1
|
Rastar-Tangeten M, Mader M, Schmiedel S, Weidemann S, Chalissery S, Kempski J, Staufenberger T, Mazaheri O, Brandner JM, Addo MM, Ackermann C, Wolski A, Reucher S, Wenzel J, Lütgehetmann M, Schemmerer M, Schulze Zur Wiesch J, Pischke S. Lack of evidence for HEV infection in Baltic sea mussels (Mytilidae). BMC Infect Dis 2025; 25:355. [PMID: 40082752 PMCID: PMC11908098 DOI: 10.1186/s12879-025-10727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND AND AIMS Hepatitis E virus (HEV), similar to hepatitis A virus (HAV), has been linked to cases associated with mussel consumption, and several studies have detected HEV in commercially available mussels. While extensive data exists on HEV contamination in mussels from tropical regions, the Mediterranean Sea, and the North Sea, there is a lack of information regarding the potential risk posed by common mussels (Mytilidae) from the Baltic Sea. Furthermore, no experimental studies have investigated the ability of Baltic Sea mussels to be infected with HEV. MATERIAL AND METHODS Healthcare workers (n = 447) from the University Medical Center Hamburg Eppendorf, Germany, were surveyed regarding their mussel consumption habits and tested for anti-HEV IgG using a commercially available assay. Commercially sourced Baltic Sea Mytilidae, obtained from local retailers, were tested for HEV using a validated PCR method. Additionally, 50 live Mytilidae were experimentally spiked with HEV, followed by dissection and separate PCR analysis of the gastrointestinal tract, gonads, and muscle tissue. RESULTS There was no significant difference in the likelihood of anti-HEV IgG positivity between individuals who frequently consumed mussels and those who did not. None of the 40 commercial mussel samples tested were positive for HEV. HEV RNA was detected in the gastrointestinal tract of experimentally exposed Mytilidae specimen but not in their gonads or muscle tissue. It was observed that HEV RNA persisted in the gastrointestinal tract for more than 14 days but not beyond 21 days. DISCUSSION This study provides no evidence of HEV contamination in commercially sourced Baltic Sea mussels, as all tested samples were negative for HEV RNA. Moreover, no significant association was observed between mussel consumption and anti-HEV IgG positivity among healthcare workers. Experimental exposure revealed that HEV RNA can persist in the gastrointestinal tract of Baltic Sea mussels for over 16 days but less than 24 days, while no viral presence was detected in the gonad or muscle tissue. These findings suggest a minimal risk of HEV transmission through mussels from the Baltic Sea but highlight the need for further studies to understand their role in HEV ecology.
Collapse
Affiliation(s)
- M Rastar-Tangeten
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Mader
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Partner Site, Hamburg, Germany
| | - S Schmiedel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Chalissery
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Kempski
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - O Mazaheri
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J M Brandner
- Geschäftsbereich Sicherheit & Compliance, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M M Addo
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Partner Site, Hamburg, Germany
| | - C Ackermann
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Wolski
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Reucher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Wenzel
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, Regensburg, Germany
| | - M Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Partner Site, Hamburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Schemmerer
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Medical Center Regensburg, Regensburg, Germany
| | - J Schulze Zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Partner Site, Hamburg, Germany
| | - S Pischke
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Partner Site, Hamburg, Germany.
| |
Collapse
|
2
|
Figueiredo AS, Negreiros IR, do Nascimento E Silva A, Salgado CRS, Dos Santos NL, Pinto MA, de Carvalho Neta AV, Leite JPG, Cantelli CP. Detection of Rocahepevirus ratti in Bivalve Mollusks from São Luís Island, Maranhão, Brazil: A Potential Transmission Route of an Emerging Zoonotic Pathogen? FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:11. [PMID: 39754637 DOI: 10.1007/s12560-024-09624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
The attempt to investigate hepatitis E virus (HEV) contamination in naturally growing mangrove bivalve mollusks captured for local sale in a touristic area of Maranhão state in Brazil revealed the detection of rat hepatitis E virus (ratHEV). Using international standard protocols for processing and nucleic acid extraction, we analyzed 89 bivalve samples (Mytella falcata and Crassostrea rhizophorae) with two broadly reactive assays: heminested pan-Hepeviridae (ORF-1) and probe-based HEV-1 to HEV-4 (ORF-2/ORF-3). Heminested reactions presented 2 (2.2%) amplifications of the expected size. Nucleotide identities ranged from 86.6 to 89.0% with ratHEV isolates from wild rats, pigs, one human case and sewage reported in different countries. Regarding the phylogenetic tree, the sequences grouped with genotype HEV-C1. This first report of ratHEV detection in bivalve mollusks may be a starting point for further research on virus variability, distribution, host range and especially the possible role of contaminated shellfish as a vehicle for ratHEV transmission.
Collapse
Affiliation(s)
- Andreza Soriano Figueiredo
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| | | | - Aldaleia do Nascimento E Silva
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Caroline Roberta Soares Salgado
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Natália Lourenço Dos Santos
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Marcelo Alves Pinto
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | | | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Carina Pacheco Cantelli
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Rajendiran S, Li Ping W, Veloo Y, Syed Abu Thahir S. Awareness, knowledge, disease prevention practices, and immunization attitude of hepatitis E virus among food handlers in Klang Valley, Malaysia. Hum Vaccin Immunother 2024; 20:2318133. [PMID: 38433096 PMCID: PMC10913695 DOI: 10.1080/21645515.2024.2318133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
Concern about the zoonotic Hepatitis E virus (HEV) is rising. Since, food handlers are at greater risk in contracting HEV, the present study aims to determine awareness, knowledge, prevention practices against HEV, and immunization attitudes. A cross sectional study was conducted among 400 food handlers in Klang Valley, Malaysia from December 2021 to March 2022. A structured questionnaire was employed for data collection and analysis with Statistical Package for Social Science (SPSS) version 29. Approximately 4.5% of the respondents (18) reported having heard of HEV, while the median scores for the knowledge and practice domains were 0/10 and 1/5, respectively. A total of 316 (79%) respondents expressed willingness to obtain vaccination if made available. This study also found that those respondents who completed their tertiary education were significantly possessed better knowledge of the disease [odd ratio (OR) = 8.95, and 95% confidence interval (CI) 4.98-16.10]. Respondents with HEV awareness reported considerably better practices (OR = 8.24, 95% CI 1.72-39.63). Food handlers with one to five years of experience in the industry expressed notable willingness to take vaccination (OR = 7.71, 95% CI 1.79-33.18). Addressing poor HEV awareness and knowledge and poor practices against the disease is crucial in enlightening the policy makers about awareness among food handlers and general population. Nonetheless, a good immunization attitude, significant acceptance toward vaccination even with the vaccine being unavailable in Malaysia, and limited awareness of HEV highlight a promising development.
Collapse
Affiliation(s)
- Sakshaleni Rajendiran
- Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam, Malaysia
| | - Wong Li Ping
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Yuvaneswary Veloo
- Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam, Malaysia
| | - Syahidiah Syed Abu Thahir
- Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam, Malaysia
| |
Collapse
|
4
|
La Bella G, Basanisi MG, Nobili G, D’Antuono AM, Suffredini E, La Salandra G. Duplex Droplet Digital PCR Assay for Quantification of Hepatitis E Virus in Food. Viruses 2024; 16:413. [PMID: 38543778 PMCID: PMC10975721 DOI: 10.3390/v16030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 05/23/2024] Open
Abstract
Hepatitis E virus (HEV) represents an emerging risk in industrialized countries where the consumption of contaminated food plays a pivotal role. Quantitative real-time RT-PCR (RT-qPCR) is one of the most suitable methods for the detection and quantification of viruses in food. Nevertheless, quantification using RT-qPCR has limitations. Droplet digital PCR (ddPCR) provides the precise quantification of nucleic acids without the need for a standard curve and a reduction in the effect on virus quantification due to the presence of inhibitors. The objectives of the present work were (i) to develop a method for the absolute quantification of HEV in swine tissues based on ddPCR technology and provide internal process control for recovery assessment and (ii) to evaluate the performance of the method by analyzing a selection of naturally contaminated wild boar muscle samples previously tested using RT-qPCR. The method was optimized using a set of in vitro synthesized HEV RNA and quantified dsDNA. The limit of detection of the developed ddPCR assay was 0.34 genome copies/µL. The analysis of the wild boar samples confirmed the validity of the ddPCR assay. The duplex ddPCR method showed no reduction in efficiency compared to individual assays. The method developed in the present study could represent a sensitive assay for the detection and absolute quantification of HEV RNA in food samples with the advantage of presenting the co-amplification of internal process control.
Collapse
Affiliation(s)
- Gianfranco La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy (G.N.); (A.M.D.); (G.L.S.)
| | - Maria Grazia Basanisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy (G.N.); (A.M.D.); (G.L.S.)
| | - Gaia Nobili
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy (G.N.); (A.M.D.); (G.L.S.)
| | - Anna Mattea D’Antuono
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy (G.N.); (A.M.D.); (G.L.S.)
| | - Elisabetta Suffredini
- Department of Food Safety Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Giovanna La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy (G.N.); (A.M.D.); (G.L.S.)
| |
Collapse
|
5
|
Capai L, Masse S, Hozé N, Decarreaux D, Canarelli J, Simeoni MH, de Lamballerie X, Falchi A, Charrel R. Seroprevalence of anti-HEV IgG in children: very early exposure in young children in a hyperendemic region. Front Public Health 2023; 11:1293575. [PMID: 38026418 PMCID: PMC10680972 DOI: 10.3389/fpubh.2023.1293575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background and objectives Hepatitis E virus (HEV) can be considered an emerging zoonotic pathogen and is an important cause of acute viral hepatitis in high-income countries. Corsica has been identified as a hyperendemic region for HEV. We aimed to characterize the prevalence of IgG among children and estimate the annual force of infection of HEV. Methods From April 2020 to June 2021, we collected 856 "residual sera" in 13 medical biology laboratories. Sera were tested using the Wantaï HEV IgG assay. Data were weighted according to the distribution by sex and age of the real Corsican population. Serocatalytic models were applied to assess the annual force of infection of HEV. Results The weighted seroprevalence was 30.33% [27.15-34.0]. The seroprevalence was only associated with increasing age (7.25-40.52%; p < 0.001). The annual probability of infection was 5.4% for adults and children above 10-year-old and 2.2% for children under 10 yo. Conclusion Our study demonstrates that in the hyperendemic island of Corsica, (i) exposure of the population to HEV is homogeneous at the spatial level with no difference between genders; (ii) HEV exposure occurs from birth, resulting in 7.4% seropositivity at the age of 4 years; and (iii) super exposure is observed after the age of 9 years. Accordingly, specific studies should be conducted to determine the breadth of the situation identified in our study. The role of the environment and its contamination by domestic or wild swine excreta should be investigated using a One Health approach.
Collapse
Affiliation(s)
- Lisandru Capai
- UR 7310, Université de Corse, Corte, France
- AG Junglen, Institute of Virology, University of Charité, Berlin, Germany
| | | | - Nathanaël Hozé
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
| | - Dorine Decarreaux
- UR 7310, Université de Corse, Corte, France
- Unité des Virus Émergents, Aix-Marseille University, Marseille, France
| | | | | | | | | | - Rémi Charrel
- Unité des Virus Émergents, Aix-Marseille University, Marseille, France
- Comité de Lutte contre les infections Nosocomiales, APHM HOPITAUX Universitaires de Marseille, Marseille, France
| |
Collapse
|
6
|
La Bella G, Basanisi MG, Nobili G, Coppola R, Damato AM, Donatiello A, Occhiochiuso G, Romano AC, Toce M, Palazzo L, Pellegrini F, Fanelli A, Di Martino B, Suffredini E, Lanave G, Martella V, La Salandra G. Evidence of Circulation and Phylogenetic Analysis of Hepatitis E Virus (HEV) in Wild Boar in South-East Italy. Viruses 2023; 15:2021. [PMID: 37896798 PMCID: PMC10611066 DOI: 10.3390/v15102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is an important cause of acute viral hepatitis in humans worldwide. The food-borne transmission of HEV appears to be a major route in Europe through the consumption of pork and wild boar meat. HEV epidemiology in wild boars has been investigated mainly in Northern and Central Italian regions, whilst information from Southern Italy is limited. We investigated the occurrence of HEV in wild boar in the Apulia and Basilicata regions (Southern Italy). Thirteen (10.4%) out of one hundred and twenty-five wild boar samples tested positive for HEV using a quantitative reverse transcription PCR. HEV prevalence was 12% in Apulia and 9.3% in Basilicata. Seven samples were genotyped, and different subtypes (c, f, m) of genotype 3 were identified. The complete genome of a 3m strain was determined, and the virus showed the highest nucleotide identity to a human HEV strain identified in France in 2017. These findings demonstrate the substantial circulation of HEV in the wild boar population in Italian Southern regions. Gathering information on the HEV strains circulating in different geographical areas is useful for tracking the origin of HEV outbreaks and assessing the epidemiological role of wild boar as a potential virus reservoir for domestic pigs.
Collapse
Affiliation(s)
- Gianfranco La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Maria Grazia Basanisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Gaia Nobili
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Rosa Coppola
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Annita Maria Damato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Adelia Donatiello
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Gilda Occhiochiuso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | | | - Mariateresa Toce
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Lucia Palazzo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Bari, Italy
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Bari, Italy
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Elisabetta Suffredini
- Department of Food Safety Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Bari, Italy
| | - Giovanna La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy
| |
Collapse
|
7
|
Santos-Silva S, da Silva Dias Moraes DF, López-López P, Rivero-Juarez A, Mesquita JR, Nascimento MSJ. Hepatitis E Virus in the Iberian Peninsula: A Systematic Review. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:193-211. [PMID: 37434079 PMCID: PMC10499749 DOI: 10.1007/s12560-023-09560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
One of the most frequent causes of acute viral hepatitis is hepatitis E virus (HEV) causing 20 million infections worldwide each year and 44,000 deaths. Studies on HEV in the Iberian Peninsula have been increasing through time with HEV infection being identified in humans and animals. The aim of the present systematic review was to compile and evaluate all the published data on HEV from studies performed in humans, animals and environmental samples in the Iberian Peninsula. The electronic databases Mendeley, PubMed, Scopus, and Web of Science were thoroughly searched, and research published up until February 01, 2023 were included. Resulting in a total of 151 eligible papers by full reading and application of PRISMA exclusion/inclusion criteria. Overall, the present review shows that several HEV genotypes, namely HEV-1, 3, 4, and 6 as well as Rocahepevirus, are circulating in humans, animals, and in the environment in the Iberian Peninsula. HEV-3 was the most common genotype circulating in humans in Portugal and Spain, as expected for developed countries, with HEV-1 only being detected in travelers and emigrants from HEV endemic regions. Spain is the biggest pork producer in Europe and given the high circulation of HEV in pigs, with HEV-3 being primarily associated to zoonotic transmission through consumption of swine meat and meat products, in our opinion, the introduction of an HEV surveillance system in swine and inclusion of HEV in diagnostic routines for acute and chronic human hepatitis would be important. Additionally, we propose that establishing a monitoring mechanism for HEV is crucial in order to gain a comprehensive understanding of the prevalence of this illness and the various strains present in the Iberian Peninsula, as well as their potential impact on public health.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - António Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - João R Mesquita
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | | |
Collapse
|
8
|
Nemes K, Persson S, Simonsson M. Hepatitis A Virus and Hepatitis E Virus as Food- and Waterborne Pathogens-Transmission Routes and Methods for Detection in Food. Viruses 2023; 15:1725. [PMID: 37632066 PMCID: PMC10457876 DOI: 10.3390/v15081725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne viruses are an important threat to food safety and public health. Globally, there are approximately 5 million cases of acute viral hepatitis due to hepatitis A virus (HAV) and hepatitis E virus (HEV) every year. HAV is responsible for numerous food-related viral outbreaks worldwide, while HEV is an emerging pathogen with a global health burden. The reported HEV cases in Europe have increased tenfold in the last 20 years due to its zoonotic transmission through the consumption of infected meat or meat products. HEV is considered the most common cause of acute viral hepatitis worldwide currently. This review focuses on the latest findings on the foodborne transmission routes of HAV and HEV and the methods for their detection in different food matrices.
Collapse
Affiliation(s)
- Katalin Nemes
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Dag Hammarskjölds väg 56 A, 75237 Uppsala, Sweden; (S.P.); (M.S.)
| | | | | |
Collapse
|
9
|
Ríos-Castro R, Cabo A, Teira E, Cameselle C, Gouveia S, Payo P, Novoa B, Figueras A. High-throughput sequencing as a tool for monitoring prokaryote communities in a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160531. [PMID: 36470389 DOI: 10.1016/j.scitotenv.2022.160531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, the DNA metabarcoding technique was used to explore the prokaryote diversity and community structure in wastewater collected in spring and winter 2020-2021 as well as the efficiency of the treatment in a wastewater treatment plant (WWTP) in Ría de Vigo (NW Spain). The samplings included raw wastewater from the inlet stream (M1), the discharge water after the disinfection treatment (M3) and mussels used as bioindicators of possible contamination of the marine environment. Significant differences were discovered in the microbiome of each type of sample (M1, M3 and mussels), with 92 %, 45 % and 44 % of exclusive OTUs found in mussel, M3 and M1 samples respectively. Seasonal differences were also detected in wastewater samples, with which abiotic parameters (temperature, pH) could be strongly involved. Bacteria present in raw wastewater (M1) were associated with the human gut microbiome, and therefore, potential pathogens that could be circulating in the population in specific periods were detected (e.g., Arcobacter sp. and Clostridium sp.). A considerable decrease in putative pathogenic organisms from the M1 to M3 wastewater fractions and the scarce presence in mussels (<0.5 % total reads) confirmed the effectiveness of pathogen removal in the wastewater treatment plant. Our results showed the potential of the DNA metabarcoding technique for monitoring studies and confirmed its application in wastewater-based epidemiology (WBE) and environmental contamination studies. Although this technique cannot determine if the infective pathogens are present, it can characterize the microbial communities and the putative pathogens that are circulating through the population (microbiome of M1) and also confirm the efficacy of depuration treatment, which can directly affect the aquaculture sector and even human and veterinary health.
Collapse
Affiliation(s)
- Raquel Ríos-Castro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Adrián Cabo
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain.
| | - Eva Teira
- University of Vigo, Departamento de Ecología y Biología Animal, Centro de Investigación Marina (CIM), Universidad de Vigo, Facultad de Ciencias do Mar, 36310 Vigo, Spain.
| | - Claudio Cameselle
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Susana Gouveia
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Pedro Payo
- GESECO Aguas S.A., Teixugueiras 13, 36212 Vigo, Spain.
| | - Beatriz Novoa
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
10
|
Si F, Widén F, Dong S, Li Z. Hepatitis E as a Zoonosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:49-58. [PMID: 37223858 DOI: 10.1007/978-981-99-1304-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E viruses in the family of Hepeviridae have been classified into 2 genus, 5 species, and 13 genotypes, involving different animal hosts of different habitats. Among all these genotypes, four (genotypes 3, 4, 7, and C1) of them are confirmed zoonotic causing sporadic human diseases, two (genotypes 5 and 8) were likely zoonotic showing experimental animal infections, and the other seven were not zoonotic or unconfirmed. These zoonotic HEV carrying hosts include pig, boar, deer, rabbit, camel, and rat. Taxonomically, all the zoonotic HEVs belong to the genus Orthohepevirus, which include genotypes 3, 4, 5, 7, 8 HEV in the species A and genotype C1 HEV in the species C. In the chapter, information of zoonotic HEV such as swine HEV (genotype 3 and 4), wild boar HEV (genotypes 3-6), rabbit HEV (genotype 3), camel HEV (genotype 7 and 8), and rat HEV (HEV-C1) was provided in detail. At the same time, their prevalence characteristics, transmission route, phylogenetic relationship, and detection technology were discussed. Other animal hosts of HEVs were introduced briefly in the chapter. All these information help peer researchers have basic understanding of zoonotic HEV and adopt reasonable strategy of surveillance and prevention.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Frederik Widén
- The National Veterinary Institute (SVA), Uppsala, Sweden
| | - Shijuan Dong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Zhen Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
11
|
Hepatitis A and E Viruses in Mussels from Cherrat Estuary in Morocco: Detection by Real-Time Reverse Transcription PCR Analysis. Adv Virol 2022; 2022:8066356. [DOI: 10.1155/2022/8066356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to evaluate hepatitis A virus (HAV) and hepatitis E virus (HEV) contamination in mussels (Mytilus galloprovincialis) from Cherrat estuary (Moroccan Atlantic Coast), Morocco. In total, 52 samples (n = 12 mussels/each) were collected at four sites in the estuary, monthly, between March 2019 and March 2020. HAV and HEV were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) according to the ISO/TS 15216 method. HAV was detected in 46.15% of analyzed samples. Conversely, HEV was not detected in any sample. Moreover, the HAV detection rate was significantly associated with seasonal rainfall variations. This qualitative study on HAV and HEV contamination highlights the interest of studying mussel samples from wild areas. As HAV presence in mussels represents a potential health risk, viral contamination surveillance of mussels is necessary to protect consumers. HAV shellfish contamination must be monitored at Cherrat estuary because of the role played by shellfish as HAV reservoirs and/or vehicles in fecal-oral HAV transmission.
Collapse
|
12
|
Ruchusatsawat K, Nuengjamnong C, Tawatsin A, Thiemsing L, Kawidam C, Somboonna N, Nuanualsuwan S. Quantitative Risk Assessments of Hepatitis A Virus and Hepatitis E Virus from Raw Oyster Consumption. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:953-965. [PMID: 34601752 DOI: 10.1111/risa.13832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A quantitative risk assessment of hepatitis A virus (HAV) and hepatitis E virus (HEV) from raw oyster consumption from farm and retail was evaluated over three seasons. This risk assessment comprises four steps: hazard identification, dose-response assessment, exposure assessment, and risk characterization. We used probabilistic models for prevalence, concentration, and oyster consumption. HEV dose-response (DR) model based on HEV dosing in chimpanzees and used to perform a dose-response assessment of HEV was proposed. Both HAV and HEV were simultaneously enumerated by real-time PCR to determine viral doses. The probabilistic prevalences of HAV and HEV were in the ranges of 8-20% and 8-40%, respectively. The best-fit DR model was the beta-Poisson with alpha and N50 equal to 216.9 and 3.03 × 107 , respectively. After running the Monte Carlo simulation, the annual cases of foodborne hepatitis A and hepatitis E from raw oyster consumption from farms were 9,264-17,526 and 1-604, respectively, while those at retail were 7,694-14,591 and 1-204, respectively. This study suggested that consuming farm oysters poses a significantly higher risk of hepatitis A than hepatitis E. The best-fit DR model for HEV developed in this study could determine risks of hepatitis E from raw oyster consumption in Thailand.
Collapse
Affiliation(s)
- Kriangsak Ruchusatsawat
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Chackrit Nuengjamnong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Food Risk Hub Research Unit of Chulalongkorn University, Thailand
| | - Apiwat Tawatsin
- Medical Sciences Technical Office, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Laddawan Thiemsing
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Chonthicha Kawidam
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Thailand
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Food Risk Hub Research Unit of Chulalongkorn University, Thailand
| |
Collapse
|
13
|
Shaheen MNF. The concept of one health applied to the problem of zoonotic diseases. Rev Med Virol 2022; 32:e2326. [PMID: 35060214 DOI: 10.1002/rmv.2326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Zoonotic diseases are a burden on healthcare systems globally, particularly underdeveloped nations. Numerous vertebrate animals (e.g., birds, mammals and reptiles) serve as amplifier hosts or reservoirs for viral zoonoses. The spread of zoonotic disease is associated with environmental factors, climate change, animal health as well as other human activities including globalization, urbanization and travel. Diseases at the human-animal environment interface (e.g., zoonotic diseases, vector-borne diseases, food/water borne diseases) continue to pose risk to animals and humans with a great significant mortality and morbidity. It is estimated that of 1400 infectious diseases known to affect humans, 60% of them are of animal origin. In addition, 75% of the emerging infectious diseases have a zoonotic nature, worldwide. The one health concept plays an important role in the control and prevention of zoonoses by integrating animal, human, and environmental health through collaboration and communication among osteopaths, wildlife, physicians, veterinarians professionals, public health and environmental experts, nurses, dentists, physicists, biomedical engineers, plant pathologists, biochemists, and others. No one sector, organization, or person can address issues at the animal-human-ecosystem interface alone.
Collapse
Affiliation(s)
- Mohamed N F Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Center, Giza, Egypt
| |
Collapse
|
14
|
Raji YE, Toung OP, Taib NM, Sekawi ZB. Hepatitis E Virus: An emerging enigmatic and underestimated pathogen. Saudi J Biol Sci 2022; 29:499-512. [PMID: 35002446 PMCID: PMC8716866 DOI: 10.1016/j.sjbs.2021.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is an RNA virus causing hepatitis E disease. The virus is of one serotype but has diverse genotypes infecting both humans and animals. Based on evidence from seroprevalence studies, about 2 billion people are estimated to have been infected with HEV globally. HEV, therefore, poses a significant public health and economic challenge worldwide. HEV was discovered in the 1980s and was traced back to the 1955 - 1956 outbreak of hepatitis that occurred in India. Subsequently, several HEV epidemics involving thousands of individuals have occurred nearly annually in different countries in Asia and Africa. Initially, the virus was thought to be only enterically transmitted, and endemic in developing countries. Due to the environmental hygiene and sanitation challenges in those parts of the world. However, recent studies have suggested otherwise with the report of autochthonous cases in industrialised countries with no history of travel to the so-called endemic countries. Thus, suggesting that HEV has a global distribution with endemicity in both developing and industrialised nations. Studies have also revealed that HEV has multiple risk factors, and modes of transmission as well as zoonotic potentials. Additionally, recent findings have shown that HEV leads to severe disease, particularly among pregnant women. In contrast to the previous narration of a strictly mild and self-limiting infection. Studies have likewise demonstrated chronic HEV infection among immunocompromised persons. Consequent to these recent discoveries, this pathogen is considered a re - emerging virus, particularly in the developed nations. However, despite the growing public health challenges of this pathogen, the burden is still underestimated. The underestimation is often attributed to poor awareness among clinicians and a lack of routine checks for the disease in the hospitals. Thus, leading to misdiagnosis and underdiagnosis. Hence, this review provides a concise overview of epidemiology, diagnosis, and prevention of hepatitis E.
Collapse
Affiliation(s)
- Yakubu Egigogo Raji
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
- Faculty of Natural and Applied Sciences Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Ooi Peck Toung
- Department of Veterinary Clinical Studies Faculty of Veterinary Medicine, Universiti Putra Malaysia 2, Malaysia
| | - Niazlin Mohd Taib
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
| | - Zamberi Bin Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
| |
Collapse
|
15
|
Hriskova K, Marosevic D, Belting A, Wenzel JJ, Carl A, Katz K. Epidemiology of Hepatitis E in 2017 in Bavaria, Germany. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:337-346. [PMID: 33900549 PMCID: PMC8379136 DOI: 10.1007/s12560-021-09474-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/03/2021] [Indexed: 05/04/2023]
Abstract
In the last decade, the number of reported hepatitis E virus (HEV) infections in Germany, including Bavaria, has continued to rise. In order to identify risk factors associated with HEV infection, we investigated notified hepatitis E cases from Bavaria during 2017. The project "Intensified Hepatitis E Surveillance in Bavaria" included interviews with questionnaires, collection and genotyping of stool, serum and food samples. In addition, certain risk factors were examined in a sample comparison with healthy population using univariable analysis and logistic regression. In total, 135 hepatitis E cases from Bavaria were included in the analysis. Mean age for women was 46 (range 20-74) years and 47.5 (range 20-85) for men. 56 of the cases (41.5%) were asymptomatic. Among the symptomatic cases, both men and women were equally affected with symptoms like fever (16.3%), jaundice (18.8%) and upper abdominal pain (28.2%). 145 human samples (serum, stool) and 6 food samples were collected. 15.9% of the human samples (n = 23) were positive for HEV RNA by reverse-transcription quantitative real-time PCR (RT-qPCR). Identified risk factors significantly associated with hepatitis E were sausage consumption with odds ratio 9.6 (CI 1.3-70.1), fish with OR 2.2 (CI 1.1-4.4) and cat ownership with OR 1.9 (CI 1.3-3.0) in multivariable analyses. Further investigation is needed to confirm the role of fish in HEV transmission. Autochthonous HEV genotype 3 is prevalent in Bavaria and there could be more transmission routes contributing to the spread of HEV than previously known. Undercooked meat, offal, sausages, fish, shellfish and contact with animals and pets are possible sources for infection.
Collapse
Affiliation(s)
- K Hriskova
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Pettenkofer School of Public Health, Munich, Germany.
| | - D Marosevic
- Bavarian Public Health and Food Safety Authority (LGL), Veterinärstraße 2, 85764, Oberschleißheim, Germany
| | - A Belting
- Bavarian Public Health and Food Safety Authority (LGL), Veterinärstraße 2, 85764, Oberschleißheim, Germany
| | - J J Wenzel
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Medical Centre Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - A Carl
- Bavarian Public Health and Food Safety Authority (LGL), Veterinärstraße 2, 85764, Oberschleißheim, Germany
| | - K Katz
- Bavarian Public Health and Food Safety Authority (LGL), Veterinärstraße 2, 85764, Oberschleißheim, Germany
| |
Collapse
|
16
|
Moraes DFDSD, Mesquita JR, Dutra V, Nascimento MSJ. Systematic Review of Hepatitis E Virus in Brazil: A One-Health Approach of the Human-Animal-Environment Triad. Animals (Basel) 2021; 11:2290. [PMID: 34438747 PMCID: PMC8388429 DOI: 10.3390/ani11082290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Brazil is the fifth largest country in the world with diverse socioeconomic and sanitary conditions, also being the fourth largest pig producer in the world. The aim of the present systematic review was to collect and summarize all HEV published data from Brazil (from 1995 to October 2020) performed in humans, animals, and the environment, in a One Health perspective. A total of 2173 papers were retrieved from five search databases (LILACs, Mendeley, PubMed, Scopus, and Web of Science) resulting in 71 eligible papers after application of exclusion/inclusion criteria. Data shows that HEV genotype 3 (HEV-3) was the only retrieved genotype in humans, animals, and environment in Brazil. The South region showed the highest human seroprevalence and also the highest pig density and industry, suggesting a zoonotic link. HEV-1 and 2 were not detected in Brazil, despite the low sanitary conditions of some regions. From the present review we infer that HEV epidemiology in Brazil is similar to that of industrialized countries (only HEV-3, swine reservoirs, no waterborne transmission, no association with low sanitary conditions). Hence, we alert for the implementation of HEV surveillance systems in swine and for the consideration of HEV in the diagnostic routine of acute and chronic hepatitis in humans.
Collapse
Affiliation(s)
- Danny Franciele da Silva Dias Moraes
- Faculty of Veterinary Medicine, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil; (D.F.d.S.D.M.); (V.D.)
- Secretaria de Estado do Meio Ambiente de Mato Grosso (SEMA), Cuiabá 78050-970, Brazil
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João R. Mesquita
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
| | - Valéria Dutra
- Faculty of Veterinary Medicine, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil; (D.F.d.S.D.M.); (V.D.)
| | | |
Collapse
|
17
|
Capozza P, Decaro N, Beikpour F, Buonavoglia C, Martella V. Emerging Hepatotropic Viruses in Cats: A Brief Review. Viruses 2021; 13:v13061162. [PMID: 34204394 PMCID: PMC8233973 DOI: 10.3390/v13061162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
The possible role of viruses in feline liver disease has long remained neglected. However, in 2018, an analogue of human hepatitis B virus was identified in cats. Moreover, antibodies for human hepatitis E have been detected consistently at various prevalence rates in cats. Although the correlation between these viruses and the liver injury in cats must be clarified, hepatotropic viruses might represent an increasing risk for feline and public health.
Collapse
|
18
|
Occurrence of Human Enteric Viruses in Shellfish along the Production and Distribution Chain in Sicily, Italy. Foods 2021; 10:foods10061384. [PMID: 34203938 PMCID: PMC8232761 DOI: 10.3390/foods10061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Contamination of bivalve mollusks with human pathogenic viruses represents a recognized food safety risk. Thus, monitoring programs for shellfish quality along the entire food chain could help to finally preserve the health of consumers. The aim of the present study was to provide up-to-date data on the prevalence of enteric virus contamination along the shellfish production and distribution chain in Sicily. To this end, 162 batches of mollusks were collected between 2017 and 2019 from harvesting areas, depuration and dispatch centers (n = 63), restaurants (n = 6) and retail stores (n = 93) distributed all over the island. Samples were processed according to ISO 15216 standard method, and the presence of genogroup GI and GII norovirus (NoV), hepatitis A and E viruses (HAV, HEV), rotavirus and adenovirus was investigated by real-time reverse transcription polymerase chain reaction (real-time-RT PCR), nested (RT)-PCR and molecular genotyping. Our findings show that 5.56% of samples were contaminated with at least one NoV, HAV and/or HEV. Contaminated shellfish were sampled at production sites and retail stores and their origin was traced back to Spain and several municipalities in Italy. In conclusion, our study highlights the need to implement routine monitoring programs along the whole food chain as an effective measure to prevent foodborne transmission of enteric viruses.
Collapse
|
19
|
Treagus S, Wright C, Baker-Austin C, Longdon B, Lowther J. The Foodborne Transmission of Hepatitis E Virus to Humans. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:127-145. [PMID: 33738770 PMCID: PMC8116281 DOI: 10.1007/s12560-021-09461-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Globally, Hepatitis E virus (HEV) causes over 20 million cases worldwide. HEV is an emerging and endemic pathogen within economically developed countries, chiefly resulting from infections with genotype 3 (G3) HEV. G3 HEV is known to be a zoonotic pathogen, with a broad host range. The primary source of HEV within more economically developed countries is considered to be pigs, and consumption of pork products is a significant risk factor and known transmission route for the virus to humans. However, other foods have also been implicated in the transmission of HEV to humans. This review consolidates the information available regarding transmission of HEV and looks to identify gaps where further research is required to better understand how HEV is transmitted to humans through food.
Collapse
Affiliation(s)
- Samantha Treagus
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK.
| | | | - Craig Baker-Austin
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| | - Ben Longdon
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - James Lowther
- Centre for Environment Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| |
Collapse
|
20
|
Abstract
Hepatitis E virus (HEV) is a cosmopolitan foodborne pathogen. The viral agent infects humans through the consumption of contaminated food (uncooked or undercooked). Most cases of infection are asymptomatic and for this reason, this pathology is considered underdiagnosed. Domestic and wild animals are considered natural reservoirs: that is, domestic pig, wild boar, sheep, goat, deer, rabbit, and so on. Therefore, various work categories are at risk: that is, veterinarians, farmers, hunters, slaughterhouse workers, and so on. In these last decades, researchers found a high percentage of positivity to the molecular viral detection in several food matrices included: ready-to-eat products, processed meat products, milk, and shellfish. This review aims to provide an international scenario regarding HEV ribonucleic acid (RNA) detection in several foodstuffs. From this investigative perspective, the study aims to highlight various gaps of the current knowledge about technologies treatments' impact on viral loads. The purpose was also to provide an innovative point of view "One Health"-based, pointing out the strategic role of environmental safety.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Faculty of Veterinary Medicine, Department of Food Inspection, University of Teramo, Teramo, Italy
| | - Alberto Vergara
- Post-Graduate Specialization School in Food Inspection "G. Tiecco," Faculty of Veterinary Medicine, Department of Food Inspection, University of Teramo, Teramo, Italy
| |
Collapse
|
21
|
Di Cola G, Fantilli AC, Pisano MB, Ré VE. Foodborne transmission of hepatitis A and hepatitis E viruses: A literature review. Int J Food Microbiol 2021; 338:108986. [PMID: 33257099 DOI: 10.1016/j.ijfoodmicro.2020.108986] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022]
Abstract
Foodborne viruses have been recognized as a growing concern to the food industry and a serious public health problem. Hepatitis A virus (HAV) is responsible for the majority of viral outbreaks of food origin worldwide, while hepatitis E virus (HEV) has also been gaining prominence as a foodborne viral agent in the last years, due to its zoonotic transmission through the consumption of uncooked or undercooked infected meat or derivatives. However, there is a lack of scientific reports that gather all the updated information about HAV and HEV as foodborne viruses. A search of all scientific articles about HAV and HEV in food until March 2020 was carried out, using the keywords "HAV", "HEV", "foodborne", "outbreak" and "detection in food". Foodborne outbreaks due to HAV have been reported since 1956, mainly in the USA, and in Europe in recent years, where the number of outbreaks has been increasing throughout time, and nowadays it has become the continent with the highest foodborne HAV outbreak report. Investigation and detection of HAV in food is more recent, and the first detections were performed in the 1990s decade, most of them carried out on seafood, first, and frozen food, later. On the other hand, HEV has been mainly looked for and detected in food derived from reservoir animals, such as meat, sausages and pate of pigs and wild boars. For this virus, only isolated cases and small outbreaks of foodborne transmission have been recorded, most of them in industrialized countries, due to HEV genotype 3 or 4. Virus detection in food matrices requires special processing of the food matrix, followed by RNA detection by molecular techniques. For HAV, a real-time PCR has been agreed as the standard method for virus detection in food; in the case of HEV, a consensus assay for its detection in food has not been reached yet. Our investigation shows that there is still little data about HAV and HEV prevalence and frequency of contamination in food, prevalent viral strains, and sources of contamination, mainly in developing countries, where there is no research and legislation in this regard. Studies on these issues are needed to get a better understanding of foodborne viruses, their maintenance and their potential to cause diseases.
Collapse
Affiliation(s)
- Guadalupe Di Cola
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Anabella C Fantilli
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Belén Pisano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Viviana E Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gomez s/n, CP: 5016 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
22
|
Battistini R, Listorti V, Squadrone S, Pederiva S, Abete MC, Mua R, Ciccotelli V, Suffredini E, Maurella C, Baioni E, Orlandi M, Ercolini C, Serracca L. Occurrence and persistence of enteric viruses, arsenic and biotoxins in Pacific oysters farmed in an Italian production site. MARINE POLLUTION BULLETIN 2021; 162:111843. [PMID: 33223135 DOI: 10.1016/j.marpolbul.2020.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The presence of Norovirus (NoV) and Hepatitis E virus (HEV) in non-depurated and depurated oysters raised in the north-west Italian coast was investigated by quantitative real-time RT-PCR. Total and inorganic arsenic (As) and the presence of marine biotoxins (DSP, ASP, PSP) by LC-MS were also investigated. NoV was detected through all the sampling period in non depurated and depurated oysters with highest levels during wintertime (>104 genome copies per gram, gc/g) and minimum values in summer below the LOQ (<130/140 gc/g). HEV has never been found as well as biotoxins. Total As concentration was found in oysters in the range 0.45-3.0 mg/kg, while inorganic As was found in all samples in concentrations below the LOQ (<0.020 mg/kg). The study highlights how the 24 h depuration process didn't reduce significantly NoV levels and therefore the high concentration of NoV in oysters could represent a risk for consumers especially during winter and spring months.
Collapse
Affiliation(s)
- Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.
| | - Valeria Listorti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Sabina Pederiva
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Roberto Mua
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Valentina Ciccotelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cristiana Maurella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Elisa Baioni
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Mino Orlandi
- Liguria Local Health Unit-ASL 5, Complex Unit of Hygiene of Foods and Animal Origin, La Spezia, Italy
| | - Carlo Ercolini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| |
Collapse
|
23
|
López Cabo M, Romalde JL, Simal-Gandara J, Gago Martínez A, Giráldez Fernández J, Bernárdez Costas M, Pascual del Hierro S, Pousa Ortega Á, Manaia CM, Abreu Silva J, Rodríguez Herrera J. Identification of Emerging Hazards in Mussels by the Galician Emerging Food Safety Risks Network (RISEGAL). A First Approach. Foods 2020; 9:E1641. [PMID: 33182842 PMCID: PMC7697966 DOI: 10.3390/foods9111641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023] Open
Abstract
Emerging risk identification is a priority for the European Food Safety Authority (EFSA). The goal of the Galician Emerging Food Safety Risks Network (RISEGAL) is the identification of emerging risks in foods produced and commercialized in Galicia (northwest Spain) in order to propose prevention plans and mitigation strategies. In this work, RISEGAL applied a systematic approach for the identification of emerging food safety risks potentially affecting bivalve shellfish. First, a comprehensive review of scientific databases was carried out to identify hazards most quoted as emerging in bivalves in the period 2016-2018. Then, identified hazards were semiquantitatively assessed by a panel of food safety experts, who scored them accordingly with the five evaluation criteria proposed by EFSA: novelty, soundness, imminence, scale, and severity. Scores determined that perfluorinated compounds, antimicrobial resistance, Vibrio parahaemolyticus, hepatitis E virus (HEV), and antimicrobial residues are the emerging hazards that are considered most imminent and severe and that could cause safety problems of the highest scale in the bivalve value chain by the majority of the experts consulted (75%). Finally, in a preliminary way, an exploratory study carried out in the Galician Rías highlighted the presence of HEV in mussels cultivated in class B production areas.
Collapse
Affiliation(s)
- Marta López Cabo
- Seafood Microbiology and Technology Section, Instituto de Investigacións Mariñas, Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.B.C.); (S.P.d.H.); (J.R.H.)
| | - Jesús L. Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & Institute CRETUS, Universidade de Santiago de Compostela, E15782 Santiago de Compostela, Spain;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo–Ourense Campus, E32004 Ourense, Spain;
| | - Ana Gago Martínez
- Department Analytical and Food Chemistry, Universidade de Vigo, 36310 Vigo, Spain; (A.G.M.); (J.G.F.)
| | - Jorge Giráldez Fernández
- Department Analytical and Food Chemistry, Universidade de Vigo, 36310 Vigo, Spain; (A.G.M.); (J.G.F.)
| | - Marta Bernárdez Costas
- Seafood Microbiology and Technology Section, Instituto de Investigacións Mariñas, Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.B.C.); (S.P.d.H.); (J.R.H.)
| | - Santiago Pascual del Hierro
- Seafood Microbiology and Technology Section, Instituto de Investigacións Mariñas, Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.B.C.); (S.P.d.H.); (J.R.H.)
| | - Ánxela Pousa Ortega
- Direccion Xeral de Innovación e Xestión da Saúde Pública, Consellería de Sanidade, Xunta de Galicia, 15781 Santiago de Compostela, Spain;
| | - Célia M. Manaia
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.M.M.); (J.A.S.)
| | - Joana Abreu Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (C.M.M.); (J.A.S.)
| | - Juan Rodríguez Herrera
- Seafood Microbiology and Technology Section, Instituto de Investigacións Mariñas, Spanish National Research Council (CSIC), 36208 Vigo, Spain; (M.B.C.); (S.P.d.H.); (J.R.H.)
| |
Collapse
|
24
|
Santos-Ferreira N, Mesquita JR, Rivadulla E, Inácio ÂS, Martins da Costa P, Romalde JL, Nascimento MSJ. Hepatitis E virus genotype 3 in echinoderms: First report of sea urchin (Paracentrotus lividus) contamination. Food Microbiol 2020; 89:103415. [PMID: 32138985 DOI: 10.1016/j.fm.2020.103415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
Hepatitis E virus (HEV) deriving from manure application runoffs and faecal waste spill over of swine and human origin bypass wastewater treatment plants and contaminate coastal waters. Shellfish bioaccumulate enteric viruses such as HEV from fecally contaminated coastal waters and under current European Regulations, shellfish sanitary status surveillance is mandatory but only by means of bacterial faecal indicators. The sea urchins are under the same regulations and their vulnerability to fecal contamination has been pointed out. Since they are consumed raw and with no steps to control/reduce hazards, sea urchin contamination with enteric viruses can represent a food safety risk. Hence, the aim of the present study was to screen sea urchin gonads destined for human consumption for the presence of HEV. HEV was detected and quantified in gonads of sea urchins collected in north Portugal by a reverse transcription-quantitative PCR (RT-qPCR) assay targeting the ORF3 region, followed by genotyping by a nested RT-PCR targeting the ORF2 region. Sequencing and phylogenetic analysis clustered the HEV sequence within genotype 3, subgenotype e. This the first study reporting HEV contamination of sea urchins. We hypothesize that like shellfish, sea urchins can also be a food vehicle for HEV transmission to humans.
Collapse
Affiliation(s)
- Nânci Santos-Ferreira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Matosinhos, Portugal.
| | - João Rodrigo Mesquita
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade Do Porto, Porto, Portugal; Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública, Universidade Do Porto, Portugal.
| | - Enrique Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Ângela S Inácio
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Matosinhos, Portugal.
| | - Paulo Martins da Costa
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade Do Porto, Porto, Portugal.
| | - Jesus L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Maria São José Nascimento
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública, Universidade Do Porto, Portugal; Faculdade de Farmácia, Universidade Do Porto (FFUP), Porto, Portugal.
| |
Collapse
|
25
|
Suffredini E, Le Q, Di Pasquale S, Pham T, Vicenza T, Losardo M, To K, De Medici D. Occurrence and molecular characterization of enteric viruses in bivalve shellfish marketed in Vietnam. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Wang H, Kjellberg I, Sikora P, Rydberg H, Lindh M, Bergstedt O, Norder H. Hepatitis E virus genotype 3 strains and a plethora of other viruses detected in raw and still in tap water. WATER RESEARCH 2020; 168:115141. [PMID: 31590036 DOI: 10.1016/j.watres.2019.115141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
In this study, next generation sequencing was used to explore the virome in 20L up to 10,000L water from different purification steps at two Swedish drinking water treatment plants (DWTPs), and in tap water. One DWTP used ultrafiltration (UF) with 20 nm pores, the other UV light treatment after conventional treatment of the water. Viruses belonging to 26 different families were detected in raw water, in which 6-9 times more sequence reads were found for phages than for known environmental, plant or vertebrate viruses. The total number of viral reads was reduced more than 4-log10 after UF and 3-log10 over UV treatment. However, for some viruses the reduction was 3.5-log10 after UF, as for hepatitis E virus (HEV), which was also detected in tap water, with sequences similar to those in raw water and after treatment. This indicates that HEV had passed through the treatment and entered into the supply network. However, the viability of the viruses is unknown. In tap water 10-130 International Units of HEV RNA/mL were identified, which is a comparable low amount of virus. The risk of getting infected through consumption of tap water is probably negligible, but needs to be investigated. The HEV strains in the waters belonged to subtypes HEV3a and HEV3c/i, which is associated with unknown source of infection in humans infected in Sweden. None of these subtypes are common among pigs or wild boar, the major reservoirs for HEV, indicating that water may play a role in transmitting this virus. The results indicate that monitoring small fecal/oral transmitted viruses in DWTPs may be considered, especially during community outbreaks, to prevent potential transmission by tap water.
Collapse
Affiliation(s)
- Hao Wang
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | - Per Sikora
- Department of Pathology and Genetics, Institute of Biomedicine at Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden; Clinical Genomics Gothenburg, SciLife Labs, Gothenburg, Sweden
| | | | - Magnus Lindh
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Olof Bergstedt
- Göteborgs Stad Kretslopp och vatten, Gothenburg, Sweden; City of Gothenburg and DRICKS Chalmers University of Technology, Gothenburg, Sweden
| | - Heléne Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden.
| |
Collapse
|
27
|
Quantification and genetic diversity of Hepatitis E virus in wild boar (Sus scrofa) hunted for domestic consumption in Central Italy. Food Microbiol 2019; 82:194-201. [PMID: 31027773 DOI: 10.1016/j.fm.2019.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
|
28
|
Rivadulla E, Varela MF, Mesquita JR, Nascimento MSJ, Romalde JL. Detection of Hepatitis E Virus in Shellfish Harvesting Areas from Galicia (Northwestern Spain). Viruses 2019; 11:618. [PMID: 31284466 PMCID: PMC6669863 DOI: 10.3390/v11070618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The hepatitis E virus (HEV) affects almost 20 million individuals annually, causing approximately 3.3 million acute liver injuries, 56,600 deaths, and huge healthcare-associated economic losses. Shellfish produced close to urban and livestock areas can bioaccumulate this virus and transmit it to the human population. The aim of this study was to evaluate the presence of HEV in molluscan shellfish, in order to deepen the knowledge about HEV prevalence in Galicia (northwestern Spain), and to investigate this as a possible route of HEV transmission to humans. A total of 168 shellfish samples was obtained from two different Galician rías (Ría de Ares-Betanzos and Ría de Vigo). The samples were analyzed by reverse transcription-quantitative PCR (RT-qPCR). RT-nested PCR and sequencing were used for further genotyping and phylogenetic analysis of positive samples. HEV was detected in 41 (24.4%) samples, at quantification levels ranging from non-quantifiable (<102 copies of the RNA genome (RNAc)/g tissue) to 1.1 × 105 RNAc/g tissue. Phylogenetic analysis based on the open reading frame (ORF)2 region showed that all sequenced isolates belonged to genotype 3, and were closely related to strains of sub-genotype e, which is of swine origin. The obtained results demonstrate a significant prevalence of HEV in bivalve molluscs from Galician rías, reinforcing the hypothesis that shellfish may be a potential route for HEV transmission to humans.
Collapse
Affiliation(s)
- Enrique Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel F Varela
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - João R Mesquita
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
| | - Maria S J Nascimento
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Shu Y, Chen Y, Zhou S, Zhang S, Wan Q, Zhu C, Zhang Z, Wu H, Zhan J, Zhang L. Cross-sectional Seroprevalence and Genotype of Hepatitis E Virus in Humans and Swine in a High-density Pig-farming Area in Central China. Virol Sin 2019; 34:367-376. [PMID: 31264049 DOI: 10.1007/s12250-019-00136-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E virus (HEV) infection is a common public health problem in developing countries. However, the current prevalence of HEV and the relationship of HEV genotype between swine and human within high-density pig-farming areas in central China are still inadequately understood. Here, cross-sectional serological and genotypic surveys of HEV among the 1232 general population, 273 workers occupationally exposed to swine, and 276 pigs in a high-density pig-breeding area, were undertaken by ELISA and nested RT-PCR methods. Anti-HEV IgG was detected in 26.22% of general population and 48.35% of occupational workers. The prevalence of swine serum HEV-Ag was 6.52%. The prevalence of anti-HEV IgG was significantly higher among the workers occupationally exposed to swine than among the general population. An increased HEV seropositivity risk among the general population was associated with either being a peasant or male and was very strongly associated with the increase of age. Among the occupationally exposed group, the prevalence of anti-HEV IgG antibodies increased with age and working years. Among the 30 HEV-IgM-positive people, the infection rates of clerks in the public, peasants, pork retailers, and pig farmers were higher than those of others. A phylogenetic analysis revealed that all the isolates belonged to subgenotype 4d, and four people and four pigs shared 97.04%-100% sequence homology. This study revealed a high HEV seroprevalence among the general population and workers occupationally exposed to swine in the Anlu City, and supports the notion that swine are a source of human HEV infection.
Collapse
Affiliation(s)
- Yilin Shu
- College of Life Sciences, Anhui Normal University, Wuhu, 421000, China
- Anlu Center for Disease Control and Prevention, Anlu, 432600, China
| | - Yameng Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Sheng Zhou
- Anlu Center for Disease Control and Prevention, Anlu, 432600, China
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Shoude Zhang
- Anlu Center for Disease Control and Prevention, Anlu, 432600, China
| | - Qin Wan
- Anlu Center for Disease Control and Prevention, Anlu, 432600, China
| | - Changcai Zhu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhijiang Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, China
| | - Hailong Wu
- College of Life Sciences, Anhui Normal University, Wuhu, 421000, China
| | - Jianbo Zhan
- Division for Viral Disease with Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430065, China.
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
30
|
Fenaux H, Chassaing M, Berger S, Gantzer C, Bertrand I, Schvoerer E. Transmission of hepatitis E virus by water: An issue still pending in industrialized countries. WATER RESEARCH 2019; 151:144-157. [PMID: 30594083 DOI: 10.1016/j.watres.2018.12.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Hepatitis E virus (HEV) is an enteric virus divided into eight genotypes. Genotype 1 (G1) and G2 are specific to humans; G3, G4 and G7 are zoonotic genotypes infecting humans and animals. Transmission to humans through water has been demonstrated for G1 and G2, mainly in developing countries, but is only suspected for the zoonotic genotypes. Thus, the water-related HEV hazard may be due to human and animal faeces. The high HEV genetic variability allows considering the presence in wastewater of not only different genotypes, but also quasispecies adding even greater diversity. Moreover, recent studies have demonstrated that HEV particles may be either quasi-enveloped or non-enveloped, potentially implying differential viral behaviours in the environment. The presence of HEV has been demonstrated at the different stages of the water cycle all over the world, especially for HEV G3 in Europe and the USA. Concerning HEV survival in water, the virus does not have higher resistance to inactivating factors (heat, UV, chlorine, physical removal), compared to viral indicators (MS2 phage) or other highly resistant enteric viruses (Hepatitis A virus). But the studies did not take into account genetic (genogroups, quasispecies) or structural (quasi- or non-enveloped forms) HEV variability. Viral variability could indeed modify HEV persistence in water by influencing its interaction with the environment, its infectivity and its pathogenicity, and subsequently its transmission by water. The cell culture methods used to study HEV survival still have drawbacks (challenging virus cultivation, time consuming, lack of sensitivity). As explained in the present review, the issue of HEV transmission to humans through water is similar to that of other enteric viruses because of their similar or lower survival. HEV transmission to animals through water and how the virus variability affects its survival and transmission remain to be investigated.
Collapse
Affiliation(s)
- H Fenaux
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54511 Vandoeuvre lès Nancy, France; Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - M Chassaing
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - S Berger
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54511 Vandoeuvre lès Nancy, France
| | - C Gantzer
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - I Bertrand
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - E Schvoerer
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54511 Vandoeuvre lès Nancy, France; Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France.
| |
Collapse
|
31
|
Hepatitis E virus: reasons for emergence in humans. Curr Opin Virol 2018; 34:10-17. [PMID: 30497051 DOI: 10.1016/j.coviro.2018.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Hepatitis E virus (HEV) infects both humans and other animal species. Recently, we have seen a steady increase in autochthonous cases of human HEV infection in certain areas especially in Europe, and large outbreaks in several African countries among the displaced population. This mini-review critically analyzes potential host, environmental, and viral factors that may be associated with the emergence of hepatitis E in humans. The existence of numerous HEV reservoir animals such as pig, deer and rabbit results in human exposure to infected animals via direct contact or through animal meat consumption. Contamination of drinking, irrigation and coastal water by animal and human wastes lead to emergence of endemic cases in industrialized countries and outbreaks in displaced communities especially in war-torn countries.
Collapse
|
32
|
King NJ, Hewitt J, Perchec-Merien AM. Hiding in Plain Sight? It's Time to Investigate Other Possible Transmission Routes for Hepatitis E Virus (HEV) in Developed Countries. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:225-252. [PMID: 29623595 DOI: 10.1007/s12560-018-9342-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Historically in developed countries, reported hepatitis E cases were typically travellers returning from countries where hepatitis E virus (HEV) is endemic, but now there are increasing numbers of non-travel-related ("autochthonous") cases being reported. Data for HEV in New Zealand remain limited and the transmission routes unproven. We critically reviewed the scientific evidence supporting HEV transmission routes in other developed countries to inform how people in New Zealand may be exposed to this virus. A substantial body of indirect evidence shows domesticated pigs are a source of zoonotic human HEV infection, but there is an information bias towards this established reservoir. The increasing range of animals in which HEV has been detected makes it important to consider other possible animal reservoirs of HEV genotypes that can or could infect humans. Foodborne transmission of HEV from swine and deer products has been proven, and a large body of indirect evidence (e.g. food surveys, epidemiological studies and phylogenetic analyses) support pig products as vehicles of HEV infection. Scarce data from other foods suggest we are neglecting other potential sources of foodborne HEV infection. Moreover, other transmission routes are scarcely investigated in developed countries; the role of infected food handlers, person-to-person transmission via the faecal-oral route, and waterborne transmission from recreational contact or drinking untreated or inadequately treated water. People have become symptomatic after receiving transfusions of HEV-contaminated blood, but it is unclear how important this is in the overall hepatitis E disease burden. There is need for broader research efforts to support establishing risk-based controls.
Collapse
Affiliation(s)
- Nicola J King
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand.
| | - Anne-Marie Perchec-Merien
- New Zealand Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington, New Zealand
| |
Collapse
|
33
|
Kantala T, Maunula L. Hepatitis E virus: zoonotic and foodborne transmission in developed countries. Future Virol 2018. [DOI: 10.2217/fvl-2018-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis E virus (HEV), together with hepatitis A virus, transmits via the fecal–oral route. The number of domestic hepatitis E cases among Europeans has grown alarmingly during the past 5 years. Surveillance studies suggest that the number of foodborne HEV infections is increasing most rapidly. Zoonotic HEV genotype HEV-3 is prevalent among pigs and wild boars in Europe and many developed countries, whereas zoonotic genotype HEV-4 is more common in pigs in some Asian countries. This review presents the most recent data about possible foodborne transmission of HEV via pigs and other production animals and about the presence of HEV in high-risk foods, such as ready-to-eat meat products. Possible solutions about how to tackle this problem are discussed here.
Collapse
Affiliation(s)
- Tuija Kantala
- Department of Food Hygiene & Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland
- Finnish Food Safety Authority Evira, Mustialankatu 3, FI-00790 Helsinki, Finland
| | - Leena Maunula
- Department of Food Hygiene & Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland
| |
Collapse
|
34
|
Randazzo W, Vasquez-García A, Aznar R, Sánchez G. Viability RT-qPCR to Distinguish Between HEV and HAV With Intact and Altered Capsids. Front Microbiol 2018; 9:1973. [PMID: 30210465 PMCID: PMC6119771 DOI: 10.3389/fmicb.2018.01973] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
The hepatitis E virus (HEV) is an emerging pathogen showing a considerable increase in the number of reported cases in Europe mainly related to the ingestion of contaminated food. As with other relevant viral foodborne pathogens, real-time reverse transcriptase polymerase chain reaction (RT-qPCR) is the gold standard for HEV detection in clinical, food, and environmental samples, but these procedures cannot discriminate between inactivated and potentially infectious viruses. Thus, the aim of this study was to develop a viability PCR method to discriminate between native, heat-, and high-pressure processing (HPP)-treated HEV using the hepatitis A virus (HAV) as a cultivable surrogate. To this end, different concentrations of viability markers (PMAxx and platinum chloride, PtCl4) were screened firstly on purified viral RNA using different RT-qPCR assays. Reductions of HEV RNA signals of >17.5, >15.0, and >15.5 quantification cycles (Cq) were reported for PtCl4 and 1.6, 2.9, and 8.4 Cq for PMAxx, clearly indicating a better performance of PtCl4 than PMAxx irrespective of the RT-qPCR assay used. The most efficient viability pretreatment (500 μM PtCl4 incubated at 5°C for 30 min) was then assessed on native, heat-, and HPP-treated HEV suspension. The optimized viability RT-qPCR discriminated successfully between native, heat-, and HPP-treated HEV, to different extents depending on the experimental conditions. In particular, approximately 2-log10 reduction was reported by PtCl4-RT-qPCR at both 72 and 95°C compared to the control. Additionally, both viability pretreatments were tested for HPP-treated HAV without success, while PtCl4-RT-qPCR completely eliminated (>5.6-log10 reduction) the RT-qPCR signals of HPP-treated HEV. Although this viability procedure may still overestimate infectivity, the PtCl4 pretreatment represents progress to better interpreting the quantification of intact HEV, and it could be included in molecular procedures used to quantify enteric viruses in food and environmental samples.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos – Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Andrea Vasquez-García
- Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos – Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos – Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
35
|
O'Hara Z, Crossan C, Craft J, Scobie L. First Report of the Presence of Hepatitis E Virus in Scottish-Harvested Shellfish Purchased at Retail Level. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:217-221. [PMID: 29442296 PMCID: PMC5951870 DOI: 10.1007/s12560-018-9337-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/19/2018] [Indexed: 05/21/2023]
Abstract
Shellfish samples (n = 310) purchased from local supermarkets were analysed for the presence of hepatitis E virus (HEV) by nested RT-PCR and real-time qRT-PCR. Overall, 2.9% of samples tested positive for the presence of HEV. Phylogenetic analysis of HEV sequences revealed all as being genotype 3 HEV. This is the first report of the detection of HEV in commercially sold shellfish in Scotland. These findings may encourage further research that will help address the gaps in the knowledge in respect to foodborne transmission of HEV in Scotland and the rest of the United Kingdom.
Collapse
Affiliation(s)
- Zoe O'Hara
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK.
| | - Claire Crossan
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| | - John Craft
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| | - Linda Scobie
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK
| |
Collapse
|
36
|
Hepatitis E in High-Income Countries: What Do We Know? And What Are the Knowledge Gaps? Viruses 2018; 10:v10060285. [PMID: 29799485 PMCID: PMC6024799 DOI: 10.3390/v10060285] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis E virus (HEV) is a positive-strand RNA virus transmitted by the fecal–oral route. HEV genotypes 1 and 2 infect only humans and cause mainly waterborne outbreaks. HEV genotypes 3 and 4 are widely represented in the animal kingdom, and are mainly transmitted as a zoonosis. For the past 20 years, HEV infection has been considered an imported disease in developed countries, but now there is evidence that HEV is an underrecognized pathogen in high-income countries, and that the incidence of confirmed cases has been steadily increasing over the last decade. In this review, we describe current knowledge about the molecular biology of HEV, its clinical features, its main routes of transmission, and possible therapeutic strategies in developed countries.
Collapse
|
37
|
Bricks G, Senise JF, Pott Junior H, Grandi G, Passarini A, Caldeira DB, Carnaúba Junior D, Moraes HABD, Granato CFH, Castelo A. Seroprevalence of hepatitis E virus in chronic hepatitis C in Brazil. Braz J Infect Dis 2018; 22:85-91. [PMID: 29494796 PMCID: PMC9428184 DOI: 10.1016/j.bjid.2018.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND AIMS Hepatitis E virus infection in patients with underlying chronic liver disease is associated with liver decompensation and increased lethality. The seroprevalence of hepatitis E virus in patients with chronic hepatitis C in Brazil is unknown. This study aims to estimate the seroprevalence of hepatitis E virus in patients with chronic hepatitis C and to describe associated risk factors. METHODS A total of 618 patients chronically infected with hepatitis C virus from three reference centers of São Paulo, Brazil were included. Presence of anti-HEV IgG was assessed by enzyme-linked immunosorbent assay (WANTAI HEV-IgG ELISA). RESULTS Out of the 618 patients tested, 10.2% turned out positive for anti-HEV IgG (95% CI 8.0-12.8%). Higher seroprevalence was found independently associated with age over 60 years (OR=2.04; p=0.02) and previous contact with pigs (OR=1.99; p=0.03). CONCLUSIONS Patients with chronic hepatitis C are under risk of hepatitis E virus superinfection in São Paulo. Contact with pigs is a risk factor for the infection, suggesting a possible zoonosis with oral transmission.
Collapse
Affiliation(s)
- Guilherme Bricks
- Universidade Federal de São Paulo, Departamento de Medicina, Divisão de Doenças Infecciosas, São Paulo, SP, Brazil.
| | - Jorge Figueiredo Senise
- Universidade Federal de São Paulo, Departamento de Medicina, Divisão de Doenças Infecciosas, São Paulo, SP, Brazil
| | - Henrique Pott Junior
- Universidade Federal de São Paulo, Departamento de Medicina, Divisão de Doenças Infecciosas, São Paulo, SP, Brazil
| | - Giuliano Grandi
- Universidade Federal de São Paulo, Departamento de Medicina, Divisão de Doenças Infecciosas, São Paulo, SP, Brazil
| | - Amanda Passarini
- Universidade Federal de São Paulo, Departamento de Medicina, Divisão de Doenças Infecciosas, São Paulo, SP, Brazil
| | - Débora Bellini Caldeira
- Universidade Federal de São Paulo, Departamento de Medicina, Divisão de Doenças Infecciosas, São Paulo, SP, Brazil
| | - Dimas Carnaúba Junior
- Hospital de Transplante Euryclides Jesus Zerbini, Ambulatório de Doenças Infecciosas, São Paulo, SP, Brazil
| | | | | | - Adauto Castelo
- Universidade Federal de São Paulo, Departamento de Medicina, Divisão de Doenças Infecciosas, São Paulo, SP, Brazil
| |
Collapse
|
38
|
Neethirajan S, Ragavan K, Weng X. Agro-defense: Biosensors for food from healthy crops and animals. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
La Rosa G, Proroga YTR, De Medici D, Capuano F, Iaconelli M, Della Libera S, Suffredini E. First Detection of Hepatitis E Virus in Shellfish and in Seawater from Production Areas in Southern Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:127-131. [PMID: 28956272 DOI: 10.1007/s12560-017-9319-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/23/2017] [Indexed: 05/21/2023]
Abstract
Shellfish samples (n = 384) from production areas, water samples from the same areas (n = 39) and from nearby sewage discharge points (n = 29) were analyzed for hepatitis E virus (HEV) by real-time and nested RT-PCR. Ten shellfish samples (2.6%) and five seawater samples (12.8%) tested positive for HEV; all characterized strains were G3 and showed high degree of sequence identity. An integrated surveillance in seafood and waters is relevant to reduce the risk of shellfish-associated illnesses.
Collapse
Affiliation(s)
- G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Y T R Proroga
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055, Portici, Italy
| | - D De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - F Capuano
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055, Portici, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - S Della Libera
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
40
|
Romalde JL, Rivadulla E, Varela MF, Barja JL. An overview of 20 years of studies on the prevalence of human enteric viruses in shellfish from Galicia, Spain. J Appl Microbiol 2017; 124:943-957. [PMID: 29094428 DOI: 10.1111/jam.13614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Galicia (NW Spain) has 1490 km of coastline, and its particular topography, characterized by the presence of fiord-like inlets, called rías, with an important primary production, makes this region very favourable for shellfish growth and culture. In fact, Galicia is one of the most important mussel producers in the world. Due to its proximity to cities and villages and the anthropogenic activities in these estuaries, and despite the routine official controls on the bivalve harvesting areas, contamination with material of faecal origin is sometimes possible but, current regulation based on Escherichia coli as an indicator micro-organism has been revealed as useful for bacterial contaminants, this is not the case for enteric viruses. The aim of this review is to offer a picture on the situation of different harvesting areas in Galicia, from a virological standpoint. A recompilation of results obtained in the last 20 years is presented, including not only the data for the well-known agents norovirus (NoV) and hepatitis A virus (HAV) but also data on emerging viral hazards, including sapovirus (SaV), hepatitis E virus (HEV) and aichivirus (AiV). Epidemiological differences related to diverse characteristics of the harvesting areas, viral genotype distribution or epidemiological links between environmental and clinical strains will also be presented and discussed. The presentation of these historical data all together could be useful for future decisions by competent authorities for a better management of shellfish growing areas.
Collapse
Affiliation(s)
- J L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - E Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M F Varela
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J L Barja
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
41
|
Suffredini E, Proroga YTR, Di Pasquale S, Di Maro O, Losardo M, Cozzi L, Capuano F, De Medici D. Occurrence and Trend of Hepatitis A Virus in Bivalve Molluscs Production Areas Following a Contamination Event. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:423-433. [PMID: 28452010 DOI: 10.1007/s12560-017-9302-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to assess the trend of hepatitis A virus (HAV) in a coastal zone impacted by a contamination event, providing data for the development of management strategies. A total of 352 samples, including four bivalve mollusc species (Mytilus galloprovincialis, Solen vagina, Venus gallina and Donax trunculus), were taken over a period of 6 months from 27 production areas of the coast and analysis were performed according to ISO/TS 15216-1:2013. HAV presence was detected in 77 samples from 11 production areas and all positive results were related to samples collected in the first 3 months of the surveillance, during which HAV prevalence was 39.9% and values as high as 5096 genome copies/g were detected. A progressive reduction of viral contamination was evident during the first trimester of the monitoring, with prevalence decreasing from 78.8% in the first month, to 37.8% in the second and 3.9% in the third and quantitative levels reduced from an average value of 672 genome copies/g to 255 genome copies/g over a period of 4 weeks (virus half-life: 21.5 days). A regression analysis showed that, during the decreasing phase of the contamination, the data fitted a reciprocal quadratic model (Ra2 = 0.921) and, based on the model, a residual presence of HAV could be estimated after negativization of the production areas. The statistical analysis of the results per shellfish species and per production area showed that there were limited differences in contamination prevalence and levels among diverse bivalve species, while a statistically significant difference was present in quantitative levels of one production area. These data could be useful for the development of both risk assessment models and code of practice for the management of viral contamination in primary production.
Collapse
Affiliation(s)
- Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Yolande Thérèse Rose Proroga
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055, Naples, Italy
| | - Simona Di Pasquale
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orlandina Di Maro
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055, Naples, Italy
| | - Maria Losardo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Loredana Cozzi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Federico Capuano
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055, Naples, Italy
| | - Dario De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
42
|
Spahr C, Knauf-Witzens T, Vahlenkamp T, Ulrich RG, Johne R. Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review. Zoonoses Public Health 2017; 65:11-29. [PMID: 28944602 DOI: 10.1111/zph.12405] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 01/15/2023]
Abstract
Hepatitis E is a human disease mainly characterized by acute liver illness, which is caused by infection with the hepatitis E virus (HEV). Large hepatitis E outbreaks have been described in developing countries; however, the disease is also increasingly recognized in industrialized countries. Mortality rates up to 25% have been described for pregnant women during outbreaks in developing countries. In addition, chronic disease courses could be observed in immunocompromised transplant patients. Whereas the HEV genotypes 1 and 2 are mainly confined to humans, genotypes 3 and 4 are also found in animals and can be zoonotically transmitted to humans. Domestic pig and wild boar represent the most important reservoirs for these genotypes. A distinct subtype of genotype 3 has been repeatedly detected in rabbits and a few human patients. Recently, HEV genotype 7 has been identified in dromedary camels and in an immunocompromised transplant patient. The reservoir animals get infected with HEV without showing any clinical symptoms. Besides these well-known animal reservoirs, HEV-specific antibodies and/or the genome of HEV or HEV-related viruses have also been detected in many other animal species, including primates, other mammals and birds. In particular, genotypes 3 and 4 infections are documented in many domestic, wildlife and zoo animal species. In most cases, the presence of HEV in these animals can be explained by spillover infections, but a risk of virus transmission through contact with humans cannot be excluded. This review gives a general overview on the transmission pathways of HEV to humans. It particularly focuses on reported serological and molecular evidence of infections in wild, domestic and zoo animals with HEV or HEV-related viruses. The role of these animals for transmission of HEV to humans and other animals is discussed.
Collapse
Affiliation(s)
- C Spahr
- Wilhelma Zoological-Botanical Gardens, Stuttgart, Germany.,Faculty of Veterinary Medicine, Institute of Virology, University of Leipzig, Leipzig, Germany
| | | | - T Vahlenkamp
- Faculty of Veterinary Medicine, Institute of Virology, University of Leipzig, Leipzig, Germany
| | - R G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Insel Riems, Braunschweig, Germany
| | - R Johne
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
43
|
Mauceri C, Grazia Clemente M, Castiglia P, Antonucci R, Schwarz KB. Hepatitis E in Italy: A silent presence. J Infect Public Health 2017; 11:1-8. [PMID: 28864359 DOI: 10.1016/j.jiph.2017.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 01/18/2023] Open
Abstract
Hepatitis E virus (HEV) was discovered in the 1980s and has been considered as being confined to developing countries. The purpose of this critical review was to determine the reported HEV seroprevalence rates in Italy, to identify predisposing factors and individuals at risk and to assess possible importation of HEV by immigrants. A critical review of 159 articles published in PubMed from 1994 to date was done. Only 27 original reports of 50 or more subjects, written in the English or Italian language, were included. Over three decades, the HEV seroprevalence varied from 0.12% to 49%, with the highest rates being reported from the central region of Italy. Risk factors included ingestion of raw pork or potentially contaminated food. The seroprevalence among immigrants ranged from 15.3% to 19.7% in Apulia. Italy has a population of 60656000; the total number of individuals surveyed was only 21.882 (0.036%). A national epidemiological survey program is needed to capture more comprehensive seroprevalence data.
Collapse
Affiliation(s)
- Carlo Mauceri
- Pediatric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari Medical School, 07100 Sassari, Italy.
| | - Maria Grazia Clemente
- Pediatric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari Medical School, 07100 Sassari, Italy.
| | - Paolo Castiglia
- Department of Biomedical Sciences-Hygiene and Preventive Medicine Unit, University-AOU of Sassari, 07100 Sassari, Italy.
| | - Roberto Antonucci
- Pediatric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari Medical School, 07100 Sassari, Italy.
| | - Kathleen B Schwarz
- Pediatric Liver Center, Johns Hopkins University School of Medicine, Baltimore 21287, MD, USA.
| |
Collapse
|
44
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernandez Escamez PS, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Di Bartolo I, Johne R, Pavio N, Rutjes S, van der Poel W, Vasickova P, Hempen M, Messens W, Rizzi V, Latronico F, Girones R. Public health risks associated with hepatitis E virus (HEV) as a food-borne pathogen. EFSA J 2017; 15:e04886. [PMID: 32625551 PMCID: PMC7010180 DOI: 10.2903/j.efsa.2017.4886] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is an important infection in humans in EU/EEA countries, and over the last 10 years more than 21,000 acute clinical cases with 28 fatalities have been notified with an overall 10-fold increase in reported HEV cases; the majority (80%) of cases were reported from France, Germany and the UK. However, as infection in humans is not notifiable in all Member States, and surveillance differs between countries, the number of reported cases is not comparable and the true number of cases would probably be higher. Food-borne transmission of HEV appears to be a major route in Europe; pigs and wild boars are the main source of HEV. Outbreaks and sporadic cases have been identified in immune-competent persons as well as in recognised risk groups such as those with pre-existing liver damage, immunosuppressive illness or receiving immunosuppressive treatments. The opinion reviews current methods for the detection, identification, characterisation and tracing of HEV in food-producing animals and foods, reviews literature on HEV reservoirs and food-borne pathways, examines information on the epidemiology of HEV and its occurrence and persistence in foods, and investigates possible control measures along the food chain. Presently, the only efficient control option for HEV infection from consumption of meat, liver and products derived from animal reservoirs is sufficient heat treatment. The development of validated quantitative and qualitative detection methods, including infectivity assays and consensus molecular typing protocols, is required for the development of quantitative microbial risk assessments and efficient control measures. More research on the epidemiology and control of HEV in pig herds is required in order to minimise the proportion of pigs that remain viraemic or carry high levels of virus in intestinal contents at the time of slaughter. Consumption of raw pig, wild boar and deer meat products should be avoided.
Collapse
|
45
|
Fusco G, Di Bartolo I, Cioffi B, Ianiro G, Palermo P, Monini M, Amoroso MG. Prevalence of Foodborne Viruses in Mussels in Southern Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:187-194. [PMID: 28054332 DOI: 10.1007/s12560-016-9277-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/26/2016] [Indexed: 06/06/2023]
Abstract
In this study, the prevalence of various enteric viruses in Mytilus galloprovincialis (Mediterranean mussel) belonging to class A and class B mollusc-harvesting areas in the Campania region in southern Italy was evaluated. One hundred and eight mussels were analysed using real-time reverse transcription PCR during a 2-year collection period (2014-2015) to detect the following viruses: human norovirus (genogroups I and II), rotavirus, astrovirus, sapovirus, aichivirus, hepatitis A virus and hepatitis E virus. Overall, 50.93% of mussels were contaminated by at least one of the tested viruses. Of these virus-positive mussels, 63.63% were contaminated by two or more viruses. In 2014, only three of the eight investigated viruses were detected: astrovirus, sapovirus and aichivirus, whereas in 2015, seven of the eight viruses were detected (only hepatitis E virus was not identified). Astrovirus was the most frequently detected virus in both sampling periods. In 2014, sapovirus was detected at the same frequency as astrovirus (16.00%), followed by aichivirus (8%). In 2015, astrovirus (32.53%) was most frequently detected, followed by norovirus GII (26.50%), sapovirus (18.07%), hepatitis A virus (16.87%), rotavirus (16.87%), aichivirus (13.25%) and norovirus GI (12.05%).This study describes, for the first time, the presence of aichivirus and sapovirus in mussels in Italy.
Collapse
Affiliation(s)
- Giovanna Fusco
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute, 2, 80055, Portici, NA, Italy.
| | - Ilaria Di Bartolo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Vial Regina Elena 299, 00161, Rome, Italy
| | - Barbara Cioffi
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute, 2, 80055, Portici, NA, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Vial Regina Elena 299, 00161, Rome, Italy
| | - Pierpaolo Palermo
- Veterinarian Epidemiological Surveillance Center, Experimental Zooprophylactic Institute of Southern Italy, Via Salute, 2, 80055, Portici, NA, Italy
| | - Marina Monini
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Vial Regina Elena 299, 00161, Rome, Italy
| | - Maria Grazia Amoroso
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute, 2, 80055, Portici, NA, Italy.
| |
Collapse
|
46
|
Pavio N, Bagdassarian E, Pellerin M, Doceul V. Réservoirs animaux du Virus de l’Hépatite E et transmissions zoonotiques. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2017; 201:657-670. [DOI: 10.1016/s0001-4079(19)30448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
47
|
Rivadulla E, Varela MF, Romalde JL. Low prevalence of Aichi virus in molluscan shellfish samples from Galicia (NW Spain). J Appl Microbiol 2016; 122:516-521. [PMID: 27891729 DOI: 10.1111/jam.13363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/19/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022]
Abstract
AIMS The aim of this study was to detect and quantify Aichi virus (AiV) in shellfish from three estuaries in Galicia, the main producer of molluscs in Europe. METHODS AND RESULTS A total of 249 shellfish samples were analysed using a reverse transcription-quantitative PCR procedure. AiV was detected in 15 of 249 (6·02%) samples. Ría de Ares-Betanzos showed the highest prevalence (11·1%), followed by Ría do Burgo (3·7%) and Ría de Vigo, (2·56%). AiV quantifications ranged from nonquantifiable (under the limit of quantification of the method) to 6·9 × 103 RNAc per g DT, with a mean value of 1·9 × 102 RNAc per g DT. CONCLUSION Results obtained indicated that the prevalence of this enteric virus in the studied area is considerably lower than those of other enteric viruses, such as Norovirus, Sapovirus, HAV or HEV. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that detects the presence of AiV in shellfish from authorized harvesting areas in Spain. Further studies with clinical samples are needed to determine the potential risk of AiV for human health in Galicia.
Collapse
Affiliation(s)
- E Rivadulla
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - M F Varela
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - J L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
48
|
Hepatitis E Virus in Industrialized Countries: The Silent Threat. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9838041. [PMID: 28070522 PMCID: PMC5192302 DOI: 10.1155/2016/9838041] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
Hepatitis E virus (HEV) is the main cause of acute viral hepatitis worldwide. Its presence in developing countries has been documented for decades. Developed countries were supposed to be virus-free and initially only imported cases were detected in those areas. However, sporadic and autochthonous cases of HEV infection have been identified and studies reveal that the virus is worldwide spread. Chronic hepatitis and multiple extrahepatic manifestations have also been associated with HEV. We review the data from European countries, where human, animal, and environmental data have been collected since the 90s. In Europe, autochthonous HEV strains were first detected in the late 90s and early 2000s. Since then, serological data have shown that the virus infects quite frequently the European population and that some species, such as pigs, wild boars, and deer, are reservoirs. HEV strains can be isolated from environmental samples and reach the food chain, as shown by the detection of the virus in mussels and in contaminated pork products as sausages or meat. All these data highlight the need of studies directed to control the sources of HEV to protect immunocompromised individuals that seem the weakest link of the HEV epidemiology in industrialized regions.
Collapse
|
49
|
Doceul V, Bagdassarian E, Demange A, Pavio N. Zoonotic Hepatitis E Virus: Classification, Animal Reservoirs and Transmission Routes. Viruses 2016; 8:v8100270. [PMID: 27706110 PMCID: PMC5086606 DOI: 10.3390/v8100270] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022] Open
Abstract
During the past ten years, several new hepatitis E viruses (HEVs) have been identified in various animal species. In parallel, the number of reports of autochthonous hepatitis E in Western countries has increased as well, raising the question of what role these possible animal reservoirs play in human infections. The aim of this review is to present the recent discoveries of animal HEVs and their classification within the Hepeviridae family, their zoonotic and species barrier crossing potential, and possible use as models to study hepatitis E pathogenesis. Lastly, this review describes the transmission pathways identified from animal sources.
Collapse
Affiliation(s)
- Virginie Doceul
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, UMR (joint research unit) 1161 Virology, 94701 Maisons-Alfort, France.
- French National Institute for Agricultural Research (INRA), UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
- Association of Universities and High Education Institutions (ComUE), Paris-Est Créteil Val-de-Marne University, National Veterinary School, UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
| | - Eugénie Bagdassarian
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, UMR (joint research unit) 1161 Virology, 94701 Maisons-Alfort, France.
- French National Institute for Agricultural Research (INRA), UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
- Association of Universities and High Education Institutions (ComUE), Paris-Est Créteil Val-de-Marne University, National Veterinary School, UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
| | - Antonin Demange
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, UMR (joint research unit) 1161 Virology, 94701 Maisons-Alfort, France.
- French National Institute for Agricultural Research (INRA), UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
- Association of Universities and High Education Institutions (ComUE), Paris-Est Créteil Val-de-Marne University, National Veterinary School, UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
| | - Nicole Pavio
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Animal Health Laboratory, UMR (joint research unit) 1161 Virology, 94701 Maisons-Alfort, France.
- French National Institute for Agricultural Research (INRA), UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
- Association of Universities and High Education Institutions (ComUE), Paris-Est Créteil Val-de-Marne University, National Veterinary School, UMR (joint research unit) 1161 Virology, 94700 Maisons-Alfort, France.
| |
Collapse
|
50
|
|