1
|
Mafe AN, Nkene IH, Ali ABM, Edo GI, Akpoghelie PO, Yousif E, Isoje EF, Igbuku UA, Ismael SA, Essaghah AEA, Ahmed DS, Umar H, Alamiery AA. Smart Probiotic Solutions for Mycotoxin Mitigation: Innovations in Food Safety and Sustainable Agriculture. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10569-4. [PMID: 40312537 DOI: 10.1007/s12602-025-10569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Mycotoxin contamination poses severe risks to food safety and agricultural sustainability. Probiotic-based interventions offer a promising strategy for mitigating these toxic compounds through adsorption, biodegradation, and gut microbiota modulation. This review examines the mechanisms by which specific probiotic strains inhibit mycotoxin biosynthesis, degrade existing toxins, and enhance host detoxification pathways. Emphasis is placed on strain-specific interactions, genetic and metabolic adaptations, and advancements in formulation technologies that improve probiotic efficacy in food matrices. Also, the review explores smart delivery systems, such as encapsulation techniques and biofilm applications, to enhance probiotic stability and functionality. Issues related to regulatory approval, strain viability, and large-scale implementation are also discussed. By integrating molecular insights, applied case studies, and innovative probiotic-based solutions, this review provides a roadmap for advancing safe and sustainable strategies to combat mycotoxin contamination in food and agricultural systems.
Collapse
Affiliation(s)
- Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Jalingo, Nigeria
| | - Istifanus Haruna Nkene
- Department of Microbiology, Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria.
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Endurance Fegor Isoje
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Shams A Ismael
- Department of Medical Physics, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Ahmed A Alamiery
- AUIQ, Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, Thi Qar, P.O. Box: 64004, An Nasiriyah, Iraq
| |
Collapse
|
2
|
Chen Y, Cheng J, Wang Z, Liu H, Xia C, Zhang H, Zou S, Chang Q, Xu C. Quantification and metabolic variations of mycotoxins in raw milk: Implications for dairy cow health and human safety. J Dairy Sci 2025; 108:4709-4725. [PMID: 40139380 DOI: 10.3168/jds.2024-25395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/10/2025] [Indexed: 03/29/2025]
Abstract
This study established a method using ultra-performance liquid chromatography-tandem MS for the quantitative analysis of 9 harmful mycotoxins: zearalenone (ZEN), α-zearalanol, HT-2 toxin, T-2 toxin, ochratoxin A, fumonisin B1, deoxynivalenol, aflatoxin M1, and aflatoxin B1 in raw milk. The method exhibited good linearity, sensitivity, accuracy, and precision, making it suitable for trace analysis of these toxins in raw milk. We applied this method to analyze 200 raw milk samples from Heilongjiang Province, China, and found that they contained multiple mycotoxins, with a relatively high concentration of ZEN. To further explore the metabolism of these mycotoxins in dairy cows, we conducted a metabolic study on 12 lactating dairy cows. The results showed significant metabolic changes among the 9 mycotoxins, with ZEN demonstrating notably higher metabolic conversion rates compared with other mycotoxins in the transitions from feed to serum, from feed to milk, and from feed to feces. These findings provide new insights into the safety of raw milk and emphasize the importance of strict monitoring and regulation of these toxins in dairy products to protect human health. Simultaneously, we believe that future research should delve deeper into the metabolism of mycotoxins in dairy cows, which is crucial for ensuring public health safety.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Jiaxin Cheng
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Zhuangshu Wang
- Disease Prevention and Control Center of Huiyang District, Huizhou Guangdong Province 516003, PR China
| | - Honglin Liu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Cheng Xia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Haifeng Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Siqi Zou
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Qiaocheng Chang
- School of Public Health, Shantou University, Shantou, Guangdong Province 515063, PR China.
| | - Chuang Xu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
3
|
Castell A, Arroyo-Manzanares N, Campillo N, Sanz-Fernández S, Rodríguez-Estévez V, Roquet J, González A, Fenoll J, Viñas P. Reliable and sensitive analytical platform to assess dietary exposure of pigs to mycotoxins and explore potential urinary biomarkers. Talanta 2025; 286:127441. [PMID: 39733520 DOI: 10.1016/j.talanta.2024.127441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
A reliable and sensitive analytical platform is proposed for the assessment of pig exposure to mycotoxins through the consumption of commercial feed. A total of 48 naturally contaminated feed and 55 urine samples collected from eight Spanish farms were analyzed using a fast and simple methodology based on solid-liquid extraction (SLE) or liquid-liquid extraction (LLE) and dispersive liquid-liquid microextraction (DLLME). High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was used for the targeted analysis of 27 mycotoxins from different families in both matrices achieving limits of quantification in a range of 0.019-73.5 ng g-1 in feed and 0.011-31.7 ng mL-1 in urine. All feed samples showed contamination with at least 7 mycotoxins. Enniatins (A, A1, B and B1) and beauvericin were quantified in 100 % of feed samples. ENNB, tenuazonic acid (TeA) and deoxynivalenol (DON) were the mycotoxins with the highest mean total concentrations (1.0 ± 1.9 μg g-1, 155 ± 209 ng g-1 and 81 ± 94 ng g-1, respectively). In urine samples, DON, TeA, ENNB1 and ENNA were the most prevalent mycotoxins; and TeA, fumonisin B1 and alternariol had the highest mean total concentration (133 ± 199 ng mg-1, 0.43 ± 1.3 μg mg-1 and 0.29 ± 1.3 μg mg-1 creatinine, respectively). Statistical tests revealed the correlation of DON and TeA occurrence in feed and urine. Untargeted analysis by HPLC coupled to quadrupole-time-of-flight mass spectrometer (Q-TOF-MS) yielded some urinary biomarkers of mycotoxin exposure and other relevant compounds such as certain antibiotic residues in urine.
Collapse
Affiliation(s)
- Ana Castell
- Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain.
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain
| | - Santos Sanz-Fernández
- Department of Animal Production, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Cordoba, 14071, Córdoba, Spain
| | - Vicente Rodríguez-Estévez
- Department of Animal Production, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Cordoba, 14071, Córdoba, Spain
| | | | | | - José Fenoll
- Research Group on Sustainability and Quality of Fruit and Vegetable Production, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, C/ Mayor s/n. La Alberca, 30150, Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100, Murcia, Spain
| |
Collapse
|
4
|
Lapris M, Novara V, Masseroni M, Errico M, Rocchetti G, Gallo A. Evaluation of Untargeted Metabolomic and Mycotoxin Profiles in Corn Silage and High-Moisture Corn. Toxins (Basel) 2025; 17:214. [PMID: 40423297 DOI: 10.3390/toxins17050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Corn silage (CS) and high-moisture corn (HMC) represent fundamental ingredients in ruminant diets; however, their chemical complexity and susceptibility to mycotoxin contamination pose challenges for feed safety and quality assessment. This study applied an innovative approach combining untargeted metabolomics and mycotoxin profiling through ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) to characterize the chemical profiles of CS (n = 19) and HMC (n = 13) samples collected from four farms in northern Italy over a period of two years. Fumonisin B1 (FB1) emerged as the most prevalent mycotoxin, with contamination levels significantly higher in HMC than CS, though all the detected levels complied with European Union (EU) guidance limits. Untargeted metabolomics distinguished CS and HMC based on their metabolic signatures: polyamines, amino acids, peptides, and phenolic acids typified CS, while HMC was primarily characterized by flavonoids and mycotoxins. Geographical origin significantly influenced both mycotoxin patterns and metabolite profiles, while the sampling season showed no significant impact. This study highlights the complementary value of metabolomics and mycotoxin screening to assess feed quality, identify biomarkers, and unravel the link between fungal contamination and biochemical composition, offering a robust strategy to support feed safety management in livestock production.
Collapse
Affiliation(s)
- Marco Lapris
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Valentina Novara
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Mattia Masseroni
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Michela Errico
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
5
|
Pascari X, Teixido-Orries I, Molino F, Marin S, Ramos AJ. Assessing the in vitro efficiency in adsorbing mycotoxins of a tri-octahedral bentonite with potential application in aquaculture feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:503-516. [PMID: 39903870 DOI: 10.1080/19440049.2025.2459234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
The use of mycotoxin binders in feed products is currently the most efficient method to mitigate the harmful effects of mycotoxins. The unprecedented growth of aquaculture in recent years has led to an increased use of plant-based ingredients in fish feeds, thereby raising the risk of mycotoxin exposure. This study investigates the in vitro adsorption efficiency of a tri-octahedral bentonite against aflatoxin B1 (AFB1), zearalenone (ZEN), and fumonisin B1 (FB1) in simulated gastric (pH = 1.2) and intestinal (pH = 6.8) fluids at 25 °C, the usual body temperature in aquaculture fish species. The binder was highly effective, removing over 98% of AFB1 from both media. FB1 was completely adsorbed at pH = 1.2, while its adsorption at pH = 6.8 reached a maximum of 46.3%. ZEN binding was consistent across both pH levels, ranging from 56.1% to 69.7%. Nine equilibrium isotherm functions were fitted to the experimental data to elucidate the adsorption mechanisms. A Sips model isotherm best characterized AFB1 adsorption in simulated gastric fluid, whereas that of ZEN was best described by the Freundlich model. In simulated intestinal fluid (pH = 6.8), monolayer adsorption described by the Langmuir model provided the best fit for all three mycotoxins.
Collapse
Affiliation(s)
- Xenia Pascari
- Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| | - Irene Teixido-Orries
- Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| | - Francisco Molino
- Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| | - Sonia Marin
- Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| | - Antonio J Ramos
- Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| |
Collapse
|
6
|
Dimitrakopoulou ME, Marinos G, Karvounis M, Stoitsis G, Manouselis N, Thanopoulos C, Elliott C. What Lies Behind Mycotoxin Presence in Animal Feed? A Case Study ☆. J Food Prot 2025; 88:100464. [PMID: 39921133 DOI: 10.1016/j.jfp.2025.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
This study investigates seasonal trends and correlations among different mycotoxins in animal feed, employing time series analysis and Seasonal-Trend Decomposition using LOESS (STL) to uncover patterns and relationships. Data collected from Food Fortress, covering 2014-2024, include feed for ruminants, pigs, and poultry. The analysis reveals that seasonality accounts for less than 15% of the variability in mycotoxin levels, suggesting a limited seasonal influence. High deoxynivalenol (DON) concentrations in ram feed were attributed to specific management practices, while persistent DON levels in pig and poultry feed highlight the need for enhanced interventions. A strong correlation between DON and zearalenone (ZEN) was identified in pig and poultry feed. Over the study period, aflatoxin levels exhibited a slight increase, potentially linked to evolving climatic conditions, whereas DON and ZEN levels showed a slight decline. Furthermore, an inverse correlation between aflatoxin and ochratoxin levels suggests competitive interactions among fungal species, such as Aspergillus and Penicillium. These findings provide valuable insights into the intricate interactions of seasonal factors, management practices, and fungal ecology shaping mycotoxin contamination in animal feed. The study emphasizes the need for advanced mitigation strategies, including predictive modeling and artificial intelligence, to monitor and manage mycotoxin risks effectively at the regional level, ensuring feed safety and quality in the face of evolving environmental and management challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chris Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, Belfast BT9 5DL Northern Ireland, UK; International Joint Research Centre on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
7
|
Poór M, Gömbös P, Szabó A, Zsidó BZ, Hetényi C, Huber T, Lukács A, Kunsági-Máté S. Interaction of Mycotoxins with α 1-Acid Glycoprotein (AGP) and Bovine Milk Proteins: Zearalenone, Zearalenols, and Sterigmatocystin Form Highly Stable Complexes with AGP. Toxins (Basel) 2025; 17:151. [PMID: 40278649 PMCID: PMC12031583 DOI: 10.3390/toxins17040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Mycotoxins are frequent food contaminants posing health risk to humans and animals. Since these interactions have been barely studied yet, we examined the potential complex formation of mycotoxins with human α1-acid glycoprotein (AGP) and with bovine milk proteins (including casein (CSN), β-lactoglobulin (LG), and α-lactalbumin (LA)) based on fluorescence spectroscopic and ultracentrifugation techniques. Only weak interactions (logK = 2.7 to 3.5) of certain mycotoxins were observed with CSN, LG, and/or LA. Ultracentrifugation experiments demonstrated that aflatoxin M1, zearalenone, and α-zearalenol form more stable complexes with CSN than with LG or LA. These mycotoxins bound to bovine serum albumin with more than a tenfold higher affinity compared to CSN; nevertheless, it has likely limited importance due to the relatively low levels of BSA in bovine milk. Zearalenone, zearalenols, and sterigmatocystin showed strong interactions with AGP (logK = 5.5 to 6.4), suggesting that AGP may play an important role in the plasma protein binding of these mycotoxins.
Collapse
Affiliation(s)
- Miklós Poór
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
- Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Patrik Gömbös
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.G.); (A.S.)
| | - András Szabó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.G.); (A.S.)
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor u. 40, H-7400 Kaposvár, Hungary
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.Z.Z.); (C.H.)
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.Z.Z.); (C.H.)
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Tamás Huber
- Department of Biophysics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (T.H.); (A.L.)
| | - András Lukács
- Department of Biophysics, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (T.H.); (A.L.)
| | - Sándor Kunsági-Máté
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd u. 1, H-7624 Pécs, Hungary;
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
8
|
Zhu Z, Cheng H, Wang J, Ma J, Wang J, Wang H, Zhou X, Yang J. Occurrence of Co-Contamination and Interaction of Multi-Mycotoxins in Dairy Cow Feed in China. Toxins (Basel) 2025; 17:137. [PMID: 40137910 PMCID: PMC11945585 DOI: 10.3390/toxins17030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Co-contamination of multiple mycotoxins in feed has become one of the most important issues in the world. In this study, the characteristics and interactions of co-contamination among 15 mycotoxins were explored in dairy cow feed, including total mixed ration (TMR), silage, maize, and hay feed. The results showed that four dairy cow feeds were constantly contaminated with mycotoxins, including zearalenone (ZEN), fumonisins (FBs), deoxynivalenol (DON), ochratoxin A (OTA), T-2 toxin (T-2), and aflatoxins (AFs). The contamination level of each mycotoxin was low, but the probability of co-contamination by three or more mycotoxins in one sample was very high. Between DON and aflatoxin B2 (AFB2), between aflatoxin M1 (AFM1) and OTA, between FB2 and aflatoxin B1 (AFB1), between 15-acetyl-deoxynivalenol (15-ADON) and ZEN, and between fumonisin B1 (FB1) and fumonisin B3 (FB3), and between aflatoxin M2 (AFM2) and aflatoxin G2 (AFG2), there were significant and strong correlations. Among the four typical feed samples, the combinations DON + ZEN, DON + FB1, FB1 + ZEN, OTA + ZEN, DON + 3-acetyl-deoxynivalenol (3-ADON), 3-ADON + ZEN, T-2 + ZEN, fumonisin B2 (FB2) + ZEN, and DON + FB3 had higher interaction rates than the other combinations (≥43.75%). Our study not only reveals that co-contamination with multiple mycotoxins is relatively common in dairy cow feed but also highlights the significant correlations between various mycotoxins and assesses the likelihood of their interactions. These findings are crucial for ensuring feed safety and safeguarding animal health.
Collapse
Affiliation(s)
- Zuoyin Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.)
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Haisheng Cheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.)
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Jie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.)
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Junmei Ma
- Xining Agricultural Product Quality and Safety Testing Center, Xining 810003, China
| | - Jianhua Wang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Hongyang Wang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xinli Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.)
| | - Junhua Yang
- Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| |
Collapse
|
9
|
Cova TF, Ferreira C, Nunes SCC, Pais AACC. Structural Similarity, Activity, and Toxicity of Mycotoxins: Combining Insights from Unsupervised and Supervised Machine Learning Algorithms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6173-6188. [PMID: 40013497 DOI: 10.1021/acs.jafc.4c08527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A large number of mycotoxins and related fungal metabolites have not been assessed in terms of their toxicological impacts. Current methodologies often prioritize specific target families, neglecting the complexity and presence of co-occurring compounds. This work addresses a fundamental question: Can we assess molecular similarity and predict the toxicity of mycotoxins in silico using a defined set of molecular descriptors? We propose a rapid nontarget screening approach for multiple classes of mycotoxins, integrating both unsupervised and supervised machine learning models, alongside molecular and physicochemical descriptors to enhance the understanding of structural similarity, activity, and toxicity. Clustering analyses identify natural clusters corresponding to the known mycotoxin families, indicating that mycotoxins belonging to the same cluster share similar molecular properties. However, topological descriptors play a significant role in distinguishing between acutely toxic and nonacutely toxic compounds. Random forest (RF) and neural networks (NN), combined with molecular descriptors, contribute to improved knowledge and predictive capability regarding mycotoxin toxicity profiles. RF allows the prediction of toxicity using data reflecting mainly structural features and performs well in the presence of descriptors reflecting biological activity. NN models prove to be more sensitive to biological activity descriptors than RF. The use of descriptors encompassing structural complexity and diversity, chirality and symmetry, connectivity, atomic charge, and polarizability, together with descriptors representing lipophilicity, absorption, and permeation of molecules, is crucial for predicting toxicity, facilitating broader toxicological evaluations.
Collapse
Affiliation(s)
- Tânia F Cova
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Cláudia Ferreira
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Sandra C C Nunes
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Alberto A C C Pais
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| |
Collapse
|
10
|
Li K, Cai H, Luo B, Duan S, Yang J, Zhang N, He Y, Wu A, Liu H. Recent Progress of Mycotoxin in Various Food Products-Human Exposure and Health Risk Assessment. Foods 2025; 14:865. [PMID: 40077568 PMCID: PMC11898784 DOI: 10.3390/foods14050865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Mycotoxins, as prevalent contaminants in the food chain, exhibit diverse toxicological effects on both animals and humans. Chronic dietary exposure to mycotoxin-contaminated foods may result in the bioaccumulation of these toxins, posing substantial public health risks. This review systematically examines the contamination patterns of mycotoxins across major food categories, including cereals and related products, animal-derived foods, fruits, and medical food materials. Furthermore, we critically evaluated two methodological frameworks for assessing mycotoxin exposure risks: (1) dietary exposure models integrating contamination levels and consumption data and (2) human biomonitoring approaches quantifying mycotoxin biomarkers in biological samples. A key contribution lies in the stratified analysis of exposure disparities among population subgroups (adults, teenagers, children, and infants). Additionally, we summarize current research on the relationship between human mycotoxin biomonitoring and associated health impacts, with a particular emphasis on vulnerable groups such as pregnant women and infants. By elucidating the challenges inherent in existing studies, this synthesis provides a roadmap for advancing risk characterization and evidence-based food safety interventions.
Collapse
Affiliation(s)
- Kailin Li
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200331, China
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Baozhang Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Shenggang Duan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Jingjin Yang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Nan Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Yi He
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200331, China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| |
Collapse
|
11
|
Rizzo M, Licata P, Niutta PP, Pugliese M, Macaluso V, Costa GL, Bruschetta G, Bruno F. An Unusual Outbreak of Ochratoxicosis Associated with Trigonella foenum-graecum Ingestion in Ruminants from Different Farms of Sicily. Toxins (Basel) 2025; 17:120. [PMID: 40137893 PMCID: PMC11946147 DOI: 10.3390/toxins17030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Trigonella foenum-graecum is a widely cultivated legume in Mediterranean regions, and it is used for human and animal consumption, as well as for medical purposes. High temperatures and abundant rainfall during the spring season in Sicily favor the formation of an environment suitable for the growth and proliferation of fungi with the production of mycotoxins. In this study, ochratoxin A, aflatoxin, deoxynivalenol, zearalenone, fumonisin, and T-2 toxin concentrations in Trigonella foenum-graecum were determined in feed administered to ruminants and also in blood samples from cattle and sheep in order to evaluate the toxicity correlated to the possible presence of these mycotoxins based on the clinical signs observed in the animals. Analyses of mycotoxins in fenugreek and blood samples were conducted using the enzyme immunoassay KIT. Five extensive farms sited in the northwest of the Sicily region, with a total of 90 intoxicated animals, reported a concomitant unusual outbreak of neurological disorders. Decreased spinal reflex responses, postural abnormalities associated with weakness or recumbency, and hyperesthesia of the limbs suggested a problem regarding the peripheral nervous system. The mortality rate recorded was very high, even reaching 100% of the intoxicated animals. OTA intoxication in Sicilian ruminants represents an important warning on the vulnerability of farms to mycotoxin contamination and underlines the importance of preventive measures and monitoring in animal health management.
Collapse
Affiliation(s)
- Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | - Patrizia Licata
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | - Pietro Paolo Niutta
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | - Michela Pugliese
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | | | - Giovanna Lucrezia Costa
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | - Fabio Bruno
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| |
Collapse
|
12
|
Gruber-Dorninger C, Müller A, Rosen R. Multi-Mycotoxin Contamination of Aquaculture Feed: A Global Survey. Toxins (Basel) 2025; 17:116. [PMID: 40137889 PMCID: PMC11946512 DOI: 10.3390/toxins17030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Plant-based materials are increasingly being used as ingredients of aquaculture feed. These materials are prone to mycotoxin contamination, as mycotoxigenic fungi infest crop plants in the field and agricultural products during storage. As mycotoxins can cause toxic effects in aquatic animals, their occurrence in feedstuffs should be monitored. To this end, we performed an extensive global survey of mycotoxin contamination in aquaculture feed and plant-based feed raw materials. We collected samples of compound feed for fish (n = 226) and shrimps (n = 61), maize (n = 3448), maize DDGS (n = 149), wheat (n = 1578), soybean (n = 428), and rice (n = 65). We analyzed concentrations of 51 mycotoxins, emerging mycotoxins, masked mycotoxins, and mycotoxin metabolites. Mycotoxins were almost ubiquitously present in compound feed, as >90% of samples were contaminated with at least one mycotoxin. Feed raw materials exhibited distinct mycotoxin occurrence patterns consistent with known susceptibility to fungal pathogens and with their production process. Unsafe concentrations of aflatoxin B1 exceeding the EU maximum level were detected in 7.2% of fish feed samples. While most feedstuffs complied with EU guidance values for deoxynivalenol, zearalenone, and fumonisins, a comparison of detected concentrations with dietary concentrations reported to cause adverse effects in fish and shrimps in published studies indicated that significant fractions of samples contained potentially harmful levels of these mycotoxins. In addition to regulated mycotoxins, several emerging mycotoxins (e.g., enniatins, beauvericin, alternariol, moniliformin) were prevalent. Feed was frequently co-contaminated with multiple mycotoxins indicating a risk of combined effects. In conclusion, mycotoxin contamination was common in aquaculture feed and fractions of samples were contaminated with mycotoxin levels known to exert adverse effects in aquaculture species. Results of this survey highlight the necessity for targeted studies on the effects of frequently detected mycotoxin mixtures and emerging mycotoxins in fish and shrimp.
Collapse
Affiliation(s)
| | - Anneliese Müller
- dsm-firmenich, ANH Performance Solutions, Erber Campus 1, 3131 Getzersdorf, Austria
| | - Roy Rosen
- dsm-firmenich, Animal Nutrition and Health R&D Center Tulln, Technopark 1, 3430 Tulln, Austria;
| |
Collapse
|
13
|
He C, Li Q, Xiao H, Sun X, Gao Z, Cai Y, Zhao S. Effects of Mixing Ratio and Lactic Acid Bacteria Preparation on the Quality of Whole-Plant Quinoa and Whole-Plant Corn or Stevia Powder Mixed Silage. Microorganisms 2025; 13:78. [PMID: 39858846 PMCID: PMC11767403 DOI: 10.3390/microorganisms13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Quinoa is the only single plant that can meet all the nutritional needs of human, and its potential for feed utilization has been continuously explored, becoming a prosperous industry for poverty alleviation. In order to further tap the feeding value of whole quinoa, develop quinoa as a feed substitute for conventional crops such as corn, and improve its comprehensive utilization rate, this experiment analyzed the silage quality and mycotoxin content of mixed silage of whole-plant quinoa (WPQ) with whole-plant corn (WPC) or stevia powder(SP) in different proportions, and further improved the silage quality of mixed silage by using two lactic acid bacteria preparations (Sila-Max and Sila-Mix). The quality, microbial population, and mycotoxin levels of quinoa and corn silage, as well as that of the mixed silage of quinoa and stevia, were evaluated using single-factor analysis of variance. The impact of various lactic acid bacteria preparations on the quality of whole-quinoa and whole-corn mixed silage was investigated through two-factor analysis of variance. WPQ and WPC were mixed at the ratio of 5:5 (QB5), 6:4 (QB6), 7:3 (QB7), 8:2 (QB8), 9:1 (QB9) and 10:0 (QB10). SP was mixed with WPQ at the supplemental levels of 0.2% (QB10S2), 0.4% (QB10S4), 0.6% (QB10S6), 0.8% (QB10S8) and 1.0% (QB10S10). After 60 days of silage, the silage indexes, the number of harmful microorganisms, and the mycotoxin levels were measured, to explore the appropriate ratio of mixed silage. The membership function analysis showed that the quality of mixed silage of WPQ with SP was better, and the optimal addition amount of SP was 0.6%. The results of Max and Mix on the quality improvement test of WPQ with WPC mixed silage showed that the two lactic acid bacteria formulations increased CP and AA content, and reduced NH3-N/TN; pH was significantly lower than the control group (p < 0.01), and LA was significantly higher than the control group (p < 0.01). The microbial count results showed that the addition of lactic acid bacteria preparation significantly reduced the number of molds and aerobic bacteria, and the effect of Mix was better than that of Max. When the mixing ratio was between QB7 and QB10, mold was not detected in the lactic-acid-bacteria preparation groups. Max and Mix significantly reduced the levels of mycotoxins, both of which were far below the range of feed safety testing, and 16S rRNA sequencing revealed that the silage microbiota varied with different mixing ratios and whether lactic acid bacteria preparations were used. Max and Mix increased the relative abundance of Firmicutes, with Mix having a more significant effect, especially in the QB6 (65.05%) and QB7 (63.61%) groups. The relative abundance of Lactobacillus was significantly higher than that of the control group (p < 0.05). The relative abundance of Enterobacteriaceae and Streptococcus were negatively and positively correlated with the addition level of quinoa, respectively. Comprehensive analysis showed that adding 0.6% SP to the WPQ and using Mix in mixed silage of WPQ and WPC with the proportion of WPQ no less than 70% had the best silage effect, and was more beneficial to animal health.
Collapse
Affiliation(s)
- Chao He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Qian Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Huaidong Xiao
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Xuchun Sun
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Zepeng Gao
- Linxia Hui Autonomous Prefecture Animal Husbandry Technology Promotion Station, Linxia 731800, China; (H.X.); (X.S.); (Z.G.)
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (Q.L.)
- Provincial R&D Institute of Ruminants in Gansu, Lanzhou 730070, China
| |
Collapse
|
14
|
Schryvers S, Jung C, Pavicich MA, Saeger SD, Lachat C, Jacxsens L. Risk ranking of mycotoxins in plant-based meat and dairy alternatives under protein transition scenarios. Food Res Int 2025; 200:115422. [PMID: 39779162 DOI: 10.1016/j.foodres.2024.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
While reducing the consumption of animal-source foods is recommended for planetary and human health, potential emerging food safety risks associated with the transition to dietary patterns featuring plant-based meat (PBMA) and dairy alternatives (PBDA) remain unexplored. We assessed the exposure to mycotoxins and ranked the associated health risks related to the consumption of PBMA and PBDA. We simulated diets by replacing animal-source proteins with their plant-based alternatives. A risk ratio method, based on the hazard quotient (HQ), was applied to rank mycotoxin-related food safety risks. An aggregated dataset containing contamination data of 45 mycotoxins distributed over 182 PBDA and 131 PBMA samples, collected and analyzed in Europe, representing a convenience sample, was used as input in our risk assessment. The highest risk mycotoxins identified for PBMA in the lower bound scenario (LB) were the sum of aflatoxins (sum AF), alternariol monomethyl ether (AME), aflatoxin B1 (AFB1) and alternariol (AOH), with HQs for children of 121.3, 66.8, 24.0 and 4.3, respectively. In the milk substitution model (LB), HQs of 4.9 (sum AF) and 1.4 (AFB1) were calculated for children, indicating a potential food safety risk. Further analysis demonstrated that soy-based meat alternatives are the highest risk food products, in particular for sum AF, AME, AOH and AFB1. With regard to PBDA, highest HQs were found for sum AF in almond and oat drink, and AFB1 in oat drink. This research presents an approach to overcome the lack of data in the assessment of emerging risks associated with the shift to more sustainable dietary patterns.
Collapse
Affiliation(s)
- Sofie Schryvers
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.
| | - Christian Jung
- Department of Exposure, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Maria Agustina Pavicich
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, South Africa
| | - Carl Lachat
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| | - Liesbeth Jacxsens
- Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Zhao W, Ma X, Yan H, Zhang L, Shi W, Zhou Y. Aspergillus flavus and aflatoxins control in long-term storage of food ingredients of Puerh tea, peanut and polished rice. Food Chem 2024; 461:140805. [PMID: 39181056 DOI: 10.1016/j.foodchem.2024.140805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Aflatoxins are a group of high toxic mycotoxins in food chain. Recent studies showed that aflatoxins might contaminate post-fermented tea, but the result remains controversial. Here, Aspgergillus flavus growth and aflatoxin production were characterized in Puerh tea, peanut and polished rice at different initial water activity (aw) values for long-term storage. As a result, food initial aw value was the critical factor for A. flavus growth and aflatoxin production, and A. flavus almost not grew on foods at aw value lower than 0.8. A. flavus grew best in peanut, followed by rice, but growth on Puerh tea was limited. A. flavus growth was inhibited significantly by adding tea to Potato Dextrose Agar (PDA). Accordingly, aflatoxins produced dramatically in peanut, followed by rice at the first 90 days storage. However, aflatoxin neither produced in Puerh tea nor on tea modified PDA, indicating tea components inhibited A. flavus growth and aflatoxins synthesis.
Collapse
Affiliation(s)
- Weifan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Xue Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Hangbin Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Wei Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang Road West, Hefei 230036, China.
| |
Collapse
|
16
|
Salam M, Bolletta V, Meng Y, Yakti W, Grossule V, Shi D, Hayat F. Exploring the role of the microbiome of the H. illucens (black soldier fly) for microbial synergy in optimizing black soldier fly rearing and subsequent applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125055. [PMID: 39447631 DOI: 10.1016/j.envpol.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The symbiotic microbiome in the insect's gut is vital to the host insect's development, improvement of health, resistance to disease, and adaptability to the environment. The black soldier fly (BSF) can convert organic substrates into a protein- and fat-rich biomass that is viable for various applications. With the support of a selective microbiome, BSF can digest and recycle different organic waste, reduce the harmful effects of improper disposal, and transform low-value side streams into valuable resources. Molecular and systems-level investigations on the harbored microbial populations may uncover new biocatalysts for organic waste degradation. This article discusses and summarizes the efforts taken toward characterizing the BSF microbiota and analyzing its substrate-dependent shifts. In addition, the review discusses the dynamic insect-microbe relationship from the functional point of view and focuses on how understanding this symbiosis can lead to alternative applications for BSF. Valorization strategies can include manipulating the microbiota to optimize insect growth and biomass production, as well as exploiting the role of BSF microbiota to discover new bioactive compounds based on BSF immunity. Optimizing the BSF application in industrial setup and exploiting its gut microbiota for innovative biotechnological applications are potential developments that could emerge in the coming decade.
Collapse
Affiliation(s)
- Muhammad Salam
- Department of Environmental Science, and Ecology, Chengdu University of Technology, Chengdu, PR China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China.
| | - Viviana Bolletta
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Italy
| | - Ying Meng
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Wael Yakti
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin, Berlin, Germany
| | - Valentina Grossule
- Department of Civil, Architectural and Environmental Engineering, University of Padova, Italy
| | - Dezhi Shi
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China
| | - Faisal Hayat
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
17
|
Wang R, Song J, Cai M, Xue Y, Liu J, Zuo N, De Felici M, Wang J, Shen W, Sun X. Gut microbiota modulation by L-Fucose as a strategy to alleviate Ochratoxin A toxicity on primordial follicle formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136469. [PMID: 39536347 DOI: 10.1016/j.jhazmat.2024.136469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In this study, we investigated the potential benefits of L-Fucose administration to pregnant mice exposed to Ochratoxin A (OTA), a widespread mycotoxin, producing ovarian damage in offspring. The results showed that administration of 3.5 μg/d OTA induced alterations in intestinal tissues and gut microbiota of pregnant mice, leading to heightened local and systemic inflammation. This inflammatory affected the ovaries of their 3 dpp offspring, in which elevated levels of LPS and ROS were found associated to significant decreased oocyte count and impaired primordial follicle assembly. Moreover, mRNA-Seq analysis showed significant changes in ovarian transcriptomes linked to various GO terms and KEGG pathways, notably ferroptosis, a recognized form of cell death observed. Interestingly, administration of 0.3 g/kg b. w. L-Fucose following OTA exposure mitigated these effects on intestinal tissues and gut microbiota in mothers and on the offspring's ovaries. Similar benefits were obtained by gut microbiota transplantation from L-Fucose-treated pregnant females into OTA-exposed mothers. These findings suggest that inflammatory impact of OTA on maternal intestine/gut can pass to the fetus causing offspring ovary defects and support the use of L-Fucose as adjuvant to counteract the adverse effects of mycotoxins on the gut microbiota, particularly reference to those affecting reproductive organs.
Collapse
Affiliation(s)
- Ruiting Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jie Song
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Muyu Cai
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan Xue
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Liu
- Central laboratory of Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Junjie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaofeng Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
18
|
Safitri RA, van Asselt ED. Comparison of Food Safety Hazards in Pigs and Broilers from Intensive and Extensive Production Systems: A Literature Review. J Food Prot 2024; 87:100389. [PMID: 39490989 DOI: 10.1016/j.jfp.2024.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Consumer demand for meat from extensive production (e.g., organic, free-range, and antimicrobial-free) is increasing, partly due to consumers' perception that these types are safer than conventional meats. This review compared food safety hazards (namely, zoonotic parasites, bacterial pathogens, antimicrobial resistance, and chemical hazards) from pigs and broilers raised in intensive and extensive systems in Northern and Western European countries and the United States. Our findings showed that hazard occurrence between livestock production systems varied depending on the hazard. Pigs and broilers from extensive systems showed a higher prevalence of Toxoplasma gondii. Pathogen prevalence in pigs did not appear to be affected by production systems, while no clear conclusion could be drawn for broilers due to conflicting findings. Higher antimicrobial resistance (AMR) prevalence was common in pig and broiler samples from intensive farming, although samples from extensive farming were not free of AMR either. Studies on chemical hazards were limited, showing generally low contaminant levels in both production systems, including persistent organic pollutants, heavy metals, mycotoxins, pesticide residues, and antimicrobial residues. Therefore, more studies on chemical hazards are recommended to fill this data gap. Various factors associated with specific production systems could influence hazard prevalence, e.g., indoor confinement, outdoor access, antimicrobial policy, and slaughtering age. Regardless of the production system, other factors, such as seasonal variation and biosecurity levels, were also important.
Collapse
Affiliation(s)
- Rosa A Safitri
- Wageningen Food Safety Research (WFSR), Akkermaalsbos 2, 6708 WB Wageningen, Netherlands.
| | - Esther D van Asselt
- Wageningen Food Safety Research (WFSR), Akkermaalsbos 2, 6708 WB Wageningen, Netherlands
| |
Collapse
|
19
|
Li Y, Wang K, Li C. Oxidative Stress in Poultry and the Therapeutic Role of Herbal Medicine in Intestinal Health. Antioxidants (Basel) 2024; 13:1375. [PMID: 39594517 PMCID: PMC11591273 DOI: 10.3390/antiox13111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The intensive broiler farming model has accelerated the development of the poultry farming industry. However, it has also inevitably brought about many stressors that lead to oxidative stress in the organism. The intestine is the leading site of nutrient digestion, absorption, and metabolism, as well as a secretory and immune organ. Oxidative stress in animal production can harm the intestine, potentially leading to significant losses for the farming industry. Under conditions of oxidative stress, many free radicals are produced in the animal's body, attacking the intestinal mucosal tissues and destroying the barrier integrity of the intestinal tract, leading to disease. Recently, herbs have been shown to have a favorable safety profile and promising application in improving intestinal oxidative stress in poultry. Therefore, future in-depth studies on the specific mechanisms of herbs and their extracts for treating intestinal oxidative stress can provide a theoretical basis for the clinical application of herbs and new therapeutic options for intestinal oxidative stress injury during poultry farming. This review focuses on the causes and hazards of oxidative stress in the intestinal tract of poultry, and on herbs and their extracts with therapeutic potential, to provide a reference for developing and applying new antioxidants.
Collapse
Affiliation(s)
| | | | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.W.)
| |
Collapse
|
20
|
van der Fels-Klerx HJ, van Asselt ED, van Leeuwen SPJ, Dorgelo FO, Hoek-van den Hil EF. Prioritization of chemical food safety hazards in the European feed supply chain. Compr Rev Food Sci Food Saf 2024; 23:e70025. [PMID: 39379291 DOI: 10.1111/1541-4337.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Extensive monitoring programs of chemical hazards in the animal feed chain are in place, both organized by public and private organizations. The objective of this review was to prioritize chemical hazards for monitoring in the European animal feed supply chain. A step-wise approach was designed for the prioritization, based on: historical occurrence of the chemicals in animal feed ingredients and animal feeds (in relation to European guidance values or maximum limits in feed); information on transfer of the chemical to edible animal products, and; the extent of human dietary intake of the products and possible adverse human health effects of the chemical. Possible prioritization outcomes were: high (H), medium (M), or low (L) priority for monitoring, or classification not possible (NC) because of limited available data on the transfer of the chemical to edible animal tissues. The selection of chemicals included (with results in parentheses): dioxins and polychlorinated biphenyls (H); brominated flame retardants (H); per- and polyfluorinated alkyl substances (H); the heavy metals arsenic (H) and cadmium (H) as well as lead (M) and mercury (M); aflatoxins (H), ochratoxin A (NC), and other mycotoxins (L); pyrrolizidine alkaloids (H) and other plant toxins (NC); organochlorine pesticides (H) and other pesticides (L); pharmaceutically active substances (M); hormones (NC); polycyclic aromatic hydrocarbons (L), heat-induced processing contaminants (NC), and mineral oils (NC). Results of this study can be used to support risk-based monitoring by food safety authorities and feed-producing companies in Europe.
Collapse
Affiliation(s)
| | - E D van Asselt
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | - F O Dorgelo
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | |
Collapse
|
21
|
Mafe AN, Büsselberg D. Mycotoxins in Food: Cancer Risks and Strategies for Control. Foods 2024; 13:3502. [PMID: 39517285 PMCID: PMC11545588 DOI: 10.3390/foods13213502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Mycotoxins are toxic compounds produced by fungi such as Aspergillus, Penicillium, and Fusarium, contaminating various food crops and posing severe risks to food safety and human health. This review discusses mycotoxins' origins, significance, and impact, particularly in relation to cancer risk. Major mycotoxins like aflatoxins, ochratoxins, fumonisins, zearalenone, and patulin are examined, along with their sources and affected foods. The carcinogenic mechanisms of these toxins, including their biochemical and molecular interactions, are explored, as well as epidemiological evidence linking mycotoxin exposure to cancer in high-risk populations. The review also highlights critical methodologies for mycotoxin detection, including HPLC, GC-MS, MS, and ELISA, and the sample preparation techniques critical for accurate analysis. Strategies for controlling mycotoxin contamination, both pre- and post-harvest, are discussed, along with regulations from organizations like the FAO and WHO. Current challenges in detection sensitivity, cost, and control effectiveness are noted. Future research is needed to develop innovative analytical techniques, improve control strategies, and address the influence of climate change on mycotoxin production. Finally, global collaboration and emerging technologies are essential for advancing mycotoxin control and enhancing food safety.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, P.O. Box 22104, Qatar
| |
Collapse
|
22
|
Khani N, Noorkhajavi G, Soleiman RA, Raziabad RH, Rad AH, Akhlaghi AP. Aflatoxin Biodetoxification Strategies Based on Postbiotics. Probiotics Antimicrob Proteins 2024; 16:1673-1686. [PMID: 38478298 DOI: 10.1007/s12602-024-10242-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 10/02/2024]
Abstract
Aflatoxins (AFs) are secondary metabolites produced by fungi, and they are deemed the most perilous mycotoxin and food safety predicament. The exposure of humans to mycotoxins transpires either directly through the consumption of contaminated agricultural commodities or indirectly through the ingestion of items derived from animals that have been nourished with tainted substances of animal origin. To ensure the detoxification of AFs in animal and plant food products and to mitigate the risks they pose to public health and the economy, diverse techniques (physical, chemical, and biological) have been subject to scrutiny. By altering and eradicating the molecular structure of the toxin, all of these approaches impede its transmission to the digestive system and potentially diminish the accessibility of toxins to the target tissue, ultimately eliminating them. Given the pervasive predicaments attributed to the contamination of foods and feeds by AFs, it is of utmost importance to urgently devise cost-effective and appropriate strategies to combat this hazard. This review highlights the concept of AFs, definitions, and benefits of postbiotics and their biological role in the detoxification of AFs, as well as their benefits in the food-pharmaceutical industry.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Noorkhajavi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Abedi Soleiman
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hazrati Raziabad
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Pouya Akhlaghi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Tsouloufi TK. An overview of mycotoxicoses in rabbits. J Vet Diagn Invest 2024; 36:638-654. [PMID: 38804173 PMCID: PMC11457744 DOI: 10.1177/10406387241255945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycotoxicoses are usually a consideration in large animal species but can affect companion animals as well. Due to increasing interest and the ease of using rabbits as laboratory models, a growing number of published experimental studies discuss the effects of various mycotoxins on this species. However, the available evidence is fragmented and heterogeneous, and has not recently been collated in a review, to my knowledge. Although mycotoxicoses in rabbits are typically subclinical, clinical signs can include weight loss, anorexia, gastrointestinal disorders, stunted growth, reproductive abnormalities, and susceptibility to infections. An antemortem diagnosis typically relies on a comprehensive clinical history, and assessment of clinical signs and relevant laboratory findings, with confirmation of exposure achieved through the measurement of mycotoxin concentrations in feed or target organs. My review focuses on the clinicopathologic and histopathologic effects of the mycotoxins most important in rabbits, including fumonisins, ochratoxins, aflatoxins, trichothecenes, and zearalenone. This review offers a thorough overview of the effects of mycotoxins in rabbits, serving as a one-stop resource for veterinary practitioners, diagnosticians, and researchers.
Collapse
|
24
|
Khan R. Mycotoxins in food: Occurrence, health implications, and control strategies-A comprehensive review. Toxicon 2024; 248:108038. [PMID: 39047955 DOI: 10.1016/j.toxicon.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Mycotoxins are secondary metabolites produced by various filamentous fungi, including Aspergillus, Fusarium, Penicillium, Alternaria, Claviceps, Mucor, Trichoderma, Trichothecium, Myrothecium, Pyrenophora, and Stachybotrys. They can contaminate various plants or animal foods, resulting in a significant loss of nutritional and commercial value. Several factors contribute to mycotoxin production, such as humidity, temperature, oxygen levels, fungal species, and substrate. When contaminated food is consumed by animals and humans, mycotoxins are rapidly absorbed, affecting the liver, and causing metabolic disorders. The detrimental effects on humans and animals include reduced food intake and milk production, reduced fertility, increased risk of abortion, impaired immune response, and increased occurrence of diseases. Therefore, it is imperative to implement strategies for mycotoxin control, broadly classified as preventing fungal contamination and detoxifying their toxic compounds. This review aims to discuss various aspects of mycotoxins, including their occurrence, and risk potential. Additionally, it provides an overview of mycotoxin detoxification strategies, including the use of mycotoxin absorbents, as potential techniques to eliminate or mitigate the harmful effects of mycotoxins and masked mycotoxins on human and animal health while preserving the nutritional and commercial value of affected food products.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43300, Malaysia.
| |
Collapse
|
25
|
Arce-López B, Coton M, Coton E, Hymery N. Occurrence of the two major regulated mycotoxins, ochratoxin A and fumonisin B1, in cereal and cereal-based products in Europe and toxicological effects: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104489. [PMID: 38844151 DOI: 10.1016/j.etap.2024.104489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Among cereal contaminants, mycotoxins are of concern due to their importance in terms of food and feed safety. The difficulty in establishing a diagnosis for mycotoxicosis relies on the fact that the effects are most often subclinical for chronic exposure and the most common scenario is multi-contamination by various toxins. Mycotoxin co-occurrence is a major food safety concern as additive or even synergic toxic impacts may occur, but also regarding current regulations as they mainly concern individual mycotoxin levels in specific foods and feed in the food chain. However, due to the large number of possible mycotoxin combinations, there is still limited knowledge on co-exposure toxicity data, which depends on several parameters. In this context, this systematic review aims to provide an overview of the toxic effects of two regulated mycotoxins, namely ochratoxin A and fumonisin B1. This review focused on the 2012-2022 period and analysed the occurrence in Europe of the selected mycotoxins in different food matrices (cereals and cereal-derived products), and their toxic impact, alone or in combination, on in vitro intestinal and hepatic human cells. To better understand and evaluate the associated risks, further research is needed using new approach methodologies (NAM), such as in vitro 3D models. KEY CONTRIBUTION: Cereals and their derived products are the most important food source for humans and feed for animals worldwide. This manuscript is a state of the art review of the literature over the last ten years on ochratoxin A and fumonisin B1 mycotoxins in these products in Europe as well as their toxicological effects, alone and in combination, on human cells. Future perspectives and some challenges regarding the assessment of toxicological effects of mycotoxins are also discussed.
Collapse
Affiliation(s)
- Beatriz Arce-López
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France
| | - Monika Coton
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France
| | - Emmanuel Coton
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France
| | - Nolwenn Hymery
- Univ. Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané F-29280, France.
| |
Collapse
|
26
|
Li G, Wang H, Yang J, Qiu Z, Liu Y, Wang X, Yan H, He D. The protective effects of Lactobacillus SNK-6 on growth, organ health, and intestinal function in geese exposed to low concentration Aflatoxin B1. Poult Sci 2024; 103:103904. [PMID: 38880050 PMCID: PMC11228886 DOI: 10.1016/j.psj.2024.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a prevalent mycotoxin present in feed ingredients. In this study, we investigated the effects of Lactobacillus salivarius (L. salivarius) on the Landes geese exposed to AFB1. The 300 one-day-old Landes geese were randomly divided into five groups: The control group received a basic diet, while the other groups were fed a basic diet supplemented with 10 μg/kg AFB1, 10 μg/kg AFB1+ 4*108 cfu/g L. salivarius, 50 μg/kg AFB1, and 50 μg/kg AFB1 + 4*108 cfu/g L. salivarius for 63 d. Results showed that high level AFB1 exposure significantly decreased final BW and ADG, increased feed/gain ratio (F/G) and liver index (P < 0.05). L. salivarius improved levels of IL-1, IL-6, and IL-12 under low level of AFB1 exposure (P < 0.05), along with similar trends observed in serum IgA, IgG, IgM, T3, T4, TNF-ɑ, and EDT (P < 0.05). AFB1 exposure reduced jejunum villus high and villus high/crypt depth ratio, and suppressed expression of ZO-1, Occludin, and Claudin-1 mRNA, and significant improved with L. salivarius supplementation under low level AFB1 exposure (P < 0.05). AFB1 significantly increased expression levels of TLR3 and NF-kB1, with supplementation of L. salivarius showing significant improvement under low AFB1 exposure (P < 0.05). Cecal microbiota sequencing revealed that under low level AFB1 exposure, supplementation with L. salivarius increased the abundance of Bacteroidetes and Lactococcus. In summary, supplementation with 4*108 cfu/g L. salivarius under 10 μg/kg AFB1 exposure improved growth performance and immune capacity, enhanced jejunum morphology, reduced liver inflammation, altered the cecal microbial structure, and positively affected the growth and development of geese.
Collapse
Affiliation(s)
- Guangquan Li
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Huiying Wang
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Junhua Yang
- Institute for Agricultural Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhi Qiu
- Institute for Agricultural Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yi Liu
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Xianze Wang
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Huaxiang Yan
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Daqian He
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China.
| |
Collapse
|
27
|
Djenane D, Aider M. The one-humped camel: The animal of future, potential alternative red meat, technological suitability and future perspectives. F1000Res 2024; 11:1085. [PMID: 38798303 PMCID: PMC11128057 DOI: 10.12688/f1000research.125246.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 05/29/2024] Open
Abstract
The 2020 world population data sheet indicates that world population is projected to increase from 7.8 billion in 2020 to 9.9 billion by 2050 (Increase of more than 25%). Due to the expected growth in human population, the demand for meats that could improve health status and provide therapeutic benefits is also projected to rise. The dromedary also known as the Arabian camel, or one-humped camel ( Camelus dromedarius), a pseudo ruminant adapted to arid climates, has physiological, biological and metabolic characteristics which give it a legendary reputation for surviving in the extreme conditions of desert environments considered restrictive for other ruminants. Camel meat is an ethnic food consumed across the arid regions of Middle East, North-East Africa, Australia and China. For these medicinal and nutritional benefits, camel meat can be a great option for sustainable meat worldwide supply. A considerable amount of literature has been published on technological aspects and quality properties of beef, lamb and pork but the information available on the technological aspects of the meat of the one humped camel is very limited. Camels are usually raised in less developed countries and their meat is as nutritionally good as any other traditional meat source. Its quality also depends on the breed, sex, age, breeding conditions and type of muscle consumed. A compilation of existing literature related to new technological advances in packaging, shelf-life and quality of camel meat has not been reviewed to the best of our knowledge. Therefore, this review attempts to explore the nutritional composition, health benefits of camel meat, as well as various technological and processing interventions to improve its quality and consumer acceptance. This review will be helpful for camel sector and highlight the potential for global marketability of camel meat and to generate value added products.
Collapse
Affiliation(s)
- Djamel Djenane
- Laboratory of Meat Quality and Food Safety, Department of Meat Science and Technology., University of Mouloud MAMMERI, Tizi-Ouzou, 15000, Algeria
| | - Mohammed Aider
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
28
|
Lemmink IB, Straub LV, Bovee TFH, Mulder PPJ, Zuilhof H, Salentijn GI, Righetti L. Recent advances and challenges in the analysis of natural toxins. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:67-144. [PMID: 38906592 DOI: 10.1016/bs.afnr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Natural toxins (NTs) are poisonous secondary metabolites produced by living organisms developed to ward off predators. Especially low molecular weight NTs (MW<∼1 kDa), such as mycotoxins, phycotoxins, and plant toxins, are considered an important and growing food safety concern. Therefore, accurate risk assessment of food and feed for the presence of NTs is crucial. Currently, the analysis of NTs is predominantly performed with targeted high pressure liquid chromatography tandem mass spectrometry (HPLC-MS/MS) methods. Although these methods are highly sensitive and accurate, they are relatively expensive and time-consuming, while unknown or unexpected NTs will be missed. To overcome this, novel on-site screening methods and non-targeted HPLC high resolution mass spectrometry (HRMS) methods have been developed. On-site screening methods can give non-specialists the possibility for broad "scanning" of potential geographical regions of interest, while also providing sensitive and specific analysis at the point-of-need. Non-targeted chromatography-HRMS methods can detect unexpected as well as unknown NTs and their metabolites in a lab-based approach. The aim of this chapter is to provide an insight in the recent advances, challenges, and perspectives in the field of NTs analysis both from the on-site and the laboratory perspective.
Collapse
Affiliation(s)
- Ids B Lemmink
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Leonie V Straub
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Toine F H Bovee
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Patrick P J Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, P.R. China
| | - Gert Ij Salentijn
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands.
| | - Laura Righetti
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
29
|
Muñoz-Solano B, Lizarraga Pérez E, González-Peñas E. Monitoring Mycotoxin Exposure in Food-Producing Animals (Cattle, Pig, Poultry, and Sheep). Toxins (Basel) 2024; 16:218. [PMID: 38787070 PMCID: PMC11125880 DOI: 10.3390/toxins16050218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Food-producing animals are exposed to mycotoxins through ingestion, inhalation, or dermal contact with contaminated materials. This exposure can lead to serious consequences for animal health, affects the cost and quality of livestock production, and can even impact human health through foods of animal origin. Therefore, controlling mycotoxin exposure in animals is of utmost importance. A systematic literature search was conducted in this study to retrieve the results of monitoring exposure to mycotoxins in food-producing animals over the last five years (2019-2023), considering both external exposure (analysis of feed) and internal exposure (analysis of biomarkers in biological matrices). The most commonly used analytical technique for both approaches is LC-MS/MS due to its capability for multidetection. Several mycotoxins, especially those that are regulated (ochratoxin A, zearalenone, deoxynivalenol, aflatoxins, fumonisins, T-2, and HT-2), along with some emerging mycotoxins (sterigmatocystin, nivalenol, beauvericin, enniantins among others), were studied in 13,818 feed samples worldwide and were typically detected at low levels, although they occasionally exceeded regulatory levels. The occurrence of multiple exposure is widespread. Regarding animal biomonitoring, the primary objective of the studies retrieved was to study mycotoxin metabolism after toxin administration. Some compounds have been suggested as biomarkers of exposure in the plasma, urine, and feces of animal species such as pigs and poultry. However, further research is required, including many other mycotoxins and animal species, such as cattle and sheep.
Collapse
Affiliation(s)
| | | | - Elena González-Peñas
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (B.M.-S.); (E.L.P.)
| |
Collapse
|
30
|
Ottesen A, Kocurek B, Reed E, Commichaux S, Mammel M, Ramachandran P, McDermott P, Flannery BM, Strain E. Paired metagenomic and chemical evaluation of aflatoxin-contaminated dog kibble. Front Vet Sci 2024; 11:1374839. [PMID: 38665771 PMCID: PMC11043538 DOI: 10.3389/fvets.2024.1374839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Identification of chemical toxins from complex or highly processed foods can present 'needle in the haystack' challenges for chemists. Metagenomic data can be used to guide chemical toxicity evaluations by providing DNA-based description of the wholistic composition (eukaryotic, bacterial, protozoal, viral, and antimicrobial resistance) of foods suspected to harbor toxins, allergens, or pathogens. This type of information can focus chemistry-based diagnostics, improve hazard characterization and risk assessment, and address data gaps. Additionally, there is increasing recognition that simultaneously co-occurring mycotoxins, either from single or multiple species, can impact dietary toxicity exposure. Metagenomic data provides a way to address data gaps related to co-occurrence of multiple fungal species. Methods Paired metagenomic and chemical data were used to evaluate aflatoxin-contaminated kibble with known levels of specific mycotoxins. Kibble was ground to a fine powder for both chemical and molecular analyses. Chemical analyses were performed with Liquid Chromatography Mass Spectrometry (LCMS) and according to the AOAC Official method 2005.08: Aflatoxins in Corn, Raw Peanuts, and Peanut Butter using Liquid Chromatography with Post-Column Photochemical Derivatization. Metagenomes were created from DNA extracted from ground kibble and sequenced on an Illumina NextSeq 2000 with an average sequence depth of 180 million reads per replicate. Results and discussion Metagenomic data demonstrated that the abundance of DNA from putative aflatoxigenic Aspergillus spp. correlated with the levels of aflatoxin quantified by LCMS. Metagenomic data also identified an expansive range of co-occurring fungal taxa which may produce additional mycotoxins. DNA data paired with chemical data provides a novel modality to address current data gaps surrounding dietary mycotoxin exposure, toxigenic fungal taxonomy, and mycotoxins of emerging concern.
Collapse
Affiliation(s)
- Andrea Ottesen
- Center for Veterinary Medicine (CVM), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Brandon Kocurek
- Center for Veterinary Medicine (CVM), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Seth Commichaux
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Mark Mammel
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Patrick McDermott
- Center for Veterinary Medicine (CVM), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Brenna M. Flannery
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Errol Strain
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
31
|
Zahija Jazbec I, Demšar L, Jeršek B, Polak T. Meat Starter Culture Reduces Aspergillus parasiticus Production of Aflatoxins on Meat-Based and Salami Model Media. Toxins (Basel) 2024; 16:173. [PMID: 38668598 PMCID: PMC11053754 DOI: 10.3390/toxins16040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
There is great concern about the risk posed by the consumption of food contaminated with aflatoxins (AF), produced mostly by Aspergillus strains, that can also be found in dry-fermented meat products (DFMPs). The aim of this study was to investigate the inhibitory effect of meat starter culture (SC), frequently used for fermentation in the meat industry, on A. parasiticus growth and the production of aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), and sterigmatocystin (STE) on different meat-based (CMA) and salami model (SM-G) media. Incubation was carried out under optimal conditions for fungal growth and under typical conditions for ripening of DFMPs for 21 days. Reversed-phase UPLC-MS/MS analysis was performed to determine mycotoxin production. SC reduced A. parasiticus growth more on CMA than on SM-G media. AFB1 formation was inhibited on both types of SC-containing media, although SC generally had a stronger inhibitory effect on AFB1 production on CMA than on SM-G. AFB1 and AFB2 were produced on CMA, while AFB1 dominated in SM-G, AFG1, and AFG2 were not detected in any media. The results show that SC inhibited AFB1 formation of A. parasiticus on SM-G media after 21 days of incubation under typical conditions for the production of DFMPs. These results indicate the necessity to investigate AF on natural matrices in an environment that is as similar as possible to real conditions in the production of DFMPs.
Collapse
Affiliation(s)
- Iva Zahija Jazbec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.D.); (B.J.); (T.P.)
| | | | | | | |
Collapse
|
32
|
Kövesi B, Kulcsár S, Ancsin Z, Erdélyi M, Zándoki E, Gömbös P, Balogh K, Mézes M. The Effects of T-2 Toxin, Deoxynivalenol, and Fumonisin B1 on Oxidative Stress-Related Genes in the Kidneys of Laying Hens. Toxins (Basel) 2024; 16:154. [PMID: 38535820 PMCID: PMC10975515 DOI: 10.3390/toxins16030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2025] Open
Abstract
In the context of nephrotoxic risks associated with environmental contaminants, this study focused on the impact of mycotoxin exposure on the renal health of laying hens, with particular attention to oxidative stress pathways. Sixty laying hens were assigned to three groups-a control group (CON), a low-dose mycotoxin group (LOW), and a high-dose mycotoxin group (HIGH)-and monitored for 72 h. Mycotoxin contamination involved T-2/HT-2 toxin, DON/3-AcDON/15-AcDON, and FB1 at their EU-recommended levels (low mix) and at double doses (high mix). Clinical assessments revealed no signs of toxicity or notable weight changes. Analysis of the glutathione redox system parameters demonstrated that the reduced glutathione content was lower than that in the controls at 48 h and higher at 72 h. Glutathione peroxidase activity increased in response to mycotoxin exposure. In addition, the gene expression patterns of key redox-sensitive pathways, including Keap1-Nrf2-ARE and the AhR pathway, were examined. Notably, gene expression profiles revealed dynamic responses to mycotoxin exposure over time, underscoring the intricate interplay of redox-related mechanisms in the kidney. This study sheds light on the early effects of mycotoxin mixtures on laying hens' kidneys and their potential for oxidative stress.
Collapse
Affiliation(s)
- Benjamin Kövesi
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, H-2100 Gödöllő, Hungary (M.E.)
| | - Szabina Kulcsár
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, H-7400 Kaposvár, Hungary
| | - Zsolt Ancsin
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, H-2100 Gödöllő, Hungary (M.E.)
| | - Márta Erdélyi
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, H-2100 Gödöllő, Hungary (M.E.)
| | - Erika Zándoki
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, H-7400 Kaposvár, Hungary
| | - Patrik Gömbös
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | - Krisztián Balogh
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, H-2100 Gödöllő, Hungary (M.E.)
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, H-7400 Kaposvár, Hungary
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Szent István Campus, H-2100 Gödöllő, Hungary (M.E.)
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, H-7400 Kaposvár, Hungary
| |
Collapse
|
33
|
Pierron A, Kleber A, Mayer E, Gerner W. Effect of DON and ZEN and their metabolites DOM-1 and HZEN on B cell proliferation and antibody production. Front Immunol 2024; 15:1338937. [PMID: 38449861 PMCID: PMC10915041 DOI: 10.3389/fimmu.2024.1338937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction The mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), produced by Fusarium fungi, are frequently found in the cereal-rich diet of pigs and can modulate the immune system. Some enzymes or bacteria present in the digestive tract can de-epoxydize DON to deepoxy-deoxynivalenol (DOM-1) and biotransform ZEN into hydrolyzed ZEN (HZEN). The effects of these metabolites on immune cells, particularly with respect to the vaccine responses, are poorly documented. The aim of this study was to address the impact of DON and ZEN and their respective derivatives, on proliferation, and antibody production of porcine B cells in vitro. Methods Peripheral blood mononuclear cells (PBMCs), isolated from healthy pigs, were stimulated with the Toll-like receptor (TLR) 7/8-agonist Resiquimod (R848) or the TLR/1/2-agonist Pam3Cys-SKKKK in combination with DON [0.1-1.6 µM] or DOM-1 [1.6 µM and 16 µM] and ZEN [2.5-40 µM] or HZEN [40 µM]. Results A strong decrease in B-cell proliferation was observed at DON concentrations equal to or exceeding 0.8 µM and at ZEN concentrations equal to or exceeding 20 µM. Treatment with 1.6 µM DON or 40 µM ZEN led to almost a complete loss of live CD79α+ B cells. Moreover, CD21 expression of proliferating IgG+ and IgM+ B-cell subsets was decreased at DON concentrations equal to and exceeding 0.4 µM and at ZEN concentrations equal to or exceeding 10 µM. ELISpot assays revealed a decrease of IgG-secreting B cells at concentrations of and exceeding 0.4 µM and at ZEN concentrations equal to and exceeding 10 µM. ELISA assays showed a decrease of IgM, IgG, and IgA secretion at concentrations equal to or exceeding 0.4 µM DON. ZEN reduced IgM secretion at 20-40 µM (both R848 and Pam3Cys-SKKKK), IgG secretion at 40 µM (both R848 and Pam3Cys-SKKKK) and IgA secretion at 20-40 µM. Discussion Our in vitro experiments show that while DON and ZEN impair immunoglobulin production and B-cell proliferation, this effect is abrogated by HZEN and DOM-1.
Collapse
Affiliation(s)
- Alix Pierron
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Alexandra Kleber
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Elisabeth Mayer
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Wilhelm Gerner
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
34
|
Shi J, Mwabulili F, Xie Y, Yang Y, Sun S, Li Q, Ma W, Jia H. Characterization, Structural Analysis, and Thermal Stability Mutation of a New Zearalenone-Degrading Enzyme Mined from Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3025-3035. [PMID: 38300990 DOI: 10.1021/acs.jafc.3c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Zearalenone (ZEN) is a widespread mycotoxin that causes serious damage to animal husbandry and poses a threat to human health. A screen of ZEN-degrading soil bacteria yielded Bacillus subtilis YT-4, which yielded 80% ZEN degradation after 6 h and 95% after 36 h. The gene sequence encoding the degradative enzyme ZENY was mined from the genome of YT-4 and expressed in yeast. ZENY is an α/β-hydrolase with an optimal enzyme activity at 37 °C and pH 8. By breaking the lactone ring of ZEN, it produces ZENY-C18H24O5 with a molecular weight of 320.16 g/mol. Sequence comparison and molecular docking analyses identified the catalytic ZENY triad 99S-245H-123E and the primary ZEN-binding mode within the hydrophobic pocket of the enzyme. To improve the thermal stability of the enzyme for industrial applications, we introduced a mutation at the N-terminus, specifically replacing the fifth residue N with V, and achieved a 25% improvement in stability at 45 °C. These findings aim to achieve ZEN biodegradation and provide insight into the structure and function of ZEN hydrolases.
Collapse
Affiliation(s)
- Jinghao Shi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
35
|
Guo C, Fan L, Yang Q, Ning M, Zhang B, Ren X. Characterization and mechanism of simultaneous degradation of aflatoxin B 1 and zearalenone by an edible fungus of Agrocybe cylindracea GC-Ac2. Front Microbiol 2024; 15:1292824. [PMID: 38414775 PMCID: PMC10897045 DOI: 10.3389/fmicb.2024.1292824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Contamination with multiple mycotoxins is a major issue for global food safety and trade. This study focused on the degradation of aflatoxin B1 (AFB1) and zearalenone (ZEN) by 8 types of edible fungi belonging to 6 species, inclulding Agaricus bisporus, Agrocybe cylindracea, Cyclocybe cylindracea, Cyclocybe aegerita, Hypsizygus marmoreus and Lentinula edodes. Among these fungi, Agrocybe cylindracea strain GC-Ac2 was shown to be the most efficient in the degradation of AFB1 and ZEN. Under optimal degradation conditions (pH 6.0 and 37.4°C for 37.9 h), the degradation rate of both AFB1 and ZEN reached over 96%. Through the analysis of functional detoxification components, it was found that the removal of AFB1 and ZEN was primarily degraded by the culture supernatant of the fungus. The culture supernatant exhibited a maximum manganese peroxidase (MnP) activity of 2.37 U/mL. Interestingly, Agrocybe cylindracea strain GC-Ac2 also showed the capability to degrade other mycotoxins in laboratory-scale mushroom substrates, including 15A-deoxynivalenol, fumonisin B1, B2, B3, T-2 toxin, ochratoxin A, and sterigmatocystin. The mechanism of degradation of these mycotoxins was speculated to be catalyzed by a complex enzyme system, which include MnP and other ligninolytic enzymes. It is worth noting that Agrocybe cylindracea can degrade multiple mycotoxins and produce MnP, which is a novel and significant discovery. These results suggest that this candidate strain and its enzyme system are expected to become valuable biomaterials for the simultaneous degradation of multiple mycotoxins.
Collapse
Affiliation(s)
- Changying Guo
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Lixia Fan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Mingxiao Ning
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Bingchun Zhang
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, China
| |
Collapse
|
36
|
Abdallah MF, Gado M, Abdelsadek D, Zahran F, El-Salhey NN, Mehrez O, Abdel-Hay S, Mohamed SM, De Ruyck K, Yang S, Gonzales GB, Varga E. Mycotoxin contamination in the Arab world: Highlighting the main knowledge gaps and the current legislation. Mycotoxin Res 2024; 40:19-44. [PMID: 38117428 DOI: 10.1007/s12550-023-00513-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Since the discovery of aflatoxins in the 1960s, knowledge in the mycotoxin research field has increased dramatically. Hundreds of review articles have been published summarizing many different aspects, including mycotoxin contamination per country or region. However, mycotoxin contamination in the Arab world, which includes 22 countries in Africa and Asia, has not yet been specifically reviewed. To this end, the contamination of mycotoxins in the Arab world was reviewed not only to profile the pervasiveness of the problem in this region but also to identify the main knowledge gaps imperiling the safety of food and feed in the future. To the best of our knowledge, 306 (non-)indexed publications in English, Arabic, or French were published from 1977 to 2021, focusing on the natural occurrence of mycotoxins in matrices of 14 different categories. Characteristic factors (e.g., detected mycotoxins, concentrations, and detection methods) were extracted, processed, and visualized. The main results are summarized as follows: (i) research on mycotoxin contamination has increased over the years. However, the accumulated data on their occurrences are scarce to non-existent in some countries; (ii) the state-of-the-art technologies on mycotoxin detection are not broadly implemented neither are contemporary multi-mycotoxin detection strategies, thus showing a need for capacity-building initiatives; and (iii) mycotoxin profiles differ among food and feed categories, as well as between human biofluids. Furthermore, the present work highlights contemporary legislation in the Arab countries and provides future perspectives to mitigate mycotoxins, enhance food and feed safety, and protect the consumer public. Concluding, research initiatives to boost mycotoxin research among Arab countries are strongly recommended.
Collapse
Affiliation(s)
- Mohamed F Abdallah
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Muhammad Gado
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Fatma Zahran
- Faculty of Pharmacy, Menoufia University, Shibin El-Kom, Menoufia, Egypt
| | - Nada Nabil El-Salhey
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ohaila Mehrez
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara Abdel-Hay
- Faculty of Pharmacy, Tanta University, Tanta, Gharbia Governorate, Egypt
| | - Sahar M Mohamed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Karl De Ruyck
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Gerard Bryan Gonzales
- Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, Netherlands
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
37
|
Putra RP, Astuti D, Respati AN, Ningsih N, Triswanto, Yano AA, Gading BMWT, Jayanegara A, Sholikin MM, Hassim HA, Azmi AFM, Adli DN, Irawan A. Protective effects of feed additives on broiler chickens exposed to aflatoxins-contaminated feed: a systematic review and meta-analysis. Vet Res Commun 2024; 48:225-244. [PMID: 37644237 DOI: 10.1007/s11259-023-10199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Aflatoxin contamination in feed is a common problem in broiler chickens. The present systematic review and meta-analysis examined the impact of aflatoxin-contaminated feed and the efficacy of various feed additives on the production performance of broiler chickens fed aflatoxin-contaminated feed (AF-feed). A total of 35 studies comprising 53 AF-feed experiments were selected following PRISMA guidelines. Feed additives included in the analyses were toxins binder (TB), mannan-oligosaccharides (MOS), organic acid (OA), probiotics (PRO), protein supplementation (PROT), phytobiotics (PHY), and additive mixture (MIX). Random effects model and a frequentist network meta-analysis (NMA) were performed to rank the efficacy of feed additives, reported as standardized means difference (SMD) at 95% confidence intervals (95% CI). Overall, broiler chickens fed AF-feed had significantly lower final body weight (BW) (SMD = 198; 95% CI = 198 to 238) and higher feed conversion ratio (SMD = 0.17; 95% CI = 0.13 to 0.21) than control. Treatments with TB, MOS, and PHY improved the BW of birds fed AF-feed (P < 0.05) to be comparable with non-contaminated feed or control. Predictions on final BW from the broiler-fed aflatoxin-contaminated diet were 15% lower than the control diet. Including feed additives in the aflatoxins diet could ameliorate the depressive effect. Remarkably, our network meta-analysis highlighted that TB was the highest-performing additive (P-score = 0.797) to remedy aflatoxicosis. Altogether, several additives, especially TB, are promising to ameliorate aflatoxicosis in broiler chickens, although the efficacy was low regarding the severity of the aflatoxicosis.
Collapse
Affiliation(s)
- Reza Pratama Putra
- Department of Agriculture and Horticulture, Province of Jambi, Jambi, 36122, Indonesia
- Animal Health Vocational Program, Jambi University, Muaro Jambi, 36361, Indonesia
| | - Dian Astuti
- Agrotechnology Innovation Center, Universitas Gadjah Mada, Sleman, 55573, Indonesia
| | - Adib Norma Respati
- Department of Animal Science, Politeknik Negeri Jember, Jember, 68101, Indonesia
| | - Niati Ningsih
- Department of Animal Science, Politeknik Negeri Jember, Jember, 68101, Indonesia
| | - Triswanto
- Department of Feed Technology, PT. Charoen Pokphand Indonesia, Jakarta Utara, 14350, Indonesia
| | - Aan Andri Yano
- Vocational School, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
| | | | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
| | - Mohammad Miftakhus Sholikin
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
- Meta-Analysis in Plant Science (MAPS) Research Group, Bandung, 40621, Indonesia
- Center For Tropical Animal Studies (CENTRAS), The Institute of Research and Community Empowerment of IPB (LPPM IPB), Bogor, 16680, Indonesia
| | - Hasliza Abu Hassim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Institute of Tropical Agriculture and Food Security Universiti Putra Malaysia (UPM), Serdang, Selangor, 43400, Malaysia
| | - Amirul Faiz Mohd Azmi
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Institute of Tropical Agriculture and Food Security Universiti Putra Malaysia (UPM), Serdang, Selangor, 43400, Malaysia
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Sciences, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Danung Nur Adli
- Faculty of Animal Science, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta, 57126, Indonesia.
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
38
|
An X, Di S, Wang X, Cao C, Wang D, Chen L, Wang Y. Combined toxicity of aflatoxin B1 and tebuconazole to the embryo development of zebrafish (Danio rerio). CHEMOSPHERE 2024; 346:140612. [PMID: 37931711 DOI: 10.1016/j.chemosphere.2023.140612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Mycotoxins and pesticides are pervasive elements within the natural ecosystem. Furthermore, many environmental samples frequently exhibit simultaneous contamination by multiple mycotoxins and pesticides. Nevertheless, a significant portion of previous investigations has solely reported the occurrence and toxicological effects of individual chemicals. Global regulations have yet to consider the collective impacts of mycotoxins and pesticides. In our present study, we undertook a comprehensive analysis of multi-level endpoints to elucidate the combined toxicity of aflatoxin B1 (AFB1) and tebuconazole (TCZ) on zebrafish (Danio rerio). Our findings indicated that AFB1 (with a 10-day LC50 value of 0.018 mg L-1) exhibits higher toxicity compared to TCZ (with a 10-day LC50 value of 2.1 mg L-1) toward D. rerio. The co-exposure of AFB1 and TCZ elicited synergistic acute responses in zebrafish. The levels of GST, CYP450, SOD, and Casp-9 exhibited significant variations upon exposure to AFB1, TCZ, and their combined mixture, in contrast to the control group. Additionally, eight genes, namely cat, cxcl-cic, il-1β, bax, apaf-1, trβ, ugtlab, and vtg1, displayed marked alterations when exposed to the chemical mixture as opposed to individual substances. Therefore, further exploration of the underlying mechanisms governing joint toxicity is imperative to establish a scientific basis for evaluating the risk associated with the combined effects of AFB1 and TCZ. Moreover, it is essential to thoroughly elucidate the organ system toxicity triggered by the co-occurrence of mycotoxins and pesticides.
Collapse
Affiliation(s)
- Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
39
|
Liu Y, Wang J, Chang Z, Li S, Zhang Z, Liu S, Wang S, Wei L, Lv Q, Ding K, Zhang Z. SeMet alleviates AFB 1-induced oxidative stress and apoptosis in rabbit kidney by regulating Nrf2//Keap1/NQO1 and PI3K/AKT signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115742. [PMID: 38039849 DOI: 10.1016/j.ecoenv.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
The purpose of this study was to explore the protective effect of SeMet on renal injury induced by AFB1 in rabbits and its molecular mechanism. Forty rabbits of 35 days old were randomly divided into control group, AFB1 group (0.3 mg AFB1/kg b.w), 0.2 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.2 mg SeMet/kg feed) and 0.4 mg/kg Se + AFB1 group (0.3 mg AFB1/kg b.w + 0.4 mg SeMet/kg feed). The SeMet treatment group was fed different doses of SeMet diets every day for 21 days. On the 17-21 day, the AFB1 treatment group, the 0.2 mg/kg Se + AFB1 group and the 0.4 mg/kg Se + AFB1 group were administered 0.3 mg AFB1 /kg b.w by gavage (dissolved in 0.5 ml olive oil) respectively. The results showed that AFB1 poisoning resulted in the changes of renal structure, the increase of renal coefficient and serum biochemical indexes, the ascent of ROS and MDA levels, the descent of antioxidant enzyme activity, and the significant down-regulation of Nrf2, HO-1 and NQO1. Besides, AFB1 poisoning increased the number of renal apoptotic cells, rised the levels of PTEN, Bax, Caspase-3 and Caspase-9, and decreased the levels of PI3K, AKT, p-AKT and Bcl-2. In summary, SeMet was added to alleviate the oxidative stress injury and apoptosis of kidney induced by AFB1, and the effect of 0.2 mg/kg Se + AFB1 is better than 0.4 mg/kg Se + AFB1.
Collapse
Affiliation(s)
- Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jianing Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Zhaoyang Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | | | - Zhikai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Shiyang Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Shuaishuai Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ke Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
40
|
Adedara IA, Atanda OE, Sant'Anna Monteiro C, Rosemberg DB, Aschner M, Farombi EO, Rocha JBT, Furian AF, Emanuelli T. Cellular and molecular mechanisms of aflatoxin B 1-mediated neurotoxicity: The therapeutic role of natural bioactive compounds. ENVIRONMENTAL RESEARCH 2023; 237:116869. [PMID: 37567382 DOI: 10.1016/j.envres.2023.116869] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Aflatoxin B1 (AFB1), a dietary toxin from the mold Aspergillus species, is well acknowledged to elicit extra-hepatic toxicity in both animals and humans. The neurotoxicity of AFB1 has become a global public health concern. Contemporary research on how AFB1 enters the brain to elicit neuronal dysregulation leading to noxious neurological outcomes has increased greatly in recent years. The current review discusses several neurotoxic outcomes and susceptible targets of AFB1 toxicity at cellular, molecular and genetic levels. Specifically, neurotoxicity studies involving the use of brain homogenates, neuroblastoma cell line IMR-32, human brain microvascular endothelial cells, microglial cells, and astrocytes, as well as mammalian and non-mammalian models to unravel the mechanisms associated with AFB1 exposure are highlighted. Further, some naturally occurring bioactive compounds with compelling therapeutic effects on AFB1-induced neurotoxicity are reviewed. In conclusion, available data from literature highlight AFB1 as a neurotoxin and its possible pathological contribution to neurological disorders. Further mechanistic studies aimed at discovering and developing effective therapeutics for AFB1 neurotoxicity is warranted.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwadarasimi E Atanda
- Human Toxicology Program, Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Camila Sant'Anna Monteiro
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Department of Biochemical and Molecular Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
41
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nielsen E, Ntzani E, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Gropp J, Antonissen G, Rychen G, Gómez Ruiz JÁ, Innocenti ML, Rovesti E, Petersen A. Risks for animal health related to the presence of ochratoxin A (OTA) in feed. EFSA J 2023; 21:e08375. [PMID: 37942224 PMCID: PMC10628734 DOI: 10.2903/j.efsa.2023.8375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
In 2004, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks to animal health and transfer from feed to food of animal origin related to the presence of ochratoxin A (OTA) in feed. The European Commission requested EFSA to assess newly available scientific information and to update the 2004 Scientific Opinion. OTA is produced by several fungi of the genera Aspergillus and Penicillium. In most animal species it is rapidly and extensively absorbed in the gastro-intestinal tract, binds strongly to plasma albumins and is mainly detoxified to ochratoxin alpha (OTalpha) by ruminal microbiota. In pigs, OTA has been found mainly in liver and kidney. Transfer of OTA from feed to milk in ruminants and donkeys as well as to eggs from poultry is confirmed but low. Overall, OTA impairs function and structure of kidneys and liver, causes immunosuppression and affects the zootechnical performance (e.g. body weight gain, feed/gain ratio, etc.), with monogastric species being more susceptible than ruminants because of limited detoxification to OTalpha. The CONTAM Panel considered as reference point (RP) for adverse animal health effects: for pigs and rabbits 0.01 mg OTA/kg feed, for chickens for fattening and hens 0.03 mg OTA/kg feed. A total of 9,184 analytical results on OTA in feed, expressed in dry matter, were available. Dietary exposure was assessed using different scenarios based on either model diets or compound feed (complete feed or complementary feed plus forage). Risk characterisation was made for the animals for which an RP could be identified. The CONTAM Panel considers that the risk related to OTA in feed for adverse health effects for pigs, chickens for fattening, hens and rabbits is low.
Collapse
|
42
|
Pedroni L, Perugino F, Kurtaga A, Galaverna G, Dall'Asta C, Dellafiora L. The bitter side of toxicity: A big data analysis spotted the interaction between trichothecenes and bitter receptors. Food Res Int 2023; 173:113284. [PMID: 37803597 DOI: 10.1016/j.foodres.2023.113284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 10/08/2023]
Abstract
The bitter taste perception evolved in human and animals to rapidly perceive and avoid potential toxic compounds. This is mediated by taste receptors type 2 (TAS2R), expressed in various tissues, which recently proved to be involved in roles beyond the bitter perception itself. With this study, the interaction between food-related toxic compounds and TAS2R46 has been investigated via computational approaches, starting with a virtual screening and moving to molecular docking and dynamics simulations. The virtual screening analysis identified trichothecolone and the trichothecenes class it belongs to, which includes mycotoxins widespread in several commodities raising food safety concerns, as possible TAS2R46 binders. Molecular docking and dynamics simulations were performed to further explore the trichotecenes-TAS2R46 interaction. The results indicated that deoxynivalenol and its 15-acetylated derivative could activate TAS2R46. Eventually, this study provided initial evidence supporting the involvement of TAS2R46 in the underpinning mechanisms of deoxynivalenol action highlighting the need of digging into the involvement of TAS2R46 and TAS2Rs in the adverse effects of deoxynivalenol and congeners.
Collapse
Affiliation(s)
- Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Florinda Perugino
- Department of Food and Drug, University of Parma, Parma, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ambra Kurtaga
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
43
|
Leite M, Freitas A, Barbosa J, Ramos F. Regulated and Emerging Mycotoxins in Bulk Raw Milk: What Is the Human Risk? Toxins (Basel) 2023; 15:605. [PMID: 37888636 PMCID: PMC10610745 DOI: 10.3390/toxins15100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Mycotoxins are abiotic hazards whose contamination occurs at the pre- and post-harvest stages of the maize value chain, with animal exposure through contaminated feed leading to their excretion into milk. Currently, only aflatoxin M1 is regulated in milk products. Since feed materials and complete feed present a multi-mycotoxin composition and are the main mycotoxin source into milk, it is important to recognize the occurrence of multiple toxins and their co-occurrence in this highly consumed food product. The aim of this study was to determine the content of regulated and emerging mycotoxins in milk samples, which allowed for evaluating the occurrence and co-occurrence patterns of different mycotoxins known to contaminate feed materials and complete animal feed. Human exposure considering the occurrence patterns obtained was also estimated. Aflatoxins, fumonisins, zearalenone, and emerging mycotoxins were among the mycotoxins found to be present in the 100 samples analyzed. Concentrations ranged from 0.006 to 16.3 μg L-1, with no sample exceeding the AFM1 maximum level. Though several mycotoxins were detected, no exceeding values were observed considering the TDI or PMTDI. It can be concluded that the observed exposure does not pose a health risk to milk consumers, though it is important to recognize vulnerable age groups.
Collapse
Affiliation(s)
- Marta Leite
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Jorge Barbosa
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| |
Collapse
|
44
|
Obafemi BA, Adedara IA, Rocha JBT. Neurotoxicity of ochratoxin A: Molecular mechanisms and neurotherapeutic strategies. Toxicology 2023; 497-498:153630. [PMID: 37709162 DOI: 10.1016/j.tox.2023.153630] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Data from epidemiological and experimental studies have evidenced that some chemical contaminants in food elicit their harmful effects by targeting the central nervous system. Ochratoxin A is a foodborne mycotoxin produced by Aspergillus and Penicillium species. Research on neurotoxicity associated with ochratoxin A exposure has increased greatly in recent years. The present review accrued substantial evidence on the neurotoxicity associated with ochratoxin A exposure as well as discussed notable susceptible targets of noxious ochratoxin A at molecular, cellular and genetic levels. Specifically, the neurotoxic mechanisms associated with ochratoxin A exposure were unequivocally unraveled in vitro using human neuroblastoma SH-SY5Y cells, mouse hippocampal HT22 cells, human astrocyte (NHA-SV40LT) cells and microglia cells as well as in vivo using mammalian and non-mammalian models. Data from human biomonitoring studies on plasma ochratoxin A levels in patients with neurodegenerative diseases with some age- and sex-related responses were also highlighted. Moreover, the neurotherapeutic mechanisms of some naturally occurring bioactive compounds against ochratoxin A neurotoxicity are reviewed. Collectively, accumulated data from literature demonstrate that ochratoxin A is a neurotoxin with potential pathological involvement in neurological disorders. Cutting edge original translational research on the development of neurotherapeutics for neurotoxicity associated with foodborne toxicants including ochratoxin A is indispensable.
Collapse
Affiliation(s)
- Blessing A Obafemi
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil; Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105- 900 Santa Maria, RS, Brazil.
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
45
|
Zhang T, Bai J, Chen G, Chen Z, Zeng S, Yang Y, Wu Z. 3-Acetyldeoxynivalenol induces apoptosis, barrier dysfunction and endoplasmic reticulum stress by inhibiting mTORC1-dependent autophagy in porcine enterocytes. Chem Biol Interact 2023; 384:110695. [PMID: 37659622 DOI: 10.1016/j.cbi.2023.110695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
3-Acetyldeoxynivalenol (3-Ac-DON), an acetylated form of deoxynivalenol, is widely present in mycotoxin-contaminated food, feed as well as in other natural sources. Ingestion of 3-Ac-DON may result in intestinal dysfunction, leading to gut diseases in humans and animals. Nevertheless, the molecular mechanism of 3-Ac-DON in intestinal epithelial cytotoxicity remains unclear. In this study, intestinal porcine epithelial cell line 1 (IPEC-1) cells were treated with different concentrations of 3-Ac-DON for 12 h or 24 h, respectively. The results showed that 3-Ac-DON caused decreased cell viability, cell cycle arrest in G1 phase and depolarization of mitochondrial membrane potential. Western blotting analysis showed that 3-Ac-DON significantly decreased the expression of tight junction proteins, inhibited autophagy and activated endoplasmic reticulum (ER) stress in IPEC-1 cells (P < 0.05). Further investigation demonstrated that 3-Ac-DON caused apoptosis, ER stress and barrier dysfunction were reversed after co-treatment with the autophagy activator rapamycin (100 nM), indicating that autophagy plays a key role in the process of 3-Ac-DON-induced cell damage. In addition, we demonstrated that 3-Ac-DON inhibits the occurrence of autophagy mediated by mTORC1 protein. In conclusion, our research indicated that the mTORC1 protein and autophagy played a key role in the 3-Ac-DON-induced cytotoxic in IPEC-1 cells, which would provide new therapeutic targets and ideas for 3-Ac-DON-mediated intestinal injury.
Collapse
Affiliation(s)
- Tongkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Guangye Chen
- SILC Besiness School, Shanghai University, Shanghai, 200444, China
| | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Shenming Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
46
|
Papatsiros VG, Eliopoulos C, Voulgarakis N, Arapoglou D, Riahi I, Sadurní M, Papakonstantinou GI. Effects of a Multi-Component Mycotoxin-Detoxifying Agent on Oxidative Stress, Health and Performance of Sows. Toxins (Basel) 2023; 15:580. [PMID: 37756006 PMCID: PMC10537862 DOI: 10.3390/toxins15090580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
This in vivo study aimed to investigate the effects of a multi-component mycotoxin-detoxifying agent, containing clays (bentonite, sepiolite), phytogenic feed additives (curcumin, silymarin) and postbiotics (yeast cell wall, hydrolyzed yeast) on the antioxidant capacity, health and reproductive performance of pregnant and lactating sows challenged by mycotoxins. Eighty (80) primiparous sows (mean age 366 ± 3 days) per each of the two trial farms were divided into two groups in each farm: a) T1 (control group): 40 sows received the contaminated feed and b) T2 group (experimental group): 40 sows received the contaminated feed plus the mycotoxin-detoxifying agent, one month before farrowing until the end of the lactation period. Thiobarbituric acid reactive substances (TBARS), protein carbonyls (CARBS) and total antioxidant capacity (TAC) were evaluated as biomarkers of oxidative stress. Clinical and reproductive parameters were recorded. Our results indicate that the administration of a multi-component mycotoxin-detoxifying agent's administration in sow feed has beneficial effects on oxidative stress biomarkers and can improve sows' health and performance.
Collapse
Affiliation(s)
- Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Nikolaos Voulgarakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Insaf Riahi
- BIŌNTE Animal Nutrition, 43204 Reus, Spain; (I.R.); (M.S.)
| | | | | |
Collapse
|
47
|
Lima da Silva J, Lombardi S, Castaldo L, Morelli E, Garda-Buffon J, Izzo L, Ritieni A. Multi-Mycotoxin Analysis in Italian Grains Using Ultra-High-Performance Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins (Basel) 2023; 15:562. [PMID: 37755988 PMCID: PMC10535900 DOI: 10.3390/toxins15090562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Mycotoxins are a major source of contamination in cereals, posing risks to human health and causing significant economic losses to the industry. A comprehensive strategy for the analysis of 21 mycotoxins in Italian cereal grain samples (n = 200) was developed using a simple and quick sample preparation method combined with ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC Q-Orbitrap HRMS). The proposed method showed some advantages, such as multi-mycotoxin analyses with simple sample preparation, fast determination, and high sensitivity. The analysis of the sample revealed the presence of 11 mycotoxins, with α-zearalenol being the most frequently detected, while deoxynivalenol exhibited the highest contamination level. Furthermore, co-occurrence was identified in 15.5% of the samples under analysis. Among these, 13% of the samples reported the simultaneous presence of two mycotoxins, while 2.5% showed the co-occurrence of three mycotoxins. Currently, there has been a renewed interest in guaranteeing the quality and safety of products intended for human consumption. This study holds significant value due to its ability to simultaneously detect multiple mycotoxins within a complex matrix. Furthermore, it provides findings regarding the occurrence and co-occurrence of emerging mycotoxins that currently lack regulation under the existing European Commission Regulation.
Collapse
Affiliation(s)
- Juliane Lima da Silva
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, Km 8, Rio Grande 96203-900, RS, Brazil; (J.L.d.S.); (J.G.-B.)
| | - Sonia Lombardi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (E.M.)
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (E.M.)
| | - Elena Morelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (E.M.)
| | - Jaqueline Garda-Buffon
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, Km 8, Rio Grande 96203-900, RS, Brazil; (J.L.d.S.); (J.G.-B.)
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (E.M.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (E.M.)
| |
Collapse
|
48
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
49
|
Nešić K, Habschied K, Mastanjević K. Modified Mycotoxins and Multitoxin Contamination of Food and Feed as Major Analytical Challenges. Toxins (Basel) 2023; 15:511. [PMID: 37624268 PMCID: PMC10467123 DOI: 10.3390/toxins15080511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Mycotoxins, as natural products of molds, are often unavoidable contaminants of food and feed, to which the increasingly evident climate changes contribute a large part. The consequences are more or less severe and range from economic losses to worrying health problems to a fatal outcome. One of the best preventive approaches is regular monitoring of food and feed for the presence of mycotoxins. However, even under conditions of frequent, comprehensive, and conscientious controls, the desired protection goal may not be achieved. In fact, it often happens that, despite favorable analytical results that do not indicate high mycotoxin contamination, symptoms of their presence occur in practice. The most common reasons for this are the simultaneous presence of several different mycotoxins whose individual content does not exceed the detectable or prescribed values and/or the alteration of the form of the mycotoxin, which renders it impossible to be analytically determined using routine methods. When such contaminated foods enter a living organism, toxic effects occur. This article aims to shed light on the above problems in order to pay more attention to them, work to reduce their impact, and, eventually, overcome them.
Collapse
Affiliation(s)
- Ksenija Nešić
- Institute of Veterinary Medicine of Serbia, Food and Feed Department, Smolućska 11, 11070 Beograd, Serbia
| | - Kristina Habschied
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| | - Krešimir Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| |
Collapse
|
50
|
Mukhtar K, Nabi BG, Ansar S, Bhat ZF, Aadil RM, Khaneghah AM. Mycotoxins and consumers' awareness: Recent progress and future challenges. Toxicon 2023:107227. [PMID: 37454753 DOI: 10.1016/j.toxicon.2023.107227] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
While food shortages have become an important challenge, providing safe food resources is a point of interest on a global scale. Mycotoxins are secondary metabolites that are formed through various fungi species. They are mainly spread through diets such as food or beverages. About one quarter of the world's food is spoiled with mycotoxins. As this problem is not resolved, it represents a significant threat to global food security. Besides the current concerns regarding the contamination of food items by these metabolites, the lack of knowledge by consumers and their possible growth and toxin production attracted considerable attention. While globalization provides a favorite condition for some countries, food security still is challenging for most countries. There are various approaches to reducing the mycotoxigenic fungi growth and formation of mycotoxins in food, include as physical, chemical, and biological processes. The current article will focus on collecting data regarding consumers' awareness of mycotoxins. Furthermore, a critical overview and comparison among different preventative approaches to reduce risk by consumers will be discussed. Finally, the current effect of mycotoxins on global trade, besides future challenges faced by mycotoxin contamination on food security, will be discussed briefly.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|