1
|
Cheng Y, Chen X, Zhang XQ, Ju PJ, Wang WD, Fang Y, Lin GN, Cui DH. Interaction between RNF4 and SART3 is associated with the risk of schizophrenia. Heliyon 2024; 10:e32743. [PMID: 38975171 PMCID: PMC11226853 DOI: 10.1016/j.heliyon.2024.e32743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The pathogenesis of schizophrenia (SCZ) is heavily influenced by genetic factors. Ring finger protein 4 (RNF4) and squamous cell carcinoma antigen recognized by T cells 3 (SART3) are thought to be involved in nervous system growth and development via oxidative stress pathways. Moreover, they have previously been linked to SCZ. Yet the role of RNF4 and SART3 in SCZ remains unclear. Here, we investigated how these two genes are involved in SCZ by studying their variants observed in patients. We first observed significantly elevated mRNA levels of RNF4 and SART3 in the peripheral blood in both first-episode (n = 30) and chronic (n = 30) SCZ patients compared to controls (n = 60). Next, we targeted-sequenced three single nucleotide polymorphisms (SNPs) in SART3 and six SNPs in RNF4 for association with SCZ using the genomic DNA extracted from peripheral blood leukocytes from SCZ participants (n = 392) and controls (n = 572). We observed a combination of SNPs that included rs1203860, rs2282765 (both in RNF4), and rs2287550 (in SART3) was associated with increased risk of SCZ, suggesting common pathogenic mechanisms between these two genes. We then conducted experiments in HEK293T cells to better understand the interaction between RNF4 and SART3. We observed that SART3 lowered the expression of RNF4 through ubiquitination and downregulated the expression of nuclear factor E2-related factor 2 (NRF2), a downstream factor of RNF4, implicating the existence of a possible shared regulatory mechanism for RNF4 and SART3. In conclusion, our study provides evidence that the interaction between RNF4 and SART3 contributes to the risk of SCZ. The findings shed light on the underlying molecular mechanisms of SCZ and may lead to the development of new therapies and interventions for this disorder.
Collapse
Affiliation(s)
- Ying Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Xi Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Xiao Qing Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Pei Jun Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Di Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Imaging, Computational and Systems Biomedicine, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Imaging, Computational and Systems Biomedicine, School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Hong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Muzammil K, Sabah Ghnim Z, Saeed Gataa I, Fawzi Al-Hussainy A, Ali Soud N, Adil M, Ali Shallan M, Yasamineh S. NRF2-mediated regulation of lipid pathways in viral infection. Mol Aspects Med 2024; 97:101279. [PMID: 38772081 DOI: 10.1016/j.mam.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | | | | | | | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
4
|
Daskou M, Fotooh Abadi L, Gain C, Wong M, Sharma E, Kombe Kombe AJ, Nanduri R, Kelesidis T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023; 13:39. [PMID: 38251346 PMCID: PMC10819673 DOI: 10.3390/pathogens13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In humans, acute and chronic respiratory infections caused by viruses are associated with considerable morbidity and mortality. Respiratory viruses infect airway epithelial cells and induce oxidative stress, yet the exact pathogenesis remains unclear. Oxidative stress activates the transcription factor NRF2, which plays a key role in alleviating redox-induced cellular injury. The transcriptional activation of NRF2 has been reported to affect both viral replication and associated inflammation pathways. There is complex bidirectional crosstalk between virus replication and the NRF2 pathway because virus replication directly or indirectly regulates NRF2 expression, and NRF2 activation can reversely hamper viral replication and viral spread across cells and tissues. In this review, we discuss the complex role of the NRF2 pathway in the regulation of the pathogenesis of the main respiratory viruses, including coronaviruses, influenza viruses, respiratory syncytial virus (RSV), and rhinoviruses. We also summarize the scientific evidence regarding the effects of the known NRF2 agonists that can be utilized to alter the NRF2 pathway.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leila Fotooh Abadi
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Chandrima Gain
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnaud John Kombe Kombe
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Ravikanth Nanduri
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| |
Collapse
|
5
|
Bastin A, Abbasi F, Roustaei N, Abdesheikhi J, Karami H, Gholamnezhad M, Eftekhari M, Doustimotlagh A. Severity of oxidative stress as a hallmark in COVID-19 patients. Eur J Med Res 2023; 28:558. [PMID: 38049886 PMCID: PMC10696844 DOI: 10.1186/s40001-023-01401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/27/2023] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Understanding the mechanisms and identifying effective treatments for the COVID-19 outbreak are imperative. Therefore, this study aimed to assess the antioxidant status and oxidative stress parameters as potential pivotal mechanisms in asymptomatic, non-severe, and severe COVID-19 patients. METHODS This study is a case-control study that was performed on patients referred to the Persian Gulf Martyrs Hospital of Bushehr University of Medical Sciences, Bushehr, Iran, from May 2021 to September 2021. A total of 600 COVID-19 patients (non-severe and severe group) and 150 healthy volunteers of the same age and sex were selected during the same period. On the first day of hospitalization, 10 ml of venous blood was taken from subjects. Then, hematological, biochemical, serological, antioxidant and oxidative stress parameters were determined. RESULTS Our results indicated that ESR, CRP, AST, ALT, and LDH significantly augmented in the severe group as compared to the non-severe and normal groups (P ≤ 0.05). It was observed that the levels of FRAP, G6PD activity, and SOD activity significantly reduced in the non-severe patients in comparison with the severe and normal groups (P ≤ 0.05). We found that MDA content and NO metabolite markedly increased in severe patients as compared to the non-severe group. CONCLUSIONS Taken together, it seems that the balance between antioxidants and oxidants was disturbed in COVID-19 patients in favor of oxidant markers. In addition, this situation caused more aggravation in severe patients as compared to the non-severe group.
Collapse
Affiliation(s)
- Alireza Bastin
- Clinical Research Development Center, "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Abbasi
- Department of Infectious Disease, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Roustaei
- Department of Biostatistics and Epidemiology, School of Health, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Jahangir Abdesheikhi
- Department of Clinical Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Karami
- Clinical Research Development Center, "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Gholamnezhad
- Department of Infectious Disease, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdieh Eftekhari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Amirhossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
6
|
Díaz FE, McGill JL. Modeling Human Respiratory Syncytial Virus (RSV) Infection: Recent Contributions and Future Directions Using the Calf Model of Bovine RSV Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1180-1186. [PMID: 37782855 PMCID: PMC10558079 DOI: 10.4049/jimmunol.2300260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 10/04/2023]
Abstract
The human orthopneumovirus (human respiratory syncytial virus [RSV]) is a leading cause of respiratory disease in children worldwide and a significant cause of infant mortality in low- and middle-income countries. The natural immune response to the virus has a preponderant role in disease progression, with a rapid neutrophil infiltration and dysbalanced T cell response in the lungs associated with severe disease in infants. The development of preventive interventions against human RSV has been difficult partly due to the need to use animal models that only partially recapitulate the immune response as well as the disease progression seen in human infants. In this brief review, we discuss the contributions of the calf model of RSV infection to understanding immunity to RSV and in developing vaccine and drug candidates, focusing on recent research areas. We propose that the bovine model of RSV infection is a valuable alternative for assessing the translational potential of interventions aimed at the human population.
Collapse
Affiliation(s)
- Fabián E. Díaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Yang X, Liu X, Nie Y, Zhan F, Zhu B. Oxidative stress and ROS-mediated cellular events in RSV infection: potential protective roles of antioxidants. Virol J 2023; 20:224. [PMID: 37798799 PMCID: PMC10557227 DOI: 10.1186/s12985-023-02194-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Respiratory syncytial virus (RSV), a member of the Pneumoviridae family, can cause severe acute lower respiratory tract infection in infants, young children, immunocompromised individuals and elderly people. RSV is associated with an augmented innate immune response, enhanced secretion of inflammatory cytokines, and necrosis of infected cells. Oxidative stress, which is mainly characterized as an imbalance in the production of reactive oxygen species (ROS) and antioxidant responses, interacts with all the pathophysiologic processes above and is receiving increasing attention in RSV infection. A gradual accumulation of evidence indicates that ROS overproduction plays an important role in the pathogenesis of severe RSV infection and serves as a major factor in pulmonary inflammation and tissue damage. Thus, antioxidants seem to be an effective treatment for severe RSV infection. This article mainly reviews the information on oxidative stress and ROS-mediated cellular events during RSV infection for the first time.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Xue Liu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Yujun Nie
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Fei Zhan
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
8
|
Ramesh PS, Bovilla VR, Swamy VH, Manoli NN, Dasegowda KB, Siddegowda SM, Chandrashekarappa S, Somasundara VM, Kabekkodu SP, Rajesh R, Devegowda D, Thimmulappa RK. Human papillomavirus-driven repression of NRF2 signalling confers chemo-radio sensitivity and predicts prognosis in head and neck squamous cell carcinoma. Free Radic Biol Med 2023; 205:234-243. [PMID: 37328018 DOI: 10.1016/j.freeradbiomed.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE To investigate the role of NRF2 signalling in conferring superior prognosis in patients with HPV positive (HPV+ve) head & neck squamous cell carcinomas (HNSCC) compared to HPV negative (HPV-ve) HNSCC and develop molecular markers for selection of HPV+ve HNSCC patients for treatment de-escalation trials. METHODS NRF2 activity (NRF2, KEAP1, and NRF2-transcriptional targets), p16, and p53 levels between HPV+ve HNSCC and HPV-ve HNSCC in prospective and retrospective tumor samples as well as from TCGA database were compared. Cancer cells were transfected with HPV-E6/E7 plasmid to elucidate if HPV infection represses NRF2 activity and sensitizes to chemo-radiotherapy. RESULTS Prospective analysis revealed a marked reduction in expression of NRF2, and its downstream genes in HPV+ve tumors compared to HPV-ve tumors. A retrospective analysis by IHC revealed significantly lower NQO1 in p16high tumors compared to p16low tumors and the NQO1 expression correlated negatively with p16 and positively with p53. Analysis of the TCGA database confirmed low constitutive NRF2 activity in HPV+ve HNSCC compared to HPV-ve HNSCC and revealed that HPV+ve HNSCC patients with 'low NQO1' expression showed better overall survival compared to HPV+ve HNSCC patients with 'high NQO1' expression. Ectopic expression of HPV-E6/E7 plasmid in various cancer cells repressed constitutive NRF2 activity, reduced total GSH, increased ROS levels, and sensitized the cancer cells to cisplatin and ionizing radiation. CONCLUSION Low constitutive NRF2 activity contributes to better prognosis of HPV+ve HNSCC patients. Co-expression of p16high, NQO1low, and p53low could serve as a predictive biomarker for the selection of HPV + ve HNSCC patients for de-escalation trials.
Collapse
Affiliation(s)
- Pushkal S Ramesh
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Venugopal R Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Vikas H Swamy
- School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Nandini N Manoli
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| | | | | | - Shilpa Chandrashekarappa
- Department of Otorhinolaryngology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| | | | - Shama P Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| | - R Rajesh
- Department of Radiotherapy, Narayana Multispeciality Hospital, Mysuru, India.
| | - Devanand Devegowda
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Rajesh K Thimmulappa
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, India.
| |
Collapse
|
9
|
Li Z, Li B, Chen Z, Xu J, El Sabbagh A, Zhao Y, Du R, Rong L, Tian J, Cui Q. Licochalcone A plays dual antiviral roles by inhibiting RSV and protecting against host damage. J Med Virol 2023; 95:e29059. [PMID: 37635463 DOI: 10.1002/jmv.29059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract diseases and bronchiolitis in children and elderly individuals. There are no effective drugs currently available to treat RSV infection. In this study, we report that Licochalcone A (LCA) can inhibit RSV replication and mitigate RSV-induced cell damage in vitro, and that LCA exerts a protective effect by reducing the viral titer and inflammation in the lungs of infected mice in vivo. We suggest that the mechanism of action occurs through pathways of antioxidant stress and inflammation. Further mechanistic results demonstrate that LCA can induce nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into the nucleus, activate heme oxygenase 1 (HO-1), and inhibit reactive oxygen species-induced oxidative stress. LCA also works to reverse the decrease in I-kappa-B-alpha (IкBα) levels caused by RSV, which in turn inhibits inflammation through the associated nuclear factor kappa B and tumor necrosis factor-α signaling pathways. The combined action of the two cross-talking pathways protects hosts from RSV-induced damage. To conclude, our study is the first of its kind to establish evidence of LCA as a viable treatment for RSV infection.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baohong Li
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zinuo Chen
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinke Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Asma El Sabbagh
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yangang Zhao
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
10
|
Qu Y, Haas de Mello A, Morris DR, Jones-Hall YL, Ivanciuc T, Sattler RA, Paessler S, Menachery VD, Garofalo RP, Casola A. SARS-CoV-2 Inhibits NRF2-Mediated Antioxidant Responses in Airway Epithelial Cells and in the Lung of a Murine Model of Infection. Microbiol Spectr 2023; 11:e0037823. [PMID: 37022178 PMCID: PMC10269779 DOI: 10.1128/spectrum.00378-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Several viruses have been shown to modulate the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), the master regulator of redox homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, also seems to disrupt the balance between oxidants and antioxidants, which likely contributes to lung damage. Using in vitro and in vivo models of infection, we investigated how SARS-CoV-2 modulates the transcription factor NRF2 and its dependent genes, as well as the role of NRF2 during SARS-CoV-2 infection. We found that SARS-CoV-2 infection downregulates NRF2 protein levels and NRF2-dependent gene expression in human airway epithelial cells and in lungs of BALB/c mice. Reductions in cellular levels of NRF2 seem to be independent of proteasomal degradation and the interferon/promyelocytic leukemia (IFN/PML) pathway. Furthermore, lack of the Nrf2 gene in SARS-CoV-2-infected mice exacerbates clinical disease, increases lung inflammation, and is associated with a trend toward increased lung viral titers, indicating that NRF2 has a protective role during this viral infection. In summary, our results suggest that SARS-CoV-2 infection alters the cellular redox balance by downregulating NRF2 and its dependent genes, which exacerbates lung inflammation and disease, therefore, suggesting that the activation of NRF2 could be explored as therapeutic approach during SARS-CoV-2 infection. IMPORTANCE The antioxidant defense system plays a major function in protecting the organism against oxidative damage caused by free radicals. COVID-19 patients often present with biochemical characteristics of uncontrolled pro-oxidative responses in the respiratory tract. We show herein that SARS-CoV-2 variants, including Omicron, are potent inhibitors of cellular and lung nuclear factor erythroid 2-related factor 2 (NRF2), the master transcription factor that controls the expression of antioxidant and cytoprotective enzymes. Moreover, we show that mice lacking the Nrf2 gene show increased clinical signs of disease and lung pathology when infected with a mouse-adapted strain of SARS-CoV-2. Overall, this study provides a mechanistic explanation for the observed unbalanced pro-oxidative response in SARS-CoV-2 infections and suggests that therapeutic strategies for COVID-19 may consider the use of pharmacologic agents that are known to boost the expression levels of cellular NRF2.
Collapse
Affiliation(s)
- Yue Qu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Dorothea R. Morris
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Yava L. Jones-Hall
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Teodora Ivanciuc
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Rachel A. Sattler
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Slobodan Paessler
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
11
|
Yegiazaryan A, Abnousian A, Alexander LJ, Badaoui A, Flaig B, Sheren N, Aghazarian A, Alsaigh D, Amin A, Mundra A, Nazaryan A, Guilford FT, Venketaraman V. Recent Developments in the Understanding of Immunity, Pathogenesis and Management of COVID-19. Int J Mol Sci 2022; 23:9297. [PMID: 36012562 PMCID: PMC9409103 DOI: 10.3390/ijms23169297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
Coronaviruses represent a diverse family of enveloped positive-sense single stranded RNA viruses. COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus-2, is a highly contagious respiratory disease transmissible mainly via close contact and respiratory droplets which can result in severe, life-threatening respiratory pathologies. It is understood that glutathione, a naturally occurring antioxidant known for its role in immune response and cellular detoxification, is the target of various proinflammatory cytokines and transcription factors resulting in the infection, replication, and production of reactive oxygen species. This leads to more severe symptoms of COVID-19 and increased susceptibility to other illnesses such as tuberculosis. The emergence of vaccines against COVID-19, usage of monoclonal antibodies as treatments for infection, and implementation of pharmaceutical drugs have been effective methods for preventing and treating symptoms. However, with the mutating nature of the virus, other treatment modalities have been in research. With its role in antiviral defense and immune response, glutathione has been heavily explored in regard to COVID-19. Glutathione has demonstrated protective effects on inflammation and downregulation of reactive oxygen species, thereby resulting in less severe symptoms of COVID-19 infection and warranting the discussion of glutathione as a treatment mechanism.
Collapse
Affiliation(s)
- Aram Yegiazaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Arbi Abnousian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Logan J. Alexander
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ali Badaoui
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Brandon Flaig
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Armin Aghazarian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Dijla Alsaigh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Arman Amin
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Akaash Mundra
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Anthony Nazaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Jamaluddin M, Haas de Mello A, Tapryal N, Hazra TK, Garofalo RP, Casola A. NRF2 Regulates Cystathionine Gamma-Lyase Expression and Activity in Primary Airway Epithelial Cells Infected with Respiratory Syncytial Virus. Antioxidants (Basel) 2022; 11:1582. [PMID: 36009301 PMCID: PMC9405023 DOI: 10.3390/antiox11081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cystathionine-y-lyase (CSE) is a critical enzyme for hydrogen sulfide (H2S) biosynthesis and plays a key role in respiratory syncytial virus (RSV) pathogenesis. The transcription factor NRF2 is the master regulator of cytoprotective and antioxidant gene expression, and is degraded during RSV infection. While some evidence supports the role of NRF2 in CSE gene transcription, its role in CSE expression in airway epithelial cells is not known. Here, we show that RSV infection decreased CSE expression and activity in primary small airway epithelial (SAE) cells, while treatment with tert-butylhydroquinone (tBHQ), an NRF2 inducer, led to an increase of both. Using reporter gene assays, we identified an NRF2 response element required for the NRF2 inducible expression of the CSE promoter. Electrophoretic mobility shift assays demonstrated inducible specific NRF2 binding to the DNA probe corresponding to the putative CSE promoter NRF2 binding sequence. Using chromatin immunoprecipitation assays, we found a 50% reduction in NRF2 binding to the endogenous CSE proximal promoter in SAE cells infected with RSV, and increased binding in cells stimulated with tBHQ. Our results support the hypothesis that NRF2 regulates CSE gene transcription in airway epithelial cells, and that RSV-induced NRF2 degradation likely accounts for the observed reduced CSE expression and activity.
Collapse
Affiliation(s)
- Mohammad Jamaluddin
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nisha Tapryal
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
13
|
SARS-CoV-2 virus NSP14 Impairs NRF2/HMOX1 activation by targeting Sirtuin 1. Cell Mol Immunol 2022; 19:872-882. [PMID: 35732914 PMCID: PMC9217730 DOI: 10.1038/s41423-022-00887-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Most deaths from the COVID-19 pandemic are due to acute respiratory distress syndrome (ARDS)-related respiratory failure. Cytokine storms and oxidative stress are the major players in ARDS development during respiratory virus infections. However, it is still unknown how oxidative stress is regulated by viral and host factors in response to SARS-CoV-2 infection. Here, we found that activation of NRF2/HMOX1 significantly suppressed SARS-CoV-2 replication in multiple cell types by producing the metabolite biliverdin, whereas SARS-CoV-2 impaired the NRF2/HMOX1 axis through the action of the nonstructural viral protein NSP14. Mechanistically, NSP14 interacts with the catalytic domain of the NAD-dependent deacetylase Sirtuin 1 (SIRT1) and inhibits its ability to activate the NRF2/HMOX1 pathway. Furthermore, both genetic and pharmaceutical evidence corroborated the novel antiviral activity of SIRT1 against SARS-CoV-2. Therefore, our findings reveal a novel mechanism by which SARS-CoV-2 dysregulates the host antioxidant defense system and emphasize the vital role played by the SIRT1/NRF2 axis in host defense against SARS-CoV-2.
Collapse
|
14
|
de Mello AH, Liu T, Garofalo RP, Casola A. Hydrogen Sulfide Donor GYY4137 Rescues NRF2 Activation in Respiratory Syncytial Virus Infection. Antioxidants (Basel) 2022; 11:1410. [PMID: 35883901 PMCID: PMC9311616 DOI: 10.3390/antiox11071410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause severe respiratory illness in infants, immunocompromised, and older adults. Despite its burden, no vaccine or specific treatment is available. RSV infection is associated with increased reactive oxygen species (ROS) production, degradation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), and decreased antioxidant enzymes (AOEs), leading to oxidative damage and lung injury. Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays a physiological role in numerous cellular processes and a protective role in multiple pathological conditions, displaying vasoactive, cytoprotective, anti-inflammatory, and antioxidant activities. H2S can promote NRF2 activation through the sulfhydration of Kelch-like ECH-associated protein 1, the cytoplasmic repressor of NRF2. Here we investigated whether increasing cellular H2S levels could rescue NRF2 and NRF2-dependent gene expression in RSV-infected primary airway epithelial cells. We found that treatment with the H2S donor GYY4137 significantly increased NRF2 levels and AOEs gene expression by decreasing KEAP1 levels, and by modulating pathways involved in RSV-induced NRF2 degradation, such as NRF2 ubiquitination, and promyelocytic leukemia (PML) protein levels. These results suggest that the administration of exogenous H2S can positively impact the altered redox balance associated with RSV infection, which represents an important determinant of RSV-induced lung disease.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
15
|
Sánchez‐Ovando S, Pavlidis S, Kermani NZ, Baines KJ, Barker D, Gibson PG, Wood LG, Adcock IM, Chung KF, Simpson JL, Wark PA. Pathways linked to unresolved inflammation and airway remodelling characterize the transcriptome in two independent severe asthma cohorts. Respirology 2022; 27:730-738. [PMID: 35673765 PMCID: PMC9540453 DOI: 10.1111/resp.14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Background and objective Severe asthma (SA) is a heterogeneous disease. Transcriptomic analysis contributes to the understanding of pathogenesis necessary for developing new therapies. We sought to identify and validate mechanistic pathways of SA across two independent cohorts. Methods Transcriptomic profiles from U‐BIOPRED and Australian NOVocastrian Asthma cohorts were examined and grouped into SA, mild/moderate asthma (MMA) and healthy controls (HCs). Differentially expressed genes (DEGs), canonical pathways and gene sets were identified as central to SA mechanisms if they were significant across both cohorts in either endobronchial biopsies or induced sputum. Results Thirty‐six DEGs and four pathways were shared across cohorts linking to tissue remodelling/repair in biopsies of SA patients, including SUMOylation, NRF2 pathway and oxidative stress pathways. MMA presented a similar profile to HCs. Induced sputum demonstrated IL18R1 as a shared DEG in SA compared with healthy subjects. We identified enrichment of gene sets related to corticosteroid treatment; immune‐related mechanisms; activation of CD4+ T cells, mast cells and IL18R1; and airway remodelling in SA. Conclusion Our results identified differentially expressed pathways that highlight the role of CD4+ T cells, mast cells and pathways linked to ongoing airway remodelling, such as IL18R1, SUMOylation and NRF2 pathways, as likely active mechanisms in the pathogenesis of SA. Transcriptome analysis from endobronchial biopsies and induced sputum from two independent cohorts of adults with severe asthma (SA) (U‐BIOPRED and Australian NOVocastrian Asthma cohort) demonstrated shared differentially expressed pathways previously linked to persistent unresolved inflammation and novel mechanisms of airway remodelling, which may represent potential novel mechanistic pathways involved in the pathogenesis of SA. See relatededitorial
Collapse
Affiliation(s)
- Stephany Sánchez‐Ovando
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | | | | | - Katherine Joanne Baines
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Daniel Barker
- Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Peter G. Gibson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
- Respiratory and Sleep Medicine John Hunter Hospital NSW New Lambton Heights New South Wales Australia
| | - Lisa G. Wood
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Ian M. Adcock
- National Heart and Lung Institute Imperial College London London UK
| | - Kian Fan Chung
- National Heart and Lung Institute Imperial College London London UK
| | - Jodie Louise Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
| | - Peter A.B. Wark
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine University of Newcastle Newcastle New South Wales Australia
- Respiratory and Sleep Medicine John Hunter Hospital NSW New Lambton Heights New South Wales Australia
| |
Collapse
|
16
|
Zheng X, Wang K, Pan L, Hao W, Xue Y, Bacsi A, Vlahopoulos SA, Radak Z, Hazra TK, Brasier AR, Tanner L, Ba X, Boldogh I. Innate Immune Responses to RSV Infection Facilitated by OGG1, an Enzyme Repairing Oxidatively Modified DNA Base Lesions. J Innate Immun 2022; 14:593-614. [PMID: 35512649 PMCID: PMC9801259 DOI: 10.1159/000524186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/12/2022] [Indexed: 01/04/2023] Open
Abstract
The primary cause of morbidity and mortality from infection with respiratory syncytial virus (RSV) is the excessive innate immune response(s) (IIR) in which reactive oxygen species (ROS) play key role(s). However, the mechanisms for these processes are not fully understood. We hypothesized that expressions of IIR genes are controlled by the ROS-generated epigenetic-like mark 7,8-dihydro-8-oxo(d)guanine (8-oxo(d)Gua) and 8-oxoguanine DNA glycosylase1 (OGG1). Here, we report that ROS not only generates intrahelical 8-oxo(d)Gua, but also enzymatically disables OGG1 in RSV-infected human airway epithelial cells and mouse lungs. OGG1 bound to 8-oxo(d)Gua in gene regulatory sequences promotes expression of IIR genes, and consequently exacerbates lung inflammation, histological changes, and body weight loss of experimental animals. Pharmacological inhibition of OGG1 substrate binding decreased expression of RSV-induced chemokine and cytokines and significantly lessened clinical symptoms. Results of mechanistic studies show that OGG1 binding at 8-oxo(d)Gua promoter regions modulated loading of transcription factors via transient cooperative interactions in RSV-infected lungs and airway epithelial cells. Other base specific DNA repair proteins had no effects. Collectively, this study identifies unprecedented roles of ROS-generated DNA base lesion(s) and cognate repair protein as a determinant of RSV-induced exuberant inflammation. Pharmaceutical inhibition of OGG1 interaction with its DNA substrate may represent a novel strategy in prevention/intervention of respiratory viral infections.
Collapse
Affiliation(s)
- Xu Zheng
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ke Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Wenjing Hao
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Yaoyao Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Spiros A. Vlahopoulos
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Zsolt Radak
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Allan R. Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lloyd Tanner
- Department of Clinical Sciences Lund, Respiratory Medicine & Allergology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
17
|
Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci 2022; 291:120111. [PMID: 34732330 PMCID: PMC8557391 DOI: 10.1016/j.lfs.2021.120111] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
The Nrf2 transcription factor governs the expression of hundreds genes involved in cell defense against oxidative stress, the hallmark of numerous diseases such as neurodegenerative, cardiovascular, some viral pathologies, diabetes and others. The main route for Nrf2 activity regulation is via interactions with the Keap1 protein. Under the normoxia the Keap1 binds the Nrf2 and targets it to the proteasomal degradation, while the Keap1 is regenerated. Upon oxidative stress the interactions between Nrf2 and Keap1 are interrupted and the Nrf2 activates the transcription of the protective genes. Currently, the Nrf2 system activation is considered as a powerful cytoprotective strategy for treatment of different pathologies, which pathogenesis relies on oxidative stress including viral diseases of pivotal importance such as COVID-19. The implementation of this strategy is accomplished mainly through the inactivation of the Keap1 "guardian" function. Two approaches are now developing: the Keap1 modification via electrophilic agents, which leads to the Nrf2 release, and direct interruption of the Nrf2:Keap1 protein-protein interactions (PPI). Because of theirs chemical structure, the Nrf2 electrophilic inducers could non-specifically interact with others cellular proteins leading to undesired effects. Whereas the non-electrophilic inhibitors of the Nrf2:Keap1 PPI could be more specific, thereby widening the therapeutic window.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Georgii P Georgiev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| |
Collapse
|
18
|
Wang Y, Ma G, Wang XF, Na L, Guo X, Zhang J, Liu C, Du C, Qi T, Lin Y, Wang X. Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense. PLoS Pathog 2022; 18:e1009986. [PMID: 35139135 PMCID: PMC8863222 DOI: 10.1371/journal.ppat.1009986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/22/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanqin Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xing Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiaqi Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
19
|
Abstract
Influenza A virus (IAV), an obligatory intracellular parasite, uses host cellular molecules to complete its replication cycle and suppress immune responses. Proteasome subunit alpha type 2 (PSMA2) is a cellular protein highly expressed in IAV-infected human lung epithelial A549 cells. PSMA2 is part of the 20S proteasome complex that degrades or recycles defective proteins and involves proteolytic modification of many cellular regulatory proteins. However, the role of PSMA2 in IAV replication is not well understood. In this study, PSMA2 knockdown (KD) in A549 cells caused a significant reduction in extracellular progeny IAV, but intracellular viral protein translation and viral RNA transcription were not affected. This indicates that PSMA2 is a critical host factor for IAV maturation. To better understand the interplay between PSMA2 KD and IAV infection at the proteomic level, we used the SomaScan 1.3K version, which measures 1,307 proteins to analyze alterations induced by these treatments. We found seven cellular signaling pathways, including phospholipase C signaling, Pak signaling, and nuclear factor erythroid 2p45-related factor 2 (NRF2)-mediated oxidative stress response signaling, that were inhibited by IAV infection but significantly activated by PSMA2 KD. Further analysis of NRF2-mediated oxidative stress response signaling indicated IAV inhibits accumulation of reactive oxygen species (ROS), but ROS levels significantly increased during IAV infection in PSMA2 KD cells. However, IAV infection caused significantly higher NFR2 nuclear translocation that was inhibited in PSMA2 KD cells. This indicates that PSMA2 is required for NRF2-mediated ROS neutralization and that IAV uses PSMA2 to escape viral clearance via the NRF2-mediated cellular oxidative response. IMPORTANCE Influenza A virus (IAV) remains one of the most significant infectious agents, responsible for 3 million to 5 million illnesses each year and more than 50 million deaths during the 20th century. The cellular processes that promote and inhibit IAV infection and pathogenesis remain only partially understood. PSMA2 is a critical component of the 20S proteasome and ubiquitin-proteasome system, which is important in the replication of numerous viruses. This study examined host protein responses to IAV infection alone, PSMA2 knockdown alone, and IAV infection in the presence of PSMA2 knockdown and determined that interfering with PSMA2 function affected IAV maturation. These results help us better understand the importance of PSMA2 in IAV replication and may pave the way for designing additional IAV antivirals targeting PSMA2 or the host proteasome for the treatment of seasonal flu.
Collapse
|
20
|
Lack of Type I Interferon Signaling Ameliorates Respiratory Syncytial Virus-Induced Lung Inflammation and Restores Antioxidant Defenses. Antioxidants (Basel) 2021; 11:antiox11010067. [PMID: 35052571 PMCID: PMC8772717 DOI: 10.3390/antiox11010067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with pathogenic inflammation and oxidative injury. RSV impairs antioxidant responses by increasing the degradation of transcription factor NF-E2-related factor 2 (NRF2), which controls the expression of several antioxidant enzymes (AOEs). In addition to its protective effects, type I IFNs have been increasingly recognized as important mediators of host pathogenic responses during acute respiratory viral infections. We used a mouse model of RSV infection to investigate the effect of lack of type I interferon (IFN) receptor on viral-mediated clinical disease, airway inflammation, NRF2 expression, and antioxidant defenses. In the absence of type I IFN signaling, RSV-infected mice showed significantly less body weight loss and airway obstruction, as well as a significant reduction in cytokine and chemokine secretion and airway inflammation. Lack of type I IFN receptor was associated with greatly reduced virus-induced promyelocytic leukemia lung protein expression, which we showed to be necessary for virus-induced NRF2 degradation in a cell model of infection, resulting in restoration of NRF2 levels, AOE expression, and airway antioxidant capacity. Our data support the concept that modulation of type I IFN production and/or signaling could represent an important therapeutic strategy to ameliorate severity of RSV-induced lung disease.
Collapse
|
21
|
Endothelial Dysfunction through Oxidatively Generated Epigenetic Mark in Respiratory Viral Infections. Cells 2021; 10:cells10113067. [PMID: 34831290 PMCID: PMC8623825 DOI: 10.3390/cells10113067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant responsiveness of the host immune system and lack of effective antiviral drugs. Current management of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications, including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors, and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to decrease disease burden, are discussed.
Collapse
|
22
|
McCord JM, Hybertson BM, Cota-Gomez A, Gao B. Nrf2 activator PB125® as a carnosic acid-based therapeutic agent against respiratory viral diseases, including COVID-19. Free Radic Biol Med 2021; 175:56-64. [PMID: 34058321 PMCID: PMC8413148 DOI: 10.1016/j.freeradbiomed.2021.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
PB125® is a phytochemical composition providing potent Nrf2 activation as well as a number of direct actions that do not involve Nrf2. Nrf2 is a transcription actor that helps maintain metabolic balance by providing redox-sensitive expression of numerous genes controlling normal day-to-day metabolic pathways. When ordinary metabolism is upset by extraordinary events such as injury, pathogenic infection, air or water pollution, ingestion of toxins, or simply by the slow but incessant changes brought about by aging and genetic variations, Nrf2 may also be called into action by the redox changes resulting from these events, whether acute or chronic. A complicating factor in all of this is that Nrf2 levels decline with aging, leaving the elderly less able to maintain proper redox balance. The dysregulated gene expression that results can cause or exacerbate a wide variety of pathological conditions, including susceptibility to viral infections. This review examines the characteristics desirable in Nrf2 activators that have therapeutic potential, as well as some of the patterns of dysregulated gene expression commonly observed during pulmonary infections and the normalizing effects possible by judicious use of phytochemicals to increase the activation level of available Nrf2.
Collapse
Affiliation(s)
- Joe M McCord
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Brooks M Hybertson
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO, 80045, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
23
|
NRF2 in Viral Infection. Antioxidants (Basel) 2021; 10:antiox10091491. [PMID: 34573123 PMCID: PMC8472116 DOI: 10.3390/antiox10091491] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
The transcription factor NRF2 is central to redox homeostasis in animal cells and is a well-known driver of chemoresistance in many types of cancer. Recently, new roles have been ascribed to NRF2 which include regulation of antiviral interferon responses and inflammation. In addition, NRF2 is emerging as an important factor in antiviral immunity through interferon-independent mechanisms. In the review, we give an overview of the scientific progress on the involvement and importance of NRF2 in the context of viral infection.
Collapse
|
24
|
Khan NA, Kar M, Panwar A, Wangchuk J, Kumar S, Das A, Pandey AK, Lodha R, Medigeshi GR. Oxidative stress specifically inhibits replication of dengue virus. J Gen Virol 2021; 102. [PMID: 33904816 DOI: 10.1099/jgv.0.001596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are chemically active species which are involved in maintaining cellular and signalling processes at physiological concentrations. Therefore, cellular components that regulate redox balance are likely to play a crucial role in viral life-cycle either as promoters of viral replication or with antiviral functions. Zinc is an essential micronutrient associated with anti-oxidative systems and helps in maintaining a balanced cellular redox state. Here, we show that zinc chelation leads to induction of reactive oxygen species (ROS) in epithelial cells and addition of zinc restores ROS levels to basal state. Addition of ROS (H2O2) inhibited dengue virus (DENV) infection in a dose-dependent manner indicating that oxidative stress has adverse effects on DENV infection. ROS affects early stages of DENV replication as observed by quantitation of positive and negative strand viral RNA. We observed that addition of ROS specifically affected viral titres of positive strand RNA viruses. We further demonstrate that ROS specifically altered SEC31A expression at the ER suggesting a role for SEC31A-mediated pathways in the life-cycle of positive strand RNA viruses and provides an opportunity to identify drug targets regulating oxidative stress responses for antiviral development.
Collapse
Affiliation(s)
- Naseem Ahmed Khan
- Clinical and Cellular Virology lab, Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Meenakshi Kar
- Clinical and Cellular Virology lab, Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Aleksha Panwar
- Clinical and Cellular Virology lab, Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Jigme Wangchuk
- Clinical and Cellular Virology lab, Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Saurabh Kumar
- Clinical and Cellular Virology lab, Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Asim Das
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, India
| | - Anil Kumar Pandey
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Guruprasad R Medigeshi
- Clinical and Cellular Virology lab, Infection and Immunology, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
25
|
Wang Z, Zheng N, Liang J, Wang Q, Zu X, Wang H, Yuan H, Zhang R, Guo S, Liu Y, Zhou J. Emodin resists to Cyprinid herpesvirus 3 replication via the pathways of Nrf2/Keap1-ARE and NF-κB in the ornamental koi carp (Cyprinus carpio haematopterus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109023. [PMID: 33647480 DOI: 10.1016/j.cbpc.2021.109023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) causes high mortality in carp. Emodin has been shown of the effects of antioxidant, anti-inflammatory and antiviral. In present study, we investigated the preventive effects and mechanism of emodin on CyHV-3 infection. The ornamental koi carp (Cyprinus carpio haematopterus) were intraperitoneally injected with emodin (10 mg/kg, 20 mg/kg, or 40 mg/kg). 72 h later, an intraperitoneal injection of CyHV-3 was administered, and collected the samples one week later to detect the antioxidant parameters, antioxidant genes, inflammatory genes and to perform histopathology assays. The results showed that emodin significantly suppressed CyHV-3 replication (P < 0.05), improved the koi survival rate and slowed the damage caused by CyHV-3. Emodin treatment increased the antioxidant activity and decreased the lipid peroxidation level of the koi. Compared to the CyHV-3 group, emodin treatment resulted in the same antioxidant parameters after CyHV-3 infection. Emodin treatment activated the Nuclear factorery throid 2-related factor 2/Kelch-like ECH-associated protein 1-antioxidatant response element (Nrf2/Keap1-ARE) pathway and upregulated the expression of heme oxygenase 1 (HO-1), superoxide dismutase (SOD), and catalase (CAT) in the hepatopancreas after CyHV-3 infection. Emodin activated the nuclear factor kappa-B (NF-κB) pathway and decreased the expression of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumour necrosis factor-α (TNF-α) in the koi induced by CyHV-3. In conclusion, emodin treatment can suppress CyHV-3 replication and reduce the mortality of koi caused by CyHV-3. Emodin improves antioxidant function, relieves oxidative stress and inflammation cytokines via Nrf2/Keap1-ARE and NF-κB pathways, and protects against the adverse effects induced by CyHV-3.
Collapse
Affiliation(s)
- Zhuoyu Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Nan Zheng
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jie Liang
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Qiuju Wang
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiujie Zu
- Jilin Academy of Fishery Sciences, Changchun, Jilin 130033, China
| | - Hao Wang
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Haiyan Yuan
- Jilin Province Fishery Technology Extension Station, Jilin 130012, China
| | - Ruixue Zhang
- Jilin Province Fishery Technology Extension Station, Jilin 130012, China
| | - Shanshan Guo
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yanhui Liu
- Jilin Academy of Fishery Sciences, Changchun, Jilin 130033, China
| | - Jingxiang Zhou
- College of Animal Sciences, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
26
|
Augusti PR, Conterato GMM, Denardin CC, Prazeres ID, Serra AT, Bronze MR, Emanuelli T. Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: implications for COVID-19. J Nutr Biochem 2021; 97:108787. [PMID: 34089819 PMCID: PMC8169570 DOI: 10.1016/j.jnutbio.2021.108787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
The outbreak of mysterious pneumonia at the end of 2019 is associated with widespread research interest worldwide. The coronavirus disease-19 (COVID-19) targets multiple organs through inflammatory, immune, and redox mechanisms, and no effective drug for its prophylaxis or treatment has been identified until now. The use of dietary bioactive compounds, such as phenolic compounds (PC), has emerged as a putative nutritional or therapeutic adjunct approach for COVID-19. In the present study, scientific data on the mechanisms underlying the bioactivity of PC and their usefulness in COVID-19 mitigation are reviewed. In addition, antioxidant, antiviral, anti-inflammatory, and immunomodulatory effects of dietary PC are studied. Moreover, the implications of digestion on the putative benefits of dietary PC against COVID-19 are presented by addressing the bioavailability and biotransformation of PC by the gut microbiota. Lastly, safety issues and possible drug interactions of PC and their implications in COVID-19 therapeutics are discussed.
Collapse
Affiliation(s)
- Paula R Augusti
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Greicy M M Conterato
- Laboratório de Fisiologia da Reprodução Animal, Departamento de Agricultura, Biodiversidade e Floresta, Centro de Ciências Rurais, Universidade Federal de Santa Catarina, Campus de Curitibanos, Curitibanos, SC, Brazil
| | | | - Inês D Prazeres
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria R Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iMED, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Tatiana Emanuelli
- Núcleo Integrado de Desenvolvimento em Análises Laboratoriais (NIDAL), Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
27
|
Harford TJ, Rezaee F, Gupta MK, Bokun V, Naga Prasad SV, Piedimonte G. Respiratory syncytial virus induces β 2-adrenergic receptor dysfunction in human airway smooth muscle cells. Sci Signal 2021; 14:14/685/eabc1983. [PMID: 34074703 DOI: 10.1126/scisignal.abc1983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pharmacologic agonism of the β2-adrenergic receptor (β2AR) induces bronchodilation by activating the enzyme adenylyl cyclase to generate cyclic adenosine monophosphate (cAMP). β2AR agonists are generally the most effective strategy to relieve acute airway obstruction in asthmatic patients, but they are much less effective when airway obstruction in young patients is triggered by infection with respiratory syncytial virus (RSV). Here, we investigated the effects of RSV infection on the abundance and function of β2AR in primary human airway smooth muscle cells (HASMCs) derived from pediatric lung tissue. We showed that RSV infection of HASMCs resulted in proteolytic cleavage of β2AR mediated by the proteasome. RSV infection also resulted in β2AR ligand-independent activation of adenylyl cyclase, leading to reduced cAMP synthesis compared to that in uninfected control cells. Last, RSV infection caused stronger airway smooth muscle cell contraction in vitro due to increased cytosolic Ca2+ concentrations. Thus, our results suggest that RSV infection simultaneously induces loss of functional β2ARs and activation of multiple pathways favoring airway obstruction in young patients, with the net effect of counteracting β2AR agonist-induced bronchodilation. These findings not only provide a potential mechanism for the reported lack of clinical efficacy of β2AR agonists for treating virus-induced wheezing but also open the path to developing more precise therapeutic strategies.
Collapse
Affiliation(s)
- Terri J Harford
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Manveen K Gupta
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Giovanni Piedimonte
- Departments of Pediatrics, Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
28
|
Sander WJ, Fourie C, Sabiu S, O'Neill FH, Pohl CH, O'Neill HG. Reactive oxygen species as potential antiviral targets. Rev Med Virol 2021; 32:e2240. [PMID: 33949029 DOI: 10.1002/rmv.2240] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are by-products of cellular metabolism and can be either beneficial, at low levels, or deleterious, at high levels, to the cell. It is known that several viral infections can increase oxidative stress, which is mainly facilitated by viral-induced imbalances in the antioxidant defence mechanisms of the cell. While the exact role of ROS in certain viral infections (adenovirus and dengue virus) remains unknown, other viruses can use ROS for enhancement of pathogenesis (SARS coronavirus and rabies virus) or replication (rhinovirus, West Nile virus and vesicular stomatitis virus) or both (hepatitis C virus, human immunodeficiency virus and influenza virus). While several viral proteins (mainly for hepatitis C and human immunodeficiency virus) have been identified to play a role in ROS formation, most mediators of viral ROS modulation are yet to be elucidated. Treatment of viral infections, including hepatitis C virus, human immunodeficiency virus and influenza virus, with ROS inhibitors has shown a decrease in both pathogenesis and viral replication both in vitro and in animal models. Clinical studies indicating the potential for targeting ROS-producing pathways as possible broad-spectrum antiviral targets should be evaluated in randomized controlled trials.
Collapse
Affiliation(s)
- Willem J Sander
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Corinne Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.,Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Frans H O'Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Hester G O'Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
29
|
Mann M, Brasier AR. Evolution of proteomics technologies for understanding respiratory syncytial virus pathogenesis. Expert Rev Proteomics 2021; 18:379-394. [PMID: 34018899 PMCID: PMC8277732 DOI: 10.1080/14789450.2021.1931130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) is a major human pathogen associated with long term morbidity. RSV replication occurs primarily in the epithelium, producing a complex cellular response associated with acute inflammation and long-lived changes in pulmonary function and allergic disease. Proteomics approaches provide important insights into post-transcriptional regulatory processes including alterations in cellular complexes regulating the coordinated innate response and epigenome.Areas covered: Peer-reviewed proteomics studies of host responses to RSV infections and proteomics techniques were analyzed. Methodologies identified include 1)." bottom-up" discovery proteomics, 2). Organellar proteomics by LC-gel fractionation; 3). Dynamic changes in protein interaction networks by LC-MS; and 4). selective reaction monitoring MS. We introduce recent developments in single-cell proteomics, top-down mass spectrometry, and photo-cleavable surfactant chemistries that will have impact on understanding how RSV induces extracellular matrix (ECM) composition and airway remodeling.Expert opinion: RSV replication induces global changes in the cellular proteome, dynamic shifts in nuclear proteins, and remodeling of epigenetic regulatory complexes linked to the innate response. Pathways discovered by proteomics technologies have led to deeper mechanistic understanding of the roles of heat shock proteins, redox response, transcriptional elongation complex remodeling and ECM secretion remodeling in host responses to RSV infections and pathological sequelae.
Collapse
Affiliation(s)
- Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, USA
| | - Allan R Brasier
- Department of Internal Medicine and Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
30
|
Narayanan S, Elesela S, Rasky AJ, Morris SH, Kumar S, Lombard D, Lukacs NW. ER stress protein PERK promotes inappropriate innate immune responses and pathogenesis during RSV infection. J Leukoc Biol 2021; 111:379-389. [PMID: 33866604 DOI: 10.1002/jlb.3a0520-322rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The activation of dendritic cells (DC) during respiratory viral infections is central to directing the immune response and the pathologic outcome. In these studies, the effect of RSV infection on development of ER stress responses and the impact on innate immunity was examined. The upregulation of ER stress was closely associated with the PERK pathway through the upregulation of CHOP in RSV infected DC. The inhibition of PERK corresponded with decreased EIF2a phosphorylation but had no significant effect on Nrf2 in DC, two primary pathways regulated by PERK. Subsequent studies identified that by blocking PERK activity in infected DC an altered ER stress response and innate cytokine profile was observed with the upregulation of IFNβ and IL-12, coincident to the down regulation of IL-1β. When mitochondria respiration was assessed in PERK deficient DC there were increased dysfunctional mitochondria after RSV infection that resulted in reduced oxygen consumption rates (OCR) and ATP production indicating altered cellular metabolism. Use of a CD11c targeted genetic deleted murine model, RSV infection was characterized by reduced inflammation and diminished mucus staining as well as reduced mucus-associated gene gob5 expression. The assessment of the cytokine responses showed decreased IL-13 and IL-17 along with diminished IL-1β in the lungs of PERK deficient infected mice. When PERK-deficient animals were assessed in parallel for lung leukocyte numbers, animals displayed significantly reduced myeloid and activated CD4 and CD8 T cell numbers. Thus, the PERK activation pathway may provide a rational target for altering the severe outcome of an RSV infection through modifying immune responses.
Collapse
Affiliation(s)
- Samanthi Narayanan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Srikanth Elesela
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Susan H Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - David Lombard
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Freeborn RA, Rockwell CE. The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:61-110. [PMID: 34099113 DOI: 10.1016/bs.apha.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nrf2 is a cytoprotective transcription factor which is involved in ameliorating oxidative stress and toxic insults. Recently, an immunomodulatory role for Nrf2 has gained appreciation as it has been shown to protect cells and hosts alike in a variety of immune and inflammatory disorders. However, Nrf2 utilizes numerous distinct pathways to elicit its immunomodulatory effects. In this review, we summarize the literature discussing the roles of Nrf2 in autoimmunity and infectious diseases with a goal of understanding the potential to therapeutically target Nrf2.
Collapse
Affiliation(s)
- Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
32
|
Neerukonda SN. Interplay between RNA Viruses and Promyelocytic Leukemia Nuclear Bodies. Vet Sci 2021; 8:vetsci8040057. [PMID: 33807177 PMCID: PMC8065607 DOI: 10.3390/vetsci8040057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are nuclear membrane-less sub structures that play a critical role in diverse cellular pathways including cell proliferation, DNA damage, apoptosis, transcriptional regulation, stem cell renewal, alternative lengthening of telomeres, chromatin organization, epigenetic regulation, protein turnover, autophagy, intrinsic and innate antiviral immunity. While intrinsic and innate immune functions of PML NBs or PML NB core proteins are well defined in the context of nuclear replicating DNA viruses, several studies also confirm their substantial roles in the context of RNA viruses. In the present review, antiviral activities of PML NBs or its core proteins on diverse RNA viruses that replicate in cytoplasm or the nucleus were discussed. In addition, viral counter mechanisms that reorganize PML NBs, and specifically how viruses usurp PML NB functions in order to create a cellular environment favorable for replication and pathogenesis, are also discussed.
Collapse
Affiliation(s)
- Sabari Nath Neerukonda
- Department of Animal and Food and Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
33
|
Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel) 2020; 9:E1228. [PMID: 33291560 PMCID: PMC7761780 DOI: 10.3390/antiox9121228] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that maintains the cell's redox balance state and reduces inflammation in different adverse stresses. Under the oxidative stress, Nrf2 is separated from Kelch-like ECH-associated protein 1 (Keap1), which is a key sensor of oxidative stress, translocated to the nucleus, interacts with the antioxidant response element (ARE) in the target gene, and then activates the transcriptional pathway to ameliorate the cellular redox condition. Curcumin is a yellow polyphenolic curcuminoid from Curcuma longa (turmeric) that has revealed a broad spectrum of bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Curcumin significantly increases the nuclear expression levels and promotes the biological effects of Nrf2 via the interaction with Cys151 in Keap1, which makes it a marvelous therapeutic candidate against a broad range of oxidative stress-related diseases, including type 2 diabetes (T2D), neurodegenerative diseases (NDs), cardiovascular diseases (CVDs), cancers, viral infections, and more recently SARS-CoV-2. Currently, the multifactorial property of the diseases and lack of adequate medical treatment, especially in viral diseases, result in developing new strategies to finding potential drugs. Curcumin potentially opens up new views as possible Nrf2 activator. However, its low bioavailability that is due to low solubility and low stability in the physiological conditions is a significant challenge in the field of its efficient and effective utilization in medicinal purposes. In this review, we summarized recent studies on the potential effect of curcumin to activate Nrf2 as the design of potential drugs for a viral infection like SARS-Cov2 and acute and chronic inflammation diseases in order to improve the cells' protection.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417614335, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417614335, Iran
| | - Mansoureh Mazaheri
- Research Center of Food Technology and Agricultural Products, Department of Food Toxicology, Standard Research Institute, Karaj 3158777871, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
34
|
Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses 2020; 143:110102. [PMID: 32721799 PMCID: PMC7357498 DOI: 10.1016/j.mehy.2020.110102] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Since the WHO declared COVID-19 a pandemic, a great effort has been made to understand this serious disease. Thousands of studies are being devoted to understanding its epidemiology, its molecular characteristics, its mechanisms, and the clinical evolution of this viral infection. However, little has been published on its pathogenesis and the host response mechanisms in the progress of the disease. Therefore, we propose a hypothesis based on strong scientific documentation, associating oxidative stress with changes found in patients with COVID-19, such as its participation in the amplification and perpetuation of the cytokine storm, coagulopathy, and cell hypoxia. Finally, we suggest a therapeutic strategy to reduce oxidative stress using antioxidants, NF-κB inhibitors, Nrf2 activators, and iron complexing agents. We believe that this hypothesis can guide new studies and therapeutic strategies on this topic.
Collapse
Affiliation(s)
- Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, Department of Pathological Sciences, State University of Londrina, UEL, Londrina, PR, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Department of Pathological Sciences, State University of Londrina, UEL, Londrina, PR, Brazil.
| |
Collapse
|
35
|
Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020; 11:552925. [PMID: 33072093 PMCID: PMC7531039 DOI: 10.3389/fimmu.2020.552925] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | | | - Andrey A. Svistunov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vladimir N. Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Gjumrakch Aliev
- Research Institute of Human Morphology, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
- GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
36
|
De Jong E, Garratt LW, Looi K, Lee AHY, Ling KM, Smith ML, Falsafi R, Sutanto EN, Hillas J, Iosifidis T, Martinovich KM, Shaw NC, Montgomery ST, Kicic-Starcevich E, Lannigan FJ, Vijayasekaran S, Hancock REW, Stick SM, Kicic A, Arest CF. Ivacaftor or lumacaftor/ivacaftor treatment does not alter the core CF airway epithelial gene response to rhinovirus. J Cyst Fibros 2020; 20:97-105. [PMID: 32684439 DOI: 10.1016/j.jcf.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Aberrant responses by the cystic fibrosis airway epithelium during viral infection may underly the clinical observations. Whether CFTR modulators affect antiviral responses by CF epithelia is presently unknown. We tested the hypothesis that treatment of CF epithelial cells with ivacaftor (Iva) or ivacaftor/lumacaftor (Iva/Lum) would improve control of rhinovirus infection. METHODS Nineteen CF epithelial cultures (10 homozygous for p.Phe508del as CFTR Class 2, 9 p.Phe508del/p.Gly551Asp as Class 3) were infected with rhinovirus 1B at multiplicity of infection 12 for 24 h. Culture RNA and supernatants were harvested to assess gene and protein expression respectively. RESULTS RNA-seq analysis comparing rhinovirus infected cultures to control identified 796 and 629 differentially expressed genes for Class 2 and Class 3, respectively. This gene response was highly conserved when cells were treated with CFTR modulators and were predicted to be driven by the same interferon-pathway transcriptional regulators (IFNA, IFNL1, IFNG, IRF7, STAT1). Direct comparisons between treated and untreated infected cultures did not yield any differentially expressed genes for Class 3 and only 68 genes for Class 2. Changes were predominantly related to regulators of lipid metabolism and inflammation, aspects of epithelial biology known to be dysregulated in CF. In addition, CFTR modulators did not affect viral copy number, or levels of pro-inflammatory cytokines produced post-infection. CONCLUSIONS Though long-term clinical data is not yet available, results presented here suggest that first generation CFTR modulators do not interfere with core airway epithelial responses to rhinovirus infection. Future work should investigate the latest triple modulation therapies.
Collapse
Affiliation(s)
- Emma De Jong
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia
| | - Luke W Garratt
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia
| | - Kevin Looi
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Amy H Y Lee
- Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kak-Ming Ling
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; Division of Paediatrics Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Maren L Smith
- Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza Falsafi
- Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erika N Sutanto
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Jessica Hillas
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia
| | - Thomas Iosifidis
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Kelly M Martinovich
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole C Shaw
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel T Montgomery
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia
| | | | - Francis J Lannigan
- School of Medicine, Notre Dame University, Fremantle, 6160, Western Australia, Australia
| | - Shyan Vijayasekaran
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia
| | - Robert E W Hancock
- Center for Microbial Diseases Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen M Stick
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; Division of Paediatrics Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia; Division of Paediatrics Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia.
| | - C F Arest
- Telethon Kids Institute Respiratory Research Centre, Nedlands, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia; Murdoch Children's Research Institute, Parkville, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
McCord JM, Hybertson BM, Cota-Gomez A, Geraci KP, Gao B. Nrf2 Activator PB125 ® as a Potential Therapeutic Agent against COVID-19. Antioxidants (Basel) 2020; 9:E518. [PMID: 32545518 PMCID: PMC7346195 DOI: 10.3390/antiox9060518] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Nrf2 is a transcription factor that regulates cellular redox balance and the expression of a wide array of genes involved in immunity and inflammation, including antiviral actions. Nrf2 activity declines with age, making the elderly more susceptible to oxidative stress-mediated diseases, which include type 2 diabetes, chronic inflammation, and viral infections. Published evidence suggests that Nrf2 activity may regulate important mechanisms affecting viral susceptibility and replication. We examined gene expression levels by GeneChip microarray and by RNA-seq assays. We found that the potent Nrf2-activating composition PB125® downregulates ACE2 and TMPRSS2 mRNA expression in human liver-derived HepG2 cells. ACE2 is a surface receptor and TMPRSS2 activates the spike protein for SARS-CoV-2 entry into host cells. Furthermore, in endotoxin-stimulated primary human pulmonary artery endothelial cells, we report the marked downregulation by PB125 of 36 genes encoding cytokines. These include IL-1-beta, IL-6, TNF-α, the cell adhesion molecules ICAM-1, VCAM-1, and E-selectin, and a group of IFN-γ-induced genes. Many of these cytokines have been specifically identified in the "cytokine storm" observed in fatal cases of COVID-19, suggesting that Nrf2 activation may significantly decrease the intensity of the storm.
Collapse
Affiliation(s)
- Joe M. McCord
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Kara P. Geraci
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA; (B.M.H.); (B.G.)
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.C.-G.); (K.P.G.)
| |
Collapse
|
38
|
McCord JM, Hybertson BM, Cota-Gomez A, Gao B. Nrf2 Activator PB125® as a Potential Therapeutic Agent Against COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511372 PMCID: PMC7263501 DOI: 10.1101/2020.05.16.099788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nrf2 is a transcription factor that regulates cellular redox balance and the expression of a wide array of genes involved in immunity and inflammation, including antiviral actions. Nrf2 activity declines with age, making the elderly more susceptible to oxidative stress-mediated diseases, which include type 2 diabetes, chronic inflammation, and viral infections. Published evidence suggests that Nrf2 activity may regulate important mechanisms affecting viral susceptibility and replication. We examined gene expression levels by GeneChip microarray and by RNA-seq assays. We found that the potent Nrf2 activating composition PB125® downregulates ACE2 and TMPRSS2 mRNA expression in human liver-derived HepG2 cells. ACE2 is a surface receptor and TMPRSS2 activates the spike protein for SARS-Cov-2 entry into host cells. Furthermore, in endotoxin-stimulated primary human pulmonary artery endothelial cells we report the marked downregulation by PB125 of 36 genes encoding cytokines. These include IL1-beta, IL6, TNF-α the cell adhesion molecules ICAM1, VCAM1, and E-selectin, and a group of IFN-γ-induced genes. Many of these cytokines have been specifically identified in the “cytokine storm” observed in fatal cases of COVID-19, suggesting that Nrf2 activation may significantly decrease the intensity of the storm.
Collapse
Affiliation(s)
- Joe M McCord
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooks M Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Adela Cota-Gomez
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
39
|
Progressive Rotavirus Infection Downregulates Redox-Sensitive Transcription Factor Nrf2 and Nrf2-Driven Transcription Units. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289120. [PMID: 32322337 PMCID: PMC7165344 DOI: 10.1155/2020/7289120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells adopt highly tuned stress response physiology under threats of exogenous stressors including viruses to maintain cellular homeostasis. Not surprisingly, avoidance of cellular stress response pathways is an essential facet of virus-induced obligatory host reprogramming to invoke a cellular environment conducive to viral perpetuation. Adaptive cellular responses to oxidative and electrophilic stress are usually taken care of by an antioxidant defense system, core to which lies the redox-responsive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-driven transcriptional cascade. Deregulation of host redox balance and redox stress-sensitive Nrf2 antioxidant defense have been reported for many viruses. In the current study, we aimed to study the modulation of the Nrf2-based host cellular redox defense system in response to Rotavirus (RV) infection in vitro. Interestingly, we found that Nrf2 protein levels decline sharply with progression of RV infection beyond an initial upsurge. Moreover, Nrf2 decrease as a whole was found to be accompanied by active nuclear vacuity of Nrf2, resulting in lowered expression of stress-responsive Nrf2 target genes heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 both in the presence and absence of Nrf2-driven transcriptional inducers. Initial induction of Nrf2 concurred with RV-induced early burst of oxidative stress and therefore was sensitive to treatments with antioxidants. Reduction of Nrf2 levels beyond initial hours, however, was found to be independent of the cellular redox status. Furthermore, increasing the half-life of Nrf2 through inhibition of the Kelch-like erythroid cell-derived protein with CNC homology- (ECH-) associated protein 1/Cullin3-RING Box1-based canonical Nrf2 turnover pathway could not restore Nrf2 levels post RV-SA11 infection. Depletion of the Nrf2/HO-1 axis was subsequently found to be sensitive to proteasome inhibition with concurrent observation of increased K48-linked ubiquitination associated with Nrf2. Together, the present study describes robust downregulation of Nrf2-dependent cellular redox defense beyond initial hours of RV infection, justifying our previous observation of potent antirotaviral implications of Nrf2 agonists.
Collapse
|
40
|
Chambliss JM, Ansar M, Kelley JP, Spratt H, Garofalo RP, Casola A. A Polymorphism in the Catalase Gene Promoter Confers Protection against Severe RSV Bronchiolitis. Viruses 2020; 12:E57. [PMID: 31947722 PMCID: PMC7019864 DOI: 10.3390/v12010057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is associated with oxidative lung injury, decreased levels of antioxidant enzymes (AOEs), and the degradation of the transcription factor NF-E2-related factor 2 (NRF2), a master regulator of AOE expression. Single nucleotide polymorphisms (SNPs) in AOE and NRF2 genes have been associated with various lung disorders. To test whether specific NRF2 and/or AOE gene SNPs in children with RSV lower respiratory tract infection were associated with disease severity, one hundred and forty one children <24 month of age with bronchiolitis were assessed for seven AOE and two NRF2 SNPs, and data were correlated with disease severity, which was determined by need of oxygen supplementation and intensive care support. One SNP in the promoter region of the catalase gene, rs1001179, which is associated with higher enzyme expression, was significantly underrepresented (p = 0.01, OR 0.38) among patients with moderate to severe RSV bronchiolitis, suggesting a protective effect against disease severity. Our results suggest that increasing catalase expression/activity could exert a protective role in the context of RSV infection and represent a potential novel therapeutic target to ameliorate viral-induced lung disease.
Collapse
Affiliation(s)
- Jeffrey M. Chambliss
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Maria Ansar
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (M.A.); (R.P.G.)
| | - John P. Kelley
- Southwest Asthma and Allergy Associates, Houston, TX 77074, USA;
| | - Heidi Spratt
- Department of Preventative Medicine and Community Health, The University of Texas Medical Branch at Galveston, Galveston, TX 77555 USA;
| | - Roberto P. Garofalo
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (M.A.); (R.P.G.)
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (M.A.); (R.P.G.)
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
41
|
Barrio R, Sutherland JD, Rodriguez MS. SUMO and Cytoplasmic RNA Viruses: From Enemies to Best Friends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1233:263-277. [PMID: 32274761 PMCID: PMC7144409 DOI: 10.1007/978-3-030-38266-7_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SUMO is a ubiquitin-like protein that covalently binds to lysine residues of target proteins and regulates many biological processes such as protein subcellular localization or stability, transcription, DNA repair, innate immunity, or antiviral defense. SUMO has a critical role in the signaling pathway governing type I interferon (IFN) production, and among the SUMOylation substrates are many IFN-induced proteins. The overall effect of IFN is increasing global SUMOylation, pointing to SUMO as part of the antiviral stress response. Viral agents have developed different mechanisms to counteract the antiviral activities exerted by SUMO, and some viruses have evolved to exploit the host SUMOylation machinery to modify their own proteins. The exploitation of SUMO has been mainly linked to nuclear replicating viruses due to the predominant nuclear localization of SUMO proteins and enzymes involved in SUMOylation. However, SUMOylation of numerous viral proteins encoded by RNA viruses replicating at the cytoplasm has been lately described. Whether nuclear localization of these viral proteins is required for their SUMOylation is unclear. Here, we summarize the studies on exploitation of SUMOylation by cytoplasmic RNA viruses and discuss about the requirement for nuclear localization of their proteins.
Collapse
Affiliation(s)
- Rosa Barrio
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | | |
Collapse
|
42
|
Zheng SC, Chang XJ, Li WD, Wang H, Guo LM, Wang KJ, Liu HP. A novel RING finger protein CqRNF152-like with self-ubiquitination activity inhibits white spot syndrome virus infection in a crustacean Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2019; 94:934-943. [PMID: 31600596 DOI: 10.1016/j.fsi.2019.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Really Interesting New Gene (RING) finger proteins are highly conserved molecules that participate in a variety of biological processes such as regulation of development, apoptosis and antiviral immunity in vertebrates. However, the functions of RING finger proteins are still poorly understood in crustaceans. Previously, we found that the transcript of a homolog of RING finger protein 152 (CqRNF152-like) was up-regulated in a differentially expressed transcriptome library of the haematopietic tissue (Hpt) cells from red claw crayfish Cherax quadricarinatus upon white spot syndrome virus (WSSV) infection, which is one of the most devastating viral diseases for crustaceans like shrimp and crayfish. The full-length cDNA sequence of CqRNF152-like was then identified with 975 bp, including an ORF of 685 bp that encoded a 195 amino acids protein, a 5'- UTR of 180 bp, and a 3'-UTR with a poly (A) tail of 207 bp. The conserved domain prediction showed that CqRNF152-like contained a conserved RING-finger domain. Gene expression analysis showed that CqRNF152-like was distributed in all tissues examined and the transcript is significantly up-regulated after WSSV challenge both in vivo in Hpt tissue and in vitro in cultured Hpt cells. Furthermore, the transcripts of both an immediate early gene ie1 and a late envelope protein gene vp28 of WSSV were clearly increased in the Hpt tissues, hemocytes and cultured Hpt cells after gene silencing of CqRNF152-like, which were further proved to be significantly decreased after overloading of recombinant CqRNF152-like protein in Hpt cell cultures. Meanwhile, CqRNF152-like was found to bind with WSSV envelope protein VP28 by proteins pull-down assay. Similar to most of RNF proteins, CqRNF152-like protein sequence contained a conserved RING-finger domain and showed self-ubiquitination activity in a RING finger domain dependent manner. Taken together, CqRNF152-like is likely to function as an antiviral molecular against WSSV infection through interaction with the envelope protein VP28 in a crustacean C. quadricarinatus. This is the first report that a RING finger protein with directly antiviral functions via interaction with viral protein and self-ubiquitination activity in crustacean, which sheds new light on the molecular mechanism of WSSV infection and the control of white spot disease.
Collapse
Affiliation(s)
- Shu-Cheng Zheng
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xue-Jiao Chang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wei-Dong Li
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hao Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Li-Mei Guo
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
43
|
Gunderstofte C, Iversen MB, Peri S, Thielke A, Balachandran S, Holm CK, Olagnier D. Nrf2 Negatively Regulates Type I Interferon Responses and Increases Susceptibility to Herpes Genital Infection in Mice. Front Immunol 2019; 10:2101. [PMID: 31555293 PMCID: PMC6742979 DOI: 10.3389/fimmu.2019.02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections for which no effective vaccines or prophylactic treatment currently exist. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in the detoxification of reactive oxygen species (ROS) and has been more recently shown to regulate inflammatory and antiviral responses. Here, we evaluated the importance of Nrf2 in the control of HSV-2 genital infection, and its role in the regulation of HSV-induced innate antiviral immunity. Comparison of antiviral gene expression profile by RNA-sequencing analysis of wild type and Nrf2-mutant (Nrf2 AY/AY ) murine macrophages showed an upregulation at the basal level of the type I interferon-associated gene network. The same basal increased antiviral profile was also observed in the spleen of Nrf2 -/- mice. Interestingly, the lack of Nrf2 in murine cells was sufficient to increase the responsiveness to HSV-derived dsDNA and protect cells from HSV-2 infection in vitro. Surprisingly, there was no indication of an alteration in STING expression in murine cells as previously reported in cells of human origin. Additionally, genetic activation of Nrf2 in Keap1 -/- mouse embryonic fibroblasts increased HSV-2 infectivity and replication. Finally, using an in vivo vaginal herpes infection model, we showed that Nrf2 controlled early innate immune responses to HSV-2 without affecting STING expression levels. Nrf2 -/- mice exhibited reduced viral replication that was associated with higher level of type I interferons in vaginal washes. Nrf2 -/- mice also displayed reduced weight loss, lower disease scores, and higher survival rates than wild type animals. Collectively, these data identify Nrf2 as a negative regulator of the interferon-driven antiviral response to HSV-2 without impairing STING mRNA and protein expression levels in murine cells.
Collapse
Affiliation(s)
- Camilla Gunderstofte
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Marie Beck Iversen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Suraj Peri
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Anne Thielke
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | | | - Christian Kanstrup Holm
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
44
|
Burleson JD, Siniard D, Yadagiri VK, Chen X, Weirauch MT, Ruff BP, Brandt EB, Hershey GKK, Ji H. TET1 contributes to allergic airway inflammation and regulates interferon and aryl hydrocarbon receptor signaling pathways in bronchial epithelial cells. Sci Rep 2019; 9:7361. [PMID: 31089182 PMCID: PMC6517446 DOI: 10.1038/s41598-019-43767-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
Previous studies have suggested a role for Tet1 in the pathogenesis of childhood asthma. However, how Tet1 contributes to asthma remains unknown. Here we used mice deficient for Tet1 in a well-established model of allergic airway inflammation and demonstrated that loss of Tet1 increased disease severity including airway hyperresponsiveness and lung eosinophilia. Increased expression of Muc5ac, Il13, Il33, Il17a, Egfr, and Tff2 were observed in HDM-challenged Tet1-deficient mice compared to Tet1+/+ littermates. Further, transcriptomic analysis of lung RNA followed by pathway and protein network analysis showed that the IFN signaling pathway was significantly upregulated and the aryl hydrocarbon receptor (AhR) pathway was significantly downregulated in HDM-challenged Tet1-/- mice. This transcriptional regulation of the IFN and AhR pathways by Tet1 was also present in human bronchial epithelial cells at base line and following HDM challenges. Genes in these pathways were further associated with changes in DNA methylation, predicted binding of transcriptional factors with relevant functions in their promoters, and the presence of histone marks generated by histone enzymes that are known to interact with Tet1. Collectively, our data suggest that Tet1 inhibits HDM-induced allergic airway inflammation by direct regulation of the IFN and AhR pathways.
Collapse
Affiliation(s)
- J D Burleson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dylan Siniard
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Pyrosequencing lab for genomic and epigenomic research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Veda K Yadagiri
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brandy P Ruff
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric B Brandt
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hong Ji
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Pyrosequencing lab for genomic and epigenomic research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA. .,California National Primate Research Center, Davis, CA, USA.
| |
Collapse
|
45
|
Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6208067. [PMID: 30515256 PMCID: PMC6234444 DOI: 10.1155/2018/6208067] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Virus-induced oxidative stress plays a critical role in the viral life cycle as well as the pathogenesis of viral diseases. In response to reactive oxygen species (ROS) generation by a virus, a host cell activates an antioxidative defense system for its own protection. Particularly, a nuclear factor erythroid 2p45-related factor 2 (Nrf2) pathway works in a front-line for cytoprotection and detoxification. Recently, a series of studies suggested that a group of clinically relevant viruses have the capacity for positive and negative regulations of the Nrf2 pathway. This virus-induced modulation of the host antioxidative response turned out to be a crucial determinant for the progression of several viral diseases. In this review, virus-specific examples of positive and negative modulations of the Nrf2 pathway will be summarized first. Then a number of successful genetic and pharmacological manipulations of the Nrf2 pathway for suppression of the viral replication and the pathogenesis-associated oxidative damage will be discussed later. Understanding of the interplay between virus-induced oxidative stress and antioxidative host response will aid in the discovery of potential antiviral supplements for better management of viral diseases.
Collapse
|
46
|
Ramezani A, Nahad MP, Faghihloo E. The role of Nrf2 transcription factor in viral infection. J Cell Biochem 2018; 119:6366-6382. [DOI: 10.1002/jcb.26897] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ali Ramezani
- Virology DepartmentSchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Hepatitis Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mehdi Parsa Nahad
- Virology DepartmentSchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ebrahim Faghihloo
- Department of MicrobiologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
47
|
Respiratory syncytial virus infection up-regulates TLR7 expression by inducing oxidative stress via the Nrf2/ARE pathway in A549 cells. Arch Virol 2018; 163:1209-1217. [DOI: 10.1007/s00705-018-3739-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/27/2017] [Indexed: 12/23/2022]
|