaves could be served as an alternative hepaprotective agent for the treatment and prevention of APAP-induced liver injury.
Collapse
Affiliation(s)
- Jinghao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.
| | - Shang Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.
| | - Xiaoyu Zhang
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yaping Liu
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Minglong Yuan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China. .,School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Guiguang Cheng
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yudan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China. .,School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, Yunnan, China
| |
Collapse
|
20
|
Molecular mechanism for the involvement of CYP2E1/NF-κB axis in bedaquiline-induced hepatotoxicity. Life Sci 2023; 315:121375. [PMID: 36621541 DOI: 10.1016/j.lfs.2023.121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Bedaquiline (BDQ) is a new class of anti-tubercular (anti-TB) drugs and is currently reserved for multiple drug resistance (MDR-TB). However, after receiving fast-track approval, its clinical studies demonstrate that its treatment is associated with hepatotoxicity and labeled as 'boxed warning' by the USFDA. No data is available on BDQ to understand the mechanism for drug-induced liver injury (DILI), a severe concern for therapeutic failure/unbearable tolerated toxicities leading to drug resistance. Therefore, we performed mechanistic studies to decipher the potential of BDQ at three dose levels (80 to 320 mg/kg) upon the repeated dose administration orally using a widely used mice model for TB. Results of BDQ treatment at the highest dose level showed that substantial increase of hepatic marker enzymes (SGPT and SGOT) in serum, oxidative stress marker levels (MDA and GSH) in hepatic tissue, and pro-inflammatory cytokine levels (TNF-α, IL-6, and IL-1β) in serum compared to control animals. Induction of liver injury situation was further evaluated by Western blotting for various protein expressions linked to oxidative stress (SOD, Nrf2, and Keap1), inflammation (NF-ĸB and IKKβ), apoptosis (BAX, Bcl-2, and Caspase-3) and drug metabolism enzymes (CYP3A4 and CYP2E1). The elevated plasma level of BDQ and its metabolite (N-desmethyl BDQ) were observed, corresponding to BDQ doses. Histopathological examination and SEM analysis of the liver tissue corroborate the above-mentioned findings. Overall results suggest that BDQ treatment-associated generation of its cytotoxic metabolite could act on CYP2E1/NF-kB pathway to aggravate the condition of oxidative stress, inflammation, and apoptosis in the liver and precipitating hepatotoxicity.
Collapse
|
21
|
Yu C, Chen P, Miao L, Di G. The Role of the NLRP3 Inflammasome and Programmed Cell Death in Acute Liver Injury. Int J Mol Sci 2023; 24:3067. [PMID: 36834481 PMCID: PMC9959699 DOI: 10.3390/ijms24043067] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Acute liver injury (ALI) is a globally important public health issue that, when severe, rapidly progresses to acute liver failure, seriously compromising the life safety of patients. The pathogenesis of ALI is defined by massive cell death in the liver, which triggers a cascade of immune responses. Studies have shown that the aberrant activation of the nod-like receptor protein 3 (NLRP3) inflammasome plays an important role in various types of ALI and that the activation of the NLRP3 inflammasome causes various types of programmed cell death (PCD), and these cell death effectors can in turn regulate NLRP3 inflammasome activation. This indicates that NLRP3 inflammasome activation is inextricably linked to PCD. In this review, we summarize the role of NLRP3 inflammasome activation and PCD in various types of ALI (APAP, liver ischemia reperfusion, CCl4, alcohol, Con A, and LPS/D-GalN induced ALI) and analyze the underlying mechanisms to provide references for future relevant studies.
Collapse
Affiliation(s)
- Chaoqun Yu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Longyu Miao
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Guohu Di
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
22
|
Marinho ADO, Brito JDS, da Costa JA, da Silva AR, da Silva SP, de Amorim LC, Correia MTDS, Paiva PMG, de Oliveira AM, Patriota LLDS, Napoleão TH. Schinus terebinthifolia leaf lectin has central and peripheral antinociceptive action mediated by its carbohydrate-recognition domain and delta-opioid receptors. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115817. [PMID: 36228889 DOI: 10.1016/j.jep.2022.115817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Preparations from the bark and leaves of Schinus terebinthifolia Raddi are commonly used to treat toothaches and sore throats. The use of medications based on leaves of this plant has also been reported for pain of arthritis, toothache, and sore throat. Some evidence indicated that the lectin SteLL is an antinociceptive agent from leaves. AIM OF THE STUDY This study evaluated the antinociceptive activity of S. terebinthifolia leaf lectin (SteLL) using mouse models of peripheral and central nociception. MATERIALS AND METHODS Animals were treated intraperitoneally with SteLL at 1, 5, and 10 mg/kg. An acetic acid-induced abdominal writhing test was performed to screen for the antinociceptive effect of the lectin. Next, the formalin test was used to assess the effects of SteLL on neurogenic (first phase) and inflammatory (second phase) pain, as well as to investigate the involvement of the carbohydrate-recognition domain (CRD) of SteLL and opioid receptors in the antinociceptive effect. The tail immersion test was performed to assess the central antinociception. Additionally, a rotarod test was performed to evaluate the effects of lectin on motor coordination in mice. RESULTS SteLL reduced the number of acetic acid-induced writhes by 83.5-100.0%. In the first phase of the formalin test, SteLL reduced paw licking time by 49.4-50.5%, while in the second phase, SteLL reduced paw licking time by 80.5-82.6%. This antinociceptive effect was reversed by the previous incubation of the lectin with ovalbumin (indicating the possible involvement of the CRD) and by the administration of naloxone, a nonselective opioid receptor antagonist. When testing selective antagonists of opioid receptors (μ, δ, and κ), only naltrindole, a selective δ receptor antagonist, blocked the antinociceptive action of SteLL during the second phase of the formalin test. In the tail immersion test, SteLL (1, 5, and 10 mg/kg) administration reduced sensitivity to thermal stimulus, which was observed even after 2 h. SteLL (10 mg/kg) did not affect animal motor coordination in rotarod test when compared to the control group. CONCLUSION SteLL has peripheral and central analgesic action involving opioid receptor modulation without affecting the motor coordination of animals. These results provide new perspectives for developing analgesic agents using lectins.
Collapse
Affiliation(s)
- Amanda de Oliveira Marinho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Jéssica de Santana Brito
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Jainaldo Alves da Costa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Abdênego Rodrigues da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Suéllen Pedrosa da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| | | | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
23
|
Zhang W, Geng X, Dong Q, Li X, Ye P, Lin M, Xu B, Jiang H. Crosstalk between autophagy and the Keap1-Nrf2-ARE pathway regulates realgar-induced neurotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115776. [PMID: 36191662 DOI: 10.1016/j.jep.2022.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Realgar, the main component of which is As2S2 or As4S4 (≥90%), is a traditional Chinese natural medicine that has been used to treat carbuncles, furuncles, snake and insect bites, abdominal pain caused by parasitic worms, and epilepsy in China for many years. Because realgar contains arsenic, chronic or excessive use of single-flavor realgar and realgar-containing Chinese patent medicine can lead to drug-induced arsenic poisoning, but the exact mechanism underlying its toxicity to the central nervous system is unclear. AIM OF THE STUDY The aim of this study was to clarify the mechanism of realgar-induced neurotoxicity and to investigate the effects of realgar on autophagy and the Keap1-Nrf2-ARE pathway. MATERIALS AND METHODS We used rats treated with the autophagy inhibitor 3-methyladenine (3-MA) or adeno-associated virus (AAV2/9-r-shRNA-Sqstm1, sh-p62) to investigate realgar-induced neurotoxicity and explore the specific relationship between autophagy and the Keap1-Nrf2-ARE pathway (the Nrf2 pathway) in the cerebral cortex. Molecular docking analysis was used to assess the interactions among the Nrf2, p62 and Keap1 proteins. RESULTS Our results showed that arsenic from realgar accumulated in the brain and blood to cause neuronal and synaptic damage, decrease exploratory behavior and spontaneous movement, and impair memory ability in rats. The mechanism may have involved realgar-mediated autophagy impairment and continuous activation of the Nrf2 pathway via the LC3-p62-Keap1-Nrf2 axis. However, because this activation of the Nrf2 pathway was not sufficient to counteract oxidative damage, apoptosis was aggravated in the cerebral cortex. CONCLUSIONS This study revealed that autophagy, the Nrf2 pathway, and apoptosis are involved in realgar-induced central nervous system toxicity and identified p62 as the hub of the LC3-p62-Keap1-Nrf2 axis in the regulation of autophagy, the Nrf2 pathway, and apoptosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Liaoning, PR China.
| | - Xu Geng
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Qing Dong
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Xiuhan Li
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Ping Ye
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Mengyuan Lin
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Bin Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Hong Jiang
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Liaoning, PR China.
| |
Collapse
|
24
|
Paeoniflorin Protects against Acetaminophen-Induced Liver Injury in Mice via JNK Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238534. [PMID: 36500627 PMCID: PMC9739375 DOI: 10.3390/molecules27238534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Drug-induced liver injury (DILI), represented by acetaminophen (APAP), is a common cause of acute liver failure in clinics. Paeoniflorin (PF) has been proven to demonstrate a significant hepatoprotective effect. However, it is still unclear whether it can be a potential agent against hepatotoxicity induced by APAP. This study aimed to explore the preventive and therapeutic effects and mechanisms of PF on APAP-induced liver injury. METHODS Different doses of PF (50, 100, and 200 mg/kg) were given to C57BL/6 male mice for five consecutive days. After 12 h of APAP (250 mg/kg i.p.) treatment, blood and liver tissues were collected and isolated for detection. RESULTS The results showed that the therapeutic effects of PF on APAP mice were presented in the downregulation of the content of serum indices and significantly improved hepatic tissue edema and inflammatory infiltration. Meanwhile, PF reduces the level of the mitochondrial metabolic enzyme. Ulteriorly, it was found that PF has a downregulating effect on the apoptotic reaction and could inhibit the protein expression of CYP2E1/JNK signaling, which in turn reduces the damage of APAP. CONCLUSION Our findings showed that PF acted as a protective agent against APAP-induced hepatotoxicity by inhibiting JNK-related signals, suggesting a novel insight into treating APAP-induced liver injury.
Collapse
|
25
|
Abstract
Acetaminophen (APAP) is a widely used pain reliever that can cause liver injury or liver failure in response to an overdose. Understanding the mechanisms of APAP-induced cell death is critical for identifying new therapeutic targets. In this respect it was hypothesized that hepatocytes die by oncotic necrosis, apoptosis, necroptosis, ferroptosis and more recently pyroptosis. The latter cell death is characterized by caspase-dependent gasdermin cleavage into a C-terminal and an N-terminal fragment, which forms pores in the plasma membrane. The gasdermin pores can release potassium, interleukin-1β (IL-1β), IL-18, and other small molecules in a sublytic phase, which can be the main function of the pores in certain cell types such as inflammatory cells. Alternatively, the process can progress to full lysis of the cell (pyroptosis) with extensive cell contents release. This review discusses the experimental evidence for the involvement of pyroptosis in APAP hepatotoxicity as well as the arguments against pyroptosis as a relevant mechanism of APAP-induced cell death in hepatocytes. Based on the critical evaluation of the currently available literature and understanding of the pathophysiology, it can be concluded that pyroptotic cell death is unlikely to be a relevant contributor to APAP-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David S. Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
26
|
Zhao Y, Liu X, Ding C, Zheng Y, Zhu H, Cheng Z, Zhao C, Liu W. Aronia melanocarpa polysaccharide ameliorates liver fibrosis through TGF-β1-mediated the activation of PI3K/AKT pathway and modulating gut microbiota. J Pharmacol Sci 2022; 150:289-300. [PMID: 36344052 DOI: 10.1016/j.jphs.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of this experiment was to investigate the anti-hepatic fibrosis effect of Aronia melanocarpa polysaccharide (AMP) on TAA-induced liver fibrosis mice and its mechanism, as well as the changes in intestinal flora in vivo. This was established with a dose of 200 mg/kg TAA (i.p) once every three days, lasting for eight weeks. Colchicine with 0.4 mg/kg, and AMP (200 and 400 mg/kg) were given by intragastric administration (i.g) after 28 days of intraperitoneal injection of TAA. AMP treatment significantly inhibited the activities of liver injury markers ALT and AST in serum. Histopathological staining demonstrated that AMP significantly reversed TAA-induced hepatocyte necrosis and collagen deposition. In addition, AMP treatment block TGF- β1/Smads pathway inhibited the production of ECM and alleviates liver fibrosis. Furthermore, AMP treatment enhanced the phosphorylation of PI3K/AKT and decreased the expression of its downstream apoptosis-related proteins in liver, thus effectively alleviating TAA-induced liver fibrosis. In addition, 16S rDNA gene sequencing analysis showed that AMP treatment helped restore the imbalanced ecosystem of gut microbes, increased the proportion of Bacteroidetes and Proteobacteria, and increased species richness. Above findings clearly show that AMP is an effective method for treating liver fibrosis, possibly by improving the gut microbiota.
Collapse
Affiliation(s)
- Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Xinglong Liu
- College of Chinese Traditional Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Chuanbo Ding
- College of Chinese Traditional Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhiqiang Cheng
- College of Resource and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Chunli Zhao
- College of Horticulture, Jilin Agricultural University, Changchun, Jilin, China.
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
27
|
Sun SJ, Deng P, Peng CE, Ji HY, Mao LF, Peng LZ. Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis. Cancer Manag Res 2022; 14:3335-3345. [PMID: 36465707 PMCID: PMC9716935 DOI: 10.2147/cmar.s382546] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/10/2022] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Chitosan is the product of the natural polysaccharide chitin removing part of the acetyl group, and exhibits various physiological and bioactive functions. Selenium modification has been proved to further enhance the chitosan bioactivities, and has been a hot topic recently. METHODS The present study aimed to investigate the potential inhibitory mechanism of selenium-modified chitosan (SMC) on HepG2 cells through MTT assays, morphological observation, annexin V-FITC/PI double staining, mitochondrial membrane potential determination, cell-cycle detection, Western blotting, and two-dimensional gel electrophoresis (2-DE). RESULTS The results indicated that SMC can induce HepG2 cell apoptosis with the cell cycle arrested in the S and G2/M phases and gradual disruption of mitochondrial membrane potential, reduce the expression of Bcl2, and improve the expression of Bax, cytochrome C, cleaved caspase 9, and cleaved caspase 3. Also, 2-DE results showed that tubulin α1 B chain, myosin regulatory light chain 12A, calmodulin, UPF0568 protein chromosome 14 open reading frame 166, and the cytochrome C oxidase subunit 5B of HepG2 cells were downregulated in HepG2 cells after SMC treatment. DISCUSSION These data suggested that HepG2 cells induced apoptosis after SMC treatment via blocking the cell cycle in the S and G2/M phases, which might be mediated through the mitochondrial apoptotic pathway. These results could be of benefit to future practical applications of SMC in the food and drug fields.
Collapse
Affiliation(s)
- Su-Jun Sun
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| | - Peng Deng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| | - Chun-E Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| | - Hai-Yu Ji
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, People’s Republic of China
| | - Long-Fei Mao
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| | - Li-Zeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, People’s Republic of China
| |
Collapse
|
28
|
Hu B, Li J, Gong D, Dai Y, Wang P, Wan L, Xu S. Long-Term Consumption of Food-Derived Chlorogenic Acid Protects Mice against Acetaminophen-Induced Hepatotoxicity via Promoting PINK1-Dependent Mitophagy and Inhibiting Apoptosis. TOXICS 2022; 10:665. [PMID: 36355956 PMCID: PMC9693533 DOI: 10.3390/toxics10110665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Hepatotoxicity brought on by acetaminophen (APAP) is significantly impacted by mitochondrial dysfunction. Mitophagy, particularly PINK1-mediated mitophagy, maintains the stability of cell function by eliminating damaged mitochondria. One of the most prevalent dietary polyphenols, chlorogenic acid (CGA), has been shown to have hepatoprotective properties. It is yet unknown, nevertheless, whether its defense against hepatocyte apoptosis involves triggering PINK1-mediated mitophagy. In vitro and in vivo models of APAP-induced hepatotoxicity were established to observe CGA's effect and mechanism in preventing hepatotoxicity in the present study. Serum aminotransferase levels, mouse liver histology, and the survival rate of HepG2 cells and mice were also assessed. The outcomes showed that CGA could reduce the activities of serum enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH), and alleviate liver injury in mice. It could also significantly increase the cell viability of HepG2 cells and the 24-h survival rate of mice. TUNEL labeling and Western blotting were used to identify the hepatocyte apoptosis level. According to data, CGA could significantly reduce liver cell apoptosis in vivo. Additionally, Tom20 and LC3II colocalization in mitochondria may be facilitated by CGA. CGA considerably increased the levels of genes and proteins associated with mitophagy (PINK1, Parkin, LC3II/LC3I), while considerably decreasing the levels of p62 and Tom20, suggesting that it might activate PINK1/Parkin-mediated mitophagy in APAP-induced liver damage. Additionally, the protection of CGA was reduced when PINK1 was knocked down by siPINK1 in HepG2 cells, and it did not upregulate mitophagy-related proteins (PINK1, Parkin, LC3II/LC3I). In conclusion, our findings revealed that long-term consumption of food-derived CGA could prevent APAP hepatotoxicity via increasing PINK1-dependent mitophagy and inhibiting hepatocyte apoptosis.
Collapse
Affiliation(s)
- Bangyan Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ping Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
29
|
Yu T, He Y, Chen H, Lu X, Ni H, Ma Y, Chen Y, Li C, Cao R, Ma L, Li Z, Lei Y, Luo X, Zheng C. Polysaccharide from Echinacea purpurea plant ameliorates oxidative stress-induced liver injury by promoting Parkin-dependent autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154311. [PMID: 35843188 DOI: 10.1016/j.phymed.2022.154311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acetaminophen (APAP) overdose represents one of the most common drug-induced liver injuries (DILI) worldwide. Oxidative damage to the hepatocytes and their resultant autophagy are the key components in the APAP-induced DILI. Echinacea purpurea polysaccharide (EPPS), the component extracted from the root of Echinacea purpurea (L.) Moench, shows various biological functions including immunoregulation and antioxidant activity. PURPOSE This study aimed to elucidate the protective effect of EPPS against APAP-induced DILI and the underlying mechanisms. RESULTS EPPS attenuates APAP overdose induced DILI in mice and ameliorates inflammation and oxidative stress in mice with APAP overdose-induced DILI. Furthermore, EPPS protected the hepatocytes against APAP-induced liver injury by suppressing apoptosis. EPPS ameliorates APAP-induced DILI via an autophagy-dependent mechanism in vivo and increases autophagy with a reduction in oxidative stress and inflammation in vitro. Parkin knockdown prevents the autophagic-dependent manner of EPPS effects in APAP-treated hepatocytes. CONCLUSIONS EPPS exhibited a strong hepatoprotective effect against APAP-induced DILI and was correlated with reduction of autophagy-dependent oxidant response, inflammation, and apoptosis. Moreover, the findings indicated that EPPS exerts its hepatoprotective effect against APAP mainly via Parkin-dependent autophagy, and the use of EPPS can serve as a promising novel therapeutic strategy for APAP-induced DILI.
Collapse
Affiliation(s)
- Tingdong Yu
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China; Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, 650118, Yunnan, PR China
| | - Yanan He
- Department of Ultrasound, The Third People's Hospital of Kunming, Kunming 650041, PR China
| | - Haitao Chen
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China
| | - Xiaokai Lu
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China
| | - Huijing Ni
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China
| | - Yimin Ma
- Inner Mongolia Medical University, Huhhot, Inner Mongolia 010000, PR China
| | - Yumei Chen
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China
| | - Chen Li
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, 650118, Yunnan, PR China
| | - Run Cao
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, 650118, Yunnan, PR China
| | - Liju Ma
- Department of Medical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, PR China
| | - Zhiyao Li
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China.
| | - Yujie Lei
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, 650118, Yunnan, PR China
| | - Xiaomao Luo
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China.
| | - Chenhong Zheng
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China.
| |
Collapse
|
30
|
Dewanjee S, Dua TK, Paul P, Dey A, Vallamkondu J, Samanta S, Kandimalla R, De Feo V. Probiotics: Evolving as a Potential Therapeutic Option against Acetaminophen-Induced Hepatotoxicity. Biomedicines 2022; 10:1498. [PMID: 35884803 PMCID: PMC9312935 DOI: 10.3390/biomedicines10071498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Acetaminophen (APAP) is the most common prescription medicine around the world for the treatment of pain and fever and is considered to be a safe drug at its therapeutic dose. However, a single overdose or frequent use of APAP can cause severe acute liver injury. APAP hepatotoxicity is a prevalent cause of acute liver disease around the world and the lack of suitable treatment makes it a serious problem. In recent years, there has been a surge in interest in using probiotics and probiotic-derived products, known as postbiotics, as health and disease negotiators. A growing body of evidence revealed that they can be equally effective against APAP hepatotoxicity. Different probiotic bacteria were found to be pre-clinically effective against APAP hepatotoxicity. Different postbiotics have also shown exciting results in preclinical models of APAP hepatotoxicity. This review summarized the protective roles and mechanisms of the different probiotic bacteria and postbiotics against APAP hepatotoxicity, with critical discussion. A brief discussion on potential novel probiotics and postbiotics for oxidative liver injury was also included. This review was written in an attempt to pique the interest of researchers in developing a safe therapeutic option against oxidative liver damage using probiotics and/or postbiotics as dietary supplements.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, India; (T.K.D.); (P.P.)
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, India; (T.K.D.); (P.P.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | | | - Sonalinandini Samanta
- Department of Dermatology (Skin & Venereology), Employee’s State Insurance Corporation Medical College & Hospital, Patna 801103, India;
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India;
- Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology, Tarnaka 500007, India
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
31
|
Lin HH, Hsu JY, Tseng CY, Huang XY, Tseng HC, Chen JH. Hepatoprotective Activity of Nelumbo nucifera Gaertn. Seedpod Extract Attenuated Acetaminophen-Induced Hepatotoxicity. Molecules 2022; 27:molecules27134030. [PMID: 35807275 PMCID: PMC9268144 DOI: 10.3390/molecules27134030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
The aim is to investigate the effect of lotus (Nelumbo nucifera Gaertn.) seedpod extract (LSE) on acetaminophen (APAP)-induced hepatotoxicity. LSE is rich in polyphenols and has potent antioxidant capacity. APAP is a commonly used analgesic, while APAP overdose is the main reason for drug toxicity in the liver. Until now, there has been no in vitro test of LSE in drug-induced hepatotoxicity responses. LSEs were used to evaluate the effect on APAP-induced cytotoxicity, ROS level, apoptotic rate, and molecule mechanisms. The co-treatment of APAP and LSEs elevated the survival rate and decreased intracellular ROS levels on HepG2 cells. LSEs treatment could significantly reduce APAP-induced HepG2 apoptosis assessed by DAPI and Annexin V/PI. The further molecule mechanisms indicated that LSEs decreased Fas/FasL binding and reduced Bax and tBid to restore mitochondrial structure and subsequently suppress downstream apoptosis cascade activation. These declines in COX-2, NF-κB, and iNOS levels were observed in co-treatment APAP and LSEs, which indicated that LSEs could ameliorate APAP-induced inflammation. LSE protected APAP-induced apoptosis by preventing extrinsic, intrinsic, and JNK-mediated pathways. In addition, the restoration of mitochondria and inflammatory suppression in LSEs treatments indicated that LSEs could decrease oxidative stress induced by toxic APAP. Therefore, LSE could be a novel therapeutic option for an antidote against overdose of APAP.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Jen-Ying Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Xiao-Yin Huang
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Hsien-Chun Tseng
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Department of Radiation Oncology, School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: (H.-C.T.); (J.-H.C.); Tel.: +886-4-24730022 (ext. 12195) (J.-H.C.); Fax: +886-4-23248175 (J.-H.C.)
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Correspondence: (H.-C.T.); (J.-H.C.); Tel.: +886-4-24730022 (ext. 12195) (J.-H.C.); Fax: +886-4-23248175 (J.-H.C.)
| |
Collapse
|
32
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Adelusi OB, Ramachandran A, Lemasters JJ, Jaeschke H. The role of Iron in lipid peroxidation and protein nitration during acetaminophen-induced liver injury in mice. Toxicol Appl Pharmacol 2022; 445:116043. [PMID: 35513057 PMCID: PMC9843742 DOI: 10.1016/j.taap.2022.116043] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/19/2023]
Abstract
Acetaminophen (APAP) hepatotoxicity, a leading cause of acute liver failure in western countries, is characterized by mitochondrial superoxide and peroxynitrite formation. However, the role of iron, especially as facilitator of lipid peroxidation (LPO), has been controversial. Our aim was to determine the mechanism by which iron promotes cell death in this context. Fasted male C57BL/6J mice were treated with the iron chelator deferoxamine, minocycline (inhibitor of the mitochondrial calcium uniporter) or vehicle 1 h before 300 mg/kg APAP. Deferoxamine and minocycline significantly attenuated APAP-induced elevations in serum alanine amino transferase levels and hepatic necrosis at 6 h. This protection correlated with reduced 3-nitro-tyrosine protein adducts; LPO (malondialdehyde, 4-hydroxynonenal) was not detected. Activation of c-jun N-terminal kinase (JNK) was not affected but mitochondrial release of intermembrane proteins was reduced suggesting that the effect of iron was at the level of mitochondria. Co-treatment of APAP with FeSO4 exacerbated liver injury and protein nitration and triggered significant LPO; all effects were reversed by deferoxamine. Thus, after APAP overdose, iron imported into mitochondria facilitates protein nitration by peroxynitrite triggering mitochondrial dysfunction and cell death. Under these conditions, endogenous defense mechanisms largely prevent LPO. However, after iron overload, protein nitration and LPO contribute to APAP hepatotoxicity.
Collapse
Affiliation(s)
- Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - John J Lemasters
- Center for Cell Death, Injury & Regeneration, Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
34
|
Purohit B, Kumar A, Mahato K, Srivastava A, Chandra P. Engineered three-dimensional Au-Cu bimetallic dendritic nanosensor for ultrasensitive drug detection in urine samples and in vitro human embryonic kidney cells model. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Rodríguez-Agudo R, Goikoetxea-Usandizaga N, Serrano-Maciá M, Fernández-Tussy P, Fernández-Ramos D, Lachiondo-Ortega S, González-Recio I, Gil-Pitarch C, Mercado-Gómez M, Morán L, Bizkarguenaga M, Lopitz-Otsoa F, Petrov P, Bravo M, Van Liempd SM, Falcon-Perez JM, Zabala-Letona A, Carracedo A, Castell JV, Jover R, Martínez-Cruz LA, Delgado TC, Cubero FJ, Lucena MI, Andrade RJ, Mabe J, Simón J, Martínez-Chantar ML. Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen. Antioxidants (Basel) 2022; 11:897. [PMID: 35624761 PMCID: PMC9137496 DOI: 10.3390/antiox11050897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.
Collapse
Affiliation(s)
- Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Marina Serrano-Maciá
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Pablo Fernández-Tussy
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - David Fernández-Ramos
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Clàudia Gil-Pitarch
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - María Mercado-Gómez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - Maider Bizkarguenaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Petar Petrov
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Miren Bravo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Sebastiaan Martijn Van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
| | - Juan Manuel Falcon-Perez
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
| | - Amaia Zabala-Letona
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Arkaitz Carracedo
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
- Traslational prostate cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Research Health Institute, 48903 Barakaldo, Spain
| | - Jose Vicente Castell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Teresa Cardoso Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - María Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga—IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
- UICEC IBIMA, Plataforma ISCiii de Investigación Clínica, 28020 Madrid, Spain
| | - Raúl Jesús Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
| | - Jon Mabe
- IK4-Tekniker, 20600 Eibar, Spain;
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| |
Collapse
|
36
|
Elshal M, Abdelmageed ME. Diacerein counteracts acetaminophen-induced hepatotoxicity in mice via targeting NLRP3/caspase-1/IL-1β and IL-4/MCP-1 signaling pathways. Arch Pharm Res 2022; 45:142-158. [PMID: 35244883 PMCID: PMC8967791 DOI: 10.1007/s12272-022-01373-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
The current study aims at repurposing the anti-arthritic drug diacerein (DCN) for the treatment of acetaminophen hepatotoxicity and investigating the potential underlying mechanisms. Mice were randomly divided into six groups receiving either no treatment (control group), 20 mg/kg DCN i.p, 400 mg/kg acetaminophen i.p, DCN 4 h before acetaminophen, DCN 2 h after acetaminophen, or 400 mg/kg N-acetylcysteine (NAC) i.p, 2 h after acetaminophen. Biomarkers of liver dysfunction, oxidative stress, and apoptosis were assessed. Hepatic necroinflammatory changes were evaluated along with hepatic expression of NF-κB and caspase-1. The levels of NLRP3, IL-1β, IL-4, MCP-1, and TNF-α in the liver, as well as CYP2E1 mRNA expression, were measured. Diacerein significantly reduced biomarkers of liver dysfunction, oxidative stress, hepatocyte necrosis, and infiltration of neutrophils and macrophages whether administered 4 h before or 2 h after acetaminophen. Further, the effects were comparable to those of NAC. Diacerein also counteracted acetaminophen-induced hepatocellular apoptosis by increasing Bcl-2 and decreasing Bax and caspase-3 expression levels. Moreover, DCN normalized hepatic TNF-α and significantly decreased NF-κB p65 expression. Accordingly, DCN can prevent or reverse acetaminophen hepatotoxicity in mice, suggesting potential utility as a repurposed drug for clinical treatment.
Collapse
Affiliation(s)
- Mahmoud Elshal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Eldakahlia, 35516 Egypt
| | - Marwa E. Abdelmageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, El Gomhoria Street, Eldakahlia, 35516 Egypt
| |
Collapse
|
37
|
Pirfenidone attenuates acetaminophen-induced liver injury via suppressing c-Jun N-terminal kinase phosphorylation. Toxicol Appl Pharmacol 2022; 434:115817. [PMID: 34890640 DOI: 10.1016/j.taap.2021.115817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in Western countries. Pirfenidone (PFD), an orally bioavailable pyridone derivative, is clinically used for idiopathic pulmonary fibrosis treatment and has antifibrotic, anti-inflammatory, and antioxidant effects. Here we examined the PFD effect on APAP-induced liver injury. In a murine model, APAP caused serum alanine aminotransferase elevation attenuated by PFD treatment. We performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and vital propidium iodide (PI) stainings simultaneously. APAP induced TUNEL-positive/PI-negative necrosis around the central vein and subsequent TUNEL-negative/PI-positive oncotic necrosis with hemorrhage and caused the upregulation of hypercoagulation- and hypoxia-associated gene expressions. PFD treatment suppressed these findings. Western blotting revealed PFD suppressed APAP-induced c-Jun N-terminal kinase (JNK) phosphorylation despite no effect on JNK phosphatase expressions. In conclusion, simultaneous TUNEL and vital PI staining is useful for discriminating APAP-induced necrosis from typical oncotic necrosis. Our results indicated that PFD attenuated APAP-induced liver injury by suppressing TUNEL-positive necrosis by directly blocking JNK phosphorylation. PFD is promising as a new option to prevent APAP-induced liver injury.
Collapse
|
38
|
Jaeschke H, Adelusi OB, Akakpo JY, Nguyen NT, Sanchez-Guerrero G, Umbaugh DS, Ding WX, Ramachandran A. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharm Sin B 2021; 11:3740-3755. [PMID: 35024303 PMCID: PMC8727921 DOI: 10.1016/j.apsb.2021.09.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.
Collapse
Key Words
- AIF, apoptosis-inducing factor
- AMPK, AMP-activated protein kinase
- APAP, acetaminophen
- ARE, antioxidant response element
- ATG, autophagy-related genes
- Acetaminophen hepatotoxicity
- Apoptosis
- Autophagy
- BSO, buthionine sulfoximine
- CAD, caspase-activated DNase
- CYP, cytochrome P450 enzymes
- DAMPs, damage-associated molecular patterns
- DMSO, dimethylsulfoxide
- Drug metabolism
- EndoG, endonuclease G
- FSP1, ferroptosis suppressing protein 1
- Ferroptosis
- GPX4, glutathione peroxidase 4
- GSH, glutathione
- GSSG, glutathione disulfide
- Gclc, glutamate–cysteine ligase catalytic subunit
- Gclm, glutamate–cysteine ligase modifier subunit
- HMGB1, high mobility group box protein 1
- HNE, 4-hydroxynonenal
- Innate immunity
- JNK, c-jun N-terminal kinase
- KEAP1, Kelch-like ECH-associated protein 1
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LOOH, lipid hydroperoxides
- LPO, lipid peroxidation
- MAP kinase, mitogen activated protein kinase
- MCP-1, monocyte chemoattractant protein-1
- MDA, malondialdehyde
- MPT, mitochondrial permeability transition
- Mitochondria
- MnSOD, manganese superoxide dismutase
- NAC, N-acetylcysteine
- NAPQI, N-acetyl-p-benzoquinone imine
- NF-κB, nuclear factor κB
- NQO1, NAD(P)H:quinone oxidoreductase 1
- NRF2
- NRF2, nuclear factor erythroid 2-related factor 2
- PUFAs, polyunsaturated fatty acids
- ROS, reactive oxygen species
- SMAC/DIABLO, second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI
- TLR, toll like receptor
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- UGT, UDP-glucuronosyltransferases
- mTORC1, mammalian target of rapamycin complex 1
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Olamide B. Adelusi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jephte Y. Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nga T. Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David S. Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
39
|
Zhang N, Zhu L, Zhang R, Zhang C, Cheng J, Tao L, Zhang Y, Xu W. Evaluation of toxicological effects of organophosphorus pesticide metabolites on human HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103741. [PMID: 34517121 DOI: 10.1016/j.etap.2021.103741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Trichloropyridinol (TCP); 3, 5, 6-trichloro-2-pyridinol is the primary metabolites of the organophosphorus pesticide chlorpyrifos. It is more highly persistent than parent compounds in the environment and might represent serious risks to human health. In this study, we investigated the toxicological effects and mechanism of TCP on HepG2 cells. The results revealed that TCP induced DNA damage and apoptosis on HepG2 cells. Besides, up-regulating the expression level of Bax /Bcl-2, a reduction in mitochondrial membrane potential, caspase-9/-3 activation and the release of cytochrome-c are contributed to the toxicological effects of TCP on HepG2 cells. These data indicated that the cytotoxic effects of TCP might be associated with the activity of mitochondrial apoptotic pathways. In conclusion, the results demonstrated that TCP poses a potential threat to human health by inducing toxicological effects in the liver.
Collapse
Affiliation(s)
- Nan Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lianhua Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruizhi Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
40
|
Ji Y, Si W, Zeng J, Huang L, Huang Z, Zhao L, Liu J, Zhu M, Kuang W. Niujiaodihuang Detoxify Decoction inhibits ferroptosis by enhancing glutathione synthesis in acute liver failure models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114305. [PMID: 34129898 DOI: 10.1016/j.jep.2021.114305] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Niujiaodihuang Detoxify Decoction (NDD) is an integrated traditional Chinese medicine prescription that has been used as a therapeutic agent for the treatment of acute liver failure (ALF). However, the mechanisms underlying its action remain unclear. AIM OF THE STUDY To determine the protective effect of NDD on D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced ALF and explore the underlying mechanisms. MATERIALS AND METHODS We characterized the NDD fingerprint by HPLC and established D-GalN/LPS-induced ALF models in Sprague-Dawley rats and LO2 cells. Next, we measured the protective and antiferroptotic effects of NDD in vivo and in vitro. To further investigate the molecular mechanisms underlying the effects of NDD, we performed metabolomic analysis of the liver tissue using LC-MS/MS. RESULTS Results of serum biochemical analysis, liver histopathology, and cell viability showed that NDD effectively relieved the liver injury. It reduced the accumulation of labile iron and alleviated lipid peroxidation by enhancing GPX4 activity. The mitochondrial morphology indicated that NDD exerted its hepatoprotective effect through an antiferroptotic activity. Metabolomic analysis showed that NDD treatment increased the levels of cysteine, decreased those of glutamate, and ameliorated the D-GalN/LPS-induced reduction in the levels of glutathione (GSH). The results for intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were consistent with those of metabolomic analysis. CONCLUSION Our findings indicate that NDD exerts hepatoprotective activity by evoking the reprogramming of GSH metabolism, and thereby, inhibiting ferroptosis.
Collapse
Affiliation(s)
- Yichun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518133, China.
| | - Wenwen Si
- Shenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, China
| | - Juan Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Liqiao Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 524023, China
| | - Zifeng Huang
- Shenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, China
| | - Lijun Zhao
- Shenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, China
| | - Jiahui Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, China
| | - Meiling Zhu
- Shenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, 518104, China.
| | - Weihong Kuang
- School of Pharmacy, Guangdong Medical University, Dongguan, 524023, China.
| |
Collapse
|
41
|
Tian W, Zhao J, Choo BK, Kim IS, Ahn D, Tae HJ, Islam MS, Park BY. Camellia japonica diminishes acetaminophen-induced acute liver failure by attenuating oxidative stress in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57192-57206. [PMID: 34086174 DOI: 10.1007/s11356-021-14530-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
This experiment was to explore the possible defensive properties and potential molecular mechanisms of Camellia japonica (CJ) against APAP-stimulated acute liver failure (ALF) in mice. In this study, we investigated the effects of CJ on APAP-induced hepatotoxicity. Mice were orally treated with CJ before or after challenge with APAP. Both pretreatment and post-treatment with CJ attenuated APAP-induced hepatotoxicity, as confirmed by significantly reduced serum toxicity biomarkers and improved hepatic pathological damage. Pretreatment with CJ drastically decreased the rise of hepatic inflammatory cytokines levels and weakened neutrophil infiltration. Furthermore, pretreatment with CJ dramatically decreased the levels of hepatic oxidative stress markers such as hepatic malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE) expression and rescued the reduced hepatic level of GSH caused by APAP overdose. Additionally, CJ pretreatment markedly attenuated cyclooxygenase-2 (COX-2) activation, transcription factor nuclear factor-kappa B (NF-κB) phosphorylation, c-Jun-N-terminal kinase (JNK) phosphorylation, and activated AMP-activated protein kinase (AMPK) signaling pathway in the liver. The present study thus reveals that CJ attenuated APAP-induced ALF by inhibiting COX-2 activation, NF-κB, and JNK phosphorylation and activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Weishun Tian
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Jing Zhao
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Byung-Kil Choo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, Korea
| | - In-Shik Kim
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Sadikul Islam
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Byung-Yong Park
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
42
|
Widjaja AA, Dong J, Adami E, Viswanathan S, Ng B, Pakkiri LS, Chothani SP, Singh BK, Lim WW, Zhou J, Shekeran SG, Tan J, Lim SY, Goh J, Wang M, Holgate R, Hearn A, Felkin LE, Yen PM, Dear JW, Drum CL, Schafer S, Cook SA. Redefining IL11 as a regeneration-limiting hepatotoxin and therapeutic target in acetaminophen-induced liver injury. Sci Transl Med 2021; 13:13/597/eaba8146. [PMID: 34108253 DOI: 10.1126/scitranslmed.aba8146] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 12/18/2020] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Acetaminophen (N-acetyl-p-aminophenol; APAP) toxicity is a common cause of liver damage. In the mouse model of APAP-induced liver injury (AILI), interleukin 11 (IL11) is highly up-regulated and administration of recombinant human IL11 (rhIL11) has been shown to be protective. Here, we demonstrate that the beneficial effect of rhIL11 in the mouse model of AILI is due to its inhibition of endogenous mouse IL11 activity. Our results show that species-matched IL11 behaves like a hepatotoxin. IL11 secreted from APAP-damaged human and mouse hepatocytes triggered an autocrine loop of NADPH oxidase 4 (NOX4)-dependent cell death, which occurred downstream of APAP-initiated mitochondrial dysfunction. Hepatocyte-specific deletion of Il11 receptor subunit alpha chain 1 (Il11ra1) in adult mice protected against AILI despite normal APAP metabolism and glutathione (GSH) depletion. Mice with germline deletion of Il11 were also protected from AILI, and deletion of Il1ra1 or Il11 was associated with reduced c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activation and quickly restored GSH concentrations. Administration of a neutralizing IL11RA antibody reduced AILI in mice across genetic backgrounds and promoted survival when administered up to 10 hours after APAP. Inhibition of IL11 signaling was associated with the up-regulation of markers of liver regenerations: cyclins and proliferating cell nuclear antigen (PCNA) as well as with phosphorylation of retinoblastoma protein (RB) 24 hours after AILI. Our data suggest that species-matched IL11 is a hepatotoxin and that IL11 signaling might be an effective therapeutic target for APAP-induced liver damage.
Collapse
Affiliation(s)
- Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
| | - Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Benjamin Ng
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Leroy S Pakkiri
- Cardiac Department, National University Hospital, Singapore 119074, Singapore
| | - Sonia P Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Wei Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Shamini G Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Jessie Tan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Sze Yun Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Joyce Goh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Mao Wang
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Robert Holgate
- Abzena, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK
| | - Arron Hearn
- Abzena, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - James W Dear
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Chester L Drum
- Cardiovascular Research Institute, National University Health System, Singapore 119228, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
43
|
Jaeschke H, Adelusi OB, Ramachandran A. Ferroptosis and Acetaminophen Hepatotoxicity: Are We Going Down Another Rabbit Hole? Gene Expr 2021; 20:169-178. [PMID: 33441220 PMCID: PMC8201653 DOI: 10.3727/105221621x16104581979144] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in the US. The mechanisms of APAP-induced liver injury have been under extensive investigations for decades, and many key events of this necrotic cell death are known today. Initially, two opposing hypotheses for cell death were proposed: reactive metabolite and protein adduct formation versus reactive oxygen and lipid peroxidation (LPO). In the end, both mechanisms were reconciled, and it is now generally accepted that the toxicity starts with formation of reactive metabolites that, after glutathione depletion, bind to cellular proteins, especially on mitochondria. This results in a mitochondrial oxidant stress, which requires amplification through a mitogen-activated protein kinase cascade, leading ultimately to enough reactive oxygen and peroxynitrite formation to trigger the mitochondrial membrane permeability transition and cell death. However, the earlier rejected LPO hypothesis seems to make a comeback recently under a different name: ferroptosis. Therefore, the objective of this review was to critically evaluate the available information about intracellular signaling mechanisms of APAP-induced cell death and those of ferroptosis. Under pathophysiologically relevant conditions, there is no evidence for quantitatively enough LPO to cause cell death, and thus APAP hepatotoxicity is not caused by ferroptosis. However, the role of mitochondria-localized minor LPO remains to be further investigated.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Olamide B. Adelusi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
44
|
Sasaki Y, Yoshino N, Okuwa T, Odagiri T, Satoh T, Muraki Y. A mouse monoclonal antibody against influenza C virus attenuates acetaminophen-induced liver injury in mice. Sci Rep 2021; 11:11816. [PMID: 34083649 PMCID: PMC8175586 DOI: 10.1038/s41598-021-91251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/24/2021] [Indexed: 11/09/2022] Open
Abstract
Molecular mimicry is one of the main processes for producing autoantibodies during infections. Although some autoantibodies are associated with autoimmune diseases, the functions of many autoantibodies remain unknown. Previously, we reported that S16, a mouse (BALB/c) monoclonal antibody against the hemagglutinin-esterase fusion glycoprotein of influenza C virus, recognizes host proteins in some species of animals, but we could not succeed in identifying the proteins. In the present study, we found that S16 cross-reacted with acetyl-CoA acyltransferase 2 (ACAA2), which is expressed in the livers of BALB/c mice. ACAA2 was released into the serum after acetaminophen (APAP) administration, and its serum level correlated with serum alanine aminotransferase (ALT) activity. Furthermore, we observed that S16 injected into mice with APAP-induced hepatic injury prompted the formation of an immune complex between S16 and ACAA2 in the serum. The levels of serum ALT (p < 0.01) and necrotic areas in the liver (p < 0.01) were reduced in the S16-injected mice. These results suggest that S16 may have a mitigation function in response to APAP-induced hepatotoxicity. This study shows the therapeutic function of an autoantibody and suggests that an antibody against extracellular ACAA2 might be a candidate for treating APAP-induced hepatic injury.
Collapse
Affiliation(s)
- Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Takashi Odagiri
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Takashi Satoh
- Department of Pathology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate, 028-3694, Japan.
| |
Collapse
|
45
|
Gutiérrez-Noya VM, Gómez-Oliván LM, Ramírez-Montero MDC, Islas-Flores H, Galar-Martínez M, García-Medina S. Survival and malformations rates, oxidative status in early life stages of Cyprinus carpio due to exposure to environmentally realistic concentrations of paracetamol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144585. [PMID: 33454465 DOI: 10.1016/j.scitotenv.2020.144585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Paracetamol (PCM) is among the most consumed analgesic and antipyretic drugs worldwide. Due to its high consumption, this drug has been reported ubiquitously on different water bodies, posing a real threat to aquatic organisms. Until now, several studies have pointed out that PCM may induce oxidative stress, histological damage and developmental disorders on different aquatic species. Nonetheless, there is still a huge knowledge gap about the toxic effects that PCM may induce in species of commercial interest such as the common carp Cyprinus carpio. The aim of this study was to evaluate survival and malformation rates induced by PCM (0.5 μg/L - 3.5 μg/L) in early life stages of common carp. Furthermore, oxidative stress biomarkers were evaluated at 72 and 96 h post fecundation. PCM reduced the survival rate of the embryos of up to 90%, as concentration increased. LC50 and EC50m were 1.29 μg/L and 2.84 μg/L, respectively. Biomarkers of cellular oxidation and antioxidant enzymes were modified in a concentration-dependent way with respect to the control group (p < 0.05). The main developmental alterations observed were lordosis, scoliosis, craniofacial malformations, hypopigmentation, growth retardation, pericardial edema and rachyschisis. These data indicate that environmentally realistic concentrations of PCM could be hazardous and affects the development in early stages of C. carpio. Moreover, our findings also indicate that C. carpio embryos may be a useful in vivo model to evaluate embryonic and teratogenic effects of drugs such as PCM.
Collapse
Affiliation(s)
- Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - María Del Carmen Ramírez-Montero
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| |
Collapse
|
46
|
Gong L, Zhou H, Wang C, He L, Guo C, Peng C, Li Y. Hepatoprotective effect of forsythiaside a against acetaminophen-induced liver injury in zebrafish: Coupling network pharmacology with biochemical pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113890. [PMID: 33516931 DOI: 10.1016/j.jep.2021.113890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythiae Fructus, the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a commonly used traditional Chinese medicine and possesses various pharmacological activities, including anti-inflammation, anti-oxidant and liver protection. AIM OF THE STUDY Although acetaminophen (APAP) has been frequently used for its antipyretic and analgesic effects, it leads to liver injury at an overdose or long-term medication. Forsythiaside A (FA), the principal active component of Forsythiae Fructus, exerts prominent antioxidant, anti-inflammatory and hepatoprotective effects. However, the protective property and underlying mechanism of FA against APAP challenge have not yet been elucidated. Therefore, we aimed to explore the hepatoprotective effect and action mechanism of FA against APAP-induced liver injury in zebrafish. MATERIALS AND METHODS In this study, liver-specific transgenic zebrafish larvae (lfabp: EGFP) were used to investigate the protective effect of FA against overdose APAP exposure. The liver phenotype, morphological and biochemical assessments were carried out to evaluate the hepatoprotective effect of FA. Network pharmacology and molecular docking study were conducted to analyze the potential targets of FA in the treatment of APAP-induced liver injury. Finally, the mechanism of action was verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS The liver phenotype, morphological and biochemical assessments indicated that FA could mitigate APAP-triggered liver injury. Network pharmacology and molecular docking analysis indicated that the protective effect of FA might be related to the regulation of targets tumor necrosis factor (TNF), matrix metallopeptidase 9 (MMP9), matrix metallopeptidase 2 (MMP2), and phosphatidylinositol 3-kinase (PI3K). PCR results confirmed that FA could reverse the progressive alterations of genes involving in extracellular matrix remolding and PI3K/AKT-mediated apoptosis signaling pathway. CONCLUSIONS Our results indicated that FA could mitigate APAP-induced liver injury through modulating the remolding of extracellular matrix and PI3K/AKT-mediated apoptosis.
Collapse
Affiliation(s)
- Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linfeng He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chaocheng Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
47
|
Du YC, Lai L, Zhang H, Zhong FR, Cheng HL, Qian BL, Tan P, Xia XM, Fu WG. Kaempferol from Penthorum chinense Pursh suppresses HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity. Food Funct 2021; 11:7925-7934. [PMID: 32820776 DOI: 10.1039/d0fo00724b] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acetaminophen (APAP) is one of the safest and most effective over-the-counter (OTC) analgesics and antipyretics, but excessive doses of APAP will induce hepatotoxicity with high morbidity and mortality worldwide. Kaempferol (KA), a flavonoid compound derived from the medicinal and edible plant of Penthorum chinense Pursh, has been reported to exert a profound anti-inflammatory and antioxidant activity. In this study, we explored the protective effect and novel mechanism of KA against APAP-induced hepatotoxicity. The results revealed that KA pretreatment significantly reduced the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), relieved hepatocellular damage and apoptosis, attenuated the exhaustion of glutathione (GSH) and accumulation of malondialdehyde (MDA), increased the expression of antioxidative enzymes (e.g., heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1)), and thus restrained APAP-induced oxidative damage in the liver. KA suppressed the expression of NLRP3 and reduced the levels of pro-inflammatory factors, including interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Moreover, KA remarkably inhibited high-mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) expression as well as nuclear factor kappa-B (NF-κB) activation for liver protection against APAP-induced inflammatory responses and apoptosis. Taken together, our findings suggested that KA could effectively protect hepatocytes from APAP hepatotoxicity through the up-regulation of HO-1 and NQO1 expression, the down-regulation of NLRP3 expression, and the inhibition of the HMGB1/TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yi-Chao Du
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, China. and Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Li Lai
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Fu-Rui Zhong
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Huan-Li Cheng
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Bao-Lin Qian
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Peng Tan
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, China. and Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Xian-Ming Xia
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, China. and Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China
| | - Wen-Guang Fu
- Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, China. and Department of Hepatobiliary Surgery, the Affiliated Hospital of Southwest Medical University, China and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, China
| |
Collapse
|
48
|
Umbaugh DS, Jaeschke H. Biomarkers of drug-induced liver injury: a mechanistic perspective through acetaminophen hepatotoxicity. Expert Rev Gastroenterol Hepatol 2021; 15:363-375. [PMID: 33242385 PMCID: PMC8026489 DOI: 10.1080/17474124.2021.1857238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Introduction: Liver injury induced by drugs is a serious clinical problem. Many circulating biomarkers for identifying and predicting drug-induced liver injury (DILI) have been proposed.Areas covered: Biomarkers are mainly predicated on the mechanistic understanding of the underlying DILI, often in the context of acetaminophen overdose. New panels of biomarkers have emerged that are related to recovery/regeneration rather than injury following DILI. We explore the clinical relevance and limitations of these new biomarkers including recent controversies. Extracellular vesicles have also emerged as a promising vector of biomarkers, although the biological role for EVs may limit their clinical usefulness. New technological approaches for biomarker discovery are also explored.Expert opinion: Recent clinical studies have validated the efficacy of some of these new biomarkers, cytokeratin-18, macrophage colony-stimulating factor receptor, and osteopontin for DILI prognosis. Low prevalence of DILI is an inherent limitation to DILI biomarker development. Furthering mechanistic understanding of DILI and leveraging technological advances (e.g. machine learning/omics) is necessary to improve upon the newest generation of biomarkers. The integration of omics approaches with machine learning has led to novel insights in cancer research and DILI research is poised to leverage these technologies for biomarker discovery and development.
Collapse
Affiliation(s)
- David S. Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
49
|
Aly HAA. Mitochondria-Mediated Apoptosis Induced Testicular Dysfunction in Diabetic Rats: Ameliorative Effect of Resveratrol. Endocrinology 2021; 162:6121684. [PMID: 33506262 DOI: 10.1210/endocr/bqab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/24/2022]
Abstract
The molecular mechanism underlying diabetes-induced testicular damage has not been thoroughly elucidated. The present study was conducted to elucidate the role of mitochondria-mediated apoptosis in diabetes-induced testicular dysfunction in rats and to explore the ameliorative effect of resveratrol. Diabetes suppressed sperm count, motility, and viability and increased sperm abnormalities. It decreased serum testosterone level and testicular mitochondrial membrane potential. The level of Bax and caspase-3 and -9 activities were increased in the testicular cytosol, while the level of Bcl-2 was decreased. Diabetes increased the Bax/Bcl-2 ratio. The cytochrome C level was decreased in the mitochondrial fraction, while its level was increased in the cytosol, a result that was supported by the immunohistochemistry of cytochrome C. Diabetes resulted in deleterious alterations in the architecture of testicular tissue, suppressed antioxidant enzymes, and increased H2O2 production, protein carbonyl content, and lipid peroxidation. However, administration of resveratrol at a dose of 50 mg kg/day for 4 successive weeks post diabetic induction, successfully ameliorated the testicular dysfunction. In conclusion, these findings strongly reveal that diabetes induces testicular damage, at least in part, by inducing mitochondrial-mediated apoptosis and oxidative stress. Administration of resveratrol to diabetic rats improves the diabetes-induced testicular damage. These impacts could be mediated through resveratrol antioxidant and anti-apoptotic effects.
Collapse
Affiliation(s)
- Hamdy A A Aly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
50
|
Li Y, Xu J, Li D, Ma H, Mu Y, Zheng D, Huang X, Li L. Chemical Characterization and Hepatoprotective Effects of a Standardized Triterpenoid-Enriched Guava Leaf Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3626-3637. [PMID: 33733770 DOI: 10.1021/acs.jafc.0c07125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nutraceutical/pharmaceutical agents capable of maintaining redox and inflammation homeostasis are considered as candidates for the prevention and/or treatment of liver diseases. Psidium guajava (commonly known as guava) leaf is a commercially available functional food that has been reported to possess hepatoprotective property. However, the hepatoprotective constituents in guava leaf are not known. In the current study, a standardized triterpenoid-enriched extract of guava leaves (TGL) was developed. A new ursolic acid derivative, namely 2α,3β,6β,23,30-pentahydroxyurs-11,13(18)-dien-28,20β-olide (1), and 23 known triterpenoids were isolated and identified from TGL. The hepatoprotective effects of TGL were evaluated through a model using acetaminophen (APAP)-exposed C57BL/6 male mice. Pretreatment of TGL (75 and 150 mg/kg) restored the mice hepatic architecture, improved the serum ALT and AST levels, and reduced the hepatic ROS and MDA contents. Further molecular mechanistic study revealed that TGL modulated Nrf2 and MAPK signaling pathways to alleviate APAP-induced oxidative and inflammatory stress in liver. In addition, the new compound 1 from TGL showed protective effects against APAP-induced cytotoxicity via activation of the Nrf2 pathway in HepG2 cells. Overall, this is the first report on the hepatoprotective effects of a standardized triterpenoid-enriched extract of guava leaves, which supports its potential nutraceutical application in liver disease management.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|