1
|
Yang S, Zhao J, An N, Li DC, Huang MM, Fei H. Updates on infectious diseases of largemouth bass: A major review. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109976. [PMID: 39427835 DOI: 10.1016/j.fsi.2024.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
The largemouth bass (Micropterus salmoides) is native to North America and has now become a crucial economic species in aquaculture. With the rapid development of high-density intensive farming models, the continuous emergence and spread of diseases pose significant challenges to the sustainable development of largemouth bass aquaculture, including Micropterus salmoides rhabdovirus (MSRV), largemouth bass virus (LMBV), Nocardia spp. and Aeromonas spp. Here, we provide a comprehensive overview of the latest research progress on common diseases of largemouth bass, including pathogen isolation and identification, pathological characteristics, morphological features, epidemiological characteristics, pathogen-host interactions, detection and diagnosis, vaccines, and other control technologies. This information will enhance a more comprehensive understanding of the occurrence of diseases in largemouth bass, and provide insights into future research directions, facilitating more effective disease prevention and control. The collaborative progress among rapid detection technology, the interaction mechanism between pathogen and host, and prevention and control techniques will be the curial to achieving green prevention and control of largemouth bass disease and healthy aquaculture in future.
Collapse
Affiliation(s)
- Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jing Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Nan An
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dong-Chun Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China
| | - Meng-Meng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Hao X, Lin H, Lin Z, Yang K, Hu J, Ma Z, Yu W. Effect of Dietary Astragalus polysaccharides (APS) on the Growth Performance, Antioxidant Responses, Immunological Parameters, and Intestinal Microbiota of Coral Trout ( Plectropomus leopardus). Microorganisms 2024; 12:1980. [PMID: 39458289 PMCID: PMC11509791 DOI: 10.3390/microorganisms12101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
The potential effects of Astragalus polysaccharides (APS) were evaluated in coral trout (Plectropomus leopardus). Five APS levels (0%, 0.05%, 0.10%, 0.15%, and 0.20%) were added to the diet of coral trout, and a 56-day growth trial (initial weight 18.62 ± 0.05 g) was conducted. Dietary APS enhanced growth performance, with the highest improvement observed in fish fed the 0.15% APS diet. This concentration also enhanced the antioxidant capacity and immunomodulation of the fish by regulating the expression of genes associated with antioxidant enzymes and immune responses. Intestinal microbiota analysis revealed that APS supplementation significantly increased the Chao1 index and relative abundance of beneficial bacteria (Firmicutes and Bacillus). A high level of APS (0.20%) did not provide additional benefits for growth and health compared to a moderate level (0.15%). These findings indicate that an optimal APS dose promotes growth, enhances antioxidant activity, supports immune function, and improves intestinal microbiota in coral trout. Based on a cubic regression analysis of the specific growth rate, the optimal APS level for the maximal growth of coral trout was determined to be 0.1455%.
Collapse
Affiliation(s)
- Xiaoqi Hao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Ziyang Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
| | - Keng Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
| | - Jing Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| | - Wei Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (X.H.); (H.L.); (Z.L.); (K.Y.); (J.H.); (Z.M.)
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China
| |
Collapse
|
3
|
Han M, Zhou Z, Zhu T, Yu C, Si Q, Zhu C, Gao T, Jiang Q. Metabolomics and microbiome co-analysis reveals altered innate immune responses in Charybdis japonica following Aeromonas hydrophila infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101240. [PMID: 38718732 DOI: 10.1016/j.cbd.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/27/2024]
Abstract
A comprehensive bioinformatics analysis was conducted to elucidate the innate immune response of Charybdis japonica following exposure to Aeromonas hydrophila. This study integrated metabolomics, 16S rRNA sequencing, and enzymatic activity data to dissect the immune mechanisms activated in response to infection. Infection with A. hydrophila resulted in an increased abundance of beneficial intestinal genera such as Photobacterium spp., Rhodobacter spp., Polaribacter spp., Psychrilyobacter spp., and Mesoflavibacter spp. These probiotics appear to suppress A. hydrophila colonization by competitively dominating the intestinal microbiota. Key metabolic pathways affected included fatty acid biosynthesis, galactose metabolism, and nitrogen metabolism, highlighting their role in the crab's intestinal response. Enzymatic analysis revealed a decrease in activities of hexokinase, phosphofructokinase, and pyruvate kinase, which are essential for energy homeostasis and ATP production necessary for stress responses. Additionally, reductions were observed in the activities of acetyl-CoA carboxylase and fatty acid synthase. Gene expression analysis showed downregulation in Peroxiredoxin 1 (PRDX1), Peroxiredoxin 2 (PRDX2), glutathione-S-transferase (GST), catalase (CAT), and glutathione (GSH), with concurrent increases in malondialdehyde (MDA) levels, indicating severe oxidative stress. This study provides insights into the molecular strategies employed by marine crabs to counteract bacterial invasions in their natural habitat.
Collapse
Affiliation(s)
- Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Zihan Zhou
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Tian Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Cigang Yu
- Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210424, China
| | - Qin Si
- Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210424, China
| | - Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Tianheng Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China; Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing 210017, China.
| |
Collapse
|
4
|
Zhang ZL, Cao YL, Xu JR, Zhang XX, Li JJ, Li JT, Zheng PH, Xian JA, Lu YP. Effects of dietary chitosan oligosaccharide on the growth, intestinal microbiota and immunity of juvenile red claw crayfish (Cherax quadricarinatus). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109288. [PMID: 38104697 DOI: 10.1016/j.fsi.2023.109288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
This study aimed to evaluate the potential benefits of chitosan oligosaccharide (COS) on red claw crayfish (Cherax quadricarinatus) and explore its underlying mechanisms. The crayfish were randomly divided into six groups, and the diets were supplemented with COS at levels of 0 (C0), 0.2 (C1), 0.4 (C2), 0.6 (C3), 0.8 (C4), and 1 (C5) g kg-1. Treatment with COS significantly improved the growth performance of the crayfish with a higher weight gain rate (WGR) and specific growth rate (SGR) in the C2 group compared to the C0 group. Additionally, the content of crude protein in the crayfish muscles in the C1 group was significantly higher than that of the C0 group. Regarding non-specific immunity, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and alkaline phosphatase (AKP), and the levels of expression of the genes related to immunity (SOD; anti-lipopolysaccharide factor [ALF]; thioredoxin1 [Trx1]; C-type lysozyme, [C-LZM]; and GSH-Px) in the hepatopancreas and hemolymph increased significantly (P < 0.05) after supplementation with 0.4 g kg-1 of COS, while the content of malondialdehyde (MDA) decreased (P < 0.05). The survival rate of C. quadricarinatus increased (P < 0.05) in the C2, C3, C4, and C5 groups after the challenge with Aeromonas hydrophila. This study found that COS has the potential to modulate the composition of the intestinal microbiota and significantly reduce the abundance of species of the phylum Proteobacteria and the genera Aeromonas and Vibrio in the gut of C. quadricarinatus, while the abundance of bacteria in the phylum Firmicutes and the genus Candidatus_Hepatoplasma improved significantly. This study suggests that the inclusion of COS in the diet of C. quadricarinatus can enhance growth, boost immunity, and increase resistance to infection with A. hydrophila, especially when supplemented at 0.4-0.8 g kg-1.
Collapse
Affiliation(s)
- Ze-Long Zhang
- Ocean College, Hainan University, Haikou 570228, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Yan-Lei Cao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College, Hebei Agricultural University, Qinghuangdao 066003, China.
| | - Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Jia-Jun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Jian-An Xian
- Ocean College, Hainan University, Haikou 570228, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College, Hebei Agricultural University, Qinghuangdao 066003, China.
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| |
Collapse
|
5
|
Zhang M, Li ZE, Duan MH, Dai Y, Jin YG, Liu Y, Zhang YN, Li XP, Yang F. Effects of chitooligosaccharide on the in vitro antibacterial activity against avian Escherichia coli and the pharmacokinetics of florfenicol in healthy chickens. Poult Sci 2024; 103:103373. [PMID: 38150832 PMCID: PMC10788265 DOI: 10.1016/j.psj.2023.103373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023] Open
Abstract
This study investigates the combined effects of chitooligosaccharide (COS) and florfenicol (FLO) on the inhibition of Escherichia coli in vitro, as well as the pharmacokinetic interactions between these compounds in healthy chickens. The minimum inhibitory concentration (MIC) of COS and FLO alone and the fractional inhibitory concentration index (FICI) after combined treatment were determined using the broth microdilution method and checkerboard method, respectively. Additionally, we evaluated the pharmacokinetic interactions between the 2 types of COS and FLO in healthy chickens. Thirty chickens were randomly divided into 3 groups: Florfenicol group (30 mg/kg), COS J85 group (COS J85 20 mg/kg + florfenicol 30 mg/kg), COS H85 group (COS H85 20 mg/kg + florfenicol 30 mg/kg). Either FLO or COS was orally administered by gavage. The concentrations of FLO in chicken plasma were measured at different time points after the drug withdrawal using high-performance liquid chromatography (HPLC), and pharmacokinetic parameters were calculated by a compartmental method. The results showed that COS J85 and COS H85, when combined with FLO, had FICI values of 0.1875 to 0.75 and 0.3125 to 1, respectively, indicating good synergistic or additive effects against Escherichia coli. The pharmacokinetics of FLO alone and in combination with COS followed a 1-compartment model with first-order absorption and elimination. Furthermore, the pharmacokinetic analysis revealed that the elimination half-life (t1/2ke) of florfenicol was significantly increased in the COS H85 group compared to oral administration of florfenicol alone (P < 0.05). Other pharmacokinetic parameters did not show significant changes (P > 0.05), except between the 2 combined treatment groups, where statistical differences were observed for various parameters, excluding the area under the concentration-time curve from the time of dosing to infinity (AUC) and peak concentration (Cmax).
Collapse
Affiliation(s)
- Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ze-En Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ming-Hui Duan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan Dai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yang-Guang Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan-Ni Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Xing-Ping Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
6
|
Mohan K, Rajan DK, Ganesan AR, Divya D, Johansen J, Zhang S. Chitin, chitosan and chitooligosaccharides as potential growth promoters and immunostimulants in aquaculture: A comprehensive review. Int J Biol Macromol 2023; 251:126285. [PMID: 37582433 DOI: 10.1016/j.ijbiomac.2023.126285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
There is a stable growth in aquaculture production to avoid seafood scarcity. The usage of eco-friendly feed additives is not only associated with aquatic animal health but also reduces the risk of deleterious effects to the environment and consumers. Aquaculture researchers are seeking dietary solutions to improve the growth performance and yield of target organisms. A wide range of naturally derived compounds such as probiotics, prebiotics, synbiotics, complex carbohydrates, nutritional factors, herbs, hormones, vitamins, and cytokines was utilized as immunostimulants in aquaculture. The use of polysaccharides derived from natural resources, such as alginate, agar, laminarin, carrageenan, fucoidan, chitin, and chitosan, as supplementary feed in aquaculture species has been reported. Polysaccharides are prebiotic substances which are enhancing the immunity, disease resistance and growth of aquatic animals. Further, chitin (CT), chitosan (CTS) and chitooligosaccharides (COS) were recognized for their biodegradable properties and unique biological functions. The dietary effects of CT, CTS and COS at different inclusion levels on growth performance, immune response and gut microbiota in aquaculture species has been reviewed. The safety regulations, challenges and future outlooks of CT, CTS and COS in aquatic animals have been discussed in this review.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India.
| | - Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway
| | - Dharmaraj Divya
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Johan Johansen
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| |
Collapse
|
7
|
Zhao F, Huo X, Wang P, Liu Q, Yang C, Su J. The Combination of β-Glucan and Astragalus Polysaccharide Effectively Resists Nocardia seriolae Infection in Largemouth Bass ( Micropterus salmoides). Microorganisms 2023; 11:2529. [PMID: 37894188 PMCID: PMC10609034 DOI: 10.3390/microorganisms11102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Effectively treating and preventing outbreaks is crucial for improving the economic benefits of aquaculture. Therefore, utilizing immunostimulants, either alone or in combination, is regarded as a promising strategy. In this study, β-glucan + APS (200 mg/kg + 200 mg/kg), β-glucan (200 mg/kg), APS (200 mg/kg), enrofloxacin (15 mg/kg), and sulfadiazine (15 mg/kg) were added to feed to assess the effects against Nocardia seriolae infection in largemouth bass (Micropterus salmoides) within 14 days. The survival rates did not differ between the enrofloxacin group and the β-glucan + APS group, but both were significantly higher than that of the control group. Additionally, the enrofloxacin group and the β-glucan + APS group exhibited the lowest bacterial loads and tissue damage. Importantly, the β-glucan + APS treatment significantly improved serum enzyme activities (total superoxide dismutase, lysozyme, total protein) and the expression of immune genes (IL-1β, TNF-α, IFN-γ, IgM) compared to the other treatment groups. The enrofloxacin group showed similar efficacy to the β-glucan + APS group in combating N. seriolae infection, but N. seriolae in the enrofloxacin group developed drug resistance. In summary, the combined use of β-glucan and APS is a promising strategy for treating bacterial diseases, thereby contributing to the promotion of sustainable aquaculture development.
Collapse
Affiliation(s)
- Fengxia Zhao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (X.H.); (P.W.); (Q.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (X.H.); (P.W.); (Q.L.)
| | - Pengxu Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (X.H.); (P.W.); (Q.L.)
| | - Qian Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (X.H.); (P.W.); (Q.L.)
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (X.H.); (P.W.); (Q.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
8
|
Tian Q, Huo X, Liu Q, Yang C, Zhang Y, Su J. VP4/VP56/VP35 Virus-like Particles Effectively Protect Grass Carp ( Ctenopharyngodon idella) against GCRV-II Infection. Vaccines (Basel) 2023; 11:1373. [PMID: 37631941 PMCID: PMC10458301 DOI: 10.3390/vaccines11081373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Grass carp reovirus (GCRV) seriously threatens the grass carp (Ctenopharyngodon idella) industry. Prophylactic GCRV vaccines prepared by virus-like particle (VLP) assembly biotechnology can improve effectiveness and safety. The highly immunogenic candidate antigens of GCRV vaccines that have been generally considered are the outer capsid proteins VP4, VP56, and VP35. In this study, VP4, VP56, and VP35 were expressed in an Escherichia coli expression system and a Pichia pastoris expression system. The successful assembly of uniform, stable, and non-toxic VP4/VP56/VP35 VLPs was confirmed through various assays. After vaccination and GCRV infection, the survival rate in the VLPs + adjuvant Astragalus polysaccharide (APS) group was the highest (62%), 40% higher than that in control group (22%). Through the antibody levels, tissue viral load, and antioxidant immunity assays, the P. pastoris VLP vaccine effectively improved IgM levels, alleviated tissue virus load, and regulated antioxidant immune-related indicators. The treatment with P. pastoris VLPs enhanced the mRNA expression of important immune-related genes in the head kidney, as measured by qRT-PCR assay. Upon hematoxylin-eosin staining examination, relatively reduced tissue pathological damage was observed in the VLPs + APS group. The novel vaccine using P. pastoris VLPs as an effective green biological agent provides a prospective strategy for the control of fish viral diseases.
Collapse
Affiliation(s)
- Qingqing Tian
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
| | - Qian Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China;
| | - Yongan Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Basawa R, Kabra S, Khile DA, Faruk Abbu RU, Parekkadan SJ, Thomas NA, Kim SK, Raval R. Repurposing chitin-rich seafood waste for warm-water fish farming. Heliyon 2023; 9:e18197. [PMID: 37519647 PMCID: PMC10372652 DOI: 10.1016/j.heliyon.2023.e18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
The pisciculture industry has grown multi-fold over the past few decades. However, a surge in development and nutrient demand has led to the establishment of numerous challenges. Being a potential solution, chitosan has gained attention as a bio nanocomposite for its well-acclaimed properties including biodegradability, non-toxicity, immunomodulatory effects, antimicrobial activity, and biocompatibility. This biopolymer and its derivatives can be transformed into various structures, like micro and nanoparticles, for various purposes. Consequently, with regards to these properties chitin and its derivatives extend their application into drug delivery, food supplementation, vaccination, and preservation. This review focuses on the clinical advancements made in fish biotechnology via chitosan and its derivatives and highlights its prospective expansion into the pisciculture industry-in particular, warm-water species.
Collapse
Affiliation(s)
- Renuka Basawa
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Suhani Kabra
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Dnyanada Anil Khile
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Rahil Ummar Faruk Abbu
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Serin Joby Parekkadan
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Naomi Ann Thomas
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Se Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Erica 55 Hanyangdae-ro, Sangnol-gu, Ansan-si 11558, Gyeonggi-do, Republic of Korea
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
10
|
Sun S, Bian C, Zhou N, Shen Z, Yu M. Dietary Astragalus polysaccharides improve the growth and innate immune response of giant freshwater prawn Macrobrachium rosenbergii: Insights from the brain-gut axis. Int J Biol Macromol 2023:125158. [PMID: 37276896 DOI: 10.1016/j.ijbiomac.2023.125158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Supplementation with Astragalus polysaccharides (APS) has beneficial effects on aquatic animals. Herein, we aimed to investigate the effects of different doses of APS on the growth, innate immune response, and brain-gut axis of Macrobrachium rosenbergii. The molecular weight and the monosaccharide composition of APS were analyzed. APS were added at concentration of 0 (control), 0.05, 0.10, 0.15, and 0.20 % in practical diets. Growth performance increased significantly under 0.05 to 0.20 % APS, with enhanced lipase and protease activities in intestinal tissues. Prawns receiving APS supplementation had significantly lower amounts of pathogenic intestinal bacteria (Vibrio and Aeromonas) and a markedly different microbial community structure compared with those of the control group. The fecal short chain fatty acid (SCFA) and neurotransmitters γ-aminobutyric acid contents increased in the brains of prawns receiving APS, which was potentially associated with increased Lactobacillus and Bacillus levels. Prawns receiving APS supplementation displayed a significantly enhanced immune function (such as total hemocyte count, total protein concentration, phenoloxidase activity, serum agglutination titer, and lysozyme activity) and improved disease resistance to Vibrio anguillarum compared those in the control group. Thus, dietary APS positively affected the gut-brain axis by altering the microbiota composition, increasing the fecal SCFA content, and enhancing prawn immunity.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau
| | - Zhixin Shen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Ming Yu
- Hainan Huixin Breeding Co., Ltd., Haikou 571126, China
| |
Collapse
|
11
|
Zheng Y, Zhu H, Li Q, Xu G. The Effects of Different Feeding Regimes on Body Composition, Gut Microbial Population, and Susceptibility to Pathogenic Infection in Largemouth Bass. Microorganisms 2023; 11:1356. [PMID: 37317330 DOI: 10.3390/microorganisms11051356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023] Open
Abstract
This study investigated the effects of dietary commercial feed (n = 50,025 in triplicate, named group PF for soil dike pond, sampling n = 7; n = 15,000 in triplicate, WF for water tank, n = 8), iced fish (n = 50,025 in triplicate, PI, n = 7), and a combination of both (n = 50,025 in triplicate, PFI, n = 8) on different metabolic parameters of the largemouth bass, Micropterus salmoides (0.67 ± 0.09 g, culture period from June 2017 to July 2018). Throughout the experimental period, different areas of water (including input water of the front, middle of the pond, and from the drain off at the back) and their mixed samples were simultaneously analyzed to find the source of the main infectious bacteria. Various feeding strategies may differentially affect body composition and shape the gut microbiota, but the mode of action has not been determined. Results showed that no significant differences were found in the growth performance except for the product yield using a different culture mode (PFI vs. WF). For muscle composition, the higher ∑SFA, ∑MUFA, ∑n-6PUFA, and 18:3n-3/18:2n-6 levels were detected in largemouth bass fed with iced fish, while enrichment in ∑n-3PUFA and ∑HUFA was detected in largemouth bass fed with commercial feed. For the gut microbiota, Fusobacteria, Proteobacteria, and Firmicutes were the most dominant phyla among all the gut samples. The abundance of Firmicutes and Tenericutes significantly decreased and later increased with iced fish feeding. The relative abundance of species from the Clostridia, Mollicutes, Mycoplasmatales, and families (Clostridiaceae and Mycoplasmataceae) significantly increased in the feed plus iced fish (PFI) group relative to that in the iced fish (PI) group. Pathways of carbohydrate metabolism and the digestive system were enriched in the commercial feed group, whereas infectious bacterial disease resistance-related pathways were enriched in the iced fish group, corresponding to the higher rate of death, fatty liver disease, and frequency and duration of cyanobacteria outbreaks. Feeding with iced fish resulted in more activities in the digestive system and energy metabolism, more efficient fatty acid metabolism, had higher ∑MUFA, and simultaneously had the potential for protection against infectious bacteria from the environment through a change in intestinal microbiota in the pond of largemouth bass culturing. Finally, the difference in feed related to the digestive system may contribute to the significant microbiota branch in the fish gut, and the input and outflow of water affects the intestinal flora in the surrounding water and in the gut, which in turn affects growth and disease resistance.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| |
Collapse
|
12
|
Zhang Y, Qi X, Zhang Z, Jin Z, Wang G, Ling F. Effects of dietary Cetobacterium somerae on the intestinal health, immune parameters and resistance against Nocardia seriolae of largemouth bass, Micropterus salmoides. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108693. [PMID: 36940785 DOI: 10.1016/j.fsi.2023.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Largemouth bass (Micropterus salmoides), one of the most important freshwater commercial fish species has been widely cultivated in China. In recent years, the nocardiosis caused by Nocardia seriolae has greatly damaged the M. salmoides industry and there is no effective treatment at present. Currently, Cetobacterium somerae, the predominant bacteria in the gut of many freshwater fishes has been reported to be associated with fish health. However, whether the native C. somerae could protect the host from N. seriolae is unclear. In this study, M. salmoides were fed with three different diets, including control diet (CD), low C. somerae diet (106 CFU/g as LD) and high C. somerae diet (108 CFU/g as HD). After 8-week feeding, growth performance, gut health index, serum enzyme activities and the expression of inflammation-related genes were tested. Results showed that the LD and HD diets had no adverse effects on the growth performance. Moreover, dietary HD enhanced gut barrier and reduced intestinal ROS and ORP, as well as increased serum enzyme activities including ACP, AKP, SOD and LZM compared to the CD group. In addition, the HD diet significantly up-regulated the expression of TNF-α, IL8, IL-1β and IL15, while down-regulating the expression of TGF-β1 and IL10 in kidney. Moreover, the expression of antibacterial genes was significantly increased in HD group after being challenged by N. seriolae. And the fish fed HD diet exhibited higher survival rate (57.5%) than that in CD (37.5%) and LD groups (42.5%). To summarize, our study demonstrates that dietary HD can enhance gut health, improve immune response and strengthen pathogen resistance, suggesting that C. somerae is a potential probiotic for defending against N. seriolae infection in M. salmoides.
Collapse
Affiliation(s)
- Yong Zhang
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Xiaozhou Qi
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Zhongyu Zhang
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Zhanlin Jin
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gaoxue Wang
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, China.
| | - Fei Ling
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, China.
| |
Collapse
|
13
|
Sun Y, Meng X, Hu X, Liu R, Zhao Z, Wang S, Zhang R, Guo K, Luo L. Dietary supplementation with Lycium barbarum polysaccharides conducive to maintaining the health of Luciobarbus capito via the enhancement of enzyme activities and the modulation of gut microbiota. Int J Biol Macromol 2023; 232:123500. [PMID: 36736520 DOI: 10.1016/j.ijbiomac.2023.123500] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Lycium barbarum polysaccharide (LBP) is the main active component of Lycium barbarum (L. barbarum), which has important medicinal and nutritional value. However, the effect of LBP treatment on Luciobarbus capito (L. capito) still remains unknown. Given this, the current work aims to probe the underlying effect of different levels of LBP treatment (i.e. 0.10, 0.50 and 1.00 g/L) on L. capito in the context of enzymatic activity analysis, histological observations and gut microbiota analysis. Compared with control group, the activities of hepatic antioxidant enzymes, intestinal digestive enzymes and hepatic immune enzyme were found to be significantly increased after 0.10 g/L LBP and 0.50 g/L LBP treatment (P < 0.05). This result indicated that moderate levels of LBP treatment could dramatically enhance the immunity and antioxidant capacity of L. capito. Furthermore, the compositional structures of the gut microbiota in L. capito were found to be greatly shaped after LBP treatment, whereas the diversity and abundance of the gut microbiota were only found to be slightly changed (P > 0.05). No significant changes were screened in the morphologic structures of gut constructions. This work would provide theoretical and experimental basis for future application of LBP as supplement in the culture process of the farmed fish.
Collapse
Affiliation(s)
- Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Xianwei Meng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China; Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Xiaowei Hu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China; Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Zhigang Zhao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Shihui Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Kun Guo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Liang Luo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
14
|
Potential role of plant polysaccharides as immunostimulants in aquaculture: a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Abstract
Aquaculture is one of the primary food-producing sectors in the world that ensures human nourishment. However, aqua farmers are facing serious problems due to disease out breaks and development of antimicrobial resistance. Until now, chemical or antibiotic based strategies has been applied to control disease related concern in aquaculture. Frequent usage of antibiotics in feed or usage of disinfectant to overcome the disease may end up with negative impacts to the environment and human. Utilization of plant derived polysaccharides has been drastically increased due to their effective roles and could serve as a best replacement for chemical agents and antibiotics. In addition, plant derived compounds and plant extracts was utilized to improve the immunity, intestinal health and growth performance of aquaculturable organisms. In addition, large number of plant-based polysaccharides was utilized as immunostimulants in aquaculture. Hence, this review aims to highlight the multifunctional properties of plant-based polysaccharides in aquaculture. Moreover, advantages and different concentration of plant polysaccharides as a feed additives in aquaculture sector has been discussed herein.
Collapse
|
15
|
Puri P, Singh R, Sharma J. Micro-/bio-/nano-/syn-encapsulations and co-treatments of bioactive microbial feed supplementation in augmenting finfish health and aquaculture nutrition: a review. Benef Microbes 2023; 14:281-302. [PMID: 37282556 DOI: 10.3920/bm2022.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/08/2022] [Indexed: 06/08/2023]
Abstract
Finfish and fish products are globally the most acknowledged health-promoting foods. The rising incidence of pathogenic and disease outbreaks have had a sizeable impact on aquaculture. Microbial supplementation of food in the form of probiotics, prebiotics, and their controlled release combinations (=co-encapsulations) as 'synbiotics' is noted for its significant biotherapeutic and health benefits. Supplementation of probiotic microbial feed additives in the fish diet claims to improve fish health by modulation of resident intestinal microbiota and by introducing healthy microbiota procured from an exogenous source, capable of combating pathogens, improving nutrient uptake, assimilation, growth as well as survival. Prebiotics are selectively digestible substrates beneficially used by host gut microbes to enhance probiotic effects. Formulating a fish diet with augmented probiotics and prebiotic microbial bio-supplements can ensure a sustainable alternative for establishing fish health in a naturally susceptible aquaculture scenario. Micro-encapsulation, co-encapsulation, and nano-encapsulation are novel strategies of biotechnical interventions in functional feeds for finfish. These aim to improve probiotic persistence, survivability, and efficacy in commercial formulations during probiotic transit through the host-gut environment. This review discusses the importance of co-treatment and encapsulation strategies for improving probiotic and prebiotic potential in aquafeed formulations, reliably improving finfish health and nutritional returns from aquaculture, and, consequently, for consumers.
Collapse
Affiliation(s)
- P Puri
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
- Department of Zoology, Sri Aurobindo College, University of Delhi, Delhi 110017, India
| | - R Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - J Sharma
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| |
Collapse
|
16
|
Zhang Y, Guo M, Li N, Dong Z, Cai L, Wu B, Xie J, Liu L, Ren L, Shi B. New insights into β-glucan-enhanced immunity in largemouth bass Micropterus salmoides by transcriptome and intestinal microbial composition. Front Immunol 2022; 13:1086103. [PMID: 36591266 PMCID: PMC9794605 DOI: 10.3389/fimmu.2022.1086103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
β-glucan is widely used in aquaculture due to its immunostimulatory effects, but the specific effect and potential regulatory mechanism on largemouth bass (Micropterus salmoides) are still unclear. Here, we evaluated the effects of β-glucan on growth, resistance to Aeromonas schubertii, intestinal health, and transcriptome of largemouth bass to reveal the potential regulators, metabolic pathways, and altered differential microbiota. Four experimental diets were designed with β-glucan supplementation levels of 0 (control), 100 (LA-100), 200 (MA-200), and 300 (HA-300) mg kg-1, and each diet was fed to largemouth bass (79.30 ± 0.50 g) in triplicate for 70 days, followed by a 3-day challenge experiment. Results showed that different β-glucan supplementations had no significant effects on growth performance and whole-body composition. Fish fed a diet with 300 mg kg-1 β-glucan significantly increased the activity of lysozyme than those fed diets with 0 and 100 mg kg-1 β-glucan. In addition, the survival rate of largemouth bass in β-glucan supplementation groups was significantly higher than the control group at 12- and 24-h challenge by Aeromonas schubertii. Transcriptome analysis showed that a total of 1,245 genes were differentially expressed [|log2(fold change)| ≥1, q-value ≤0.05], including 109 immune-related differentially expressed genes (DEGs). Further analysis revealed that significantly upregulated and downregulated DEGs associated with immunity were mapped into 12 and 24 pathways, respectively. Results of intestinal microflora indicated that fish fed a diet with 300 mg kg-1 β-glucan had higher bacterial richness and diversity as evaluated by Sobs, Chao, Ace, and Simpson indices, but no significant differences were found in the comparison groups. Furthermore, 300 mg kg-1 β-glucan significantly increased the relative abundance of Mycoplasma and decreased Proteobacteria (mainly Escherichia-Shigella and Escherichia coli) and Bacillus anthracis in largemouth bass intestinal microflora. The findings of this study provided new insights that will be valuable in future studies to elucidate the mechanism of immunity enhancement by β-glucan.
Collapse
Affiliation(s)
- Yuexing Zhang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Mingyu Guo
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Ning Li
- Kemin AquaScience, Zhuhai, Guangdong, China
| | - Zhiyong Dong
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Linwei Cai
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Bowen Wu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Jianjun Xie
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang, China
| | - Liang Liu
- Kemin AquaScience, Zhuhai, Guangdong, China
| | - Lina Ren
- Kemin AquaScience, Zhuhai, Guangdong, China
| | - Bo Shi
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China,*Correspondence: Bo Shi,
| |
Collapse
|
17
|
Wang Y, Wu Z, Chen H, Liu R, Zhang W, Chen X. Astragalus polysaccharides protect against inactivated Vibrio alginolyticus-induced inflammatory injury in macrophages of large yellow croaker. FISH & SHELLFISH IMMUNOLOGY 2022; 131:95-104. [PMID: 36206995 DOI: 10.1016/j.fsi.2022.09.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
As an effective immunostimulant, Astragalus polysaccharides (APS) have been widely used in fish aquaculture, however, their action mechanisms remain poorly understood. In the present paper, the inflammatory macrophage model of large yellow croaker (Larimichthys crocea) was constructed by using formalin-inactivated Vibrio alginolyticus. Inactivated V. alginolyticus could cause cellular damage of primary head kidney macrophages (PKM) by decreasing cell activity and inducing reactive oxygen species (ROS) production and cell apoptosis. When PKM were pretreated with APS, the depressed cell activity induced by inactivated V. alginolyticus was significantly improved, and ROS overproduction and cell apoptosis were inhibited. Then the protection mechanism of APS was investigated by transcriptome analysis. After treated with inactivated V. alginolyticus, the expression of immune-related genes (TLR5s, TLR13, Clec4e, IKK, IκB, BCL-3, NF-κB2, REL, IL-1β, and IL-6) and pyroptosis-related genes (caspase-1, NLRP3, and NLRC3) in PKM were significantly up-regulated. However, APS pretreatment reversed the up-regulation of most of the above-mentioned genes, where TLR5s, BCL-3, REL, caspase-1, NLRP12, IL-1β, and IL-6 were significantly down-regulated compared with inactivated V. alginolyticus-treated group. These results suggested that APS could protect large yellow croaker PKM against inactivated V. alginolyticus-induced inflammatory injury, and may exert their protection effects by activating NF-κB and pyroptosis signaling pathways. These findings therefore advance our understanding of the immune regulation mechanism of APS in fish, and facilitate the application of APS in prevention and control of fish bacteriosis.
Collapse
Affiliation(s)
- Yongyang Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ziliang Wu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Hui Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ruoyu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
18
|
Puri P, Sharma JG, Singh R. Biotherapeutic microbial supplementation for ameliorating fish health: developing trends in probiotics, prebiotics, and synbiotics use in finfish aquaculture. Anim Health Res Rev 2022; 23:113-135. [PMID: 36597760 DOI: 10.1017/s1466252321000165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nutrition demands in aquaculture can be realized through quality aquafeeds as compounded diets that contribute to the growth and health of aquaculture species. Functional additives in feed, notably probiotics, prebiotics, and their admixture synbiotics, have been recently recognized for their biotherapeutic role as immunostimulants capable of conferring disease resistance, stress tolerance, and gastrointestinal health; counteracting the negative effects of anti-nutrients, pathogenic prevalence, and antimicrobials in finfish aquaculture. Formulated diets based on probiotics, prebiotics, and as a supplemental combination for synbiotics can significantly influence fish gut microbiomes, establishing the modalities of microbial dynamics to maximize host-associated benefits. These microbial functional-feed supplements are acclaimed to be biocompatible, biodegradable, and safe for dietary consumption as well as the environment. In fed fish aquaculture, prebiotic appended probiotic diet 'synbiotic' has propounded larger attention for its additional health and nutritional benefits. Synbiotic, prebiotic, and probiotic usage as functional feeds for finfish aquaculture thus provides promising prospects. Developing trends in their intended application are reviewed here forth.
Collapse
Affiliation(s)
- Parul Puri
- Department of Biotechnology, Delhi Technological University, Delhi, India
- Department of Zoology, Sri Aurobindo College, University of Delhi, Delhi, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
19
|
Harikrishnan R, Devi G, Van Doan H, Gatphayak K, Balasundaram C, El-Haroun E, Soltani M. Immunomulation effect of alginic acid and chitooligosaccharides in silver carp (Hypophthalmichthys molitrix). FISH & SHELLFISH IMMUNOLOGY 2022; 128:592-603. [PMID: 35977648 DOI: 10.1016/j.fsi.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Individual and combined efficacy of chitooligosaccharides (COS) and alginic acid (AA) at 1 g, 2 g, and 3 g per kg diet was assessed on growth and disease resistance in silver carp (Hypophthalmichthys molitrix) against Edwardsiella ictaluri. Growth parameters including specific growth rate (SGR), weight gain (WG), and feed conversion rate (FCR) were significant in fish fed 2 g and 3 g kg-1 of COS or AA, and fish fed combined COS + AA at 1, 2 and 3 kg-1 diet. In all groups, the survival rate (SR) was recorded 100%, except in group fed 2 g kg-1 AA diet. All the hematological and biochemical profiles significantly increased in groups fed 2 g and 3 g kg-1 of COS, AA, and COS + AA diets. Lipase and amylase enzyme activities and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GPx) antioxidant enzyme activities were significantly increased in fish fed 2 g and 3 g kg-1 of COS, AA, and COS + AA diet. Respiratory burst (RB), lysozyme (Lyz), reactive oxygen species (ROS) activities, and immunoglobuline (Ig) level were enhanced significantly in fish fed 2 g kg-1 of COS or COS + AA and all 3 g kg-1 diets, whereas nitric acid (NO) production and serum AP activity were improved in 2 g kg-1 COS + AA and 3 g kg-1 COS or COS + AA diets. Pro-inflammatory cytokine such as IL-8 mRNA transcriptions was significant in 2 g kg-1 COS + AA diet and all 3 g kg-1 diet. The IL-10 anti-inflammatory cytokine mRNA transcriptions were significant in 3 g kg-1 COS or COS + AA diets. This study was confirmed that H. molitrix fed with 3 g kg-1 COS or COS + AA diets were better activity when compared to other diet.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Thailand.
| | - Kesinee Gatphayak
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Ehab El-Haroun
- Fish Nutrition Research Laboratory, Animal Production Department, Faculty of Agriculture, Cairo University, Egypt
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, WA, Australia
| |
Collapse
|
20
|
Zhang W, Zhao J, Ma Y, Li J, Chen X. The effective components of herbal medicines used for prevention and control of fish diseases. FISH & SHELLFISH IMMUNOLOGY 2022; 126:73-83. [PMID: 35609759 DOI: 10.1016/j.fsi.2022.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The increasing demand for fish consumption has promoted the rapid development of fish aquaculture. With the continuous expansion of culture scale and the deterioration of culture environment, various diseases have broken out frequently, leading to huge economic losses to fish farming. Antibiotics and chemicals are common options to prevent and control of fish diseases, but their use is now restricted or even banned due to serious problems such as drug residues, pathogen resistance, and environmental pollution. Herbs and their extracts have increasingly become promising supplements and alternatives, because of their effectiveness, safety, environmental friendliness and less drug resistance. The application of herbal medicines in prevention and control of fish diseases is mainly attributed to the powerful immune enhancement, antioxidation or direct anti-pathogenic efficacies of their effective components, including mainly polyphenols, polysaccharides, saponins, flavonoids, alkaloids, and essential oils. Recently these herbal active ingredients have been extensively studied for their efficacies in prevention and control of viral, bacterial, parasitic, and fungal diseases in fish. In the present paper, we comprehensively summarize the research progress of the active ingredients of herbal medicines used for prevention and control of fish diseases, especially of their action mechanisms, and highlight the potential application of the herbal medicines in fish aquaculture.
Collapse
Affiliation(s)
- Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jinpeng Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yufang Ma
- University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
21
|
Farag MR, Alagawany M, Khalil SR, El-Hady EW, Elhady WM, Ismail TA, Marini C, Di Cerbo A, Abdel-Latif HMR. Immunosuppressive Effects of Thallium Toxicity in Nile Tilapia Fingerlings: Elucidating the Rescue Role of Astragalus membranaceus Polysaccharides. Front Vet Sci 2022; 9:843031. [PMID: 35754552 PMCID: PMC9218348 DOI: 10.3389/fvets.2022.843031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the immunotoxic effects of thallium (Tl) in Nile tilapia fingerlings and the recovery role of dietary Astragalus membranaceus polysaccharides (ASs). An 8-week experiment was designed where 180 fishes were randomly and equally assigned in triplicates into the six groups: the control group (CNT) was reared in unpolluted water and fed a commercial diet, two groups were fed a well-balanced commercial diet plus 1.5 and 3.0 g AS/kg diet (AS0.15 and AS0.30), respectively, the fourth group was exposed to a sublethal dose of Tl (41.9 μg l-1) [equal to 1/10 of 96-h lethal concentration 50 (LC50)], and the last two groups were fed 0.15 and 0.3% AS, respectively, and concurrently exposed to Tl (41.9 μg l-1) (AS0.15+Tl and AS0.30+Tl). Fish hematobiochemical parameters, serum immunity [nitric oxide, total immunoglobulin M (IgM) levels, and lysozyme activity], transcription of hepatic interferon-γ (IFN-γ), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and resistance to Aeromonas hydrophila (A. hydrophila) were assessed. Hematobiochemical parameters and serum immune indices were significantly decreased in the fish group exposed to sublethal Tl concentration compared to the CNT group. Furthermore, Tl exposure significantly induced overexpression of IL-1β, TNF-α, and IFN-γ genes (4.22-, 5.45-, and 4.57-fold higher, respectively) compared to CNT values. Tl exposure also increased the cumulative mortality (%) in Nile tilapia challenged with A. hydrophila. Remarkably, the groups fed AS0.15+Tl and AS0.30+Tl significantly ameliorated all the aforementioned parameters, but did not reach CNT values. Our findings suggest the possible immunomodulating roles of dietary AS in recovering the immunotoxic effects of Tl in Nile tilapia. We can conclude that dietary AS would be useful for maintaining the immunity of Nile tilapia fingerlings.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman W El-Hady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa M Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
22
|
Yu W, Yang Y, Zhou Q, Huang X, Huang Z, Li T, Wu Q, Zhou C, Ma Z, Lin H. Effects of dietary Astragalus polysaccharides on growth, health and resistance to Vibrio harveyi of Lates calcarifer. Int J Biol Macromol 2022; 207:850-858. [PMID: 35364191 DOI: 10.1016/j.ijbiomac.2022.03.176] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023]
Abstract
It is generally accepted that Astragalus polysaccharides (APS) supplementation can makes beneficial effects to fish. However, the adverse effects of APS to fish remains poorly understood. In the present study, Asian seabass Lates calcarifer were studied to assess the influence of different doses of APS on growth, health and resistance to Vibrio harveyi. Results showed that supplemental APS with 0.10 to 0.20% significantly boosted the growth performance, the protease and lipase activities of L. calcarifer. Compared with control diet, the villus length of L. calcarifer fed with APS supplemented diets was significantly higher. L. calcarifer fed with APS supplementation diets also significantly facilitated the antioxidant capacity and immune function. Meanwhile, supplemental APS with 0.10 to 0.15% significantly promoted liver health by up-regulating the expression of anti-inflammatory cytokines and down-regulating the expression of pro-inflammatory cytokines. Furthermore, survival rate of L. calcarifer challenged with V. harveyi was higher in diets supplemented with APS compared to the control. However, 0.20% APS significantly hindered the growth performance and caused immunostimulatory fatigue in L. calcarifer compared to 0.10% APS. Taken together, the present study demonstrates that supplementation APS with 0.10% is the optimal level for promoting the growth performance, health and resistance to V. harveyi of L. calcarifer, while 0.20% APS exerts adverse effects on L. calcarifer. Our findings provide novel recommendations for the application of APS supplementation in farmed fish.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Qicun Zhou
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xiaolin Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Zhong Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Tao Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Qiaer Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Chuanpeng Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, PR China.
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China.
| |
Collapse
|
23
|
Du Y, Wan H, Huang P, Yang J, He Y. A critical review of Astragalus polysaccharides: From therapeutic mechanisms to pharmaceutics. Pharmacotherapy 2022; 147:112654. [DOI: 10.1016/j.biopha.2022.112654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
|
24
|
Liu J, Zhang P, Wang B, Lu Y, Li L, Li Y, Liu S. Evaluation of the effects of Astragalus polysaccharides as immunostimulants on the immune response of crucian carp and against SVCV in vitro and in vivo. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109249. [PMID: 34822998 DOI: 10.1016/j.cbpc.2021.109249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
This experiment was conducted to evaluate the immunomodulatory effect and antiviral activity of Astragalus polysaccharides (APS) in crucian carp and epithelioma papulosum cyprinid (EPC) cells. Two diets containing 0 and 2 g/kg, APS were fed crucian carp for 56 days. The results showed that supplementation with APS significantly upregulated the immune-related indices including the levels of IgM, the activities of LZM, AKP and ACP, and the contents of C3 and C4. At the same time, compared with the CK group, adding APS to the feed significantly upregulated the expression of IL-8, IL-10, IL-1β, IFN-α, IFN-γ, MyD88, TGF-β and TNF-α in the spleen, kidney, liver and intestine of crucian carp. In addition, when the crucian carp were injected with SVCV, the survival rates of fish in the APS group and the control group were 48.87% and 13.76%, respectively. These results indicated that dietary APS could improve the resistance of crucian carp against SVCV infection. APS also significantly decreased viral titer and inhibited apoptosis induced by SVCV in EPC cells. These results indicated that APS could stimulate the immune response of crucian carp and improve the abilities of crucian carp and EPC cells to resist SVCV infection.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Bo Wang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Yuting Lu
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Liang Li
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
25
|
Duan Y, Ouyang J, Mo G, Hao W, Zhang P, Yang H, Liu X, Wang R, Cao B, Wang Y, Yu H. Defensing role of novel piscidins from largemouth bass (Micropterus salmoides) with evidence of bactericidal activities and inducible expressional delineation. Microbiol Res 2021; 256:126953. [PMID: 34972023 DOI: 10.1016/j.micres.2021.126953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Micropterus salmoides is an economical important species of freshwater-cultured fish, the in-depth knowledge of its immune system is in urgent development to cope with serious infectious diseases. Piscidin is an important antimicrobial peptide (AMP) family existing in almost all teleosts. However, no piscidin has been reported in largemouth bass. In this study, three novel piscidins (MSPiscidin-1, -2, and -3) were firstly identified and characterized from the largemouth bass. The predicted mature peptides of MSPiscidin-1, -2, and -3 (consists of 24, 27, 25 amino acid residues, respectively) all adopted an amphipathic α-helical conformation representative of cationic AMPs that are important for membrane permeabilization and antibacterial activity. MSPiscidin-2 and -3 indeed displayed strong, broad-spectrum, and highly efficient antimicrobial activities in vitro against aquatic pathogens, but MSPiscidin-1 didn't show direct antimicrobial activity. MSPiscidin-2 and -3 killed bacteria mainly by inducing membrane permeabilization, in addition, they also can interact with bacterial genomic DNA, which might influence the DNA replication and transcription. Besides, MSPiscidin-2 and -3 could effectively inhibit the formation of the bacterial biofilm and eliminate the preformed biofilms. In vivo, MSPiscidin-1-3 genes showed an inducible expression pattern in the tested tissues upon Vibrio harveyi infection, which further indicated the key roles of piscidins in innate immunity in largemouth bass. Overall, this study will supplement the understanding of M. salmoides innate immune system and provide candidates for the design of novel peptide antibacterial agents used in aquaculture.
Collapse
Affiliation(s)
- Yuxin Duan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jianhong Ouyang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Weijing Hao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Peng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Huaixin Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xiaowei Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Runying Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Biyin Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Haining Yu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
26
|
Lu YP, Zheng PH, Zhang XX, Wang L, Li JT, Zhang ZL, Xu JR, Cao YL, Xian JA, Wang AL, Wang DM. Effects of dietary trehalose on growth, trehalose content, non-specific immunity, gene expression and desiccation resistance of juvenile red claw crayfish (Cherax quadricarinatus). FISH & SHELLFISH IMMUNOLOGY 2021; 119:524-532. [PMID: 34737131 DOI: 10.1016/j.fsi.2021.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This study was performed to investigate the effects of dietary trehalose on growth, muscle composition, non-specific immune responses, gene expression and desiccation resistance of juvenile red claw crayfish (Cherax quadricarinatus). A total of 540 (body weight of 0.41 ± 0.05) crayfish were randomly divided into six groups for a feeding experiment. Six diets with trehalose levels at 0 (Diet 1), 1 (Diet 2), 2 (Diet 3), 5 (Diet 4), 10 (Diet 5) and 15 (Diet 6) g kg-1 were prepared to feed juvenile red claw crayfish for 8 weeks. The results showed that the weight gain rate (WGR) and specific growth rate (SGR) of crayfish in Diet 4, Diet 5 and Diet 6 groups were significantly improved compared with the control group (Diet 1). Muscle crude protein contents of crayfish fed Diet 4, Diet 5 and Diet 6 were significantly higher than those of the control group. The activities of superoxide dismutase (SOD) and alkaline phosphatase (AKP) in hepatopancreas and hemolymph of crayfish for Diet 4, Diet 5, and Diet 6 groups were significantly increased while malondialdehyde (MDA) content was significantly reduced when compared with the control. The total antioxidant capacity (T-AOC), catalase (CAT) and glutathione peroxidase (GPx) activities in the hepatopancreas and hemolymph of crayfish fed Diet 5 and Diet 6 were significantly higher than those in the control group. However, acid phosphatase (ACP) activity was not significantly different among all experimental groups. The hepatopancreas and intestine trehalose contents of crayfish showed an upward trend with the increase of dietary trehalose levels. Compared with the control group, supplementation of 5-15 g kg-1 trehalose in the feed up-regulated the expression levels of GPx, C-type lysozyme (C-LZM), antilipolysacchride factor (ALF), facilitated trehalose transporter homolog isoform X2 (Tret1-2) and facilitated trehalose transporter isoform X4 (Tret1-4) mRNA. In addition, supplementation of 5-15 g kg-1 trehalose in the feed could improve the survival rate of red claw crayfish under desiccation stress. These results suggested that supplementation of 5-15 g kg-1 trehalose in feed could significantly improve the growth performance, muscle protein, non-specific immunity and desiccation resistance of juvenile red claw crayfish.
Collapse
Affiliation(s)
- Yao-Peng Lu
- Institute of Modern Aquaculture Science and Engineering (IMASE), Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Pei-Hua Zheng
- Institute of Modern Aquaculture Science and Engineering (IMASE), Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Lei Wang
- Institute of Modern Aquaculture Science and Engineering (IMASE), Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Yan-Lei Cao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China.
| | - An-Li Wang
- Institute of Modern Aquaculture Science and Engineering (IMASE), Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Dong-Mei Wang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China.
| |
Collapse
|
27
|
Farag MR, Alagawany M, Khalil SR, Moustafa AA, Mahmoud HK, Abdel-Latif HMR. Astragalus membranaceus polysaccharides modulate growth, hemato-biochemical indices, hepatic antioxidants, and expression of HSP70 and apoptosis-related genes in Oreochromis niloticus exposed to sub-lethal thallium toxicity. FISH & SHELLFISH IMMUNOLOGY 2021; 118:251-260. [PMID: 34509627 DOI: 10.1016/j.fsi.2021.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
A 60-day experiment was performed to assess the efficacy of dietary Astragalus membranaceus polysaccharides (ASP) in attenuation of sub-lethal thallium (Tl) toxicity in Nile tilapia. Six experimental groups (in triplicates) were designed where a fish group was raised in clean water and fed basal diet and served as control (CONT), two groups were fed the basal diet supplemented with 0.15% and 0.30% ASP (ASPL and ASPH), Tl-intoxicated group exposed to 1/10 of 96-h LC50 (= 41.9 μg/L), and two other groups were fed 0.15% and 0.30% ASP and concomitantly exposed to 41.9 μg Tl/L (ASPL-Tl and ASPH-Tl). At the end of the experiment, fish behavioral responses, clinical signs, survivability, growth, whole-body composition, intestinal digestive enzymes, serum biochemical parameters, hepatic antioxidative biomarkers, and transcription of stress and apoptosis genes were assessed. Results showed that the whole-body composition, intestinal α-amylase and protease enzymes, serum AST and blood urea levels, and hepatic GSH were not significantly different among groups (P > 0.05). The Tl-intoxicated fish group was off food, had darkened skin, showed restlessness and hyperexcitability, and high mortalities. FBW, WG, SGR and FI were significantly decreased alongside increase FCR in the Tl-exposed group. Tl exposure caused significant increases (P < 0.05) in intestinal lipase enzyme and serum indices such as ALT, creatinine, total cholesterol, triglycerides, glucose, and cortisol levels. Moreover, a significant decreases in hepatic CAT and SOD enzyme activities and significant increases in hepatic MDA contents were also noticed (P < 0.05). Furthermore, Tl exposure induced significant upregulation of hepatic HSP70 and apoptosis-related genes (p53 and caspase 3). Interestingly, dietary supplementation with ASP in ASPL-Tl and ASPH-Tl groups modulated the parameters mentioned above but still not reached the CONT values. Altogether, this study suggests that ASP could be beneficial in the modulation of sub-lethal Tl toxicity effects in Nile tilapia. Additionally, we can conclude that using natural feed supplements such as ASP in aquafeed might be necessary for maintaining the overall health performances of Nile tilapia.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Amr A Moustafa
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Hemat K Mahmoud
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt.
| |
Collapse
|
28
|
Figueiredo F, Kristoffersen H, Bhat S, Zhang Z, Godfroid J, Peruzzi S, Præbel K, Dalmo RA, Xu X. Immunostimulant Bathing Influences the Expression of Immune- and Metabolic-Related Genes in Atlantic Salmon Alevins. BIOLOGY 2021; 10:980. [PMID: 34681079 PMCID: PMC8533105 DOI: 10.3390/biology10100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/03/2022]
Abstract
Disease resistance of fish larvae may be improved by bath treatment in water containing immunostimulants. Pattern recognition receptors, such as TLR3, TLR7, and MDA5, work as an "early warning" to induce intracellular signaling and facilitate an antiviral response. A single bath of newly hatched larvae, with Astragalus, upregulated the expression of IFNα, IFNc, ISG15, MDA5, PKR, STAT1, TLR3, and TLR7 immune genes, on day 4 post treatment. Similar patterns were observed for Hyaluronic acid and Poly I:C. Increased expression was observed for ISG15, MDA5, MX, STAT1, TLR3, TLR7, and RSAD2, on day 9 for Imiquimod. Metabolic gene expression was stimulated on day 1 after immunostimulant bath in ULK1, MYC, SLC2A1, HIF1A, MTOR, and SIX1, in Astragalus, Hyaluronic acid, and Imiquimod. Expression of NOS2 in Poly I:C was an average fourfold above that of control at the same timepoint. Throughout the remaining sampling days (2, 4, 9, 16, 32, and 45 days post immunostimulant bath), NOS2 and IL1B were consistently overexpressed. In conclusion, the immunostimulants induced antiviral gene responses, indicating that a single bath at an early life stage could enable a more robust antiviral defense in fish. Additionally, it was demonstrated, based on gene expression data, that cell metabolism was perturbed, where several metabolic genes were co-regulated with innate antiviral genes.
Collapse
Affiliation(s)
- Filipe Figueiredo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Harald Kristoffersen
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Shripathi Bhat
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Zuobing Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
| | - Jacques Godfroid
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Stefano Peruzzi
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Xiaoli Xu
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| |
Collapse
|
29
|
Chitosan and chitooligosaccharides attenuate soyabean meal-induced intestinal inflammation of turbot ( Scophthalmus maximus): possible involvement of NF-кB, activator protein-1 and mitogen-activated protein kinases pathways. Br J Nutr 2021; 126:1651-1662. [PMID: 33550994 DOI: 10.1017/s0007114521000489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An 8-week feeding experiment was conducted to investigate and confront the putative functions of chitosan (CTS) and chitooligosaccharide (COS) in the growth and homoeostasis of distal intestine in juvenile turbots fed diets containing soyabean meal (SBM). Three isolipidic and isonitrogenous diets were formulated by supplemented basal diet (based on a 400 g/kg SBM) with 7·5 g/kg CTS or with 2·0 g/kg COS. Our results indicated that both CTS and COS supplementation could significantly improve (i) the growth performance and feed efficiency ratio; (ii) antioxidant activity driven by metabolic enzymes (i.e. catalase, glutathione reductase, glutathione peroxidase and superoxide dismutase); (iii) glutathione levels; (iv) acid phosphatase and lysozyme activity and (v) IgM content. As a result, these two particular prebiotics were able to significantly attenuate the histological alterations due to local inflammation as well as to decrease the transcriptional levels of proinflammatory cytokines (i.e. IL-1β, IL-8 and TNF-α) and major pathway effectors (i.e. activator protein-1 (AP-1), NF-кB, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase and extracellular regulated kinase). High-throughput sequencing data indicated that dietary CTS and COS could significantly decrease the diversity of intestinal bacteria but elevate the relative abundances of Bacillus, Lactobacillus and Pseudomonas genera. Altogether, these findings suggest that CTS and COS can improve growth of turbot, enhance intestinal immune and anti-oxidant systems and promote the balance of intestinal microbiota. The protective effects, elicited by these two prebiotics, against SBM-induced inflammation could be attributed to their roles in alleviating the overexpression of inflammatory cytokines by possibly down-regulating NF-кB, AP-1 and/or mitogen-activated protein kinases pathways.
Collapse
|
30
|
Huang Y, Ye H, Zhu F, Hu C, Zheng Y. The role of Chito-oligosaccharide in regulating ovarian germ stem cells function and restoring ovarian function in chemotherapy mice. Reprod Biol Endocrinol 2021; 19:14. [PMID: 33494759 PMCID: PMC7830852 DOI: 10.1186/s12958-021-00699-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
In recent years, the discovery of ovarian germ stem cells (OGSCs) has provided a new research direction for the treatment of female infertility. The ovarian microenvironment affects the proliferation and differentiation of OGSCs, and immune cells and related cytokines are important components of the microenvironment. However, whether improving the ovarian microenvironment can regulate the proliferation of OGSCs and remodel ovarian function has not been reported. In this study, we chelated chito-oligosaccharide (COS) with fluorescein isothiocyanate (FITC) to track the distribution of COS in the body. COS was given to mice through the best route of administration, and the changes in ovarian and immune function were detected using assays of organ index, follicle counting, serum estrogen (E2) and anti-Mullerian hormone (AMH) levels, and the expression of IL-2 and TNF-α in the ovaries. We found that COS significantly increased the organ index of the ovary and immune organs, reduced the rate of follicular atresia, increased the levels of E2 and AMH hormones, and increased the protein expression of IL-2 and TNF-α in the ovary. Then, COS and OGSCs were co-cultured to observe the combination of COS and OGSCs, and measure the survival rate of OGSCs. With increasing time, the fluorescence intensity of cells gradually increased, and the cytokines IL-2 and TNF-α significantly promoted the proliferation of OGSCs. In conclusion, COS could significantly improve the ovarian and immune function of chemotherapy model mice, and improve the survival rate of OGSCs, which provided a preliminary blueprint for further exploring the mechanism of COS in protecting ovarian function.
Collapse
Affiliation(s)
- Yaoqi Huang
- Department of Obstetrics & Gynecology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Haifeng Ye
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
| | - Feiyin Zhu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Hu
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Yuehui Zheng
- Department of reproductive health, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
31
|
Xu X, Li X, Xu Z, Yao W, Leng X. Dietary Azomite, a natural trace mineral complex, improved the growth, immunity response, intestine health and resistance against bacterial infection in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2021; 108:53-62. [PMID: 33248252 DOI: 10.1016/j.fsi.2020.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/25/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Azomite is a hydrated calcium sodium aluminosilicat rich in rare earth elements. To investigate the dietary effects of Azomite on growth, intestine microbiota and morphology, immunohematological changes and disease resistance, seven diets with Azomite supplementation of 0 (the control), 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 g/kg (A0, A1, A2, A3, A4, A5, A6), were prepared and fed to largemouth bass, Micropterus salmoides (7.96 ± 0.19) for 60 days. The results revealed that the weight gain (WG) increased first and then decreased with the increasing dietary Azomite, and the A2 group presented the highest WG and lowest feed conversion ratio among all the groups. The supplementation of 2.0 g/kg Azomite significantly increased the intestine protease activity, the crude protein of whole body and protein retention (P < 0.05), and high inclusion of Azomite (6.0 g/kg) significantly reduced the lipid retention (P < 0.05). The amounts of red blood cells in A5, A6 groups, white blood cells in A3, A5, A6 groups and lymphocyte in A2-A6 groups were all significantly higher than those in the control group (P < 0.05). In addition, serum superoxide dismutase and catalase activities in A5, A6 groups, and serum alkaline phosphatase and lysozyme activities in A2-A4 groups showed significantly higher values than the control group (P < 0.05). Intestinal microbiota analysis indicated that the Tenericutes abundance was increased, whereas Proteobacteria abundance was decreased in all Azomite supplemented groups. The villus height in A2-A4 groups, and the villus width in A2 group were significantly higher than those of the control group (P < 0.05). The cumulative mortality was reduced by the addition of 2.0-5.0 g/kg Azomite after challenging with A. hydrophila (P < 0.05). In conclusion, proper addition of Azomite in diets improved the growth, intestine morphology, immune response and disease resistance in largemouth bass, and the optimal inclusion was estimated to be 2.0-3.0 g/kg diet.
Collapse
Affiliation(s)
- Xiaoying Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoqin Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenxiang Yao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiangjun Leng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
32
|
Poolsawat L, Yu Y, Li X, Zhen X, Yao W, Wang P, Luo C, Leng X. Efficacy of phytogenic extracts on growth performance and health of tilapia (Oreochromis niloticus × O. aureus). AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Su C, Fan D, Pan L, Lu Y, Wang Y, Zhang M. Effects of Yu-Ping-Feng polysaccharides (YPS) on the immune response, intestinal microbiota, disease resistance and growth performance of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 105:104-116. [PMID: 32629103 PMCID: PMC7333637 DOI: 10.1016/j.fsi.2020.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 05/02/2023]
Abstract
A 28-day feeding trial was conducted to investigate the effects of Yu-Ping-Feng polysaccharides (YPS) containing Astragalus polysaccharides (APS), Atractylodes macrocephala polysaccharides (AMP) and Saposhnikoviae polysaccharides (SPS) on the immune response, intestinal microbiota, disease resistance and growth performance of Litopenaeus vannamei. Seven hundred and twenty shrimp (3.04 ± 0.33 g) were fed the following diets: Control, YPS1 (0.13% APS + 0.0325% AMP + 0.0325% SPS), YPS2 (0.13% APS + 0.0325% AMP + 0.065% SPS) and YPS3 (0.13% APS + 0.0325% AMP+0.0975% SPS). After 14 and 28 days of feeding, the immune responses of hemocytes and intestine were measured. Intestinal microbiota and growth performance were measured after 28 days of feeding, after that, a 7-day challenge test against Vibrio harveyi was conducted. A significant (P < 0.05) increase of the total haemocyte count (THC), phagocytic activity, antibacterial activity and phenoloxidase (PO) activity was observed in shrimp fed YPS diets compared to the control. Also, dietary YPS supplementation particularly YPS3 group significantly increased the expressions of immune-related genes in the hemocytes and intestine. Regarding the intestinal microbiota, the microbial diversity and richness decreased and functional genes associated with short-chain fatty acids metabolism increased in YPS groups. After Vibrio harveyi challenge, the cumulative mortality in YPS groups was significantly lower than that of the control. Besides, dietary YPS had no significant effect on growth performance of shrimp (P > 0.05). The present results suggested that YPS could be considered as potential prebiotics for aquaculture farmed shrimp.
Collapse
Affiliation(s)
- Chen Su
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., LTD, Foshan, Guangdong, 528200, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China.
| | - Yusong Lu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| | - Yuxuan Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| | - Mengyu Zhang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, Shandong, 266003, China
| |
Collapse
|
34
|
Awad A, Khalil SR, Hendam BM, Abd El-Aziz RM, Metwally MMM, Imam TS. Protective potency of Astragalus polysaccharides against tilmicosin- induced cardiac injury via targeting oxidative stress and cell apoptosis-encoding pathways in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20861-20875. [PMID: 32246429 DOI: 10.1007/s11356-020-08565-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Tilmicosin (Til) was purposed to be used in the treatment of a wide range of respiratory diseases in livestock. However, undesirable adverse effects, cardiac toxicity, in particular, may be associated with Til therapy. In the present study, the response of adult rats administered Til subcutaneously at different doses (10, 25, 50, 75, and 100 mg/kg b.w.; single injection) was evaluated. Astragalus polysaccharide (AP) at two doses (100 and 200 mg/kg b.w.; intraperitoneally) was investigated for its potential to counteract the cardiac influences, involving the oxidative stress-induced damage and apoptotic cell death, elicited by the Til treatment at a dose of 75 mg/kg b.w. in rats. Til induced mortalities and altered the levels of the biomarkers for the cardiac damage, particularly in the rats treated with the doses of 75 and 100 mg/kg b.w.; similarly, morphological alterations in cardiac tissue were seen at all studied doses. AP was found to cause a significant (P ˂ 0.05) decline in the levels of impaired cardiac injury markers (troponin, creatine phosphokinase, and creatine phosphokinase-MB), improvement in the antioxidant endpoints (total antioxidant capacity), and attenuation in the oxidative stress indices (total reactive oxygen species, 8-hydroxy-2-deoxyguanosine, lipid peroxides [malondialdehyde], and protein carbonyl), associated with a significant (P ˂ 0.05) modulation in the mRNA expression levels of the encoding genes (Bcl-2, Bax, caspase-3, P53, Apaf-1, and AIF), related to the intrinsic pathway of apoptotic cell death in the cardiac tissue. AP administration partially restored the morphological changes in the rat's heart. The highest protective efficacy of AP was recorded at a dose level of 200 mg/kg b.w. Taken together, these results indicated that AP is a promising cardioprotective compound capable of attenuating Til-induced cardiac impact by protecting the rat cardiac tissue from Til-induced apoptosis when administered concurrently with and after the Til injection.
Collapse
Affiliation(s)
- Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reda M Abd El-Aziz
- Physiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
35
|
Wu Y, Rashidpour A, Almajano MP, Metón I. Chitosan-Based Drug Delivery System: Applications in Fish Biotechnology. Polymers (Basel) 2020; 12:E1177. [PMID: 32455572 PMCID: PMC7285272 DOI: 10.3390/polym12051177] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chitosan is increasingly used for safe nucleic acid delivery in gene therapy studies, due to well-known properties such as bioadhesion, low toxicity, biodegradability and biocompatibility. Furthermore, chitosan derivatization can be easily performed to improve the solubility and stability of chitosan-nucleic acid polyplexes, and enhance efficient target cell drug delivery, cell uptake, intracellular endosomal escape, unpacking and nuclear import of expression plasmids. As in other fields, chitosan is a promising drug delivery vector with great potential for the fish farming industry. This review highlights state-of-the-art assays using chitosan-based methodologies for delivering nucleic acids into cells, and focuses attention on recent advances in chitosan-mediated gene delivery for fish biotechnology applications. The efficiency of chitosan for gene therapy studies in fish biotechnology is discussed in fields such as fish vaccination against bacterial and viral infection, control of gonadal development and gene overexpression and silencing for overcoming metabolic limitations, such as dependence on protein-rich diets and the low glucose tolerance of farmed fish. Finally, challenges and perspectives on the future developments of chitosan-based gene delivery in fish are also discussed.
Collapse
Affiliation(s)
- Yuanbing Wu
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| | - Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| | - María Pilar Almajano
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain;
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| |
Collapse
|
36
|
Zhang W, Zhang M, Cheng A, Hao E, Huang X, Chen X. Immunomodulatory and antioxidant effects of Astragalus polysaccharide liposome in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2020; 100:126-136. [PMID: 32142872 DOI: 10.1016/j.fsi.2020.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Astragalus polysaccharides (APS) have been widely used as immunopotentiators in aquaculture, however, the best way of their administration remains to be explored. In the present study, APS liposome (APSL) was prepared by film dispersion-ultrasonic method. The optimal conditions of APSL preparation were determined by response surface methodology, with a ratio of 10:1 (w/w) for soybean lecithin to APS and 8:1 (w/w) for soybean lecithin to cholesterol, and an ultrasound time of 15 min, which produced an encapsulation efficiency of 73.88 ± 0.88% of APSL. In vivo feeding experiments in large yellow croaker showed that both APS and APSL could enhance the contents of serum total protein (TP) and albumin (ALB), activities of serum non-specific immune enzymes such as acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM), and phagocytic activity of head kidney macrophages. Meanwhile, they both increased the activities of serum antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and reduced the content of final lipid peroxidation product malondialdehyde (MDA) in serum, thus exhibiting the antioxidant effects. In vitro experiments on primary head kidney macrophages (PKM) showed that both APS and APSL inhibited ROS production, but obviously enhanced NO production and phagocytic activity of PKM. Furthermore, expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), IFN-γ, and iNOS in PKM were significantly up-regulated after APS and APSL treatments, but no expression change of IFN-h was observed. Taken together, our results showed that both APS and APSL could improve several immune parameters and antioxidant ability of large yellow croaker either in vivo or in vitro, and the efficacy of APSL was markedly better than APS. These findings therefore indicated that the immunomodulatory and antioxidant activities of APS could be enhanced after encapsulated with liposome, and APSL may represent a potential drug delivery system of APS for development of immunoenhancers in aquaculture.
Collapse
Affiliation(s)
- Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Mengxin Zhang
- University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Anyi Cheng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Entian Hao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xiaohong Huang
- University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
37
|
Sun Y, Wang X, Zhou H, Mai K, He G. Dietary Astragalus polysaccharides ameliorates the growth performance, antioxidant capacity and immune responses in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2020; 99:603-608. [PMID: 32109612 DOI: 10.1016/j.fsi.2020.02.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Supplying immunostimulants to aquatic feed has been an effective way to enhance the health of aquatic animals and substitute for antibiotics. In the present study, the potential effects of Astragalus polysaccharides (APS) were evaluated in turbot, Scophthalmus maximus. Two levels of APS (50 and 150 mg/kg) were added to the basal diet (CON) and a 63-day growth trial (initial weight 10.13 ± 0.04 g) was conducted. As the results showed, significant improvement on growth performance in the APS groups were observed. In addition, dietary 150 mg/kg APS significantly increased the total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX) and lysozyme activities in liver. Meanwhile, APS diets induced the mRNA expression of toll-like receptors (TLRs) such as tlr5α, tlr5β, tlr8 and tlr21, while reduced the expression of tlr3 and tlr22. The expression of inflammatory genes myeloid differentiation factor 88 and nuclear factor kappa b p65 and pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β were up-regulated in APS groups while the expression of anti-inflammatory cytokine transforming growth factor beta was inhibited. Taken together, the present study indicated that Astragalus polysaccharides could remarkably enhance the growth performance, antioxidant activity and maintain an active immune response in turbot.
Collapse
Affiliation(s)
- Yongkai Sun
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Xuan Wang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
| | - Huihui Zhou
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Kangsen Mai
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Gen He
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
38
|
Wei G, Cai S, Wu Y, Ma S, Huang Y. Immune effect of Vibrio harveyi formalin-killed cells vaccine combined with chitosan oligosaccharide and astragalus polysaccharides in ♀Epinephelus fuscoguttatus×♂Epinephelus lanceolatus. FISH & SHELLFISH IMMUNOLOGY 2020; 98:186-192. [PMID: 31926291 DOI: 10.1016/j.fsi.2020.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Vibrio harveyi is the pathogen causing vibriosis in marine-cultured animals, leading to massive deaths in farmed grouper around the world. It is urgent to develop an effective vaccine to prevent vibriosis. In the previous study, we developed a V. harveyi formalin-killed cells vaccine (FKC), and sought an effective adjuvant for enhancing the immune efficacy of vaccine. In this study, we aimed to evaluate the immune responses and protective effect of FKC combined with chitosan oligosaccharide (COS) or Astragalus polysaccharides (APS) in the pearl gentian grouper♀Epinephelus fuscoguttatus × ♂E. lanceolatus. The results indicated the vaccine triggered a remarkably higher expression levels of IL-1β, IL-16, TNF-α, MHC-Iα and IgM in the kidney and spleen of groupers post-vaccination. Antibody titers, lysozyme, catalase, superoxide dismutase and total protein were significantly elevated in the vaccinated fish compared with those in the control. The experimental groupers were challenged intraperitoneally by V. harveyi at 35 d post-vaccination, and the relative percentage of survival (RPS) of group FKC + COS, FKC + APS, COS, APS and FKC were 80%, 72%, 52%, 47% and 55%, respectively. These results demonstrated COS and APS was the potential adjuvants for FKC against V. harveyi in aquaculture.
Collapse
Affiliation(s)
- Guangben Wei
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Yuanzhi Wu
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Shaohong Ma
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yucong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
39
|
Zhou YL, Guo JL, Tang RJ, Ma HJ, Chen YJ, Lin SM. High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:125-134. [PMID: 31522360 DOI: 10.1007/s10695-019-00705-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The present study was conducted to investigate the effects of high dietary lipid levels on growth, metabolism, antioxidant capacity, and immune responses of largemouth bass. Fish (initial body weight 13.38 ± 0.11 g) were fed three isonitrogenous semi-purified diets containing 5%, 10%, and 20% lipid, respectively. The results indicated that fish fed 10% lipid diet showed significantly better final body weight, specific growth rate (SGR), protein efficiency ratio (PER), and feed conversion ratio (FCR) compared with that fed 5% lipid diet. Meanwhile, fish fed 20% lipid diet had a significantly higher viscera ratio (VR), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF), and liver lipid content than those fed the other diets. Higher alanine aminotransferase (ALT) and aspartate transaminase (AST) activities, total cholesterol (TC), triglyceride (TG), free fatty acids (FFA), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) contents, and LDL-C/HDL-C value in plasma were recorded in fish fed 20% lipid diet, while higher insulin contents were obtained in fish fed 5% lipid diet. In addition, the highest carnitine palmitoyltransferase I (CPT1), AMP-activated protein kinase (AMPK), fructose-1,6-bisphosphatase (FBPase), and phosphoenolpyruvate carboxykinase (PEPCK) activities in the liver were also observed in fish fed 20% lipid diet. However, fish fed 20% lipid diet had a significantly lower superoxide dismutase (SOD) and catalase (CAT) activities and higher MDA contents in liver than those fed the other diets. The higher nitric oxide (NO) contents and inducible nitric oxide synthase (iNOS) activity in liver were recorded in fish fed 10% lipid diet. Moreover, the alkaline phosphatase (ALP), inducible nitric oxide synthase (iNOS) and lysozyme activities, and nitric oxide (NO) contents in plasma were higher in fish fed the 10% diets than the other groups. In conclusion, high dietary lipid levels could suppress growth performance and liver anti-oxidative capacity, and reduce immune responses of largemouth bass.
Collapse
Affiliation(s)
- Yue-Lang Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Jia-Ling Guo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ren-Jun Tang
- Liangping District Agriculture Commission, Chongqing, 400020, People's Republic of China
| | - Hui-Jia Ma
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yong-Jun Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shi-Mei Lin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
40
|
Elabd H, Wang HP, Shaheen A, Matter A. Astragalus membranaceus nanoparticles markedly improve immune and anti-oxidative responses; and protection against Aeromonas veronii in Nile tilapia Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2020; 97:248-256. [PMID: 31862400 DOI: 10.1016/j.fsi.2019.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The effects of dietary administration of Astragalus membranaceus nanoparticles (ANP) on immune and anti-oxidative responses, growth performance and disease resistance of Oreochromis niloticus were evaluated in the present study. Fish were divided into three groups and received the ANP at rates of 0 (control), 1, and 2%/kg diet for four weeks. After the four-week feeding trial, three fish from each replicate were sampled for immune and anti-oxidative responses evaluation, ten fish from each group were challenged with A. veronii, and nine fish from each group were subjected to cold and hypoxia challenges. It was obvious from the results that ANP significantly enhanced lysozyme activity and nitrous oxide (NO) activities, as well as improved superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Also, aspartate aminotransferase, alanine transaminase, glucose, and cortisol measurements showed significantly lower levels in incorporated groups compared to the control. Growth performance; and amylase and lipase digestive enzymes activities also showed markedly improved results. Expression of heat shock protein 70 (HSP70) and interleukin 1, beta (IL-1β) genes were significantly upregulated throughout the entire experimental period. When challenged with A. veronii, the mortality of treated groups was significantly (P < 0.05) lower than the control. Current results proofs that dietary ANP had a synergistic effect on immune and anti-oxidative responses, growth performance and disease resistance of Oreochromis niloticus.
Collapse
Affiliation(s)
- Hiam Elabd
- Department of Aquatic Animals Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Han-Ping Wang
- Ohio Center for Aquaculture Research and Development, The Ohio State University South Centers, 1864 Shyville Road, Piketon, OH, 45661, USA.
| | - Adel Shaheen
- Department of Aquatic Animals Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Aya Matter
- Department of Aquatic Animals Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| |
Collapse
|
41
|
Meng X, Hu W, Wu S, Zhu Z, Lu R, Yang G, Qin C, Yang L, Nie G. Chinese yam peel enhances the immunity of the common carp (Cyprinus carpio L.) by improving the gut defence barrier and modulating the intestinal microflora. FISH & SHELLFISH IMMUNOLOGY 2019; 95:528-537. [PMID: 31678187 DOI: 10.1016/j.fsi.2019.10.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The Chinese yam peel (CYP) is a by-product of yam processing that is rich in various nutrients and a good source for feed additives. This study investigated the effects of CYP on the intestinal microbiota and gut defence barrier of the common carp (Cyprinus carpio L.). Different groups of experimental fish were fed a normal control diet (NC), a low CYP diet (LYP) and a high CYP diet (HYP) for 8 weeks. After the feeding trial, the fish were assessed for intestinal enzyme activity, intestinal histology, immune-related gene expression, intestinal SCFAs and intestinal microbiota. Our results indicated that the intestinal integrity and antioxidant enzyme (CAT and SOD) activity in the common carp were enhanced following CYP supplementation. The mRNA levels of anti-inflammatory (TGF-β), tight binding protein (occludin and ZO-1) and pathway factor genes (TLR4 and NF-κB) were significantly upregulated in the HYP group (P<0.05), which was accompanied by an increase in the level of pro-inflammatory IL-1β in the gut (P<0.05). High-throughput sequencing revealed that Fusobacteria, Proteobacteria, and Bacteroidetes bacteria were most abundant in the microbial community in the gut of the common carp. The relative abundances of Bacteroides, Flavobacterium and Lactobacillus were increased, while the abundances of pathogenic microorganisms such as Enterobacteriaceae, Shewanella, Pseudomonas and Vibrio were reduced after treatment with CYP. Furthermore, the concentrations of acetic acid, propionic acid, butyric acid and total short-chain fatty acids (SCFAs) in the gut were also increased (P<0.05). Finally, our results revealed correlations between gut microbiota, SCFAs, non-specific immunity and antioxidant enzymes in CYP-fed carp. These results suggest that CYP-supplemented feed could improve the immunity of the common carp by modulating the intestinal microflora and enhancing the gut defence barrier and has the potential to be used as an immunostimulating feed additive in aquaculture.
Collapse
Affiliation(s)
- Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, PR China
| | - Wenpan Hu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Shengkui Wu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhenxiang Zhu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, PR China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, PR China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, PR China
| | - Liping Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
42
|
Wang K, Zhang H, Han Q, Lan J, Chen G, Cao G, Yang C. Effects of astragalus and ginseng polysaccharides on growth performance, immune function and intestinal barrier in weaned piglets challenged with lipopolysaccharide. J Anim Physiol Anim Nutr (Berl) 2019; 104:1096-1105. [PMID: 31724241 DOI: 10.1111/jpn.13244] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/07/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022]
Abstract
This experiment was conducted to evaluate the effects of astragalus polysaccharides (Aps) and ginseng polysaccharide (Gps) on growth performance, liver function, immune function, TLR4 signalling pathways and intestinal barrier in weaned piglets challenged with lipopolysaccharide (LPS). In an experiment spanning 28 days, 180 weaned piglets were randomly divided into three treatment groups: basal diet (Con), basal diet supplemented with 800 mg/kg Gps (Gps) and basal diet supplemented with 800 mg/kg Aps (Aps). At the end of the experiment, 12 piglets of each group were selected; half (n = 6) were intraperitoneally injected with LPS and half with normal saline. Dietary supplementation with Aps and Gps significantly increased (p < .05) the average daily gain and feed conversion rate. Lipopolysaccharide challenge increased (p < .05) expression of serum urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-1β (IL-1β) and tumour inflammatory factor-α (TNF-α), but decreased (p < .05) serum superoxide dismutase (SOD) level, total antioxidant capacity (T-AOC) and immunoglobulin A (IgA) expression. Lipopolysaccharide-challenged piglets fed with Aps or Gps had lower (p < .05) BUN, ALT, AST, IL-1β and TNF-α levels and greater (p < .05) SOD, T-AOC and IgA levels. Lipopolysaccharide challenge increased (p < .05) the expression of TLR4, MyD88 and NF-κB, and LPS-challenged piglets fed diets supplemented with Aps or Gps increased TLR4 and MyD88 and decreased NF-κB expression. Lipopolysaccharide challenge reduced (p < .05) the jejunal villus height, and piglets fed with Aps or Gps had increased (p < .05) jejunal villus height. Supplementation with Aps or Gps enhanced the expression of occludin and claudin in challenged or unchallenged piglets. In conclusion, dietary supplementation with Aps or Gps enhanced piglet growth performance, alleviated liver dysfunction and reduced immunological stress caused by LPS, as well as increased the intestinal barrier function.
Collapse
Affiliation(s)
- Kangli Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Qianjie Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Junhong Lan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Guangyong Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| | - Guangtian Cao
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, The Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
43
|
Song X, Feng Z, Zhang Y, Zhu W. Regulation of dietary astragalus polysaccharide (APS) supplementation on the non-specific immune response and intestinal microbiota of sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 94:517-524. [PMID: 31542494 DOI: 10.1016/j.fsi.2019.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Astragalus polysaccharide (APS) plays important roles in antibacterial, antiviral and antiparasitic activities in mammals, birds and aquatic animals. However, the relationship between non-specific immune responses and intestinal microbiota in sea cucumber (Apostichopus japonicus) after dietary APS supplementation has not been reported to date. Here, the effect of dietary APS supplementation on the non-specific immune response and intestinal microbial composition and species distribution of sea cucumber was explored. We found that although there was no significant effect on sea cucumber growth, the enzymatic activity and expression level of immune- and antioxidant-related genes changed after dietary APS supplementation. Furthermore, the intestinal microbial composition and species distribution of sea cucumber were different at the phylum and genus levels after dietary APS supplementation. The phyla Proteobacteria and Bacteroidetes were significantly different between the APS2 group and CK group. The results of PCA and PCoA analysis also showed that the APS2 group was significantly different compared to the other groups. Finally, analysis of the relationship between non-specific immune responses and the intestinal microbiota showed that the expression level of NF-κB was significantly correlated with intestinal microbiota at the genus level. This finding suggests that dietary APS supplementation might affect the non-specific immune response and intestinal microbiota of sea cucumber through the NF-κB signalling pathway; the appropriate added level was 800 mg/kg. Taken together, our results lay a foundation for further understanding the relationship between non-specific immune responses and intestinal microbial of sea cucumber.
Collapse
Affiliation(s)
- Xiaojun Song
- Laboratory for Animal Nutrition and Immune Molecular Biology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhengfu Feng
- Laboratory for Animal Nutrition and Immune Molecular Biology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanping Zhang
- Laboratory for Animal Nutrition and Immune Molecular Biology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Zhu
- Laboratory for Animal Nutrition and Immune Molecular Biology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
44
|
Gong Y, Yang F, Hu J, Liu C, Liu H, Han D, Jin J, Yang Y, Zhu X, Yi J, Xie S. Effects of dietary yeast hydrolysate on the growth, antioxidant response, immune response and disease resistance of largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2019; 94:548-557. [PMID: 31539573 DOI: 10.1016/j.fsi.2019.09.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 05/13/2023]
Abstract
A 56-day growth trial was conducted to investigate the effects of dietary yeast hydrolysate on the growth performance, antioxidation, immune response and resistance against Aeromonas hydrophila in largemouth bass. Four experimental diets were prepared with yeast hydrolysate levels of 0% (Y0), 1.5% (Y1.5), 3.0% (Y3.0) and 4.5% (Y4.5). Each diet was randomly assigned to triplicate 150-L tanks and each tank was stocked with 30 largemouth bass (initial body weight, IBW = 7.71 ± 0.02 g). A challenge test was carried out after the feeding trial by injecting A. hydrophila intraperitoneally for 4-day observation. The results showed that the FBW and WGR in Y1.5 group were significantly higher than those in Y0 group (P < 0.05) and the feed conversion ratio (FCR) got the lowest value in Y1.5 group. And the hydrolysate supplement significantly increased the 4-day cumulative survival rate after the bacterial challenge (P < 0.05). The plasma malondialdehyde was lower in the yeast hydrolysate supplement groups in both pre- and post-challenge test (P < 0.05), while the plasma C3 increased (P < 0.05). In post-challenge test, the plasma superoxide dismutase (SOD) and catalase (CAT) activities increased in the Y1.5 and Y3.0 groups respectively (P < 0.05), and plasma lysozyme in Y1.5 group and the plasma IgM in Y3.0 group were higher than those in others respectively (P < 0.05). For the q-PCR results, in post-challenge test, the hepatic hep2 expression level in Y1.5 and Y4.5 groups were both significantly higher than those in others (P < 0.05), as well as il-8 in Y3.0 group. The spleen hif-1alpha and tgf-beta1 expression levels in Y4.5 group were all significantly lower than those in others (P < 0.05), while the gilt was significantly higher (P < 0.05) in the post-challenge test. And the expression levels of spleen tnf-alpah1 in Y1.5 and Y3.0 groups and il-8 in Y3.0 group were all significantly higher than those in other groups (P < 0.05) in the post-challenge test. The head kidney gilt expression level was significantly higher in the yeast hydrolysate supplement groups compared with the Y0 group (P < 0.05), and the head kidney il-8 expression level in Y1.5 group was significant higher than those in other groups in post-challenge test (P < 0.05). The present results indicated dietary yeast hydrolysate improved the antioxidant ability and enhanced the immune response of largemouth bass without negative effect on growth. And 1.5% or 3.0% of dietary yeast hydrolysate was recommended for largemouth bass based on the present results.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Fan Yang
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang, Hubei, PR China
| | - Junpeng Hu
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang, Hubei, PR China
| | - Cui Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China.
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China; Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, PR China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China; Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, PR China
| | - Jianhua Yi
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang, Hubei, PR China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China; Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, Hubei, PR China
| |
Collapse
|
45
|
Dietary dl-methionyl-dl-methionine supplementation increased growth performance, antioxidant ability, the content of essential amino acids and improved the diversity of intestinal microbiota in Nile tilapia (Oreochromis niloticus). Br J Nutr 2019. [DOI: 10.1017/s0007114519002289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe dipeptide dl-methionyl-dl-methionine (Met-Met) has extremely low water solubility and better absorption than other methionine sources (such as dl-methionine and l-methionine) available in the market. Therefore, six diets (D1, D2, D3, D4, D5 and D6) containing 0, 0·07, 0·15, 0·21, 0·28 and 0·38 % Met-Met were formulated to investigate the effects of Met-Met in juvenile Nile tilapia, Oreochromis niloticus (17 g initial body weight). The results indicated that percentage weight gain and specific growth rate of fish fed with D2 and D3 diets were higher than those fed with D1, D4–D6 diets. The levels of total essential amino acid in whole body of fish fed with D3 and D4 diets were significantly higher than those fed the D1 diet. Superoxide dismutase activity and malondialdehyde content have no significant difference in fish fed the diet with or without Met-Met supplementation. Majority of reads derived from the fish intestine belonged to members of Fusobacteria, followed by Bacteroidetes and Proteobacteria. Diversity of intestinal microbiota and total antioxidant capacity in fish fed with D3 diet was significantly higher than that of other groups. Based on the growth results, the authors conclude that the optimal level of Met is 0·61 % Met with the addition of 0·15 % Met-Met for grower-phase O. niloticus.
Collapse
|
46
|
Wu C, Shan J, Feng J, Wang J, Qin C, Nie G, Ding C. Effects of dietary Radix Rehmanniae Preparata polysaccharides on the growth performance, immune response and disease resistance of Luciobarbus capito. FISH & SHELLFISH IMMUNOLOGY 2019; 89:641-646. [PMID: 30991149 DOI: 10.1016/j.fsi.2019.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
This work explores the effects of dietary Radix Rehmanniae Preparata polysaccharide (RRPP) supplementation on the growth performance, nonspecific immune responses, immune- and growth-related gene expression and disease resistance to Aeromonas hydrophila in Luciobarbus capito. Diets containing five concentrations of 0%, 0.05%, 0.1%, 0.2% and 0.4% RRPP were fed to fish for 60 d. The results indicated that the growth performance significantly increased in the 0.1%, 0.2% and 0.4% RRPP groups compared with that in the control (P < 0.05). The activities of serum lysozyme (LAZ), acid phosphatase (ACP), superoxide dismutase (SOD), alkaline phosphatase (AKP) and total protein (TP) were significantly increased in the appropriate RRPP supplemented groups (P < 0.05). With respect to immune- and growth-related genes, such as interleukin (IL)-1β, IL-8, tumor-necrosis factor (TNF)-α, interferon (IFN)-γ, growth hormone (GH), insulin-like growth factor (IGF)-I and IGF-II, up-regulation were observed in the three organs (kidney, spleen, gut) of the fish fed with RRPP, compared with the control. In contrast, the mRNA expression of IL-10 and transforming-growth factor (TGF)-β were downregulated. After challenge with A. hydrophila, the final survival rate was significantly higher in fish fed the RRPP supplement than that in the control group (P < 0.05). In conclusion, RRPP enhanced the growth performance, immune response and disease resistance of Luciobarbus capito, with the greatest effects at 0.2% RRPP.
Collapse
Affiliation(s)
- Chun Wu
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, 223800, China
| | - Jinfeng Shan
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, 223800, China
| | - Junchang Feng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Junli Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Chenlong Ding
- Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian, 223800, China.
| |
Collapse
|
47
|
Zhu W, Zhang Y, Zhang J, Yuan G, Liu X, Ai T, Su J. Astragalus polysaccharides, chitosan and poly(I:C) obviously enhance inactivated Edwardsiella ictaluri vaccine potency in yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2019; 87:379-385. [PMID: 30690155 DOI: 10.1016/j.fsi.2019.01.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is an economically important fish in China, but Edwardsiella ictaluri, an intracellular pathogenic bacterium, causes great losses to the culture industry. Currently, vaccination is the most promising strategy to combat the infectious diseases, while adjuvant can provide effective assistant for vaccines to enhance immune responses. In the present study, inactivated E. ictaluri vaccine was prepared, then Astragalus polysaccharides (APS), chitosan and poly(I:C) were employed as adjuvants to evaluate the effect on boosting immune responses and protecting yellow catfish against E. ictaluri. The survival rate was obviously improved after vaccination with APS, chitosan or poly(I:C) respectively, in addition, these three adjuvants could clearly protect the target tissue (intestine) by pathological sections in infectious experiments. In sera, total protein levels increased throughout the immunization stages, total superoxide dismutase levels continued to raise after vaccination, and lysozyme activity levels improved at different periods, examining by the commercial kits. Moreover, checking by real time quantitative RT-PCR assays, in both spleen and head kidney tissues which were the major immune organs, mRNA expressions of inflammatory cytokine IL-1β increased in the early stage of immunity, typical Th1 immune response cytokines IL-2 and IFN-γ2 rose up in the whole immune period, and IgM significantly enhanced in the adjuvant supplementation groups. The results demonstrated the good efficiency of APS, chitosan or poly(I:C) as adjuvant, and provided more options for the fish adjuvants.
Collapse
Affiliation(s)
- Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiacheng Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taoshan Ai
- Wuhan Chopper Fishery Bio-Tech Co.,Ltd, Wuhan Academy of Agricultural Science, Wuhan, 430207, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
48
|
Farag MR, Elhady WM, Ahmed SYA, Taha HSA, Alagawany M. Astragalus polysaccharides alleviate tilmicosin-induced toxicity in rats by inhibiting oxidative damage and modulating the expressions of HSP70, NF-kB and Nrf2/HO-1 pathway. Res Vet Sci 2019; 124:137-148. [PMID: 30901666 DOI: 10.1016/j.rvsc.2019.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/02/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
The present study evaluated the toxic effects of Tilmicosin (TIL) on adult rats. The rats received a single subcutaneous injection of TIL at different doses (10, 25, 50, 75 and 100 mg/kg bw). TIL altered the biochemical parameters including liver and kidney function markers, glucose level and lipid profile as well as resulted in histopathological lesions in liver and adrenal glands mostly in rats exposed to 75 and 100 mg/kg bw. Then the role of Astragalus polysaccharide (APS) at 100 and 200 mg/kg bw, in modulating the toxic effects induced by high dose of TIL was evaluated. Single injection of TIL at a dose of 75 mg/kg bw was found to increase the activity of ALT, AST and ALP enzymes, induce the generation of reactive oxygen species (ROS) and decrease the total antioxidant capacity (TAC). TIL upregulated the hepatic mRNA expression of heat shock protein 70 (HSP70) and nuclear factor kappa B (NF-kB) while blocked the Nrf2/HO-1 mediated response. These changes were also associated with increasing tumer necrosis factor-alpha (TNF-α), interlukin1-beta (IL-1β) and nitric oxide levels. On the other hand, the results indicate that APS has a beneficial role particularly at high level in alleviating the stress and the hepatotoxic effects elicited by TIL injection in rats.
Collapse
Affiliation(s)
- Mayada Ragab Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt.
| | - Wlaa M Elhady
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Sarah Y A Ahmed
- Microbiology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Heba S A Taha
- Genetic Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
49
|
Mohan K, Ravichandran S, Muralisankar T, Uthayakumar V, Chandirasekar R, Seedevi P, Abirami RG, Rajan DK. Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1177-1193. [PMID: 30599257 DOI: 10.1016/j.fsi.2018.12.072] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 05/15/2023]
Abstract
The use of antibiotics in the feeds of cultivable aquatic animals has been generally practised to reduce infectious diseases as well as to improve the survival and growth. In recent years, many countries ban to aquatic animals due to the use of large amount of antibiotics and chemotherapies, thus alternative novel strategies are need to promote the growth of aquatic animals and control the pathogens. Dietary supplementation of marine-derived polysaccharides (MDPs) is one of the potential substitutes for antibiotics in aquatic animal feeds. Recently, the use of dietary MDPs in the aquaculture animals has been focused with much interest. In aquaculture, MDPs are used as prebiotic substance which is mostly accepted as a nutritional component for improving the growth performance and health conditions. Hence, present review is a comprehensive and an updated collection of available research reports on different MDPs (alginate, fucoidan, carrageenan, laminarin, ulvan, galactan, agar, chitin and chitosan), route of administration, dosage and applications for improving aqua feeds with emphasis on its effects on growth, biochemical indices, immune response, gut microbiota and disease resistance of aquaculture animals. This review describes the sustainability of global aquaculture production by providing a best alternative to harmful antibiotics, thereby meeting the emerging consumer demand for antibiotic-free aquatic food products.
Collapse
Affiliation(s)
- Kannan Mohan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India.
| | - Samuthirapandian Ravichandran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India
| | - Thirunavukkarasu Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | | | | | - Palaniappan Seedevi
- Department of Environmental Science, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Ramu Ganesan Abirami
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, 5529, Fiji
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India
| |
Collapse
|
50
|
Rahimnejad S, Yuan X, Wang L, Lu K, Song K, Zhang C. Chitooligosaccharide supplementation in low-fish meal diets for Pacific white shrimp (Litopenaeus vannamei): Effects on growth, innate immunity, gut histology, and immune-related genes expression. FISH & SHELLFISH IMMUNOLOGY 2018; 80:405-415. [PMID: 29908322 DOI: 10.1016/j.fsi.2018.06.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated the effects of supplementing chitooligosaccharide (COS) in low fish meal (FM) diets on growth, immune response, intestine and hepatopancrease histology, and expression of inflammatory and immune-related genes in Pacific white shrimp (Litopenaeus vannamei). A basal diet was formulated using FM and soybean meal (SM) as primary protein sources and considered as a high FM (HFM) diet, then a low FM (LFM) diet was prepared by substituting 50% of FM with SM and supplemented with 0, 0.3, 0.6, 0.9, 1.2 or 1.5 g COS kg-1 diet (LFM, COS3, COS6, COS9, COS12 and COS15 diets). Each diet was fed to quadruplicate groups of shrimp (0.9 g) to apparent satiation three times daily for eight weeks. At the end of the experiment no significant changes in growth and survival rate were observed among treatments (P > 0.05). FM replacement led to significant (P < 0.05) reduction of serum lysozyme activity and significant improvements were obtained by adding 0.3 or 0.6 g kg-1 COS to the LFM diet. A significant decrease in nitric oxide synthase activity was found in LFM group and no beneficial effects could be achieved by COS application. LFM group showed higher hepatopancrease superoxide dismutase and glutathione peroxidase activities than HFM group and further enhancements were obtained by COS application. Hepatopancrease total antioxidant capacity and alkaline phosphatase activity decreased in LFM group and COS supplementation improved their values. Expression of lysozyme, crustin, Pen3 and proPo genes were significantly up-regulated in hepatopancrease of groups received 0.3-0.9 g COS kg-1 diet. FM substitution enhanced the expression of HSP70 and inflammatory genes such as AIF and TNF in hepatopancrease and intestine, and COS administration at a moderate level down-regulated their expression level. Remarkable enhancement in intestinal fold height was obtained by inclusion of 0.3 or 0.6 g COS kg-1 diet compared to the group received LFM diet. Shrimps fed HFM and COS containing diets exhibited higher number of E-cells within their hepatopancrease tubules than the LFM group. The findings in this study clearly demonstrated that COS could enhance non-specific immune response and antioxidant activity, and ameliorate the negative impacts of high SM diets on gut and hepatopancrease health in pacific white shrimp. The optimum inclusion level of COS seems to be 0.3-0.6 g kg-1 of diet.
Collapse
Affiliation(s)
- Samad Rahimnejad
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Xiangli Yuan
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|