1
|
Tyagi K, Chandan RK, Sahoo D, Ghosh S, Gupta S, Jha G. The host and pathogen myo-inositol-1-phosphate synthases are required for Rhizoctonia solani AG1-IA infection in tomato. MOLECULAR PLANT PATHOLOGY 2024; 25:e13470. [PMID: 39376048 PMCID: PMC11458890 DOI: 10.1111/mpp.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 10/09/2024]
Abstract
The myo-inositol-1-phosphate synthase (MIPS) catalyses the biosynthesis of myo-inositol, an important sugar that regulates various physiological and biochemical processes in plants. Here, we provide evidence that host (SlMIPS1) and pathogen (Rs_MIPS) myo-inositol-1-phosphate synthase (MIPS) genes are required for successful infection of Rhizoctonia solani, a devastating necrotrophic fungal pathogen, in tomato. Silencing of either SlMIPS1 or Rs_MIPS prevented disease, whereas an exogenous spray of myo-inositol enhanced disease severity. SlMIPS1 was upregulated upon R. solani infection, and potentially promoted source-to-sink transition, induced SWEET gene expression, and facilitated sugar availability in the infected tissues. In addition, salicylic acid (SA)-jasmonic acid homeostasis was altered and SA-mediated defence was suppressed; therefore, disease was promoted. On the other hand, silencing of SlMIPS1 limited sugar availability and induced SA-mediated defence to prevent R. solani infection. Virus-induced gene silencing of NPR1, a key gene in SA signalling, rendered SlMIPS1-silenced tomato lines susceptible to infection. These analyses suggest that induction of SA-mediated defence imparts disease tolerance in SlMIPS1-silenced tomato lines. In addition, we present evidence that SlMIPS1 and SA negatively regulate each other to modulate the defence response. SA treatment reduced SlMIPS1 expression and myo-inositol content in tomato, whereas myo-inositol treatment prevented SA-mediated defence. We emphasize that downregulation of host/pathogen MIPS can be an important strategy for controlling diseases caused by R. solani in agriculturally important crops.
Collapse
Affiliation(s)
- Kriti Tyagi
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Ravindra K. Chandan
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Debashis Sahoo
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Srayan Ghosh
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Santosh Kumar Gupta
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Gopaljee Jha
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
2
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus: acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo-inositol. Appl Environ Microbiol 2024; 90:e0092024. [PMID: 38874337 PMCID: PMC11267925 DOI: 10.1128/aem.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
Affiliation(s)
| | - Rachel M. Loughran
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Gary P. Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Ferreira-Neto JRC, da Silva MD, Binneck E, Vilanova ECR, de Melo ALTM, da Silva JB, de Melo NF, Pandolfi V, Benko-Iseppon AM. From Genes to Stress Response: Genomic and Transcriptomic Data Suggest the Significance of the Inositol and Raffinose Family Oligosaccharide Pathways in Stylosanthes scabra, Adaptation to the Caatinga Environment. PLANTS (BASEL, SWITZERLAND) 2024; 13:1749. [PMID: 38999589 PMCID: PMC11243744 DOI: 10.3390/plants13131749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
S. scabra is an important forage and extremophilic plant native to the Brazilian Caatinga semiarid region. It has only recently been subjected to omics-based investigations, and the generated datasets offer insights into biotechnologically significant candidates yet to be thoroughly examined. INSs (inositol and its derivatives) and RFO (raffinose oligosaccharide family) pathways emerge as pivotal candidates, given their critical roles in plant physiology. The mentioned compounds have also been linked to negative impacts on the absorption of nutrients in mammals, affecting overall nutritional intake and metabolism. Therefore, studying these metabolic pathways is important not just for plants but also for animals who depend on them as part of their diet. INS and RFO pathways in S. scabra stood out for their abundance of identified loci and enzymes. The enzymes exhibited genomic redundancy, being encoded by multiple loci and various gene families. The phylogenomic analysis unveiled an expansion of the PIP5K and GolS gene families relative to the immediate S. scabra ancestor. These enzymes are crucial for synthesizing key secondary messengers and the RFO precursor, respectively. Transcriptional control of the studied pathways was associated with DOF-type, C2H2, and BCP1 transcription factors. Identification of biological processes related to INS and RFO metabolic routes in S. scabra highlighted their significance in responding to stressful conditions prevalent in the Caatinga environment. Finally, RNA-Seq and qPCR data revealed the relevant influence of genes of the INS and RFO pathways in the S. scabra response to water deprivation. Our study deciphers the genetics and transcriptomics of the INS and RFO in S. scabra, shedding light on their importance for a Caatinga-native plant and paving the way for future biotechnological applications in this species and beyond.
Collapse
Affiliation(s)
- José Ribamar Costa Ferreira-Neto
- Plant Genetics and Biotechnology Laboratory, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (M.D.d.S.); (E.C.R.V.); (A.L.T.M.d.M.); (J.B.d.S.); (V.P.)
| | - Manassés Daniel da Silva
- Plant Genetics and Biotechnology Laboratory, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (M.D.d.S.); (E.C.R.V.); (A.L.T.M.d.M.); (J.B.d.S.); (V.P.)
| | - Eliseu Binneck
- Embrapa Soja—Brazilian Agricultural Research Corporation (Embrapa), Rodovia Carlos João Strass–Distrito de Warta, Londrina 86085-981, PR, Brazil;
| | - Elayne Cristina Ramos Vilanova
- Plant Genetics and Biotechnology Laboratory, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (M.D.d.S.); (E.C.R.V.); (A.L.T.M.d.M.); (J.B.d.S.); (V.P.)
| | - Ana Luíza Trajano Mangueira de Melo
- Plant Genetics and Biotechnology Laboratory, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (M.D.d.S.); (E.C.R.V.); (A.L.T.M.d.M.); (J.B.d.S.); (V.P.)
| | - Jéssica Barboza da Silva
- Plant Genetics and Biotechnology Laboratory, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (M.D.d.S.); (E.C.R.V.); (A.L.T.M.d.M.); (J.B.d.S.); (V.P.)
| | - Natoniel Franklin de Melo
- Embrapa Semiárido—Brazilian Agricultural Research Corporation (Embrapa), Rodovia BR-428, Km 152, s/n–Zona Rural, Petrolina 56302-970, PE, Brazil;
| | - Valesca Pandolfi
- Plant Genetics and Biotechnology Laboratory, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (M.D.d.S.); (E.C.R.V.); (A.L.T.M.d.M.); (J.B.d.S.); (V.P.)
| | - Ana Maria Benko-Iseppon
- Plant Genetics and Biotechnology Laboratory, Center of Biosciences, Genetics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-901, PE, Brazil; (M.D.d.S.); (E.C.R.V.); (A.L.T.M.d.M.); (J.B.d.S.); (V.P.)
| |
Collapse
|
4
|
Tamanna N, Mojumder A, Azim T, Iqbal MI, Alam MNU, Rahman A, Seraj ZI. Comparative metabolite profiling of salt sensitive Oryza sativa and the halophytic wild rice Oryza coarctata under salt stress. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10155. [PMID: 38882243 PMCID: PMC11179383 DOI: 10.1002/pei3.10155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
To better understand the salt tolerance of the wild rice, Oryza coarctata, root tissue-specific untargeted comparative metabolomic profiling was performed against the salt-sensitive Oryza sativa. Under control, O. coarctata exhibited abundant levels of most metabolites, while salt caused their downregulation in contrast to metabolites in O. sativa. Under control conditions, itaconate, vanillic acid, threonic acid, eicosanoids, and a group of xanthin compounds were comparatively abundant in O. coarctata. Similarly, eight amino acids showed constitutive abundance in O. coarctata. In contrast, under control, glycerolipid abundances were lower in O. coarctata and salt stress further reduced their abundance. Most phospholipids also showed a distribution similar to the glycerolipids. Fatty acyls were however significantly induced in O. coarctata but organic acids were prominently induced in O. sativa. Changes in metabolite levels suggest that there was upregulation of the arachidonic acid metabolism in O. coarctata. In addition, the phenylpropanoid biosynthesis as well as cutin, suberin, and wax biosynthesis were also more enriched in O. coarctata, likely contributing to its anatomical traits responsible for salt tolerance. The comparative variation in the number of metabolites like gelsemine, allantoin, benzyl alcohol, specific phospholipids, and glycerolipids may play a role in maintaining the superior growth of O. coarctata in salt. Collectively, our results offer a comprehensive analysis of the metabolite profile in the roots of salt-tolerant O. coarctata and salt-sensitive O. sativa, which confirm potential targets for metabolic engineering to improve salt tolerance and resilience in commercial rice genotypes.
Collapse
Affiliation(s)
- Nishat Tamanna
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh
- Center for Bioinformatics Learning Advancement and Systematic TrainingUniversity of DhakaDhakaBangladesh
| | - Anik Mojumder
- Center for Bioinformatics Learning Advancement and Systematic TrainingUniversity of DhakaDhakaBangladesh
- Department of Genetic Engineering and BiotechnologyUniversity of DhakaDhakaBangladesh
| | - Tomalika Azim
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh
| | - Md Ishmam Iqbal
- Center for Bioinformatics Learning Advancement and Systematic TrainingUniversity of DhakaDhakaBangladesh
- Department of Biochemistry and MicrobiologyNorth South UniversityDhakaBangladesh
| | - Md Nafis Ul Alam
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh
- Center for Bioinformatics Learning Advancement and Systematic TrainingUniversity of DhakaDhakaBangladesh
- Arizona Genomics Institute, School of Plant SciencesThe University of ArizonaTucsonArizonaUSA
| | - Abidur Rahman
- Department of Plant Biosciences, Faculty of AgricultureIwate UniversityMoriokaJapan
- Department of Plant Sciences, College of Agriculture and BioresourcesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Zeba I. Seraj
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh
- Center for Bioinformatics Learning Advancement and Systematic TrainingUniversity of DhakaDhakaBangladesh
| |
Collapse
|
5
|
Gahlaut V, Jaiswal V. MIPS1 orchestrates photoperiodic growth under long-day. PLANT CELL REPORTS 2024; 43:144. [PMID: 38758394 DOI: 10.1007/s00299-024-03231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Affiliation(s)
- Vijay Gahlaut
- Department of Biotechnology and University Center for Research and Development, Chandigarh University, Gharuan, Mohali, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus : acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo -inositol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575920. [PMID: 38766061 PMCID: PMC11100586 DOI: 10.1101/2024.01.16.575920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
|
7
|
Cheng B, Hassan MJ, Peng D, Huang T, Peng Y, Li Z. Spermidine or spermine pretreatment regulates organic metabolites and ions homeostasis in favor of white clover seed germination against salt toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108379. [PMID: 38266560 DOI: 10.1016/j.plaphy.2024.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/25/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
White clover is widely cultivated as a leguminous forage or ground cover plant worldwide. However, soil salinization decreases its yield and quality. Aims of the present experiment were to elucidate the impact of seed pretreatment with spermidine (Spd) or spermine (Spm) on amylolysis, Na+/K+ accumulation, and metabolic homeostasis during germination. Seed was soaked in distilled water (control), Spd or Spm solution and then germinated under optimal or salt stress conditions for 7 days. Results showed that germination vigor, germination percentage, or seed vigour index of seeds pretreatment with Spd increased by 7%, 11%, or 70% when compared with water-pretreated seeds under salt stress, respectively. Germination percentage or seed vigour index of seeds pretreatment with Spm increased by 17% or 78% than water-pretreated seeds under saline condition, respectively. In response to salt stress, accelerated amylolysis via activation of β-amylase activity was induced by Spd or Spm pretreatment. Spd or Spm pretreatment also significantly enhanced accumulation of diverse amino acids, organic acids, sugars, and other metabolites (putrescine, myo-inositol, sorbitol, daidzein etc.) associated with enhanced osmotic adjustment, antioxidant capacity, and energy supply during germination under salt stress. In addition, Spd or Spm pretreatment not only significantly reduced salt-induced K+ loss and overaccumulation of Na+, but also improved the ratio of K+ to Na+, contributing to Na+ and K+ balance in seedlings. In response to salt stress, seeds pretreatment with Spd or Spm up-regulated transcription level of NHX2 related to enhancement in compartmentation of Na+ from cytoplasm to vacuole, thus reducing Na+ toxicity in cytoplasm. Spm priming also uniquely up-regulated transcription levels of SKOR, HKT1, and HAL2 associated with K+ and Na + homeostasis and decline in cytotoxicity under salt stress.
Collapse
Affiliation(s)
- Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Padmavathi G, Bangale U, Rao K, Balakrishnan D, Arun M, Singh RK, Sundaram RM. Progress and prospects in harnessing wild relatives for genetic enhancement of salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1253726. [PMID: 38371332 PMCID: PMC10870985 DOI: 10.3389/fpls.2023.1253726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024]
Abstract
Salt stress is the second most devastating abiotic stress after drought and limits rice production globally. Genetic enhancement of salinity tolerance is a promising and cost-effective approach to achieve yield gains in salt-affected areas. Breeding for salinity tolerance is challenging because of the genetic complexity of the response of rice plants to salt stress, as it is governed by minor genes with low heritability and high G × E interactions. The involvement of numerous physiological and biochemical factors further complicates this complexity. The intensive selection and breeding efforts targeted towards the improvement of yield in the green-revolution era inadvertently resulted in the gradual disappearance of the loci governing salinity tolerance and a significant reduction in genetic variability among cultivars. The limited utilization of genetic resources and narrow genetic base of improved cultivars have resulted in a plateau in response to salinity tolerance in modern cultivars. Wild species are an excellent genetic resource for broadening the genetic base of domesticated rice. Exploiting novel genes of underutilized wild rice relatives to restore salinity tolerance loci eliminated during domestication can result in significant genetic gain in rice cultivars. Wild species of rice, Oryza rufipogon and Oryza nivara, have been harnessed in the development of a few improved rice varieties like Jarava and Chinsura Nona 2. Furthermore, increased access to sequence information and enhanced knowledge about the genomics of salinity tolerance in wild relatives has provided an opportunity for the deployment of wild rice accessions in breeding programs, while overcoming the cross-incompatibility and linkage drag barriers witnessed in wild hybridization. Pre-breeding is another avenue for building material that are ready for utilization in breeding programs. Efforts should be directed towards systematic collection, evaluation, characterization, and deciphering salt tolerance mechanisms in wild rice introgression lines and deploying untapped novel loci to improve salinity tolerance in rice cultivars. This review highlights the potential of wild relatives of Oryza to enhance tolerance to salinity, track the progress of work, and provide a perspective for future research.
Collapse
Affiliation(s)
- Guntupalli Padmavathi
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Umakanth Bangale
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - K. Nagendra Rao
- Genetics and Plant Breeding, Sugarcane Research Station, Vuyyuru, India
| | - Divya Balakrishnan
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Melekote Nagabhushan Arun
- Crop Production Section, Agronomy, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Rakesh Kumar Singh
- Crop Diversification and Genetics Section, International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| | - Raman Meenakshi Sundaram
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| |
Collapse
|
9
|
Zhou T, Xing Q, Sun J, Wang P, Zhu J, Liu Z. The mechanism of KpMIPS gene significantly improves resistance of Koelreuteria paniculata to heavy metal cadmium in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167219. [PMID: 37734601 DOI: 10.1016/j.scitotenv.2023.167219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Cadmium (Cd) pollution in soil is an important factor endangering plant growth and harming human health through food chains. Koelreuteria paniculata is an important woody plant for ecological restoration of Cd-contaminated soils. In this study, KpMIPS gene of K. paniculata was cloned, and the expressed protein (60 kDa) had 1-phosphate synthase activity. The results showed that KpMIPS significantly promoted root development of K. paniculata and Arabidopsis thaliana, reduced damage to the roots of Arabidopsis thaliana caused by Cd, and decreased transfer of Cd to the aboveground parts of K. paniculata and Arabidopsis thaliana . In the K. paniculata plants overexpressing KpMIPS integrity of the root cells was maintained and the content of pectin and phytic acid was significantly increased. Overexpression of KpMIPS increased the Cd accumulation in the roots and decreased the Cd content in the stems and leaves. Clearly, KpMIPS could regulate the contents of pectin and phytic acid in K. paniculata, thereby passivating Cd2+ and enriching it in the root cell wall, reducing the transfer of free Cd2+ to other parts of K. paniculata, and providing a positive regulatory effect on the Cd resistance of K. paniculata. The results of the study provide a technical introduction for the selection and genetic improvement of target genes regulating heavy metal resistance of plants in phytoremediation technology.
Collapse
Affiliation(s)
- Tao Zhou
- College of Life Science and Technology, Central South University of Forestry and Technology, No. 498, South Shaoshan Road, Changsha 410004, Hunan Province, China
| | - Qinqin Xing
- College of Life Science and Technology, Central South University of Forestry and Technology, No. 498, South Shaoshan Road, Changsha 410004, Hunan Province, China
| | - Jikang Sun
- College of Life Science and Technology, Central South University of Forestry and Technology, No. 498, South Shaoshan Road, Changsha 410004, Hunan Province, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, No. 498, South Shaoshan Road, Changsha 410004, Hunan Province, China.
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, No. 498, South Shaoshan Road, Changsha 410004, Hunan Province, China.
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, United States of America
| |
Collapse
|
10
|
Şimşek Kuş N. Biological Properties of Cyclitols and Their Derivatives. Chem Biodivers 2024; 21:e202301064. [PMID: 37824100 DOI: 10.1002/cbdv.202301064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Cyclitols are polyhydroxy cycloalkanes, each containing at least three hydroxyls attached to a different ring carbon atom. The most important cyclitol derivatives are inositols, quercitols, conduritols and pinitols, which form a group of naturally occurring polyhydric alcohols and are widely found in plants. In addition, synthetic production of cyclitols has gained importance in recent years. Cylitols are molecules synthesized in plants as a precaution against salt or water stress. They have important functions in cell functioning as they exhibit important properties such as membrane biogenesis, ion channel physiology, signal transduction, osmoregulation, phosphate storage, cell wall formation and antioxidant activity. The biological activities of these very important molecules, obtained both synthetically and from the extraction of plants, are described in this review.
Collapse
Affiliation(s)
- Nermin Şimşek Kuş
- Department of Chemistry, Faculty of Sciences, Mersin University, Yenişehir, Mersin, Turkey
| |
Collapse
|
11
|
Khan HA, Sharma N, Siddique KH, Colmer TD, Sutton T, Baumann U. Comparative transcriptome analysis reveals molecular regulation of salt tolerance in two contrasting chickpea genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1191457. [PMID: 37360702 PMCID: PMC10289292 DOI: 10.3389/fpls.2023.1191457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 06/28/2023]
Abstract
Salinity is a major abiotic stress that causes substantial agricultural losses worldwide. Chickpea (Cicer arietinum L.) is an important legume crop but is salt-sensitive. Previous physiological and genetic studies revealed the contrasting response of two desi chickpea varieties, salt-sensitive Rupali and salt-tolerant Genesis836, to salt stress. To understand the complex molecular regulation of salt tolerance mechanisms in these two chickpea genotypes, we examined the leaf transcriptome repertoire of Rupali and Genesis836 in control and salt-stressed conditions. Using linear models, we identified categories of differentially expressed genes (DEGs) describing the genotypic differences: salt-responsive DEGs in Rupali (1,604) and Genesis836 (1,751) with 907 and 1,054 DEGs unique to Rupali and Genesis836, respectively, salt responsive DEGs (3,376), genotype-dependent DEGs (4,170), and genotype-dependent salt-responsive DEGs (122). Functional DEG annotation revealed that the salt treatment affected genes involved in ion transport, osmotic adjustment, photosynthesis, energy generation, stress and hormone signalling, and regulatory pathways. Our results showed that while Genesis836 and Rupali have similar primary salt response mechanisms (common salt-responsive DEGs), their contrasting salt response is attributed to the differential expression of genes primarily involved in ion transport and photosynthesis. Interestingly, variant calling between the two genotypes identified SNPs/InDels in 768 Genesis836 and 701 Rupali salt-responsive DEGs with 1,741 variants identified in Genesis836 and 1,449 variants identified in Rupali. In addition, the presence of premature stop codons was detected in 35 genes in Rupali. This study provides valuable insights into the molecular regulation underpinning the physiological basis of salt tolerance in two chickpea genotypes and offers potential candidate genes for the improvement of salt tolerance in chickpeas.
Collapse
Affiliation(s)
- Hammad Aziz Khan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Niharika Sharma
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, Australia
| | - Kadambot H.M. Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Timothy David Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
- Department of Primary Industries and Regions, South Australian Research and Development Institute (SARDI), Adelaide, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P. Halophytes as new model plant species for salt tolerance strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1137211. [PMID: 37251767 PMCID: PMC10211249 DOI: 10.3389/fpls.2023.1137211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Soil salinity is becoming a growing issue nowadays, severely affecting the world's most productive agricultural landscapes. With intersecting and competitive challenges of shrinking agricultural lands and increasing demand for food, there is an emerging need to build resilience for adaptation to anticipated climate change and land degradation. This necessitates the deep decoding of a gene pool of crop plant wild relatives which can be accomplished through salt-tolerant species, such as halophytes, in order to reveal the underlying regulatory mechanisms. Halophytes are generally defined as plants able to survive and complete their life cycle in highly saline environments of at least 200-500 mM of salt solution. The primary criterion for identifying salt-tolerant grasses (STGs) includes the presence of salt glands on the leaf surface and the Na+ exclusion mechanism since the interaction and replacement of Na+ and K+ greatly determines the survivability of STGs in saline environments. During the last decades or so, various salt-tolerant grasses/halophytes have been explored for the mining of salt-tolerant genes and testing their efficacy to improve the limit of salt tolerance in crop plants. Still, the utility of halophytes is limited due to the non-availability of any model halophytic plant system as well as the lack of complete genomic information. To date, although Arabidopsis (Arabidopsis thaliana) and salt cress (Thellungiella halophila) are being used as model plants in most salt tolerance studies, these plants are short-lived and can tolerate salinity for a shorter duration only. Thus, identifying the unique genes for salt tolerance pathways in halophytes and their introgression in a related cereal genome for better tolerance to salinity is the need of the hour. Modern technologies including RNA sequencing and genome-wide mapping along with advanced bioinformatics programs have advanced the decoding of the whole genetic information of plants and the development of probable algorithms to correlate stress tolerance limit and yield potential. Hence, this article has been compiled to explore the naturally occurring halophytes as potential model plant species for abiotic stress tolerance and to further breed crop plants to enhance salt tolerance through genomic and molecular tools.
Collapse
Affiliation(s)
- Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Charu Lata
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pardesh, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- Department of Biochemistry, Eternal University, Baru Sahib, Himachal Pardesh, Ludhiana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Parvender Sheoran
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Agriculture Technology Application Research Center, Ludhiana, India
| |
Collapse
|
13
|
Al-Suod H, Ratiu IA, Gadzała-Kopciuch R, Górecki R, Buszewski B. Identification and quantification of cyclitols and sugars isolated from different morphological parts of Raphanus sativus L. Nat Prod Res 2023; 37:107-112. [PMID: 34180317 DOI: 10.1080/14786419.2021.1944136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Through this study, we aimed to develop a new analytical method for identification and quantification of sugars and cyclitols isolated from different morphological parts of Raphanus sativus L (R. sativus). Accelerated solvent extraction with water was involved for targets extraction. Solid phase extraction was used for purification and preconcentration, while high performance liquid chromatography with evaporative light scattering detector (HPLC-ELSD) was used for chromatographic analyses. A short method of only 30 min for a single analysis was developed finally. The obtained results, allowed for quantification of eight targets, i.e., three cyclitols (D-pinitol, allo-inositol and scyllo-inositol) and five sugars (xylose, D-mannose, D-fructose, D-glucose and sucrose) that were determined simultaneously using a single analysis. The developed method can be applied in industry as a routine method for analysis of sugars and cyclitols from different sources.
Collapse
Affiliation(s)
- Hossam Al-Suod
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies - BioSep, Nicolaus Copernicus University, Toruń, Poland
| | - Ileana-Andreea Ratiu
- Interdisciplinary Centre of Modern Technologies - BioSep, Nicolaus Copernicus University, Toruń, Poland.,"Raluca Ripan" Institute for Research in Chemistry, Babes-Bolyai University, Cluj Napoca, Romania
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies - BioSep, Nicolaus Copernicus University, Toruń, Poland
| | - Ryszard Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies - BioSep, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
14
|
Guo H, Bi X, Wang Z, Jiang D, Cai M, An M, Xia Z, Wu Y. Reactive oxygen species-related genes participate in resistance to cucumber green mottle mosaic virus infection regulated by boron in Nicotiana benthamiana and watermelon. FRONTIERS IN PLANT SCIENCE 2022; 13:1027404. [PMID: 36438146 PMCID: PMC9691971 DOI: 10.3389/fpls.2022.1027404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) infection causes acidification and rot of watermelon flesh, resulting in serious economic losses. It is widely reported the interaction relationship between boron and reactive oxygen species (ROS) in regulating normal growth and disease resistance in plants. Our previous results demonstrated that exogenous boron could improve watermelon resistance to CGMMV infection. However, the roles of ROS-related genes regulated by boron in resistance to CGMMV infection are unclear. Here, we demonstrated that CGMMV symptoms were alleviated, and viral accumulations were decreased by boron application in Nicotiana benthamiana, indicating that boron contributed to inhibiting CGMMV infection. Meanwhile, we found that a number of differentially expressed genes (DEGs) associated with inositol biosynthesis, ethylene synthesis, Ca2+ signaling transduction and ROS scavenging system were up-regulated, while many DEGs involved in ABA catabolism, GA signal transduction and ascorbic acid metabolism were down-regulated by boron application under CGMMV infection. Additionally, we individually silenced nine ROS-related genes to explore their anti-CGMMV roles using a tobacco rattle virus (TRV) vector. The results showed that NbCat1, NbGME1, NbGGP and NbPrx Q were required for CGMMV infection, while NbGST and NbIPS played roles in resistance to CGMMV infection. The similar results were obtained in watermelon by silencing of ClCat, ClPrx or ClGST expression using a pV190 vector. This study proposed a new strategy for improving plant resistance to CGMMV infection by boron-regulated ROS pathway and provided several target genes for watermelon disease resistance breeding.
Collapse
Affiliation(s)
- Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dong Jiang
- Green Agricultural Technology Center of Liaoning Province, Shenyang, China
| | - Ming Cai
- Green Agricultural Technology Center of Liaoning Province, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
15
|
Mishra AK, Farooq SH. Lack of ecological data hinders management of ecologically important saltmarsh ecosystems: A case study of saltmarsh plant Porterasia coarctata (Roxb.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115957. [PMID: 35998536 DOI: 10.1016/j.jenvman.2022.115957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Saltmarsh ecosystems though ecologically important are one of the least studied ecosystems in Asia. This study reviewed the published literature from 1988 to 2021 of India to assess the current status of the data deficient saltmarsh species Porterasia coarctata (Roxb.) within its distribution limits. This saltmarsh species inhabits the lower intertidal silty-sandy habitats of India's west coast and silty-clay habitats of the east coast. In the lower intertidal zone, P. coarctata is mostly associated with Myrostachia wightiana, whereas in the upper intertidal zone the highest chance of presence was for Suaeda maritima (18%) and the lowest for Cressa cretica (1%), S. fruticosa (1%) and Scirpus littoralis (1%). The deep root system of P. coarctata helps in sediment accretion and facilitates the formation of mangrove ecosystems. From this study it was evident that most of the research on P. coarctata in India was part of survey of mangrove ecosystems. In India, significant knowledge gap exists on the reproductive ecology and population trends of this species. Most importantly, the genes responsible for salinity and submergence tolerance of P. coarctata are well documented, that can provide solutions for salt and submergence tolerant rice plants in coastal areas prone to sea level rise. The blue carbon storage potential of P. coarctata is higher than other saltmarsh plants, that can be leveraged as a nature-based solution for CO2 emission reductions. The ecosystem services of P. coarctata can also contribute towards achieving various sustainable development goals (SDG-1,2,6,13 and14). Coastal development, mangrove restoration and marine food provisioning are the most important drivers causing the decline of P. coarctata ecosystems across India. This study proposes a long-term coastal monitoring plan for essential conservation and management of existing P. coarctata beds and preventing further degradation and loss of these ecosystems. This study also showcases species-specific valuation of individual saltmarsh plants at regional scale are essential to catalogue the most efficient saltmarsh plants that can play an important role in future climate change scenarios and serve as a global model.
Collapse
Affiliation(s)
- Amrit Kumar Mishra
- School of Earth Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Argul Campus, Khorda, Odisha, India.
| | - Syed Hilal Farooq
- School of Earth Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Argul Campus, Khorda, Odisha, India
| |
Collapse
|
16
|
Wang F, Wang X, Zhang Y, Yan J, Ahammed GJ, Bu X, Sun X, Liu Y, Xu T, Qi H, Qi M, Li T. SlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in tomato. THE NEW PHYTOLOGIST 2022; 233:2127-2143. [PMID: 34936108 DOI: 10.1111/nph.17934] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Plants have evolved sophisticated regulatory networks to cope with dynamically changing light and temperature environments during day-night and seasonal cycles. However, the integration mechanisms of light and low temperature remain largely unclear. Here, we show that low red : far-red ratio (LR : FR) induces FAR-RED ELONGATED HYPOCOTYL3 (SlFHY3) transcription under cold stress in tomato (Solanum lycopersicum). Reverse genetic approaches revealed that knocking out SlFHY3 decreases myo-inositol accumulation and increases cold susceptibility, whereas overexpressing SlFHY3 induces myo-inositol accumulation and enhances cold tolerance in tomato plants. SlFHY3 physically interacts with ELONGATED HYPOCOTYL5 (SlHY5) to promote the transcriptional activity of SlHY5 on MYO-INOSITOL-1-PHOSPHATE SYNTHASE 3 (SlMIPS3) and induce myo-inositol accumulation in tomato plants under cold stress. Disruption of SlHY5 and SlMIPS3 largely suppresses the cold tolerance of SlFHY3-overexpressing plants and myo-inositol accumulation in tomato. Furthermore, silencing of SlMIPS3 drastically reduces myo-inositol accumulation and compromises LR : FR-induced cold tolerance in tomato. Together, our results reveal a crucial role of SlFHY3 in LR : FR-induced cold tolerance in tomato and unravel a novel regulatory mechanism whereby plants integrate dynamic environmental light signals and internal cues (inositol biosynthesis) to induce and control cold tolerance in tomato plants.
Collapse
Affiliation(s)
- Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| | - Xiujie Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiarong Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xin Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, 110866, China
| |
Collapse
|
17
|
Li Y, Li X, Zhang J, Li D, Yan L, You M, Zhang J, Lei X, Chang D, Ji X, An J, Li M, Bai S, Yan J. Physiological and Proteomic Responses of Contrasting Alfalfa ( Medicago sativa L.) Varieties to High Temperature Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:753011. [PMID: 34956258 PMCID: PMC8695758 DOI: 10.3389/fpls.2021.753011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
High temperature (HT) is an important factor for limiting global plant distribution and agricultural production. As the global temperature continues to rise, it is essential to clarify the physiological and molecular mechanisms of alfalfa responding the high temperature, which will contribute to the improvement of heat resistance in leguminous crops. In this study, the physiological and proteomic responses of two alfalfa (Medicago sativa L.) varieties contrasting in heat tolerance, MS30 (heat-tolerant) and MS37 (heat-sensitive), were comparatively analyzed under the treatments of continuously rising temperatures for 42 days. The results showed that under the HT stress, the chlorophyll content and the chlorophyll fluorescence parameter (Fv/Fm) of alfalfa were significant reduced and some key photosynthesis-related proteins showed a down-regulated trend. Moreover, the content of Malondialdehyde (MDA) and the electrolyte leakage (EL) of alfalfa showed an upward trend, which indicates both alfalfa varieties were damaged under HT stress. However, because the antioxidation-reduction and osmotic adjustment ability of MS30 were significantly stronger than MS37, the damage degree of the photosynthetic system and membrane system of MS30 is significantly lower than that of MS37. On this basis, the global proteomics analysis was undertaken by tandem mass tags (TMT) technique, a total of 6,704 proteins were identified and quantified. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that a series of key pathways including photosynthesis, metabolism, adjustment and repair were affected by HT stress. Through analyzing Venn diagrams of two alfalfa varieties, 160 and 213 differentially expressed proteins (DEPs) that had dynamic changes under HT stress were identified from MS30 and MS37, respectively. Among these DEPs, we screened out some key DEPs, such as ATP-dependent zinc metalloprotease FTSH protein, vitamin K epoxide reductase family protein, ClpB3, etc., which plays important functions in response to HT stress. In conclusion, the stronger heat-tolerance of MS30 was attributed to its higher adjustment and repair ability, which could cause the metabolic process of MS30 is more conducive to maintaining its survival and growth than MS37, especially at the later period of HT stress. This study provides a useful catalog of the Medicago sativa L. proteomes with the insight into its future genetic improvement of heat-resistance.
Collapse
Affiliation(s)
- Yingzhu Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xinrui Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jin Zhang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Daxu Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Lijun Yan
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Minghong You
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jianbo Zhang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiong Lei
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dan Chang
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Xiaofei Ji
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jinchan An
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Mingfeng Li
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Shiqie Bai
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Jiajun Yan
- Institute of Herbaceous Plants, Sichuan Academy of Grassland Science, Chengdu, China
| |
Collapse
|
18
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
19
|
He L, Li L, Zhu Y, Pan Y, Zhang X, Han X, Li M, Chen C, Li H, Wang C. BolTLP1, a Thaumatin-like Protein Gene, Confers Tolerance to Salt and Drought Stresses in Broccoli ( Brassica oleracea L. var. Italica). Int J Mol Sci 2021. [PMID: 34681789 DOI: 10.3390/ijms222011132/s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Plant thaumatin-like proteins (TLPs) play pleiotropic roles in defending against biotic and abiotic stresses. However, the functions of TLPs in broccoli, which is one of the major vegetables among the B. oleracea varieties, remain largely unknown. In the present study, bolTLP1 was identified in broccoli, and displayed remarkably inducible expression patterns by abiotic stress. The ectopic overexpression of bolTLP1 conferred increased tolerance to high salt and drought conditions in Arabidopsis. Similarly, bolTLP1-overexpressing broccoli transgenic lines significantly improved tolerance to salt and drought stresses. These results demonstrated that bolTLP1 positively regulates drought and salt tolerance. Transcriptome data displayed that bolTLP1 may function by regulating phytohormone (ABA, ethylene and auxin)-mediated signaling pathways, hydrolase and oxidoreductase activity, sulfur compound synthesis, and the differential expression of histone variants. Further studies confirmed that RESPONSE TO DESICCATION 2 (RD2), RESPONSIVE TO DEHYDRATION 22 (RD22), VASCULAR PLANT ONE-ZINC FINGER 2 (VOZ2), SM-LIKE 1B (LSM1B) and MALATE DEHYDROGENASE (MDH) physically interacted with bolTLP1, which implied that bolTLP1 could directly interact with these proteins to confer abiotic stress tolerance in broccoli. These findings provide new insights into the function and regulation of bolTLP1, and suggest potential applications for bolTLP1 in breeding broccoli and other crops with increased tolerance to salt and drought stresses.
Collapse
Affiliation(s)
- Lixia He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lihong Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yinxia Zhu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Pan
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuwen Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue Han
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muzi Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Chengbin Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China
| | - Chunguo Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
20
|
He L, Li L, Zhu Y, Pan Y, Zhang X, Han X, Li M, Chen C, Li H, Wang C. BolTLP1, a Thaumatin-like Protein Gene, Confers Tolerance to Salt and Drought Stresses in Broccoli ( Brassica oleracea L. var. Italica). Int J Mol Sci 2021; 22:ijms222011132. [PMID: 34681789 PMCID: PMC8537552 DOI: 10.3390/ijms222011132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Plant thaumatin-like proteins (TLPs) play pleiotropic roles in defending against biotic and abiotic stresses. However, the functions of TLPs in broccoli, which is one of the major vegetables among the B. oleracea varieties, remain largely unknown. In the present study, bolTLP1 was identified in broccoli, and displayed remarkably inducible expression patterns by abiotic stress. The ectopic overexpression of bolTLP1 conferred increased tolerance to high salt and drought conditions in Arabidopsis. Similarly, bolTLP1-overexpressing broccoli transgenic lines significantly improved tolerance to salt and drought stresses. These results demonstrated that bolTLP1 positively regulates drought and salt tolerance. Transcriptome data displayed that bolTLP1 may function by regulating phytohormone (ABA, ethylene and auxin)-mediated signaling pathways, hydrolase and oxidoreductase activity, sulfur compound synthesis, and the differential expression of histone variants. Further studies confirmed that RESPONSE TO DESICCATION 2 (RD2), RESPONSIVE TO DEHYDRATION 22 (RD22), VASCULAR PLANT ONE-ZINC FINGER 2 (VOZ2), SM-LIKE 1B (LSM1B) and MALATE DEHYDROGENASE (MDH) physically interacted with bolTLP1, which implied that bolTLP1 could directly interact with these proteins to confer abiotic stress tolerance in broccoli. These findings provide new insights into the function and regulation of bolTLP1, and suggest potential applications for bolTLP1 in breeding broccoli and other crops with increased tolerance to salt and drought stresses.
Collapse
Affiliation(s)
- Lixia He
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Lihong Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Yinxia Zhu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Yu Pan
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Xiuwen Zhang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Xue Han
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Muzi Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China;
| | - Chengbin Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
| | - Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300384, China;
- Correspondence: (H.L.); (C.W.)
| | - Chunguo Wang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.H.); (L.L.); (Y.Z.); (Y.P.); (X.Z.); (X.H.); (C.C.)
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
- Correspondence: (H.L.); (C.W.)
| |
Collapse
|
21
|
Ma NL, Lam SD, Che Lah WA, Ahmad A, Rinklebe J, Sonne C, Peng W. Integration of environmental metabolomics and physiological approach for evaluation of saline pollution to rice plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117214. [PMID: 33971466 DOI: 10.1016/j.envpol.2021.117214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/03/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Salinisation of soil is associated with urban pollution, industrial development and rising sea level. Understanding how high salinity is managed at the plant cellular level is vital to increase sustainable farming output. Previous studies focus on plant stress responses under salinity tolerance. Yet, there is limited knowledge about the mechanisms involved from stress state until the recovery state; our research aims to close this gap. By using the most tolerance genotype (SS1-14) and the most susceptible genotype (SS2-18), comparative physiological, metabolome and post-harvest assessments were performed to identify the underlying mechanisms for salinity stress recovery in plant cells. The up-regulation of glutamine, asparagine and malonic acid were found in recovered-tolerant genotype, suggesting a role in the regulation of panicle branching and spikelet formation for survival. Rice could survive up to 150 mM NaCl (∼15 ds/m) with declined of production rate 5-20% ranged from tolerance to susceptible genotype. This show that rice farming may still be viable on the high saline affected area with the right selection of salt-tolerant species, including glycophytes. The salt recovery biomarkers identified in this study and the adaption underlined could be empowered to address salinity problem in rice field.
Collapse
Affiliation(s)
- Nyuk Ling Ma
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia.
| | - Su Datt Lam
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, United Kingdom; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Wan Afifudeen Che Lah
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Aziz Ahmad
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy, And Geoinformatics Sejong University, Seoul, 05006, Republic of Korea.
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO Box 358, 4000, Roskilde, Denmark
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
22
|
Physiological and Molecular Responses of 'Dusa' Avocado Rootstock to Water Stress: Insights for Drought Adaptation. PLANTS 2021; 10:plants10102077. [PMID: 34685886 PMCID: PMC8537572 DOI: 10.3390/plants10102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Avocado consumption is increasing year by year, and its cultivation has spread to many countries with low water availability, which threatens the sustainability and profitability of avocado orchards. However, to date, there is not much information on the behavior of commercial avocado rootstocks against drought. The aim of this research was to evaluate the physiological and molecular responses of ‘Dusa’ avocado rootstock to different levels of water stress. Plants were deficit irrigated until soil water content reached 50% (mild-WS) and 25% (severe-WS) of field capacity. Leaf water potential (Ψw), net CO2 assimilation rates (AN), transpiration rate (E), stomatal conductance (gs), and plant transpiration rates significantly decreased under both WS treatments, reaching significantly lower values in severe-WS plants. After rewatering, mild- and severe-WS plants showed a fast recovery in most physiological parameters measured. To analyze root response to different levels of drought stress, a cDNA avocado stress microarray was carried out. Plants showed a wide transcriptome response linked to the higher degree of water stress, and functional enrichment of differentially expressed genes (DEGs) revealed abundance of common sequences associated with water stress, as well as specific categories for mild-WS and severe-WS. DEGs previously linked to drought tolerance showed overexpression under both water stress levels, i.e., several transcription factors, genes related to abscisic acid (ABA) response, redox homeostasis, osmoprotection, and cell-wall organization. Taken altogether, physiological and molecular data highlight the good performance of ‘Dusa’ rootstock under low-water-availability conditions, although further water stress experiments must be carried out under field conditions.
Collapse
|
23
|
Li CH, Tien HJ, Wen MF, Yen HE. Myo-inositol transport and metabolism participate in salt tolerance of halophyte ice plant seedlings. PHYSIOLOGIA PLANTARUM 2021; 172:1619-1629. [PMID: 33511710 DOI: 10.1111/ppl.13353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Myo-inositol and its metabolic derivatives such as pinitol, galactinol, and raffinose affect growth and development and are also involved in stress adaptation. Previous studies have identified myo-inositol transporters (INTs) as transporters of Na+ from root to shoot in the halophyte ice plant (Mesembryanthemum crystallinum). We found that the supply of myo-inositol could alleviate the dehydration effects of salt-stressed ice plant seedlings by decreasing the Na/K ratio in roots and increasing the Na/K ratio in shoots. Analyses of the uptake of exogenous myo-inositol revealed that ice plant seedlings contained intrinsic high-affinity transporters and inducible low-affinity uptake systems. The presence of Na+ facilitated both high- and low-affinity myo-inositol uptake. Six INT genes were identified from the ice plant transcriptome and named McINT1a, 1b, 2, 4a, 4b, and 4c, according to the classification of the Arabidopsis INT family. In seedlings treated with myo-inositol, salt, or myo-inositol plus salt, the expression patterns of all McINT members differed in shoot and root, which indicates organ-specific regulation of McINTs by salt and myo-inositol. The expression of McINT2, 4a, 4b, and 4c was induced by salt stress in shoot and root, but that of McINT1a and 1b was salt-induced only in shoot. The expression of pinitol biosynthesis gene IMT1 was induced by salt and myo-inositol, and their combination had a synergistic effect on the accumulation of pinitol. Supply of myo-inositol to salt-treated seedlings alleviated the detrimental effects by maintaining a low root Na/K ratio and providing precursors for the synthesis of compatible solute to maintain the osmotic balance.
Collapse
Affiliation(s)
- Cheng-Hsun Li
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hsing-Jung Tien
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Fang Wen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
24
|
Bao Y, Yang N, Meng J, Wang D, Fu L, Wang J, Cang J. Adaptability of winter wheat Dongnongdongmai 1 (Triticum aestivum L.) to overwintering in alpine regions. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:445-455. [PMID: 33075203 DOI: 10.1111/plb.13200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Long winters led to a one-crop-a-year cultivation system until the winter wheat Dongnongdongmai 1 (Dn1) was successfully cultivated in northeast China. This crop variety is resistant to extremely low temperatures (-35 °C). To better understand the adaptability of winter wheat Dn1 to low temperatures, gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) and metabolomics analysis was conducted on the tillering nodes of winter wheat during the overwintering period. Enzyme-regulating genes of the metabolic products were also quantitatively analysed. The metabolomic results for the tillering nodes in the overwintering period showed that disaccharides had a strong protective effect on winter wheat Dn1. Amino acid metabolism (i.e. proline, alanine and GABA) changed significantly throughout the whole wintering process, whereas organic fatty acid metabolism changed significantly only in the late stage of overwintering. This result indicates that the metabolites used by winter wheat Dn1 differ in different overwintering stages. The relationship between field temperature and metabolite changes in winter wheat Dn1 during overwintering periods is discussed, and disaccharides were identified as the osmotic stress regulators for winter wheat Dn1 during the overwintering process, as well as maintenance of the carbon and nitrogen balance by monosaccharides, amino acids and lipids for cold resistance.
Collapse
Affiliation(s)
- Y Bao
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - N Yang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Meng
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - D Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - L Fu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - J Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Cang
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Baruah PM, Krishnatreya DB, Bordoloi KS, Gill SS, Agarwala N. Genome wide identification and characterization of abiotic stress responsive lncRNAs in Capsicum annuum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:221-236. [PMID: 33706183 DOI: 10.1016/j.plaphy.2021.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding transcripts having length of more than 200 nucleotides lacking protein-coding ability. In the present study, 12807 lncRNAs were identified in Capsicum annuum tissues exposed to abiotic stress conditions viz. heat, cold, osmotic and salinity stress. Expression analysis of lncRNAs in different treatment conditions demonstrates their stress-specific expression. Thirty lncRNAs were found to act as precursors for 10 microRNAs (miRNAs) of C. annuum. Additionally, a total of 1807 lncRNAs were found to interact with 194 miRNAs which targeted 621 mRNAs of C. annuum. Among these, 344 lncRNAs were found to act as target mimics for 621 genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that out of those 621 gene sequences, 546 were tagged with GO terms, 105 Enzyme Code (EC) numbers were assigned to 246 genes and 223 genes are found to be involved in 63 biological pathways. In this report, we have highlighted the prospective role of lncRNAs in different abiotic stress conditions by interacting with miRNAs and regulating stress responsive transcription factors (TFs) such as DoF, WRKY, MYB, bZIP and ERF in C. annuum.
Collapse
Affiliation(s)
- Pooja Moni Baruah
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India
| | | | | | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India.
| |
Collapse
|
26
|
Mendonça L, Sun D, Ning J, Liu J, Kotecha A, Olek M, Frosio T, Fu X, Himes BA, Kleinpeter AB, Freed EO, Zhou J, Aiken C, Zhang P. CryoET structures of immature HIV Gag reveal six-helix bundle. Commun Biol 2021; 4:481. [PMID: 33863979 PMCID: PMC8052356 DOI: 10.1038/s42003-021-01999-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
Gag is the HIV structural precursor protein which is cleaved by viral protease to produce mature infectious viruses. Gag is a polyprotein composed of MA (matrix), CA (capsid), SP1, NC (nucleocapsid), SP2 and p6 domains. SP1, together with the last eight residues of CA, have been hypothesized to form a six-helix bundle responsible for the higher-order multimerization of Gag necessary for HIV particle assembly. However, the structure of the complete six-helix bundle has been elusive. Here, we determined the structures of both Gag in vitro assemblies and Gag viral-like particles (VLPs) to 4.2 Å and 4.5 Å resolutions using cryo-electron tomography and subtomogram averaging by emClarity. A single amino acid mutation (T8I) in SP1 stabilizes the six-helix bundle, allowing to discern the entire CA-SP1 helix connecting to the NC domain. These structures provide a blueprint for future development of small molecule inhibitors that can lock SP1 in a stable helical conformation, interfere with virus maturation, and thus block HIV-1 infection.
Collapse
Affiliation(s)
- Luiza Mendonça
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dapeng Sun
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiwei Liu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Mateusz Olek
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Department of Chemistry, University of York, York, UK
| | - Thomas Frosio
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Xiaofeng Fu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jing Zhou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
27
|
Vidotti AD, Riaño-Pachón DM, Mattiello L, Giraldi LA, Winck FV, Franco TT. Analysis of autotrophic, mixotrophic and heterotrophic phenotypes in the microalgae Chlorella vulgaris using time-resolved proteomics and transcriptomics approaches. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Kamboj R, Singh B, Mondal TK, Bisht DS. Current status of genomic resources on wild relatives of rice. BREEDING SCIENCE 2020; 70:135-144. [PMID: 32523396 PMCID: PMC7272243 DOI: 10.1270/jsbbs.19064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/26/2019] [Indexed: 06/02/2023]
Abstract
Rice is a food crop of global importance, cultivated in diverse agro-climatic zones of the world. However, in the process of domestication many beneficial alleles have been eroded from the gene pool of the rice cultivated globally and eventually has made it vulnerable to a plethora of stresses. In contrast, the wild relatives of rice, despite being agronomically inferior, have inherited a potential of surviving in a range of geographical habitats. These adaptations enrich them with novel traits that upon introgression to modern cultivated varieties offer tremendous potential of increasing yield and adaptability. But, due to the unavailability of their genetic as well as genomic resources, identification and characterisation of these novel beneficial alleles has been a challenging task. Nevertheless, with the unprecedented surge in the area of conservation genomics, researchers have now shifted their focus towards these natural repositories of beneficial traits. Presently, there are several generic and specialized databases harboring genome-wide information on wild species of rice, and are acting as a useful resource for identification of novel genes and alleles, designing of molecular markers, comparative analysis and evolutionary biology studies. In this review, we introduce the key features of these databases focusing on their utility in rice breeding programs.
Collapse
Affiliation(s)
- Richa Kamboj
- National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110012, India
| | - Balwant Singh
- National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110012, India
| | - Tapan Kumar Mondal
- National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110012, India
| | - Deepak Singh Bisht
- National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
29
|
Hazra A, Dasgupta N, Sengupta C, Das S. MIPS: Functional dynamics in evolutionary pathways of plant kingdom. Genomics 2019; 111:1929-1945. [DOI: 10.1016/j.ygeno.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/22/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
30
|
Mukherjee R, Mukherjee A, Bandyopadhyay S, Mukherjee S, Sengupta S, Ray S, Majumder AL. Selective manipulation of the inositol metabolic pathway for induction of salt-tolerance in indica rice variety. Sci Rep 2019; 9:5358. [PMID: 30926863 PMCID: PMC6441109 DOI: 10.1038/s41598-019-41809-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
Halophytes are rich sources of salt stress tolerance genes which have often been utilized for introduction of salt-tolerance character in salt-sensitive plants. In the present study, we overexpressed PcINO1 and PcIMT1 gene(s), earlier characterized in this laboratory from wild halophytic rice Porteresia coarctata, into IR64 indica rice either singly or in combination and assessed their role in conferring salt-tolerance. Homozygous T3/T4 transgenic plants revealed that PcINO1 transformed transgenic rice lines exhibit significantly higher tolerance upto 200 mM or higher salt concentration with negligible compromise in their growth or other physiological parameters compared to the untransformed system grown without stress. The PcIMT1-lines or the double transgenic lines (DC1) having PcINO1 and PcIMT1 introgressed together, were less efficient in such respect. Comparison of inositol and/or pinitol pool in three types of transgenic plants suggests that plants whose inositol production remains uninterrupted under stress by the functional PcINO1 protein, showed normal growth as in the wild-type plants without stress. It is conceivable that inositol itself acts as a stress-ameliorator and/or as a switch for a number of other pathways important for imparting salt-tolerance. Such selective manipulation of the inositol metabolic pathway may be one of the ways to combat salt stress in plants.
Collapse
Affiliation(s)
| | | | | | - Sritama Mukherjee
- Division of Plant Biology, Bose Institute, Kolkata, India
- Department of Botany, Bethune College, Kolkata, India
| | - Sonali Sengupta
- Division of Plant Biology, Bose Institute, Kolkata, India
- School of Plant Environment and Soil Sciences, Lousiana State University Agricultural Center, Lousiana, USA
| | - Sudipta Ray
- Division of Plant Biology, Bose Institute, Kolkata, India
- Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| | | |
Collapse
|
31
|
Botero S, Chiaroni-Clarke R, Simon SM. Escherichia coli as a platform for the study of phosphoinositide biology. SCIENCE ADVANCES 2019; 5:eaat4872. [PMID: 30944849 PMCID: PMC6436935 DOI: 10.1126/sciadv.aat4872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Despite being a minor component of cells, phosphoinositides are essential for eukaryotic membrane biology, serving as markers of organelle identity and involved in several signaling cascades. Their many functions, combined with alternative synthesis pathways, make in vivo study very difficult. In vitro studies are limited by their inability to fully recapitulate the complexities of membranes in living cells. We engineered the biosynthetic pathway for the most abundant phosphoinositides into the bacterium Escherichia coli, which is naturally devoid of this class of phospholipids. These modified E. coli, when grown in the presence of myo-inositol, incorporate phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PI4P), phosphatidylinositol-4,5-bisphosphate (PIP2), and phosphatidylinositol-3,4,5-trisphosphate (PIP3) into their plasma membrane. We tested models of biophysical mechanisms with these phosphoinositides in a living membrane, using our system to evaluate the role of PIP2 in nonconventional protein export of human basic fibroblast growth factor 2. We found that PI alone is sufficient for the process.
Collapse
|
32
|
Basak P, Sangma S, Mukherjee A, Agarwal T, Sengupta S, Ray S, Majumder AL. Functional characterization of two myo-inositol-1-phosphate synthase (MIPS) gene promoters from the halophytic wild rice (Porteresia coarctata). PLANTA 2018; 248:1121-1141. [PMID: 30066217 DOI: 10.1007/s00425-018-2957-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
MAIN CONCLUSION The promoter deletion mutants from second isoform of INO1 (gene-encoding MIPS) from Porteresia coarctata of 932 bp (pPcINO1.2.932) and 793 bp (pPcINO1.2.793) prove to be very efficient as salt/drought stress-inducible promoters, while pPcINO1.2.932 is found to be responsive to cold stress as well. The promoters of the two identified myo-inositol-1-phosphate synthase (INO1) isoforms from salt-tolerant wild rice, Porteresia coarctata (PcINO1.1 and PcINO1.2) have been compared bioinformatically with their counterparts present in the salt-sensitive rice, Oryza sativa. PcINO1.2 promoter was found to be enriched with many abiotic stress-responsive elements, like abscisic acid-responsive elements, MYC-responsive elements, MYB-binding sites, low-temperature stress-responsive elements, and heat-shock elements similar to the ones found in the conserved motifs of the promoters of salt/drought stress-inducible INO1 promoters across Kingdom Planta. To have detailed analysis on the arrangement of cis-acting regulatory elements present in PcINO1 promoters, 5' deletion mutational studies were performed in dicot model plants. Both transient as well as stable transformation methods were used to check the influence of PcINO1 promoter deletion mutants under salt and physiologically drought conditions using β-glucuronidase as the reporter gene. The deletion mutant from the promoter of PcINO1.2 of length 932 bp (pPcINO1.2.932) was found to be significantly upregulated under drought stress and also in cold stress, while another deletion mutant, pPcINO1.2.793 (of 793 bp), was significantly upregulated under salt stress. P. coarctata being a halophytic species, the high inducibility of pPcINO1.2.932 upon exposure to low-temperature stress was an unexpected result.
Collapse
Affiliation(s)
- Papri Basak
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India
| | - Shiny Sangma
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India
- HSSLC Branch, Meghalaya Board of School Education, Tura, West Garo Hills, Shillong, Meghalaya, India
| | - Abhishek Mukherjee
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India
| | - Tanushree Agarwal
- Department of Botany, University of Calcutta, Ballygunge Campus, Kolkata, West Bengal, India
| | - Sonali Sengupta
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India
- School of Plant, Environment and Soil Sciences, Louisiana State University Agricultural Centre, Baton Rouge, LA, 70803, USA
| | - Sudipta Ray
- Department of Botany, University of Calcutta, Ballygunge Campus, Kolkata, West Bengal, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, West Bengal, India.
| |
Collapse
|
33
|
Razali R, Bougouffa S, Morton MJL, Lightfoot DJ, Alam I, Essack M, Arold ST, Kamau AA, Schmöckel SM, Pailles Y, Shahid M, Michell CT, Al-Babili S, Ho YS, Tester M, Bajic VB, Negrão S. The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1402. [PMID: 30349549 PMCID: PMC6186997 DOI: 10.3389/fpls.2018.01402] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/04/2018] [Indexed: 05/19/2023]
Abstract
Solanum pimpinellifolium, a wild relative of cultivated tomato, offers a wealth of breeding potential for desirable traits such as tolerance to abiotic and biotic stresses. Here, we report the genome assembly and annotation of S. pimpinellifolium 'LA0480.' Moreover, we present phenotypic data from one field experiment that demonstrate a greater salinity tolerance for fruit- and yield-related traits in S. pimpinellifolium compared with cultivated tomato. The 'LA0480' genome assembly size (811 Mb) and the number of annotated genes (25,970) are within the range observed for other sequenced tomato species. We developed and utilized the Dragon Eukaryotic Analyses Platform (DEAP) to functionally annotate the 'LA0480' protein-coding genes. Additionally, we used DEAP to compare protein function between S. pimpinellifolium and cultivated tomato. Our data suggest enrichment in genes involved in biotic and abiotic stress responses. To understand the genomic basis for these differences in S. pimpinellifolium and S. lycopersicum, we analyzed 15 genes that have previously been shown to mediate salinity tolerance in plants. We show that S. pimpinellifolium has a higher copy number of the inositol-3-phosphate synthase and phosphatase genes, which are both key enzymes in the production of inositol and its derivatives. Moreover, our analysis indicates that changes occurring in the inositol phosphate pathway may contribute to the observed higher salinity tolerance in 'LA0480.' Altogether, our work provides essential resources to understand and unlock the genetic and breeding potential of S. pimpinellifolium, and to discover the genomic basis underlying its environmental robustness.
Collapse
Affiliation(s)
- Rozaimi Razali
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mitchell J. L. Morton
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Damien J. Lightfoot
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Allan A. Kamau
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sandra M. Schmöckel
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yveline Pailles
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohammed Shahid
- International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Craig T. Michell
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yung Shwen Ho
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vladimir B. Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Division of Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sónia Negrão
- Division of Biological and Environmental Sciences and Engineering, The Bioactives Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
34
|
Al-Suod H, Gadzała-Kopciuch R, Buszewski B. Simultaneous HPLC-ELSD determination of sugars and cyclitols in different parts of Phacelia tanacetifolia Benth. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Singh B, Singh N, Mishra S, Tripathi K, Singh BP, Rai V, Singh AK, Singh NK. Morphological and Molecular Data Reveal Three Distinct Populations of Indian Wild Rice Oryza rufipogon Griff. Species Complex. FRONTIERS IN PLANT SCIENCE 2018; 9:123. [PMID: 29467785 PMCID: PMC5808308 DOI: 10.3389/fpls.2018.00123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/23/2018] [Indexed: 05/17/2023]
Abstract
Wild relatives of crops possess adaptive mutations for agronomically important traits, which could play significant role in crop improvement for sustainable agriculture. However, global climate change and human activities pose serious threats to the natural habitats leading to erosion of genetic diversity of wild rice populations. The purpose of this study was to explore and characterize India's huge untapped wild rice diversity in Oryza rufipogon Griff. species complex from a wide range of ecological niches. We made strategic expeditions around diversity hot spots in 64 districts of nine different agro-climatic zones of the country and collected 418 wild rice accessions. Significant variation was observed among the accessions for 46 morphological descriptors, allowing classification into O. nivara, O. rufipogon, and O. sativa f. spontanea morpho-taxonomic groups. Genome-specific pSINE1 markers confirmed all the accessions having AA genome, which were further classified using ecotype-specific pSINE1 markers into annual, perennial, intermediate, and an unknown type. Principal component analysis revealed continuous variation for the morphological traits in each ecotype group. Genetic diversity analysis based on multi-allelic SSR markers clustered these accessions into three major groups and analysis of molecular variance for nine agro-climatic zones showed that 68% of the genetic variation was inherent amongst individuals while only 11% of the variation separated the zones, though there was significant correlation between genetic and spatial distances of the accessions. Model based population structure analysis using genome wide bi-allelic SNP markers revealed three sub-populations designated 'Pro-Indica,' 'Pro-Aus,' and 'Mid-Gangetic,' which showed poor correspondence with the morpho-taxonomic classification or pSINE1 ecotypes. There was Pan-India distribution of the 'Pro-Indica' and 'Pro-Aus' sub-populations across agro-climatic zones, indicating a more fundamental grouping based on the ancestry closely related to 'Indica' and 'Aus' groups of rice cultivars. The Pro-Indica population has substantial presence in the Eastern Himalayan Region and Lower Gangetic Plains, whereas 'Pro-Aus' sub-population was predominant in the Upper Gangetic Plains, Western Himalayan Region, Gujarat Plains and Hills, and Western Coastal Plains. In contrast 'Mid-Gangetic' population was largely concentrated in the Mid Gangetic Plains. The information presented here will be useful in the utilization of wild rice resources for varietal improvement.
Collapse
Affiliation(s)
- Balwant Singh
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Nisha Singh
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Shefali Mishra
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Kabita Tripathi
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Bikram P. Singh
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ashok K. Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
36
|
Marathe A, Krishnan V, Vinutha T, Dahuja A, Jolly M, Sachdev A. Exploring the role of Inositol 1,3,4-trisphosphate 5/6 kinase-2 (GmITPK2) as a dehydration and salinity stress regulator in Glycine max (L.) Merr. through heterologous expression in E. coli. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:331-341. [PMID: 29289899 DOI: 10.1016/j.plaphy.2017.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 05/26/2023]
Abstract
Phytic acid (PA) is implicative in a spectrum of biochemical and physiological processes involved in plant stress response. Inositol 1,3,4, Tris phosphate 5/6 kinase (ITPK), a polyphosphate kinase that converts Inositol 1,3,4 trisphosphate to Inositol 1,3,4,5/6 tetra phosphate, averting the inositol phosphate pool towards PA biosynthesis, is a key regulator that exists in four different isoforms in soybean. In the present study, in-silico analysis of the promoter region of ITPKs was done and among the four isoforms, promoter region of GmITPK2 showed the presence of two MYB binding elements for drought inducibility and one for ABA response. Expression profiling through qRT-PCR under drought and salinity stress showed higher expression of GmITPK2 isoform compared to the other members of the family. The study revealed GmITPK2 as an early dehydration responsive gene which is also induced by dehydration and exogenous treatment with ABA. To evaluate the osmo-protective role of GmITPK2, attempts were made to assess the bacterial growth on Luria Broth media containing 200 mM NaCl, 16% PEG and 100 μM ABA, individually. The transformed E. coli BL21 (DE3) cells harbouring the GmITPK2 gene depicted better growth on the media compared to the bacterial cells containing the vector alone. Similarly, the growth of the transformed cells in the liquid media containing 200 mM NaCl, 16% PEG and 100 μM ABA showed higher absorbance at 600 nm compared to control, at different time intervals. The GmITPK2 recombinant E. coli cells showing tolerance to drought and salinity thus demonstrated the functional redundancy of the gene across taxa. The purity and specificity of the recombinant protein was assessed and confirmed through PAGE showing a band of ∼35 kDa on western blotting using Anti- Penta His- HRP conjugate antibody. To the best of our knowledge, the present study is the first report exemplifying the role of GmITPK2 isoform in drought and salinity tolerance in soybean.
Collapse
Affiliation(s)
| | - Veda Krishnan
- Division of Biochemistry, ICAR - IARI, New Delhi, India
| | - T Vinutha
- Division of Biochemistry, ICAR - IARI, New Delhi, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR - IARI, New Delhi, India
| | - Monica Jolly
- Division of Biochemistry, ICAR - IARI, New Delhi, India
| | | |
Collapse
|
37
|
Al-Suod H, Ratiu IA, Ligor M, Ligor T, Buszewski B. Determination of sugars and cyclitols isolated from various morphological parts of Medicago sativa L. J Sep Sci 2018; 41:1118-1128. [PMID: 29250921 DOI: 10.1002/jssc.201701147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/15/2017] [Accepted: 12/02/2017] [Indexed: 12/13/2022]
Abstract
Plant research interest has increased all over the world, and a large body of evidence has been collected to show the huge potential of medicinal plants in various disease treatments. Medicago sativa L., known as alfalfa, is a rich source of biologically active components and secondary metabolites and was frequently used from the ancient times both as fodder crop and as a traditional medicine in the treatment of various diseases. Cyclitols, naturally occurring in this plant, have a particular interest for us due to their significant anti-diabetic, antioxidant, anti-inflammatory, and anti-cancer properties. In the present study we revealed the isolation, the identification, and the quantification of some cyclitols and sugars extracted from different morphological parts of alfalfa plant. Soxhlet extraction and solid phase extraction were used as extraction and purification methods, while for the analyses derivatization followed by gas chromatography with mass spectrometry was involved. The obtained results showed significant differences in the quantities of cyclitols and sugars found in the investigated morphological parts, ranging between 0.02 and 13.86 mg/g of plant in case of cyclitols, and in the range of 0.09 and 40.09 mg/g of plant for sugars. However, roots have the richest part of cyclitols and sugars in contrast to the leaves.
Collapse
Affiliation(s)
- Hossam Al-Suod
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Ileana-Andreea Ratiu
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Romania
| | - Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
38
|
Basak P, Maitra-Majee S, Das JK, Mukherjee A, Ghosh Dastidar S, Pal Choudhury P, Lahiri Majumder A. An evolutionary analysis identifies a conserved pentapeptide stretch containing the two essential lysine residues for rice L-myo-inositol 1-phosphate synthase catalytic activity. PLoS One 2017; 12:e0185351. [PMID: 28950028 PMCID: PMC5614600 DOI: 10.1371/journal.pone.0185351] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022] Open
Abstract
A molecular evolutionary analysis of a well conserved protein helps to determine the essential amino acids in the core catalytic region. Based on the chemical properties of amino acid residues, phylogenetic analysis of a total of 172 homologous sequences of a highly conserved enzyme, L-myo-inositol 1-phosphate synthase or MIPS from evolutionarily diverse organisms was performed. This study revealed the presence of six phylogenetically conserved blocks, out of which four embrace the catalytic core of the functional protein. Further, specific amino acid modifications targeting the lysine residues, known to be important for MIPS catalysis, were performed at the catalytic site of a MIPS from monocotyledonous model plant, Oryza sativa (OsMIPS1). Following this study, OsMIPS mutants with deletion or replacement of lysine residues in the conserved blocks were made. Based on the enzyme kinetics performed on the deletion/replacement mutants, phylogenetic and structural comparison with the already established crystal structures from non-plant sources, an evolutionarily conserved peptide stretch was identified at the active pocket which contains the two most important lysine residues essential for catalytic activity.
Collapse
Affiliation(s)
- Papri Basak
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, India
| | - Susmita Maitra-Majee
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, India
| | - Jayanta Kumar Das
- Applied Statistics Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Abhishek Mukherjee
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, India
| | | | | | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
39
|
Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Sci Rep 2017; 7:9624. [PMID: 28852001 PMCID: PMC5575116 DOI: 10.1038/s41598-017-09241-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/17/2017] [Indexed: 01/08/2023] Open
Abstract
Crop wild relatives harbor exotic and novel genetic resources, which hold great potential for crop improvement. Ipomoea imperati is a wild diploid relative of sweet potato with the capability of high salinity tolerance. We compared the transcriptomes of I. imperati under salt stress vs. control to identify candidate genes and pathways involved in salt response. De novo assembly produced 67,911 transcripts with a high depth of coverage. A total of 39,902 putative genes were assigned annotations, and 936 and 220 genes involved in salt response in roots and leaves, respectively. Functional analysis indicated a whole system response during salt stress in I. imperati, which included four metabolic processes: sensory initiation, transcriptional reprogramming, cellular protein component change, and cellular homeostasis regulation. We identified a number of candidate genes involved in the ABA signaling pathway, as well as transcription factors, transporters, antioxidant enzymes, and enzymes associated with metabolism of synthesis and catalysis. Furthermore, two membrane transporter genes, including vacuole cation/proton exchanger and inositol transporter, were considered to play important roles in salt tolerance. This study provided valuable information not only for understanding the genetic basis of ecological adaptation but also for future application in sweet potato and other crop improvements.
Collapse
|
40
|
Li Q, Yang A, Zhang WH. Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress. BMC PLANT BIOLOGY 2017; 17:141. [PMID: 28814283 PMCID: PMC5559854 DOI: 10.1186/s12870-017-1089-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/07/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Moderate salt stress, which often occurs in most saline agriculture land, suppresses crop growth and reduces crop yield. Rice, as an important food crop, is sensitive to salt stress and rice genotypes differ in their tolerance to salt stress. Despite extensive studies on salt tolerance of rice, a few studies have specifically investigated the mechanism by which rice plants respond and tolerate to moderate salt stress. Two rice genotypes differing in their tolerance to saline-alkaline stress, Dongdao-4 and Jigeng-88, were used to explore physiological and molecular mechanisms underlying tolerance to moderate salt stress. RESULTS Dongdao-4 plants displayed higher biomass, chlorophyll contents, and photosynthetic rates than Jigeng-88 under conditions of salt stress. No differences in K+ concentrations, Na+ concentrations and Na+/K+ ratio in shoots between Dongdao-4 and Jigeng-88 plants were detected when challenged by salt stress, suggesting that Na+ toxicity may not underpin the greater tolerance of Dongdao-4 to salt stress than that of Jigeng-88. We further demonstrated that Dongdao-4 plants had greater capacity to accumulate soluble sugars and proline (Pro) than Jigeng-88, thus conferring greater tolerance of Dongdao-4 to osmotic stress than Jigeng-88. Moreover, Dongdao-4 suffered from less oxidative stress than Jigeng-88 under salt stress due to higher activities of catalase (CAT) in Dongdao-4 seedlings. Finally, RNA-seq revealed that Dongdao-4 and Jigeng-88 differed in their gene expression in response to salt stress, such that salt stress changed expression of 456 and 740 genes in Dongdao-4 and Jigeng-88, respectively. CONCLUSION Our results revealed that Dongdao-4 plants were capable of tolerating to salt stress by enhanced accumulation of Pro and soluble sugars to tolerate osmotic stress, increasing the activities of CAT to minimize oxidative stress, while Na+ toxicity is not involved in the greater tolerance of Dongdao-4 to moderate salt stress.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 People’s Republic of China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
41
|
Menguer PK, Sperotto RA, Ricachenevsky FK. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance. Genet Mol Biol 2017; 40:238-252. [PMID: 28323300 PMCID: PMC5452139 DOI: 10.1590/1678-4685-gmb-2016-0093] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
Oryza sativa, the common cultivated rice, is one of the most important crops for human consumption, but production is increasingly threatened by abiotic stresses. Although many efforts have resulted in breeding rice cultivars that are relatively tolerant to their local environments, climate changes and population increase are expected to soon call for new, fast generation of stress tolerant rice germplasm, and current within-species rice diversity might not be enough to overcome such needs. The Oryza genus contains other 23 wild species, with only Oryza glaberrima being also domesticated. Rice domestication was performed with a narrow genetic diversity, and the other Oryza species are a virtually untapped genetic resource for rice stress tolerance improvement. Here we review the origin of domesticated Oryza sativa from wild progenitors, the ecological and genomic diversity of the Oryza genus, and the stress tolerance variation observed for wild Oryza species, including the genetic basis underlying the tolerance mechanisms found. The summary provided here is important to indicate how we should move forward to unlock the full potential of these germplasms for rice improvement.
Collapse
Affiliation(s)
- Paloma Koprovski Menguer
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Raul Antonio Sperotto
- Setor de Genética e Biologia Molecular do Museu de Ciências Naturais (MCN), Centro de Ciências Biológicas e da Saúde (CCBS), Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Centro Universitário UNIVATES, Lajeado, RS, Brazil
| | - Felipe Klein Ricachenevsky
- Programa de Pós-Graduação em Agrobiologia, Departamento de Biologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| |
Collapse
|
42
|
Le Quéré A, Tak N, Gehlot HS, Lavire C, Meyer T, Chapulliot D, Rathi S, Sakrouhi I, Rocha G, Rohmer M, Severac D, Filali-Maltouf A, Munive JA. Genomic characterization of Ensifer aridi, a proposed new species of nitrogen-fixing rhizobium recovered from Asian, African and American deserts. BMC Genomics 2017; 18:85. [PMID: 28088165 PMCID: PMC5237526 DOI: 10.1186/s12864-016-3447-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Background Nitrogen fixing bacteria isolated from hot arid areas in Asia, Africa and America but from diverse leguminous plants have been recently identified as belonging to a possible new species of Ensifer (Sinorhizobium). In this study, 6 strains belonging to this new clade were compared with Ensifer species at the genome-wide level. Their capacities to utilize various carbon sources and to establish a symbiotic interaction with several leguminous plants were examined. Results Draft genomes of selected strains isolated from Morocco (Merzouga desert), Mexico (Baja California) as well as from India (Thar desert) were produced. Genome based species delineation tools demonstrated that they belong to a new species of Ensifer. Comparison of its core genome with those of E. meliloti, E. medicae and E. fredii enabled the identification of a species conserved gene set. Predicted functions of associated proteins and pathway reconstruction revealed notably the presence of transport systems for octopine/nopaline and inositol phosphates. Phenotypic characterization of this new desert rhizobium species showed that it was capable to utilize malonate, to grow at 48 °C or under high pH while NaCl tolerance levels were comparable to other Ensifer species. Analysis of accessory genomes and plasmid profiling demonstrated the presence of large plasmids that varied in size from strain to strain. As symbiotic functions were found in the accessory genomes, the differences in symbiotic interactions between strains may be well related to the difference in plasmid content that could explain the different legumes with which they can develop the symbiosis. Conclusions The genomic analysis performed here confirms that the selected rhizobial strains isolated from desert regions in three continents belong to a new species. As until now only recovered from such harsh environment, we propose to name it Ensifer aridi. The presented genomic data offers a good basis to explore adaptations and functionalities that enable them to adapt to alkalinity, low water potential, salt and high temperature stresses. Finally, given the original phylogeographic distribution and the different hosts with which it can develop a beneficial symbiotic interaction, Ensifer aridi may provide new biotechnological opportunities for degraded land restoration initiatives in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3447-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antoine Le Quéré
- Laboratoire de Microbiologie et Biologie Moléculaire, Université Mohammed V, Av Ibn Batouta BP 1014, Rabat, Morocco. .,IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes UMR113, IRD/INRA/CIRAD/Montpellier SupAgro/Université de Montpellier, TA A82/J, Campus International de Baillarguet, 34398, Montpellier, Cedex 5, France.
| | - Nisha Tak
- BNF & Microbial Genomics Lab, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Hukam Singh Gehlot
- BNF & Microbial Genomics Lab, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Celine Lavire
- Université de Lyon, F69622, Lyon, France.,CNRS, UMR5557, Ecologie Microbienne and INRA, UMR1418, Université Lyon 1, Villeurbanne, France
| | - Thibault Meyer
- Université de Lyon, F69622, Lyon, France.,CNRS, UMR5557, Ecologie Microbienne and INRA, UMR1418, Université Lyon 1, Villeurbanne, France
| | - David Chapulliot
- Université de Lyon, F69622, Lyon, France.,CNRS, UMR5557, Ecologie Microbienne and INRA, UMR1418, Université Lyon 1, Villeurbanne, France
| | - Sonam Rathi
- BNF & Microbial Genomics Lab, Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | - Ilham Sakrouhi
- Laboratoire de Microbiologie et Biologie Moléculaire, Université Mohammed V, Av Ibn Batouta BP 1014, Rabat, Morocco
| | - Guadalupe Rocha
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. IC10, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | - Marine Rohmer
- Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, Montpellier, Cedex, 34 094, France
| | - Dany Severac
- Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, Montpellier, Cedex, 34 094, France
| | - Abdelkarim Filali-Maltouf
- Laboratoire de Microbiologie et Biologie Moléculaire, Université Mohammed V, Av Ibn Batouta BP 1014, Rabat, Morocco
| | - Jose-Antonio Munive
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif. IC10, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| |
Collapse
|
43
|
Liu Q. Improvement for agronomically important traits by gene engineering in sweetpotato. BREEDING SCIENCE 2017; 67:15-26. [PMID: 28465664 PMCID: PMC5407918 DOI: 10.1270/jsbbs.16126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/24/2016] [Indexed: 05/05/2023]
Abstract
Sweetpotato is the seventh most important food crop in the world. It is mainly used for human food, animal feed, and for manufacturing starch and alcohol. This crop, a highly heterozygous, generally self-incompatible, outcrossing polyploidy, poses numerous challenges for the conventional breeding. Its productivity and quality are often limited by abiotic and biotic stresses. Gene engineering has been shown to have the great potential for improving the resistance to these stresses as well as the nutritional quality of sweetpotato. To date, an Agrobacterium tumefaciens-mediated transformation system has been developed for a wide range of sweetpotato genotypes. Several genes associated with salinity and drought tolerance, diseases and pests resistance, and starch, carotenoids and anthocyanins biosynthesis have been isolated and characterized from sweetpotato. Gene engineering has been used to improve abiotic and biotic stresses resistance and quality of this crop. This review summarizes major research advances made so far in improving agronomically important traits by gene engineering in sweetpotato and suggests future prospects for research in this field.
Collapse
Affiliation(s)
- Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University,
Beijing 100193,
China
| |
Collapse
|
44
|
Quan R, Wang J, Hui J, Bai H, Lyu X, Zhu Y, Zhang H, Zhang Z, Li S, Huang R. Improvement of Salt Tolerance Using Wild Rice Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:2269. [PMID: 29387076 PMCID: PMC5776132 DOI: 10.3389/fpls.2017.02269] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Salt stress causes significant reductions in rice production worldwide; thus, improving salt tolerance is a promising approach to meet the increasing food demand. Wild rice germplasm is considered a valuable genetic resource for improving rice cultivars. However, information regarding the improvement of salt tolerance in cultivated rice using wild rice genes is limited. In this study, we identified a salt-tolerant line Dongxiang/Ningjing 15 (DJ15) under salt-stress field conditions from the population of a salt tolerant Dongxiang wild rice × a cultivated rice variety Ningjing16 (NJ16). Genomic resequencing analysis of NJ16, DJ15 and Dongxiang wild rice revealed that the introgressed genomic fragments were unevenly distributed over the 12 chromosomes (Chr.) and mainly identified on Chr. 6, 7, 10, and 11. Using quantitative trait locus (QTL) mapping, we found 9 QTL for salt tolerance (qST) at the seedling stage located on Chr. 1, 3, 4, 5, 6, 8, and 10. In addition, sequence variant analysis within the QTL regions demonstrated that SKC1/HKT8/HKT1;5 and HAK6 transporters along with numerous transcriptional factors were the candidate genes for the salt tolerant QTL. The DJ15/Koshihikari recombinant inbred lines that contained both qST1.2 and qST6, two QTL with the highest effect for salt tolerance, were more tolerant than the parental lines under salt-stress field conditions. Furthermore, the qST6 near-isogenic lines with IR29 background were more tolerant than IR29, indicating that qST1.2 and qST6 could improve salt tolerance in rice. Overall, our study indicates that wild rice genes could markedly improve the salt tolerance of cultivated rice.
Collapse
Affiliation(s)
- Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Ruidang Quan
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Jian Hui
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Haibo Bai
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xuelian Lyu
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yongxing Zhu
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Shuhua Li
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- Shuhua Li
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- Rongfeng Huang
| |
Collapse
|
45
|
Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India. RICE (NEW YORK, N.Y.) 2016; 9:1. [PMID: 26743769 PMCID: PMC4705060 DOI: 10.1186/s12284-015-0073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
46
|
Mishra S, Singh B, Panda K, Singh BP, Singh N, Misra P, Rai V, Singh NK. Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm. RICE (NEW YORK, N.Y.) 2016; 35:2295-2308. [PMID: 27025598 DOI: 10.1007/s00299-016-2035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/26/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rice is one of the most important crops for global food security but its productivity is adversely affected by salt stress prevalent in about 30 % of the cultivated land. For developing salt-tolerant rice varieties through conventional breeding or biotechnological interventions, there is an urgent need to identify natural allelic variants that may confer salt tolerance. Here, 299 wild rice accessions collected from different agro-climatic regions of India were evaluated during growth under salt stress. Of these 95 representative accessions were sequenced for members of HKT ion transporter family genes by employing Ion Torrent PGM sequencing platform. RESULTS Haplotype analysis revealed haplotypes H5 and H1 of HKT1;5 and HKT2;3, respectively associated with high salinity tolerance. This is the first study of allele mining of eight members of HKT gene family from Indian wild rice reporting a salt tolerant allele of HKT2;3. HKT1;5 also showed a salt tolerant allele from wild rice. Phylogenetic analysis based on the nucleotide sequences showed different grouping of the HKT family genes as compared to the prevailing protein sequence based classification. CONCLUSIONS The salt tolerant alleles of the HKT genes from wild rice may be introgressed into modern high yielding cultivars to widen the existing gene pool and enhance rice production in the salt affected areas.
Collapse
Affiliation(s)
- Shefali Mishra
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kabita Panda
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Bikram Pratap Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nisha Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Pragati Misra
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
47
|
Mishra S, Singh B, Panda K, Singh BP, Singh N, Misra P, Rai V, Singh NK. Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm. RICE (NEW YORK, N.Y.) 2016; 9:15. [PMID: 27025598 PMCID: PMC4811800 DOI: 10.1186/s12284-016-0083-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/08/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rice is one of the most important crops for global food security but its productivity is adversely affected by salt stress prevalent in about 30 % of the cultivated land. For developing salt-tolerant rice varieties through conventional breeding or biotechnological interventions, there is an urgent need to identify natural allelic variants that may confer salt tolerance. Here, 299 wild rice accessions collected from different agro-climatic regions of India were evaluated during growth under salt stress. Of these 95 representative accessions were sequenced for members of HKT ion transporter family genes by employing Ion Torrent PGM sequencing platform. RESULTS Haplotype analysis revealed haplotypes H5 and H1 of HKT1;5 and HKT2;3, respectively associated with high salinity tolerance. This is the first study of allele mining of eight members of HKT gene family from Indian wild rice reporting a salt tolerant allele of HKT2;3. HKT1;5 also showed a salt tolerant allele from wild rice. Phylogenetic analysis based on the nucleotide sequences showed different grouping of the HKT family genes as compared to the prevailing protein sequence based classification. CONCLUSIONS The salt tolerant alleles of the HKT genes from wild rice may be introgressed into modern high yielding cultivars to widen the existing gene pool and enhance rice production in the salt affected areas.
Collapse
Affiliation(s)
- Shefali Mishra
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kabita Panda
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Bikram Pratap Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nisha Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Pragati Misra
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
48
|
Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q. A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:592-602. [PMID: 26011089 PMCID: PMC11389020 DOI: 10.1111/pbi.12402] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/20/2015] [Accepted: 04/16/2015] [Indexed: 05/06/2023]
Abstract
Myo-inositol-1-phosphate synthase (MIPS) is a key rate limiting enzyme in myo-inositol biosynthesis. The MIPS gene has been shown to improve tolerance to abiotic stresses in several plant species. However, its role in resistance to biotic stresses has not been reported. In this study, we found that expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA) and stem nematodes. Its overexpression significantly enhanced stem nematode resistance as well as salt and drought tolerance in transgenic sweet potato under field conditions. Transcriptome and real-time quantitative PCR analyses showed that overexpression of IbMIPS1 up-regulated the genes involved in inositol biosynthesis, phosphatidylinositol (PI) and ABA signalling pathways, stress responses, photosynthesis and ROS-scavenging system under salt, drought and stem nematode stresses. Inositol, inositol-1,4,5-trisphosphate (IP3 ), phosphatidic acid (PA), Ca(2+) , ABA, K(+) , proline and trehalose content was significantly increased, whereas malonaldehyde (MDA), Na(+) and H2 O2 content was significantly decreased in the transgenic plants under salt and drought stresses. After stem nematode infection, the significant increase of inositol, IP3 , PA, Ca(2+) , ABA, callose and lignin content and significant reduction of MDA content were found, and a rapid increase of H2 O2 levels was observed, peaked at 1 to 2 days and thereafter declined in the transgenic plants. This study indicates that the IbMIPS1 gene has the potential to be used to improve the resistance to biotic and abiotic stresses in plants.
Collapse
Affiliation(s)
- Hong Zhai
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Feibing Wang
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Zengzhi Si
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Jinxi Huo
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Lei Xing
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Yanyan An
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Shaozhen He
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Kusuda H, Koga W, Kusano M, Oikawa A, Saito K, Hirai MY, Yoshida KT. Ectopic expression of myo-inositol 3-phosphate synthase induces a wide range of metabolic changes and confers salt tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 232:49-56. [PMID: 25617323 DOI: 10.1016/j.plantsci.2014.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 05/06/2023]
Abstract
Salt stress is an important factor that limits crop production worldwide. The salt tolerance of plants is a complex biological process mediated by changes in gene expression and metabolite composition. The enzyme myo-inositol 3-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, and overexpression of the MIPS gene enhances salt stress tolerance in several plant species. In this study, we performed metabolite profiling of both MIPS-overexpressing and wild-type rice. The enhanced salt stress tolerance of MIPS-overexpressing plants was clear based on growth and the metabolites under salt stress. We found that constitutive overexpression of the rice MIPS gene resulted in a wide range of metabolic changes. This study demonstrates for the first time that overexpression of the MIPS gene increases various metabolites responsible for protecting plants from abiotic stress. Activation of both basal metabolism, such as glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, and inositol metabolism is induced in MIPS-overexpressing plants. We discuss the relationship between the metabolic changes and the improved salt tolerance observed in transgenic rice.
Collapse
Affiliation(s)
- Hiroki Kusuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Wataru Koga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan; Faculty of Agriculture, Yamagata University, Tsuruoka-shi, Yamagata, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | | | - Kaoru T Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
50
|
Bose J, Rodrigo-Moreno A, Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1241-57. [PMID: 24368505 DOI: 10.1093/jxb/ert430] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Halophytes are defined as plants that are adapted to live in soils containing high concentrations of salt and benefiting from it, and thus represent an ideal model to understand complex physiological and genetic mechanisms of salinity stress tolerance. It is also known that oxidative stress signalling and reactive oxygen species (ROS) detoxification are both essential components of salinity stress tolerance mechanisms. This paper comprehensively reviews the differences in ROS homeostasis between halophytes and glycophytes in an attempt to answer the questions of whether stress-induced ROS production is similar between halophytes and glycophytes; is the superior salinity tolerance in halophytes attributed to higher antioxidant activity; and is there something special about the specific 'pool' of enzymatic and non-enzymatic antioxidants in halophytes. We argue that truly salt-tolerant species possessing efficient mechanisms for Na(+) exclusion from the cytosol may not require a high level of antioxidant activity, as they simply do not allow excessive ROS production in the first instance. We also suggest that H2O2 'signatures' may operate in plant signalling networks, in addition to well-known cytosolic calcium 'signatures'. According to the suggested concept, the intrinsically higher superoxide dismutase (SOD) levels in halophytes are required for rapid induction of the H2O2 'signature', and to trigger a cascade of adaptive responses (both genetic and physiological), while the role of other enzymatic antioxidants may be in decreasing the basal levels of H2O2, once the signalling has been processed. Finally, we emphasize the importance of non-enzymatic antioxidants as the only effective means to prevent detrimental effects of hydroxyl radicals on cellular structures.
Collapse
Affiliation(s)
- Jayakumar Bose
- School of Agricultural Science and Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | | | | |
Collapse
|