1
|
Li X, Sun S, Liu J, Zheng M, Cai D, Liu H, Liu J. Influence of static magnetic field pretreatment on the structure, physicochemical and functional properties of dietary fiber in corn sprouts. Food Chem 2025; 477:143524. [PMID: 40020620 DOI: 10.1016/j.foodchem.2025.143524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Dietary fiber (DF) from corn sprouts, subjected to pretreatment with static magnetic field (SMF), was systematically investigated for its structural and functional characteristics using an enzymatic method. After SMF treatment, the surface of soluble DF showed higher pore density and pore structures, and insoluble DF showed more folds and a concave-convex surface profile. FT-IR and thermogravimetric analyses also showed that SMF pretreatment improved the functional group structure and thermal stability of DFs in corn sprouts. Moreover, SMF pretreatment improved the inhibitory effects on α-amylase and α-glucosidase activities, as well as increased water holding, oil holding, and water swelling capacities. Compared to the untreated corn sprouts, the DF obtained from SMF treatment exhibited stronger antioxidant activity. In summary, these findings suggest that SMF pretreatment enhances the physicochemical and functional properties of DF derived from corn sprouts. It suggests that SMF can serve as a prospective technique for corn sprouts products processing.
Collapse
Affiliation(s)
- Xuenan Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Shijie Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jiawen Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
2
|
Zhang Y, Yang J, Ling Y, Liu Y, Chen K, Shen Y, Zhou Y, Luo B. Dynamic high-pressure microfluidization for the extraction and processing of polysaccharides: a focus on some foods and by-products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3170-3183. [PMID: 39838747 DOI: 10.1002/jsfa.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Dynamic high-pressure microfluidization (DHPM) is an emerging treatment technology and has been widely used for the recovery of natural polysaccharides. The aim of the present contribution is to discuss the DHPM-assisted extraction and processing of polysaccharides from some foods and by-products by reviewing the instrument and working principle, procedures, key parameters, and effects of DHPM on the structures, food properties, and bioactivities of resulting polysaccharides. It was found that a DHPM instrument with Z-type chamber is preferable for extracting polysaccharides, and a DHPM with Y-type chamber is applicable for processing polysaccharides. The solid-to-liquid ratio (or concentration), pressure, and number of passes are the key parameters influencing the outcome of DHPM extraction and processing. The DHPM under suitable conditions is conducive to boosting the extraction yields of polysaccharides, enriching the carbohydrates and uronic acids in polysaccharides, lowering the protein impurities, and transforming insoluble dietary fibers into soluble ones. In most cases, DHPM treatment improved the food properties of polysaccharides via decreasing viscosity, molecular weight, and particle size, as well as losing the surface morphology. More importantly, DHPM is a mild treatment technique that barely affects the chain backbones of polysaccharides. DHPM-assisted extraction and processing endowed polysaccharides with enhanced antioxidant, hypolipidemic, and hypoglycemic activities, exhibiting potential for the treatment of cardiovascular disease. In addition, DHPM-treated polysaccharides exerted certain potential in whitening cosmetics via inhibiting tyrosinase. In conclusion, DHPM is a mild, efficient, and green technology to recover and modify polysaccharides from natural resources, especially foods and by-products. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Jingchun Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yuchun Ling
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yaqi Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Kun Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yingchao Shen
- Department of Orthopedics and Traumatology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yuan Zhou
- Department of Orthopedics and Traumatology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Bing Luo
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
3
|
Sahu B, Sahu MK, Baghel A, Sahu C, Bhoi H, Kumar A, Yadav M, Bhargav N. Exploring the Nutritional Excellence and Pharmacological Potentials of Millets: A Comprehensive Review. Chem Biodivers 2025:e202500280. [PMID: 40166891 DOI: 10.1002/cbdv.202500280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/02/2025]
Abstract
Millets, known as 'super grains', are recognised globally for their outstanding nutritional, phytochemical, and pharmacological benefits. This review highlights their various health-promoting properties, including antioxidant, anti-diabetic, anti-inflammatory, hypolipidemic, antimicrobial, neuroprotective, immunomodulatory, gastroprotective and anticancer activities. Rich in bioactive compounds like phenolics, flavonoids and dietary fibre, millets help manage lifestyle-related disorders and chronic diseases. They modulate oxidative stress, regulate glucose metabolism, and boost immune responses. Millets are also seen as a sustainable solution to global food security and dietary challenges, making them valuable in modern diets. Promoting millet consumption can lead to further research on their therapeutic benefits and encourage their inclusion in daily nutrition for better health and wellness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megha Yadav
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | | |
Collapse
|
4
|
Wang A, Zhang S, Li L, Meng F, Lu Z, Lu F, Bie X, Zhao H. Effects of Bacillus velezensis fermentation on the composition, structure, physicochemical properties and in vitro hypoglycemic effects of highland barley dietary fiber. Int J Biol Macromol 2025; 299:139964. [PMID: 39826727 DOI: 10.1016/j.ijbiomac.2025.139964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Dietary fiber in cereals is an important active substance and is believed to be beneficial to consumer health. To improve the physicochemical and functional properties of highland barley dietary fiber and the integrated utilization of highland barley, Bacillus velezensis submerged fermentation was used to treat highland barley. Soluble and insoluble dietary fibers (SDF and IDF) were isolated and their yield, proximate composition, monosaccharide compositions, physicochemical, structural and functional characteristics were investigated. The results showed that fermentation could significantly increase the SDF yield from 6.07 to 12.57 %. Fermentation changed the monosaccharide composition ratio and rendered SDF and IDF a looser and more porous structure. The crystallinity was also changed significantly. Fermentation improved the water retention capacity and swelling capacity of SDF, while decreased that of IDF. The glucose adsorption ability, glucose delayed dialysis ability, α-glucosidase and α-amylase inhibitory activities of highland barley SDF and IDF were all improved after fermentation, especially for SDF. These results indicated that fermentation is an efficient and environmentally friendly modification method and modified SDF can be utilized in the food processing industry, promoting the high-value application of highland barley dietary fiber.
Collapse
Affiliation(s)
- An Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shimei Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Liang Li
- College of Food Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, Tibet Autonomous Region, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
5
|
Naghdi S, Rezaei M, Kashiri M, Rezaei F, Naseri S, Nourani H, Khakpour Z. Development and Evaluation of Low-Fat Fish and Chicken Nuggets Fortified With Date Seed Powder and Quinoa Flour as Agricultural Dietary Fiber Sources. Food Sci Nutr 2025; 13:e4749. [PMID: 40161406 PMCID: PMC11949846 DOI: 10.1002/fsn3.4749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 04/02/2025] Open
Abstract
In recent years, high-oil-content fried products, such as nuggets, have posed a significant challenge and concern for consumers, leading to increased interest in fiber-enriched meat alternatives that offer specific functional properties and health benefits. This study investigated the incorporation of quinoa flour and date seed powder as fiber sources into chicken and fish paste formulations at a 6% concentration, with varying ratios of quinoa flour to date seed powder: 0:0 (T1), 100:0 (T2), 75:25 (T3), and 50:50 (T4). The results demonstrated that adding these ingredients markedly improved the dietary fiber content, water holding capacity, cooking yield, and pH levels of the nuggets (p < 0.05). Notably, the T4 treatment exhibited the lowest oil absorption (3.82 g for chicken and 5.19 g for fish per 100 g of product) among all formulations (p < 0.05). The fiber-enriched nuggets exhibited noticeable differences in texture and color. Additionally, the incorporation of quinoa flour and date seed powder positively influenced the sensory attributes of the nuggets, with T3 achieving the highest overall acceptance score. This formulation was identified as the most favorable option for both chicken and fish nuggets, owing to its optimal cooking yield, high acceptance, adequate fiber content, and minimal oil absorption.
Collapse
Affiliation(s)
- Shahab Naghdi
- Seafood Processing Department, Marine Sciences FacultyTarbiat Modares UniversityNoorIran
| | - Masoud Rezaei
- Seafood Processing Department, Marine Sciences FacultyTarbiat Modares UniversityNoorIran
| | - Mahboobeh Kashiri
- Faculty of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Fatemeh Rezaei
- Faculty of Food Science and TechnologyGorgan University of Agricultural Sciences and Natural ResourcesGorganIran
| | - Serva Naseri
- Seafood Processing Department, Marine Sciences FacultyTarbiat Modares UniversityNoorIran
| | - Hossein Nourani
- Seafood Processing Department, Marine Sciences FacultyTarbiat Modares UniversityNoorIran
| | - Zahra Khakpour
- Seafood Processing Department, Marine Sciences FacultyTarbiat Modares UniversityNoorIran
| |
Collapse
|
6
|
Jiang G, Ameer K, Ramachandraiah K, Feng X, Jin X, Tan Q, Huang X. Comparison of Structural, Physicochemical, and Functional Properties of Blueberry Residue Dietary Fiber Extracted by Wet Ball Milling and Cross-Linking Methods. Foods 2025; 14:1196. [PMID: 40238366 DOI: 10.3390/foods14071196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
This study evaluated the structural, physicochemical, and functional characteristics of blueberry residue dietary fiber (DF) extracted by wet ball milling (WB) and cross-linking (C) treatments. The particle size of WB-DF showed a significant decreasing trend (p ≤ 0.05) compared to that of C-DF and blueberry residue. Scanning electron microscopy (SEM) demonstrated that WB treatment unfolded the flaky structure of DF and caused more pores to occur. The results showed that the modifications of WB increased the release of active groups and enhanced the hydration and adsorption capacities. X-ray diffraction (XRD) analysis showed the highest crystallinity observed for C-DF, resulting in the increased thermal stability of C-DF. The molar ratios of monosaccharides were also influenced by different modification techniques. In addition, WB-DF showed the lowest ζ-potential and highest viscosity among all samples. Conclusively, DF extracted by WB treatment exhibited remarkable application potential in the functional food industry.
Collapse
Affiliation(s)
- Guihun Jiang
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Karna Ramachandraiah
- Department of Biological Sciences, College of Arts & Sciences, University of North Florida, Jacksonville, FL 32224, USA
| | - Xiaoyu Feng
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | - Xiaolu Jin
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | - Qiaolin Tan
- School of Public Health, Jilin Medical University, Jilin 132013, China
| | - Xianfeng Huang
- School of Public Health, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
7
|
Zhao W, Lyu Y, Xiong L, Wang L, Wang F, Song H, Shen X. Effects of in vitro simulated digestion on the hypoglycaemic capacity of wheat bran-soluble dietary fibre. Biochem Biophys Res Commun 2025; 746:151267. [PMID: 39754973 DOI: 10.1016/j.bbrc.2024.151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Wheat bran-soluble dietary fibre (WB-SDF) is known for its hypoglycaemic properties and its potential to control postprandial blood glucose levels in individuals with hyperglycaemia. However, the digestive process may alter its glucose-lowering potential. This study investigated the effects of in vitro simulated digestion on the hypoglycaemic efficacy of WB-SDF. The hypoglycaemic effects of WB-SDF were determined by examining its glucose-binding capacity, glucose dialysis retardation index and ability to inhibit glucose uptake and transport in Caco-2 cells. Structural changes after digestion were analysed via polysaccharide conformation analysis, microstructure observation and particle size measurements to evaluate their impacts on hypoglycaemic efficacy. Results indicate that WB-SDF and digested wheat bran-dietary fibre significantly decreased glucose adsorption and α-glucosidase activity compared with the control group in Caco-2 cells. However, simulated digestion resulted in a relatively smaller reduction in α-glucosidase activity compared with the WB-SDF treatment group. The massive loss of surface laminar structure, reduction of -OH groups and partial glycosidic bond breakage in digested wheat bran-dietary fibre after digestion led to reduced glucose adsorption capacity and glucose dialysis retardation index. Moreover, the reduction in particle size after digestion enhanced the inhibition of glucose transport-related gene expression in Caco-2 cells. Thus, although digestion weakens the glucose adsorption of WB-SDF, it improves its ability to inhibit glucose transport, highlighting the intricate interplay between structural modifications and hypoglycaemic efficacy.
Collapse
Affiliation(s)
- Wenliang Zhao
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yi Lyu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
8
|
Meng K, Wang Y, Liu F, Zhan Q, Zhao L. Effect of modifications on structure, physicochemical properties and lead ions adsorption behavior of dietary fiber of Flammulina velutipes. Food Chem 2025; 464:141597. [PMID: 39396472 DOI: 10.1016/j.foodchem.2024.141597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
The health effects of dietary fiber have been widely concerned, which are closely related to physicochemical properties. This study focused on soluble dietary fiber of Flammulina velutipes (FDF), evaluated the effects of modifications on structural characterization, the physicochemical properties and the heavy metal adsorption characteristics, and further clarified underlying mechanisms on Pb2+ adsorption behavior of FDFs. The results showed the modifications of extrusion and cellulase improved the yield of FDFs, increased the release of active groups and enhanced the adsorption ability in vitro. Besides, Pb2+ adsorption altered porous structure and led to the presence of carboxylate. It was a spontaneous endothermic reaction and can be fitted by the pseudo-second-order kinetic equation. The Freundlich equation was suitable to describe the adsorption isotherm. These results highlighted potential applications of the dietary fiber modification and laid the theoretical foundation for the modification processing of F. velutipes and protection from food-derived heavy metal toxicity.
Collapse
Affiliation(s)
- Keke Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feifei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Berktas S, Cam M. Effects of acid, alkaline and enzymatic extraction methods on functional, structural and antioxidant properties of dietary fiber fractions from quince (Cydonia oblonga Miller). Food Chem 2025; 464:141596. [PMID: 39413597 DOI: 10.1016/j.foodchem.2024.141596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In this study, quince soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were obtained by acid extraction, enzyme extraction and alkaline extraction methods. The acid extracted DF displayed higher results compared to enzyme and alkaline extraction methods in terms of water holding capacity (15.97 g/g SDF), oil holding capacity (1.05 g/g SDF) and nitrite ion adsorption capacity (92.83 mg/g SDF). The antioxidant activity and phenolic content of acid extracted IDF were significantly higher than the other quince DFs. In addition, quince DFs exhibited in vitro hypoglycaemic activity, exhibiting high glucose adsorption capacity (237 mg/g) and α-amylase inhibition activity (82 %). Similarly, acid extracted SDF of quince showed in vitro hypolipidemic activity, with cholesterol adsorption capacity of 155 mg/g and lipase inhibition activity of 36 %. The structures and thermal properties of quince DFs were characterized by FT-IR and TGA. Quince DFs with high functional properties might be suitable agents for functional food formulations, such as meat products, low-calorie fruit bars, flour mixtures, etc.
Collapse
Affiliation(s)
- Serap Berktas
- Institute of Natural Sciences, Erciyes University, 38039 Kayseri, Türkiye.
| | - Mustafa Cam
- Department of Food Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Türkiye
| |
Collapse
|
10
|
Mambrini SP, Penzavecchia C, Menichetti F, Foppiani A, Leone A, Pellizzari M, Sileo F, Battezzati A, Bertoli S, De Amicis R. Plant-based and sustainable diet: A systematic review of its impact on obesity. Obes Rev 2025:e13901. [PMID: 39888238 DOI: 10.1111/obr.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 02/01/2025]
Abstract
The food system significantly affects the environment through land use, emissions from livestock, deforestation, and food waste. Diet sustainability considers the environmental effects of food production, distribution, and consumption. Animal products emit more greenhouse gases than plant-based foods, prompting a shift towards plant-focused diets for reduced emissions. Sustainable diets, like the EAT-Lancet model, prioritize plant-based foods, adjusting for regional eating habits. These diets aim to be both environmentally friendly and conducive to human health, addressing concerns like obesity and chronic diseases. Obesity is a major global health challenge, and its complex relationship with food production and consumption patterns calls for sustainable solutions to reduce pressure on ecosystems and promote healthier lifestyles. Tackling obesity requires holistic strategies that address not only individual health but also the broader environmental impacts of food systems. A systematic review examined the link between plant-based diets and obesity focusing on studies assessing Body Mass Index (BMI) and body fat assessment. Despite limited research, evidence suggests that adherence to a plant-based diet, particularly a healthy one, is associated with lower obesity rates. More longitudinal and intervention studies are necessary for a stronger consensus on the matter.
Collapse
Affiliation(s)
- Sara P Mambrini
- IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Claudia Penzavecchia
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Francesca Menichetti
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Andrea Foppiani
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
- IRCCS Istituto Auxologico Italiano, Clinical Nutrition Unit, Department of Endocrine and Metabolic Medicine, 20100 Milan, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
- IRCCS Istituto Auxologico Italiano, Clinical Nutrition Unit, Department of Endocrine and Metabolic Medicine, 20100 Milan, Italy
| | - Marta Pellizzari
- IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Federica Sileo
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
- IRCCS Istituto Auxologico Italiano, Clinical Nutrition Unit, Department of Endocrine and Metabolic Medicine, 20100 Milan, Italy
| | - Alberto Battezzati
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
- IRCCS Istituto Auxologico Italiano, Clinical Nutrition Unit, Department of Endocrine and Metabolic Medicine, 20100 Milan, Italy
| | - Simona Bertoli
- IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Ramona De Amicis
- IRCCS Istituto Auxologico Italiano, Obesity Unit and Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| |
Collapse
|
11
|
Sardaro MLS, Grote V, Baik J, Atallah M, Amato KR, Ring M. Effects of Vegetable and Fruit Juicing on Gut and Oral Microbiome Composition. Nutrients 2025; 17:458. [PMID: 39940316 PMCID: PMC11820471 DOI: 10.3390/nu17030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND In recent years, juicing has often been promoted as a convenient way to increase fruit and vegetable intake, with juice-only diets marketed for digestive cleansing and overall health improvement. However, juicing removes most insoluble fiber, which may diminish the health benefits of whole fruits and vegetables. Lower fiber intake can alter the microbiota, affecting metabolism, immunity, and mental health, though little is known about juicing's specific effects on the microbiota. This study addresses this gap by exploring how juicing impacts gut and oral microbiome composition in an intervention study. METHODS Fourteen participants followed one of three diets-exclusive juice, juice plus food, or plant-based food-for three days. Microbiota samples (stool, saliva, and inner cheek swabs) were collected at baseline, after a pre-intervention elimination diet, immediately after juice intervention, and 14 days after intervention. Moreover, 16S rRNA gene amplicon sequencing was used to analyze microbiota taxonomic composition. RESULTS The saliva microbiome differed significantly in response to the elimination diet (unweighted UniFrac: F = 1.72, R = 0.06, p < 0.005; weighted UniFrac: F = 7.62, R = 0.23, p-value = 0.0025) with a significant reduction in Firmicutes (p = 0.004) and a significant increase in Proteobacteria (p = 0.005). The juice intervention diets were also associated with changes in the saliva and cheek microbiota, particularly in the relative abundances of pro-inflammatory bacterial families, potentially due to the high sugar and low fiber intake of the juice-related products. Although no significant shifts in overall gut microbiota composition were observed, with either the elimination diet or the juice intervention diets, bacterial taxa associated with gut permeability, inflammation, and cognitive decline increased in relative abundance. CONCLUSIONS These findings suggest that short-term juice consumption may negatively affect the microbiota.
Collapse
Affiliation(s)
- Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA; (J.B.); (K.R.A.)
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele University, 00166 Rome, Italy
| | - Veronika Grote
- Osher Center for Integrative Health, Northwestern University, Chicago, IL 60611, USA;
| | - Jennifer Baik
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA; (J.B.); (K.R.A.)
| | - Marco Atallah
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Katherine Ryan Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA; (J.B.); (K.R.A.)
| | - Melinda Ring
- Osher Center for Integrative Health, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
12
|
Ji X, Wang L, Luan P, Liang J, Cheng W. The impact of dietary fiber on colorectal cancer patients based on machine learning. Front Nutr 2025; 12:1508562. [PMID: 39927282 PMCID: PMC11802429 DOI: 10.3389/fnut.2025.1508562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Objective This study aimed to evaluate the impact of enteral nutrition with dietary fiber on patients undergoing laparoscopic colorectal cancer (CRC) surgery. Methods Between January 2023 and August 2024, 164 CRC patients were randomly assigned to two groups at our hospital. The control group received standard nutritional intervention, while the observation group received enteral nutritional support containing dietary fiber. Both groups were subjected to intervention and continuously observed until the 14th postoperative day. An observational analysis assessed the impact of dietary fiber intake on postoperative nutritional status in CRC patients. The study compared infection stress index, inflammatory factors, nutritional status, intestinal function recovery, and complication incidence between groups. Additionally, four machine learning models-Logistic Regression (LR), Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM)-were developed based on nutritional and clinical indicators. Results In the observation group, levels of procalcitonin (PCT), beta-endorphin (β-EP), C-reactive protein (CRP), interleukin-1 (IL-1), interleukin-8 (IL-8), and tumor necrosis factor-alpha (TNF-α) were significantly lower compared to the control group (p < 0.01). Conversely, levels of albumin (ALB), hemoglobin (HB), transferrin (TRF), and prealbumin (PAB) in the observation group were significantly higher than those in the control group (p < 0.01). Furthermore, LR, RF, NN, and SVM models can effectively predict the effects of dietary fiber on the immune function and inflammatory response of postoperative CRC patients, with the NN model performing the best. Through the screening of machine learning models, four key predictors for CRC patients were identified: PCT, PAB, ALB, and IL-1. Conclusion Postoperative dietary fiber administration in colorectal cancer enhances immune function, reduces disease-related inflammation, and inhibits tumor proliferation. Machine learning-based CRC prediction models hold clinical value.
Collapse
Affiliation(s)
| | | | | | | | - Weicai Cheng
- Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai, China
| |
Collapse
|
13
|
Arias-Rico J, Hernández-Ortega IC, Jaramillo-Morales OA, Cruz-Cansino NDS, Zafra-Rojas QY, Flores-Chávez OR, Baltazar-Téllez RM, Ramírez-Moreno E. Physiological and Metabolic Effects of Opuntia ficus indica spp. Peel Formulations. Life (Basel) 2025; 15:148. [PMID: 40003557 PMCID: PMC11856824 DOI: 10.3390/life15020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
The objective of this study is to determine the physiological and metabolic effects of administration of dietary fiber formulations to male Wistar rats. The study population was divided into five groups to which food and water were orally administered ad libitum (control), alongside Psyllium plantago, sennosides A and B, cactus pear peel powder, and cactus pear peel tablet powder for 28 days. Body weight, biochemical parameters, fecal moisture, and intestinal transit were determined. The administration of the fiber formulations did not cause differences between the groups and they maintained a healthy weight; however, the consumption of the cactus pear peel tablet powder decreased serum glucose (127.85 ± 5.37 to 68.30 ± 12.48 mg/dL) in rats in a similar form to Psyllium plantago (127.85 ± 5.37 to 96.96 ± 3.26 mg/dL) in comparison with commercial products for rats, and the cactus pear peel powder had lower triglyceride levels (49.52 to 74.44 mg/dL) than commercial products at the end of the treatment. The samples maintained normal HDL levels with the exception of Psyllium plantago that had a decrease in treatment after 28 days. The administration of formulations of dietary fiber of cactus pear peel had physiological and metabolic effects similar to those of commercial products without change in the growth of the animals. Therefore, it could be used in the pharmaceutical or food industry.
Collapse
Affiliation(s)
- José Arias-Rico
- Área Académica de Enfermería, Centro de Investigación Interdisciplinario, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (J.A.-R.); (O.R.F.-C.); (R.M.B.-T.)
| | - Iris Cristal Hernández-Ortega
- Área Académica de Nutrición, Centro de Investigación Interdisciplinario, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (I.C.H.-O.); (N.d.S.C.-C.); (Q.Y.Z.-R.)
| | - Osmar Antonio Jaramillo-Morales
- División de Ciencias de la Vida, Departamento de Enfermería y Obstetricia, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex Hacienda el Copal, km. 9 Carretera Irapuato-Silao, AP. 311, Irapuato 36500, Guanajuato, Mexico;
| | - Nelly del Socorro Cruz-Cansino
- Área Académica de Nutrición, Centro de Investigación Interdisciplinario, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (I.C.H.-O.); (N.d.S.C.-C.); (Q.Y.Z.-R.)
| | - Quinatzin Yadira Zafra-Rojas
- Área Académica de Nutrición, Centro de Investigación Interdisciplinario, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (I.C.H.-O.); (N.d.S.C.-C.); (Q.Y.Z.-R.)
| | - Olga Rocío Flores-Chávez
- Área Académica de Enfermería, Centro de Investigación Interdisciplinario, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (J.A.-R.); (O.R.F.-C.); (R.M.B.-T.)
| | - Rosa María Baltazar-Téllez
- Área Académica de Enfermería, Centro de Investigación Interdisciplinario, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (J.A.-R.); (O.R.F.-C.); (R.M.B.-T.)
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Centro de Investigación Interdisciplinario, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (I.C.H.-O.); (N.d.S.C.-C.); (Q.Y.Z.-R.)
| |
Collapse
|
14
|
Lana VSD, Estevam PN, de Castro TB, de São José VPB, Brito-Oliveira TC, Santos PH, Oliveira CAS, Corrêa CB, Rostagno MA, Martino HSD, de Carvalho IMM. Nutritional and technological potential of umbu-caja and soursop co-product flours. Food Res Int 2025; 200:115520. [PMID: 39779150 DOI: 10.1016/j.foodres.2024.115520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Umbu-caja and soursop from the Northeast region of Brazil are rich in nutrients and bioactive compounds and are widely processed by the fruit agroindustry. However, there is a lack of research examining the composition and nutritional/technological potential of these co-product fruits. The present study evaluated the nutritional and technological characteristics of umbu-caja and soursop co-product flours (UCF and SCF, respectively), in addition to cytotoxicity in healthy cells. The results demonstrated that they are rich in dietary fiber (approximately 53 %), low in protein (approximately 8.0 %), and have minimal moisture content (<15 %). The mineral composition of the flours exhibited a notable presence of copper, iron, zinc, manganese, and boron. The evaluation of antioxidant capacity using the DPPH, ABTS, and FRAP methods demonstrated the presence of antioxidants that resisted processing, indicated by a high antioxidant capacity. Furthermore, the flours were found to contain phenolic compounds, predominantly rutin (UCF) and p-coumaric acid (SCF). The cytotoxicity test demonstrated that both co-product flours did not exert detrimental effects on healthy cells according to the MTT assay. The technological analyses highlighted low pH values (2.38 and 3.61 for UCF and SCF, respectively), which is favorable for a greater shelf life and suggests applications in fermented products. In addition, the flours have good water and oil holding capacity and low foaming, and they could be incorporated into food products that require these properties. The results demonstrated promising qualities of the UCF and SCF for incorporation into the human diet and product development, mainly due to their high fiber content, antioxidant capacity and low cytotoxicity.
Collapse
Affiliation(s)
- Valeria Silva de Lana
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | | | - Thais Carvalho Brito-Oliveira
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, São Paulo, Brazil
| | - Pedro Henrique Santos
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, São Paulo, Brazil
| | | | | | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
15
|
Feng Y, Jin Q, Liu X, Lin T, Johnson A, Huang H. Advances in understanding dietary fiber: Classification, structural characterization, modification, and gut microbiome interactions. Compr Rev Food Sci Food Saf 2025; 24:e70092. [PMID: 39840651 PMCID: PMC11752078 DOI: 10.1111/1541-4337.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025]
Abstract
Gut microbiota and their metabolites profoundly impact host physiology. Targeted modulation of gut microbiota has been a long-term interest in the scientific community. Numerous studies have investigated the feasibility of utilizing dietary fibers (DFs) to modulate gut microbiota and promote the production of health-beneficial bacterial metabolites. However, the complexity of fiber structures, microbiota composition, and their dynamic interactions have hindered the precise prediction of the impact of DF on the gut microbiome. We address this issue with a new perspective, focusing on the inherent chemical and structural complexity of DFs and their interaction with gut microbiota. The chemical and structural complexity of fibers was thoroughly elaborated, encompassing the fibers' molecular composition, polymorphism, mesoscopic structures, porosity, and particle size. Advanced characterization techniques to investigate fiber structural properties were discussed. Additionally, we examined the interactions between DFs and gut microbiota. Finally, we summarized processing techniques to modify fiber structures for improving the fermentability of DF by gut microbiota. The structure of fibers, such as their crystallinity, porosity, degree of branching, and pore wettability, significantly impacts their interactions with gut microbiota. These structural differences also substantially affect fiber's fermentability and capability to modulate the composition of gut microbiota. Conventional approaches are not capable of investigating complex fiber properties and their influences on the gut microbiome; therefore, it is of the essence to involve advanced material characterization techniques and artificial intelligence to unveil more comprehensive information on this topic.
Collapse
Affiliation(s)
- Yiming Feng
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - Qing Jin
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
- School of Food and AgricultureUniversity of MaineOronoMaineUSA
| | - Xuanbo Liu
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
| | - Tiantian Lin
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
| | - Andrea Johnson
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
| | - Haibo Huang
- Department of Food Science and TechnologyVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
16
|
Aghilinategh N, Gholami R, Dayyani V, Gay P, Biglia A. Physicochemical and aromatic properties of iron-enriched tomato paste during storage. Food Res Int 2025; 200:115484. [PMID: 39779131 DOI: 10.1016/j.foodres.2024.115484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
In this study, tomato paste was fortified with iron compounds at 25, 50, and 75 ppm concentrations. The effect of adding these micronutrient iron concentrations on the paste's physical, mechanical, aromatic, and chemical properties was evaluated every 15 days over a 60-day, storage period. The results indicated a gradual decrease in pH, total soluble solids (TSS), and taste index, alongside an increase in total acidity (TA) for all treatments throughout the storage period. The highest lycopene content observed in the Fe-25 % fortified samples at 43.05 mg/kg and the lowest in the control samples at 21.57 mg/kg. Positive values for a* and b* at the beginning and throughout the storage period confirmed the dominance of red and yellow hues in the tomato paste. Viscosity gradually decreased over time. During storage, growth and changes in mold spores and acid-resistant thermophilic bacteria were limited until the 30th day, and total microorganism counts were restricted until the 45th day. The overall accuracy of the support vector machines (C-SVM) and linear discriminant analysis (LDA) method in distinguishing samples into four groups (control, fortified with 25, 50, and 75 ppm iron) were 38 % and 62 % Overall, it can be concluded that increasing the iron micronutrient enhances the nutritional value and positively affects the physical, chemical, and microbial properties and the retention of aromatic compounds in tomato paste.
Collapse
Affiliation(s)
- Nahid Aghilinategh
- Department of Agricultural Machinery Engineering, Sonqor Agriculture Faculty, Razi University, Kermanshah, Iran.
| | - Rashid Gholami
- Department of Agricultural Machinery Engineering, Sonqor Agriculture Faculty, Razi University, Kermanshah, Iran
| | | | - Paolo Gay
- Department of Agricultural, Forest and Food Sciences (DiSAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco TO, Italy
| | - Alessandro Biglia
- Department of Agricultural, Forest and Food Sciences (DiSAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco TO, Italy.
| |
Collapse
|
17
|
Naveed H, Sultan W, Awan KA, Imtiaz A, Yaqoob S, Al-Asmari F, Faraz A, Qian JY, Sharma A, Mugabi R, Alotaibi SS, Nayik GA. Glycemic impact of cereal and legume-based bakery products: Implications for chronic disease management. Food Chem X 2024; 24:101959. [PMID: 39568514 PMCID: PMC11577150 DOI: 10.1016/j.fochx.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
This review examines the glycemic impact of cereal and legume-based bakery products and their potential role in chronic disease management, particularly in type II diabetes and cardiovascular diseases. The primary objective is to assess the glycemic index (GI) and glycemic load (GL) of bakery products made from cereals such as wheat and barley, and legumes like chickpeas, and to explore their effects on postprandial blood glucose response. Cereal-based products typically exhibit higher GIs (55-80), while legume-based bakery products demonstrate lower GIs (40-50), potentially contributing to better glycemic control. Incorporating legumes into bakery formulations can lower their glycemic index by up to 25 %. Legume-enriched bakery products may effectively manage blood glucose and reduce chronic disease risks like diabetes. However, more long-term studies are needed to confirm their broader benefits. This review emphasizes the need for innovation to improve the nutritional and sensory appeal of functional foods.
Collapse
Affiliation(s)
- Hiba Naveed
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Pakistan
| | - Waleed Sultan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Pakistan
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Pakistan
| | - Aysha Imtiaz
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Sanabil Yaqoob
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Pakistan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agriculture and Food Sciences, King Faisal University, Saudi Arabia
| | - Ahmad Faraz
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Pakistan
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Aanchal Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 110099, Taif 21944, Saudi Arabia
| | - Gulzar Ahmad Nayik
- Marwadi University Research Centre, Department of Microbiology, Marwadi University, Rajkot, Gujarat 360003, India
| |
Collapse
|
18
|
Panneerselvan L, Raghuraman Rengarajan HJ, Kandaiah R, Bhagwat-Russell G, Palanisami T. Fibrous foes: First report on insidious microplastic contamination in dietary fiber supplements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125248. [PMID: 39510303 DOI: 10.1016/j.envpol.2024.125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Regular consumption of health supplements to balance dietary intake has gained popularity worldwide. One such supplement that has gained popularity among consumers is dietary fibers. Microplastic (MPs) contamination in various food products is being reported worldwide. However, there is a paucity of understanding of the occurrence of MPs in dietary supplements. This study addresses this gap by investigating the degree of MPs contamination in dietary fiber supplements. Nine commonly consumed (powder and gummy-based) over-the-counter dietary fiber supplements in Australia were tested in this study. Microscopic examination revealed the presence of MPs fibers and fragments in all the tested products. Further categorization showed that MPs particles were of various colours, including black, blue, red, green, and white. The order of polymer abundance was Polyamide > Polydiallyl Phthalate > polyethylene polypropylene diene > Polyurethane = Polyethylene terephthalate > Polyethylene = Ethylene acrylic acid copolymer. Among the supplements, powder-based samples had higher MPs (at the adult dosage suggested by the manufacturer) than gummy-based product. The average predicted ingestion of microplastics from these supplements (all nine samples) was 5.89 ± 2.89 particles day-1. The dietary exposure for children and adults ranged from 0.1-0.48 and 0.18-4.08 particles day-1, respectively. Based on the microplastic contamination factor (MCF), among the nine samples tested, 69.81% exhibited a moderate level, while 20.76% showed a significant level of microplastic contamination. The polymer risk index (pRi) indicates products with very high and high-risk categories. The possible sources of MPs contamination in the products were studied. To our knowledge, this is the first study to record and quantify the presence of MPs in dietary fiber supplements, which is a direct source of MPs exposure to humans via., ingestion.
Collapse
Affiliation(s)
- Logeshwaran Panneerselvan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Haryni Jayaradhika Raghuraman Rengarajan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Raji Kandaiah
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Geetika Bhagwat-Russell
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Thava Palanisami
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia.
| |
Collapse
|
19
|
Lin D, Liu Y, Ma Y, Qin W, Zhang Q. Machine learning-enhanced modeling and characterization for optimizing dietary Fiber production from Highland barley bran. Int J Biol Macromol 2024; 283:137616. [PMID: 39549802 DOI: 10.1016/j.ijbiomac.2024.137616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
This study investigated the modification of highland barley bran through co-fermentation of Lactobacillus bulgaricus and Kluyveromyces marxianus, and developed a dynamic prediction model for DF content under these co-fermentation conditions using machine learning algorithms. The results showed that the XGBoost algorithm could predict changes in the DF component content (R2 = 0.9553(SDF/IDF), RMSE = 0.0464.) and identify optimal fermentation conditions. Under these optimal conditions, both strains exhibited synergistic effects, where the lactic acid produced by Lactobacillus bulgaricus and β-glucosidase produced by Kluyveromyces marxianus may facilitate IDF decomposition and conversion, resulting in a maximum SDF/IDF ratio of 0.6911. This led to a 27.65 % reduction in IDF content and a 19.11 % increase in SDF content. Moreover, the physicochemical and functional properties of DF were enhanced after co-fermentation. The structure of DF became looser and more porous, its thermal stability improved, and its water-holding, oil-holding, and swelling capacities increased by 53.54 %, 16.11 %, and 44.96 %, respectively, compared with the unfermented counterpart; in terms of adsorption characteristics, its glucose, cholesterol and nitrite adsorption capacities were also significantly improved. According to in vitro gastrointestinal simulated digestion, digestion would have a great impact on the fermented DF, which showed good antioxidant properties during the intestinal digestion stage.
Collapse
Affiliation(s)
- Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yinhe Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yi Ma
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
20
|
Zhu R, Tong X, Du Y, Liu J, Xu X, He Y, Wen L, Wang Z. Improvement of chlorpyrifos-induced cognitive impairment by mountain grape anthocyanins based on PI3K/Akt signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106172. [PMID: 39477625 DOI: 10.1016/j.pestbp.2024.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
The organophosphorus insecticide Chlorpyrifos (CPF) is widely used worldwide due to its high effectiveness. However, when ingested through the mouth and nose, it can cause severe neurotoxic effects and cognitive impairment. Natural anthocyanins show great potential in improving cognitive impairment. In this paper, we will delve into the protective effect of anthocyanins on CPF-induced cognitive impairment and its mechanism through the PI3K/Akt signaling pathway. Morris water maze, histopathological, ELISA and western blot analyses showed that anthocyanins effectively ameliorated CPF-induced spatial learning memory impairment in mice by ameliorating CPF-induced AChE inhibition, oxidative stress, and neuroinflammation and by modulating the levels of apoptosis (Caspase-3, Caspase-9) and autophagy (LC3II/ LC3I, Beclin1, p62, mTOR) biomarkers, in order to restore damaged hippocampal tissue morphology, neuron and synapse structures. To identify the action pathway of anthocyanins, we used KEGG and GO pathway enrichment analysis for screening prediction and western blot and molecular docking to verify that anthocyanins improve CPF-induced cognitive impairment by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Rongchen Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuewen Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuhan Du
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiahua Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuefei Xu
- Jilin Province Product Quality Supervision and Inspection Institute of Light Industrial and Chemical Products Inspection, Changchun 130022, China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
21
|
Pam P, Goudarzi MA, Ghotboddin Mohammadi S, Asbaghi O, Aghakhani L, Clark CCT, Hashempur MH, Haghighat N. The effects of kiwifruit consumption on anthropometric and cardiometabolic indices in adults: A systematic review and meta-analysis. Food Sci Nutr 2024; 12:7017-7032. [PMID: 39479621 PMCID: PMC11521643 DOI: 10.1002/fsn3.4385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 11/02/2024] Open
Abstract
The current systematic review and meta-analysis was conducted to evaluate the effects of kiwifruit intake on anthropometric indices and key cardiometabolic parameters. Related articles were found by searching PubMed, ISI Web of Science, and Scopus to detect relevant Randomized Clinical Trials (RCTs) and novel systematic reviews relating to kiwi consumption in adults, up to August 2023. The weighted mean difference (WMD) and 95% confidence intervals (CIs) were calculated using a random-effects model. Heterogeneity, sensitivity analysis, and publication bias were assessed and reported using standard methods. Six RCTs were included in the meta-analysis. Analyzing overall effect sizes demonstrated a significant reduction in low-density lipoprotein cholesterol (LDL) levels (WMD: -9.30 mg/dL; 95% CI: -17.56 to -1.04, p = .027), whereas no significant alterations of triglycerides (TG) (WMD: -12.91 mg/dL; 95% CI: -28.17 to 2.34, p = .097), total cholesterol (TC) (WMD: -7.66 mg/dL; 95% CI: -17.85 to 2.52, p = .141), high-density lipoprotein cholesterol (HDL) (WMD: 2.87 mg/dL; 95% CI: -0.36 to 6.11, p = .141), fasting blood glucose (FBG) (WMD: 1.06 mg/dL; 95% CI: -1.43 to 3.56, p = .404), C-reactive protein (CRP) (WMD: 0.15 mg/dL; 95% CI: -0.40, 0.70, p = .0598), body weight (BW) (WMD: 0.85 kg; 95% CI: -1.34 to 3.04, p = .448), body mass index (BMI) (WMD: 0.04 kg/m2; 95% CI: -0.75 to 0.83, p = .920), and waist circumference (WC) (WMD: 0.18 cm; 95% CI: -1.81 to 2.19, p = .855) were found. Our findings suggest that consuming kiwifruit does not have a significant impact on anthropometric indices and cardiometabolic factors, except for LDL-C levels.
Collapse
Affiliation(s)
- Pedram Pam
- Student Research Committee, Department of Clinical NutritionTabriz University of Medical SciencesTabrizIran
- Department of Clinical NutritionTabriz University of Medical SciencesTabrizIran
| | | | - Shirin Ghotboddin Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Omid Asbaghi
- Cancer Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Ladan Aghakhani
- Laparoscopy Research CenterShiraz University of Medical SciencesShirazIran
| | | | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Neda Haghighat
- Laparoscopy Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
22
|
Zhu W, Cremonini E, Mastaloudis A, Oteiza PI. Glucoraphanin and sulforaphane mitigate TNFα-induced Caco-2 monolayers permeabilization and inflammation. Redox Biol 2024; 76:103359. [PMID: 39298837 PMCID: PMC11426148 DOI: 10.1016/j.redox.2024.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Intestinal permeabilization is central to the pathophysiology of chronic gut inflammation. This study investigated the efficacy of glucoraphanin (GR), prevalent in cruciferous vegetables, particularly broccoli, and its derivative sulforaphane (SF), in inhibiting tumor necrosis factor alpha (TNFα)-induced Caco-2 cell monolayers inflammation and permeabilization through the regulation of redox-sensitive events. TNFα binding to its receptor led to a rapid increase in oxidant production and subsequent elevation in the mRNA levels of NOX1, NOX4, and Duox2. GR and SF dose-dependently mitigated both these short- and long-term alterations in redox homeostasis. Downstream, GR and SF inhibited the activation of the redox-sensitive signaling cascades NF-κB (p65 and IKK) and MAPK ERK1/2, which contribute to inflammation and barrier permeabilization. GR (1 μM) and SF (0.5-1 μM) prevented TNFα-induced monolayer permeabilization and the associated reduction in the levels of the tight junction (TJ) proteins occludin and ZO-1. Both GR and SF also mitigated TNFα-induced increased mRNA levels of the myosin light chain kinase, which promotes TJ opening. Molecular docking suggests that although GR is mostly not absorbed, it could interact with extracellular and membrane sites in NOX1. Inhibition of NOX1 activity by GR would mitigate TNFα receptor downstream signaling and associated events. These findings support the concept that not only SF, but also GR, could exert systemic health benefits by protecting the intestinal barrier against inflammation-induced permeabilization, in part by regulating redox-sensitive pathways. GR has heretofore not been viewed as a biologically active molecule, but rather, the benign precursor of highly active SF. The consumption of GR and/or SF-rich vegetables or supplements in the diet may offer a means to mitigate the detrimental consequences of intestinal permeabilization, not only in disease states but also in conditions characterized by chronic inflammation of dietary and lifestyle origin.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, CA, USA
| | | | | | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
23
|
Łysakowska P, Sobota A, Wirkijowska A, Zarzycki P, Blicharz-Kania A. The Impact of Ganoderma lucidum (Curtis) P. Karst. Supplementation on the Technological, Chemical, and Quality Parameters of Wheat Bread. Foods 2024; 13:3101. [PMID: 39410135 PMCID: PMC11475047 DOI: 10.3390/foods13193101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
This study explores the incorporation of Ganoderma lucidum (Curtis) P. Karst. (Reishi mushroom) into wheat bread to develop a functional food with enhanced nutritional value. Reishi powder was added to bread formulations at levels of 3%, 6%, 9%, and 12% to assess its effects on physicochemical, nutritional, and sensory properties. The 12% Reishi supplementation resulted in a twofold increase in total dietary fibre (from 7.21 g to 17.08 g per 100 g dry matter) and significant (p < 0.05) elevations in mineral content, particularly calcium (68%), iron (32%), and manganese (61.9%). Carbohydrate content decreased markedly by 27%, contributing to a 19.33% reduction in caloric value. Reishi addition improved bread yield and reduced baking losses, enhancing production efficiency. However, higher Reishi levels negatively impacted bread volume, possibly due to interference with gluten network formation. An increase in crumb moisture was observed, contributing to extended freshness. Sensory evaluation revealed that loaves of bread containing up to 6% Reishi were acceptable to consumers, whereas higher levels detrimentally affected flavour and aroma. Therefore, Reishi-enriched bread, particularly with 6% supplementation, presents a promising functional alternative to conventional wheat bread, optimising nutritional benefits while maintaining consumer acceptability.
Collapse
Affiliation(s)
- Paulina Łysakowska
- Department of Engineering and Cereal Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna Street, 20-704 Lublin, Poland; (P.Ł.); (A.W.); (P.Z.)
| | - Aldona Sobota
- Department of Engineering and Cereal Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna Street, 20-704 Lublin, Poland; (P.Ł.); (A.W.); (P.Z.)
| | - Anna Wirkijowska
- Department of Engineering and Cereal Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna Street, 20-704 Lublin, Poland; (P.Ł.); (A.W.); (P.Z.)
| | - Piotr Zarzycki
- Department of Engineering and Cereal Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna Street, 20-704 Lublin, Poland; (P.Ł.); (A.W.); (P.Z.)
| | - Agata Blicharz-Kania
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, Głęboka Street, 20-612 Lublin, Poland;
| |
Collapse
|
24
|
Charoenwoodhipong P, Zuelch ML, Keen CL, Hackman RM, Holt RR. Strawberry (Fragaria x Ananassa) intake on human health and disease outcomes: a comprehensive literature review. Crit Rev Food Sci Nutr 2024:1-31. [PMID: 39262175 DOI: 10.1080/10408398.2024.2398634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Strawberries provide a number of potential health promoting phytonutrients to include phenolics, polyphenols, fiber, micronutrients and vitamins. The objective of this review is to provide a comprehensive summary of recent human studies pertaining to the intake of strawberry and strawberry phytonutrients on human health. A literature search conducted through PubMed and Cochrane databases consolidated studies focusing on the effects of strawberry intake on human health. Articles were reviewed considering pre-determined inclusion and exclusion criteria, including experimental or observational studies that focused on health outcomes, and utilized whole strawberries or freeze-dried strawberry powder (FDSP), published between 2000-2023. Of the 60 articles included in this review, 47 were clinical trials, while 13 were observational studies. A majority of these studies reported on the influence of strawberry intake on cardiometabolic outcomes. Study designs included those examining the influence of strawberry intake during the postprandial period, short-term trials randomized with a control, or a single arm intake period controlling with a low polyphenolic diet or no strawberry intake. A smaller proportion of studies included in this review examined the influence of strawberry intake on additional outcomes of aging including bone and brain health, and cancer risk. Data support that the inclusion of strawberries into the diet can have positive impacts during the postprandial period, with daily intake improving outcomes of lipid metabolism and inflammation in those at increased cardiovascular risk.
Collapse
Affiliation(s)
- Prae Charoenwoodhipong
- Department of Nutrition, University of California Davis, Davis, California, USA
- Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Michelle L Zuelch
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Carl L Keen
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Robert M Hackman
- Department of Nutrition, University of California Davis, Davis, California, USA
| | - Roberta R Holt
- Department of Nutrition, University of California Davis, Davis, California, USA
| |
Collapse
|
25
|
Li M, Ma S. A review of healthy role of dietary fiber in modulating chronic diseases. Food Res Int 2024; 191:114682. [PMID: 39059940 DOI: 10.1016/j.foodres.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Dietary fiber (DF) is considered an interventional diet beneficial for human health. High DF intake effectively reduces the incidence of three major chronic diseases, type 2 diabetes (T2DM), cardiovascular disease (CVD), and colorectal cancer (CRC). The health benefits of DF are closely related to their physicochemical properties with major positive roles in human digestion and intestinal health. However, mechanisms linking DF with diseases remain unclear. The development of genomics, metabolomics, and immunology, and the powerful combination of animal models and clinical trials, have facilitated a better understanding of the relationships between DF and diseases. Accumulating evidence suggests that the physical existence of DF and DF-microbiota interaction are the key parameters controlling the action mechanisms of DF in chronic diseases. Therefore, this review discusses the potential mechanism of DF modulating T2DM, CVD, and CRC, therefore providing a theoretical basis for more effective use of DF to intervene in chronic diseases.
Collapse
Affiliation(s)
- Mengyuan Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.
| |
Collapse
|
26
|
Darko HSO, Ismaiel L, Fanesi B, Pacetti D, Lucci P. Current Trends in Food Processing By-Products as Sources of High Value-Added Compounds in Food Fortification. Foods 2024; 13:2658. [PMID: 39272424 PMCID: PMC11394074 DOI: 10.3390/foods13172658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Along the food production chain of animal, fish, and vegetable products, a huge amount of by-products are generated every year. Major nutritional, financial, and environmental advantages can be achieved by transforming them into functional ingredients for food formulation and fortification. In this review, we investigated various conventional and emerging treatments recently employed to obtain functional ingredients rich in proteins, fibers, and bioactive compounds from vegetables, fish, meat, and dairy by-products. The optimal enrichment level in food as well as the nutritional, techno-functional, and sensory properties of the final food were also discussed. Novel technologies such as ultrasounds, microwaves, and high pressure have been successfully adopted to enhance the extraction of target compounds. The functional ingredients, added both in liquid or powder form, were able to improve the nutritional quality and antioxidant potential of food, although high levels of fortification may cause undesired changes in texture and flavor. This review provides important considerations for further industrial scale-up.
Collapse
Affiliation(s)
- Helen Stephanie Ofei Darko
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Lama Ismaiel
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Benedetta Fanesi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Paolo Lucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
27
|
Farzana T, Abedin MJ, Abdullah ATM, Reaz AH, Bhuiyan MNI, Afrin S, Satter MA. Enhancing prebiotic, antioxidant, and nutritional qualities of noodles: A collaborative strategy with foxtail millet and green banana flour. PLoS One 2024; 19:e0307909. [PMID: 39159201 PMCID: PMC11332954 DOI: 10.1371/journal.pone.0307909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Foxtail millet (FM) and green banana (GB) are rich in health-promoting nutrients and bioactive substances, like antioxidants, dietary fibers, and various essential macro and micronutrients. Utilizing GB and FM flour as prebiotics is attributed to their ability to support gut health and offer multiple health benefits. The present study aimed to evaluate the impact of incorporating 10% GB flour (GBF) and different proportions (10-40%) of FM flour (FMF) on the prebiotic potential, antioxidant, nutrient, color, cooking quality, water activity and sensory attributes of noodles. The prebiotic potential, antioxidant, and nutrient of the produced noodles were significantly improved by increasing the levels of FMF. Sensorial evaluation revealed that noodles containing 30% FMF and 10% GBF attained comparable scores to the control sample. Furthermore, the formulated noodles exhibited significantly (p < 0.05) higher levels of protein, essential minerals (such as iron, magnesium, and manganese), dietary fiber (9.37 to 12.71 g/100 g), total phenolic compounds (17.81 to 36.35 mg GA eq./100 g), and total antioxidants (172.57 to 274.94 mg AA eq./100 g) compared to the control. The enriched noodles also demonstrated substantially (p < 0.05) increased antioxidant capacity, as evidenced by enhanced DPPH and FRAP activities, when compared to the control noodles. Overall, the incorporation of 30% FMF and 10% GBF led to a noteworthy improvement in the nutritional and antioxidant qualities of the noodles, as well as the prebiotic potential of the noodles with regard to L. plantarum, L. rhamnosus, and L. acidophilus. The implementation of this enrichment strategy has the potential to confer a multitude of health advantages.
Collapse
Affiliation(s)
- Tasnim Farzana
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Md. Jaynal Abedin
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Abu Tareq Mohammad Abdullah
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Akter Hossain Reaz
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Mohammad Nazrul Islam Bhuiyan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Sadia Afrin
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Mohammed Abdus Satter
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| |
Collapse
|
28
|
Kaur S, Kumari A, Seem K, Kaur G, Kumar D, Verma S, Singh N, Kumar A, Kumar M, Jaiswal S, Bhardwaj R, Singh BK, Riar A. Finger millet (Eleusine coracana L.): from staple to superfood-a comprehensive review on nutritional, bioactive, industrial, and climate resilience potential. PLANTA 2024; 260:75. [PMID: 39153062 PMCID: PMC11330411 DOI: 10.1007/s00425-024-04502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
MAIN CONCLUSION This review discusses the Finger millet's rich nutritional profile, bioactive potential, and industrial applications, combined with its climate resilience, which make it a promising crop for enhancing food security and promoting sustainable agriculture. This review also highlights its significant potential to address malnutrition and mitigate climate change impacts. The emergence of Finger millet from "poor man's staple food" to "a nutrient rich cereal" has encouraged the need to explore this crop at a wider scale. It is a highly significant crop due to its rich nutritional and bioactive profile, diverse biological activities, and promising industrial applications, along with the high climate resilience. This comprehensive review evaluates its nutritional composition by comparing favorably with other cereals and millets and emphasizing its potential to address malnutrition and enhance food security. Furthermore, it explores the phytochemical/bioactive potential and strategies to enhance their bioavailability followed biological activities of Finger millet by highlighting its various health-promoting properties. The review also discusses industrial potential of finger millet including its role in nutraceutical and functional food production, as well as bioenergy generation. In addition, role of Finger millet as a climate-resilient crop; specifically, the available genetic resources and identification of genes and quantitative trait loci (QTLs) associated with major stress tolerance traits have also been discussed. By providing a comprehensive synthesis of existing knowledge, this study offers valuable insights for researchers, policymakers, and stakeholders engaged in efforts to promote sustainable agriculture, enhance food and nutrition security, and mitigate the impacts of climate change.
Collapse
Affiliation(s)
- Simardeep Kaur
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India.
| | - Arti Kumari
- Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Karishma Seem
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gurkanwal Kaur
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Deepesh Kumar
- ICAR-National Institute of Plant Biotechnology, New Delhi, 110012, India
| | - Surbhi Verma
- College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Naseeb Singh
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Amit Kumar
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Manish Kumar
- Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Sandeep Jaiswal
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Binay Kumar Singh
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture, FiBL, 11 Frick, Switzerland.
| |
Collapse
|
29
|
Kaur R, Panesar PS, Kaur B, Riar CS. Hydrothermal extraction of dietary fiber from pearl millet bran: optimization, physico-chemical, structural and functional characterization. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1536-1546. [PMID: 38966785 PMCID: PMC11219656 DOI: 10.1007/s13197-023-05921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/16/2023] [Accepted: 12/21/2023] [Indexed: 07/06/2024]
Abstract
Pearl millet bran is rich source of dietary fiber and several other bioactive compounds and is an unexploited by-product of millet processing industries. The utilization of pearl millet bran for extraction of dietary fiber can be an effective method for its valorization. Hydrothermal extraction of dietary fiber from pearl millet bran is a simple eco-friendly technique in terms of minimal consumption of toxic solvents, increased extraction yield, high purity and considered as an economically viable technique. In the present investigation, extraction and optimization of dietary fiber from pearl millet bran was performed using hydrothermal technique. The highest yield of dietary fiber (74.5%, w/w) was obtained under optimized conditions of water to solid ratio (20:1), temperature (90 °C) and time (15 min). The extracted dietary fiber from pearl millet bran was further assessed for its physico-chemical, functional and structural properties. The studies of functional and physico-chemical properties presented the water holding capacity (6.50 g/g and 3.99 g/g), swelling power (2.0 g/g and 2.05 g/g), oil holding capacity (4.91 g/g and 2.42 g/g), solubility (70%), total phenolic content of 4.24 mg GAE/g and 4.32 mg GAE/g, DPPH reduction of 86.6% and 83.9%, respectively. The results indicated that pearl millet bran can act as rich source of dietary fiber with health enhancing properties and can be utilized as potential food component in preparation of functional food products.
Collapse
Affiliation(s)
- Ravinderjit Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| | - Parmjit S. Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| | - Brahmeet Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| | - Charanjit Singh Riar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab 148106 India
| |
Collapse
|
30
|
Pinckaers PJ, Domić J, Petrick HL, Holwerda AM, Trommelen J, Hendriks FK, Houben LH, Goessens JP, van Kranenburg JM, Senden JM, de Groot LC, Verdijk LB, Snijders T, van Loon LJ. Higher Muscle Protein Synthesis Rates Following Ingestion of an Omnivorous Meal Compared with an Isocaloric and Isonitrogenous Vegan Meal in Healthy, Older Adults. J Nutr 2024; 154:2120-2132. [PMID: 37972895 DOI: 10.1016/j.tjnut.2023.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Plant-derived proteins are considered to have fewer anabolic properties when compared with animal-derived proteins. The anabolic properties of isolated proteins do not necessarily reflect the anabolic response to the ingestion of whole foods. The presence or absence of the various components that constitute the whole-food matrix can strongly impact protein digestion and amino acid absorption and, as such, modulate postprandial muscle protein synthesis rates. So far, no study has compared the anabolic response following ingestion of an omnivorous compared with a vegan meal. OBJECTIVES This study aimed to compare postprandial muscle protein synthesis rates following ingestion of a whole-food omnivorous meal providing 100 g lean ground beef with an isonitrogenous, isocaloric whole-food vegan meal in healthy, older adults. METHODS In a randomized, counter-balanced, cross-over design, 16 older (65-85 y) adults (8 males, 8 females) underwent 2 test days. On one day, participants consumed a whole-food omnivorous meal containing beef as the primary source of protein (0.45 g protein/kg body mass; MEAT). On the other day, participants consumed an isonitrogenous and isocaloric whole-food vegan meal (PLANT). Primed continuous L-[ring-13C6]-phenylalanine infusions were applied with blood and muscle biopsies being collected frequently for 6 h to assess postprandial plasma amino acid profiles and muscle protein synthesis rates. Data are presented as means ± standard deviations and were analyzed by 2 way-repeated measures analysis of variance and paired-samples t tests. RESULTS MEAT increased plasma essential amino acid concentrations more than PLANT over the 6-h postprandial period (incremental area under curve 87 ± 37 compared with 38 ± 54 mmol·6 h/L, respectively; P-interaction < 0.01). Ingestion of MEAT resulted in ∼47% higher postprandial muscle protein synthesis rates when compared with the ingestion of PLANT (0.052 ± 0.023 and 0.035 ± 0.021 %/h, respectively; paired-samples t test: P = 0.037). CONCLUSIONS Ingestion of a whole-food omnivorous meal containing beef results in greater postprandial muscle protein synthesis rates when compared with the ingestion of an isonitrogenous whole-food vegan meal in healthy, older adults. This study was registered at clinicaltrials.gov as NCT05151887.
Collapse
Affiliation(s)
- Philippe Jm Pinckaers
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacintha Domić
- Division of Human Nutrition & Health, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Heather L Petrick
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jorn Trommelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Floris K Hendriks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lisanne Hp Houben
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joy Pb Goessens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Janneau Mx van Kranenburg
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lisette Cpgm de Groot
- Division of Human Nutrition & Health, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc Jc van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| |
Collapse
|
31
|
Rini DM, Xu W, Suzuki T. Current Research on the Role of Isomaltooligosaccharides in Gastrointestinal Health and Metabolic Diseases. Prev Nutr Food Sci 2024; 29:93-105. [PMID: 38974594 PMCID: PMC11223922 DOI: 10.3746/pnf.2024.29.2.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 07/09/2024] Open
Abstract
The intestinal epithelium plays an important role in maintaining the intestinal barrier and facilitating nutrient absorption. It also serves as a critical physical barrier against the infiltration of foreign substances from the intestinal lumen into the circulation. Intestinal barrier dysfunction has been implicated in the development of several diseases. Isomaltooligosaccharides (IMOs), which are a type of dietary fiber, possess multiple health benefits. However, there is limited information regarding their efficacy against gastrointestinal diseases. This review explores the therapeutic potential of IMOs in obesity, diabetes mellitus, inflammatory bowel disease (IBD), hyperlipidemia, and constipation. High-fat diet (HFD)-induced obesity models have shown that IMOs, administered alone or in combination with other compounds, exhibit potent antiobesity effects, making them promising agents in the treatment of obesity and its associated complications. Moreover, IMOs exhibit preventive effects against HFD-induced metabolic dysfunction by modulating gut microbiota and short-chain fatty acid levels, thereby ameliorating symptoms. Furthermore, IMOs can reduce IBD and alleviate hyperlipidemia, as indicated by the reduced histological colitis scores and improved lipid profiles observed in clinical trials and animal studies. This review highlights IMOs as a versatile intervention strategy that can improve gastrointestinal health by modulating gut microbiota, immune responses, and metabolic parameters, providing a multifaceted approach to address the complex nature of gastrointestinal disorders.
Collapse
Affiliation(s)
- Dina Mustika Rini
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
| | - Wenxi Xu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
32
|
Chang Y, An R, Sun S, Hou M, Han F, Song S. Comparative Analysis of Structural and Functional Properties of Dietary Fiber from Four Grape Varieties. Molecules 2024; 29:2619. [PMID: 38893495 PMCID: PMC11173423 DOI: 10.3390/molecules29112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Muscadine grapes are characterized by their large and abundant seeds and hard and thick skins that contain significant amounts of dietary fiber (DF). The current study investigated the chemical constituents, molecular architecture, and physicochemical attributes of DF derived from Muscadine grapes (Granny Val and Alachua) and compared them with those derived from Shine Muscat and Kyoho. Using a combined enzymatic method, the total dietary fiber (TDF) was extracted and divided into two parts: soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). TDF (mainly IDF, with a small fraction of SDF) was dominated by cellulose, followed by pectin and hemicellulose. In addition, Granny Val and Alachua had a significantly higher abundance of TDF and IDF compared with Shine Muscat and Kyoho. Moreover, Shine Muscat had significantly the highest abundance of SDF among the four grape varieties. Of note, IDF from Granny Val and Alachua exhibited a complex and dense texture on its surface, and notably outperformed Shine Muscat and Kyoho in terms of cholesterol, fatty acid, heavy metal adsorption, and antioxidant activity. Collectively, Muscadine grapes, i.e., Granny Val and Alachua in the current study, possessed elevated DF levels (predominantly IDF), and their enhanced bioactivity underscored their potential as a potential food ingredient for further use.
Collapse
Affiliation(s)
- Yingying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (R.A.); (S.S.)
| | - Ran An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (R.A.); (S.S.)
| | - Sijie Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (R.A.); (S.S.)
| | - Min Hou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China;
| | - Fuliang Han
- School of Wine, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shiren Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (R.A.); (S.S.)
| |
Collapse
|
33
|
Mahalak KK, Liu L, Bobokalonov J, Narrowe AB, Firrman J, Bittinger K, Hu W, Jones SM, Moustafa AM. Supplementation with soluble or insoluble rice-bran fibers increases short-chain fatty acid producing bacteria in the gut microbiota in vitro. Front Nutr 2024; 11:1304045. [PMID: 38798771 PMCID: PMC11116651 DOI: 10.3389/fnut.2024.1304045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Studies have shown that a diet high in fiber and prebiotics has a positive impact on human health due largely to the fermentation of these compounds by the gut microbiota. One underutilized source of fiber may be rice bran, a waste product of rice processing that is used most frequently as an additive to livestock feed but may be a good source of fibers and other phenolic compounds as a human diet supplement. Previous studies focused on specific compounds extracted from rice bran showed that soluble fibers extracted from rice bran can improve glucose response and reduce weight gain in mouse models. However, less is known about changes in the human gut microbiota in response to regular rice bran consumption. Methods In this study, we used a Simulator of the Human Intestinal Microbial Ecology (SHIME®) to cultivate the human gut microbiota of 3 different donors in conditions containing either soluble or insoluble fiber fractions from rice bran. Using 16S rRNA amplicon sequencing and targeted metabolomics via Gas Chromatography-Mass Spectrometry, we explored how gut microbial communities developed provided different supplemental fiber sources. Results We found that insoluble and soluble fiber fractions increased short-chain fatty acid production, indicating that both fractions were fermented. However, there were differences in response between donors, for example the gut microbiota from donor 1 increased acetic acid production with both fiber types compared with control; whereas for donors 2 and 3, butanoic acid production increased with ISF and SF supplementation. Both soluble and insoluble rice bran fractions increased the abundance of Bifidobacterium and Lachnospiraceae taxa. Discussion Overall, analysis of the effect of soluble and insoluble rice bran fractions on the human in vitro gut microbiota and the metabolites produced revealed individually variant responses to these prebiotics.
Collapse
Affiliation(s)
- Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Jamshed Bobokalonov
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
- V. I. Nikitin Institute of Chemistry, National Academy of Sciences, Dushanbe, Tajikistan
| | - Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Weiming Hu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Steven M. Jones
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ahmed M. Moustafa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
34
|
Reyes-García V, Botella-Martínez C, Juárez-Trujillo N, Muñoz-Tébar N, Viuda-Martos M. Pitahaya ( Hylocereus ocamponis)-Peel and -Flesh Flour Obtained from Fruit Co-Products-Assessment of Chemical, Techno-Functional and In Vitro Antioxidant Properties. Molecules 2024; 29:2241. [PMID: 38792103 PMCID: PMC11124103 DOI: 10.3390/molecules29102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this work was to assess the chemical composition and physico-chemical, techno-functional, and in vitro antioxidant properties of flours obtained from the peel and flesh of pitahaya (Hylocereus ocamponis) to determine their potential for use as ingredients for food enrichment. The chemical composition, including total betalains, mineral content, and polyphenolic profile, was determined. The techno-functional properties (water holding, oil holding, and swelling capacities) were also evaluated. For the antioxidant capacity, four different methodologies, namely ferrous ion-chelating ability assay, ferric-reducing antioxidant power assay; 1,1-Diphenyl-2-picrylhydrazyl radical scavenging ability assay, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical assay, were used. Pitahaya-peel flour had higher values for protein (6.72 g/100 g), ash (11.63 g/100 g), and dietary fiber 56.56 g/100 g) than pitahaya-flesh flour, with values of 6.06, 3.63, and 8.22 g/100 g for protein, ash, and dietary fiber, respectively. In the same way, pitahaya peel showed a higher content of minerals, betalains, and polyphenolic compounds than pitahaya-flesh flour, with potassium (4.43 g/100 g), catechin (25.85 mg/g), quercetin-3-rhamnoside (11.66 mg/g) and myricetrin (12.10 mg/g) as principal compounds found in the peel. Again, pitahaya-peel flour showed better techno-functional and antioxidant properties than pitahaya-flesh flour. The results obtained suggest that the flours obtained from the peel and pulp of pitahaya (H. ocamponis) constitute a potential material to be utilized as an ingredient in the food industry due to the high content of bioactive compounds such as betalains, phenolic acids, and flavonoids, with notable antioxidant capacity.
Collapse
Affiliation(s)
- Verónica Reyes-García
- Tecnológico Nacional de México/I.T. del Altiplano de Tlaxcala, Carr. Federal San Martin-Tlaxcala Km 7.5, San Diego Xocoyucan 90122, TL, Mexico;
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), 03312 Orihuela, Alicante, Spain; (C.B.-M.); (N.M.-T.)
| | - Carmen Botella-Martínez
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), 03312 Orihuela, Alicante, Spain; (C.B.-M.); (N.M.-T.)
| | - Naida Juárez-Trujillo
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n Industrial animas CP, Xalapa 91192, VC, Mexico;
| | - Nuria Muñoz-Tébar
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), 03312 Orihuela, Alicante, Spain; (C.B.-M.); (N.M.-T.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), 03312 Orihuela, Alicante, Spain; (C.B.-M.); (N.M.-T.)
| |
Collapse
|
35
|
Song Y, Sun G, Wang D, Chen J, Lv J, Jiang S, Zhang G, Yu S, Zheng H. Optimization of Composite Enzymatic Extraction, Structural Characterization and Biological Activity of Soluble Dietary Fiber from Akebia trifoliata Peel. Molecules 2024; 29:2085. [PMID: 38731576 PMCID: PMC11085559 DOI: 10.3390/molecules29092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata peel with the compound enzyme method were obtained. The chemical composition, physical and chemical properties, structural characterization and biological activity of the purified soluble dietary fiber (AP-SDF) from the Akebia trifoliata peel were analyzed. We discovered that that the optimum yield was 20.87% under the conditions of cellulase addition 600 U/g, enzymolysis time 100 min, solid-liquid ratio 1:24 g/mL and enzymolysis temperature 51 °C. At the same time, AP-SDF was a porous network structure cellulose type I acidic polysaccharose mainly composed of arabinoxylan (36.03%), galacturonic acid (27.40%) and glucose (19.00%), which possessed the structural characteristic peaks of the infrared spectra of polysaccharides and the average molecular weight (Mw) was 95.52 kDa with good uniformity. In addition, the AP-SDF exhibited high oil-holding capacity (15.11 g/g), good water-holding capacity and swelling capacity, a certain antioxidant capacity in vitro, hypoglycemic activity in vitro for α-glucosidase inhibition and hypolipidemic activity in vitro for the binding ability of bile acids and cholesterol. These results will provide a theoretical basis for the development of functional products with antioxidant, hypoglycemic and hypolipidemic effects, which have certain application value in related industries.
Collapse
Affiliation(s)
- Ya Song
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Guoshun Sun
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Dian Wang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Jin Chen
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Jun Lv
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Sixia Jiang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- Engineering Technology Research Center of Health Wine Brewing, Renhuai 564507, China
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China; (Y.S.); (G.S.); (D.W.); (J.C.); (J.L.); (S.J.); (G.Z.); (S.Y.)
- Talent Cultivation Center of Moutai Institute on Characteristic Food Resource Utilization, Renhuai 564507, China
| |
Collapse
|
36
|
McClements DJ. Novel animal product substitutes: A new category of plant-based alternatives to meat, seafood, egg, and dairy products. Compr Rev Food Sci Food Saf 2024; 23:e313330. [PMID: 38551190 DOI: 10.1111/1541-4337.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Many consumers are adopting plant-centric diets to address the adverse effects of livestock production on the environment, health, and animal welfare. Processed plant-based foods, including animal product analogs (such as meat, seafood, egg, or dairy analogs) and traditional animal product substitutes (such as tofu, seitan, or tempeh), may not be desirable to a broad spectrum of consumers. This article introduces a new category of plant-based foods specifically designed to overcome the limitations of current animal product analogs and substitutes: novel animal product substitutes (NAPS). NAPS are designed to contain high levels of nutrients to be encouraged (such as proteins, omega-3 fatty acids, dietary fibers, vitamins, and minerals) and low levels of nutrients to be discouraged (such as salt, sugar, and saturated fat). Moreover, they may be designed to have a wide range of appearances, textures, mouthfeels, and flavors. For instance, they could be red, orange, green, yellow, blue, or beige; they could be spheres, ovals, cubes, or pyramids; they could be hard/soft or brittle/pliable; and they could be lemon, thyme, curry, or chili flavored. Consequently, there is great flexibility in creating NAPS that could be eaten in situations where animal products are normally consumed, for example, with pasta, rice, potatoes, bread, soups, or salads. This article reviews the science behind the formulation of NAPS, highlights factors impacting their appearance, texture, flavor, and nutritional profile, and discusses methods that can be used to formulate, produce, and characterize them. Finally, it stresses the need for further studies on this new category of foods, especially on their sensory and consumer aspects.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
37
|
Xia P, Zheng Y, Sun L, Chen W, Shang L, Li J, Hou T, Li B. Regulation of glycose and lipid metabolism and application based on the colloidal nutrition science properties of konjac glucomannan: A comprehensive review. Carbohydr Polym 2024; 331:121849. [PMID: 38388033 DOI: 10.1016/j.carbpol.2024.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
The physicochemical properties of dietary fiber in the gastrointestinal tract, such as hydration properties, adsorption properties, rheological properties, have an important influence on the physiological process of host digestion and absorption, leading to the differences in satiety and glucose and lipid metabolisms. Based on the diversified physicochemical properties of konjac glucomannan (KGM), it is meaningful to review the relationship of structural characteristics, physicochemical properties and glycose and lipid metabolism. Firstly, this paper bypassed the category of intestinal microbes, and explained the potential of dietary fiber in regulating glucose and lipid metabolism during nutrient digestion and absorption from the perspective of colloidal nutrition. Secondly, the modification methods of KGM to regulate its physicochemical properties were discussed and the relationship between KGM's molecular structure types and glycose and lipid metabolism were summarized. Finally, based on the characteristics of KGM, the application of KGM in the main material and ingredients of fat reduction food was reviewed. We hope this work could provide theoretical basis for the study of dietary fiber colloid nutrition science.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenxin Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
38
|
Cao Z, Zhou L, Gao S, Yang C, Meng X, Liu Z. Effects of different amounts of okara on texture, digestive properties, and microstructure of noodles. Food Sci Nutr 2024; 12:3433-3442. [PMID: 38726422 PMCID: PMC11077229 DOI: 10.1002/fsn3.4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/30/2023] [Accepted: 01/23/2024] [Indexed: 05/12/2024] Open
Abstract
As a byproduct of manufacturing soybeans, okara is high in dietary fiber, protein, and fats, and it contains all of the essential amino acids. Wheat, the primary ingredient in noodles, will lose nutrients during manufacturing, creating an imbalance in nutrients. This experiment is for the purpose of studying the effects of okara on quality, antioxidant properties, amino acid content, resistant starch (RS) content, and microstructure of noodles. The results indicate that the addition of 9% okara noodles increased hardness and adhesiveness by 107.19% and 132.14%, respectively, and improved ABTS free radical scavenging activity by 60.78%. The addition of 12% okara noodles increased the DPPH free radical scavenging ability by 23.66%, reduced the rapidly digestible starch (RDS) content of the noodles to 21.21%, and the resistant starch content increased to 44.85% (p < .05). Therefore, to address the issue of nutritional imbalance in wheat noodles without compromising the quality of the noodles, it is recommended to add 9% or 12% okara for the preparation of nutritionally fortified noodles.
Collapse
Affiliation(s)
- Zhongwen Cao
- School of Tourism and CuisineYangzhou UniversityYangzhouChina
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology InheritanceMinistry of Culture and TourismYangzhouChina
| | - Lingchen Zhou
- School of Food and EngineeringYangzhou UniversityYangzhouChina
| | - Sumin Gao
- School of Tourism and CuisineYangzhou UniversityYangzhouChina
- Engineering Technology Research Center of Yangzhou Prepared CuisineYangzhouChina
| | - Cheng Yang
- School of Food and EngineeringYangzhou UniversityYangzhouChina
- Engineering Technology Research Center of Yangzhou Prepared CuisineYangzhouChina
| | - Xiangren Meng
- School of Tourism and CuisineYangzhou UniversityYangzhouChina
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology InheritanceMinistry of Culture and TourismYangzhouChina
- Engineering Technology Research Center of Yangzhou Prepared CuisineYangzhouChina
| | - Zhao Liu
- Fuzhou PolytechnicFuzhou PolytechnicFuzhouChina
| |
Collapse
|
39
|
Fang W, Jin M, Qi W, Kong C, Song G, Peng W, Wang Y. Caffeic acid combined with arabinoxylan or β-glucan attenuates diet-induced obesity in mice via modulation of gut microbiota and metabolites. Int J Biol Macromol 2024; 268:131683. [PMID: 38649076 DOI: 10.1016/j.ijbiomac.2024.131683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Polyphenols and dietary fibers in whole grains are important bioactive compounds to reduce risks for obesity. However, whether the combination of the two components exhibits a stronger anti-obesity effect remains unclear. Caffeic acid is a major phenolic acid in cereals, and arabinoxylan and β-glucan are biological macromolecules with numerous health benefits. Here, we investigated the effect of caffeic acid combined with arabinoxylan or β-glucan on glucose and lipid metabolism, gut microbiota, and metabolites in mice fed a high-fat diet (HFD). Caffeic acid combined with arabinoxylan or β-glucan significantly reduced the body weight, blood glucose, and serum free fatty acid concentrations. Caffeic acid combined with β-glucan effectively decreased serum total cholesterol levels and hepatic lipid accumulation, modulated oxidative and inflammatory stress, and improved gut barrier function. Compared with arabinoxylan, β-glucan, and caffeic acid alone, caffeic acid combined with arabinoxylan or β-glucan exhibited a better capacity to modulate gut microbiota, including increased microbial diversity, reduced Firmicutes/Bacteroidetes ratio, and increased abundance of beneficial bacteria such as Bifidobacterium. Furthermore, caffeic acid combined with β-glucan reversed HFD-induced changes in microbiota-derived metabolites involving tryptophan, purine, and bile acid metabolism. Thus, caffeic acid and β-glucan had a synergistic anti-obesity effect by regulating specific gut microbiota and metabolites.
Collapse
Affiliation(s)
- Wei Fang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Mingyu Jin
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Wentao Qi
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Chunli Kong
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Wenting Peng
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
40
|
Andonova T, Petkova Z, Teneva O, Antova G, Apostolova E, Naimov S, Mladenova T, Slavov I, Dimitrova-Dyulgerova I. Ailanthus altissima Seed Oil-A Valuable Source of Lipid-Soluble Components with DNA Protective and Antiproliferative Activities. Foods 2024; 13:1268. [PMID: 38672940 PMCID: PMC11048806 DOI: 10.3390/foods13081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The present study is focused on the chemical and lipid composition of seed oil of the European ornamental and invasive wood plant Ailanthus altissima (Simaroubaceae). Total lipids, proteins, carbohydrates, ash, and moisture in the seeds were determined. A high yield of glyceride oil (30.7%) was found, as well as a high content of fibers (29.6%) and proteins (18.7%). Physicochemical properties of the oil define it as semi-dry (129.4 g I2/100 g Iodine value) with oxidative stability, refractive index, saponification value, and relative density similar to widely used oils with nutritional value and health benefits. The composition of the seed oil was determined chromatographically. Unsaturated fatty acids (95.3%) predominated in the seed oil, of which linoleic acid (48.6%) and oleic acid (44.8%) were the major ones. The main lipid-soluble bioactive components were β-sitosterol (72.6%), γ-tocopherol (74.6%), phosphatidylinositol (29.5%), and phosphatidic acids (25.7%). The proven in vitro DNA-protective ability of seed oil is reported for the first time. The seed oil exhibited a weak antiproliferative effect on HT-29 and PC3 tumor cell lines and showed no cytotoxicity on the BALB/c 3T3 cell line. In brief, the present study reveals that A. altissima seed oil can be used as a healthy food.
Collapse
Affiliation(s)
- Tsvetelina Andonova
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (T.A.); (T.M.); (I.D.-D.)
| | - Zhana Petkova
- Department of Chemical Technology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (O.T.); (G.A.)
| | - Olga Teneva
- Department of Chemical Technology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (O.T.); (G.A.)
| | - Ginka Antova
- Department of Chemical Technology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (O.T.); (G.A.)
| | - Elena Apostolova
- Department of Plant Physiology and Molecular Biology, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (E.A.); (S.N.)
| | - Samir Naimov
- Department of Plant Physiology and Molecular Biology, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (E.A.); (S.N.)
| | - Tsvetelina Mladenova
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (T.A.); (T.M.); (I.D.-D.)
| | - Iliya Slavov
- Department of Biology, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Ivanka Dimitrova-Dyulgerova
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria; (T.A.); (T.M.); (I.D.-D.)
| |
Collapse
|
41
|
Xiao M, Jia X, Kang J, Liu Y, Zhang J, Jiang Y, Liu G, Cui SW, Guo Q. Unveiling the breadmaking transformation: Structural and functional insights into Arabinoxylan. Carbohydr Polym 2024; 330:121845. [PMID: 38368117 DOI: 10.1016/j.carbpol.2024.121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
To understand the changes in arabinoxylan (AX) during breadmaking, multi-step enzyme digestion was conducted to re-extract arabinoxylan (AX-B) from AX-fortified bread. Their structural changes were compared using HPSEC, HPAEC, FT-IR, methylation analysis, and 1H NMR analysis; their properties changes in terms of enzymatic inhibition activities and in vitro fermentability against gut microbiota were also compared. Results showed that AX-B contained a higher portion of covalently linked protein while the molecular weight was reduced significantly after breadmaking process (from 677.1 kDa to 15.6 kDa); the structural complexity of AX-B in terms of the degree of branching was increased; the inhibition activity against α-amylase (76.81 % vs 73.89 % at 4 mg/mL) and α-glucosidase (64.43 % vs 58.08 % at 4 mg/mL) was improved; the AX-B group produced a higher short-chain fatty acids concentration than AX (54.68 ± 7.86 mmol/L vs 44.03 ± 4.10 mmol/L). This study provides novel knowledge regarding the structural and properties changes of arabinoxylan throughout breadmaking, which help to predict the health benefits of fibre-fortified bread and achieve precision nutrition.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666, Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yueru Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Steve W Cui
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
42
|
Li H, Wang G, Yan X, Hu X, Li J. Effects of acetyl groups on the prebiotic properties of glucomannan extracted from Artemisia sphaerocephala Krasch seeds. Carbohydr Polym 2024; 330:121805. [PMID: 38368082 DOI: 10.1016/j.carbpol.2024.121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
This study explores the structural modification of glucomannan extracted from Artemisia sphaerocephala Krasch seeds (60S) to assess the impact of acetyl groups on its prebiotic characteristics. The structural changes were examined, with a focus on the degree of acetyl group substitution (DS). Both deacetylation and acetylation had limited influence on the molecular properties of 60S. Despite these modifications, the apparent viscosity of all samples remained consistently low. In vitro fermentation experiments revealed that Escherichia-Shigella decreased as DS increased, while Bacteroides ovatus was enriched. Acetylation had no significant impact on the utilization rate of 60S but led to a reduction in the production of propionic acid. Furthermore, untargeted metabolomics analysis confirmed the changes in propionic acid levels. Notably, metabolites such as N-acetyl-L-tyrosine, γ-muricholic acid, and taurocholate were upregulated by acetylated derivatives. Overall, acetyl groups are speculated to play a pivotal role in the prebiotic properties of 60S.
Collapse
Affiliation(s)
- Haocheng Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gongda Wang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ximei Yan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
43
|
Sijin Z, Zhang L, Yin T, You J, Liu R, Wang L, Huang Q, Wang W, Ma H. Exploring the versatility of carbohydrates in surimi and surimi products: novel applications and future perspectives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1874-1883. [PMID: 37885307 DOI: 10.1002/jsfa.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Carbohydrate is one kind of the most important additives in the production of surimi and surimi products, mainly due to its wide range of sources and superior functionality. In recent years, new carbohydrates (oligosaccharides and polysaccharides) have been gradually applied in the production of surimi and surimi products which is mainly driven by consumer requirement on nutritional and the flavors or taste quality and producer requirement on extending the shelf life, like low calorie intake, dietary fiber enrichment, rich taste and improvement of antioxidant properties. Besides anti-freezing and improvement in gelling ability, novel functionalities have been explored such as fat substitution, improving flavor, antibacterial effect, antioxidant effect and improving three-dimensional printability. With an in-depth study of the mechanism of carbohydrate improving the qualities of surimi and surimi products, the application of carbohydrates in surimi would be more effective. Therefore, this review summarizes the new carbohydrates applied in the processing of surimi and surimi products, and their novel functionalities. Additionally, progress of the research on the mechanism of carbohydrate improving the qualities of surimi is also reviewed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhang Sijin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
- Wuhan Business University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Tao Yin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Weisheng Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Huawei Ma
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
44
|
McClements DJ. Designing healthier and more sustainable ultraprocessed foods. Compr Rev Food Sci Food Saf 2024; 23:e13331. [PMID: 38517032 DOI: 10.1111/1541-4337.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
The food industry has been extremely successful in creating a broad range of delicious, affordable, convenient, and safe food and beverage products. However, many of these products are considered to be ultraprocessed foods (UPFs) that contain ingredients and are processed in a manner that may cause adverse health effects. This review article introduces the concept of UPFs and briefly discusses food products that fall into this category, including beverages, baked goods, snacks, confectionary, prepared meals, dressings, sauces, spreads, and processed meat and meat analogs. It then discusses correlations between consumption levels of UPFs and diet-related chronic diseases, such as obesity and diabetes. The different reasons for the proposed ability of UPFs to increase the risk of these chronic diseases are then critically assessed, including displacement of whole foods, high energy densities, missing phytochemicals, contamination with packaging chemicals, hyperpalatability, harmful additives, rapid ingestion and digestion, and toxic reaction products. Then, potential strategies to overcome the current problems with UPFs are presented, including reducing energy density, balancing nutritional profile, fortification, increasing satiety response, modulating mastication and digestion, reengineering food structure, and precision processing. The central argument is that it may be possible to reformulate and reengineer many UPFs to improve their healthiness and sustainability, although this still needs to be proved using rigorous scientific studies.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
45
|
Núñez-Gómez V, Jesús Periago M, Luis Ordóñez-Díaz J, Pereira-Caro G, Manuel Moreno-Rojas J, González-Barrio R. Dietary fibre fractions rich in (poly)phenols from orange by-products and their metabolisation by in vitro digestion and colonic fermentation. Food Res Int 2024; 177:113718. [PMID: 38225107 DOI: 10.1016/j.foodres.2023.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
Orange peel is an interesting by-product because of its composition, particularly its dietary fibre and flavanones. The aim of this work was to extract different fibre fractions from orange peel to obtain potential added-value ingredients and evaluate how the presence of fibre may interfere with (poly)phenol metabolism. Using an aqueous extraction, as a green extraction method, an insoluble fibre fraction (IFF) and a water-soluble extract (WSE) were obtained. Those fractions were analysed to determine the proximate and dietary fibre composition, hydration properties, (poly)phenol composition and antioxidant capacity, comparing the results with the orange peel (OP). The IFF presented the highest content of insoluble dietary fibre and the WSE showed the highest content of (poly)phenols, these being mainly flavanones. An in vitro faecal fermentation was carried out to evaluate the production of short-chain fatty acids (SCFAs) and lactate as prebiotic indicators; the IFF gave the highest production, derived from the greater presence of dietary fibre. Moreover, catabolites from (poly)phenol metabolism were also analysed, phenylpropanoic acids being the major ones, followed by phenylacetic acids and benzoic acids. These catabolites were found in higher quantities in WSE, because of the greater presence of (poly)phenols in its composition. IFF also showed a significant production of these catabolites, which was delayed by the greater presence of fibre. These results reveal that the new ingredients, obtained by an environmentally friendly water extraction procedure, could be used for the development of new foods with enhanced nutritional and healthy properties.
Collapse
Affiliation(s)
- Vanesa Núñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, 30100, Spain
| | - María Jesús Periago
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, 30100, Spain
| | - José Luis Ordóñez-Díaz
- Area of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain
| | - Gema Pereira-Caro
- Area of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Jose Manuel Moreno-Rojas
- Area of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Rocío González-Barrio
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, 30100, Spain.
| |
Collapse
|
46
|
Panda TC, Jaddu S, Bansode V, Dwivedi M, Pradhan RC, Seth D. A novel approach to increase calcium and fiber content in pasta using kadamb fruit (Neolamarckia cadamba) powder and study of functional and structural characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:311-319. [PMID: 38196706 PMCID: PMC10772046 DOI: 10.1007/s13197-023-05842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 01/11/2024]
Abstract
Kadamb is a unique and underutilized fruit having rich nutritional profile. The utilization of kadamb fruit in value addition is very limited. In this study, pasta was made using kadamb fruit powder (KFP). The effect of fortification of KFP on the quality parameters (color, solid loss, percent expansion, hardness, bulk density, and overall acceptability) of pasta was studied. Pasta was prepared using semolina as the base ingredient, and various proportions of KFP (ranging from 0 to 20%) were added for fortification. Dietary fiber and calcium contents of dry pasta were increased from 5.21 ± 0.02 to 15.36 ± 0.02 and 17.57 ± 0.15 to 37.97 ± 0.03, respectively. As the proportion of KFP increased, the cooking time, hardness, and percent solid loss of the cooked pasta also increased. The highest values for overall acceptability, hardness, cooking solid loss, and bulk density were achieved with 10% KFP and 90% semolina were 7.93 ± 0.41, 19.92 ± 0.21 N, 6.30 ± 0.46%, and 331.67 ± 9.60 kg/m3 respectively. Percent expansion of the pasta was noted to be around 98.33 ± 6.5%. The optimal proportion of KFP was found to be 10% for achieving the best overall quality attributes. FTIR (Fourier-transform infrared spectroscopy) and SEM (scanning electron microscopy) analyses were conducted on the pasta, confirming the presence of functional groups and revealing structural changes due to fiber content of KFP. KFP can be used to create functional and nutritious food products, and further research could explore its application in other food formulations as well.
Collapse
Affiliation(s)
- Tarak Chandra Panda
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Samuel Jaddu
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Venkatraman Bansode
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Rama Chandra Pradhan
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Dibyakanta Seth
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
47
|
Kewuyemi YO, Adebo OA. Complementary nutritional and health promoting constituents in germinated and probiotic fermented flours from cowpea, sorghum and orange fleshed sweet potato. Sci Rep 2024; 14:1987. [PMID: 38263382 PMCID: PMC10806186 DOI: 10.1038/s41598-024-52149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
Germination and fermentation are age-long food processes that beneficially improve food composition. Biological modulation by germination and probiotic fermentation of cowpea, sorghum, and orange-fleshed sweet potato (OFSP) and subsequent effects on the physicochemical (pH and total titratable acidity), nutritional, antinutritional factors and health-promoting constituents/properties (insoluble dietary fibres, total flavonoid and phenolic contents (TFC and TPC) and antioxidant capacity) of the derived flours were investigated in this study. The quantification of targeted compounds (organic acids and phenolic compounds) on an ultra-high performance liquid chromatography (UHPLC) system was also done. The whole cowpea and sorghum were germinated at 35 °C for 48 h. On the other hand, the milled whole grains and beans and OFSP were fermented using probiotic mesophilic culture at 35 °C for 48 h. Among the resultant bioprocessed flours, fermented sorghum and sweet potato (FSF and FSP) showed mild acidity, increased TPC, and improved ferric ion-reducing antioxidant power. While FSF had better slowly digestible and resistant starches and the lowest oxalate content, FSP indicated better hemicellulose, lowest fat, highest luteolin, caffeic and vanillic acids. Germinated cowpea flour exhibited reduced tannin, better lactic acid, the highest crude fibre, cellulose, lignin, protein, fumaric, L-ascorbic, trans-ferulic and sinapic acids. The comparable and complementary variations suggest the considerable influence of the substrate types, followed by the specific processing-based hydrolysis and biochemical transitions. Thus, compositing the bioprocessed flours based on the unique constituent features for developing functional products from climate-smart edibles may partly be the driver to ameliorating linked risk factors of cardiometabolic diseases.
Collapse
Affiliation(s)
- Yusuf Olamide Kewuyemi
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, Gauteng, South Africa.
| |
Collapse
|
48
|
Tan X, Cheng X, Ma B, Cui F, Wang D, Shen R, Li X, Li J. Characterization and Function Analysis of Soluble Dietary Fiber Obtained from Radish Pomace by Different Extraction Methods. Molecules 2024; 29:500. [PMID: 38276578 PMCID: PMC10818875 DOI: 10.3390/molecules29020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Soluble dietary fiber (SDF) benefits human health, and different extraction methods might modify the structure and functions of the SDFs. Radish is rich in dietary fiber. To assess the impact of various extraction techniques on the properties and functions of radish SDF, the SDFs were obtained from white radish pomace using alkaline, ultrasonic-assisted, and fermentation-assisted extraction methods. Analysis was conducted on the structure, physicochemical characteristics, thermal properties, and functional attributes of the SDFs. The study revealed that various extraction techniques can impact the monosaccharides composition and functionality of the SDFs. Compared with the other two extraction methods, the surface structures of SDFs obtained by fermentation-assisted extraction were looser and more porous, and the SDF had better water solubility and water/oil holding capacity. The adsorption capacities of glucose and cholesterol of the SDFs obtained from fermentation-assisted extraction were also improved. Wickerhamomyces anomalus YFJ252 seems the most appropriate strain to ferment white radish pomace to acquire SDF; the water holding, oil holding, glucose absorption capacity, and cholesterol absorption capacity at pH 2 and pH 7 have a 3.06, 1.65, 3.19, 1.27, and 1.83 fold increase than the SDF extracted through alkaline extraction method.
Collapse
Affiliation(s)
- Xiqian Tan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Xiaoxiao Cheng
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Bingyu Ma
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Ronghu Shen
- Hangzhou Xiaoshan Agriculture Development Co., Ltd., Xiaoshan, Hangzhou 311215, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| |
Collapse
|
49
|
Lin L, Jiang Y, Lin P, Ge L, Wan H, Dai S, Zhang R, Yao J, Zeng X, Peng Y. Classical famous prescription of Jichuan decoction improved loperamide-induced slow transit constipation in rats through the cAMP/PKA/AQPs signaling pathway and maintained inflammatory/intestinal flora homeostasis. Heliyon 2024; 10:e21870. [PMID: 38192758 PMCID: PMC10771987 DOI: 10.1016/j.heliyon.2023.e21870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Jichuan decoction (JCD) is a well-known traditional Chinese medicinal formula that moistens the intestines and is widely used for the treatment of constipation in China. However, its effects and mechanisms in alleviating slow transit constipation (STC) in vivo remain unclear. We attempted to demonstrate the effect of JCD, with and without essential oil (VO), on intestinal transit and its underlying molecular mechanisms in rats with loperamide-induced STC. Materials and methods Water consumption, body weight, fecal water content, time to first melena excretion, and intestinal transit ratio of the animals were measured. 5-Hydroxytryptamine (5-HT), substance P (SP), vasoactive intestinal peptide (VIP), and interleukin-6 (IL-6) levels in the sera of rats were evaluated using ELISA. Hematoxylin and eosin and Periodic Acid-Schiff staining were used to determine intestinal tissue histology, while quantitative real-time PCR, western blotting, and immunohistochemical analysis were used to assess the relative expression levels of cAMP/PKA/AQPs pathway- and inflammation-related proteins. 16 S rDNA sequence analysis of rat feces was used to determine the diversity and abundance of the intestinal flora. Results The JCD groups showed reduced time to first melena excretion and expression of VIP and IL-6. The JCD groups, specifically JCD + VO groups, showed increased fecal water content, intestinal transit rate, and SP expression. Further, these groups showed improved histological characteristics of the colon, with no significant change in the index of immune organs or morphological characteristics of other organs. In addition, a significant decrease in the activation of the cAMP/PKA/AQPs signaling pathway in the colon tissue was observed in these groups, specifically the JCD + VO groups. Moreover, treatment with JCD, with or without VO, downregulated the expression of inflammatory factors and enriched the diversity of intestinal flora as evidenced by polymorphism analysis and the contents of Bacteroides, Lactobacillus, and Erysipelas, with the JCD + VO groups showing better therapeutic outcomes. Conclusion JCD improved loperamide-induced STC, and co-administration with VO exhibited better activity than sole JCD therapy. JCD may improve STC by inhibiting the cAMP/PKA/AQPs signaling pathway and maintaining inflammatory/intestinal flora homeostasis.
Collapse
Affiliation(s)
- Lina Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518000, Guangdong, China
| | - Yuanyuan Jiang
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Pengfei Lin
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518000, Guangdong, China
- Shenzhen Traditional Chinese Medicine Manufacturing Innovation Center Co., Ltd., Shenzhen, 518110, Guangdong, China
| | - Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Haoqiang Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Shuwen Dai
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518000, Guangdong, China
| | - Runjing Zhang
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518000, Guangdong, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Department of Pathology (Longhua Branch), Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Guangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, 518037, Guangdong, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| |
Collapse
|
50
|
Ye H, Yu W. Different influences of dietary fiber from various sources on the in vitro digestibility of casein as uncovered by the study of protein-dietary fiber interactions. Food Res Int 2024; 176:113845. [PMID: 38163735 DOI: 10.1016/j.foodres.2023.113845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
How different dietary fibers including pectin, cellulose and lignin affect casein digestibility was studied using in vitro static protocols. Peptides' profile, free amino acids (AAs) content, casein-DF interactions and their influences on enzymatic activities of proteolytic enzymes were studied using combined techniques. Under gastric and intestinal digestive conditions, while pectin could reduce casein digestibility (with an averaged decrease of 12.15% and 7.83, respectively) through both depletion flocculation and hydrogen-binding interactions, lignin inhibited the digestion of casein straightly through reducing the enzymatic activity of proteolytic enzymes, thereby altering the production of free AAs. Although cellulose showed the least detrimental effects, it still significantly reduced the content of Thr, Glu, Val, Leu, Phe, Lys, and no Arg was released. Deeper insight into casein-DF interactions and their influences on casein digestibility improves the development of more effective forms of DF for improving AA homeostasis in individuals.
Collapse
Affiliation(s)
- Hanfei Ye
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China.
| |
Collapse
|