1
|
Orzuna-Orzuna JF, Granados-Rivera LD. Growth performance, antioxidant status, intestinal morphology, and body composition of Nile tilapia (Oreochromis niloticus) supplemented with essential oils: A meta-analysis. Res Vet Sci 2024; 176:105353. [PMID: 38972293 DOI: 10.1016/j.rvsc.2024.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
This study aimed to evaluate the effects of dietary supplementation with essential oils (EOS) on growth performance, antioxidant status in blood serum, intestinal morphology, and whole-body composition of Nile tilapia (Oreochromis niloticus) through a meta-analytic approach. The search and collection of scientific articles were conducted using the PRISMA methodology, and 45 full-text scientific articles were obtained. The data used in the meta-analysis were extracted from these 45 documents. The effect size was assessed through weighted mean differences (WMD) using Der-Simonian and Laird random effects models. Dietary supplementation with EOS increased (P < 0.001) final weight, body weight gain, specific growth rate, feed intake, protein efficiency ratio, and survival but decreased (P < 0.001) feed conversion ratio. In blood serum, EOS supplementation decreased (P < 0.001) the concentration of malondialdehyde and increased (P < 0.001) the concentration of catalase, superoxide dismutase, and glutathione peroxidase. In the foregut, midgut, and hindgut, greater (P < 0.01) villus height, villus width, and number of goblet cells were observed in response to EOS supplementation. EOS supplementation increased (P < 0.01) crude protein content and decreased (P < 0.05) crude lipid content in the whole-body. In conclusion, essential oils can be used as a dietary additive to improve growth performance, antioxidant status in blood serum, and intestinal morphology in Nile tilapia. Likewise, supplementation with essential oils increases the protein content and decreases the fat content in the whole-body of Nile tilapia.
Collapse
Affiliation(s)
- José Felipe Orzuna-Orzuna
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo C.P. 56230, State of Mexico, Mexico.
| | - Lorenzo Danilo Granados-Rivera
- Campo Experimental General Terán, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, General Terán C.P. 67400, Nuevo León, Mexico
| |
Collapse
|
2
|
Sharif A, Hussain SM, Ali S, Rizwan M, Al-Ghanim KA, Yong JWH. Exploring the effects of supplementing monoterpenoids in Moringa oleifera based-diet in Oreochromis niloticus: Improving the growth performance, feed efficiency, digestibility and body composition. Heliyon 2024; 10:e34412. [PMID: 39816352 PMCID: PMC11734061 DOI: 10.1016/j.heliyon.2024.e34412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Monoterpenoids are interesting hydrocarbons typically found in essential oils and have a significant role in medicinal and biological purposes. The goal of this study was to investigate the effects of two monoterpenoids, carvacrol (CAR) and menthol (MEN), supplemented with Moringa oleifera leaf meal (MOLM) based diets on growth parameters, digestibility and body composition of Nile tilapia (Oreochromis niloticus). Alongside the basal diet (control-T1), nine experimental diets supplemented with categorized levels of CAR and MEN at 200, 300 and 400 mg/kg individually and their mixtures (MIX) (1:1) (CAR-T2, 200; T3, 300; T4, 400 mg/kg, MEN-T5, 200; T6, 300; T7, 400 mg/kg and MIX- (1:1) T8, 200; T9, 300; T10, 400 mg/kg) were fed to the fingerlings (6.55 ± 0.03 g) for the period of 60 days. Monoterpenoids supplementation led to significantly (p<0.05) better growth, feed utilization and nutrient digestibility in comparison to the control group. The highest growth, feed efficiency and nutrient digestibility were noticed in fishes fed with a diet supplemented with 200 mg/kg MIX. Interestingly, fishes fed with diets containing monoterpenoids had significantly higher levels of protein and ash, but with lower lipid in comparison to the control group. Conclusively, the dietary supplements like CAR and MEN improved the health status of Nile tilapia when given either individually or in a mixture,. Specifically, the MIX at 200 mg/kg was the optimal supplementation for the fishes.
Collapse
Affiliation(s)
- Aqsa Sharif
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
3
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
4
|
Cardoso L, Owatari MS, Chaves FCM, Bastolla CLV, Saldaña-Serrano M, Mouriño JLP, Martins ML. Dietary supplementation with Lippia sidoides essential oil improves organ integrity but the specific activity of antioxidant enzymes is dose-dependent in Danio rerio. J Anim Physiol Anim Nutr (Berl) 2024; 108:374-382. [PMID: 37899705 DOI: 10.1111/jpn.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
The nutritional quality of food can affect the health of animals. This study examined the effects of dietary supplementation with Lippia sidoides essential oil (LSEO) on the physiology of Danio rerio. Four hundred fourty-eight fish were divided into 28 tanks and subjected to different dietary treatments: a control group with no supplementation, a group with grain alcohol supplementation and five groups with LSEO at concentrations of 0.25%, 0.50%, 0.75%, 1.00% and 1.25%. After 15 days, histological and enzymatic analyses were conducted. The 0.25% LSEO group exhibited lower glutathione peroxidase and catalase activity compared to the 1.00% group. Additionally, fish in the 0.25% LSEO group showed improved liver, kidney and splenic integrity indices. These findings support the inclusion of 0.25% LSEO in the diet of D. rerio, suggesting potential benefits for fish physiology and encouraging further research on phytotherapeutics in fish diets.
Collapse
Affiliation(s)
- Lucas Cardoso
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Marco Shizuo Owatari
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | | | - Camila Lisarb Velasquez Bastolla
- LABCAI-Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, CCB, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Miguel Saldaña-Serrano
- LABCAI-Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, CCB, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - José Luiz Pedreira Mouriño
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Maurício Laterça Martins
- AQUOS-Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
5
|
Cardoso L, Owatari MS, Chaves FCM, Ferreira TH, Costa DS, Furtado WE, Tedesco M, Honorato LA, Mouriño JLP, Martins ML. Lippia sidoides essential oil at concentration of 0.25% provided improvements in microbiota and intestine integrity of Danio rerio. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e005323. [PMID: 38362241 PMCID: PMC10868529 DOI: 10.29374/2527-2179.bjvm005323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
The study evaluated the effects of dietary supplementation with Lippia sidoides essential oil on the microbiota and intestinal morphology of Danio rerio. For this, 448 fish were randomly distributed in 28 tanks divided into a control group fed a commercial diet without supplementation, a group fed a commercial diet containing grain alcohol and five groups fed a commercial diet containing essential oil of L. sidoides (LSEO) at concentrations of 0.25%, 0.50%, 0.75%, 1.00% and 1.25%. After the period of dietary supplementation, biological materials were collected for microbiological and histological analyses. There were no significant differences regarding the microbiological count between the groups. Diversity of the microbiome was higher in 0.25% group than in control group. LSEO inhibited the growth of potentially pathogenic bacteria. Fish fed LSEO0.25% showed greater intestinal histomorphometric indices. The inclusion of LSEO at 0.25% in the diet of D. rerio provided improvements in fish microbiota and intestine integrity.
Collapse
Affiliation(s)
- Lucas Cardoso
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Marco Shizuo Owatari
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | | | - Tamiris Henrique Ferreira
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Domickson Silva Costa
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - William Eduardo Furtado
- Aquaculture engineer, DSc., Departamento de Doenças Infecciosas e Saúde Pública, Colégio do Jockey Club de Medicina Veterinária e Ciências da Vida, Universidade da Cidade de Hong Kong, Hong Kong, China.
| | - Marília Tedesco
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | | | - José Luiz Pedreira Mouriño
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Maurício Laterça Martins
- Aquaculture engineer. DSc., Aquatic Organisms Health Laboratory (AQUOS), Departamento de Aquicultura, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
6
|
Rahman ANA, Altohamy DE, Elshopakey GE, Abdelwarith AA, Younis EM, Elseddawy NM, Elgamal A, Bazeed SM, Khamis T, Davies SJ, Ibrahim RE. Potential role of dietary Boswellia serrata resin against mancozeb fungicide-induced immune-antioxidant suppression, histopathological alterations, and genotoxicity in Nile tilapia, Oreochromis niloticus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106738. [PMID: 37922777 DOI: 10.1016/j.aquatox.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
This study was established to look into the toxicological consequences of chronic exposure to a fungicide (mancozeb; MAZ) on the immune-antioxidant response, gene expressions, hepato-renal functions, and histological pictures of Nile tilapia (Oreochromis niloticus). Additionally, the effectiveness of Indian frankincense resin extract (IFRE) to mitigate their toxicity was taken into account. Fish (n =240; average body weight: 22.45 ± 2.21 g) were randomized into four groups for eight weeks in six replicates (control, IFRE, MAZ, and IFRE + MAZ), where ten fish were kept per replicate. The control and IFRE groups received basal diets that included 0.0 and 5 g/kg of IFRE without MAZ exposure. The MAZ and IFRE+MAZ groups received the same diets and were exposed to 1/10 of the 96-h of LC50 of MAZ (1.15 mg/L). The outcomes displayed that MAZ exposure resulted in a lower survival rate (56.67 %) and significantly decreased levels of immune-antioxidant variables (antiprotease, complement3, phagocytic activity, lysozyme, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to the control group. The MAZ-exposed fish showed the greatest levels of lipid peroxide (malondialdehyde), alkaline phosphatase, alanine amino-transferase, and stress indicators (cortisol and glucose). Additionally, histopathological alterations, including vacuolation, severe necrosis, degeneration, and mononuclear cell infiltrations in the hepatic, renal, and splenic tissues resulted, besides a reduction in the melanomacrophage center in the spleen. A down-regulation of immune-antioxidant-associated genes [toll-like receptors (TLR-2 and TLR-7), nuclear factor kappa beta (NF-κβ), transforming growth factor-beta (TGF-β), phosphoinositide-3-kinase regulatory subunit 3 gamma b (pik3r3b), interleukins (IL-1β and IL-8), glutathione synthetase (GSS), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] were the consequences of the MAZ exposure. Remarkably, the dietary inclusion of IFRE in MAZ-exposed fish augmented the immune-antioxidant parameters, including their associated genes, decreased stress response, and increased survival rate (85 %) compared with the MAZ-exposed fish. Moreover, dietary IFRE improved hepato-renal function indices by preserving the histological architecture of the hepatic, renal, and splenic tissues. The insights of this study advocate the use of an IFRE-dietary addition to protect Nile tilapia from MAZ toxicity, which provides perspectives for future implementations in enhancing fish health for sustainable aquaculture.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Dalia E Altohamy
- Department of Pharmacology, Central Laboratory, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Nora M Elseddawy
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Shefaa M Bazeed
- Department of Biochemistry and Animal Physiology, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway H91V8Y1, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
7
|
Miao Z, Miao Z, Feng S, Xu S. Chlorpyrifos-mediated mitochondrial calcium overload induces EPC cell apoptosis via ROS/AMPK/ULK1. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109053. [PMID: 37661036 DOI: 10.1016/j.fsi.2023.109053] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Chlorpyrifos (CPF) is a typical organophosphate insecticide known to has serious toxicological effects on aquatic animals and causes many environmental contamination problems. To assess the effects of CPF on the epithelioma papulosum cyprini (EPC) cells of the common carps from the point of calcium ion (Ca2+) transport, the CPF-exposed EPC models were primarily established, and both AO/EB staining and Annexin V/PI assay with flow cytometry analysis were subsequently implemented to identify that CPF-induced EPC cell apoptosis, in consistent with the up-regulated expression of BAX, Cyt-c, CASP3 and CASP9, and down-regulated BCL-2 expression. Then, Mag-Fluo-4 AM, Fluo-4 AM and Rhod-2 AM staining probes were co-stained with ER-Tracker Red and Mito-Tracker Green applied to image cellular Ca2+ flux, illuminating Ca2+ depleted from ER and flux into mitochondria, resulting in ER stress and mitochondrial dysfunction. Additionally, 2-Aminoethyl Diphenylborinate (2-APB), 4-Phenylbutyric acid (4-PBA) and Dorsomorphin (Compound C) were performed as the inhibitor of Ca2+ transition, ER stress and AMPK phosphorylation, suggesting CPF-mediated Ca2+ overload triggered ER stress. And the over-generation of Mito-ROS intensified oxidative stress, promoting the phosphorylation of AMPK and deteriorating cell apoptotic death. The results of this study demonstrated Ca2+ overload-dependent mitochondrial dysfunction engages in the CPF-induced apoptosis, providing a novel concept for investigating the toxicity of CPF as environmental pollution on aquatic organisms.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shuang Feng
- Large Scale Instrument and Equipment Sharing Service Platform, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
8
|
Liu J, Zhang W, Li X, Xu S. New Insights into Baicalein's Effect on Chlorpyrifos-Induced Liver Injury in Carp: Involving Macrophage Polarization and Pyropto sis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4132-4143. [PMID: 36848483 DOI: 10.1021/acs.jafc.2c08580] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorpyrifos (CPF) is widely used in agriculture, plants, and buildings to kill pests and worms. Excessive environmental residues of CPF will result in soil and ecological contamination and toxicity to animals and humans. Baicalein (Bai), derived from the root of natural Scutellaria baicalensis, is a potent anti-inflammatory, antioxidant, and antitumor agent. The objective of this paper is to investigate the molecular mechanism by which Bai prevents CPF-induced hepatotoxic injury. Carp were kept in water containing CPF (23.2 μg/L) and/or fed diets containing Bai (0.15 g/kg). We found that Bai attenuated liver tissue damage and vacuolization caused by CPF. We confirmed that CPF causes M1/M2 polarization imbalance in macrophages and hepatocyte pyroptosis, which ultimately leads to liver injury. Further exploration of the internal mechanism shows that CPF participates in liver toxicity damage by destroying the AMPK/SIRT1/pGC-1α pathway and causing mitochondrial biogenesis and mitochondrial dynamics imbalance. Notably, Bai significantly attenuated CPF-induced inhibition of the AMPK/SIRT1/pGC-1α pathway. In summary, our results suggest that Bai alleviates CPF exposure-induced inhibition of the AMPK/SIRT1/pGC-1α pathway, thereby attenuating macrophage M1 hyperpolarization and pyroptosis by inhibiting the NF-κB pathway. These results may provide new insights into the detoxification mechanism of Bai on the same type of organophosphorus pesticides.
Collapse
Affiliation(s)
- Jing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
9
|
Negm SS, Abd El-Hack ME, Alagawany M, Patra AK, Naiel MAE. The Beneficial Impacts of Essential Oils Application against Parasitic Infestation in Fish Farm. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:194-214. [DOI: 10.2174/9789815049015122010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Aquaculture is a growing sector due to the high rising demand for fish, shrimp, oysters, and other products, which is partially conflicted by various infectious diseases. The infectious diseases affecting the production and inducing high mortalities cause substantial economic losses in this sector. Also, parasitic infections may induce severe mortality and morbidity in fish farms. Therefore, most farmers apply several kinds of antibiotics to control the problems induced by bacterial diseases and, to some extent, parasitic infections. The extensive usage of antibiotics to control or prevent pathogens may lead to the development of pathogenic resistant strains that might cause hazards to human health. Besides, there is a global trend toward reducing the application of antibiotics in aquaculture farms. Thus, there is a great effort to discover new natural and safe products with pharmaceutical properties, such as natural essential oils (EO). Essential oils are secondary metabolites of many plants (roots, flowers, seeds, leaves, fruits and peels) and their molecular structures provide a high antimicrobial and antiparasitic efficiency against pathogens. Consequently, it is essential to provide sufficient knowledge about the mode of action of EO against fish parasites and its future applications and directions in aquaculture.
Collapse
Affiliation(s)
- Samar S. Negm
- Agriculture Research Centre,Fish Biology and Ecology Departmen,Giza,Egypt
| | | | | | - Amlan Kumar Patra
- West Bengal University of Animal and Fishery Sciences,Department of Animal Nutrition,Kolkata,India
| | | |
Collapse
|
10
|
Sun Q, Liu Y, Teng X, Luan P, Teng X, Yin X. Immunosuppression participated in complement activation-mediated inflammatory injury caused by 4-octylphenol via TLR7/IκBα/NF-κB pathway in common carp (Cyprinus carpio) gills. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106211. [PMID: 35667248 DOI: 10.1016/j.aquatox.2022.106211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
4-octylphenol (4-OP), a toxic estrogenic environmental pollutant, can threaten aquatic animal and human health. However, toxic effect of 4-OP on fish has not been reported. To investigate molecular mechanism of gill poisoning caused by 4-OP exposure, a carp 4-OP poisoning model was established, and then blood and gills were collected on day 60. The results demonstrated that gill was a target organ attacked by 4-OP, and exposure to 4-OP caused carp gill inflammatory injury. There were 1605 differentially expressed genes (DEGs, including 898 up-regulated DEGs and 707 down-regulated DEGs). KEGG and GO were used to further analyze obtained 1605 DEGs, indicating that complement activation, immune response, and inflammatory response participated in the mechanism of 4-OP-caused carp gill inflammatory injury. Our data at transcription level further revealed that 4-OP caused complement activation through triggering complement component 3a/complement component 3a receptor (C3a/C3aR) axis and complement component 5a/complement component 5a receptor 1 (C5a/C5aR1) axis, induced immunosuppression through the imbalances of T helper (Th) 1/Th2 cells and regulatory T (Treg)/Th17 cells, as well as caused inflammatory injury via toll like receptor 7/inhibitor kappa B alpha/nuclear factor-kappa B (TLR7/IκBα/NF-κB) pathway. Taken together, immunosuppression participated in complement activation-mediated inflammatory damage in carp gills after 4-OP treatment. The findings of this study will provide pioneering information and theoretical support for the mechanism of 4-OP poisoning, and will provide reference for the assessment of estrogenic environmental pollution risk.
Collapse
Affiliation(s)
- Qi Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojie Teng
- Grassland Station in Heilongjiang Province, Harbin 150067, China
| | - Peng Luan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Farag MR, Alagawany M, Khalil SR, El-Hady EW, Elhady WM, Ismail TA, Marini C, Di Cerbo A, Abdel-Latif HMR. Immunosuppressive Effects of Thallium Toxicity in Nile Tilapia Fingerlings: Elucidating the Rescue Role of Astragalus membranaceus Polysaccharides. Front Vet Sci 2022; 9:843031. [PMID: 35754552 PMCID: PMC9218348 DOI: 10.3389/fvets.2022.843031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the immunotoxic effects of thallium (Tl) in Nile tilapia fingerlings and the recovery role of dietary Astragalus membranaceus polysaccharides (ASs). An 8-week experiment was designed where 180 fishes were randomly and equally assigned in triplicates into the six groups: the control group (CNT) was reared in unpolluted water and fed a commercial diet, two groups were fed a well-balanced commercial diet plus 1.5 and 3.0 g AS/kg diet (AS0.15 and AS0.30), respectively, the fourth group was exposed to a sublethal dose of Tl (41.9 μg l-1) [equal to 1/10 of 96-h lethal concentration 50 (LC50)], and the last two groups were fed 0.15 and 0.3% AS, respectively, and concurrently exposed to Tl (41.9 μg l-1) (AS0.15+Tl and AS0.30+Tl). Fish hematobiochemical parameters, serum immunity [nitric oxide, total immunoglobulin M (IgM) levels, and lysozyme activity], transcription of hepatic interferon-γ (IFN-γ), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and resistance to Aeromonas hydrophila (A. hydrophila) were assessed. Hematobiochemical parameters and serum immune indices were significantly decreased in the fish group exposed to sublethal Tl concentration compared to the CNT group. Furthermore, Tl exposure significantly induced overexpression of IL-1β, TNF-α, and IFN-γ genes (4.22-, 5.45-, and 4.57-fold higher, respectively) compared to CNT values. Tl exposure also increased the cumulative mortality (%) in Nile tilapia challenged with A. hydrophila. Remarkably, the groups fed AS0.15+Tl and AS0.30+Tl significantly ameliorated all the aforementioned parameters, but did not reach CNT values. Our findings suggest the possible immunomodulating roles of dietary AS in recovering the immunotoxic effects of Tl in Nile tilapia. We can conclude that dietary AS would be useful for maintaining the immunity of Nile tilapia fingerlings.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman W El-Hady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa M Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Exploring the Roles of Dietary Herbal Essential Oils in Aquaculture: A Review. Animals (Basel) 2022; 12:ani12070823. [PMID: 35405814 PMCID: PMC8996993 DOI: 10.3390/ani12070823] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
The aquaculture sector is one of the main activities contributing to food security for humanity around the globe. However, aquatic animals are susceptible to several farming stressors involved in deteriorated growth performance, reduced productivity, and eventually high mortality rates. In some countries still, antibiotics and chemotherapies are comprehensively applied to control biotic stressors. Aside from the apparent benefits, the continuous usage of antibiotics develops bacterial resistance, deteriorates bacterial populations, and accumulates these compounds in the aquatic environment. Alternatively, environmentally friendly additives were used to avoid the direct and indirect impacts on the aquatic ecosystem and human health. In aquaculture, medicinal herbs and extracts are extensively used and approved for their growth-promoting, anti-inflammatory, and antioxidative properties. Herbal essential oils contain many bioactive components with powerful antibacterial, antioxidative, and immunostimulant potentials, suggesting their application for aquatic animals. Essential oils can be provided via diet and can benefit aquatic animals by improving their well-being and health status. The use of essential oils in aquafeed has been studied in a variety of aquatic animals to determine their beneficial roles and optimum doses. The outputs illustrated that herbal essential oils are exciting alternatives to antibiotics with prominent growth promotion, antioxidative, and immunostimulant roles. Herein, we reviewed the beneficial roles of essential oils in aquaculture. This review also aims to describe trends in herbal essential oils use, mainly in commercial fish species, and to analyze different factors that affect essential oils’ efficacy on the growth performance, antioxidative, and immune responses of finfish species.
Collapse
|
13
|
Protective effects of dietary Lavender ( Lavandula officinalis) essential oil against Malathion-induced toxicity in rainbow trout ( Oncorhynchus mykiss). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
The present study was aimed to evaluate the moderating properties of Lavender (Lavandula officinalis) essential oil (LEO) against immunotoxic effects of the organophosphate pesticide, malathion in rainbow trout, Oncorhynchus mykiss. For this purpose, fish were supplemented with LEO at dietary concentrations of 0.5, 1, 2 and 4 ml/kg diet LEO for 56 days. A non-LEO supplemented group was also considered as control. After 57 days feeding trial, biochemicals were assayed in the blood and kidney tissue and then fish exposed to a sub-lethal concentration of malathion [0.24 mg/l equal to 30% of LC50 (0.8 mg/L)]. After 57 days feeding trial, the serum total immunoglobulin, respiratory burst activity, lysozyme activity and complement activity significantly elevated in fish treated with 1 and 2 ml LEO/kg diet compared to non-LEO supplemented individuals (P<0.01). Such changes were not observed in non-LEO supplemented fish (P>0.01). Significant elevations were observed in the expression of the immune genes (iNOS and C3 genes) in fish treated with 0.2–2 mg LEO/kg diet compared to non-supplemented ones (P<0.01). The lysozyme and complement activity significantly decreased in fish fed 4 ml/kg diet (P<0.01). After exposure to malathion, all immune components significantly declined in control and those treated with 0.5, 1 and 4 ml LEO/kg diet (P<0.01). In contrast, the immunity components exhibited no significant changes in fish treated with 2 ml LEO/kg diet after exposure (P>0.01). The expression of iNOS and C3 genes significantly reduced in control and fish fed 0.5, 1 and 4 ml LEO/kg diet in response to malathion (P<0.05). Furthermore, the expression of these genes showed no significant changes in fish fed with 2 ml LEO/kg diet after exposure (P>0.01). The findings of the present study suggested an immunoprotective role for dietary LEO at optimized dietary concentrations of 1 and 2 ml LEO/kg diet against oxidative stress and toxicity induced by malathion. Nevertheless, LEO at high dietary concentration (4 ml/kg diet) had reducing effects on the fish immunity.
Collapse
|
14
|
Chen J, Dong Z, Lei Y, Li L, Gao A, Wu L, Ye J. Vitamin C suppresses toxicological effects in MO/MФ and IgM + B cells of Nile tilapia (Oreochromis niloticus) upon copper exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106100. [PMID: 35091370 DOI: 10.1016/j.aquatox.2022.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu), as an essential micronutrient in human and animal metabolism, easily spreads and excessively accumulates in rearing water, which make it more susceptible to fish farms and threatens the health of aquatic animals. In this issue, the protective effect of vitamin C against oxidative damage caused by copper exposure was studied in monocytes/macrophages (MO/MФ) and IgM+ B cells of Nile tilapia (Oreochromis niloticus), the cell types possessing phagocytic activities. The significant increase of ROS level and up-regulation of proinflammatory factors accompanied by depletion of GSH and down-regulation of antioxidative molecules in MO/MФ and IgM+ B cells, when stressed with CuO NPs or Cu ions, indicated the induction of oxidative damage due to the toxicological effects with copper exposure. Copper induced cell apoptosis through mitochondrial-dependent pathway in these two cell populations was demonstrated with disruption of mitochondrial membrane potential (ΔΨm) and activation of apoptosis factor. Furthermore, the phagocytic abilities for microspheres and bioparticle uptake significantly decreased in these two cell populations upon CuO NPs or Cu ions; meanwhile, antigen presentation of MO/MФ and antibody production of IgM+ B cells were also inhibited. However, vitamin C supplementation reversed all these biochemical indices, as well as cell apoptosis and phagocytic abilities in MO/MФ and IgM+ B cells that were induced by CuO NPs or Cu ions. In conclusion, these results revealed that vitamin C exerts cytoprotective effects against oxidative damage through its antioxidant properties and may be of therapeutic use in preventing toxicological effects caused by copper exposure.
Collapse
Affiliation(s)
- Jianlin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Zijiong Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Yang Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Lan Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Along Gao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China
| | - Liting Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou, 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Abdel-Latif HMR, Dawood MAO, Alagawany M, Faggio C, Nowosad J, Kucharczyk D. Health benefits and potential applications of fucoidan (FCD) extracted from brown seaweeds in aquaculture: An updated review. FISH & SHELLFISH IMMUNOLOGY 2022; 122:115-130. [PMID: 35093524 DOI: 10.1016/j.fsi.2022.01.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the application of immunomodulators in aquaculture has become of an urgent need because of high incidence of fish and shrimp diseases. For a long time, researchers have paid great interest to find suitable, relatively economical, and environmentally safe immunostimulant products to be used either as feed or water additives to boost immunity and increase the resistance of fish and shrimp against the challenging pathogens. Probiotics, prebiotics, synbiotics, phytobiotics, herbal extracts, microalgae, macroalgae, and essential oils have been extensively evaluated. Brown seaweeds (Phaeophyceae) are a large group of multi-cellular macroalgae that are widely distributed in marine aquatic environments. They are abundant in several bioactive sulfated polysaccharides known as fucoidan (FCD). Research studies demonstrated the beneficial functions of FCD in human medicine because of its immunomodulating, antioxidant, anti-allergic, antitumor, antiviral, anti-inflammatory, and hepatoprotective effects. In aquaculture, several researchers have tested the benefits and potential applications of FCD in aquafeed. This literature review provides an updated information and key references of research studies that focused principally on using FCD in aquaculture. Its effects on growth, intestinal health, antioxidant capacity, and immune responses of several finfish and shellfish species will be discussed. This review paper will also highlight the potential efficacy and mechanisms of FCD in the modulation of toxicity signs and increasing the resistance of fish and shrimp against bacterial and viral infections. Hence, this contribution will be valuable to maintain aquaculture sustainability and to improve the health and welfare of farmed fish and shrimp.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt.
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt; The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 S.Agata-Messina, Italy
| | - Joanna Nowosad
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Dariusz Kucharczyk
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
16
|
Chen J, Lei Y, Dong Z, Fu S, Li L, Gao A, Wu L, Ye J. Toxicological damages on copper exposure to IgM + B cells of Nile tilapia (Oreochromis niloticus) and mitigation of its adverse effects by β-glucan administration. Toxicol In Vitro 2022; 81:105334. [PMID: 35182770 DOI: 10.1016/j.tiv.2022.105334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 01/23/2023]
Abstract
Present investigation was carried out to study toxicological damages of copper exposure and mitigation of its adverse effects with β-glucan administration in IgM+ B cells which processes multiple roles similar to macrophages in Nile tilapia (Oreochromis niloticus). IgM+ B cells were pretreated with β-glucan (25 μg/mL) for 24 h before exposed to cupric oxide nanoparticles (CuO NPs) or cupric chloride (Cu ions) at the doses of 0, 5, 10, and 20 μg/mL for 24 h, respectively. Our results demonstrated that β-glucan increased reduced glutathione (GSH) to against oxidative damage from CuO NPs and Cu ions exposure in IgM+ B cells. The apoptosis process through mitochondrial signaling pathway was depressed in IgM+ B cells since the mitochondrial membrane potential (ΔΨm) was protected from copper exposure by β-glucan treatment. Furthermore, the inhibition on phagocytic abilities of IgM+ B cells caused by copper exposure could be enhanced with β-glucan treatment via evaluation of microspheres and bioparticles uptake and LPS-induced NO production. Importantly, β-glucan might participate in immunomodulation in IgM+ B cells through B cell antigen receptor (BCR) to suppress toxicological effect derived from copper exposure. Taken together, this study provides more information on the toxicological damages in IgM+ B cells upon copper exposure and explains the molecular mechanism to reverse adverse effects caused by copper exposure with β-glucan administration.
Collapse
Affiliation(s)
- Jianlin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Yang Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Zijiong Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Shengli Fu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Lan Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Along Gao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China
| | - Liting Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
17
|
Miao Z, Miao Z, Teng X, Xu S. Chlorpyrifos triggers epithelioma papulosum cyprini cell pyroptosis via miR-124-3p/CAPN1 axis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127318. [PMID: 34879549 DOI: 10.1016/j.jhazmat.2021.127318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (CPF), a widely used organophosphorus pesticide has caused water pollution, threatening aquatic organisms. MicroRNAs (miRNAs) highly conserved noncoding RNAs, that regulate various cell death processes, including pyroptosis. To investigate the effect of CPF exposure on epithelioma papulosum cyprini (EPC) cell pyroptosis and the role of the miR-124-3p/CAPN1 axis, we established miR-124 overexpression and inhibition EPC cell models of CPF exposure. The target of the miR-124-3p/CAPN1 axis was primarily confirmed by the double luciferase reporter assay. Pyroptosis was demonstrated to occur in CPF-exposed EPC cells and was accompanied by mitochondrial membrane potential depletion, ROS level elevation and pyroptotic indicator expression upregulation. PD150606 was supplied as a CAPN1 inhibitor, alleviating CPF-induced mitochondrial dysfunction, and alleviating the increased expression of NLRP3, CASP1, IL1β and GSDMD. In conclusion, CPF induces pyroptosis by regulating the miR-124-3p/CAPN1 axis. This study enriches the cytotoxicity study of CPF, and provides new theoretical fundamentals for exploration of miRNA and its target protein response to water contaminants.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
18
|
Raissy M, Ahmadi Kabootarkhani M, Sanisales K, Mohammadi M, Rashidian G. The Synergistic Effects of Combined Use of Mentha longifolia, Thymus carmanicus, and Trachyspermum copticum on Growth Performance, Feed Utilization, and Expression of Key Immune Genes in Rainbow Trout (Oncorhynchus mykiss). Front Vet Sci 2022; 8:810261. [PMID: 35097054 PMCID: PMC8795831 DOI: 10.3389/fvets.2021.810261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal plants exhibit remarkable positive effects on different aspects of fish physiology. This study aimed to evaluate the possible impact of a combination of plants (Mentha longifolia, Thymus carmanicus, and Trachyspermum copticum) on growth performance, immune responses and key immune gene expression of rainbow trout. For this purpose, four diets were designed, including zero, 0.25, 0.5, and 1% of a mixture of plants per kg of diet, representing dietary treatments of control, T1, T2, and T3, respectively. Two hundred forty fish (weighing 23.11 ± 0.57 g) were fed 3% of body weight twice a day for 45 days. The results showed that growth parameters of weight gain (except for T1) and FCR were significantly improved in fish receiving all levels of plants, with T3 showing the best growth results. Digestive enzymes activities were notably increased in T1 and T2 compared to the control. Stress biomarkers (glucose and cortisol) were significantly decreased in T1 and T2, while T3 was not significantly different from the control. Immunological responses were significantly improved in T2, while T1 andT3 did not show a statistical difference in terms of lysozyme activity. Catalase activity was noticeably decreased in T1, although superoxide dismutase and malondialdehyde were highest in T2. Immune-related genes were significantly up-regulated in T3 compared to other treatments. Also, antioxidant enzyme coding genes were strongly up-regulated in T2 and T3. Overall, the present results suggest that 1% inclusion of the mixture of M. longifolia, T. carmanicus, and T. copticum (T2) can be used to improve the growth and immunity of rainbow trout.
Collapse
Affiliation(s)
- Mehdi Raissy
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- *Correspondence: Mehdi Raissy
| | | | - Kimia Sanisales
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mohammadi
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ghasem Rashidian
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
19
|
Liu M, Gao Q, Sun C, Liu B, Liu X, Zhou Q, Zheng X, Xu P, Liu B. Effects of dietary tea tree oil on the growth, physiological and non-specific immunity response in the giant freshwater prawn (Macrobrachium rosenbergii) under high ammonia stress. FISH & SHELLFISH IMMUNOLOGY 2022; 120:458-469. [PMID: 34929307 DOI: 10.1016/j.fsi.2021.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the effects of dietary tea tree oil (TTO) on the performance, intestinal antioxidant capacity, and non-specific immunity after ammonia nitrogen stress in Macrobrachium rosenbergii. Six experimental diets were formulated with 0, 25, 50, 100, 200, 400 mg/kg TTO, respectively. A total of 900 prawns (average initial weight, 0.39 ± 0.01 g) were randomly assigned to 6 groups in triplicate in 18 tanks. After an 8-week feeding trial, 20 prawns from each tank were changed with 20 mg/L ammonia stress for 24 h. The results showed that 100 mg/kg TTO significantly increased prawns performance and survival rate compared with the control group. Moreover, 100 and 200 mg/kg TTO significantly improved intestinal antioxidant capabilities by increasing SOD enzyme activities and decreasing MDA levels. In addition, the prawns fed with 100 mg/kg TTO diet showed the highest survival rate under ammonia stress. After ammonia stress, the group of 100 mg/kg TTO significantly improved antioxidant capacity by increasing hemolymph respiratory burst activity, as well as intestinal anti-superoxide anion activity and SOD. Coincidentally, 100 mg/kg TTO significantly upregulated the intestinal relative expression of antioxidant-related genes (peroxiredoxin-5). Further, it was found that 100 mg/kg TTO activated the toll-dorsal pathway in prawns, which performed the similar function as the classic NF-κB pathway by upregulating the TNF-α and IL-1. Finally, 100 mg/kg TTO increased the levels of iNOS activities and NO contents after ammonia stress and enhanced non-specific immunity. The results indicated that 100 mg/kg TTO could significantly improve the M. rosenbergii performance, antioxidant capacity and ammonia stress resistance. We suggested that the mechanisms may be attributed to that TTO enhanced the antioxidant capacity and non-specific immunity of M. rosenbergii via the NF-κB signal pathway.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fishery, Huzhou, 313001, PR China
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xin Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.
| |
Collapse
|
20
|
Chen J, Shao B, Wang J, Shen Z, Liu H, Li S. Chlorpyrifos caused necroptosis via MAPK/NF-κB/TNF-α pathway in common carp (Cyprinus carpio L.) gills. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109126. [PMID: 34217843 DOI: 10.1016/j.cbpc.2021.109126] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 12/18/2022]
Abstract
Chlorpyrifos (CPF) is an organophosphate insecticide and can cause cell death of animals. In the study, the common carp were exposed to CPF at 0 μg/L (the control group), 1.16 μg/L (the low dose group), 11.6 μg/L (the medium dose group), and 116 μg/L (the high dose group), respectively. The carp were euthanized at the 30th day and gills were collected immediately. The ultrastructural and histopathological observations showed obvious necrosis characteristics and inflammatory injury in the CPF-treated groups. CPF exposure activated the MAPK pathway, in which the mRNA and protein expressions of extracellular signal-regulated (ERK), p38 MAP kinase (p38), and c-Jun N-terminal kinase (JNK) were increased; the mRNAs and proteins of NF-κB and TNF-α were activated; and the mRNAs and proteins of necroptosis related genes were changed (the mRNA and protein expression of RIPK1, RIPK3, MLKL, and FADD were increased and caspase-8 was decreased) with concentration dependency. Taken together, we concluded that CPF exposure activated the MAPK/NF-κB/TNF-α pathway, promoted inflammatory injure and evoked necroptosis in common carp gills. In addition, CPF-induced inflammation and necroptosis was concentration dependency. The toxic effects of CPF on gills provided data for both aquaculture and toxicological studies.
Collapse
Affiliation(s)
- Jianqing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinliang Wang
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou 256600, China
| | - Zhiqiang Shen
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou 256600, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Ahmadifar E, Pourmohammadi Fallah H, Yousefi M, Dawood MAO, Hoseinifar SH, Adineh H, Yilmaz S, Paolucci M, Doan HV. The Gene Regulatory Roles of Herbal Extracts on the Growth, Immune System, and Reproduction of Fish. Animals (Basel) 2021; 11:ani11082167. [PMID: 34438625 PMCID: PMC8388479 DOI: 10.3390/ani11082167] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 12/22/2022] Open
Abstract
The crucial need for safe and healthy aquatic animals obligates researchers in aquaculture to investigate alternative and beneficial additives. Medicinal herbals and their extracts are compromised with diverse effects on the performances of aquatic animals. These compounds can affect growth performance and stimulate the immune system when used in fish diet. In addition, the use of medicinal herbs and their extracts can reduce oxidative stress induced by several stressors during fish culture. Correspondingly, aquatic animals could gain increased resistance against infectious pathogens and environmental stressors. Nevertheless, the exact mode of action where these additives can affect aquatic animals' performances is still not well documented. Understanding the mechanistic role of herbal supplements and their derivatives is a vital tool to develop further the strategies and application of these additives for feasible and sustainable aquaculture. Gene-related studies have clarified the detailed information on the herbal supplements' mode of action when administered orally in aquafeed. Several review articles have presented the potential roles of medicinal herbs on the performances of aquatic animals. However, this review article discusses the outputs of studies conducted on aquatic animals fed dietary, medicinal herbs, focusing on the gene expression related to growth and immune performances. Furthermore, a particular focus is directed to the expected influence of herbal supplements on the reproduction of aquatic animals.
Collapse
Affiliation(s)
- Ehsan Ahmadifar
- Department of Fisheries, Faculty of Natural Resources, University of Zabol, Zabol 98613-35856, Iran;
| | | | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198 Moscow, Russia;
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran;
| | - Hossein Adineh
- Department of Fisheries, Faculty of Ariculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan 4971799151, Iran;
| | - Sevdan Yilmaz
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey;
| | - Marina Paolucci
- Department of Science and Technologies, University of Sannio, 82100 Benevento, Italy;
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
22
|
Farag MR, Alagawany M, Bilal RM, Gewida AGA, Dhama K, Abdel-Latif HMR, Amer MS, Rivero-Perez N, Zaragoza-Bastida A, Binnaser YS, Batiha GES, Naiel MAE. An Overview on the Potential Hazards of Pyrethroid Insecticides in Fish, with Special Emphasis on Cypermethrin Toxicity. Animals (Basel) 2021; 11:ani11071880. [PMID: 34201914 PMCID: PMC8300353 DOI: 10.3390/ani11071880] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Pyrethroid insecticides are extensively used in controlling agricultural insects and treatment of ectoparasitic infestation in farm animals. However, the unhygienic disposable and seepage of pyrethroids from the agricultural runoff will lead to contamination of the aquatic ecosystems, which will, in turn, induce harmful toxic effects in the exposed living aquatic organisms, including fish. Cypermethrin (CYP) is a commonly and widely used type II pyrethroid insecticide with known dangerous toxic effects on the exposed organisms. Serious hazardous effects of these toxicants have been reported in several fish species leading to high mortalities and economic losses of the exposed fish. Abstract Pesticides are chemicals used to control pests, such as aquatic weeds, insects, aquatic snails, and plant diseases. They are extensively used in forestry, agriculture, veterinary practices, and of great public health importance. Pesticides can be categorized according to their use into three major types (namely insecticides, herbicides, and fungicides). Water contamination by pesticides is known to induce harmful impacts on the production, reproduction, and survivability of living aquatic organisms, such as algae, aquatic plants, and fish (shellfish and finfish species). The literature and information present in this review article facilitate evaluating the toxic effects from exposure to various fish species to different concentrations of pesticides. Moreover, a brief overview of sources, classification, mechanisms of action, and toxicity signs of pyrethroid insecticides in several fish species will be illustrated with special emphasis on Cypermethrin toxicity.
Collapse
Affiliation(s)
- Mayada R. Farag
- Department of Forensic Medicine and Toxicology, Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Rana M. Bilal
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, Baghdad ul Jadeed Campus, IUB, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ahmed G. A. Gewida
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, India;
| | - Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Mahmoud S. Amer
- Laser Application in Biotechnology Department, National Institute of Laser-Enhanced Science, Cairo University, Giza 12613, Egypt;
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico;
- Correspondence: (N.R.-P.); (M.A.E.N.)
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuaria, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Ex-Hda. de Aquetzalpa, Tulancingo 43600, Hgo, Mexico;
| | - Yaser S. Binnaser
- Department of Biology, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (N.R.-P.); (M.A.E.N.)
| |
Collapse
|
23
|
Ismael NEM, Abd El-Hameed SAA, Salama AM, Naiel MAE, Abdel-Latif HMR. The effects of dietary clinoptilolite and chitosan nanoparticles on growth, body composition, haemato-biochemical parameters, immune responses, and antioxidative status of Nile tilapia exposed to imidacloprid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29535-29550. [PMID: 33560509 DOI: 10.1007/s11356-021-12693-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
This study aimed at the evaluation of the mitigating effects of dietary zeolites (ZEO) and/or chitosan nanoparticle (ChNP) on imidacloprid (IMID)-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish (18.03 ± 0.01 g) were allocated into six groups; one fed on a basal diet (control) (CTR), and the other groups were fed diets supplemented with ChNPs (5 g kg-1) and/or ZEO (20 and 40 g kg-1) (ZEO20 and ZEO40) for 60 days. In the last 14 days of the experiment, all groups were exposed to a sub-lethal dose of IMID (½ of 96 h LC50 = 0.0545 μg L-1). Dietary ZEO20 significantly improved all growth parameters (P ˂ 0.05), while ChNPs had no significant effects. The crude protein of the fish body was significantly increased in all groups compared to the CTR (P ˂ 0.05). No significant impacts of ChNPs, ZEO, and their interaction (P > 0.05) were noticed on the moisture, dry matter, and ash percentages. Compared to the CTR, hematocrit values were significantly decreased (P ˂ 0.05) in ChNP and ZEO20 groups; meanwhile, their levels were significantly increased (P ˂ 0.05) in the ZEO40 group and all combined treatments. Fish fed diets with ChNPs and/or ZEO had significant increments in the MCV values (P ˂ 0.05). Moreover, fish fed diets supplemented with ChNPs or their combination with ZEO had the lowest glucose and alkaline phosphatase levels compared with the CTR. Serum aspartate transferase levels were significantly decreased in all treated groups (P ˂ 0.05) compared to the CTR. ChNPs alone or combined with ZEO significantly exhibited the highest lysozyme and nitro blue tetrazolium values (P ˂ 0.05). On the other hand, fish in the CTR group had the highest malondialdehyde and lowest nitric oxide levels compared to the other groups. Interestingly, the lowest IMID residues in fish flesh were found in fish groups fed diet with a combination of ZEO and ChNPs. Partial or complete protection of the hepatic and splenic tissues were observed in fish group with combined treatment with ChNPs and ZEO. In conclusion, the application of ZEO and/or ChNPs in Nile tilapia diets looks to be a leading approach to mitigate the toxic impacts of IMID.
Collapse
Affiliation(s)
- Nahla E M Ismael
- Fish Biology and Ecology Department, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abu-Hammad, Sharkia, Egypt
| | - Samah A A Abd El-Hameed
- Fish Health and Management Department, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abu-Hammad, Sharkia, Egypt
| | - Amany M Salama
- The Toxicology Unit, Biochemistry Department, Animal Health Research Institute, Cairo, Egypt
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
24
|
Acar Ü, Kesbiç OS, Yılmaz S, İnanan BE, Zemheri-Navruz F, Terzi F, Fazio F, Parrino V. Effects of Essential Oil Derived from the Bitter Orange ( Citrus aurantium) on Growth Performance, Histology and Gene Expression Levels in Common Carp Juveniles ( Cyprinus carpio). Animals (Basel) 2021; 11:1431. [PMID: 34067650 PMCID: PMC8156972 DOI: 10.3390/ani11051431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to detect effects of bitter orange (Citrus aurantium) essential oil, commonly called neroli oil (NO) (0, 0.25, 0.50, 1, and 1.5% referred to as NO0 NO0.25, NO0. 05, NO1 and NO1.5, respectively) on growth performance output and expression levels of some growth-related genes in the muscle tissue and some immune-related genes in the head kidney and pathological differences in digestive system organs of common carp Cyprinus carpio. The NO0.25 group had a large improvement in growth efficiency at the end of the 60-day feeding cycle. Real-time PCR (Bio RAD, USA) system was used to detect variations in gene expression levels. Furthermore, NO supplementation of up to 0.25% in muscle tissue controlled the release of growth hormone (GH) and insulin-like growth factor I (IGF-I). Furthermore, in the NO0.25 treatment category, immune response gene levels TNF-α, IL-8 and IL-1ß increased in head kidney tissue. In the histological examination of the liver and intestine, there were significant differences between fish fed with N1 and N1.5 diets. This study confirms that dietary supplementation of NO up to 0.25% can improve common carp growth efficiency and increase the expression of genes (GH and IGF-I) related to muscle growth, TNF-α, IL-8 and IL-1ß genes related to immune status, and liver and intestine histological status of common carp.
Collapse
Affiliation(s)
- Ümit Acar
- Bayramiç Vocational School, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| | - Osman Sabri Kesbiç
- Department of Microbiology, Veterinary Faculty, Kastamonu University, Kastamonu 37200, Turkey;
| | - Sevdan Yılmaz
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - Burak Evren İnanan
- Department of Veterinary Science, Eskil Vocational School, Aksaray University, Aksaray 68000, Turkey;
| | - Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın 74100, Turkey;
| | - Funda Terzi
- Department of Pathology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu 37200, Turkey;
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
25
|
Seibel H, Baßmann B, Rebl A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front Vet Sci 2021; 8:616955. [PMID: 33860003 PMCID: PMC8042153 DOI: 10.3389/fvets.2021.616955] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/10/2021] [Indexed: 01/11/2023] Open
Abstract
Blood analyses provide substantial information about the physiological aspects of animal welfare assessment, including the activation status of the neuroendocrine and immune system, acute and long-term impacts due to adverse husbandry conditions, potential diseases, and genetic predispositions. However, fish blood is still not routinely analyzed in research or aquaculture for the assessment of health and/or welfare. Over the years, the investigative techniques have evolved from antibody-based or PCR-based single-parameter analyses to now include transcriptomic, metabolomic, and proteomic approaches and from hematological observations to fluorescence-activated blood cell sorting in high-throughput modes. The range of testing techniques established for blood is now broader than for any other biogenic test material. Evaluation of the particular characteristics of fish blood, such as its cell composition, the nucleation of distinct blood cells, or the multiple isoforms of certain immune factors, requires adapted protocols and careful attention to the experimental designs and interpretation of the data. Analyses of fish blood can provide an integrated picture of the endocrine, immunological, reproductive, and genetic functions under defined environmental conditions and treatments. Therefore, the scarcity of high-throughput approaches using fish blood as a test material for fish physiology studies is surprising. This review summarizes the wide range of techniques that allow monitoring of informative fish blood parameters that are modulated by different stressors, conditions, and/or treatments. We provide a compact overview of several simple plasma tests and of multiparametric analyses of fish blood, and we discuss their potential use in the assessment of fish welfare and pathologies.
Collapse
Affiliation(s)
- Henrike Seibel
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany
- Gesellschaft für Marine Aquakultur mbH (GMA), Büsum, Germany
| | - Björn Baßmann
- Department of Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Science, University of Rostock, Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
26
|
Shafique L, Abdel-Latif HMR, Hassan FU, Alagawany M, Naiel MAE, Dawood MAO, Yilmaz S, Liu Q. The Feasibility of Using Yellow Mealworms ( Tenebrio molitor): Towards a Sustainable Aquafeed Industry. Animals (Basel) 2021; 11:ani11030811. [PMID: 33805823 PMCID: PMC7999726 DOI: 10.3390/ani11030811] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The expansion of the aquaculture industry depends mainly on aquafeed availability at reasonable prices. The common ingredients of aquafeed (e.g., fish and soybean meals) are not sustainable due to a lack of resources and increasing prices. Seeking alternative non-traditional ingredients is among the choices of nutritionists to produce high-quality feed at a feasible cost. Yellow mealworms (Tenebrio molitor) (TM) have been introduced to the feed industry as protein sources of a circular economy. Many studies have investigated the possibility of including T. molitor meals as a substitute for fish and soybean meals in aquafeed. Thus, this review exclusively presents an assemblage of the literature on the possibility of including T. molitor in aquafeed as a suggestion for the sustainability of the aquaculture industry. Abstract The success of the aquafeed industry mainly depends on the availability of raw ingredients with high nutritional value, such as fishmeal (FM). However, the increased demand for FM elevates its prices and leads to high feed costs. Thus, there is an urgent need to find suitable alternatives for FM in fish diets to achieve sustainability in aquaculture. Currently, attention is being paid to the possibility of using insect meals as FM substitutes in aquafeed because of their relatively high nutritional quality. TM is one of those insects that can be regarded as a unique candidate because of its relatively high nutritional value. TM are rich sources of essential amino acids (methionine), lipids, and fatty acids, which vary based on the developmental stage of the worms. Although TM have an abundant amount of chitin as a fiber source and other anti-nutritional factors, numerous studies have investigated the efficacy of partial or complete substitution of FM by T. molitor in fish diets. In this context, we reviewed the current research findings on the achievable inclusion levels of T. molitor versus FM substitution in the diets of several finfish and shellfish species. We discussed the potential use of T. molitor as an FM substitute in fish diets and evaluated its effects on growth, biometric indices, and body composition. Besides, the hematological parameters, immunological responses, antioxidative efficacy, intestinal health status, and sensory criteria of fish fed T. molitor-based diets were also assessed.
Collapse
Affiliation(s)
- Laiba Shafique
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| | - Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Sevdan Yilmaz
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey;
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
- Correspondence:
| |
Collapse
|
27
|
Hazardous Effects of SiO 2 Nanoparticles on Liver and Kidney Functions, Histopathology Characteristics, and Transcriptomic Responses in Nile Tilapia ( Oreochromis niloticus) Juveniles. BIOLOGY 2021; 10:biology10030183. [PMID: 33801563 PMCID: PMC8000872 DOI: 10.3390/biology10030183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary Waterborne exposure of Nile tilapia (Oreochromis niloticus) juveniles to sub-lethal concentrations of silicon dioxide nanoparticles (SiO2NPs) induced hepato-renal damage through elevation of aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) activities as well as creatinine and blood urea levels. SiO2NPs induced irreversible dose-dependent histopathological changes in the hepatopancreas, gills, and posterior kidneys, alongside modulation of the pro-inflammatory cytokines, apoptosis-related genes, and oxidative stress genes in gills and liver of exposed fish. Abstract The current investigation assessed the impacts of sub-lethal concentrations of silicon dioxide nanoparticles (SiO2NPs) on hepato-renal functions, histopathological characteristics, and gene transcription in gills and liver of Nile tilapia juveniles. Fish were exposed to 20, 40, and 100 mg/L of SiO2NPs for 3 weeks. Pairwise comparisons with the control group showed a significant dose-dependent elevation in serum ALP, ALT, and AST enzyme activities as well as blood urea and creatinine levels in SiO2NP-intoxicated groups. Exposure to 100 mg/L SiO2NPs significantly upregulated expression of HSP70, TNF-α, IL-1β, and IL-8 genes in the gills as compared to the control group. Moreover, exposure to 100 mg/L SiO2NPs significantly upregulated the expression SOD, HSP70, IL-1β, IL-8, and TNF-α genes in the hepatic tissues as compared to the control group. Exposure of fish to 20 mg SiO2NPs/L significantly increased the mRNA expression levels of IL-12 in both the gills and liver tissues. Notably, all tested SiO2NP concentrations significantly upregulated the transcription of CASP3 gene in gills and liver of Nile tilapia as compared to the control group. Interestingly, varying histopathological alterations in renal, hepatopancreatic, and branchial tissues were observed to be correlated to the tested SiO2NP concentrations. In conclusion, our results provide additional information on the toxic impacts of SiO2NPs in Nile tilapia at the hematological, tissue, and molecular levels.
Collapse
|
28
|
Abdel-Latif HMR, Dawood MAO, Mahmoud SF, Shukry M, Noreldin AE, Ghetas HA, Khallaf MA. Copper Oxide Nanoparticles Alter Serum Biochemical Indices, Induce Histopathological Alterations, and Modulate Transcription of Cytokines, HSP70, and Oxidative Stress Genes in Oreochromis niloticus. Animals (Basel) 2021; 11:652. [PMID: 33804566 PMCID: PMC8001779 DOI: 10.3390/ani11030652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
In the present study, fish were exposed to sub-lethal doses of CuONPs (68.92 ± 3.49 nm) (10 mg/L, 20 mg/L, and 50 mg/L) for a long exposure period (25 days). Compared to the control group (0.0 mg/L CuONPs), a significant dose-dependent elevation in blood urea and creatinine values, serum alanine transaminase, aspartate transaminase, and alkaline phosphatase enzyme activities were evident in CuONPs-exposed groups (p < 0.05). Fish exposure to 50 mg/L CuONPs significantly upregulated the transcription of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta, interleukin 12, and interleukin 8), heat shock protein 70, apoptosis-related gene (caspase 3), and oxidative stress-related (superoxide dismutase, catalase, and glutathione peroxidase) genes in liver and gills of the exposed fish in comparison with those in the control group (p < 0.05). Moreover, varying histopathological injuries were noticed in the hepatopancreatic tissues, posterior kidneys, and gills of fish groups correlated to the tested exposure dose of CuONPs. In summary, our results provide new insights and helpful information for better understanding the mechanisms of CuONPs toxicity in Nile tilapia at hematological, molecular levels, and tissue levels.
Collapse
Affiliation(s)
- Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21544, Egypt
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Hanan A. Ghetas
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt; (H.A.G.); (M.A.K.)
| | - Mohamed A. Khallaf
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt; (H.A.G.); (M.A.K.)
| |
Collapse
|
29
|
Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture. Pathogens 2021; 10:pathogens10020185. [PMID: 33572193 PMCID: PMC7914417 DOI: 10.3390/pathogens10020185] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Using synthetic antibiotics/chemicals for infectious bacterial pathogens and parasitic disease control causes beneficial microbial killing, produces multi-drug resistant pathogens, and residual antibiotic impacts in humans are the major threats to aquaculture sustainability. Applications of herbal products to combat microbial and parasitic diseases are considered as alternative approaches for sustainable aquaculture. Essential oils (EOs) are the secondary metabolites of medicinal plants that possess bioactive compounds like terpens, terpenoids, phenylpropenes, and isothiocyanates with synergistic relationship among these compounds. The hydrophobic compounds of EOs can penetrate the bacterial and parasitic cells and cause cell deformities and organelles dysfunctions. Dietary supplementation of EOs also modulate growth, immunity, and infectious disease resistance in aquatic organisms. Published research reports also demonstrated EOs effectiveness against Ichthyophthirius multifiliis, Gyrodactylus sp., Euclinostomum heterostomum, and other parasites both in vivo and in vitro. Moreover, different infectious fish pathogenic bacteria like Aeromonas salmonicida, Vibrio harveyi, and Streptococcus agalactiae destruction was confirmed by plant originated EOs. However, no research was conducted to confirm the mechanism of action or pathway identification of EOs to combat aquatic parasites and disease-causing microbes. This review aims to explore the effectiveness of EOs against fish parasites and pathogenic bacteria as an environment-friendly phytotherapeutic in the aquaculture industry. Moreover, research gaps and future approaches to use EOs for sustainable aquaculture practice are also postulated.
Collapse
|
30
|
Ahmadifar E, Kalhor N, Dawood MAO, Ahmadifar M, Moghadam MS, Yousefi M. The blood and mRNA levels of antioxidant-related factors in common carp (Cyprinus carpio) fed p-Coumaric acid. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:59-68. [PMID: 33128193 DOI: 10.1007/s10695-020-00894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The natural antioxidants are well known for their antioxidative activity without side effects when compared to antibiotics. Hence, the present study aimed at evaluating p-Coumaric acid as an antioxidant additive on the blood and mRNA levels of antioxidant-related factors in common carp (Cyprinus carpio). Fish fed the basal diet supplemented with p-Coumaric at 0, 0.5, 1, and 1.5 g/kg for 56 days, then the serum, intestine, and liver samples were collected. The growth performance of fish fed with CA showed significantly (P < 0.05) improved FW, WG, and SGR compared to those of the control one. However, the feed conversion ratio was significantly (P < 0.05) reduced in fish fed 1 and 1.5 g/kg diet levels. SOD was not significantly differed among the groups fed with varied p-Coumaric acid (P > 0.05). Serum GPX and TAC were enhanced considerably by p-Coumaric acid regarding the control with the highest being in fish fed 1.5 g/kg diet (P < 0.05). Serum CAT was more elevated in fish provided p-Coumaric acid at 1 or 1.5 g/kg than the control while fish fed 0.5 g/kg did not display significant changes. MDA level significantly decreased by all p-Coumaric acid groups compared to the control one, and the lowest level was observed in 1.5 g/kg (P < 0.05). The mRNA level of CAT was significantly upregulated in the liver by p-Coumaric acid at 1 or 1.5 g/kg (P < 0.05), while the intestine CAT did not influence by p-Coumaric acid (P > 0.05). The measured SOD in the liver and intestine samples revealed no changes in common carp fed p-Coumaric acid (P > 0.05). GPX was significantly upregulated in the intestine by p-Coumaric acid at 1 or 1.5 g/kg (P < 0.05), whereas the liver GPX was upregulated by p-Coumaric acid at 1.5 g/kg. The mRNA level of the GST gene in the intestine of common carp was upregulated by p-Coumaric acid at 1.5 g/kg, whereas the liver displayed upregulated GST in fish fed 1 g/kg diet. The present study approved the application of p-Coumaric acid as a natural antioxidant for friendly, sustainable aquaculture.
Collapse
Affiliation(s)
- Ehsan Ahmadifar
- Department of Fisheries, Faculty of Natural Resources, University of Zabol, Zabol, Iran.
| | - Naser Kalhor
- Department of Mesanchymal Stem Cell, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Mehdi Ahmadifar
- Department of Stem Cell Biology and Technology of ACECR, Royan Institute, Cell Science Research Center, Collage of Stem Cell and Developmental Biology, Tehran, Iran
| | - Mohsen Shahriari Moghadam
- Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDEN University), 6 Miklukho-Maklaya St, Moscow, Russian Federation, 117198
| |
Collapse
|
31
|
Adel M, Omidi AH, Dawood MAO, Karimi B, Shekarabi SPH. Dietary Gracilaria persica mediated the growth performance, fillet colouration, and immune response of Persian sturgeon ( Acipenser persicus). AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 530:735950. [PMID: 32981978 PMCID: PMC7502242 DOI: 10.1016/j.aquaculture.2020.735950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 05/14/2023]
Abstract
Algal seaweeds have abundant amounts of active substances and can be used as pharmaceuticals and biomedicals in aquafeeds. In this context, the powder of red macroalgae Gracilaria persica was included in the diets of Persian sturgeon at the rate of 0, 2.5, 5, and 10 g/kg to investigate its role on the growth rate, fillet colouration, haemato-biochemical indices, serum, and skin mucus immunity. The weight gain, SGR, and FCR displayed no significant changes in fish fed varying levels of G. persica (P > 0.05). The level of total carotenoids was significantly higher in the blood and fillet of fish fed 5 and 10 g G. persica/kg diet (P < 0.05). Dietary G. persica significantly altered RBCs, WBCs, and HCT at 5, and 10 g/kg, whereas the Hb was increased in fish fed 5 g/kg (P < 0.05). The blood total protein and albumin were significantly increased in fish fed 5 and 10 g/kg (P < 0.05). No significant alterations were observed on ALT, AST, ALP, and glucose levels of fish fed varying levels of G. persica (P > 0.05). Serum Ig, lysozyme, superoxide dismutase, catalase, and respiratory burst activities were increased in fish fed 5, and 10 g/kg than fish fed 0 and 2.5 g/kg diet (P < 0.05). The level of total protein and lysozyme activity in the skin mucus were significantly higher in the blood and fillet of fish fed 5, and 10 g G. persica/kg diet than fish fed 0 and 2.5 g/kg (P < 0.05). Based on the obtained results, G. persica can be used as a feasible feed additive in the diets of Persian sturgeon at 5-10 g/kg diet.
Collapse
Affiliation(s)
- Milad Adel
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Amir Hossein Omidi
- Department of Fisheries Science, Bandarabas Branch, Islamic Azad University, Bandarabas, Iran
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Behnaz Karimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | | |
Collapse
|
32
|
Khafaga AF, Naiel MAE, Dawood MAO, Abdel-Latif HMR. Dietary Origanum vulgare essential oil attenuates cypermethrin-induced biochemical changes, oxidative stress, histopathological alterations, apoptosis, and reduces DNA damage in Common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105624. [PMID: 32947072 DOI: 10.1016/j.aquatox.2020.105624] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The study was designed to evaluate the possible protective roles of dietary Origanum vulgare essential oil (OVEO) against cypermethrin (CP)-induced serum biochemical changes and oxidative stress of common carp (Cyprinus carpio). Moreover, histopathological alterations, apoptosis, cell proliferation, and DNA damage in the gills and hepatic tissues were also assessed. Briefly, fish were allotted into six groups with three triplicates whereas a group fed on basal diet and did not exposed to CP and served as control (CTR), two groups were fed on diets supplemented with two levels of OVEO (0.5 % and 1.0 %), a group exposed to sub-lethal concentration of CP (1/10 of 96 h-LC50 = 0.4134 μg/L), and two other groups exposed to the same concentration of CP and fed on diets supplemented with both levels of OVEO (CP + 0.5 % OVEO, and CP + 1.0 % OVEO), respectively, for 30 days. CP induced significant elevation of serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), urea, and creatinine levels indicating hepato-renal toxicity (P < 0.05). Besides, there was a significant decrease in serum catalase (CAT) and superoxide dismutase (SOD) activities (P < 0.05). Moreover, CP induced significant histopathologic alterations in gills, anterior kidneys, and hepatic tissues with activation of apoptosis (Caspase-3) and proliferating cell nuclear antigen (PCNA). Comet assay demonstrated significant DNA damage in gills and liver tissues of the CP-exposed group. Interestingly, a significant attenuation of serum ALT, AST, ALP, urea, creatinine, CAT, and SOD levels (P < 0.05) was noticed in CP-exposed fish and concurrently fed diets supplemented with either 0.5 % or 1.0 % OVEO. Moreover, histopathologic alterations and apoptosis were significantly reduced along with a concomitant significant decrease in DNA damage (P < 0.05) which indicated the mitigation of DNA damage. Conclusively, the study showed that OVEO is an effective counteractive treatment against CP-induced damage in exposed common carp and is recommended during the formulation of fish rations.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Behera Province, Egypt
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Behera Province, Egypt.
| |
Collapse
|
33
|
Dawood MAO, El-Shamaa IS, Abdel-Razik NI, Elkomy AH, Gewaily MS, Abdo SE, Soliman AA, Paray BA, Abdelkhalek N. The effect of mannanoligosaccharide on the growth performance, histopathology, and the expression of immune and antioxidative related genes in Nile tilapia reared under chlorpyrifos ambient toxicity. FISH & SHELLFISH IMMUNOLOGY 2020; 103:421-429. [PMID: 32470510 DOI: 10.1016/j.fsi.2020.05.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The role of mannanoligosaccharide (MOS) in reducing the adverse effects of chlorpyrifos (CPF) toxicity in tilapia was evaluated in the present study. Fish were allotted into four groups and fed the basal diet or MOS and exposed to CPF (control, CPF, MOS, and MOS/CPF) for 30 days. Fish fed MOS revealed higher growth and survival rates and lower FCR than CPF-intoxicated fish (P < 0.05). The Hb, PCV, RBCs, and WBCs variables were lowered by CPF toxicity and increased by MOS (P < 0.05). The values of total protein (sTP), albumin (ALB), globulin (GLB), lysozyme (LZM), and phagocytic activities (PA) decreased whereas, ALP, ALT, AST, urea, bilirubin (BIL), and creatinine (CR) were increased by CPF toxicity. However, dietary MOS increased the sTP, ALB, GLB, LZM, and PA and decreased the ALP, ALT, AST, BIL, and CR. The PA and phagocytic index displayed higher levels by MOS feeding than the other groups (P < 0.05). The lowest mRNA level of GPX1 (cellular GPX) gene was observed in fish of the CPF group, while the highest level was shown in the MOS/CPF group (P < 0.05). Fish in the control and CPF groups displayed downregulated CAT whereas the expression of GPX and CAT genes was higher in fish of the MOS/CPF group than fish in the MOS group (P < 0.05). MOS upregulated the expression of HSP70 gene with CPF toxicity. Fish of the CPF and MOS/CPF groups displayed upregulated CASP3, IFN-γ, and IL-8 genes. Fish of the CPF group exhibited the lowest IL-1β, while fish of the MOS/CPF group showed upregulated IL-1β. The intoxication with CPF induced histopathological inflammations in the gills, intestine, and liver tissues, while dietary MOS protected against inflammation. In summary, dietary MOS is recommended as an immunostimulant to counteract the inflammatory impacts of waterborne CPF toxicity in Nile tilapia.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Egypt.
| | - Ibrahim S El-Shamaa
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Nagwa I Abdel-Razik
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Azza H Elkomy
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Safaa E Abdo
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Ali A Soliman
- Fish Nutrition Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nevien Abdelkhalek
- Internal Medicine, Infectious and Fish Diseases Department, Faculty of Veterinary Medicine, Mansoura University, Egypt.
| |
Collapse
|