1
|
Sirithanakorn C, Imlay JA. Evidence for endogenous hydrogen peroxide production by E. coli fatty acyl-CoA dehydrogenase. PLoS One 2024; 19:e0309988. [PMID: 39436877 PMCID: PMC11495604 DOI: 10.1371/journal.pone.0309988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Aerobic organisms continuously generate internal superoxide and hydrogen peroxide, which can damage enzymes and impair growth. To avoid this problem cells maintain high levels of superoxide dismutases, catalases, and peroxidases. Surprisingly, we do not know the primary sources of these reactive oxygen species (ROS) in living cells. However, in vitro studies have shown that flavoenzymes can inadvertently transfer electrons to oxygen. Therefore, it seems plausible that substantial ROS may be generated when large metabolic fluxes flow through flavoproteins. Such a situation may arise during the catabolism of fatty acids. Acyl-CoA dehydrogenase (FadE) is a flavoprotein involved in each turn of the beta-oxidation cycle. In the present study the catabolism of dodecanoic acid specifically impaired the growth of strains that lack enzymes to scavenge hydrogen peroxide. The defect was absent from fadE mutants. Direct measurements confirmed that the beta-oxidation pathway amplified the rate of intracellular hydrogen peroxide formation. Scavenging-proficient cells did not display the FadE-dependent growth defect. Those cells also did not induce the peroxide stress response during dodecanoate catabolism, indicating that the basal defenses are sufficient to cope with moderately elevated peroxide formation. In vitro work still is needed to test whether the ROS evolve specifically from the FadE flavin site and to determine whether superoxide as well as peroxide is released. At present such experiments are challenging because the natural redox partner of FadE has not been identified. This study supports the hypothesis that the degree of internal ROS production can depend upon the type of active metabolism inside cells.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Division of Molecular and Cellular Medicine, King Mongkut’s Institute of Technology Ladkrabang, Faculty of Medicine, Bangkok, Thailand
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
2
|
Liu Y, Li Z, Liu J, Zhang X, Wang X. Electron-Transferring Flavoprotein and Its Dehydrogenase Required for Fungal Pathogenicity in Arthrobotrys oligospora. Int J Mol Sci 2024; 25:10934. [PMID: 39456717 PMCID: PMC11507118 DOI: 10.3390/ijms252010934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Electron transfer flavoprotein (ETF) plays an important function in fatty acid beta oxidation and the amino acid metabolic pathway. It can provide pathogenicity to some opportunistic fungi via modulating cellular metabolite composition. Arthrobotrys oligospora is a typical invasion fungus to nematodes. Its ETF characterization is still unknown. Here, we showed that the mutations of A. oligospora ETF (Aoetfα and Aoetfβ) and its dehydrogenase (Aoetfdh) led to severe defects in mitochondrial integrity and blocked fatty acid metabolism. The pathogenicity-associated trap structures were completely suppressed when exposed to nematode-derived ascarosides and nutrition signals, including ammonia and urea. Compared to the wild-type strain, the nematode predatory activity was significantly reduced and delayed. But surprisingly, the rich nutrition could restore the massive trap and robust predatory activity in the mutant Aoetfβ beyond all induction cues. Moreover, the deletion of Aoetfβ has led to the accumulation of butyrate-like smell, which has a strong attraction to Caenorhabditis elegans nematodes. Ultimately, ETF and its dehydrogenase play a crucial role in nematode-trapping fungi, highlighting mitochondrial metabolite fluctuations that are connected to pathogenesis and further regulating the interactions between fungi and nematodes.
Collapse
Affiliation(s)
| | | | | | | | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
3
|
Cömert C, Kjær-Sørensen K, Hansen J, Carlsen J, Just J, Meaney BF, Østergaard E, Luo Y, Oxvig C, Schmidt-Laursen L, Palmfeldt J, Fernandez-Guerra P, Bross P. HSP60 chaperone deficiency disrupts the mitochondrial matrix proteome and dysregulates cholesterol synthesis. Mol Metab 2024; 88:102009. [PMID: 39147275 PMCID: PMC11388177 DOI: 10.1016/j.molmet.2024.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
OBJECTIVE Mitochondrial proteostasis is critical for cellular function. The molecular chaperone HSP60 is essential for cell function and dysregulation of HSP60 expression has been implicated in cancer and diabetes. The few reported patients carrying HSP60 gene variants show neurodevelopmental delay and brain hypomyelination. Hsp60 interacts with more than 260 mitochondrial proteins but the mitochondrial proteins and functions affected by HSP60 deficiency are poorly characterized. METHODS We studied two model systems for HSP60 deficiency: (1) engineered HEK cells carrying an inducible dominant negative HSP60 mutant protein, (2) zebrafish HSP60 knockout larvae. Both systems were analyzed by RNASeq, proteomics, and targeted metabolomics, and several functional assays relevant for the respective model. In addition, skin fibroblasts from patients with disease-associated HSP60 variants were analyzed by proteomics. RESULTS We show that HSP60 deficiency leads to a differentially downregulated mitochondrial matrix proteome, transcriptional activation of stress responses, and dysregulated cholesterol biosynthesis. This leads to lipid accumulation in zebrafish knockout larvae. CONCLUSIONS Our data provide a compendium of the effects of HSP60 deficiency on the mitochondrial matrix proteome. We show that HSP60 is a master regulator and modulator of mitochondrial functions and metabolic pathways. HSP60 dysfunction also affects cellular metabolism and disrupts the integrated stress response. The effect on cholesterol synthesis explains the effect of HSP60 dysfunction on myelination observed in patients carrying genetic variants of HSP60.
Collapse
Affiliation(s)
- Cagla Cömert
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | - Kasper Kjær-Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Brandon F Meaney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Odense, Denmark.
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
4
|
Bahety D, Böke E, Rodríguez-Nuevo A. Mitochondrial morphology, distribution and activity during oocyte development. Trends Endocrinol Metab 2024; 35:902-917. [PMID: 38599901 DOI: 10.1016/j.tem.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Mitochondria have a crucial role in cellular function and exhibit remarkable plasticity, adjusting both their structure and activity to meet the changing energy demands of a cell. Oocytes, female germ cells that become eggs, undergo unique transformations: the extended dormancy period, followed by substantial increase in cell size and subsequent maturation involving the segregation of genetic material for the next generation, present distinct metabolic challenges necessitating varied mitochondrial adaptations. Recent findings in dormant oocytes challenged the established respiratory complex hierarchies and underscored the extent of mitochondrial plasticity in long-lived oocytes. In this review, we discuss mitochondrial adaptations observed during oocyte development across three vertebrate species (Xenopus, mouse, and human), emphasising current knowledge, acknowledging limitations, and outlining future research directions.
Collapse
Affiliation(s)
- Devesh Bahety
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Aida Rodríguez-Nuevo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
5
|
Jiang Z, Lu H, Gao B, Huang J, Ding Y. Transcriptomic Analysis of Cardiac Tissues in a Rodent Model of Coronary Microembolization. J Inflamm Res 2024; 17:6645-6659. [PMID: 39345897 PMCID: PMC11437660 DOI: 10.2147/jir.s469297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Coronary microembolization (CME) can result in cardiac dysfunction, severe arrhythmias, and a reduced coronary flow reserve. Impairment of mitochondrial energy metabolism has been implicated in the progression and pathogenesis of CME; however, its role remains largely undetermined. This study aimed to explore alterations in mitochondria-related genes in CME. Methods A rat model of CME was successfully established by injecting plastic microspheres into the left ventricle. The cardiac tissues of the two groups were sequenced and mitochondrial functions were assessed. Results Using RNA-Seq, together with GO and KEGG enrichment analyses, we identified 3822 differentially expressed genes (DEGs) in CME rats compared to control rats, and 101 DEGs were mitochondria-related genes. Notably, 36 DEGs were up-regulated and 65 DEGs were down-regulated (CME vs control). In particular, the oxidative phosphorylation (OXPHOS) and mitochondrial electron transport were obviously down-regulated in the CME group. Functional analysis revealed that CME mice exhibited marked reductions in ATP and mitochondrial membrane potential (MMP), by contrast, the production of reactive oxygen species (ROS) was much higher in CME mice than in controls. Protein-protein interaction (PPI) and quantitative PCR (qPCR) validation suggested that eight hub genes including Cmpk2, Isg15, Acsl1, Etfb, Ndufa8, Adhfe1, Gabarapl1 and Acot13 were down-regulated in CME, whereas Aldh18a1 and Hspa5 were up-regulated. Conclusion Our findings suggest that dysfunctions in mitochondrial activity and metabolism are important mechanisms for CME, and mitochondria-related DEGs may be potential therapeutic targets for CME.
Collapse
Affiliation(s)
- Zhaochang Jiang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Haohao Lu
- Zhejiang Center of Laboratory Animals, Hangzhou Medical College, Hangzhou, Zhejiang, 310063, People's Republic of China
| | - Beibei Gao
- Department of Cardiology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Jinyu Huang
- Department of Cardiology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yu Ding
- Department of Clinical Laboratory, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, People's Republic of China
| |
Collapse
|
6
|
O'Sell J, Cirulli V, Pardike S, Aare-Bentsen M, Sdek P, Anderson J, Hailey DW, Regier MC, Gharib SA, Crisa L. Disruption of perinatal myeloid niches impacts the aging clock of pancreatic β cells. iScience 2024; 27:110644. [PMID: 39262794 PMCID: PMC11388196 DOI: 10.1016/j.isci.2024.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Perinatal expansion of pancreatic β cells is critical to metabolic adaptation. Yet, mechanisms surveying the fidelity by which proliferative events generate functional β cell pools remain unknown. We have previously identified a CCR2+ myeloid niche required for peri-natal β cell replication, with β cells dynamically responding to loss and repopulation of these myeloid cells with growth arrest and rebound expansion, respectively. Here, using a timed single-cell RNA-sequencing approach, we show that transient disruption of perinatal CCR2+ macrophages change islet β cell repertoires in young mice to resemble those of aged mice. Gene expression profiling and functional assays disclose prominent mitochondrial defects in β cells coupled to impaired redox states, NAD depletion, and DNA damage, leading to accelerated islets' dysfunction with age. These findings reveal an unexpected vulnerability of mitochondrial β cells' bioenergetics to the disruption of perinatal CCR2+ macrophages, implicating these cells in surveying early in life both the size and energy homeostasis of β cells populations.
Collapse
Affiliation(s)
- Jessica O'Sell
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Vincenzo Cirulli
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Stephanie Pardike
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Marie Aare-Bentsen
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Patima Sdek
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Jasmine Anderson
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Dale W Hailey
- Department of Laboratory Medicine and Pathology, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Mary C Regier
- Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| | - Sina A Gharib
- Computational Medicine Core at Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98109, USA
| | - Laura Crisa
- Department of Medicine, Diabetes Institute, and Institute of Stem Cells and Regenerative Medicine, University of Washington, Seattle WA 98109, USA
| |
Collapse
|
7
|
Li L, Huang Z, Huang Y, Li Y, Ma X, Li P, Du W, Wang H, Zhao Y, Zeng S, Peng Y, Zhang G. Pomalidomide sensitizes lung cancer cells to TRAIL/CDDP-induced apoptosis via directly targeting electron transfer flavoprotein alpha subunit. Bioorg Chem 2024; 153:107815. [PMID: 39265523 DOI: 10.1016/j.bioorg.2024.107815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Immunomodulatory drugs (IMiDs) represented by thalidomide exhibit benefits when combined with other chemotherapeutic drugs for patients with lung cancer, which inspired the exploration of combining pomalidomide with another agent to treat lung cancer as it is more potent than thalidomide. However, the drugs that can be combined with pomalidomide to benefit patients and related mechanisms remain unclear. Here, we performed a proteomic analysis based on the streptavidin pull-down to identify the potential target of pomalidomide in non-small cell lung cancer (NSCLC). In this work, electron transfer flavoprotein alpha subunit (ETFA), an important enzyme involved in electron transport in the respiratory chains was identified as a crucial cellular target of pomalidomide in NCI-H460 cells. Using apoptosis model and combination analyses, we found that pomalidomide directly targeted ETFA, and increased ATP generation, thereby significantly promoting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Specific knockdown of ETFA could effectively eliminate the promoting effect of pomalidomide on energy production. Furthermore, respiratory chain inhibitors can effectively block cell apoptosis induced by TRAIL and pomalidomide. These results suggested that pomalidomide may promote apoptosis by facilitating energy production by targeting ETFA and thus enhanced the anticancer effects of chemotherapeutic drugs. It is noteworthy that pomalidomide noticeably increased the anticancer efficacy of cisplatin (CDDP) in NCI-H460 xenograft model with the main mechanisms by inducing apoptosis. Collectively, our data not only provide new insights into the anticancer mechanisms of pomalidomide but also reflect translational prospects of combining pomalidomide with CDDP for NSCLC treatment.
Collapse
Affiliation(s)
- Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Zetian Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuying Huang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Yongkun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xuesong Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Pingping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wenqing Du
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yufei Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
8
|
He J, Hao F, Song S, Zhang J, Zhou H, Zhang J, Li Y. METTL Family in Healthy and Disease. MOLECULAR BIOMEDICINE 2024; 5:33. [PMID: 39155349 PMCID: PMC11330956 DOI: 10.1186/s43556-024-00194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Transcription, RNA splicing, RNA translation, and post-translational protein modification are fundamental processes of gene expression. Epigenetic modifications, such as DNA methylation, RNA modifications, and protein modifications, play a crucial role in regulating gene expression. The methyltransferase-like protein (METTL) family, a constituent of the 7-β-strand (7BS) methyltransferase subfamily, is broadly distributed across the cell nucleus, cytoplasm, and mitochondria. Members of the METTL family, through their S-adenosyl methionine (SAM) binding domain, can transfer methyl groups to DNA, RNA, or proteins, thereby impacting processes such as DNA replication, transcription, and mRNA translation, to participate in the maintenance of normal function or promote disease development. This review primarily examines the involvement of the METTL family in normal cell differentiation, the maintenance of mitochondrial function, and its association with tumor formation, the nervous system, and cardiovascular diseases. Notably, the METTL family is intricately linked to cellular translation, particularly in its regulation of translation factors. Members represent important molecules in disease development processes and are associated with patient immunity and tolerance to radiotherapy and chemotherapy. Moreover, future research directions could include the development of drugs or antibodies targeting its structural domains, and utilizing nanomaterials to carry miRNA corresponding to METTL family mRNA. Additionally, the precise mechanisms underlying the interactions between the METTL family and cellular translation factors remain to be clarified.
Collapse
Affiliation(s)
- Jiejie He
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Fengchen Hao
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Shiqi Song
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Junli Zhang
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Hongyu Zhou
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Jun Zhang
- Department of Urology Surgery, Affiliated Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai Province, China.
| | - Yan Li
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai Province, China.
| |
Collapse
|
9
|
Abrosimov R, Baeken MW, Hauf S, Wittig I, Hajieva P, Perrone CE, Moosmann B. Mitochondrial complex I inhibition triggers NAD +-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH 2 oxidation. GeroScience 2024; 46:3635-3658. [PMID: 38267672 PMCID: PMC11226580 DOI: 10.1007/s11357-023-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.
Collapse
Affiliation(s)
- Roman Abrosimov
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School, Hamburg, Germany
| | - Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Cold Spring-On-Hudson, NY, USA
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
10
|
Seyedtaghia MR, Jafarzadeh‐Esfehani R, Hosseini S, Kobravi S, Hakkaki M, Nilipour Y. A compound heterozygote case of glutaric aciduria type II in a patient carrying a novel candidate variant in ETFDH gene: A case report and literature review on compound heterozygote cases. Mol Genet Genomic Med 2024; 12:e2489. [PMID: 38967380 PMCID: PMC11225075 DOI: 10.1002/mgg3.2489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Glutaric aciduria type II (GA2) is a rare genetic disorder inherited in an autosomal recessive manner. Double dosage mutations in GA2 corresponding genes, ETFDH, ETFA, and ETFB, lead to defects in the catabolism of fatty acids, and amino acids lead to broad-spectrum phenotypes, including muscle weakness, developmental delay, and seizures. product of these three genes have crucial role in transferring electrons to the electron transport chain (ETC), but are not directly involve in ETC complexes. METHODS Here, by using exome sequencing, the cause of periodic cryptic gastrointestinal complications in a 19-year-old girl was resolved after years of diagnostic odyssey. Protein modeling for the novel variant served as another line of validation for it. RESULTS Exome Sequencing (ES) identified two variants in ETFDH: ETFDH:c.926T>G and ETFDH:c.1141G>C. These variants are likely contributing to the crisis in this case. To the best of our knowledge at the time of writing this manuscript, variant ETFDH:c.926T>G is reported here for the first time. Clinical manifestations of the case and pathological analysis are in consistent with molecular findings. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. ETFDH:c.926T>G is reported here for the first time in relation to the causation GA2. CONCLUSION Given the milder symptoms in this case, a review of GA2 cases caused by compound heterozygous mutations was conducted, highlighting the range of symptoms observed in these patients, from mild fatigue to more severe outcomes. The results underscore the importance of comprehensive genetic analysis in elucidating the spectrum of clinical presentations in GA2 and guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Mohammad Reza Seyedtaghia
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Reza Jafarzadeh‐Esfehani
- Blood Borne Infection Research Center, Academic Center for EducationCulcture and Research (ACECR)‐ Khorasan RazaviMashhadIran
| | - Seyedmojtaba Hosseini
- Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Medical Laboratory Sciences, 22 Bahman HospitalNeyshabur University of Medical SciencesNeyshaburIran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of DentistryTehran Azad UniversityTehranIran
| | - Mahdis Hakkaki
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for children's HealthShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Hossen MS, Akter A, Azmal M, Rayhan M, Islam KS, Islam MM, Ahmed S, Abdullah-Al-Shoeb M. Unveiling the molecular basis of paracetamol-induced hepatotoxicity: Interaction of N-acetyl- p-benzoquinone imine with mitochondrial succinate dehydrogenase. Biochem Biophys Rep 2024; 38:101727. [PMID: 38766381 PMCID: PMC11098724 DOI: 10.1016/j.bbrep.2024.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Background and aim N-acetyl-p-benzoquinoneimine (NAPQI), a toxic byproduct of paracetamol (Acetaminophen, APAP), can accumulate and cause liver damage by depleting glutathione and forming protein adducts in the mitochondria. These adducts disrupt the respiratory chain, increasing superoxide production and reducing ATP. The goal of this study was to provide computational proof that succinate dehydrogenase (SDH), a subunit of complex II in the mitochondrial respiratory chain, is a favorable binding partner for NAPQI in this regard. Method Molecular docking, molecular dynamics simulation, protein-protein interaction networks (PPI), and KEGG metabolic pathway analysis were employed to identify binding characteristics, interaction partners, and their associations with metabolic pathways. A lipid membrane was added to the experimental apparatus to mimic the natural cellular environment of SDH. This modification made it possible to develop a context for investigating the role and interactions of SDH within a cellular ecosystem that was more realistic and biologically relevant. Result The molecular binding affinity score for APAP and NAPQI with SDH was predicted -6.5 and -6.7 kcal/mol, respectively. Furthermore, RMSD, RMSF, and Rog from the molecular dynamics simulations study revealed that NAPQI has slightly higher stability and compactness compared to APAP at 100 ns timeframe with mitochondrial SDH. Conclusion This study serves to predict the mechanistic process of paracetamol toxicity by using different computational approaches. In addition, this study will provide information about the drug target against APAP hepatotoxicity.
Collapse
Affiliation(s)
- Md Sahadot Hossen
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Adiba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahir Azmal
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mostakim Rayhan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kazi Saiful Islam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shamim Ahmed
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mohammad Abdullah-Al-Shoeb
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
12
|
Lin D, Wan M, Fan Y. Electron-transferring flavoprotein and its dehydrogenase contributed to growth development and virulence in Beauveria bassiana. J Invertebr Pathol 2024; 205:108141. [PMID: 38788920 DOI: 10.1016/j.jip.2024.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Electron-transferring flavoprotein (Etf) and its dehydrogenase (Etfdh) are integral components of the electron transport chain in mitochondria. In this study, we characterize two putative etf genes (Bbetfa and Bbetfb) and their dehydrogenase gene Bbetfdh in the entomopathogenic fungus Beauveria bassiana. Individual deletion of these genes caused a significant reduction in vegetative growth, conidiation, and delayed conidial germination. Lack of these genes also led to abnormal metabolism of fatty acid and increasing lipid body accumulation. Furthermore, the virulence of Bbetfs and Bbetfdh deletion mutants was severely impaired due to decreasing infection structure formation. Additionally, all deletion strains showed reduced ATP synthesis compared to the wild-type strain. Taken together, Bbetfa and Bbetfb, along with Bbetfdh, play principal roles in fungal vegetative growth, conidiation, conidial germination, and pathogenicity of B. bassiana due to their essential functions in fatty acid metabolism.
Collapse
Affiliation(s)
- Dongmei Lin
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Min Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China.
| |
Collapse
|
13
|
Moyer DC, Reimertz J, Segrè D, Fuxman Bass JI. Semi-Automatic Detection of Errors in Genome-Scale Metabolic Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600481. [PMID: 38979177 PMCID: PMC11230171 DOI: 10.1101/2024.06.24.600481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Genome-Scale Metabolic Models (GSMMs) are used for numerous tasks requiring computational estimates of metabolic fluxes, from predicting novel drug targets to engineering microbes to produce valuable compounds. A key limiting step in most applications of GSMMs is ensuring their representation of the target organism's metabolism is complete and accurate. Identifying and visualizing errors in GSMMs is complicated by the fact that they contain thousands of densely interconnected reactions. Furthermore, many errors in GSMMs only become apparent when considering pathways of connected reactions collectively, as opposed to examining reactions individually. Results We present Metabolic Accuracy Check and Analysis Workflow (MACAW), a collection of algorithms for detecting errors in GSMMs. The relative frequencies of errors we detect in manually curated GSMMs appear to reflect the different approaches used to curate them. Changing the method used to automatically create a GSMM from a particular organism's genome can have a larger impact on the kinds of errors in the resulting GSMM than using the same method with a different organism's genome. Our algorithms are particularly capable of identifying errors that are only apparent at the pathway level, including loops, and nontrivial cases of dead ends. Conclusions MACAW is capable of identifying inaccuracies of varying severity in a wide range of GSMMs. Correcting these errors can measurably improve the predictive capacity of a GSMM. The relative prevalence of each type of error we identify in a large collection of GSMMs could help shape future efforts for further automation of error correction and GSMM creation.
Collapse
|
14
|
Kulsange SE, Sharma M, Sonawane B, Jaiswal MR, Kulkarni MJ, Santhakumari B. SWATH-MS reveals that bisphenol A and its analogs regulate pathways leading to disruption in insulin signaling and fatty acid metabolism. Food Chem Toxicol 2024; 188:114667. [PMID: 38653447 DOI: 10.1016/j.fct.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.
Collapse
Affiliation(s)
- Shabda E Kulsange
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babasaheb Sonawane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R Jaiswal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - B Santhakumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Centre for Material Characterization, CSIR-National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
15
|
Ricardo PC, Arias MC, de Souza Araujo N. Decoding bee cleptoparasitism through comparative transcriptomics of Coelioxoides waltheriae and its host Tetrapedia diversipes. Sci Rep 2024; 14:12361. [PMID: 38811580 PMCID: PMC11137135 DOI: 10.1038/s41598-024-56261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
Cleptoparasitism, also known as brood parasitism, is a widespread strategy among bee species in which the parasite lays eggs into the nests of the host species. Even though this behavior has significant ecological implications for the dynamics of several species, little is known about the molecular pathways associated with cleptoparasitism. To shed some light on this issue, we used gene expression data to perform a comparative analysis between two solitary neotropical bees: Coelioxoides waltheriae, an obligate parasite, and their specific host Tetrapedia diversipes. We found that ortholog genes involved in signal transduction, sensory perception, learning, and memory formation were differentially expressed between the cleptoparasite and the host. We hypothesize that these genes and their associated molecular pathways are engaged in cleptoparasitism-related processes and, hence, are appealing subjects for further investigation into functional and evolutionary aspects of cleptoparasitism in bees.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Kaczara P, Czyzynska-Cichon I, Kus E, Kurpinska A, Olkowicz M, Wojnar-Lason K, Pacia MZ, Lytvynenko O, Baes M, Chlopicki S. Liver sinusoidal endothelial cells rely on oxidative phosphorylation but avoid processing long-chain fatty acids in their mitochondria. Cell Mol Biol Lett 2024; 29:67. [PMID: 38724891 PMCID: PMC11084093 DOI: 10.1186/s11658-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND It is generally accepted that endothelial cells (ECs), primarily rely on glycolysis for ATP production, despite having functional mitochondria. However, it is also known that ECs are heterogeneous, and their phenotypic features depend on the vascular bed. Emerging evidence suggests that liver sinusoidal ECs (LSECs), located in the metabolically rich environment of the liver, show high metabolic plasticity. However, the substrate preference for energy metabolism in LSECs remains unclear. METHODS Investigations were conducted in primary murine LSECs in vitro using the Seahorse XF technique for functional bioenergetic assays, untargeted mass spectrometry-based proteomics to analyse the LSEC proteome involved in energy metabolism pathways, liquid chromatography-tandem mass spectrometry-based analysis of acyl-carnitine species and Raman spectroscopy imaging to track intracellular palmitic acid. RESULTS This study comprehensively characterized the energy metabolism of LSECs, which were found to depend on oxidative phosphorylation, efficiently fuelled by glucose-derived pyruvate, short- and medium-chain fatty acids and glutamine. Furthermore, despite its high availability, palmitic acid was not directly oxidized in LSEC mitochondria, as evidenced by the acylcarnitine profile and etomoxir's lack of effect on oxygen consumption. However, together with L-carnitine, palmitic acid supported mitochondrial respiration, which is compatible with the chain-shortening role of peroxisomal β-oxidation of long-chain fatty acids before further degradation and energy generation in mitochondria. CONCLUSIONS LSECs show a unique bioenergetic profile of highly metabolically plastic ECs adapted to the liver environment. The functional reliance of LSECs on oxidative phosphorylation, which is not a typical feature of ECs, remains to be determined.
Collapse
Affiliation(s)
- Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland.
| | - Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Edyta Kus
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Mariola Olkowicz
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Marta Z Pacia
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Olena Lytvynenko
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Myriam Baes
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, 3000, Leuven, Belgium
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| |
Collapse
|
17
|
Dohnálek V, Doležal P. Installation of LYRM proteins in early eukaryotes to regulate the metabolic capacity of the emerging mitochondrion. Open Biol 2024; 14:240021. [PMID: 38772414 PMCID: PMC11293456 DOI: 10.1098/rsob.240021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/13/2024] [Indexed: 05/23/2024] Open
Abstract
Core mitochondrial processes such as the electron transport chain, protein translation and the formation of Fe-S clusters (ISC) are of prokaryotic origin and were present in the bacterial ancestor of mitochondria. In animal and fungal models, a family of small Leu-Tyr-Arg motif-containing proteins (LYRMs) uniformly regulates the function of mitochondrial complexes involved in these processes. The action of LYRMs is contingent upon their binding to the acylated form of acyl carrier protein (ACP). This study demonstrates that LYRMs are structurally and evolutionarily related proteins characterized by a core triplet of α-helices. Their widespread distribution across eukaryotes suggests that 12 specialized LYRMs were likely present in the last eukaryotic common ancestor to regulate the assembly and folding of the subunits that are conserved in bacteria but that lack LYRM homologues. The secondary reduction of mitochondria to anoxic environments has rendered the function of LYRMs and their interaction with acylated ACP dispensable. Consequently, these findings strongly suggest that early eukaryotes installed LYRMs in aerobic mitochondria as orchestrated switches, essential for regulating core metabolism and ATP production.
Collapse
Affiliation(s)
- Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec252 50, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec252 50, Czech Republic
| |
Collapse
|
18
|
Sharma D, Gautam S, Srivastava N, Khan AM, Bisht D. Comparative Proteomic Analysis of Capsule Proteins in Aminoglycoside-Resistant and Sensitive Mycobacterium tuberculosis Clinical Isolates: Unraveling Potential Drug Targets. Int J Mycobacteriol 2024; 13:197-205. [PMID: 38916392 DOI: 10.4103/ijmy.ijmy_47_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Tuberculosis (TB), a global infectious threat, has seen a concerning rise in aminoglycoside-resistant Mycobacterium tuberculosis (M.tb) strains. The potential role of capsule proteins remains largely unexplored. This layer acts as the primary barrier for tubercle bacilli, attempting to infiltrate host cells and subsequent disease development. METHODS The study aims to bridge this gap by investigating the differentially expressed capsule proteins in aminoglycoside-resistant M.tb clinical isolates compared with drug-sensitive isolates employing two-dimensional gel electrophoresis, mass spectrometry, and bioinformatic approaches. RESULTS We identified eight proteins that exhibited significant upregulation in aminoglycoside-resistant isolates. Protein Rv3029c and Rv2110c were associated with intermediary metabolism and respiration; Rv2462c with cell wall and cell processes; Rv3804c with lipid metabolism; Rv2416c and Rv2623 with virulence and detoxification/adaptation; Rv0020c with regulatory functions; and Rv0639 with information pathways. Notably, the Group-based Prediction System for Prokaryotic Ubiquitin-like Protein (GPS-PUP) algorithm identified potential pupylation sites within all proteins except Rv3804c. Interactome analysis using the STRING 12.0 database revealed potential interactive partners for these proteins, suggesting their involvement in aminoglycoside resistance. Molecular docking studies revealed suitable binding between amikacin and kanamycin drugs with Rv2462c, Rv3804c, and Rv2623 proteins. CONCLUSION As a result, our findings illustrate the multifaceted nature of aminoglycoside resistance in M.tb and the importance of understanding how capsule proteins play a role in counteracting drug efficacy. Identifying the role of these proteins in drug resistance is crucial for developing more effective treatments and diagnostics for TB.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Abdul Mabood Khan
- Division of Clinical Trails and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
19
|
Ikeda N, Wada Y, Izumi T, Munakata Y, Katagiri H, Kure S. Stealthy progression of type 2 diabetes mellitus due to impaired ketone production in an adult patient with multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab Rep 2024; 38:101061. [PMID: 38469101 PMCID: PMC10926221 DOI: 10.1016/j.ymgmr.2024.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Multiple acyl-CoA dehydrogenase deficiency (MADD) is an inherited metabolic disorder caused by biallelic pathogenic variants in genes related to the flavoprotein complex. Dysfunction of the complex leads to impaired fatty acid oxidation and ketone body production which can cause hypoketotic hypoglycemia with prolonged fasting. Patients with fatty acid oxidation disorders (FAODs) such as MADD are treated primarily with a dietary regimen consisting of high-carbohydrate foods and avoidance of prolonged fasting. However, information on the long-term sequelae associated with this diet have not been accumulated. In general, high-carbohydrate diets can induce diseases such as type 2 diabetes mellitus (T2DM), although few patients with both MADD and T2DM have been reported. Case We present the case of a 32-year-old man with MADD who was on a high-carbohydrate diet for >30 years and exhibited symptoms resembling diabetic ketoacidosis. He presented with polydipsia, polyuria, and weight loss with a decrease in body mass index from 31 to 25 kg/m2 over 2 months. Laboratory tests revealed a HbA1c level of 13.9%; however, the patient did not show metabolic acidosis but only mild ketosis. Discussion/conclusion This report emphasizes the potential association between long-term adherence to high-carbohydrate dietary therapy and T2DM development. Moreover, this case underscores the difficulty of detecting diabetic ketosis in patients with FAODs such as MADD due to their inability to produce ketone bodies. These findings warrant further research of the long-term complications associated with this diet as well as warning of the potential progression of diabetes in patients with FAODs such as MADD.
Collapse
Affiliation(s)
- Nodoka Ikeda
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
20
|
Lipka A, Paukszto Ł, Kennedy VC, Tanner AR, Majewska M, Anthony RV. The Impact of SLC2A8 RNA Interference on Glucose Uptake and the Transcriptome of Human Trophoblast Cells. Cells 2024; 13:391. [PMID: 38474355 PMCID: PMC10930455 DOI: 10.3390/cells13050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
While glucose is the primary fuel for fetal growth, the placenta utilizes the majority of glucose taken up from the maternal circulation. Of the facilitative glucose transporters in the placenta, SLC2A8 (GLUT8) is thought to primarily function as an intracellular glucose transporter; however, its function in trophoblast cells has not been determined. To gain insight into the function of SLC2A8 in the placenta, lentiviral-mediated RNA interference (RNAi) was performed in the human first-trimester trophoblast cell line ACH-3P. Non-targeting sequence controls (NTS RNAi; n = 4) and SLC2A8 RNAi (n = 4) infected ACH-3P cells were compared. A 79% reduction in SLC2A8 mRNA concentration was associated with an 11% reduction (p ≤ 0.05) in ACH-3P glucose uptake. NTS RNAi and SLC2A8 RNAi ACH-3P mRNA were subjected to RNAseq, identifying 1525 transcripts that were differentially expressed (|log2FC| > 1 and adjusted p-value < 0.05), with 273 transcripts derived from protein-coding genes, and the change in 10 of these mRNAs was validated by real-time qPCR. Additionally, there were 147 differentially expressed long non-coding RNAs. Functional analyses revealed differentially expressed genes involved in various metabolic pathways associated with cellular respiration, oxidative phosphorylation, and ATP synthesis. Collectively, these data indicate that SLC2A8 deficiency may impact placental uptake of glucose, but that its likely primary function in trophoblast cells is to support cellular respiration. Since the placenta oxidizes the majority of the glucose it takes up to support its own metabolic needs, impairment of SLC2A8 function could set the stage for functional placental insufficiency.
Collapse
Affiliation(s)
- Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland;
| | - Victoria C. Kennedy
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (A.R.T.)
| | - Amelia R. Tanner
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (A.R.T.)
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Russell V. Anthony
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (V.C.K.); (A.R.T.)
| |
Collapse
|
21
|
Austvold CK, Keable SM, Procopio M, Usselman RJ. Quantitative measurements of reactive oxygen species partitioning in electron transfer flavoenzyme magnetic field sensing. Front Physiol 2024; 15:1348395. [PMID: 38370016 PMCID: PMC10869518 DOI: 10.3389/fphys.2024.1348395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Biological magnetic field sensing that gives rise to physiological responses is of considerable importance in quantum biology. The radical pair mechanism (RPM) is a fundamental quantum process that can explain some of the observed biological magnetic effects. In magnetically sensitive radical pair (RP) reactions, coherent spin dynamics between singlet and triplet pairs are modulated by weak magnetic fields. The resulting singlet and triplet reaction products lead to distinct biological signaling channels and cellular outcomes. A prevalent RP in biology is between flavin semiquinone and superoxide (O2 •-) in the biological activation of molecular oxygen. This RP can result in a partitioning of reactive oxygen species (ROS) products to form either O2 •- or hydrogen peroxide (H2O2). Here, we examine magnetic sensing of recombinant human electron transfer flavoenzyme (ETF) reoxidation by selectively measuring O2 •- and H2O2 product distributions. ROS partitioning was observed between two static magnetic fields at 20 nT and 50 μT, with a 13% decrease in H2O2 singlet products and a 10% increase in O2 •- triplet products relative to 50 µT. RPM product yields were calculated for a realistic flavin/superoxide RP across the range of static magnetic fields, in agreement with experimental results. For a triplet born RP, the RPM also predicts about three times more O2 •- than H2O2, with experimental results exhibiting about four time more O2 •- produced by ETF. The method presented here illustrates the potential of a novel magnetic flavoprotein biological sensor that is directly linked to mitochondria bioenergetics and can be used as a target to study cell physiology.
Collapse
Affiliation(s)
- Chase K. Austvold
- Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Stephen M. Keable
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maria Procopio
- Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J. Usselman
- Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
- Computational Research At Florida Tech, Melbourne, FL, United States
| |
Collapse
|
22
|
Kumar V, R A, Ahire JJ, Taneja NK. Techno-Functional Assessment of Riboflavin-Enriched Yogurt-Based Fermented Milk Prepared by Supplementing Riboflavin-Producing Probiotic Strains of Lactiplantibacillus plantarum. Probiotics Antimicrob Proteins 2024; 16:152-162. [PMID: 36515890 DOI: 10.1007/s12602-022-10026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Vitamin enrichment in fermented dairy products through the intervention of vitamin-producing probiotic strains during fermentation is a novel approach in the field of probioceuticals. In this study, riboflavin-enriched yogurt-based fermented milk was prepared by mixing 1% (v/v) riboflavin-producing strain [1.2 × 108 CFU/mL of Lactiplantibacillus plantarum MTCC 25432 or L. plantarum MTCC 25433 or L. plantarum MTCC 25434] with 2% (v/v) traditional yogurt cultures [Streptococcus thermophilus NCDC 295 and L. delbrueckii subsp. bulgaricus NCDC 293; each of 1.3 × 107 CFU/mL]. The yogurt-based fermented milk prepared with traditional yogurt cultures (2%, v/v) was served as a control. The prepared yogurt-based fermented milk samples were analyzed and compared for riboflavin content, antimicrobial activity, physicochemical, and functional properties. As a result, the yogurt-based fermented milk prepared with L. plantarum MTCC 25432 produced a significantly higher amount of riboflavin (2.49 mg/L) as compared with MTCC 25433 (2.33 mg/L), MTCC 25434 (2.14 mg/L), and control (1.70 mg/L). The probiotic supplementation to yogurt cultures maintained the pH and titratable acidity in the range of 4.1-4.4 and 1.0-1.05% (lactic acid/100 mL), as recommended by Indian yogurt standards. The rheological, texture, and antimicrobial properties of yogurt-based fermented milk were enhanced with the addition of riboflavin-producing probiotic strains. Moreover, all yogurt-based fermented milk samples prepared in this study were acceptable as per the sensory evolution scores. In conclusion, the use of riboflavin-producing L. plantarum strains along with standard yogurt cultures could be the best approach to enhancing riboflavin content in yogurt-based fermented milk and fulfilling the daily riboflavin requirement in humans.
Collapse
Affiliation(s)
- Vikram Kumar
- Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India
| | - Amrutha R
- Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India
| | - Jayesh J Ahire
- Advanced Enzyme Technologies Limited, Thane, Mumbai, India
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India.
- Centre for Advanced Translational Research in Food Nanobiotechnology (CATR-FNB), NIFTEM, Sonepat, Haryana, India.
| |
Collapse
|
23
|
Rickelton K, Zintel TM, Pizzollo J, Miller E, Ely JJ, Raghanti MA, Hopkins WD, Hof PR, Sherwood CC, Bauernfeind AL, Babbitt CC. Tempo and mode of gene expression evolution in the brain across primates. eLife 2024; 13:e70276. [PMID: 38275218 PMCID: PMC10876213 DOI: 10.7554/elife.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/25/2024] [Indexed: 01/27/2024] Open
Abstract
Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.
Collapse
Affiliation(s)
- Katherine Rickelton
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Trisha M Zintel
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Jason Pizzollo
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Emily Miller
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - John J Ely
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
- MAEBIOS Epidemiology UnitAlamogordoUnited States
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State UniversityKentUnited States
| | - William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine,The University of Texas M D Anderson Cancer CentreBastropUnited States
| | - Patrick R Hof
- New York Consortium in Evolutionary PrimatologyNew YorkUnited States
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Amy L Bauernfeind
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Anthropology, Washington University in St. LouisSt. LouisUnited States
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
24
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
25
|
Feng X, Schut GJ, Adams MWW, Li H. Structures and Electron Transport Paths in the Four Families of Flavin-Based Electron Bifurcation Enzymes. Subcell Biochem 2024; 104:383-408. [PMID: 38963493 DOI: 10.1007/978-3-031-58843-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.
Collapse
Affiliation(s)
- Xiang Feng
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
26
|
Santos-Silva T, Hazar Ülgen D, Lopes CFB, Guimarães FS, Alberici LC, Sandi C, Gomes FV. Transcriptomic analysis reveals mitochondrial pathways associated with distinct adolescent behavioral phenotypes and stress response. Transl Psychiatry 2023; 13:351. [PMID: 37978166 PMCID: PMC10656500 DOI: 10.1038/s41398-023-02648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Adolescent individuals exhibit great variability in cortical dynamics and behavioral outcomes. The developing adolescent brain is highly sensitive to social experiences and environmental insults, influencing how personality traits emerge. A distinct pattern of mitochondrial gene expression in the prefrontal cortex (PFC) during adolescence underscores the essential role of mitochondria in brain maturation and the development of mental illnesses. Mitochondrial features in certain brain regions account for behavioral differences in adulthood. However, it remains unclear whether distinct adolescent behavioral phenotypes and the behavioral consequences of early adolescent stress exposure in rats are accompanied by changes in PFC mitochondria-related genes and mitochondria respiratory chain capacity. We performed a behavioral characterization during late adolescence (postnatal day, PND 47-50), including naïve animals and a group exposed to stress from PND 31-40 (10 days of footshock and 3 restraint sessions) by z-normalized data from three behavioral domains: anxiety (light-dark box tests), sociability (social interaction test) and cognition (novel-object recognition test). Employing principal component analysis, we identified three clusters: naïve with higher-behavioral z-score (HBZ), naïve with lower-behavioral z-score (LBZ), and stressed animals. Genome-wide transcriptional profiling unveiled differences in the expression of mitochondria-related genes in both naïve LBZ and stressed animals compared to naïve HBZ. Genes encoding subunits of oxidative phosphorylation complexes were significantly down-regulated in both naïve LBZ and stressed animals and positively correlated with behavioral z-score of phenotypes. Our network topology analysis of mitochondria-associated genes found Ndufa10 and Cox6a1 genes as central identifiers for naïve LBZ and stressed animals, respectively. Through high-resolution respirometry analysis, we found that both naïve LBZ and stressed animals exhibited a reduced prefrontal phosphorylation capacity and redox dysregulation. Our findings identify an association between mitochondrial features and distinct adolescent behavioral phenotypes while also underscoring the detrimental functional consequences of adolescent stress on the PFC.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Doğukan Hazar Ülgen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Caio Fábio Baeta Lopes
- Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciane Carla Alberici
- Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carmen Sandi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
27
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
28
|
Zaza G, Neri F, Bruschi M, Granata S, Petretto A, Bartolucci M, di Bella C, Candiano G, Stallone G, Gesualdo L, Furian L. Proteomics reveals specific biological changes induced by the normothermic machine perfusion of donor kidneys with a significant up-regulation of Latexin. Sci Rep 2023; 13:5920. [PMID: 37041202 PMCID: PMC10090051 DOI: 10.1038/s41598-023-33194-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/08/2023] [Indexed: 04/13/2023] Open
Abstract
Renal normothermic machine perfusion (NMP) is an organ preservation method based on the circulation of a warm (35-37 °C) perfusion solution through the renal vasculature to deliver oxygen and nutrients. However, its biological effects on marginal kidneys are unclear. We therefore used mass spectrometry to determine the proteomic profile of kidney tissue and urine from eight organs reconditioned for 120 min using a Kidney Assist device. Biopsies were taken during the pre-implantation histological evaluation (T-1), at the start of back table preparation (T0), and after 60 and 120 min of perfusion (T60, T120). Urine samples were collected at T0 (urine produced in the first 15 min after the beginning of normothermic reperfusion), T30, T60 and T120. Multiple algorithms, support vector machine learning and partial least squares discriminant analysis were used to select the most discriminative proteins during NMP. Statistical analysis revealed the upregulation of 169 proteins and the downregulation of 196 during NMP. Machine learning algorithms identified the top 50 most discriminative proteins, five of which were concomitantly upregulated (LXN, ETFB, NUDT3, CYCS and UQCRC1) and six downregulated (CFHR3, C1S, CFI, KNG1, SERPINC1 and F9) in the kidney and urine after NMP. Latexin (LXN), an endogenous carboxypeptidase inhibitor, resulted the most-upregulated protein at T120, and this result was confirmed by ELISA. In addition, functional analysis revealed that the most strongly upregulated proteins were involved in the oxidative phosphorylation system and ATP synthesis, whereas the downregulated proteins represented the complement system and coagulation cascade. Our proteomic analysis demonstrated that even brief periods of NMP induce remarkable metabolic and biochemical changes in marginal organs, which supports the use of this promising technique in the clinic.
Collapse
Affiliation(s)
- Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University-Hospital of Foggia, Via L. Pinto 1, 71122, Foggia, Italy.
| | - Flavia Neri
- Kidney and Pancreas Transplantation Unit, University of Padua, Padua, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Simona Granata
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University-Hospital of Foggia, Via L. Pinto 1, 71122, Foggia, Italy
| | - Andrea Petretto
- Core Facilities - Proteomica E Metabolomica Clinica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Martina Bartolucci
- Core Facilities - Proteomica E Metabolomica Clinica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Caterina di Bella
- Kidney and Pancreas Transplantation Unit, University of Padua, Padua, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University-Hospital of Foggia, Via L. Pinto 1, 71122, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Lucrezia Furian
- Kidney and Pancreas Transplantation Unit, University of Padua, Padua, Italy
| |
Collapse
|
29
|
Proteomic Analysis of Skeletal Muscle and White Adipose Tissue after Aerobic Exercise Training in High Fat Diet Induced Obese Mice. Int J Mol Sci 2023; 24:ijms24065743. [PMID: 36982812 PMCID: PMC10052314 DOI: 10.3390/ijms24065743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Obesity is associated with excessive fat accumulation in adipose tissue and other organs, such as skeletal muscle, whereas aerobic exercise (AE) plays an important role in managing obesity through profound protein regulation. Our study aimed to investigate the impact of AE on proteomic changes in both the skeletal muscle and the epididymal fat pad (EFP) of high-fat-diet-induced obese mice. Bioinformatic analyses were performed on differentially regulated proteins using gene ontology enrichment analysis and ingenuity pathway analysis. Eight weeks of AE significantly reduced body weight, increased the serum FNDC5 level, and improved the homeostatic model assessment of insulin resistance. A high-fat diet caused alterations in a subset of proteins involved in the sirtuin signaling pathway and the production of reactive oxygen species in both skeletal muscle and EFP, leading to insulin resistance, mitochondrial dysfunction, and inflammation. On the other hand, AE upregulated skeletal muscle proteins (NDUFB5, NDUFS2, NDUFS7, ETFD, FRDA, and MKNK1) that enhance mitochondrial function and insulin sensitivity. Additionally, the upregulation of LDHC and PRKACA and the downregulation of CTBP1 in EFP can promote the browning of white adipose tissue with the involvement of FNDC5/irisin in the canonical pathway. Our study provides insights into AE-induced molecular responses and may help further develop exercise-mimicking therapeutic targets.
Collapse
|
30
|
Koşaca M, Yılmazbilek İ, Karaca E. PROT-ON: A structure-based detection of designer PROTein interface MutatiONs. Front Mol Biosci 2023; 10:1063971. [PMID: 36936988 PMCID: PMC10018488 DOI: 10.3389/fmolb.2023.1063971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
The mutation-induced changes across protein-protein interfaces have often been observed to lead to severe diseases. Therefore, several computational tools have been developed to predict the impact of such mutations. Among these tools, FoldX and EvoEF1 stand out as fast and accurate alternatives. Expanding on the capabilities of these tools, we have developed the PROT-ON (PROTein-protein interface mutatiONs) framework, which aims at delivering the most critical protein interface mutations that can be used to design new protein binders. To realize this aim, PROT-ON takes the 3D coordinates of a protein dimer as an input. Then, it probes all possible interface mutations on the selected protein partner with EvoEF1 or FoldX. The calculated mutational energy landscape is statistically analyzed to find the most enriching and depleting mutations. Afterward, these extreme mutations are filtered out according to stability and optionally according to evolutionary criteria. The final remaining mutation list is presented to the user as the designer mutation set. Together with this set, PROT-ON provides several residue- and energy-based plots, portraying the synthetic energy landscape of the probed mutations. The stand-alone version of PROT-ON is deposited at https://github.com/CSB-KaracaLab/prot-on. The users can also use PROT-ON through our user-friendly web service http://proton.tools.ibg.edu.tr:8001/ (runs with EvoEF1 only). Considering its speed and the range of analysis provided, we believe that PROT-ON presents a promising means to estimate designer mutations.
Collapse
Affiliation(s)
- Mehdi Koşaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - İrem Yılmazbilek
- Izmir Biomedicine and Genome Center, Dokuz Eylul Health Campus, Izmir, Türkiye
- Middle East Technical University, Ankara, Türkiye
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| |
Collapse
|
31
|
Zaric BL, Macvanin MT, Isenovic ER. Free radicals: Relationship to Human Diseases and Potential Therapeutic applications. Int J Biochem Cell Biol 2023; 154:106346. [PMID: 36538984 DOI: 10.1016/j.biocel.2022.106346] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Reactive species are highly-reactive enzymatically, or non-enzymatically produced compounds with important roles in physiological and pathophysiological cellular processes. Although reactive species represent an extensively researched topic in biomedical sciences, many aspects of their roles and functions remain unclear. This review aims to systematically summarize findings regarding the biochemical characteristics of various types of reactive species and specify the localization and mechanisms of their production in cells. In addition, we discuss the specific roles of free radicals in cellular physiology, focusing on the current lines of research that aim to identify the reactive oxygen species-initiated cascades of reactions resulting in adaptive or pathological cellular responses. Finally, we present recent findings regarding the therapeutic modulations of intracellular levels of reactive oxygen species, which may have substantial significance in developing novel agents for treating several diseases.
Collapse
Affiliation(s)
- Bozidarka L Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
32
|
Thöni V, Mauracher D, Ramalingam A, Fiechtner B, Sandbichler AM, Egg M. Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis. iScience 2022; 25:105536. [PMID: 36444297 PMCID: PMC9700021 DOI: 10.1016/j.isci.2022.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Electromagnetic fields are known to induce the clock protein cryptochrome to modulate intracellular reactive oxygen species (ROS) via the quantum based radical pair mechanism (RPM) in mammalian cells. Recently, therapeutic Nuclear Magnetic Resonance (tNMR) was shown to alter protein levels of the circadian clock associated Hypoxia Inducible Factor-1α (HIF-1α) in a nonlinear dose response relationship. Using synchronized NIH3T3 cells, we show that tNMR under normoxia and hypoxia persistently modifies cellular metabolism. After normoxic tNMR treatment, glycolysis is reduced, as are lactate production, extracellular acidification rate, the ratio of ADP/ATP and cytosolic ROS, whereas mitochondrial and extracellular ROS, as well as cellular proliferation are increased. Remarkably, these effects are even more pronounced after hypoxic tNMR treatment, driving cellular metabolism to a reduced glycolysis while mitochondrial respiration is kept constant even during reoxygenation. Hence, we propose tNMR as a potential therapeutic tool in ischemia driven diseases like inflammation, infarct, stroke and cancer.
Collapse
Affiliation(s)
- Viktoria Thöni
- Institute of Zoology, University Innsbruck, Innsbruck, Tyrol A-6020, Austria
| | - David Mauracher
- Institute of Zoology, University Innsbruck, Innsbruck, Tyrol A-6020, Austria
| | - Anil Ramalingam
- Institute of Zoology, University Innsbruck, Innsbruck, Tyrol A-6020, Austria
| | - Birgit Fiechtner
- Institute of Zoology, University Innsbruck, Innsbruck, Tyrol A-6020, Austria
| | | | - Margit Egg
- Institute of Zoology, University Innsbruck, Innsbruck, Tyrol A-6020, Austria
| |
Collapse
|
33
|
de Veij Mestdagh CF, Koopmans F, Breiter JC, Timmerman JA, Vogelaar PC, Krenning G, Mansvelder HD, Smit AB, Henning RH, van Kesteren RE. The hibernation-derived compound SUL-138 shifts the mitochondrial proteome towards fatty acid metabolism and prevents cognitive decline and amyloid plaque formation in an Alzheimer's disease mouse model. Alzheimers Res Ther 2022; 14:183. [PMID: 36482297 PMCID: PMC9733344 DOI: 10.1186/s13195-022-01127-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and remains without effective cure. Increasing evidence is supporting the mitochondrial cascade hypothesis, proposing that loss of mitochondrial fitness and subsequent ROS and ATP imbalance are important contributors to AD pathophysiology. METHODS Here, we tested the effects of SUL-138, a small hibernation-derived molecule that supports mitochondrial bioenergetics via complex I/IV activation, on molecular, physiological, behavioral, and pathological outcomes in APP/PS1 and wildtype mice. RESULTS SUL-138 treatment rescued long-term potentiation and hippocampal memory impairments and decreased beta-amyloid plaque load in APP/PS1 mice. This was paralleled by a partial rescue of dysregulated protein expression in APP/PS1 mice as assessed by mass spectrometry-based proteomics. In-depth analysis of protein expression revealed a prominent effect of SUL-138 in APP/PS1 mice on mitochondrial protein expression. SUL-138 increased the levels of proteins involved in fatty acid metabolism in both wildtype and APP/PS1 mice. Additionally, in APP/PS1 mice only, SUL-138 increased the levels of proteins involved in glycolysis and amino acid metabolism pathways, indicating that SUL-138 rescues mitochondrial impairments that are typically observed in AD. CONCLUSION Our study demonstrates a SUL-138-induced shift in metabolic input towards the electron transport chain in synaptic mitochondria, coinciding with increased synaptic plasticity and memory. In conclusion, targeting mitochondrial bioenergetics might provide a promising new way to treat cognitive impairments in AD and reduce disease progression.
Collapse
Affiliation(s)
- Christina F. de Veij Mestdagh
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands ,grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,grid.16872.3a0000 0004 0435 165XAlzheimer Center Amsterdam, Vrije Universiteit Amsterdam and Amsterdam UMC location VUmc , Amsterdam, The Netherlands
| | - Frank Koopmans
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jonathan C. Breiter
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jaap A. Timmerman
- grid.12380.380000 0004 1754 9227Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter C. Vogelaar
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,Sulfateq B.V., Groningen, The Netherlands
| | - Guido Krenning
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands ,Sulfateq B.V., Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Huibert D. Mansvelder
- grid.12380.380000 0004 1754 9227Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B. Smit
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert H. Henning
- grid.4494.d0000 0000 9558 4598Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - Ronald E. van Kesteren
- grid.12380.380000 0004 1754 9227Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
34
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2022; 155:113833. [DOI: 10.1016/j.biopha.2022.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
36
|
Pei J, Zhang J, Cong Q. Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling. Bioinformatics 2022; 38:4301-4311. [PMID: 35881696 DOI: 10.1093/bioinformatics/btac527] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recent development of deep-learning methods has led to a breakthrough in the prediction accuracy of 3D protein structures. Extending these methods to protein pairs is expected to allow large-scale detection of protein-protein interactions (PPIs) and modeling protein complexes at the proteome level. RESULTS We applied RoseTTAFold and AlphaFold, two of the latest deep-learning methods for structure predictions, to analyze coevolution of human proteins residing in mitochondria, an organelle of vital importance in many cellular processes including energy production, metabolism, cell death and antiviral response. Variations in mitochondrial proteins have been linked to a plethora of human diseases and genetic conditions. RoseTTAFold, with high computational speed, was used to predict the coevolution of about 95% of mitochondrial protein pairs. Top-ranked pairs were further subject to modeling of the complex structures by AlphaFold, which also produced contact probability with high precision and in many cases consistent with RoseTTAFold. Most top-ranked pairs with high contact probability were supported by known PPIs and/or similarities to experimental structural complexes. For high-scoring pairs without experimental complex structures, our coevolution analyses and structural models shed light on the details of their interfaces, including CHCHD4-AIFM1, MTERF3-TRUB2, FMC1-ATPAF2 and ECSIT-NDUFAF1. We also identified novel PPIs (PYURF-NDUFAF5, LYRM1-MTRF1L and COA8-COX10) for several proteins without experimentally characterized interaction partners, leading to predictions of their molecular functions and the biological processes they are involved in. AVAILABILITY AND IMPLEMENTATION Data of mitochondrial proteins and their interactions are available at: http://conglab.swmed.edu/mitochondria. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
37
|
Salerno KM, Domenico J, Le NQ, Stiles CD, Solov’yov IA, Martino CF. Long-Time Oxygen Localization in Electron Transfer Flavoprotein. J Chem Inf Model 2022; 62:4191-4199. [PMID: 35998902 PMCID: PMC9472800 DOI: 10.1021/acs.jcim.2c00430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) exert a wide range of biological effects from beneficial regulatory function to deleterious oxidative stress. The electron transfer flavoprotein (ETF) is ubiquitous to life and is associated with aerobic metabolism and ROS production due to its location in the mitochondria. Quantifying oxygen localization within the ETF complex is critical for understanding the potential for electron transfer and radical pair formation between flavin adenine dinucleotide (FAD) cofactor and superoxide during ROS formation. Our study employed all-atom molecular dynamics simulations and identified several novel, long-lived oxygen binding sites within the ETF complex that appear near the FAD cofactor. Site locations, the local electrostatic environment, and characteristic oxygen binding times for each site were evaluated to establish factors that may lead to possible charge transfer reactions and superoxide formation within the ETF complex. The study revealed that some oxygen binding sites are naturally linked to protein domain features, suggesting opportunities to engineer and control ROS production and subsequent dynamics.
Collapse
Affiliation(s)
- K. Michael Salerno
- The
Johns Hopkins University Applied Physics
Laboratory, 11100 Johns
Hopkins Road, Laurel, Maryland 20723, United States
| | - Janna Domenico
- The
Johns Hopkins University Applied Physics
Laboratory, 11100 Johns
Hopkins Road, Laurel, Maryland 20723, United States
| | - Nam Q. Le
- The
Johns Hopkins University Applied Physics
Laboratory, 11100 Johns
Hopkins Road, Laurel, Maryland 20723, United States
| | - Christopher D. Stiles
- The
Johns Hopkins University Applied Physics
Laboratory, 11100 Johns
Hopkins Road, Laurel, Maryland 20723, United States
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University
Oldenburg, Carl von Ossietzky
Straße 9-11, 26129 Oldenburg, Germany
- Centre
for Neurosensory Science, Carl von Ossietzky
University Oldenburg, Carl von Ossietzky Straße 9-11, 26129 Oldenburg, Germany
| | - Carlos F. Martino
- The
Johns Hopkins University Applied Physics
Laboratory, 11100 Johns
Hopkins Road, Laurel, Maryland 20723, United States
| |
Collapse
|
38
|
An Y, Zhao Q, Gong Z, Zhao L, Li Y, Liang Z, Zou P, Zhang Y, Zhang L. Suborganelle-Specific Protein Complex Analysis Enabled by in Vivo Cross-Linking Coupled with Proximal Labeling. Anal Chem 2022; 94:12051-12059. [PMID: 36004751 DOI: 10.1021/acs.analchem.2c01637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification of the structure of protein complexes in the subcellular niche of cells is necessary to understand their diverse functions. In this study, we developed a suborganelle proteome labeling assisted in vivo cross-linking (SubPiXL) strategy to identify regional protein conformations and interactions in living cells. Due to the mitochondria's functional importance and well-defined compartmental partitions, the specific conformations and interactome of protein complexes located in the mitochondrial matrix were identified. Compared to the commonly used approach of organelle isolation followed by intact mitochondria cross-linking, our method achieved a more refined spatial characterization for the subcompartment of the cellular organelle. Additionally, this approach avoided cross-contamination and cell microenvironment disruption during organelle isolation. As such, we achieved 73% selectivity for mitochondria and 98% specificity of known suborganelle annotation for the mitochondrial matrix and accessible inner membrane. Meanwhile, more protein-protein interactions (PPIs) with high dynamics were captured, resulting in a 1.67-fold increase in the number of PPI identifications in 1/11th of the time. On the basis of these structural cross-links and the specific characterization of the interactome and conformation, the structural dynamics targeted in the mitochondrial matrix were delineated. Mitochondrial matrix-restricted information for proteins with multisubcellular localizations was then clarified. In summary, SubPiXL is a promising technique for the investigation of suborganelle-resolved protein conformation and interaction analysis and contributes to a better understanding of structure-derived functions.
Collapse
Affiliation(s)
- Yuxin An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yi Li
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
39
|
O'Connell TM, Logsdon DL, Payne RM. Metabolomics analysis reveals dysregulation in one carbon metabolism in Friedreich Ataxia. Mol Genet Metab 2022; 136:306-314. [PMID: 35798654 DOI: 10.1016/j.ymgme.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/14/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022]
Abstract
Friedreich Ataxia (FA) is a rare and often fatal autosomal recessive disease in which a mitochondrial protein, frataxin (FXN), is severely reduced in all tissues. With loss of FXN, mitochondrial metabolism is severely disrupted. Multiple therapeutic approaches are in development, but a key limitation is the lack of biomarkers reflecting the activity of FXN in a timely fashion. We predicted this dysregulated metabolism would present a unique metabolite profile in blood of FA patients versus Controls (Con). Plasma from 10 FA and 11 age and sex matched Con subjects was analyzed by targeted mass spectrometry and untargeted NMR. This combined approach yielded quantitative measurements for 540 metabolites and found 59 unique metabolites (55 from MS and 4 from NMR) that were significantly different between cohorts. Correlation-based network analysis revealed several clusters of pathway related metabolites including a cluster associated with one‑carbon (1C) metabolism composed of formate, sarcosine, hypoxanthine, and homocysteine. Receiver operator characteristics analyses demonstrated an excellent ability to discriminate between Con and FA with AUC values >0.95. These results are the first reported metabolomic analyses of human patients with FA. The metabolic perturbations, especially those related to 1C metabolism, may serve as a valuable biomarker panel of disease progression and response to therapy. The identification of dysregulated 1C metabolism may also inform the search for new therapeutic targets related to this pathway.
Collapse
Affiliation(s)
- Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - David L Logsdon
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - R Mark Payne
- Department of Pediatrics, Division of Cardiology, and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
40
|
Degradation of Exogenous Fatty Acids in Escherichia coli. Biomolecules 2022; 12:biom12081019. [PMID: 35892328 PMCID: PMC9329746 DOI: 10.3390/biom12081019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Many bacteria possess all the machineries required to grow on fatty acids (FA) as a unique source of carbon and energy. FA degradation proceeds through the β-oxidation cycle that produces acetyl-CoA and reduced NADH and FADH cofactors. In addition to all the enzymes required for β-oxidation, FA degradation also depends on sophisticated systems for its genetic regulation and for FA transport. The fact that these machineries are conserved in bacteria suggests a crucial role in environmental conditions, especially for enterobacteria. Bacteria also possess specific enzymes required for the degradation of FAs from their environment, again showing the importance of this metabolism for bacterial adaptation. In this review, we mainly describe FA degradation in the Escherichia coli model, and along the way, we highlight and discuss important aspects of this metabolism that are still unclear. We do not detail exhaustively the diversity of the machineries found in other bacteria, but we mention them if they bring additional information or enlightenment on specific aspects.
Collapse
|
41
|
Tummolo A, Leone P, Tolomeo M, Solito R, Mattiuzzo M, Lepri FR, Lorè T, Cardinali R, De Giovanni D, Simonetti S, Barile M. Combined isobutyryl-CoA and multiple acyl-CoA dehydrogenase deficiency in a boy with altered riboflavin homeostasis. JIMD Rep 2022; 63:276-291. [PMID: 35822092 PMCID: PMC9259400 DOI: 10.1002/jmd2.12292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
In this report, we describe the case of an 11-year-old boy, who came to our attention for myalgia and muscle weakness, associated with inappetence and vomiting. Hypertransaminasemia was also noted, with ultrasound evidence of hepatomegaly. Biochemical investigations revealed acylcarnitine and organic acid profiles resembling those seen in MADD, that is, multiple acyl-CoA dehydrogenase deficiencies (OMIM #231680) a rare inherited disorder of fatty acids, amino acids, and choline metabolism. The patient carried a single pathogenetic variant in the ETFDH gene (c.524G>A, p.Arg175His) and no pathogenetic variant in the riboflavin (Rf) homeostasis related genes (SLC52A1, SLC52A2, SLC52A3, SLC25A32, FLAD1). Instead, compound heterozygosity was found in the ACAD8 gene (c.512C>G, p.Ser171Cys; c.822C>A, p.Asn274Lys), coding for isobutyryl-CoA dehydrogenase (IBD), whose pathogenic variants are associated to IBD deficiency (OMIM #611283), a rare autosomal recessive disorder of valine catabolism. The c.822C>A was never previously described in a patient. Subsequent further analyses of Rf homeostasis showed reduced levels of flavins in plasma and altered FAD-dependent enzymatic activities in erythrocytes, as well as a significant reduction in the level of the plasma membrane Rf transporter 2 in erythrocytes. The observed Rf/flavin scarcity in this patient, possibly associated with a decreased ETF:QO efficiency might be responsible for the observed MADD-like phenotype. The patient's clinical picture improved after supplementation of Rf, l-carnitine, Coenzyme Q10, and also 3OH-butyrate. This report demonstrates that, even in the absence of genetic defects in genes involved in Rf homeostasis, further targeted molecular analysis may reveal secondary and possibly treatable biochemical alterations in this pattern.
Collapse
Affiliation(s)
- Albina Tummolo
- Metabolic Diseases and Clinical Genetics UnitChildren's Hospital “Giovanni XXIII”BariItaly
| | - Piero Leone
- Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of Bari “A. Moro”BariItaly
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of Bari “A. Moro”BariItaly
| | - Rita Solito
- Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of Bari “A. Moro”BariItaly
| | - Matteo Mattiuzzo
- Laboratory of Medical GeneticsTranslational Cytogenomics Research Unit, Bambino Gesù Children HospitalRomeItaly
| | - Francesca Romana Lepri
- Laboratory of Medical GeneticsTranslational Cytogenomics Research Unit, Bambino Gesù Children HospitalRomeItaly
| | - Tania Lorè
- Regional Centre for Neonatal ScreeningChildren's Hospital “Giovanni XXIII”BariItaly
| | - Roberta Cardinali
- Regional Centre for Neonatal ScreeningChildren's Hospital “Giovanni XXIII”BariItaly
| | - Donatella De Giovanni
- Metabolic Diseases and Clinical Genetics UnitChildren's Hospital “Giovanni XXIII”BariItaly
| | - Simonetta Simonetti
- Regional Centre for Neonatal ScreeningChildren's Hospital “Giovanni XXIII”BariItaly
| | - Maria Barile
- Department of Biosciences, Biotechnology and BiopharmaceuticsUniversity of Bari “A. Moro”BariItaly
| |
Collapse
|
42
|
Isei MO, Stevens D, Kamunde C. Copper modulates heart mitochondrial H 2O 2 emission differently during fatty acid and pyruvate oxidation. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109267. [PMID: 35026399 DOI: 10.1016/j.cbpc.2022.109267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/28/2022]
Abstract
Although the preferred cardiac metabolic fuels are fatty acids, glucose metabolism also plays an important role. However, irrespective of substrate type, energy generation results in mitochondrial reactive oxygen species (ROS) formation. To determine if the preference of fat over carbohydrates predisposes cardiomyocytes to oxidant production, we measured total and site-specific H2O2 emission in heart mitochondria oxidizing palmitoylcarnitine or pyruvate during copper (Cu) exposure. H2O2 emission was higher during oxidation of palmitoylcarnitine compared with pyruvate. Moreover, the bulk of the H2O2 emitted during palmitoylcarnitine oxidation originated from the outer ubiquinone binding site of complex III (site IIIQo) and the flavin site of electron transfer flavoprotein (site EF). We found no evidence of ROS production from complex I ubiquinone-binding site (site IQ) by reverse electron transport during oxidation of palmitoylcarnitine. Pyruvate oxidation also drove H2O2 emission primarily from sites IIIQo; however, the flavin sites of pyruvate dehydrogenase (site PF) and complex II (site IIF) contributed substantially. The effect of Cu depended on substrate and redox site, with effects at sites OF and IIIQo being more pronounced in mitochondria oxidizing pyruvate compared with palmitoylcarnitine. Cu imposed a concentration-saturable effect at site PF but concentration-dependently stimulated H2O2 emission at site EF. The substrate-dependent differences in H2O2 emission and effects of Cu suggest that fuel type and points of entry of electrons into the mitochondrial electron transport system determine the mitochondrial ROS production rate. Importantly, knowledge of sites of mitochondrial ROS production is crucial to the understanding of cardiac dysfunction associated with impaired substrate metabolism.
Collapse
Affiliation(s)
- Michael O Isei
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
43
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
44
|
Yan Y, Xu Y, Yang X, Li Z, Niu K, Liu C, Zhao M, Xiao Q, Wu W. Electron Transfer Flavoprotein (ETF) α Controls Blood Vessel Development by Regulating Endothelial Mitochondrial Bioenergetics and Oxygen Consumption. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7969916. [PMID: 35313640 PMCID: PMC8933654 DOI: 10.1155/2022/7969916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
While impairment of vascular homeostasis induced by hypercholesterolemia is the first step of cardiovascular diseases, the molecular mechanism behind such impairment is not well known. Here, we reported that high-cholesterol diet (HCD) induced defective vessel sprouting in zebrafish larvae. Electron transfer flavoprotein subunit α (ETFα) (encoded by the ETFA gene), a protein that mediates transfer of electrons from a series of mitochondrial flavoenzymes to the respiratory chain, was downregulated in HCD-fed zebrafish and in endothelial cells treated with oxidized low-density lipoprotein. Knockdown of ETFα with morpholino antisense oligonucleotides reproduced vascular sprouting defects in zebrafish larvae, while replenishing with exogeneous ETFA mRNA could successfully rescue these defects. ETFA knockdown in endothelial cells reduces cell migration, proliferation, and tube formation in vitro. Finally, knockdown of ETFA in endothelial cells also reduced fatty acid oxidation, oxygen consumption rate, and hypoxia-inducible factor-1α (HIF1α) protein levels. Taken together, we demonstrate that downregulation of ETFα is involved in hypercholesterolemia-induced defective vessel sprouting in zebrafish larvae via inhibition of endothelial proliferation and migration. The molecular mechanism behind this phenomenon is the decrease of HIF1α induced by downregulation of ETFα in endothelial cells. This work suggests that disturbance of ETFα-mediated oxygen homeostasis is one of the mechanisms behind hypercholesterolemia-induced vascular dysfunction.
Collapse
Affiliation(s)
- Yi Yan
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510000, China
| | - Yingyi Xu
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xuewen Yang
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhonghao Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kaiyuan Niu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Chenxin Liu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qingzhong Xiao
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital and Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| | - Wei Wu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
45
|
Małecki JM, Davydova E, Falnes PØ. Protein methylation in mitochondria. J Biol Chem 2022; 298:101791. [PMID: 35247388 PMCID: PMC9006661 DOI: 10.1016/j.jbc.2022.101791] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Many proteins are modified by posttranslational methylation, introduced by a number of methyltransferases (MTases). Protein methylation plays important roles in modulating protein function and thus in optimizing and regulating cellular and physiological processes. Research has mainly focused on nuclear and cytosolic protein methylation, but it has been known for many years that also mitochondrial proteins are methylated. During the last decade, significant progress has been made on identifying the MTases responsible for mitochondrial protein methylation and addressing its functional significance. In particular, several novel human MTases have been uncovered that methylate lysine, arginine, histidine, and glutamine residues in various mitochondrial substrates. Several of these substrates are key components of the bioenergetics machinery, e.g., respiratory Complex I, citrate synthase, and the ATP synthase. In the present review, we report the status of the field of mitochondrial protein methylation, with a particular emphasis on recently discovered human MTases. We also discuss evolutionary aspects and functional significance of mitochondrial protein methylation and present an outlook for this emergent research field.
Collapse
Affiliation(s)
- Jędrzej M Małecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| | - Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
46
|
Piquereau J, Boitard SE, Ventura-Clapier R, Mericskay M. Metabolic Therapy of Heart Failure: Is There a Future for B Vitamins? Int J Mol Sci 2021; 23:30. [PMID: 35008448 PMCID: PMC8744601 DOI: 10.3390/ijms23010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure (HF) is a plague of the aging population in industrialized countries that continues to cause many deaths despite intensive research into more effective treatments. Although the therapeutic arsenal to face heart failure has been expanding, the relatively short life expectancy of HF patients is pushing towards novel therapeutic strategies. Heart failure is associated with drastic metabolic disorders, including severe myocardial mitochondrial dysfunction and systemic nutrient deprivation secondary to severe cardiac dysfunction. To date, no effective therapy has been developed to restore the cardiac energy metabolism of the failing myocardium, mainly due to the metabolic complexity and intertwining of the involved processes. Recent years have witnessed a growing scientific interest in natural molecules that play a pivotal role in energy metabolism with promising therapeutic effects against heart failure. Among these molecules, B vitamins are a class of water soluble vitamins that are directly involved in energy metabolism and are of particular interest since they are intimately linked to energy metabolism and HF patients are often B vitamin deficient. This review aims at assessing the value of B vitamin supplementation in the treatment of heart failure.
Collapse
Affiliation(s)
- Jérôme Piquereau
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| | | | | | - Mathias Mericskay
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| |
Collapse
|
47
|
Diagnosis of atypical myopathy based on organic acid and acylcarnitine profiles and evolution of biomarkers in surviving horses. Mol Genet Metab Rep 2021; 29:100827. [PMID: 34900597 PMCID: PMC8639802 DOI: 10.1016/j.ymgmr.2021.100827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background Atypical myopathy (AM), an acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in horses, induce changes in mitochondrial metabolism. Only few veterinary laboratories offer diagnostic testing for this disease. Inborn and acquired MADD exist in humans, therefore determination of organic acids (OA) in urine and acylcarnitines (AC) in blood by assays available in medical laboratories can serve as AM diagnostics. The evolution of OA and AC profiles in surviving horses is unreported. Methods AC profiles using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and OA in urine using gas chromatography mass spectrometry (GC–MS) were determined in dried blot spots (DBS, n = 7) and urine samples (n = 5) of horses with AM (n = 7) at disease presentation and in longitudinal samples from 3/4 survivors and compared to DBS (n = 16) and urine samples (n = 7) from control horses using the Wilcoxon test. Results All short- (C2-C5) and medium-chain (C6-C12) AC in blood differed significantly (p < 0.008) between horses with AM and controls, except for C5:1 (p = 0.45) and C5OH + C4DC (p = 0.06). In AM survivors the AC concentrations decreased over time but were still partially elevated after 7 days. 14/62 (23%) of OA differed significantly between horses with AM and control horses. Concentrations of ethylmalonic acid, 2-hydroxyglutaric acid and the acylglycines (butyryl-, valeryl-, and hexanoylglycine) were highly elevated in the urine of all horses with AM at the day of disease presentation. In AM survivors, concentrations of those metabolites were initially lower and decreased during remission to approach normalization after 7 days. Conclusion OA and AC profiling by specialized human medical laboratories was used to diagnose AM in horses. Elevation of specific metabolites were still evident several days after disease presentation, allowing diagnosis via analysis of samples from convalescent animals. Human medical laboratories can be used to diagnose atypical myopathy in horses. Diagnosis can be achieved by organic acid and acylcarnitine profiling. Diagnosis can also be achieved in convalescent horses. Specific metabolites are still evident several days after clinical signs start. Some metabolites differentiated between survivors and non-survivors.
Collapse
|
48
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. Nutrients to Improve Mitochondrial Function to Reduce Brain Energy Deficit and Oxidative Stress in Migraine. Nutrients 2021; 13:nu13124433. [PMID: 34959985 PMCID: PMC8707228 DOI: 10.3390/nu13124433] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanisms of migraine pathogenesis are not completely clear, but 31P-nuclear magnetic resonance studies revealed brain energy deficit in migraineurs. As glycolysis is the main process of energy production in the brain, mitochondria may play an important role in migraine pathogenesis. Nutrition is an important aspect of migraine pathogenesis, as many migraineurs report food-related products as migraine triggers. Apart from approved anti-migraine drugs, many vitamins and supplements are considered in migraine prevention and therapy, but without strong supportive evidence. In this review, we summarize and update information about nutrients that may be important for mitochondrial functions, energy production, oxidative stress, and that are related to migraine. Additionally, we present a brief overview of caffeine and alcohol, as they are often reported to have ambiguous effects in migraineurs. The nutrients that can be considered to supplement the diet to prevent and/or ameliorate migraine are riboflavin, thiamine, magnesium ions, niacin, carnitine, coenzyme Q10, melatonin, lipoic acid, pyridoxine, folate, and cobalamin. They can supplement a normal, healthy diet, which should be adjusted to individual needs determined mainly by the physiological constitution of an organism. The intake of caffeine and alcohol should be fine-tuned to the history of their use, as withdrawal of these agents in regular users may become a migraine trigger.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.), (J.C.)
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.), (J.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
49
|
González-García P, Barriocanal-Casado E, Díaz-Casado ME, López-Herrador S, Hidalgo-Gutiérrez A, López LC. Animal Models of Coenzyme Q Deficiency: Mechanistic and Translational Learnings. Antioxidants (Basel) 2021; 10:antiox10111687. [PMID: 34829558 PMCID: PMC8614664 DOI: 10.3390/antiox10111687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipophilic molecule that is endogenously synthesized in the mitochondria of each cell. The CoQ biosynthetic pathway is complex and not completely characterized, and it involves at least thirteen catalytic and regulatory proteins. Once it is synthesized, CoQ exerts a wide variety of mitochondrial and extramitochondrial functions thank to its redox capacity and its lipophilicity. Thus, low levels of CoQ cause diseases with heterogeneous clinical symptoms, which are not always understood. The decreased levels of CoQ may be primary caused by defects in the CoQ biosynthetic pathway or secondarily associated with other diseases. In both cases, the pathomechanisms are related to the CoQ functions, although further experimental evidence is required to establish this association. The conventional treatment for CoQ deficiencies is the high doses of oral CoQ10 supplementation, but this therapy is not effective for some specific clinical presentations, especially in those involving the nervous system. To better understand the CoQ biosynthetic pathway, the biological functions linked to CoQ and the pathomechanisms of CoQ deficiencies, and to improve the therapeutic outcomes of this syndrome, a variety of animal models have been generated and characterized in the last decade. In this review, we show all the animal models available, remarking on the most important outcomes that each model has provided. Finally, we also comment some gaps and future research directions related to CoQ metabolism and how the current and novel animal models may help in the development of future research studies.
Collapse
Affiliation(s)
- Pilar González-García
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| | - Eliana Barriocanal-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - María Elena Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Sergio López-Herrador
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
| | - Luis C. López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; (E.B.-C.); (M.E.D.-C.); (S.L.-H.); (A.H.-G.)
- Centro de Investigación Biomédica, Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain
- Correspondence: (P.G.-G.); (L.C.L.)
| |
Collapse
|
50
|
Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life (Basel) 2021; 11:life11040351. [PMID: 33920624 PMCID: PMC8074069 DOI: 10.3390/life11040351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial respiratory chain encompasses four oligomeric enzymatic complexes (complex I, II, III and IV) which, together with the redox carrier ubiquinone and cytochrome c, catalyze electron transport coupled to proton extrusion from the inner membrane. The protonmotive force is utilized by complex V for ATP synthesis in the process of oxidative phosphorylation. Respiratory complexes are known to coexist in the membrane as single functional entities and as supramolecular aggregates or supercomplexes (SCs). Understanding the assembly features of SCs has relevant biomedical implications because defects in a single protein can derange the overall SC organization and compromise the energetic function, causing severe mitochondrial disorders. Here we describe in detail the main types of SCs, all characterized by the presence of complex III. We show that the genetic alterations that hinder the assembly of Complex III, not just the activity, cause a rearrangement of the architecture of the SC that can help to preserve a minimal energetic function. Finally, the major metabolic disturbances associated with severe SCs perturbation due to defective complex III are discussed along with interventions that may circumvent these deficiencies.
Collapse
|