1
|
Zachut M, Butenko Y, Dos Santos Silva P. International Symposium on Ruminant Physiology: The involvement of the endocannabinoid system in metabolic and inflammatory responses in dairy cows during negative energy balance. J Dairy Sci 2025:S0022-0302(25)00017-7. [PMID: 39824501 DOI: 10.3168/jds.2024-25772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
The endocannabinoid system (ECS) is involved in the regulation of energy metabolism, immune function and reproduction in mammals. The ECS is consisted of the endocannabinoid (eCB) ligands, enzymes, and cannabinoid receptors. In mammals, the cannabinoid-1 receptor (CB1/CNR1) is expressed in the central nervous system and in peripheral tissues; and its activation increases anabolic processes. The cannabinoid-2 receptor (CB2/CNR2) is most highly expressed in immune cells, and its activation exerts mainly anti-inflammatory effects. Until recently, little was known about the involvement of the ECS in physiological responses in dairy cows. As peripartum dairy cows undergo vast changes in energy metabolism and immune function, processes that are regulated by the ECS, several studies characterized ECS components in transition cows. Concentrations of eCB in the adipose tissue were higher postpartum (PP), and levels of the eCB N-arachidonoylethanolamide (AEA) were increased PP compared with prepartum. Exogenous injections of AEA to transition cows may increase adipose deposition, but did not affect feed intake. In vitro models showed that bovine adipocyte metabolism was differentially affected by CB1 agonists and antagonists in nonlactating non-gestating compared with PP cows. Thus, the responses of the PP dairy cows to ECS modulations may be related to the physiological and reproductive stage of the cow. Currently, whole-body ECS activation via agonists is mostly not feasible in vivo in livestock. Alternatively, downregulation of ECS activation can be achieved by supplementation of omega-3 (n-3) fatty acids. Indeed, in vivo studies with transition cows supplemented with n-3 showed a moderate downregulation of ECS components in the blood, adipose and liver, improved systemic insulin sensitivity, but evidently reduced insulin sensitivity in the adipose tissue PP. The abundance of CB1 was lower in immune cells, and anti-inflammatory effects were found in PP cows supplemented with n-3; possibly associating ECS downregulation with immune function. The physiological impact of ECS activation is an exciting and complex area of research, that could influence the physiology of dairy cows during metabolic and inflammatory challenges. Dairy cows may be an experimental model for ECS modulations, with broader relevance to female mammals. More research is required on how selective ECS activation/downregulation in tissues could affect immune-metabolic function in dairy cows.
Collapse
Affiliation(s)
- Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel.
| | - Yana Butenko
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel
| | - Priscila Dos Santos Silva
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Torabi J, Luis H, Hurlbutt M. Anticaries and Antigingivitis Properties of Cannabinoid-Containing Oral Health Products: A Review. Cannabis Cannabinoid Res 2024; 9:e1377-e1384. [PMID: 38593455 DOI: 10.1089/can.2023.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
To evaluate the anticaries and antigingivitis properties of cannabinoid-containing oral health products. A systematic research strategy was employed. Specific search terms were used, including "Cannabinoids AND dental caries," "Cannabinoids AND oral health," "Cannabinoids AND dental plaque," "Cannabinoids AND gingivitis AND periodontitis," "Cannabinoids AND S. mutans," "Cannabidiol AND oral health," and "Cannabidiol AND oral biofilm." The search was conducted in PubMed, Cochrane, and EBSCO Host databases. The search yielded a total of 73 articles, out of which 15 articles (20.5%) were relevant to the scope of this systematic review. Among the relevant articles, only eight (10.9%) directly addressed the research question. The findings from these articles suggest that cannabinoids have the potential to reduce the metabolism of cariogenic bacteria, specifically Streptococcus mutans, and decrease the number of bacterial colonies in dental plaque. In vitro studies also demonstrated a significant inhibitory effect of cannabinoids on oral biofilms and create a considerable inhibitory zone of growth when investigated on oral biofilms in vitro. Furthermore, CBD exhibited antibacterial properties against Porphyromonas gingivalis, a primary pathogen associated with periodontal disease. The current review shows insufficient data to conclude on the anticaries and antigingivitis effects of cannabinoids. Despite extensive research on their systemic therapeutic benefits, their oral health impact remains underexplored, lacking clinical trials and primary research.
Collapse
Affiliation(s)
- Jila Torabi
- West Coast University, Dental Hygiene Program, Anaheim, CA, USA
- Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), RHODes-Dental Hygienists for Science, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal
| | - Henrique Luis
- Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), RHODes-Dental Hygienists for Science, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal
- Center for Innovative Care and Health Technology (ciTechcare), Polytechnic of Leiria, Leiria, Portugal
| | | |
Collapse
|
3
|
Robledo-Montaña J, Díaz-García C, Martínez M, Ambrosio N, Montero E, Marín MJ, Virto L, Muñoz-López M, Herrera D, Sanz M, Leza JC, García-Bueno B, Figuero E, Martín-Hernández D. Microglial morphological/inflammatory phenotypes and endocannabinoid signaling in a preclinical model of periodontitis and depression. J Neuroinflammation 2024; 21:219. [PMID: 39245706 PMCID: PMC11382403 DOI: 10.1186/s12974-024-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Depression is a chronic psychiatric disease of multifactorial etiology, and its pathophysiology is not fully understood. Stress and other chronic inflammatory pathologies are shared risk factors for psychiatric diseases, and comorbidities are features of major depression. Epidemiological evidence suggests that periodontitis, as a source of low-grade chronic systemic inflammation, may be associated with depression, but the underlying mechanisms are not well understood. METHODS Periodontitis (P) was induced in Wistar: Han rats through oral gavage with the pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum for 12 weeks, followed by 3 weeks of chronic mild stress (CMS) to induce depressive-like behavior. The following four groups were established (n = 12 rats/group): periodontitis and CMS (P + CMS+), periodontitis without CMS, CMS without periodontitis, and control. The morphology and inflammatory phenotype of microglia in the frontal cortex (FC) were studied using immunofluorescence and bioinformatics tools. The endocannabinoid (EC) signaling and proteins related to synaptic plasticity were analyzed in FC samples using biochemical and immunohistochemical techniques. RESULTS Ultrastructural and fractal analyses of FC revealed a significant increase in the complexity and heterogeneity of Iba1 + parenchymal microglia in the combined experimental model (P + CMS+) and increased expression of the proinflammatory marker inducible nitric oxide synthase (iNOS), while there were no changes in the expression of cannabinoid receptor 2 (CB2). In the FC protein extracts of the P + CMS + animals, there was a decrease in the levels of the EC metabolic enzymes N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), and monoacylglycerol lipase (MAGL) compared to those in the controls, which extended to protein expression in neurons and in FC extracts of cannabinoid receptor 1 (CB1) and to the intracellular signaling molecules phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2). The protein levels of brain-derived neurotrophic factor (BDNF) and synaptophysin were also lower in P + CMS + animals than in controls. CONCLUSIONS The combined effects on microglial morphology and inflammatory phenotype, the EC signaling, and proteins related to synaptic plasticity in P + CMS + animals may represent relevant mechanisms explaining the association between periodontitis and depression. These findings highlight potential therapeutic targets that warrant further investigation.
Collapse
Affiliation(s)
- Javier Robledo-Montaña
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - César Díaz-García
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - María Martínez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Nagore Ambrosio
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - María José Marín
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Optics, Complutense University of Madrid, Madrid, Spain
| | - Marina Muñoz-López
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Juan Carlos Leza
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain.
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Mulla SA, Patil A, Mali S, Jain AK, Jaiswal H, Sawant HR, Arvind R, Singh S. Unleashing the therapeutic role of cannabidiol in dentistry. J Oral Biol Craniofac Res 2024; 14:649-654. [PMID: 39296277 PMCID: PMC11409039 DOI: 10.1016/j.jobcr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Cannabidiol (CBD) found in Cannabis sativa is a non-psychoactive compound which is capable of binding to CB1 and CB2 receptors. CBD has recently gained interest in dentistry although it has not been explored sufficiently yet. The therapeutic effects of CBD include anti-inflammatory, analgesic, antioxidant, biological and osteoinductive properties. The aim of this review is to highlight these effects with respect to various oral conditions and shed light on the current limitations and prospects for the use of CBD in maintaining oral health.
Collapse
Affiliation(s)
- Sayem Anwarhussain Mulla
- Department of Dentistry, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Amit Patil
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Sheetal Mali
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Ashish K Jain
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Himmat Jaiswal
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Hitesh Ramdas Sawant
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Ritvi Arvind
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Shruti Singh
- Department of Dentistry, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| |
Collapse
|
5
|
Leypold T, Herbsthofer A, Craveiro RB, Wolf M, Beier JP, Ruhl T. Effects of cannabinoid receptor activation on Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells in vitro. J Periodontal Implant Sci 2024; 54:54.e21. [PMID: 39058353 DOI: 10.5051/jpis.2303680184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE Periodontitis is an inflammatory disease that results in the loss of periodontal tissue. The endocannabinoid system has anti-inflammatory properties and displays considerable potential for tissue regeneration. In this study, we aimed to explore whether the activation of this system can alleviate or reverse the inflammatory phenotype of human periodontal ligament stem cells (hPDLSCs) induced by exposure to the inflammagen lipopolysaccharide (LPS). METHODS We investigated the effects of activating specific cannabinoid receptors (CB1 and CB2) on the inflammatory phenotype of LPS-stimulated hPDLSCs. The exogenous ligands WIN55,212-2 and JWH-133 were employed to target the cannabinoid receptors. We conducted a thorough assessment of cell proliferation, metabolic activity, and adipogenic, osteogenic, and chondrogenic differentiation potential. Additionally, we measured cytokine release using enzyme-linked immunosorbent assays. RESULTS Exposure to Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) caused an increase in cell proliferation while decreasing metabolic activity. While this exposure did not influence adipogenic or chondrogenic differentiation, it did result in reduced osteogenesis. Additionally, LPS induced the release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein 1. Immunolabeling revealed the presence of CB1 and CB2 on the cellular membrane, with these receptors playing distinct roles in hPDLSCs. The CB1 agonist WIN55,212-2 was found to increase metabolic activity and promote adipogenic differentiation, whereas the CB2 agonist JWH-133 promoted cell proliferation and osteogenic differentiation. When hPDLSCs were co-exposed to Pg-LPS and CB ligands, JWH-133 slightly ameliorated the inhibition of osteogenic differentiation and suppressed the release of inflammatory cytokines. CONCLUSIONS This study clarifies the effects of specific CB receptor activation on hPDLCs and the inflammatory phenotype. Stimulation of the endocannabinoid system through the manipulation of endogenous or the application of exogenous cannabinoids in vivo may represent a potent therapeutic option for combating periodontal inflammatory disorders.
Collapse
Affiliation(s)
- Tim Leypold
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany.
| | - Alix Herbsthofer
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
6
|
Monteiro Viana JC, da Silva Gomes GE, Duarte Oliveira FJ, Marques de Araújo LN, Teles G, Mourão CF, de Vasconcelos Gurgel BC. The Role of Different Types of Cannabinoids in Periodontal Disease: An Integrative Review. Pharmaceutics 2024; 16:893. [PMID: 39065590 PMCID: PMC11279938 DOI: 10.3390/pharmaceutics16070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This integrative review addresses the potential of the Endocannabinoid System (ES) and cannabinoids in the pathogenesis and treatment of periodontal disease (PD). Cannabinoid receptors are expressed in healthy and inflamed periodontal tissues, indicating a potential regulatory role for SEC in oral homeostasis. Healthy periodontal cells express more CB1 receptors, while inflamed sites show increased CB2 receptors. This suggests a dynamic involvement of the SEC in the inflammatory response associated with PD. Cannabinoids such as cannabidiol (CBD) and cannabinoid receptor agonists such as HU-308, anandamide (AEA), and methanamide (Meta-AEA) have demonstrated promising therapeutic potential in studies. CBD has been associated with the control of bone resorption, antibacterial activity, and increased production of gingival fibroblasts, indicating effects in mitigating the progression of PD. HU-308 demonstrated preventive effects against alveolar bone loss, and anti-inflammatory, osteoprotective, and pro-homeostatic properties in animal models of periodontitis. AEA and Meta-AEA have anti-inflammatory effects by reducing pro-inflammatory mediators such as IL-1, IL-6, and TNF-α. The activation of cannabinoid receptors attenuates inflammatory processes, inhibits alveolar bone loss, exerts antibacterial effects, and promotes tissue repair. However, clinical trials are especially needed to validate these results and explore the therapeutic potential of cannabinoids in the treatment of PD in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
7
|
Pagano S, Valenti C, Negri P, Billi M, Di Michele A, Bruscoli S, Febo M, Coniglio M, Marinucci L. Acute and chronic cannabidiol treatment: In vitro toxicological aspects on human oral cells. Food Chem Toxicol 2024; 185:114513. [PMID: 38342230 DOI: 10.1016/j.fct.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Cannabidiol is gaining increasing interest for its potential anti-inflammatory, immunomodulatory, and antineoplastic effects. The purpose of this study is to investigate the biological effects of acute and chronic CBD administration on gingival fibroblasts and oral keratinocytes. Viability, morphology, migration, apoptosis and cell cycle, and expression of related genes (p53, BCL2, p21, and BAX) and of endocannabinoid system receptors (CB1, CB2 and GPR55) with real-time PCR and DNA damage with phospho-γ-H2AX immunofluorescence detection were analyzed. Concentrations between 100 μM and 0.001 μM were used: 50 μM (toxic dose), 25 μM (viability promoter), and 1 μM (nontoxic), were selected for subsequent chronic analysis. Acute treatment reveals significant effects than chronic, in particular in fibroblasts: concentrations ≥50 μM are highly cytotoxic, with increased apoptosis and reduced migration. Cell death correlates with increased p53 and BAX, followed by arrest in G0/G1 phase, with elevated p21 levels, suggesting a time- and dose-dependent damage. An increase in H2AX phosphorylation was observed with 25 μM and 50 μM, while 1 μM was biocompatible. Keratinocytes showed less cytotoxic effect than fibroblasts. Induced cell damage was dose- and time-related, with less damage after chronic treatment. Further investigations are needed with longer time frames to evaluate CBD dose- and time-dependent effects to identify an effective therapeutic dose.
Collapse
Affiliation(s)
- Stefano Pagano
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Chiara Valenti
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy; CISAS "Giuseppe Colombo", University of Padua, Via Venezia, 15, 35131, Padua, Italy.
| | - Paolo Negri
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Monia Billi
- Department of Medicine and Surgery, Section of General Pathology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy.
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Marta Febo
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Maddalena Coniglio
- Department of Medicine and Surgery, Faculty of Dentistry, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| | - Lorella Marinucci
- Department of Medicine and Surgery, Section of Biosciences and Medical Embryology, University of Perugia, S. Andrea delle Fratte, 06156, Perugia, Italy.
| |
Collapse
|
8
|
Carmona Rendón Y, Garzón HS, Bueno-Silva B, Arce RM, Suárez LJ. Cannabinoids in Periodontology: Where Are We Now? Antibiotics (Basel) 2023; 12:1687. [PMID: 38136721 PMCID: PMC10740419 DOI: 10.3390/antibiotics12121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION Cannabinoids are a well-documented treatment modality for various immune and inflammatory diseases, including asthma, chronic obstructive pulmonary disease, Crohn's disease, arthritis, multiple sclerosis, and a range of neurodegenerative conditions. However, limited information is available regarding the therapeutic potential of cannabinoids in treating periodontal disease. OBJECTIVE The objective of this study is to analyze the current evidence on the antibacterial and immunomodulatory effects of cannabis and its role in the healing and regeneration processes within periodontal tissues. RESULTS This review discusses the potential role of cannabinoids in restoring periodontal tissue homeostasis. CONCLUSIONS The examination of the endocannabinoid system and the physiological effects of cannabinoids in the periodontium suggests that they possess immunomodulatory and antibacterial properties, which could potentially promote proper tissue healing and regeneration.
Collapse
Affiliation(s)
- Yésica Carmona Rendón
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Hernán Santiago Garzón
- Programa de Doctorado en Ingeniería, Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Bruno Bueno-Silva
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, Brazil;
| | - Roger M. Arce
- Department of Periodontics and Oral Hygiene, University of Texas School of Dentistry at Houston, Houston, TX 77054, USA;
| | - Lina Janeth Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
9
|
Bellocchio L, Patano A, Inchingolo AD, Inchingolo F, Dipalma G, Isacco CG, de Ruvo E, Rapone B, Mancini A, Lorusso F, Scarano A, Malcangi G, Inchingolo AM. Cannabidiol for Oral Health: A New Promising Therapeutical Tool in Dentistry. Int J Mol Sci 2023; 24:ijms24119693. [PMID: 37298644 DOI: 10.3390/ijms24119693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The medical use of cannabis has a very long history. Although many substances called cannabinoids are present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN) are the three main cannabinoids that are most present and described. CBD itself is not responsible for the psychotropic effects of cannabis, since it does not produce the typical behavioral effects associated with the consumption of this drug. CBD has recently gained growing attention in modern society and seems to be increasingly explored in dentistry. Several subjective findings suggest some therapeutic effects of CBD that are strongly supported by research evidence. However, there is a plethora of data regarding CBD's mechanism of action and therapeutic potential, which are in many cases contradictory. We will first provide an overview of the scientific evidence on the molecular mechanism of CBD's action. Furthermore, we will map the recent developments regarding the possible oral benefits of CBD. In summary, we will highlight CBD's promising biological features for its application in dentistry, despite exiting patents that suggest the current compositions for oral care as the main interest of the industry.
Collapse
Affiliation(s)
- Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, University of Bordeaux, 33063 Bordeaux, France
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | | |
Collapse
|
10
|
Pellegrini G, Carmagnola D, Toma M, Rasperini G, Orioli M, Dellavia C. Involvement of the endocannabinoid system in current and recurrent periodontitis: A human study. J Periodontal Res 2023; 58:422-432. [PMID: 36727611 DOI: 10.1111/jre.13103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of the present study was to assess if the endocannabinoid system is involved differently in patients with recurrent and non-recurrent periodontal disease and if in sites that have a predisposition for reactivation, levels of anandamide (AEA) change after periodontal therapy. BACKGROUND Periodontal disease (PD) may be due to a dysregulation of the endocannabinoid system. METHODS Periodontal patients were recruited, treated for PD and monitored. Gingival samples from these patients with recurrent (n = 10) and non-recurrent (n = 10) periodontal disease were harvested before and after treatment and compared to those of periodontally healthy (n = 10) subjects. Levels of CB1 and CB2, AEA and CBs receptor activation were assessed in healthy and inflamed samples using immunohistochemistry, chromatography and autoradiography. In healed sites, AEA levels were also assessed. RESULTS The number of CBs in inflamed sites of recurrent patients was significantly higher than in those with non-recurrent disease and also higher than those in healthy subjects. Inflamed sites of recurrent patients had significantly lower CBs receptor activation than those of healthy subjects. Levels of AEA in inflamed sites of non-recurrent patients were significantly higher than those found both in inflamed recurrent sites and in healthy sites. Otherwise, the amount of AEA in healthy subjects and recurrent inflamed sites was similar. After periodontal therapy, levels of AEA were significantly lower in both periodontal groups. In recurrent sites, they resulted significantly lower than in non-recurrent and even in healthy subjects. CONCLUSIONS The endocannabinoid system seems involved differently in subjects with recurrent and non-recurrent periodontal disease.
Collapse
Affiliation(s)
- Gaia Pellegrini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Daniela Carmagnola
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marilisa Toma
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giulio Rasperini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marica Orioli
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Claudia Dellavia
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Abidi AH, Abhyankar V, Alghamdi SS, Tipton DA, Dabbous M. Phytocannabinoids regulate inflammation in IL-1β-stimulated human gingival fibroblasts. J Periodontal Res 2022; 57:1127-1138. [PMID: 36070347 DOI: 10.1111/jre.13050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Billions of individuals worldwide suffer from periodontal disease, an inflammatory disease that results in hard-tissue and soft-tissue destruction. A viable therapeutic option to treat periodontal disease may be via cannabinoids that exert immunomodulatory effects, and the endocannabinoid system (ECS) is readily present in periodontal tissues that exhibit cannabinoid type 1 and 2 receptors (CB1R and CB2R). Phytocannabinoids (pCBs), which are a part of a heterogeneous group of molecules acting on cannabinoid receptors (CBR) derived from the cannabis plants, have been attributed to a wide variety of effects including anti-inflammatory activity and some pro-inflammatory effects depending on the cell type. Thus, this study aims to examine the effects of pCBs on primary human gingival fibroblasts (HGFs) in IL-1β stimulated (simulated periodontal disease) HGFs. MATERIALS AND METHODS Human gingival fibroblasts (HGFs) obtained from ATCC were cultured per the manufacturer's recommendation. The functional activity of cannabinoid receptors was measured using ACTOne (cAMP)-based CB1R and CB2R assay. The effects of three pCBs (0.1-10 μg/ml or 10-4.5 -10-6.5 M) on cell viability were assessed using the CCK-8 cellular dehydrogenase assay. IL-1β (1 ng/ml) was added an hour before the treatment to stimulate inflammation in the HGFs before the addition of cannabinoid ligands. After 24-h incubation, the production of INF-γ, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNF-α was measured using Mesoscale Discovery (MSD) Human Pro-Inflammatory kit. To measure prostaglandin E 2 levels (PGE2), Cisbio HTRF PGE2 assay kit was used per the manufacturer's recommendation to measure after 24-h incubation. The data were analyzed using GraphPad Prism 6.0. The analytes for each group were compared using a one-way ANOVA test with Bonferroni's correction. RESULTS Cannabidivarin (CBVN or CBDV) (EC50 = 12 nM) and cannabigerol (CBG) (EC50 = 30 nM) exhibited agonist activity on CB2R with intermediate efficacy. Cannabidiol (CBD) did not exhibit activation of the CB2R, and the CB1R activation was not observed with any of the pCBs. Cytotoxicity results showed that concentrations of 2.50 μg/ml or greater for the pCBs were toxic except for CBVN. Lower concentrations of CBD and CBG (0.1-0.75 μg/ml), and CBVN at 2.50 μg/ml exhibited significant effects on HGF proliferation. In IL-1β-stimulated HGFs, prostaglandin E2 (PGE2) production was significantly suppressed only by CBG and CBVN. CBD and CBG treatment alone did, however, elevate PGE2 production significantly compared to control. IL-1β stimulation resulted in a robust increase in the production of all cytokines tested. Treatment of IL-β-stimulated HGF with the three pCBs (1 μg/ml) significantly reduced INF-ɣ, TNF-α, and IL-2. The significant suppression of IL-4 was seen with CBD and CBVN, while only CBVN exerted suppression of IL-13. The three pCBs significantly increased IL-6, IL-10, and IL-12 levels, while none of the pCBs reduced the expression of IL-8 in IL-1β-stimulated HGF. CONCLUSION The effective inhibition of IL-1β-stimulated production of PGE2 and cytokines by the pCB in HGFs suggests that targeting the endocannabinoid system may lead to the development of therapeutic strategies for periodontal therapy. However, each pCB has its unique anti-inflammatory profile, in which certain pro-inflammatory activities are also exhibited. The pCBs alone or in combination may benefit and aid in improving public oral health.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Vrushali Abhyankar
- College of Dentistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Periodontology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Sahar S Alghamdi
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - David A Tipton
- College of Dentistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Mustafa Dabbous
- College of Dentistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| |
Collapse
|
12
|
Kra G, Daddam JR, Moallem U, Kamer H, Kočvarová R, Nemirovski A, Contreras GA, Tam J, Zachut M. Effects of omega-3 supplementation on components of the endocannabinoid system and metabolic and inflammatory responses in adipose and liver of peripartum dairy cows. J Anim Sci Biotechnol 2022; 13:114. [PMID: 36183098 PMCID: PMC9526899 DOI: 10.1186/s40104-022-00761-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/31/2022] [Indexed: 12/18/2022] Open
Abstract
Background Dietary supplementation of omega-3 fatty acids can reduce the activation of the endocannabinoid system (ECS) by decreasing the availability of arachidonic acid, thus lowering endocannabinoids (eCBs) levels. The ECS is a modulator of energy metabolism, stress response and inflammation in mammals, yet there is little information on the roles of the ECS in transition dairy cows. During the periparturient period, the adipose tissue and liver are the main metabolic organs that participate in the adaptations of dairy cows to onset of lactation; however, exceeded adipose tissue lipolysis and accumulation of lipids in the liver have adverse effects on cows’ physiology. Here we aimed to examine whether omega-3 supplementation during the transition period will modulate ECS activation and affect metabolic and inflammatory indices in postpartum dairy cows, by supplementing twenty-eight transition Holstein dairy cows with either saturated fat (CTL) or encapsulated flaxseed oil (FLX). Components of the ECS, metabolic and inflammatory markers were measured in blood, liver, and subcutaneous adipose tissue. Results FLX supplementation reduced feed intake by 8.1% (P < 0.01) and reduced plasma levels of arachidonic acid (by 44.2%; P = 0.02) and anandamide (by 49.7%; P = 0.03) postpartum compared to CTL. The mRNA transcription levels of the cannabinoid receptor 1 (CNR1/CB1) tended to be lower (2.5 folds) in white blood cells of FLX than in CTL (P = 0.10), and protein abundance of ECS enzyme monoacylglycerol lipase was higher in peripheral blood mononuclear cells of FLX than in CTL (P = 0.04). In adipose tissue, palmitoylethanolamide levels were lower in FLX than in CTL (by 61.5%; P = 0.02), relative mRNA transcription of lipogenic genes were higher, and the protein abundance of cannabinoid receptor 2 (P = 0.08) and monoacylglycerol lipase (P = 0.10) tended to be higher in FLX compared to CTL. Hepatic 2-arachidonoylglycerol tended to be higher (by 73.1%; P = 0.07), and interlukin-6 mRNA transcription level was 1.5 folds lower in liver of FLX than in CTL (P = 0.03). Conclusions Nutritional supplementation of omega-3 fatty acids seems to partly modulate ECS activation, which could be related to lower feed intake. The altered ECS components in blood, adipose tissue and liver are associated with moderate modulations in lipid metabolism in the adipose and inflammation in liver of peripartum dairy cows. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00761-9.
Collapse
Affiliation(s)
- Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel.,Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | - Uzi Moallem
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | - Hadar Kamer
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | - Radka Kočvarová
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
13
|
Chen C, Wang W, Poklis JL, Lichtman AH, Ritter JK, Hu G, Xie D, Li N. Inactivation of fatty acid amide hydrolase protects against ischemic reperfusion injury-induced renal fibrogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166456. [PMID: 35710061 PMCID: PMC10215004 DOI: 10.1016/j.bbadis.2022.166456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
Although cannabinoid receptors (CB) are recognized as targets for renal fibrosis, the roles of endogenous cannabinoid anandamide (AEA) and its primary hydrolytic enzyme, fatty acid amide hydrolase (FAAH), in renal fibrogenesis remain unclear. The present study used a mouse model of post-ischemia-reperfusion renal injury (PIR) to test the hypothesis that FAAH participates in the renal fibrogenesis. Our results demonstrated that PIR showed upregulated expression of FAAH in renal proximal tubules, accompanied with decreased AEA levels in kidneys. Faah knockout mice recovered the reduced AEA levels and ameliorated PIR-triggered increases in blood urea nitrogen, plasma creatinine as well as renal profibrogenic markers and injuries. Correspondingly, a selective FAAH inhibitor, PF-04457845, inhibited the transforming growth factor-beta 1 (TGF-β1)-induced profibrogenic markers in human proximal tubular cell line (HK-2 cells) and mouse primary cultured tubular cells. Knockdown of FAAH by siRNA in HK-2 cells had similar effects as PF-04457845. Tubular cells isolated from Faah-/- mice further validated the protection against TGF-β1-induced damages. The CB 1 or CB2 receptor antagonist and exogenous FAAH metabolite arachidonic acid failed to reverse the protective effects of FAAH inactivation in HK-2 cells. However, a substrate-selective inhibitor of AEA-cyclooxygenase-2 (COX-2) pathway significantly suppressed the anti-profibrogenic actions of FAAH inhibition. Further, the AEA-COX-2 metabolite, prostamide E2 exerted anti-fibrogenesis effect. These findings suggest that FAAH activation and the consequent reduction of AEA contribute to the renal fibrogenesis, and that FAAH inhibition protects against fibrogenesis in renal cells independently of CB receptors via the AEA-COX-2 pathway by the recovery of reduced AEA.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gaizun Hu
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dengpiao Xie
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
14
|
Navarro-Saiz LM, Bernal-Cepeda LJ, Castellanos JE. Immune challenges upregulate the expression of cannabinoid receptors in cultured human odontoblasts and gingival fibroblasts. ACTA ODONTOLOGICA LATINOAMERICANA : AOL 2022; 35:80-89. [PMID: 36260938 DOI: 10.54589/aol.35/2/80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/01/2022] [Indexed: 06/16/2023]
Abstract
Odontoblasts and gingival fibroblasts play essential roles in the physiological and pathological processes of dental tissue. Cannabinoid receptors (CB1 and CB2) are involved in analgesia by modulating the función of calcium channels that inhibit the synthesis of some neurotransmitters. A better understanding of the physiology of these receptors would provide the possibility of using them as therapeutic targets in controlling dental pain. The aim of this study was to evaluate the presence and activity of cannabinoid receptors in human odontoblast-like cells (OLC) and human gingival fibroblasts (HGF). CB1 and CB2 transcription was analyzed by real-time PCR, proteins were detected by immunofluorescence, and functional cannabinoid receptors were evaluated by measuring intracellular calcium concentration after stimulation with cannabidiol (CBD) and pre-treatment with a CB1 antagonist, a CB2 inverse agonist and a TRPV1 antagonist. Transcripts for CB1 and CB2 were found in both odontoblasts and gingival fibroblasts. Cannabidiol induced an increase in [Ca2+]i in both cells types, but surprisingly, pre-treatment with selective cannabinoid antagonists attenuated this effect, suggesting a functional communication between specific cannabinoid receptors and other CBD target receptors. In conclusion, human odontoblasts and gingival fibroblasts express functional CB1 and CB2 cannabinoid receptors, which could be modulated to improve the treatment of pain or dental sensitivity.
Collapse
Affiliation(s)
- Laura M Navarro-Saiz
- Universidad Nacional de Colombia, Grupo de Investigación Básica y Aplicada en Odontología, Bogotá, Colombia
| | - Lilia J Bernal-Cepeda
- Universidad Nacional de Colombia, Grupo de Investigación Básica y Aplicada en Odontología, Bogotá, Colombia
| | - Jaime E Castellanos
- Universidad Nacional de Colombia, Grupo de Investigación Básica y Aplicada en Odontología, Bogotá, Colombia.
| |
Collapse
|
15
|
Ataei A, Rahim Rezaee SA, Moeintaghavi A, Ghanbari H, Azizi M. Evaluation of cannabinoid receptors type 1–2 in periodontitis patients. Clin Exp Dent Res 2022; 8:1040-1044. [PMID: 35719011 PMCID: PMC9562797 DOI: 10.1002/cre2.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background As effective immune modulators, Endocannabinoids may suppress the inflammatory responses in periodontitis. This study assessed the expression of cannabinoid receptors in gingiva and the impact on periodontitis. Methods A cross‐sectional study on 20 patients with more than stage II and Grade A periodontitis and a control group consisting of 19 healthy individuals was performed. The gingival biopsies were assessed for the expression of CB1 and CB2 using the quantitative reverse transcription polymerase chain reaction, TaqMan method. Results The study sample consisted of 39 subjects, 31 females (79.5%) and 8 males (20.5%), including 20 periodontitis subjects (80% female and 20% male), and control groups (78.9% female and 21.1% male). The mean ages of cases and controls were 33.3 ± 4.7 and 35.7 ± 5.1 years, respectively. The gene expression of CB2 in periodontitis was 27.62 ± 7.96 and in healthy subjects was 78.15 ± 23.07. The CB2 was significantly lower than the control group (p = .008). In comparison, the gene expression index of CB1 in the periodontal group (9.42 ± 3.03) was higher than the control group (6.62 ± 1.13) but did not meet a significant value (p = .671). Conclusion The lower expression of CB2 receptors in the periodontitis group may be due to the reduced protective effect of anti‐inflammatory agents. These elements include cannabinoids and the imbalance leading to the predominance of pro‐inflammatory effects. Therefore, the local effects of cannabinoids as an immunomodulator could be useful for oral inflammatory diseases such as periodontitis.
Collapse
Affiliation(s)
- Atefe Ataei
- Department of Periodontics, School of Dentistry Birjand University of Medical Sciences Birjand Iran
| | - S. A. Rahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Moeintaghavi
- Department of Periodontology, School of Dentistry Mashhad University of Medical Sciences Mashhad Iran
| | - Habibollah Ghanbari
- Department of Periodontology, School of Dentistry Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Azizi
- Department of Orthodontics, School of Dentistry Birjand University of Medical Sciences Birjand Iran
| |
Collapse
|
16
|
Feng Q. Gastrodin attenuates lipopolysaccharide‑induced inflammation and oxidative stress, and promotes the osteogenic differentiation of human periodontal ligament stem cells through enhancing sirtuin3 expression. Exp Ther Med 2022; 23:296. [PMID: 35340880 PMCID: PMC8931632 DOI: 10.3892/etm.2022.11225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/14/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Qiujing Feng
- Department of Stomatology, Xingyi People's Hospital, Xingyi, Guizhou 562400, P.R. China
| |
Collapse
|
17
|
Scott D, Dukka H, Saxena D. Potential Mechanisms Underlying Marijuana-Associated Periodontal Tissue Destruction. J Dent Res 2022; 101:133-142. [PMID: 34515556 PMCID: PMC8905217 DOI: 10.1177/00220345211036072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
While definitive evidence awaits, cannabis is emerging as a likely risk factor for periodontal tissue destruction. The mechanisms that underlie potential cannabis-induced or cannabis-enhanced periodontal diseases, however, remain to be elucidated. Herein, we 1) examine insights obtained from the endocannabinoid system, 2) summarize animal models of exposure to cannabinoid receptor agonists and antagonists, 3) review the evidence suggesting that cannabis and cannabis-derived molecules exert a profound influence on components of the oral microbiome, and 4) assess studies indicating that marijuana and phytocannabinoids compromise the immune response to plaque. Furthermore, we address how knowledge of cannabinoid influences in the oral cavity may be exploited to provide potential novel periodontal therapeutics, while recognizing that such medicinal approaches may be most appropriate for nonhabitual marijuana users. The suspected increase in susceptibility to periodontitis in marijuana users is multifaceted, and it is clear that we are only beginning to understand the complex toxicological, cellular, and microbial interactions involved. With marijuana consumption increasing across all societal demographics, periodontal complications of use may represent a significant, growing oral health concern. In preparation, an enhanced research response would seem appropriate.
Collapse
Affiliation(s)
- D.A. Scott
- Oral Immunology and Infectious
Diseases, School of Dentistry, University of Louisville, Louisville, KY,
USA
- D.A. Scott, School of Dentistry,
University of Louisville, 501 S. Preston St, Louisville, KY 40292,
USA.
| | - H. Dukka
- Diagnosis and Oral Health, School
of Dentistry, University of Louisville, Louisville, KY, USA
| | - D. Saxena
- Molecular Pathobiology, College
of Dentistry, New York University, New York, USA
| |
Collapse
|
18
|
Khan RN, Maner-Smith K, A. Owens J, Barbian ME, Jones RM, R. Naudin C. At the heart of microbial conversations: endocannabinoids and the microbiome in cardiometabolic risk. Gut Microbes 2022; 13:1-21. [PMID: 33896380 PMCID: PMC8078674 DOI: 10.1080/19490976.2021.1911572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiometabolic syndrome encompasses intertwined risk factors such as hypertension, dyslipidemia, elevated triglycerides, abdominal obesity, and other maladaptive metabolic and inflammatory aberrations. As the molecular mechanisms linking cardiovascular disease and metabolic disorders are investigated, endocannabinoids have emerged as molecules of interest. The endocannabinoid system (ECS) of biologically active lipids has been implicated in several conditions, including chronic liver disease, osteoporosis, and more recently in cardiovascular diseases. The gut microbiome is a major regulator of inflammatory and metabolic signaling in the host, and if disrupted, has the potential to drive metabolic and cardiovascular diseases. Extensive studies have unraveled the impact of the gut microbiome on host physiology, with recent reports showing that gut microbes exquisitely control the ECS, with significant influences on host metabolic and cardiac health. In this review, we outline how modulation of the gut microbiome affects host metabolism and cardiovascular health via the ECS, and how these findings could be exploited as novel therapeutic targets for various metabolic and cardiac diseases.
Collapse
Affiliation(s)
- Ramsha Nabihah Khan
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Kristal Maner-Smith
- Emory Integrated Metabolomics and Lipidomics Core, Emory University, Atlanta, Georgia, USA
| | - Joshua A. Owens
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Maria Estefania Barbian
- Division of Neonatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Crystal R. Naudin
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA,CONTACT Crystal R. Naudin Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA30322, United States of America
| |
Collapse
|
19
|
Vecchiarelli HA, Aukema RJ, Hume C, Chiang V, Morena M, Keenan CM, Nastase AS, Lee FS, Pittman QJ, Sharkey KA, Hill MN. Genetic Variants of Fatty Acid Amide Hydrolase Modulate Acute Inflammatory Responses to Colitis in Adult Male Mice. Front Cell Neurosci 2021; 15:764706. [PMID: 34916909 PMCID: PMC8670533 DOI: 10.3389/fncel.2021.764706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cannabinoids, including cannabis derived phytocannabinoids and endogenous cannabinoids (endocannabinoids), are typically considered anti-inflammatory. One such endocannabinoid is N-arachidonoylethanolamine (anandamide, AEA), which is metabolized by fatty acid amide hydrolase (FAAH). In humans, there is a loss of function single nucleotide polymorphism (SNP) in the FAAH gene (C385A, rs324420), that leads to increases in the levels of AEA. Using a mouse model with this SNP, we investigated how this SNP affects inflammation in a model of inflammatory bowel disease. We administered 2,4,6-trinitrobenzene sulfonic acid (TNBS) intracolonically, to adult male FAAH SNP mice and examined colonic macroscopic tissue damage and myeloperoxidase activity, as well as levels of plasma and amygdalar cytokines and chemokines 3 days after administration, at the peak of colitis. We found that mice possessing the loss of function alleles (AC and AA), displayed no differences in colonic damage or myeloperoxidase activity compared to mice with wild type alleles (CC). In contrast, in plasma, colitis-induced increases in interleukin (IL)-2, leukemia inhibitory factor (LIF), monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF) were reduced in animals with an A allele. A similar pattern was observed in the amygdala for granulocyte colony stimulating factor (G-CSF) and MCP-1. In the amygdala, the mutant A allele led to lower levels of IL-1α, IL-9, macrophage inflammatory protein (MIP)-1β, and MIP-2 independent of colitis-providing additional understanding of how FAAH may serve as a regulator of inflammatory responses in the brain. Together, these data provide insights into how FAAH regulates inflammatory processes in disease.
Collapse
Affiliation(s)
- Haley A Vecchiarelli
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J Aukema
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine Hume
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vincent Chiang
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrei S Nastase
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, United States
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W, Nedamat K. The Current and Potential Application of Medicinal Cannabis Products in Dentistry. Dent J (Basel) 2021; 9:106. [PMID: 34562980 PMCID: PMC8466648 DOI: 10.3390/dj9090106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
Oral and dental diseases are a major global burden, the most common non-communicable diseases (NCDs), and may even affect an individual's general quality of life and health. The most prevalent dental and oral health conditions are tooth decay (otherwise referred to as dental caries/cavities), oral cancers, gingivitis, periodontitis, periodontal (gum) disease, Noma, oro-dental trauma, oral manifestations of HIV, sensitive teeth, cracked teeth, broken teeth, and congenital anomalies such as cleft lip and palate. Herbs have been utilized for hundreds of years in traditional Chinese, African and Indian medicine and even in some Western countries, for the treatment of oral and dental conditions including but not limited to dental caries, gingivitis and toothaches, dental pulpitis, halitosis (bad breath), mucositis, sore throat, oral wound infections, and periodontal abscesses. Herbs have also been used as plaque removers (chew sticks), antimicrobials, analgesics, anti-inflammatory agents, and antiseptics. Cannabis sativa L. in particular has been utilized in traditional Asian medicine for tooth-pain management, prevention of dental caries and reduction in gum inflammation. The distribution of cannabinoid (CB) receptors in the mouth suggest that the endocannabinoid system may be a target for the treatment of oral and dental diseases. Most recently, interest has been geared toward the use of Cannabidiol (CBD), one of several secondary metabolites produced by C. sativa L. CBD is a known anti-inflammatory, analgesic, anxiolytic, anti-microbial and anti-cancer agent, and as a result, may have therapeutic potential against conditions such burning mouth syndrome, dental anxiety, gingivitis, and possible oral cancer. Other major secondary metabolites of C. sativa L. such as terpenes and flavonoids also share anti-inflammatory, analgesic, anxiolytic and anti-microbial properties and may also have dental and oral applications. This review will investigate the potential of secondary metabolites of C. sativa L. in the treatment of dental and oral diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kaveh Nedamat
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02142, USA;
- Auraleaf Innovations, Toronto, ON M9B 4H6, Canada
| |
Collapse
|
21
|
Bellocchio L, Inchingolo AD, Inchingolo AM, Lorusso F, Malcangi G, Santacroce L, Scarano A, Bordea IR, Hazballa D, D’Oria MT, Isacco CG, Nucci L, Serpico R, Tartaglia GM, Giovanniello D, Contaldo M, Farronato M, Dipalma G, Inchingolo F. Cannabinoids Drugs and Oral Health-From Recreational Side-Effects to Medicinal Purposes: A Systematic Review. Int J Mol Sci 2021; 22:ijms22158329. [PMID: 34361095 PMCID: PMC8347083 DOI: 10.3390/ijms22158329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background: marijuana, the common name for cannabis sativa preparations, is one of the most consumed drug all over the world, both at therapeutical and recreational levels. With the legalization of medical uses of cannabis in many countries, and even its recreational use in most of these, the prevalence of marijuana use has markedly risen over the last decade. At the same time, there is also a higher prevalence in the health concerns related to cannabis use and abuse. Thus, it is mandatory for oral healthcare operators to know and deal with the consequences and effects of cannabis use on oral cavity health. This review will briefly summarize the components of cannabis and the endocannabinoid system, as well as the cellular and molecular mechanisms of biological cannabis action in human cells and biologic activities on tissues. We will also look into oropharyngeal tissue expression of cannabinoid receptors, together with a putative association of cannabis to several oral diseases. Therefore, this review will elaborate the basic biology and physiology of cannabinoids in human oral tissues with the aim of providing a better comprehension of the effects of its use and abuse on oral health, in order to include cannabinoid usage into dental patient health records as well as good medicinal practice. Methods: the paper selection was performed by PubMed/Medline and EMBASE electronic databases, and reported according to the PRISMA guidelines. The scientific products were included for qualitative analysis. Results: the paper search screened a total of 276 papers. After the initial screening and the eligibility assessment, a total of 32 articles were considered for the qualitative analysis. Conclusions: today, cannabis consumption has been correlated to a higher risk of gingival and periodontal disease, oral infection and cancer of the oral cavity, while the physico-chemical activity has not been completely clarified. Further investigations are necessary to evaluate a therapeutic efficacy of this class of drugs for the promising treatment of several different diseases of the salivary glands and oral diseases.
Collapse
Affiliation(s)
- Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, University of Bordeaux, 33063 Bordeaux, France
- Correspondence: (L.B.); (F.L.); (I.R.B.); Tel.: +33646298623 (L.B.); +39-32-8213-2586 (F.L.); +40-74-4919319 (I.R.B.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (L.B.); (F.L.); (I.R.B.); Tel.: +33646298623 (L.B.); +39-32-8213-2586 (F.L.); +40-74-4919319 (I.R.B.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence: (L.B.); (F.L.); (I.R.B.); Tel.: +33646298623 (L.B.); +39-32-8213-2586 (F.L.); +40-74-4919319 (I.R.B.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
- Department of Medical and Biological Sciences, University of Udine, via delle Scienze, 206, 33100 Udine, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
- Human Stem Cells Research Center HSC, Ho Chi Minh 70000, Vietnam
- Embryology and Regenerative Medicine and Immunology at Pham Chau Trinh, University of Medicine, Hoi An 51300, Vietnam
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, via Luigi de Crecchio, 680138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Rosario Serpico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, via Luigi de Crecchio, 680138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (G.M.T.); (M.F.)
| | - Delia Giovanniello
- Hospital A.O.S.G. Moscati, Contrada Amoretta, cap, 83100 Avellino, Italy;
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, via Luigi de Crecchio, 680138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (G.M.T.); (M.F.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Study “Aldo Moro”, Policlinico, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (G.M.); (L.S.); (D.H.); (M.T.D.); (C.G.I.); (G.D.); (F.I.)
| |
Collapse
|
22
|
Mohr F, Hurrle T, Burggraaff L, Langer L, Bemelmans MP, Knab M, Nieger M, van Westen GJP, Heitman LH, Bräse S. Synthesis and SAR evaluation of coumarin derivatives as potent cannabinoid receptor agonists. Eur J Med Chem 2021; 220:113354. [PMID: 33915369 DOI: 10.1016/j.ejmech.2021.113354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
We report the development and extensive structure-activity relationship evaluation of a series of modified coumarins as cannabinoid receptor ligands. In radioligand, and [35S]GTPγS binding assays the CB receptor binding affinities and efficacies of the new ligands were determined. Furthermore, we used a ligand-based docking approach to validate the empirical observed results. In conclusion, several crucial structural requirements were identified. The most potent coumarins like 3-butyl-7-(1-butylcyclopentyl)-5-hydroxy-2H-chromen-2-one (36b, Ki CB2 13.7 nM, EC50 18 nM), 7-(1-butylcyclohexyl)-5-hydroxy-3-propyl-2H-chromen-2-one (39b, Ki CB2 6.5 nM, EC50 4.51 nM) showed a CB2 selective agonistic profile with low nanomolar affinities.
Collapse
Affiliation(s)
- Florian Mohr
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Thomas Hurrle
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Lindsey Burggraaff
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Lukas Langer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | - Martijn P Bemelmans
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Maximilian Knab
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen Aukio 1), 00014, Finland
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany; Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
23
|
Ryan D, McKemie DS, Kass PH, Puschner B, Knych HK. Pharmacokinetics and effects on arachidonic acid metabolism of low doses of cannabidiol following oral administration to horses. Drug Test Anal 2021; 13:1305-1317. [PMID: 33723919 DOI: 10.1002/dta.3028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
The increasing availability of cannabidiol (CBD) and anecdotal reports of its anti-inflammatory effects has garnered it much interest in the equine industry. The objectives of the current study were to (1) describe the pharmacokinetics of oral CBD in exercising thoroughbreds, (2) characterize select behavioral and physiologic effects, and (3) evaluate effects on biomarkers of inflammation using an ex vivo model. This study was conducted in a randomized balanced 3-way crossover design with a two-week washout period between doses. Horses received a single oral dose (0.5, 1, and 2 mg/kg) of CBD suspended in sesame oil. Blood and urine samples were collected prior to and for 72 hr post drug administration. Additional blood samples collected at select time points were challenged ex vivo with calcium ionophore or lipopolysaccharide to induce eicosanoid production. Drug, metabolite, and eicosanoid concentrations were determined using LC-MS/MS. Cannabidiol was well tolerated with no significant behavioral, gastrointestinal, or cardiac abnormalities observed. CBD was readily absorbed, with parent drug detected in blood at all time points. The carboxylated and hydroxylated metabolites predominated in serum and urine, respectively. The terminal half-life for CBD was 10.7 ± 3.61, 10.6 ± 3.84 and 9.88 ± 3.53 for 0.5, 1, and 2 mg/kg. Although the effects were mixed, results of eicosanoid analysis suggest CBD affects COX-1, COX-2 and LOX at the doses studied here. Results of this study coupled with previous reports in other species, suggest further study of CBD in horses is warranted before its use as an anti-inflammatory can be recommended.
Collapse
Affiliation(s)
- Declan Ryan
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Dan S McKemie
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Philip H Kass
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Birgit Puschner
- School of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Heather K Knych
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA.,Department of Veterinary Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
24
|
Myers MN, Zachut M, Tam J, Contreras GA. A proposed modulatory role of the endocannabinoid system on adipose tissue metabolism and appetite in periparturient dairy cows. J Anim Sci Biotechnol 2021; 12:21. [PMID: 33663611 PMCID: PMC7934391 DOI: 10.1186/s40104-021-00549-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
To sustain the nutrient demands of rapid fetal growth, parturition, and milk synthesis, periparturient dairy cows mobilize adipose tissue fatty acid stores through lipolysis. This process induces an inflammatory response within AT that is resolved as lactation progresses; however, excessive and protracted lipolysis compounds the risk for metabolic and inflammatory diseases. The suppression of lipolytic action and inflammation, along with amplification of adipogenesis and lipogenesis, serve as prospective therapeutic targets for improving the health of periparturient dairy cows. Generally, the activation of cannabinoid receptors by endocannabinoids enhances adipogenesis and lipogenesis, suppresses lipolysis, and increases appetite in mammals. These biological effects of activating the endocannabinoid system open the possibility of harnessing the endocannabinoid system through nutritional intervention in dairy herds as a potential tool to improve dairy cows' health, although much is still to be revealed in this context. This review summarizes the current knowledge surrounding the components of the endocannabinoid system, elaborates on the metabolic effects of its activation, and explores the potential to modulate its activity in periparturient dairy cows.
Collapse
Affiliation(s)
- Madison N Myers
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization / Volcani Center, 7505101, Rishon LeZion, Israel.
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001, Jerusalem, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
25
|
Corsetti S, Borruso S, Malandrucco L, Spallucci V, Maragliano L, Perino R, D'Agostino P, Natoli E. Cannabis sativa L. may reduce aggressive behaviour towards humans in shelter dogs. Sci Rep 2021; 11:2773. [PMID: 33531559 PMCID: PMC7854708 DOI: 10.1038/s41598-021-82439-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/20/2021] [Indexed: 11/09/2022] Open
Abstract
Among the phytocomplex components of Cannabis sativa L., cannabidiol (CBD) has a recognised therapeutic effect on chronic pain. Little is known about the veterinary use of CBD in dogs. Even less is known on the effects of CBD on dog behaviour, especially in shelters. The purpose of this study was to determine if CBD affects stress related behaviour in shelter dogs. The sample consisted of 24 dogs divided into two groups that were created by assigning the dogs alternately: 12 dogs were assigned to the treatment group and 12 to the control group. Extra virgin olive oil, titrated to 5% in CBD was given to treated group; the placebo consisted of olive oil only, dispensed daily for 45 days. Behavioural data were collected using the 'focal animal' sampling method with 'all occurrences' and '1/0' methods for 3 h: before (T0), after 15 days (T1), after 45 days of treatment (T2) and after 15 days from the end of the treatment (T3). Treated dogs showed reduced aggressive behaviour toward humans following the treatment (Friedman Test: χ2 = 13.300; df = 3; N = 12; p = .004; adj. sig. p = 0.027), but the difference in the decrease of aggressive behaviour between the two groups was not significant (Mann-Whitney U test, T2-T0: Z = - 1.81; N = 24; p = 0.078). Other behaviours indicative of stress, such as displacing activities and stereotypes, did not decrease. Despite some non-significant results, our findings suggest that it is worth doing more research to further investigate the effect of CBD on dog behaviour; this would be certainly valuable because the potential for improving the welfare of dogs in shelters is priceless.
Collapse
Affiliation(s)
- Sara Corsetti
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
| | | | - Livia Malandrucco
- Canile Sovrazonale, ASL Roma 3 (Local Health Unit Rome 3), Rome, Italy
| | - Valentina Spallucci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Rome, Italy
| | - Laura Maragliano
- Canile Sovrazonale, ASL Roma 3 (Local Health Unit Rome 3), Rome, Italy
| | - Raffaella Perino
- Canile Sovrazonale, ASL Roma 3 (Local Health Unit Rome 3), Rome, Italy
| | - Pietro D'Agostino
- Canile Pubblico Muratella e Pontemarconi, Roma Capitale (Municipality of Rome), Rome, Italy
| | - Eugenia Natoli
- Canile Sovrazonale, ASL Roma 3 (Local Health Unit Rome 3), Rome, Italy
| |
Collapse
|
26
|
CannabinEYEds: The Endocannabinoid System as a Regulator of the Ocular Surface Nociception, Inflammatory Response, Neovascularization and Wound Healing. J Clin Med 2020; 9:jcm9124036. [PMID: 33327429 PMCID: PMC7764860 DOI: 10.3390/jcm9124036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is a complex regulatory system, highly conserved among vertebrates. It has been widely described in nearly all human tissues. In the conjunctiva and cornea, the ECS is believed to play a pivotal role in the modulation of the local inflammatory state as well as in the regulation of tissue repair and fibrosis, neo-angiogenesis and pain perception. This review aims to summarize all the available data on ECS expression and its function in ocular surface structures to provide a specific insight concerning its modulation in dry eye disease, and to propose directions for future research.
Collapse
|
27
|
Jäger A, Setiawan M, Beins E, Schmidt-Wolf I, Konermann A. Analogous modulation of inflammatory responses by the endocannabinoid system in periodontal ligament cells and microglia. Head Face Med 2020; 16:26. [PMID: 33190638 PMCID: PMC7667774 DOI: 10.1186/s13005-020-00244-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background Periodontal ligament (PDL) cells initiate local immune responses, similar to microglia regulating primary host defense mechanisms in neuroinflammatory events of the central nervous system. As these two cell types manifest similarities in their immunomodulatory behavior, this study investigated the thesis that the immunological features of PDL cells might be modulated by the endocannabinoid system, as seen for microglia. Methods A human PDL cell line and an Embryonic stem cell-derived microglia (ESdM) cell line were grown in n = 6 experimental groups each, incubated with cannabinoid receptor agonists arachidonoylethanolamine (AEA) (50 μM) or Palmitoylethanolamide (PEA) (50 μM) and challenged with centrifugation-induced inflammation (CII) for 6 and 10 h. Untreated samples served as controls. Quantitative real-time polymerase chain reaction was applied for gene expression analyses of inflammatory cytokines, cannabinoid receptors and ionized calcium binding adaptor molecule 1 (IBA-1). Microglia marker gene IBA-1 was additionally verified on protein level in PDL cells via immunocytochemistry. Proliferation was determined with a colorimetric assay (WST-1 based). Statistical significance was set at p < 0.05. Results IBA-1 was inherently expressed in PDL cells both at the transcriptional and protein level. AEA counteracted pathological changes in cell morphology of PDL cells and microglia caused by CII, and PEA contrarily enhanced them. On transcriptional level, AEA significantly downregulated inflammation in CII specimens more than 100-fold, while PEA accessorily upregulated them. CII reduced cell proliferation in a time-dependent manner, synergistically reinforced by PEA decreasing cell numbers to 0.05-fold in PDL cells and 0.025-fold in microglia compared to controls. Conclusion PDL cells and microglia exhibit similar features in CII with host-protective effects for AEA through dampening inflammation and preserving cellular integrity. In both cell types, PEA exacerbated proinflammatory effects. Thus, the endocannabinoid system might be a promising target in the regulation of periodontal host response.
Collapse
Affiliation(s)
- Andreas Jäger
- Department of Orthodontics, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Maria Setiawan
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Eva Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Ingo Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anna Konermann
- Department of Orthodontics, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| |
Collapse
|
28
|
Javed F, Al-Zawawi AS, Allemailem KS, Almatroudi A, Mehmood A, Divakar DD, Al-Kheraif AA. Periodontal Conditions and Whole Salivary IL-17A and -23 Levels among Young Adult Cannabis sativa (Marijuana)-Smokers, Heavy Cigarette-Smokers and Non-Smokers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207435. [PMID: 33066031 PMCID: PMC7601049 DOI: 10.3390/ijerph17207435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
In the United States, prevalence of marijuana-use has doubled in the past 2 decades. The aim was to compare the periodontal conditions and whole-salivary IL-17A and IL-23 levels among young adult marijuana-smokers, heavy cigarette-smokers and non-smokers. Self-reported marijuana-smokers, heavy-cigarette-smokers, non-smokers with periodontitis and periodontally-healthy non-smokers were included. Demographic data was recorded and full-mouth plaque index (PI), bleeding on probing (BoP), probing depth (PD) and clinical attachment loss (AL), marginal bone loss (MBL) and missing teeth were recorded. Levels of IL-17A and IL-23 levels were measured in the whole saliva. p < 0.01 was considered statistically significant. Fifteen-marijuana-smokers, 15 heavy-cigarette-smokers, 16 non-smokers-with-periodontitis and 15 periodontally-healthy-non-smokers) were included. The clinicoradiographic parameters were worse among marijuana-smokers (p < 0.01), cigarette-smokers (p < 0.01) and non-smokers-with-periodontitis (p < 0.01) than periodontally-healthy-non-smokers. Marijuana- and cigarette-smokers had Stage-IV/Grade C and non-smokers with periodontitis had Stage-III/Grade-C. Salivary IL-17A and IL-23 levels were higher in marijuana-smokers than cigarette-smokers (p < 0.01) and non-smokers-with-periodontitis (p < 0.01). Whole salivary IL-17A and IL-23 levels were higher among cigarette-smokers than non-smokers with periodontitis (p < 0.01) and periodontally-healthy-individuals (p < 0.01). Marijuana- and heavy cigarette-smokers have comparable clinicoradiographic periodontal statuses. This rejects hypothesis-1. However, whole salivary immunoinflammatory response may be moderately worse in marijuana-smokers compared with heavy cigarette-smokers and non-smoker with periodontitis thereby supporting hypothesis-2.
Collapse
Affiliation(s)
- Fawad Javed
- Department of Orthodontics and Dentofacial Orthopedics, Eastman Institute for Oral Health, University of Rochester, Rochester, NY 14620, USA;
| | - Abeer S. Al-Zawawi
- Department of Periodontics and Community Dentistry, King Saud University, Riyadh 60169, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.)
| | - Abid Mehmood
- Department of Dentistry, Postgraduate Medical Center, Karachi 75500, Pakistan;
| | - Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Abdulaziz A. Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
- Correspondence: ; Tel.: +966-5025-1250; Fax: +966-0541-1222
| |
Collapse
|
29
|
Gusmão JNFM, Fonseca KM, Ferreira BSP, de Freitas Alves BW, Ribeiro Júnior HL, Lisboa MRP, Pereira KMA, Vale ML, Gondim DV. Electroacupuncture Reduces Inflammation but Not Bone Loss on Periodontitis in Arthritic Rats. Inflammation 2020; 44:116-128. [PMID: 32789781 DOI: 10.1007/s10753-020-01313-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Periodontitis and rheumatoid arthritis (RA) are inflammatory diseases characterized by chronic inflammation and bone erosion. Electroacupuncture (EA) shows anti-inflammatory and anti-resorptive effects in experimental periodontitis (EP) and in RA. It is important to investigate whether EA shows these effects in periodontal tissues in the presence of these two inflammatory diseases or not. For this, Wistar rats were divided into six groups: control (C); experimental rheumatoid arthritis (RA; bovine type II collagen-induced (CII)); experimental periodontitis (EP); RA/EP (RA + EP); EP/EA (EP treated with EA); RA/EP/EA (RA + EP treated with EA). EP was induced 21 days after RA induction and EA was performed previously and during the EP induction period, every 3 days until the 36th experimental day. The rats were euthanized on day 39. RA was evaluated by edema and the withdrawal threshold of hind paws. The maxillae were removed, and alveolar bone loss (ABL) and bone radiographic density (BRD) were evaluated. Immunohistochemical analyses for interleukins (IL)-6 and -17 and nuclear factor (NF)-κB were performed. Our results showed that EA reduced only the pain intensity in arthritic rats. Histomorphometric, macroscopic, and radiographic analyses did not show differences between the control and EP/EA groups. EA caused a reduction in ABL and BRD only in the presence of EP. EA caused a reduction in IL-6 and -17 in all groups, but NF-κB was only reduced in the arthritic rats with EP. In conclusion, EA reduced the inflammation related to periodontitis in arthritic rats but did not prevent ABL.
Collapse
Affiliation(s)
- Jonas Nogueira Ferreira Maciel Gusmão
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Khetyma Moreira Fonseca
- Post Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno Sousa Pinto Ferreira
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Bruno Wesley de Freitas Alves
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Howard Lopes Ribeiro Júnior
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Mario Roberto Pontes Lisboa
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Karuza Maria Alves Pereira
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil
| | - Mariana Lima Vale
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil.,Post Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Delane Viana Gondim
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, Ceará, CEP: 60.416-030, Brazil.
| |
Collapse
|
30
|
Abidi AH, Alghamdi SS, Dabbous MK, Tipton DA, Mustafa SM, Moore BM. Cannabinoid type-2 receptor agonist, inverse agonist, and anandamide regulation of inflammatory responses in IL-1β stimulated primary human periodontal ligament fibroblasts. J Periodontal Res 2020; 55:762-783. [PMID: 32562275 DOI: 10.1111/jre.12765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study is to understand the role of cannabinoid type 2 receptor (CB2R) during periodontal inflammation and to identify anti-inflammatory agents for the development of drugs to treat periodontitis (PD). BACKGROUND Cannabinoid type 2 receptor is found in periodontal tissue at sites of inflammation/infection. Our previous study demonstrated anti-inflammatory responses in human periodontal ligament fibroblasts (hPDLFs) via CB2R ligands. METHODS Anandamide (AEA), HU-308 (agonist), and SMM-189 (inverse agonist) were tested for effects on IL-1β-stimulated cytokines, chemokines, and angiogenic and vascular markers expressed by hPDLFs using Mesoscale Discovery V-Plex Kits. Signal transduction pathways (p-c-Jun, p-ERK, p-p-38, p-JNK, p-CREB, and p-NF-kB) were investigated using Cisbio HTRF kits. ACTOne and Tango™ -BLA functional assays were used to measure cyclic AMP (cAMP) and β-arrestin activity. RESULTS IL-1β stimulated hPDLF production of 18/39 analytes, which were downregulated by the CB2R agonist and the inverse agonist. AEA exhibited pro-inflammatory and anti-inflammatory effects. IL-1β increased phosphoproteins within the first hour except p-JNK. CB2R ligands attenuated p-p38 and p-NFĸB, but a late rise in p-38 was seen with HU-308. As p-ERK levels declined, a significant increase in p-ERK was observed later in the time course by synthetic CB2R ligands. P-JNK was significantly affected by SMM-189 only, while p-CREB was elevated significantly by CB2R ligands at 180 minutes. HU-308 affected both cAMP and β-arrestin pathway. SMM-189 only stimulated cAMP. CONCLUSION The findings that CB2R agonist and inverse agonist may potentially regulate inflammation suggest that development of CB2R therapeutics could improve on current treatments for PD and other oral inflammatory pathologies.
Collapse
Affiliation(s)
- Ammaar H Abidi
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mustafa Kh Dabbous
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA.,College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - David A Tipton
- College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Bioscience Research, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
31
|
Cameron EC, Hemingway SL. Cannabinoids for fibromyalgia pain: a critical review of recent studies (2015-2019). J Cannabis Res 2020; 2:19. [PMID: 33526114 PMCID: PMC7819299 DOI: 10.1186/s42238-020-00024-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Fibromyalgia is a chronic health condition characterized by widespread, severe musculoskeletal pain that affects an estimated 5-7% of the global population. Due to the highly comorbid nature of fibromyalgia, patients with the disorder often respond poorly to traditional pain treatments. Recent studies suggest that patient response may be more favorable to alternative analgesics, such as cannabis. However, the therapeutic potential of cannabis-based pain treatment for fibromyalgia remains unclear. The present study examined the most recent cannabis literature (2015-2019) and provides a critical review of current research on the safety and efficacy of medical cannabis treatments for fibromyalgia. METHODS We followed Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines in searching the PubMed and Medline databases using the search terms "cannabis + fibromyalgia" and then "cannabinoids + fibromyalgia." Inclusion criteria were a) English language, b) published in peer review journals, c) published from 2015 to 2019, d) all study designs except for systematic reviews and meta-analyses, and e) all cannabis preparations. RESULTS The search identified five applicable studies involving 827 participants that used six different treatments. Review suggested several methodological problems pertaining to generalizability and validity. CONCLUSION Although the critically reviewed studies superficially suggest that medical cannabis is a safe and effective treatment for fibromyalgia pain, serious methodological limitations prevent a definitive conclusion regarding the use of cannabinoids for pain management in fibromyalgia patients at this time.
Collapse
Affiliation(s)
- Erinn C Cameron
- School of Psychology, Fielding Graduate University, 2020 De La Vina St, Santa Barbara, CA, 93105, USA.
| | - Samantha L Hemingway
- School of Psychology, Fielding Graduate University, 2020 De La Vina St, Santa Barbara, CA, 93105, USA
| |
Collapse
|
32
|
Zhang F, Özdemir B, Nguyen PQ, Andrukhov O, Rausch-Fan X. Methanandamide diminish the Porphyromonas gingivalis lipopolysaccharide induced response in human periodontal ligament cells. BMC Oral Health 2020; 20:107. [PMID: 32295577 PMCID: PMC7161139 DOI: 10.1186/s12903-020-01087-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The endocannabinoid system is involved in the regulation of periodontal tissue homeostasis. Synthetic cannabinoid methanandamide (Meth-AEA) has improved stability and affinity to cannabinoid receptors compared to its endogenous analog anandamide. In the present study, we investigated the effect of methanandamide on the production of pro-inflammatory mediators in primary human periodontal ligament cells (hPdLCs). METHODS hPdLCs were treated with Meth-AEA for 24 h, and the resulting production of interleukin (IL)-6, IL-8, and monocyte chemotactic protein (MCP)-1 was measured in the absence or the presence of Porphyromonas gingivalis lipopolysaccharide (LPS). Additionally, the effect of Meth-AEA on the proliferation/viability of hPdLCs was measured by the MTT method. RESULTS Methanandamide at a concentration of 10 μM significantly inhibited P. gingivalis LPS induced production of IL-6, IL-8, and MCP-1. Basal production of IL-6 and IL-8 was slightly enhanced by 10 μM Meth-AEA. No effect of Meth-AEA on the basal production of MCP-1 was observed. Meth-AEA in concentrations up to 10 μM did not affect the proliferation/viability of hPdLCs, but significantly inhibited it at a concentration of 30 μM. CONCLUSION Our study suggests that the inflammatory response in periodontal ligament cells could be influenced by the activation of the cannabinoid system, which might be potentially involved in the progression of periodontal disease.
Collapse
Affiliation(s)
- Fengqiu Zhang
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Burcu Özdemir
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Phuong Quynh Nguyen
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| |
Collapse
|
33
|
Hashimura S, Kido J, Matsuda R, Yokota M, Matsui H, Inoue-Fujiwara M, Inagaki Y, Hidaka M, Tanaka T, Tsutsumi T, Nagata T, Tokumura A. A low level of lysophosphatidic acid in human gingival crevicular fluid from patients with periodontitis due to high soluble lysophospholipase activity: Its potential protective role on alveolar bone loss by periodontitis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158698. [PMID: 32179099 DOI: 10.1016/j.bbalip.2020.158698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
Abstract
We previously detected a submicromolar concentration of lysophosphatidic acid (LPA) in human saliva. Here, we compare LPA concentrations in human gingival crevicular fluid (GCF) from patients with periodontitis and healthy controls, and examine how the local LPA levels are regulated enzymatically. The concentrations of LPA and its precursor lysophospholipids in GCF was measured by liquid chromatography-tandem mass spectrometry. The LPA-producing and LPA-degrading enzymatic activities were measured by quantifying the liberated choline and free fatty acid, respectively. The concentration of LPA in GCF of periodontitis patients was lower than that of healthy controls, due to higher soluble lysophospholipase activity toward LPA. LPA was found to prevent survival of Sa3, a human gingival epithelium-derived tumor cell line, activate Sa3 through Ca2+ mobilization, and release interleukin 6 from Sa3 in vitro. Furthermore, local injection of LPA into the gingiva attenuated ligature-induced experimental alveolar bone loss induced by oral bacteria inoculation in a rat model of periodontitis in vivo. A high concentration of LPA in human GCF is necessary to maintain normal gingival epithelial integrity and function, protecting the progression of periodontitis.
Collapse
Affiliation(s)
- Satoru Hashimura
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Junichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushioma 770-8504, Japan
| | - Risa Matsuda
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Miho Yokota
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Hirokazu Matsui
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Manami Inoue-Fujiwara
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan
| | - Yuji Inagaki
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushioma 770-8504, Japan
| | - Mayumi Hidaka
- Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 730-0153, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan; Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka 882-8508, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushioma 770-8504, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Shomachi, Tokushima 770-8505, Japan; Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 730-0153, Japan.
| |
Collapse
|
34
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
35
|
Liu C, Qi X, Yang D, Neely A, Zhou Z. The effects of cannabis use on oral health. Oral Dis 2019; 26:1366-1374. [DOI: 10.1111/odi.13246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Chunyan Liu
- School of Dentistry University of Detroit Mercy Detroit MI USA
- School and Hospital of StomatologyHebei Medical University & Hebei Key Laboratory of Stomatology Shijiazhuang Hebei China
| | - Xia Qi
- School of Dentistry University of Detroit Mercy Detroit MI USA
- School and Hospital of StomatologyHebei Medical University & Hebei Key Laboratory of Stomatology Shijiazhuang Hebei China
| | - Dongru Yang
- School and Hospital of StomatologyHebei Medical University & Hebei Key Laboratory of Stomatology Shijiazhuang Hebei China
| | - Anthony Neely
- School of Dentistry University of Detroit Mercy Detroit MI USA
| | - Zheng Zhou
- School of Dentistry University of Detroit Mercy Detroit MI USA
| |
Collapse
|
36
|
Gu Z, Singh S, Niyogi RG, Lamont GJ, Wang H, Lamont RJ, Scott DA. Marijuana-Derived Cannabinoids Trigger a CB2/PI3K Axis of Suppression of the Innate Response to Oral Pathogens. Front Immunol 2019; 10:2288. [PMID: 31681262 PMCID: PMC6804395 DOI: 10.3389/fimmu.2019.02288] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
Cannabis use is an emergent risk factor for periodontitis, a chronic bacterial-induced disease of the supporting structures of the teeth. However, the mechanisms by which marijuana exposure predisposes to periodontal tissue destruction have yet to be elucidated. Therefore, we examined the influence of physiologically relevant doses of major marijuana-derived phytocannabinoid subtypes (cannabidiol [CBD]; cannabinol [CBN]; and tetrahydrocannabinol [THC], 1.0 μg/ml) on the interactions of three ultrastructurally variant oral pathogens, Porphyromonas gingivalis, Filifactor alocis, and Treponema denticola with the immune system. CBD, CBN, and THC each suppressed P. gingivalis-induced IL-12 p40, IL-6, IL-8, and TNF release while enhancing the anti-inflammatory cytokine, IL-10, from human innate cells. Similar phenomena were observed in F. alocis- and T. denticola-exposed human monocytes and human gingival keratinocytes. Higher phytocannabinoid doses (≥5.0 μg/ml) compromised innate cell viability and inhibited the growth of P. gingivalis and F. alocis, relative to unexposed bacteria. T. denticola, however, was resistant to all cannabinoid doses tested (up to 10.0 μg/ml). Pharmaceutical inhibition and efficient gene silencing indicated that a common CB2/PI3K axis of immune suppression is triggered by phytocannabinoids in vitro. This pathway does not appear to perpetuate through the canonical GSK3β-dependent cholinergic anti-inflammatory pathway, the predominant endogenous inflammatory control system. In a repetitive, transient oral infection model, CBD also suppressed P. gingivalis-induced innate immune markers in wild-type mice, but not in CB2−/− mice. If such phenomena occur in humans in situ, environmental cannabinoids may enhance periodontitis via direct toxic effects on specific oral bacteria; by compromising innate cell vitality; and/or through a suppressed innate response to periodontal pathogens involving a CB2/PI3K signaling lineage.
Collapse
Affiliation(s)
- Zhen Gu
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Shilpa Singh
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Rajarshi G Niyogi
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Gwyneth J Lamont
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Huizhi Wang
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Richard J Lamont
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - David A Scott
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
37
|
Yan W, Cao Y, Yang H, Han N, Zhu X, Fan Z, Du J, Zhang F. CB1 enhanced the osteo/dentinogenic differentiation ability of periodontal ligament stem cells via p38 MAPK and JNK in an inflammatory environment. Cell Prolif 2019; 52:e12691. [PMID: 31599069 PMCID: PMC6869632 DOI: 10.1111/cpr.12691] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/16/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives Periodontitis is an inflammatory immune disease that causes periodontal tissue loss. Inflammatory immunity and bone metabolism are closely related to periodontitis. The cannabinoid receptor I (CB1) is an important constituent of the endocannabinoid system and participates in bone metabolism and inflammation tissue healing. It is unclear whether CB1 affects the mesenchymal stem cell (MSC) function involved in periodontal tissue regeneration. In this study, we revealed the role and mechanism of CB1 in the osteo/dentinogenic differentiation of periodontal ligament stem cells (PDLSCs) in an inflammatory environment. Materials and methods Alkaline phosphatase (ALP) activity, Alizarin Red staining, quantitative calcium analysis and osteo/dentinogenic markers were used to assess osteo/dentinogenic differentiation. Real‐time RT‐PCR and Western blotting were employed to detect gene expression. Results CB1 overexpression or CB1 agonist (10 µM R‐1 Meth) promoted the osteo/dentinogenic differentiation of PDLSCs. Deletion of CB1 or the application of CB1 antagonist (10 µM AM251) repressed the osteo/dentinogenic differentiation of PDLSCs. The activation of CB1 enhanced the TNF‐α‐ and INF‐γ‐impaired osteo/dentinogenic differentiation potential in PDLSCs. Moreover, CB1 activated p38 MAPK and JNK signalling and repressed PPAR‐γ and Erk1/2 signalling. Inhibition of JNK signalling could block CB1‐activated JNK and p38 MAPK signalling, while CB1 could activate p38 MAPK and JNK signalling, which was inhibited by TNF‐α and INF‐γ stimulation. Conclusions CB1 was able to enhance the osteo/dentinogenic differentiation ability of PDLSCs via p38 MAPK and JNK signalling in an inflammatory environment, which might be a potential target for periodontitis treatment.
Collapse
Affiliation(s)
- Wanhao Yan
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China.,Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Nannan Han
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China.,Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xinling Zhu
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China.,Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Fengqiu Zhang
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
38
|
Alves LCV, Lisboa MRP, da Silveira HF, de Sousa LM, Gusmão JNFM, Dias DBS, Ervolino E, Furlaneto FAC, Vale ML, Gondim DV. Electroacupuncture increases immunoexpression of CB1 and CB2 receptors in experimental model of inflammatory bone loss. Bone 2019; 127:59-66. [PMID: 31121356 DOI: 10.1016/j.bone.2019.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 11/22/2022]
Abstract
This study evaluated the participation of CB1 and CB2 receptors in the antiresorptive effect of electroacupuncture (EA) on an experimental model of inflammatory bone loss in rats. 30 rats were divided into five groups: C (control); EP (experimental periodontitis); EA (C+ EA); EP-EA (EP+ EA in the acupoints LI4, LG11, ST36, ST44); EP - EA-sham (EP+ EA in sham acupoints). For the EP groups, a ligature was placed around the right mandibular first molars at day 1. Sessions of EA or EA-sham were assigned every other day. Animals were euthanized at day 11. Histometric analysis was performed to evaluate the percentage of bone area in the furcation area. Immunolabeling patterns in the periodontal tissues and immunofluorescent staining in the trigeminal ganglia and in the trigeminal spinal tract for CB1 and CB2 receptors were performed. It was observed increased bone loss in the furcation in the EP and EP-EA-sham groups, in comparison to the other groups (p < 0.05). Enhanced CB2 immunolabeling was observed in the periodontal tissues in the EP-EA group, when compared to the EP and EP-EA-sham groups (p < 0.05). Increased CB1 immunofluorescent staining was observed in the neural tissues in the EA treated group in comparison with the other groups (p < 0.05), while no expression of CB2 was observed in those regions. Our study showed that in the presence of inflammatory bone disease, EA treatment reduced bone erosion and increased the immunoexpression of CB1 in the neural tissues and CB2 in the periodontal tissues.
Collapse
Affiliation(s)
- Luiza Clertiani Vieira Alves
- Department of Clinical Dentistry, Graduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará - UFC, Fortaleza, Ceará, Brazil
| | | | | | - Luane Macêdo de Sousa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Diego Bernarde Souza Dias
- Department of Nursing, Faculty of |Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Edilson Ervolino
- Division of Histology, Department of Basic Sciences, Dental School of Araçatuba, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Flávia Aparecida Chaves Furlaneto
- Department of Oral & Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Ribeirao Preto, SP, Brazil
| | - Mariana Lima Vale
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Delane Viana Gondim
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
39
|
The Endocannabinoid System of Animals. Animals (Basel) 2019; 9:ani9090686. [PMID: 31527410 PMCID: PMC6770351 DOI: 10.3390/ani9090686] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Our understanding of the Endocannabinoid System of animals, and its ubiquitous presence in nearly all members of Animalia, has opened the door to novel approaches targeting pain management, cancer therapeutics, modulation of neurologic disorders, stress reduction, anxiety management, and inflammatory diseases. Both endogenous and exogenous endocannabinoid-related molecules are able to function as direct ligands or, otherwise, influence the EndoCannabinoid System (ECS). This review article introduces the reader to the ECS in animals, and documents its potential as a source for emerging therapeutics. Abstract The endocannabinoid system has been found to be pervasive in mammalian species. It has also been described in invertebrate species as primitive as the Hydra. Insects, apparently, are devoid of this, otherwise, ubiquitous system that provides homeostatic balance to the nervous and immune systems, as well as many other organ systems. The endocannabinoid system (ECS) has been defined to consist of three parts, which include (1) endogenous ligands, (2) G-protein coupled receptors (GPCRs), and (3) enzymes to degrade and recycle the ligands. Two endogenous molecules have been identified as ligands in the ECS to date. The endocannabinoids are anandamide (arachidonoyl ethanolamide) and 2-AG (2-arachidonoyl glycerol). Two G-coupled protein receptors (GPCR) have been described as part of this system, with other putative GPC being considered. Coincidentally, the phytochemicals produced in large quantities by the Cannabis sativa L plant, and in lesser amounts by other plants, can interact with this system as ligands. These plant-based cannabinoids are termed phytocannabinoids. The precise determination of the distribution of cannabinoid receptors in animal species is an ongoing project, with the canine cannabinoid receptor distribution currently receiving the most interest in non-human animals.
Collapse
|
40
|
Ossola CA, Balcarcel NB, Astrauskas JI, Bozzini C, Elverdin JC, Fernández‐Solari J. A new target to ameliorate the damage of periodontal disease: The role of transient receptor potential vanilloid type‐1 in contrast to that of specific cannabinoid receptors in rats. J Periodontol 2019; 90:1325-1335. [DOI: 10.1002/jper.18-0766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 01/01/2023]
Affiliation(s)
- César A. Ossola
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
- National Council of Scientific and Technical Research (CONICET) Buenos Aires Argentina
| | - Noelia B. Balcarcel
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
| | - Julia I. Astrauskas
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
| | - Clarisa Bozzini
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
| | - Juan C. Elverdin
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
| | - Javier Fernández‐Solari
- Department of PhysiologyFaculty of DentistryUniversity of Buenos Aires Buenos Aires Argentina
- National Council of Scientific and Technical Research (CONICET) Buenos Aires Argentina
| |
Collapse
|
41
|
Demartini C, Greco R, Zanaboni AM, Sances G, De Icco R, Borsook D, Tassorelli C. Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back. Prog Neurobiol 2019; 177:15-32. [DOI: 10.1016/j.pneurobio.2019.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/19/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
|
42
|
Chen H, Lan Z, Li Q, Li Y. Abnormal expression of long noncoding RNA FGD5-AS1 affects the development of periodontitis through regulating miR-142-3p/SOCS6/NF-κB pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2098-2106. [PMID: 31144533 DOI: 10.1080/21691401.2019.1620256] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hong Chen
- Department of Endodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Zedong Lan
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Qiaomei Li
- Department of Endodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Yuehong Li
- Department of Endodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
43
|
Bjorling DE, Wang ZY. Potential of Endocannabinoids to Control Bladder Pain. Front Syst Neurosci 2018; 12:17. [PMID: 29867382 PMCID: PMC5962905 DOI: 10.3389/fnsys.2018.00017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Bladder-related pain is one of the most common forms of visceral pain, and visceral pain is among the most common complaints for which patients seek physician consultation. Despite extensive studies of visceral innervation and treatment of visceral pain, opioids remain a mainstay for management of bladder pain. Side effects associated with opioid therapy can profoundly diminish quality of life, and improved options for treatment of bladder pain remain a high priority. Endocannabinoids, primarily anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are endogenously-produced fatty acid ethanolamides with that induce analgesia. Animal experiments have demonstrated that inhibition of enzymes that degrade AEA or 2-AG have the potential to prevent development of visceral and somatic pain. Although experimental results in animal models have been promising, clinical application of this approach has proven difficult. In addition to fatty acid amide hydrolase (FAAH; degrades AEA) and monacylglycerol lipase (MAGL; degrades 2-AG), cyclooxygenase (COX) acts to metabolize endocannabinoids. Another potential limitation of this strategy is that AEA activates pro-nociceptive transient receptor potential vanilloid 1 (TRPV1) channels. Dual inhibitors of FAAH and TRPV1 or FAAH and COX have been synthesized and are currently undergoing preclinical testing for efficacy in providing analgesia. Local inhibition of FAAH or MAGL within the bladder may be viable options to reduce pain associated with cystitis with fewer systemic side effects, but this has not been explored. Further investigation is required before manipulation of the endocannabinoid system can be proven as an efficacious alternative for management of bladder pain.
Collapse
Affiliation(s)
- Dale E Bjorling
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Zun-Yi Wang
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
44
|
Abidi AH, Presley CS, Dabbous M, Tipton DA, Mustafa SM, Moore BM. Anti-inflammatory activity of cannabinoid receptor 2 ligands in primary hPDL fibroblasts. Arch Oral Biol 2017; 87:79-85. [PMID: 29274621 DOI: 10.1016/j.archoralbio.2017.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Approximately 65 million adults in the US have periodontitis, causing tooth loss and decreased quality of life. Cannabinoids modulate immune responses, and endocannabinoids are prevalent during oral cavity inflammation. Targets for intervention in periodontal inflammation are cannabinoid type 1 and 2 receptors (CB1R, CB2R), particularly CB2R because its levels increase during inflammation. We previously demonstrated that SMM-189 (CB2R inverse agonist) decreased pro-inflammatory cytokine production in primary microglial cells. The hypothesis of this study was that cannabinoids anandamide (AEA), HU-308 (CB2R selective agonist), and SMM-189 decrease pro-inflammatory IL-6 and MCP-1 production by primary human periodontal ligament fibroblasts (hPDLFs) stimulated with P. gingivalis LPS, TNF-α, or IL-1β. DESIGN Cytotoxic effects of cannabinoid compounds (10-4-10-6.5 M), LPS (1-1000 ng/ml), TNFα (10 ng/ml) and IL-1β (1 ng/ml) were assessed by measuring effects on cellular dehydrogenase activity. IL-6 and MCP-1 production were measured using Mesoscale Discovery (MSD) Human Pro-Inflammatory IL-6 and MSD Human Chemokine MCP-1 kits and analyzed using MSD Sector 2400 machine. RESULTS EC50 values for AEA, SMM-189, and HU-308 were 16 μM, 13 μM, and 7.3 μM respectively. LPS (1 μg/ml), TNF-α (10 ng/ml), and IL-1β (1 ng/ml) increased IL-6 and MCP-1 production, which were inhibited by AEA, SMM-189, and HU-308. AEA alone significantly increased IL-6, but not MCP-1 levels, but the other cannabinoids alone had no effect. CONCLUSION The effective inhibition of LPS, TNF-α, IL-1β stimulated IL-6 and MCP-1 production by CB2R ligands in hPDLFs suggests that targeting the endocannabinoid system may lead to development of novel drugs for periodontal therapy, aiding strategies to improve oral health.
Collapse
Affiliation(s)
- Ammaar H Abidi
- Department of General Practice Dentistry, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, United States; Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chaela S Presley
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mustafa Dabbous
- Department of Bioscience Research, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, United States; Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - David A Tipton
- Department of Bioscience Research, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Suni M Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Bob M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
45
|
Betacaryophyllene - A phytocannabinoid as potential therapeutic modality for human sepsis? Med Hypotheses 2017; 110:68-70. [PMID: 29317072 DOI: 10.1016/j.mehy.2017.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Abstract
Sepsis is a clinical condition resulting from a dysregulated immune response to an infection that leads to organ dysfunction. Despite numerous efforts to optimize treatment, sepsis remains to be the main cause of death in most intensive care units. The endogenous cannabinoid system (ECS) plays an important role in inflammation. Cannabinoid receptor 2 (CB2R) activation is immunosuppressive, which might be beneficial during the hyper-inflammatory phase of sepsis. Beta-caryophyllene (BCP) is a non-psychoactive natural cannabinoid (phytocannabinoid) found in Cannabis sativa and in essential oils of spices and food plants, that acts as a selective agonist of CB2R. We propose BCP administration as novel treatment to reduce hyper-inflammation in human sepsis.
Collapse
|
46
|
Konermann A, Jäger A, Held SAE, Brossart P, Schmöle A. In vivo and In vitro Identification of Endocannabinoid Signaling in Periodontal Tissues and Their Potential Role in Local Pathophysiology. Cell Mol Neurobiol 2017; 37:1511-1520. [PMID: 28289947 DOI: 10.1007/s10571-017-0482-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022]
Abstract
The endocannabinoid system (ECS) with its binding receptors CB1 and CB2 impacts multiple pathophysiologies not only limited to neuronal psychoactivity. CB1 is assigned to cerebral neuron action, whereas CB2 is mainly expressed in different non-neuronal tissues and associated with immunosuppressive effects. Based on these tissue-selective CB receptor roles, it was the aim of this study to analyze potential expression in periodontal tissues under physiological conditions and inflammatory states. In vivo, CB receptor expression was investigated on human periodontal biopsies with or without bacterial inflammation and on rat maxillae with or without sterile inflammation. In vitro analyses were performed on human periodontal ligament (PDL) cells at rest or under mechanical strain via qRT-PCR, Western blot, and immunocytochemistry. P < 0.05 was set statistical significant. In vivo, CB1 expression was significantly higher in healthy PDL structures compared to CB2 (13.5% ± 1.3 of PDL tissues positively stained; 7.1% ± 0.9). Bacterial inflammation effected decrease in CB1 (9.7% ± 2.4), but increase in CB2 (14.7% ± 2.5). In contrast, sterile inflammation caused extensive CB1 (40% ± 1.9) and CB2 (41.7% ± 2.2) accumulations evenly distributed in the tooth surrounding PDL. In vitro, CB2 was ubiquitously expressed on gene and protein level. CB1 was constitutively expressed on transcriptional level (0.41% ± 0.09), even higher than CB2 (0.29% ± 0.06), but undetectable on protein level. Analyses further revealed expression changes of both receptors in mechanically loaded PDL cells. CB1 and CB2 are varyingly expressed in periodontal tissues, both adjusted by different entities of periodontal inflammation and by mechanical stress. This indicates potential ECS function as regulatory tool in controlling of periodontal pathophysiology.
Collapse
Affiliation(s)
- Anna Konermann
- Department of Orthodontics, Medical Faculty, University of Bonn, Bonn, Germany.
| | - Andreas Jäger
- Department of Orthodontics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefanie A E Held
- Department of Oncology and Hematology, University of Bonn, Bonn, Germany
| | - P Brossart
- Department of Oncology and Hematology, University of Bonn, Bonn, Germany
| | - Anne Schmöle
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
47
|
Bort A, Alvarado-Vazquez PA, Moracho-Vilrriales C, Virga KG, Gumina G, Romero-Sandoval A, Asbill S. Effects of JWH015 in cytokine secretion in primary human keratinocytes and fibroblasts and its suitability for topical/transdermal delivery. Mol Pain 2017; 13:1744806916688220. [PMID: 28326930 PMCID: PMC5302180 DOI: 10.1177/1744806916688220] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background JWH015 is a cannabinoid (CB) receptor type 2 agonist that produces immunomodulatory effects. Since skin cells play a key role in inflammatory conditions and tissue repair, we investigated the ability of JWH015 to promote an anti-inflammatory and pro-wound healing phenotype in human primary skin cells. Methods Human primary keratinocytes and fibroblasts were stimulated with lipopolysaccharide. The mRNA expression of cannabinoid receptors was determined using RT-PCR. The effects of JWH015 (0.05, 0.1, 0.5, and 1 µM) in pro- and anti-inflammatory factors were tested in lipopolysaccharide-stimulated cells. A scratch assay, using a co-culture of keratinocytes and fibroblasts, was used to test the effects of JWH015 in wound healing. In addition, the topical and transdermal penetration of JWH015 was studied in Franz diffusion cells using porcine skin and LC-MS. Results The expression of CB1 and CB2 receptors (mRNA) and the production of pro- and anti-inflammatory factors enhanced in keratinocytes and fibroblasts following lipopolysaccharide stimulation. JWH015 reduced the concentration of major pro-inflammatory factors (IL-6 and MCP-1) and increased the concentration of a major anti-inflammatory factor (TGF-β) in lipopolysaccharide-stimulated cells. JWH015 induced a faster scratch gap closure. These JWH015’seffects were mainly modulated through both CB1 and CB2 receptors. Topically administered JWH015 was mostly retained in the skin and displayed a sustained and low level of transdermal permeation. Conclusions Our findings suggest that targeting keratinocytes and fibroblasts with cannabinoid drugs could represent a therapeutic strategy to resolve peripheral inflammation and promote tissue repair.
Collapse
Affiliation(s)
- Alicia Bort
- 1 Department of Biochemistry and Molecular Biology, School of Medicine, Alcalá de Henares, Madrid, Spain.,2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | - Perla A Alvarado-Vazquez
- 2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | | | - Kristopher G Virga
- 2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | - Giuseppe Gumina
- 2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | - Alfonso Romero-Sandoval
- 2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| | - Scott Asbill
- 2 Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| |
Collapse
|
48
|
Comparison of protective effect of ascorbic acid on redox and endocannabinoid systems interactions in in vitro cultured human skin fibroblasts exposed to UV radiation and hydrogen peroxide. Arch Dermatol Res 2017; 309:285-303. [PMID: 28285367 PMCID: PMC5387039 DOI: 10.1007/s00403-017-1729-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/27/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
The mechanisms of biological activity of commonly used natural compounds are constantly examined. Therefore, the aim of this study was to compare ascorbic acid efficacy in counteracting the consequences of UV and hydrogen peroxide treatment on lipid mediators and their regulative action on antioxidant abilities. Skin fibroblasts exposed to UVA and UVB irradiation, treated with hydrogen peroxide and ascorbic acid. The redox system was estimated through reactive oxygen species (ROS) generation (electron spin resonance spectrometer) and antioxidants level/activity (HPLC/spectrometry) which activity was evaluated by the level of phospholipid metabolites: 4-hydroxynonenal, malondialdehyde, 8-isoprostanes and endocannabinoids (GC/LC-MS) in the human skin fibroblasts. Protein and DNA oxidative modifications were also determined (LC). The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), its activators and inhibitors as well as pro/anti-apoptotic proteins and endocannabinoid receptors was examined (Western blot) and collagen metabolism was evaluated by collagen biosynthesis and prolidase activity (spectrometry). UVA and UVB irradiation and hydrogen peroxide treatment enhanced activity of xanthine and NADPH oxidases resulting in ROS generation as well as diminution of antioxidant phospholipid protection (glutathione peroxidase-glutathione-vitamin E), what led to increased lipid peroxidation and decreased endocannabinoids level. Dysregulation of cannabinoid receptors expression and environment of transcription factor Nrf2 caused apoptosis induction. Ascorbic acid partially prevented ROS generation, antioxidant capacity diminution and endocannabinoid systems disturbances but only slightly protected macromolecules such as phospholipid, protein and DNA against oxidative modifications. However, ascorbic acid significantly prevented decrease in collagen type I biosynthesis. Ascorbic acid in similar degree prevents UV (UVA and UVB) and hydrogen peroxide-dependent redox imbalance. However, this antioxidant cannot efficiently protect cellular macromolecules and avert metabolic dysregulation leading to apoptosis.
Collapse
|
49
|
Zurier RB, Burstein SH. Cannabinoids, inflammation, and fibrosis. FASEB J 2016; 30:3682-3689. [PMID: 27435265 DOI: 10.1096/fj.201600646r] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2025]
Abstract
Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs). As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis. A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented. Mention is also made of the noncannabinoid plant components and pyrolysis products, followed by a discussion of 3 synthetic preparations-Cesamet (nabilone; Meda Pharmaceuticals, Somerset, NJ, USA), Marinol (dronabinol; THC; AbbVie, Inc., North Chicago, IL, USA), and Sativex (Cannabis extract; GW Pharmaceuticals, Cambridge United Kingdom)-that have anti-inflammatory effects. A fourth synthetic cannabinoid, ajulemic acid (AJA; CT-3; Resunab; Corbus Pharmaceuticals, Norwood, MA, USA), is discussed in greater detail because it represents the most recent advance in this area and is currently undergoing 3 phase 2 clinical trials by Corbus Pharmaceuticals. The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed. The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances. Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents. Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.-Zurier, R. B., Burstein, S. H. Cannabinoids, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Robert B Zurier
- Department of Medicine University of Massachusetts Medical School, Worcester, Massachusetts; and
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts USA
| | - Sumner H Burstein
- Department of Medicine University of Massachusetts Medical School, Worcester, Massachusetts; and
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts USA
| |
Collapse
|
50
|
Huang SS, Chen DZ, Wu H, Chen RC, Du SJ, Dong JJ, Liang G, Xu LM, Wang XD, Yang YP, Yu ZP, Feng WK, Chen YP. Cannabinoid receptors are involved in the protective effect of a novel curcumin derivative C66 against CCl4-induced liver fibrosis. Eur J Pharmacol 2016; 779:22-30. [PMID: 26945822 DOI: 10.1016/j.ejphar.2016.02.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 12/26/2022]
Abstract
Liver fibrosis is one of the major causes of morbidity and mortality worldwide and lacks efficient therapy. Recent studies suggest the curcumin protects liver from fibrosis. However, curcumin itself is in low bioavailable concentration when administered orally, and the protective mechanism remains poorly understood. The current study aimed to investigate whether a more stable derivative of curcumin, C66, protects against CCl4-inudced liver fibrosis and examine the underlying mechanism involving cannabinoid receptor (CB receptor). At a dose lower than curcumin itself, C66 displayed a superior anti-fibrotic effect. C66 significantly reduced collagen deposition, pro-inflammatory cytokine expression, and liver enzyme activities. Mechanistic study revealed that C66 treatment decreased CCl4-induced cannabinoid receptor 1 (CB1 receptor) expression and increased cannabinoid receptor 2 (CB2 receptor) expression, along with an inhibition of JNK/NF-κB-mediated inflammatory signaling. In conclusion, this curcumin derivative attenuates liver fibrosis likely involving a CB/JNK/NF-κB-mediated pathway.
Collapse
Affiliation(s)
- Si-Si Huang
- Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Da-zhi Chen
- Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Zhejiang University, Hangzhou, China
| | - He Wu
- Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui-Cong Chen
- Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shan-Jie Du
- Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia-Jia Dong
- Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lan-Man Xu
- Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Dong Wang
- Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yong-Ping Yang
- Liver Cancer Therapy and Research Center, People's Liberation Army 302 Hospital, Beijing 100039, China
| | - Zhen-Ping Yu
- Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Ke Feng
- Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Yong-Ping Chen
- Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|