1
|
Wang L, Wen B, Guo S, Han Y, Deng Z, Ding Q, Li X. Identification and characterization of ATP-binding cassette transporters involved in chlorantraniliprole tolerance of model insect Drosophila melanogaster and agricultural pest Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106212. [PMID: 39672622 DOI: 10.1016/j.pestbp.2024.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
ATP-binding cassette (ABC) transporter family is one of the largest transporter families, which plays an important role in insecticide tolerance. In this study, we found that the ABC transporter inhibitor verapamil could significantly enhance the toxicity of chlorantraniliprole (CHL) to the model insect Drosophila melanogaster. Forty-six ABC transporter genes of D. melanogaster were knocked down through the daughterless-GAL4 (Da-GAL4) strain. The subsequent bioassay result showed that D. melanogaster with DmCG5772, DmCG1494, and DmCG5853 genes silencing significantly increased mortality after CHL treatment. Based on the genome of the fall armyworm (FAW), three genes with the best hits were identified, and SfABCA1 (XM_035576510.2) and SfABCG10 (XM_035577893.2) were successfully cloned. Spatiotemporal expression pattern analysis showed that SfABCA1 and SfABCG10 were both highly expressed in adult and pupal stages. Hemolymph was also a tissue with high expression of these two genes. LC10 dose of CHL could induce the expression levels of SfABCA1 and SfABCG10, with SfABCG10 upregulated 8-fold after 48 h of CHL treatment. Furthermore, overexpression of SfABCA1 and SfABCG10 increased the viability of Sf9 cell under CHL treatment. Our findings indicate that SfABCA1 and SfABCG10 might associate with the tolerance of CHL in S. frugiperda. These results are not only helpful in understanding the role of ABC transporters in CHL tolerance of other agricultural pests, but also lay a theoretical foundation for delaying the development of CHL resistance in pest management.
Collapse
Affiliation(s)
- Lixiang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Bin Wen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shaoyi Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yujie Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhongyuan Deng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qian Ding
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Röpcke M, Lu S, Plate C, Meinzer F, Lisiecki A, Dobler S. Substrate Specificity of ABCB Transporters Predicted by Docking Simulations Can Be Confirmed by Experimental Tests. Molecules 2024; 29:5272. [PMID: 39598661 PMCID: PMC11596062 DOI: 10.3390/molecules29225272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, particularly those of subfamily B, are involved in cell detoxification, multidrug resistance, drug treatment pharmacodynamics, and also ecological adaptation. In this regard, ABCB transporters may play a decisive role in the co-evolution between plants and herbivores. Cardenolides, toxic steroid glycosides, are secondary plant metabolites that defend plants against herbivores by targeting their sodium-potassium ATPase. Despite their toxicity, several herbivorous insects such as the large milkweed bug (Oncopeltus fasciatus) have evolved adaptations to tolerate cardenolides and sequester them for their own defense. We investigate the role of two ABCB transporters of O. fasciatus for the paracellular transport of cardenolides by docking simulations and ATPase assays. Cardenolide binding of OfABCB1 and OfABCB2 is predicted by docking simulations and calculated binding energies are compared with substrate specificities determined in ATPase assays. Both tested ABCB transporters showed activity upon exposure to cardenolides and Km values that agreed well with the predictions of our docking simulations. We conclude that docking simulations can help identify transporter binding regions and predict substrate specificity, as well as provide deeper insights into the structural basis of ABC transporter function.
Collapse
Affiliation(s)
- Mario Röpcke
- Institute of Cell and System Biology of Animals, Universität Hamburg, 20146 Hamburg, Germany; (S.L.); (C.P.); (F.M.); (A.L.)
| | | | | | | | | | - Susanne Dobler
- Institute of Cell and System Biology of Animals, Universität Hamburg, 20146 Hamburg, Germany; (S.L.); (C.P.); (F.M.); (A.L.)
| |
Collapse
|
3
|
Qiao JW, Wu BJ, Wang WQ, Yuan CX, Su S, Zhang ZF, Fan YL, Liu TX. The ATP-binding cassette transporter subfamily G member 4 mediates cuticular hydrocarbon transport to regulate drought tolerance in Acyrthosiphon pisum. Int J Biol Macromol 2024; 278:134605. [PMID: 39127281 DOI: 10.1016/j.ijbiomac.2024.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ABC transporters are a highly conserved membrane protein class that promote the transport of substances across membranes. Under drought conditions, insects primarily regulate the content of cuticular hydrocarbon (CHC) to retain water and prevent evaporative loss. Involvement of ABC transporter protein G (ABCG) subfamily genes in insect CHC transport has been relatively understudied. In this study, we demonstrated that ABCG4 gene in Acyrthosiphon pisum (ApABCG4) is involved in CHC transport and affects drought tolerance by regulating CHC accumulation. ApABCG4 is strongly expressed in the abdominal cuticle and embryonic stages of A. pisum. Effective silencing of ApABCG4 was achieved using RNAi, and the silencing duration was analyzed. ApABCG4 silencing resulted in a significant decrease in the total and component contents of the CHC and cuticular waxy coatings of A. pisum. Nevertheless, the internal hydrocarbon content remained unchanged. The lack of cuticular hydrocarbons significantly reduced the drought tolerance of A. pisum, shortening its survival time under drought stress. Drought stress caused significant upregulation of ApABCG4. Molecular docking showed that ApABCG4 has a high binding affinity for nine n-alkanes of CHC through electrostatic interactions. These results indicate that ApABCG4 is a novel RNAi target with key applications in aphid biological control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Bing-Jin Wu
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Wen-Qiang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Cai-Xia Yuan
- Key Laboratory of Applied Ecology of Loess Plateau, Shaanxi Province, College of Life Science, Yan'an University, Yan'an 716000, China.
| | - Sha Su
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhan-Feng Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Yong-Liang Fan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, P.R. China; College of Plant Protection, Northwest A&F University, Yangling Shaanxi 712100, China.
| | - Tong-Xian Liu
- Institute of Entomology and Institute of Plant Health and Medicine, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
4
|
Sato R. Utilization of Diverse Molecules as Receptors by Cry Toxin and the Promiscuous Nature of Receptor-Binding Sites Which Accounts for the Diversity. Biomolecules 2024; 14:425. [PMID: 38672442 PMCID: PMC11048593 DOI: 10.3390/biom14040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
By 2013, it had been shown that the genes cadherin-like receptor (Cad) and ATP-binding cassette transporter subfamily C2 (ABCC2) were responsible for insect resistance to several Cry1A toxins, acting as susceptibility-determining receptors, and many review articles have been published. Therefore, this review focuses on information about receptors and receptor-binding sites that have been revealed since 2014. Since 2014, studies have revealed that the receptors involved in determining susceptibility vary depending on the Cry toxin subfamily, and that binding affinity between Cry toxins and receptors plays a crucial role. Consequently, models have demonstrated that ABCC2, ABCC3, and Cad interact with Cry1Aa; ABCC2 and Cad with Cry1Ab and Cry1Ac; ABCC2 and ABCC3 with Cry1Fa; ABCB1 with Cry1Ba, Cry1Ia, Cry9Da, and Cry3Aa; and ABCA2 with Cry2Aa and Cry2Ba, primarily in the silkworm, Bombyx mori. Furthermore, since 2017, it has been suggested that the binding sites of BmCad and BmABCC2 on Cry1Aa toxin overlap in the loop region of domain II, indicating that Cry toxins use various molecules as receptors due to their ability to bind promiscuously in this region. Additionally, since 2017, several ABC transporters have been identified as low-efficiency receptors that poorly induce cell swelling in heterologously expressing cultured cells. In 2024, research suggested that multiple molecules from the ABC transporter subfamily, including ABCC1, ABCC2, ABCC3, ABCC4, ABCC10, and ABCC11, act as low-efficiency receptors for a single Cry toxin in the midgut of silkworm larvae. This observation led to the hypothesis that the presence of such low-efficiency receptors contributes to the evolution of Cry toxins towards the generation of highly functional receptors that determine the susceptibility of individual insects. Moreover, this evolutionary process is considered to offer valuable insights for the engineering of Cry toxins to overcome resistance and develop countermeasures against resistance.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
5
|
Jin M, Peng Y, Peng J, Zhang H, Shan Y, Liu K, Xiao Y. Transcriptional regulation and overexpression of GST cluster enhances pesticide resistance in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Commun Biol 2023; 6:1064. [PMID: 37857697 PMCID: PMC10587110 DOI: 10.1038/s42003-023-05447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid evolution of resistance in agricultural pest poses a serious threat to global food security. However, the mechanisms of resistance through metabolic regulation are largely unknown. Here, we found that a GST gene cluster was strongly selected in North China (NTC) population, and it was significantly genetically-linked to lambda-cyhalothrin resistance. Knockout of the GST cluster using CRISPR/Cas9 significantly increased the sensitivity of the knockout strain to lambda-cyhalothrin. Haplotype analysis revealed no non-synonymous mutations or structural variations in the GST cluster, whereas GST_119 and GST_121 were significantly overexpressed in the NTC population. Silencing of GST_119 or co-silencing of GST_119 and GST_121 with RNAi significantly increased larval sensitivity to lambda-cyhalothrin. We also identified additional GATAe transcription factor binding sites in the promoter of NTC_GST_119. Transient expression of GATAe in Hi5 cells activated NTC_GST_119 and Xinjiang (XJ)_GST_119 transcription, but the transcriptional activity of NTC_GST_119 was significantly higher than that of XJ_GST_119. These results demonstrate that variations in the regulatory region result in complex expression changes in the GST cluster, which enhances lambda-cyhalothrin resistance in field-populations. This study deepens our knowledge of the evolutionary mechanism of pest adaptation under environmental stress and provides potential targets for monitoring pest resistance and integrated management.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huihui Zhang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Yang Y, Lu K, Qian J, Guo J, Xu H, Lu Z. Identification and characterization of ABC proteins in an important rice insect pest, Cnaphalocrocis medinalis unveil their response to Cry1C toxin. Int J Biol Macromol 2023; 237:123949. [PMID: 36894061 DOI: 10.1016/j.ijbiomac.2023.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Rice leaffolder (Cnaphalocrocis medinalis) is an important insect pest in paddy fields. Due to their essential role in the physiology and insecticidal resistance, ATP-binding cassette (ABC) proteins were studied in many insects. In this study, we identified the ABC proteins in C. medinalis through genomic data and analyzed their molecular characteristics. A total of 37 sequences with nucleotide-binding domain (NBD) were identified as ABC proteins and belonged to eight families (ABCA-ABCH). Four structure styles of ABC proteins were found in C. medinalis, including full structure, half structure, single structure, and ABC2 structure. In addition to these structures, TMD-NBD-TMD, NBD-TMD-NBD, and NBD-TMD-NBD-NBD were found in C. medinalis ABC proteins. Docking studies suggested that in addition to the soluble ABC proteins, other ABC proteins including ABCC4, ABCH1, ABCG3, ABCB5, ABCG1, ABCC7, ABCB3, ABCA3, and ABCC5 binding with Cry1C had higher weighted scores. The upregulation of ABCB1 and downregulation of ABCB3, ABCC1, ABCC7, ABCG1, ABCG3, and ABCG6 were associated with the C. medinalis response to Cry1C toxin. Collectively, these results help elucidate the molecular characteristics of C. medinalis ABC proteins, pave the way for further functional studies of C. medinalis ABC proteins, including their interaction with Cry1C toxin, and provide potential insecticide targets.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Ke Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China; Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Qian
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Jin M, Liu B, Zheng W, Liu C, Liu Z, He Y, Li X, Wu C, Wang P, Liu K, Wu S, Liu H, Chakrabarty S, Yuan H, Wilson K, Wu K, Fan W, Xiao Y. Chromosome-level genome of black cutworm provides novel insights into polyphagy and seasonal migration in insects. BMC Biol 2023; 21:2. [PMID: 36600240 PMCID: PMC9814246 DOI: 10.1186/s12915-022-01504-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The black cutworm, Agrotis ipsilon, is a serious global underground pest. Its distinct phenotypic traits, especially its polyphagy and ability to migrate long distances, contribute to its widening distribution and increasing difficulty of control. However, knowledge about these traits is still limited. RESULTS We generated a high-quality chromosome-level assembly of A. ipsilon using PacBio and Hi-C technology with a contig N50 length of ~ 6.7 Mb. Comparative genomic and transcriptomic analyses showed that detoxification-associated gene families were highly expanded and induced after insects fed on specific host plants. Knockout of genes that encoded two induced ABC transporters using CRISPR/Cas9 significantly reduced larval growth rate, consistent with their contribution to host adaptation. A comparative transcriptomic analysis between tethered-flight moths and migrating moths showed expression changes in the circadian rhythm gene AiCry2 involved in sensing photoperiod variations and may receipt magnetic fields accompanied by MagR and in genes that regulate the juvenile hormone pathway and energy metabolism, all involved in migration processes. CONCLUSIONS This study provides valuable genomic resources for elucidating the mechanisms involved in moth migration and developing innovative control strategies.
Collapse
Affiliation(s)
- Minghui Jin
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Bo Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weigang Zheng
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 China
| | - Conghui Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), Hongkong, 999077 China
| | - Zhenxing Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuan He
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ,grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiaokang Li
- grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Chao Wu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ping Wang
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kaiyu Liu
- grid.411407.70000 0004 1760 2614School of Life Sciences, Central China Normal University, Wuhan, 430079 China
| | - Shigang Wu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hangwei Liu
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Swapan Chakrabarty
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haibin Yuan
- grid.464353.30000 0000 9888 756XCollege of Agronomy, Jilin Agricultural University, Changchun, 130118 China
| | - Kenneth Wilson
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, LAI 4YQ UK
| | - Kongming Wu
- grid.410727.70000 0001 0526 1937The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Wei Fan
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Xiao
- grid.410727.70000 0001 0526 1937Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
8
|
Liu L, Hong B, Wei JW, Wu YT, Song LW, Wang SS. Transcriptional response and functional analysis of ATP-binding cassette transporters to tannic acid in pea aphid, Acyrthosiphon pisum (Harris). Int J Biol Macromol 2022; 220:250-257. [PMID: 35981673 DOI: 10.1016/j.ijbiomac.2022.08.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
Although tannins are widely distributed in broad beans and alfalfa, the pea aphid (Acyrthosiphon pisum) can still destroy them. The ATP binding cassette (ABC) transporters participate in the metabolism of plant secondary metabolites and pesticides in insects. However, whether ABC transporter genes play a role in the metabolism of tannins in the pea aphid is unclear. Here, we found that verapamil (an ABC transporter inhibitor) significantly increased the mortality of tannic acid to pea aphid, which indicated that ABC transporter gene was related to the metabolism of tannic acid by pea aphid. Then, we identified 54 putative ABC transporter genes from the genome database of A. pisum. These genes were divided into eight subfamilies, ApABCA to ApABCH, of which subfamily G has the largest number of genes with 19, followed by the subfamily C with 14. RT-qPCR results show that the expression levels of ApABCA2, ApABCC7, ApABCG2, and ApABCG3 were highly expressed in the first instar, while those of ApABCA3, ApABCG6, ApABCG7, ApABCH3, and ApABCH4 were highly expressed in adults. Furthermore, transcription levels of many ABC transporter genes were induced by tannic acid. Especially, ApABCG17 and ApABCH2 were obviously induced after being exposed to tannic acid. Meanwhile, knockdown of ApABCG17 by RNA interference resulted in increased sensitivity of pea aphid to tannic acid. These results suggest that ApABCG17 may be involved in tannic acid metabolism in pea aphid. This study will help us to understand the mechanism of tannic acid metabolism in pea aphid, and provides a basis for further research on the physiological function of ABC transporter genes in pea aphid.
Collapse
Affiliation(s)
- Lei Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Bo Hong
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Jiang-Wen Wei
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Yi-Ting Wu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Li-Wen Song
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China.
| | - Sen-Shan Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, Gansu Province, China.
| |
Collapse
|
9
|
Li Z, Mao K, Jin R, Cai T, Qin Y, Zhang Y, He S, Ma K, Wan H, Ren X, Li J. miRNA novel_268 targeting NlABCG3 is involved in nitenpyram and clothianidin resistance in Nilaparvata lugens. Int J Biol Macromol 2022; 217:615-623. [PMID: 35853504 DOI: 10.1016/j.ijbiomac.2022.07.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 12/19/2022]
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most destructive pests that seriously threatens the high-quality and safe production of rice. However, due to the unscientific use of chemical insecticides, N. lugens has developed varying levels of resistance to insecticides, including nitenpyram and clothianidin. The ATP-binding cassette (ABC) transporter plays a nonnegligible role in phase III of the detoxification process, which may play an important role in insecticide resistance. In the present study, NlABCG3 was significantly overexpressed in both the NR and CR populations compared with susceptible populations. Silencing NlABCG3 significantly increased the susceptibility of BPH to nitenpyram and clothianidin. In addition, RNAi-mediated knockdown of three key genes in the miRNA biogenesis pathway altered the level of NlABCG3. Subsequently, the luciferase reporter assays demonstrated that novel_268 binds to the NlABCG3 coding region and downregulates its expression. Furthermore, injection of miRNA inhibitors or mimics of novel_268 significantly altered the susceptibility of N. lugens to nitenpyram and clothianidin. These results suggest that miRNA novel_268 targeting NlABCG3 is involved in nitenpyram and clothianidin resistance in N. lugens. These findings may help to enhance our knowledge of the transcriptional regulation of the ABC transporter that mediate insecticide resistance in N. lugens.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, PR China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kaikai Mao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tingwei Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yao Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunhua Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuexiang Ren
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, 40 Nongkenan Road, Hefei 230031, PR China.
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
10
|
Breeschoten T, Schranz ME, Poelman EH, Simon S. Family dinner: Transcriptional plasticity of five Noctuidae (Lepidoptera) feeding on three host plant species. Ecol Evol 2022; 12:e9258. [PMID: 36091341 PMCID: PMC9448971 DOI: 10.1002/ece3.9258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Polyphagous insects often show specialization in feeding on different host plants in terms of survival and growth and, therefore, can be considered minor or major pests of particular hosts. Whether polyphagous insects employ a common transcriptional response to cope with defenses from diverse host plants is under-studied. We focused on patterns of transcriptional plasticity in polyphagous moths (Noctuidae), of which many species are notorious pests, in relation to herbivore performance on different host plants. We compared the transcriptional plasticity of five polyphagous moth species feeding and developing on three different host plant species. Using a comparative phylogenetic framework, we evaluated if successful herbivory, as measured by larval performance, is determined by a shared or lineage-specific transcriptional response. The upregulated transcriptional activity, or gene expression pattern, of larvae feeding on the different host plants and artificial control diet was highly plastic and moth species-specific. Specialization, defined as high herbivore success for specific host plants, was not generally linked to a lower number of induced genes. Moths that were more distantly related and showing high herbivore success for certain host plants showed shared expression of multiple homologous genes, indicating convergence. We further observed specific transcriptional responses within phylogenetic lineages. These expression patterns for specific host plant species are likely caused by shared evolutionary histories, for example, symplesiomorphic patterns, and could therefore not be associated with herbivore success alone. Multiple gene families, with roles in plant digestion and detoxification, were widely expressed in response to host plant feeding but again showed highly moth species-specific. Consequently, high herbivore success for specific host plants is also driven by species-specific transcriptional plasticity. Thus, potential pest moths display a complex and species-specific transcriptional plasticity.
Collapse
Affiliation(s)
- Thijmen Breeschoten
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
11
|
Wang H, Zhang C, Chen G, Li Y, Yang X, Han L, Peng Y. Downregulation of the CsABCC2 gene is associated with Cry1C resistance in the striped stem borer Chilo suppressalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105119. [PMID: 35715058 DOI: 10.1016/j.pestbp.2022.105119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Chilo suppressalis is a major target pest of transgenic rice expressing the Bacillus thuringiensis (Bt) Cry1C toxin in China. The evolution of resistance of this pest is a major threat to Bt rice. Since Bt functions by binding to receptors in the midgut (MG) of target insects, identification of Bt functional receptors in C. suppressalis is crucial for evaluating potential resistance mechanisms and developing effective management strategies. ATP-binding cassette (ABC) transporters have been vastly reported to interact with Cry1A toxins, as receptors and their mutations cause insect Bt resistance. However, the role of ABC transporters in Cry1C resistance to C. suppressalis remains unknown. Here, we measured CsABCC2 expression in C. suppressalis Cry1C-resistant (Cry1C-R) and Cry1C-susceptible strains (selected in the laboratory) via quantitative real-time PCR (qRT-PCR); the transcript level of CsABCC2 in the Cry1C-R strain was significantly lower than that in the Cry1C-susceptible strain. Furthermore, silencing CsABCC2 in C. suppressalis via RNA interference (RNAi) significantly decreased Cry1C susceptibility. Overall, CsABCC2 participates in Cry1C mode of action, and reduced expression of CsABCC2 is functionally associated with Cry1C resistance in C. suppressalis.
Collapse
Affiliation(s)
- Huilin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Geng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaowei Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
12
|
Denecke S, Bảo Lương HN, Koidou V, Kalogeridi M, Socratous R, Howe S, Vogelsang K, Nauen R, Batterham P, Geibel S, Vontas J. Characterization of a novel pesticide transporter and P-glycoprotein orthologues in Drosophila melanogaster. Proc Biol Sci 2022; 289:20220625. [PMID: 35582794 PMCID: PMC9114944 DOI: 10.1098/rspb.2022.0625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pesticides remain one of the most effective ways of controlling agricultural and public health insects, but much is still unknown regarding how these compounds reach their targets. Specifically, the role of ABC transporters in pesticide absorption and excretion is poorly understood, especially compared to the detailed knowledge about mammalian systems. Here, we present a comprehensive characterization of pesticide transporters in the model insect Drosophila melanogaster. An RNAi screen was performed, which knocked down individual ABCs in specific epithelial tissues and examined the subsequent changes in sensitivity to the pesticides spinosad and fipronil. This implicated a novel ABC drug transporter, CG4562, in spinosad transport, but also highlighted the P-glycoprotein orthologue Mdr65 as the most impactful ABC in terms of chemoprotection. Further characterization of the P-glycoprotein family was performed via transgenic overexpression and immunolocalization, finding that Mdr49 and Mdr50 play enigmatic roles in pesticide toxicology perhaps determined by their different subcellular localizations within the midgut. Lastly, transgenic Drosophila lines expressing P-glycoprotein from the major malaria vector Anopheles gambiae were used to establish a system for in vivo characterization of this transporter in non-model insects. This study provides the basis for establishing Drosophila as a model for toxicology research on drug transporters.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100N. Plastira Street, 700 13 Heraklion Crete, Greece
| | - Hằng Ngọc Bảo Lương
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100N. Plastira Street, 700 13 Heraklion Crete, Greece
| | - Venetia Koidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100N. Plastira Street, 700 13 Heraklion Crete, Greece,Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
| | - Maria Kalogeridi
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
| | - Rafaella Socratous
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
| | - Steven Howe
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kathrin Vogelsang
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - Ralf Nauen
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - Philip Batterham
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sven Geibel
- Bayer AG, CropScience Division, R&D Pest Control, D-40789 Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100N. Plastira Street, 700 13 Heraklion Crete, Greece,Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece
| |
Collapse
|
13
|
Functional Diversity of the Lepidopteran ATP-Binding Cassette Transporters. J Mol Evol 2022; 90:258-270. [PMID: 35513601 DOI: 10.1007/s00239-022-10056-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
The ATP-binding cassette (ABC) transporter gene family is ubiquitous in the living world. ABC proteins bind and hydrolyze ATP to transport a myriad of molecules across various lipid-containing membrane systems. They have been studied well in plants for transport of a variety of compounds and particularly, in vertebrates due to their direct involvement in resistance mechanisms against several toxic molecules/metabolites. ABC transporters in insects are found within large multigene families involved in the efflux of chemical insecticides and toxic/undesired metabolites originating from food and endogenous metabolism. This review deals with ABC transporter subfamilies of few agronomically important Lepidopteran pests. The transcriptional dynamics and regulation of ABC transporters during insect development emphasizes their functional diversity against insecticides, Cry toxins, and plant specialized metabolites. To generate insights about molecular function and physiological roles of ABCs, functional and structural characterization is necessary. Also, expansion and divergence of ABC transporter gene subfamilies in Lepidopteran insects needs more systematic investigation. We anticipate that newer methods of insect control in agriculture can benefit from an understanding of ABC transporter interactions with a vast range of natural specialized molecules and synthetic compounds.
Collapse
|
14
|
Ju D, Dewer Y, Zhang S, Hu C, Li P, Yang X. Genome-wide identification, characterization, and expression profiling of ATP-binding cassette (ABC) transporter genes potentially associated with abamectin detoxification in Cydia pomonella. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113152. [PMID: 34983008 DOI: 10.1016/j.ecoenv.2021.113152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/07/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) is one of the most notorious pests of pome fruits and walnuts worldwide, which has developed resistance to almost all classes of insecticides, including abamectin (ABM). ATP-binding cassette (ABC) transporters are thought to play a vital roles in insecticide detoxification by reducing the toxic concentrations of insecticides in an organism tissues. Despite the tremendous progress in understanding the detoxification mechanisms at the molecular level, the physiological functions of ABC transporters in insects have been poorly investigated. In this study, we found that the ABC inhibitor verapamil synergized significantly the toxicity of ABM, suggesting a potential role of ABC in detoxification. A total of 54 ABC genes were identified in the third-instar larvae of C. pomonella after treatment with sublethal doses (LD10 and LD30) of ABM. The expression profile of these genes in ABM-treated larvae at different time points (24, 48, 72 hr) using transcriptomic analysis (RNA-seq) was also investigated. The results showed that the expression of about 30 ABC genes was significantly co-upregulated after treatment. Several specific genes were up-regulated at 48 hr after treatment of larvae with LD10 ABM. Among these up-regulated genes, we found that the relative expression level of the CPOM19553 was 29.7-fold and 16.0-fold higher when larvae were exposed to ABM at the LD10 and LD30 doses compared to control, respectively. Unlike other ABC genes, only CPOM08323 exhibited significant expression levels in the head and cuticle of the third-instar larvae of C. pomonella exposed to the two sublethal doses of ABM, with no expression was observed in the detoxification tissues such as midgut and Malpighian tubule. This study suggests that these up-regulated genes may be involved in ABM resistance in C. pomonella. Our findings will provide an additional information required for further analysis of ABC transporter genes associated with xenobiotic metabolism in C. pomonella.
Collapse
Affiliation(s)
- Di Ju
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Giza, Egypt
| | - Shipan Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Chao Hu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Peirong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China.
| |
Collapse
|
15
|
Fernández DC, VanLaerhoven SL, Labbé R. Host utilization by the pepper weevil (Anthonomus eugenii): suitability, preference and offspring performance. PEST MANAGEMENT SCIENCE 2021; 77:4719-4729. [PMID: 34138509 DOI: 10.1002/ps.6514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Host plant selection is a key factor affecting the survival, population establishment, and spread of herbivorous insect pests. The pepper weevil is one of the most important pests of cultivated pepper in North America with a capacity to rapidly expand its geographic range, in part through its ability to switch between cultivated and wild Solanaceous host plants. Towards a better management of this pest, this study examined metrics of pepper weevil host use including oviposition preference, development time, and successful offspring emergence on wild Solanaceous species and cultivated pepper cultivars. RESULTS Pepper weevil successfully developed within fruit of several Solanaceous species including eastern black (Solanum ptycanthum) and climbing nightshade (S. dulcamara), in which development time was on average 4 days faster relative to Capsicum annuum cv. jalapeno peppers. Oviposition events occurred in all fruit types assessed and no strong host preference was detected among these. However, the number of emerged offspring was significantly lower than the number of oviposition events in C. chinense cv. habanero pepper fruit. CONCLUSION Although not all nightshade species are suitable hosts for pepper weevil development, those permissive to offspring production do allow for faster development than in C. annuum peppers. While host preference was not detected among fruit types tested, low offspring emergence from fruit with high capsaicin content suggests a reduced ability of pepper weevil to tolerate high concentrations of this metabolite. These findings help elucidate the factors influencing pepper weevil bionomics, and their implications on pepper weevil management are discussed. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- D Catalina Fernández
- Agriculture and Agri-Food Canada, Harrow Research and Development Centre, Harrow, ON, Canada
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | | | - Roselyne Labbé
- Agriculture and Agri-Food Canada, Harrow Research and Development Centre, Harrow, ON, Canada
| |
Collapse
|
16
|
Xiao Y, Li W, Yang X, Xu P, Jin M, Yuan H, Zheng W, Soberón M, Bravo A, Wilson K, Wu K. Rapid spread of a densovirus in a major crop pest following wide-scale adoption of Bt-cotton in China. eLife 2021; 10:e66913. [PMID: 34263726 PMCID: PMC8324301 DOI: 10.7554/elife.66913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bacillus thuringiensis (Bt) crops have been widely planted and the effects of Bt-crops on populations of the target and non-target insect pests have been well studied. However, the effects of Bt-crops exposure on microorganisms that interact with crop pests have not previously been quantified. Here, we use laboratory and field data to show that infection of Helicoverpa armigera with a densovirus (HaDV2) is associated with its enhanced growth and tolerance to Bt-cotton. Moreover, field monitoring showed a much higher incidence of cotton bollworm infection with HaDV2 in regions cultivated with Bt-cotton than in regions without it, with the rate of densovirus infection increasing with increasing use of Bt-cotton. RNA-seq suggested tolerance to both baculovirus and Cry1Ac were enhanced via the immune-related pathways. These findings suggest that exposure to Bt-crops has selected for beneficial interactions between the target pest and a mutualistic microorganism that enhances its performance on Bt-crops under field conditions.
Collapse
Affiliation(s)
- Yutao Xiao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Wenjing Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural SciencesWuhanChina
| | - Xianming Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural SciencesQingdaoChina
- Lancaster Environment Centre, Lancaster UniversityLancasterUnited Kingdom
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - He Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Weigang Zheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosUnited States
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoMorelosUnited States
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Lancaster Environment Centre, Lancaster UniversityLancasterUnited Kingdom
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
17
|
Sun L, Hou W, Zhang J, Dang Y, Yang Q, Zhao X, Ma Y, Tang Q. Plant Metabolites Drive Different Responses in Caterpillars of Two Closely Related Helicoverpa Species. Front Physiol 2021; 12:662978. [PMID: 33967833 PMCID: PMC8098809 DOI: 10.3389/fphys.2021.662978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
The host acceptances of insects can be determined largely by detecting plant metabolites using insect taste. In the present study, we investigated the gustatory sensitivity and feeding behaviors of two closely related caterpillars, the generalist Helicoverpa armigera (Hübner) and the specialist H. assulta (Guenée), to different plant metabolites by using the single sensillum recording technique and the dual-choice assay, aiming to explore the contribution of plant metabolites to the difference of diet breadth between the two species. The results depicted that the feeding patterns of caterpillars for both plant primary and secondary metabolites were significantly different between the two Helicoverpa species. Fructose, glucose, and proline stimulated feedings of the specialist H. assulta, while glucose and proline had no significant effect on the generalist H. armigera. Gossypol and tomatine, the secondary metabolites of host plants of the generalist H. armigera, elicited appetitive feedings of this insect species but drove aversive feedings of H. assulta. Nicotine and capsaicin elicited appetitive feedings of H. assulta, but drove aversive feedings of H. armigera. For the response of gustatory receptor neurons (GRNs) in the maxillary styloconic sensilla of caterpillars, each of the investigated primary metabolites induced similar responding patterns between the two Helicoverpa species. However, four secondary metabolites elicited different responding patterns of GRNs in the two species, which is consistent with the difference of feeding preferences to these compounds. In summary, our results of caterpillars’ performance to the plant metabolites could reflect the difference of diet breadth between the two Helicoverpa species. To our knowledge, this is the first report showing that plant secondary metabolites could drive appetitive feedings in a generalist insect species, which gives new insights of underscoring the adaptation mechanism of herbivores to host plants.
Collapse
Affiliation(s)
- Longlong Sun
- The Institute of Chemical Ecology and College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenhua Hou
- The Institute of Chemical Ecology and College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jiajia Zhang
- The Institute of Chemical Ecology and College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuli Dang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Qiuyun Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xincheng Zhao
- The Institute of Chemical Ecology and College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ying Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Qingbo Tang
- The Institute of Chemical Ecology and College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
Pan Y, Fang G, Wang Z, Cao Y, Liu Y, Li G, Liu X, Xiao Q, Zhan S. Chromosome-level genome reference and genome editing of the tea geometrid. Mol Ecol Resour 2021; 21:2034-2049. [PMID: 33738922 DOI: 10.1111/1755-0998.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
The tea geometrid is a destructive insect pest on tea plants, which seriously affects tea production in terms of both yield and quality and causes severe economic losses. The tea geometrid also provides an important study system to address the ecological adaptive mechanisms underlying its unique host plant adaptation and protective resemblance. In this study, we fully sequenced and de novo assembled the reference genome of the tea geometrid, Ectropis grisescens, using long sequencing reads. We presented a highly continuous, near-complete genome reference (787.4 Mb; scaffold N50: 26.9 Mb), along with the annotation of 18,746 protein-coding genes and 53.3% repeat contents. Importantly, we successfully placed 97.8% of the assembly in 31 chromosomes based on Hi-C interactions and characterized the sex chromosome based on sex-biased sequencing coverage. Multiple quality-control assays and chromosome-scale synteny with the model species all supported the high quality of the presented genome reference. We focused biological annotations on gene families related to the host plant adaptation and camouflage in the tea geometrid and performed comparisons with other representative lepidopteran species. Important findings include the E. grisescens-specific expansion of CYP6 P450 genes that might be involved in metabolism of tea defensive chemicals and unexpected massive expansion of gustatory receptor gene families that suggests potential polyphagy for this tea pest. Furthermore, we developed an efficient genome editing system based on CRISPR/Cas9 technology and successfully implement mutagenesis of a Hox gene in the tea geometrid. Our study provides key genomic resources both for exploring unique mechanisms underlying the ecological adaptation of tea geometrids and for developing environment-friendly strategies for tea pest management.
Collapse
Affiliation(s)
- Yunjie Pan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhibo Wang
- Key Laboratory of Tea Quality and Safety Control, Tea Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanghui Cao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yongjian Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guiyun Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Tea Research Institute, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
You Y, van Kan JA. Bitter and sweet make tomato hard to (b)eat. THE NEW PHYTOLOGIST 2021; 230:90-100. [PMID: 33220068 PMCID: PMC8126962 DOI: 10.1111/nph.17104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 05/03/2023]
Abstract
The glycoalkaloid saponin α-tomatine is a tomato-specific secondary metabolite that accumulates to millimolar levels in vegetative tissues and has antimicrobial and antinutritional activity that kills microbial pathogens and deters herbivorous insects. We describe recent insights into the biosynthetic pathway of α-tomatine synthesis and its regulation. We discuss the mode of action of α-tomatine by physically interacting with sterols, thereby disrupting membranes, and how tomato protects itself from its toxic action. Tomato pathogenic microbes can enzymatically hydrolyze, and thereby inactivate, α-tomatine using either of three distinct types of glycosyl hydrolases. We also describe findings that extend well beyond the simple concept of plants producing toxins and pathogens inactivating them. There are reports that toxicity of α-tomatine is modulated by external pH, that α-tomatine can trigger programmed cell death in fungi, that cellular localization matters for the impact of α-tomatine on invading microbes, and that α-tomatine breakdown products generated by microbial hydrolytic enzymes can modulate plant immune responses. Finally, we address a number of outstanding questions that deserve attention in the future.
Collapse
Affiliation(s)
- Yaohua You
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
| | - Jan A.L. van Kan
- Laboratory of PhytopathologyWageningen UniversityWageningen6708 PBthe Netherlands
| |
Collapse
|
20
|
Identification and Expression Characterization of ATP-Binding Cassette (ABC) Transporter Genes in Melon Fly. INSECTS 2021; 12:insects12030270. [PMID: 33806814 PMCID: PMC8005081 DOI: 10.3390/insects12030270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary The melon fly, Zeugodacus cucurbitae, is an important agricultural pest. At present, chemical pesticide treatment is the main method for field control, but this promotes pesticide resistance by Z. cucurbitae, because of its frequent use. ABC transporters are involved in detoxification metabolism, but few studies have yet considered their expression in melon fly. In this study, we identified the ABC transporters genes at a genome-wide level in melon fly, and analysed their spatiotemporal expression patterns, as well as changes in expression after insecticides treatments. A total of 49 ABC transporters were identified, and their expression levels varied at different developmental stages and between tissues. After three insecticides treatment, ZcABCB7 and ZcABCC2 were up-regulated. After β-cypermethrin induction, tissues were dissected at 12, 24 and 48 h, and the expression levels of a number of ABC genes were highly expressed within the fat body. From these results, we conclude that ZcABCB7 and ZcABCC2 may be involved in detoxification metabolism, and that the fat body is the main tissue that plays this role. Abstract The ATP-binding cassette (ABC) transporter is a protein superfamily that transports specific substrate molecules across lipid membranes in all living species. In insects, ABC transporter is one of the major transmembrane protein families involved in the development of xenobiotic resistance. Here, we report 49 ABC transporter genes divided into eight subfamilies (ABCA-ABCH), including seven ABCAs, seven ABCBs, 10 ABCCs, two ABCDs, one ABCE, three ABCFs, 16 ABCGs, and three ABCHs according to phylogenetic analysis in Zeugodacus cucurbitae, a highly destructive insect pest of cucurbitaceous and other related crops. The expressions level of 49 ABC transporters throughout various developmental stages and within different tissues were evaluated by quantitative transcriptomic analysis, and their expressions in response to three different insecticides were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). These ABC transporter genes were widely expressed at developmental stages but most highly expressed in tissues of the midgut, fat body and Malpighian tube. When challenged by exposure to three insecticides, abamectin, β-cypermethrin, and dinotefuran, the expressions of ZcABCB7 and ZcABCC2 were significantly up-regulated. ZcABCB1, ZcABCB6, ZcABCB7, ZcABCC2, ZcABCC3, ZcABCC4, ZcABCC5, and ZcABCC7 were significantly up-regulated in the fat body at 24 h after β-cypermethrin exposure. These data suggest that ZcABCB7 and ZcABCC2 might play key roles in xenobiotic metabolism in Z. cucurbitae. Collectively, these data provide a foundation for further analysis of ABCs in Z. cucurbitae.
Collapse
|
21
|
Jin M, Yang Y, Shan Y, Chakrabarty S, Cheng Y, Soberón M, Bravo A, Liu K, Wu K, Xiao Y. Two ABC transporters are differentially involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J. E. Smith). PEST MANAGEMENT SCIENCE 2021; 77:1492-1501. [PMID: 33145907 DOI: 10.1002/ps.6170] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND The fall armyworm Spodoptera frugiperda is a major agricultural pest that has invaded the East Hemisphere since 2016, generating a serious threat to food security worldwide including Africa and Asia. The Cry toxins produced by Bacillus thuringiensis (Bt) have been shown to be effective against this insect pest. In different insect ABC transporters (ABCC2 or ABCC3) have been shown to be involved as receptors of some Cry1 toxins. Here we analyzed the role of SfABCC2 and SfABCC3 in the toxicity of Cry1Fa and Cry1Ab toxins in this insect pest. RESULTS Two S. frugiperda SfABCC2 and SfABCC3 knockout strains, coding for potential functional Bt receptors, were created using CRISPR/Cas9 genome editing system. Both knockout strains showed resistance to both Cry1Fa and Cry1Ab toxins compared with the susceptible strain. SfABCC2 knockout strain showed higher resistance to both Cry toxins than SfABCC3 knockout strain, suggesting a major role of SfABCC2 in the mode of action of these Cry toxins. In addition, expression of SfABCC2 and SfABCC3 genes in Trichoplusia ni Hi5 cells also increased the susceptibility to Cry1Ab and Cry1Fa toxins, in agreement with the genome editing results. The double knockout of SfABCC2 and SfABCC3 strain was not viable in contrast to other lepidopteran species. Furthermore, we report here that SfABCC2 or SfABCC3 knockout strains increased their susceptibility to abamectin and spinosad insecticides. CONCLUSION We provide functional evidence that in S. frugiperda these two ABCC transporters serve as receptors of Bt Cry1Fa and Cry1Ab toxins. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minghui Jin
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchao Yang
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yinxue Shan
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Swapan Chakrabarty
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ying Cheng
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yutao Xiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
22
|
Functional validation of DvABCB1 as a receptor of Cry3 toxins in western corn rootworm, Diabrotica virgifera virgifera. Sci Rep 2020; 10:15830. [PMID: 32985523 PMCID: PMC7522262 DOI: 10.1038/s41598-020-72572-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/03/2020] [Indexed: 02/03/2023] Open
Abstract
Western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is a serious insect pest in the major corn growing areas of North America and in parts of Europe. WCR populations with resistance to Bacillus thuringiensis (Bt) toxins utilized in commercial transgenic traits have been reported, raising concerns over their continued efficacy in WCR management. Understanding the modes of action of Bt toxins is important for WCR control and resistance management. Although different classes of proteins have been identified as Bt receptors for lepidopteran insects, identification of receptors in WCR has been limited with no reports of functional validation. Our results demonstrate that heterologous expression of DvABCB1 in Sf9 and HEK293 cells conferred sensitivity to the cytotoxic effects of Cry3A toxins. The result was further validated using knockdown of DvABCB1 by RNAi which rendered WCR larvae insensitive to a Cry3A toxin. However, silencing of DvABCB2 which is highly homologous to DvABCB1 at the amino acid level, did not reduce the sensitivity of WCR larvae to a Cry3A toxin. Furthermore, our functional studies corroborate different mode-of-actions for other insecticidal proteins including Cry34Ab1/35Ab1, Cry6Aa1, and IPD072Aa against WCR. Finally, reduced expression and alternatively spliced transcripts of DvABCB1 were identified in a mCry3A-resistant strain of WCR. Our results provide the first clear demonstration of a functional receptor in the molecular mechanism of Cry3A toxicity in WCR and confirmed its role in the mechanism of resistance in a mCry3A resistant strain of WCR.
Collapse
|
23
|
Kowalski P, Baum M, Körten M, Donath A, Dobler S. ABCB transporters in a leaf beetle respond to sequestered plant toxins. Proc Biol Sci 2020; 287:20201311. [PMID: 32873204 PMCID: PMC7542790 DOI: 10.1098/rspb.2020.1311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Phytophagous insects can tolerate and detoxify toxic compounds present in their host plants and have evolved intricate adaptations to this end. Some insects even sequester the toxins for their defence. This necessitates specific mechanisms, especially carrier proteins that regulate uptake and transport to specific storage sites or protect sensitive tissues from noxious compounds. We identified three ATP-binding cassette subfamily B (ABCB) transporters from the transcriptome of the cardenolide-sequestering leaf beetle Chrysochus auratus and analysed their functional role in the sequestration process. These were heterologously expressed and tested for their ability to interact with various potential substrates: verapamil (standard ABCB substrate), the cardenolides digoxin (commonly used), cymarin (present in the species's host plant) and calotropin (present in the ancestral host plants). Verapamil stimulated all three ABCBs and each was activated by at least one cardenolide, however, they differed as to which they were activated by. While the expression of the most versatile transporter fits with a protective role in the blood-brain barrier, the one specific for cymarin shows an extreme abundance in the elytra, coinciding with the location of the defensive glands. Our data thus suggest a key role of ABCBs in the transport network needed for cardenolide sequestration.
Collapse
Affiliation(s)
- Paulina Kowalski
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Michael Baum
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Marcel Körten
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Alexander Donath
- ZFMK, Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere, Adenauerallee 160, 53113 Bonn, Germany
| | - Susanne Dobler
- Molecular Evolutionary Biology, Institute of Zoology, Universität Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| |
Collapse
|
24
|
Jin M, Cheng Y, Guo X, Li M, Chakrabarty S, Liu K, Wu K, Xiao Y. Down-regulation of lysosomal protein ABCB6 increases gossypol susceptibility in Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103387. [PMID: 32360956 DOI: 10.1016/j.ibmb.2020.103387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Cotton bollworm (Helicoverpa armigera) is the major insect herbivore of cotton plants. As its larvae feed and grow on cotton, H. armigera can likely tolerate gossypol, the main defense metabolite produced by cotton plants, through detoxification and sequestration mechanisms. Recent reports have shown that various P450 monooxygenases and UDP-glycosyltransferases in H. armigera are involved in gossypol detoxification, while the roles of ABC transporters, another gene family widely associated with metabolite detoxification, remain to be elucidated. Here, we show that ingestion of gossypol-infused artificial diet and cotton leaves significantly induced the expression of HaABCB6 in H. armigera larvae. Knockdown and knockout of HaABCB6 increased sensitivity of H. armigera larvae to gossypol. Moreover, HaABCB6-GFP fusion protein was localized on lysosomes in Hi5 cells and its overexpression significantly enhanced gossypol tolerance in vitro. These experimental results strongly support that HaABCB6 plays an important role in gossypol detoxification by H. armigera.
Collapse
Affiliation(s)
- Minghui Jin
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ying Cheng
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xueqin Guo
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Meizhi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Swapan Chakrabarty
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yutao Xiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
25
|
Li Z, Cai T, Qin Y, Zhang Y, Jin R, Mao K, Liao X, Wan H, Li J. Transcriptional Response of ATP-Binding Cassette (ABC) Transporters to Insecticide in the Brown Planthopper, Nilaparvata lugens (Stål). INSECTS 2020; 11:insects11050280. [PMID: 32370222 PMCID: PMC7291042 DOI: 10.3390/insects11050280] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest groups of proteins and plays a non-negligible role in phase III of the detoxification process, which is highly involved in the response of insects to environmental stress (plant secondary metabolites and insecticides). In the present study, in Nilaparvata lugens, we identified 32 ABC transporters, which are grouped into eight subfamilies (ABCA–H) based on phylogenetic analysis. The temporal and spatial expression profiles suggested that the nymphal stages (1st–5th) and adult males showed similarity, which was different from eggs and adult females, and NlABCA1, NlABCA2, NlABCB6, NlABCD2, NlABCG4, NlABCG12, NlABCG15, and NlABCH1 were highly expressed in the midgut and Malpighian tubules. In addition, ABCG12, which belongs to the ABC transporter G subfamily, was significantly upregulated after exposure to sulfoxaflor, nitenpyram, clothianidin, etofenprox, chlorpyrifos, and isoprocarb. Moreover, verapamil significantly increased the sensitivity of N. lugens to nitenpyram, clothianidin, etofenprox, chlorpyrifos, and isoprocarb. These results provide a basis for further research on ABC transporters involved in detoxification in N. lugens, and for a more comprehensive understanding of the response of N. lugens to environmental stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhong Li
- Correspondence: ; Tel./Fax: +86-27-8728-6968
| |
Collapse
|
26
|
Gao M, Hu X, Zhang X, Zhong J, Lu L, Liu Y, Dong S, Wang Y, Liu X. Identification of a Cry1Fa binding site of cadherin in Plutella xylostella through fragment exchanging and molecular docking methods. Int J Biol Macromol 2020; 146:62-69. [PMID: 31836394 DOI: 10.1016/j.ijbiomac.2019.12.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 11/19/2022]
Abstract
Binding to the cadherin in target pests is the primary step in the action mechanism of Cry toxins, but little is known regarding the interaction of Cry1Fa with cadherin. Our previous study suggested that a Plutella xylostella cadherin fragment (PxCad-TBR) can bind to Cry1Fa, while its homologous fragment (HaCad-TBR) in Helicoverpa armigera cannot. In this study, we expressed two cadherin fragments that combine parts of PxCad-TBR and HaCad-TBR in Escherichia coli and tested their binding to the Cry1Fa. The results showed that the fragment containing amino acids T1202-A1341 of P. xylostella cadherin showed binding ability to Cry1Fa. Furthermore, two regions (V1219-E1233 and D1326-F1337) were predicted as hot spot regions that are involved in the interaction of Cry1Fa and PxCad-TBR with computer-aided molecular docking. We then constructed two PxCad-TBR mutations by fragment exchanging based on the molecular docking results and verified the mutations' binding abilities to the Cry1Fa. The results showed that the region that contains amino acids D1326-F1337 was one important binding site to Cry1Fa in P. xylostella cadherin. These results suggested that a combination of computer-aided molecular docking and fragment exchanging is an effective way to locate the key binding sites of Bt toxins in receptors.
Collapse
Affiliation(s)
- Meijing Gao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaodan Hu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianfeng Zhong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lina Lu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuan Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sa Dong
- School of Horticulture and Plant Protection, Yangzhou University, China
| | - Yun Wang
- Horticulture Dept, Jinling Institute of Technology, Nanjing, China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
27
|
Wang Y, Norum M, Oehl K, Yang Y, Zuber R, Yang J, Farine JP, Gehring N, Flötenmeyer M, Ferveur JF, Moussian B. Dysfunction of Oskyddad causes Harlequin-type ichthyosis-like defects in Drosophila melanogaster. PLoS Genet 2020; 16:e1008363. [PMID: 31929524 PMCID: PMC6980720 DOI: 10.1371/journal.pgen.1008363] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/24/2020] [Accepted: 12/17/2019] [Indexed: 01/04/2023] Open
Abstract
Prevention of desiccation is a constant challenge for terrestrial organisms. Land insects have an extracellular coat, the cuticle, that plays a major role in protection against exaggerated water loss. Here, we report that the ABC transporter Oskyddad (Osy)-a human ABCA12 paralog-contributes to the waterproof barrier function of the cuticle in the fruit fly Drosophila melanogaster. We show that the reduction or elimination of Osy function provokes rapid desiccation. Osy is also involved in defining the inward barrier against xenobiotics penetration. Consistently, the amounts of cuticular hydrocarbons that are involved in cuticle impermeability decrease markedly when Osy activity is reduced. GFP-tagged Osy localises to membrane nano-protrusions within the cuticle, likely pore canals. This suggests that Osy is mediating the transport of cuticular hydrocarbons (CHC) through the pore canals to the cuticle surface. The envelope, which is the outermost cuticle layer constituting the main barrier, is unaffected in osy mutant larvae. This contrasts with the function of Snu, another ABC transporter needed for the construction of the cuticular inward and outward barriers, that nevertheless is implicated in CHC deposition. Hence, Osy and Snu have overlapping and independent roles to establish cuticular resistance against transpiration and xenobiotic penetration. The osy deficient phenotype parallels the phenotype of Harlequin ichthyosis caused by mutations in the human abca12 gene. Thus, it seems that the cellular and molecular mechanisms of lipid barrier assembly in the skin are conserved during evolution.
Collapse
Affiliation(s)
- Yiwen Wang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Michaela Norum
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Kathrin Oehl
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Yang Yang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Renata Zuber
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Applied Zoology, Technical University of Dresden, Dresden, Germany
| | - Jing Yang
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, Dijon, France
| | - Nicole Gehring
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Matthias Flötenmeyer
- Microscopy Unit, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, Dijon, France
| | - Bernard Moussian
- Section Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Institute of Biology Valrose, CNRS, Inserm, Université Côte d’Azur, Nice, France
- * E-mail:
| |
Collapse
|
28
|
Li L, Gao X, Lan M, Yuan Y, Guo Z, Tang P, Li M, Liao X, Zhu J, Li Z, Ye M, Wu G. De novo transcriptome analysis and identification of genes associated with immunity, detoxification and energy metabolism from the fat body of the tephritid gall fly, Procecidochares utilis. PLoS One 2019; 14:e0226039. [PMID: 31846465 PMCID: PMC6917277 DOI: 10.1371/journal.pone.0226039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/19/2019] [Indexed: 01/13/2023] Open
Abstract
The fat body, a multifunctional organ analogous to the liver and fat tissue of vertebrates, plays an important role in insect life cycles. The fat body is involved in protein storage, energy metabolism, elimination of xenobiotics, and production of immunity regulator-like proteins. However, the molecular mechanism of the fat body's physiological functions in the tephritid stem gall-forming fly, Procecidochares utilis, are still unknown. In this study, we performed transcriptome analysis of the fat body of P. utilis using Illumina sequencing technology. In total, 3.71 G of clean reads were obtained and assembled into 30,559 unigenes, with an average length of 539 bp. Among those unigenes, 21,439 (70.16%) were annotated based on sequence similarity to proteins in NCBI's non-redundant protein sequence database (Nr). Sequences were also compared to NCBI's non-redundant nucleotide sequence database (Nt), a manually curated and reviewed protein sequence database (SwissProt), and KEGG and gene ontology annotations were applied to better understand the functions of these unigenes. A comparative analysis was performed to identify unigenes related to detoxification, immunity and energy metabolism. Many unigenes involved in detoxification were identified, including 50 unigenes of putative cytochrome P450s (P450s), 18 of glutathione S-transferases (GSTs), 35 of carboxylesterases (CarEs) and 26 of ATP-binding cassette (ABC) transporters. Many unigenes related to immunity were identified, including 17 putative serpin genes, five peptidoglycan recognition proteins (PGRPs) and four lysozyme genes. In addition, unigenes potentially involved in energy metabolism, including 18 lipase genes, five fatty acid synthase (FAS) genes and six elongases of very long chain fatty acid (ELOVL) genes, were identified. This transcriptome improves our genetic understanding of P. utilis and the identification of a numerous transcripts in the fat body of P. utilis offer a series of valuable molecular resources for future studies on the functions of these genes.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yuan Yuan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zijun Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Mengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xianbin Liao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Zhengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
29
|
Identification of candidate ATP-binding cassette transporter gene family members in Diaphorina citri (Hemiptera: Psyllidae) via adult tissues transcriptome analysis. Sci Rep 2019; 9:15842. [PMID: 31676883 PMCID: PMC6825165 DOI: 10.1038/s41598-019-52402-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters exist in all living organisms and play major roles in various biological functions by transporting a wide variety of substrates across membranes. The functions of ABC transporters in drug resistance have been extensively studied in vertebrates; however, they are rarely characterized in agricultural pests. The Asian citrus psyllid, Diaphorina citri, is one of the most damaging pests of the Citrus genus because of its transmission of Huanglongbing, also known as Yellow Dragon disease. In this study, the next-generation sequencing technique was applied to research the ABC transporters of D. citri. Fifty-three ABC transporter genes were found in the RNA-Seq data, and among these ABC transporters, 4, 4, 5, 2, 1, 4, 18 and 15 ABC proteins belonged to the ABCA-ABCH subfamilies, respectively. Different expression profiles of 52 genes between imidacloprid-resistant and imidacloprid-susceptible strains were studied by qRT-PCR; 5 ABCGs and 4 ABCHs were significantly upregulated in the imidacloprid-resistant strain. In addition, five of the nine upregulated genes were widely expressed in adult tissues in spatial expression analysis. The results suggest that these genes may play key roles in this phenotype. In general, this study contributed to our current understanding of D. citri resistance to insecticides.
Collapse
|
30
|
Jin M, Liao C, Fu X, Holdbrook R, Wu K, Xiao Y. Adaptive regulation of detoxification enzymes in Helicoverpa armigera to different host plants. INSECT MOLECULAR BIOLOGY 2019; 28:628-636. [PMID: 30834601 DOI: 10.1111/imb.12578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cotton plants produce gossypol as a major secondary metabolite to resist insect herbivores and pathogens. Helicoverpa armigera may employ multigene families of detoxification enzymes to deal with this metabolite. So far, the strength of the transcriptional response to gossypol detoxification in the cotton bollworms remains poorly understood. Here, we investigated the genomewide transcriptional changes that occur in cotton bollworm larvae after one generation feeding on various host plants (cotton, corn, soybean and chili) or an artificial diet. Six genes potentially involved in detoxification of xenobiotics were highly upregulated in bollworms fed on cotton, and the expression of five of these differed significantly in insects that fed on gossypol diet compared with the artificial diet. When these six genes were downregulated using RNA interference, downregulation only of CYP4L11, CYP6AB9 and CCE001b led to reduced growth of bollworm larvae feeding on gossypol diets. These data suggest that the three genes are involved in response of H. armigera to gossypol of cotton. Our results proved that H. armigera may have a broad mechanism for gossypol detoxification.
Collapse
Affiliation(s)
- M Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China
| | - C Liao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - X Fu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - R Holdbrook
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - K Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China
| | - Y Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China
| |
Collapse
|
31
|
Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-Binding Cassette (ABC) Transporters: Roles in Xenobiotic Detoxification and Bt Insecticidal Activity. Int J Mol Sci 2019; 20:ijms20112829. [PMID: 31185645 PMCID: PMC6600440 DOI: 10.3390/ijms20112829] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, a large class of transmembrane proteins, are widely found in organisms and play an important role in the transport of xenobiotics. Insect ABC transporters are involved in insecticide detoxification and Bacillus thuringiensis (Bt) toxin perforation. The complete ABC transporter is composed of two hydrophobic transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). Conformational changes that are needed for their action are mediated by ATP hydrolysis. According to the similarity among their sequences and organization of conserved ATP-binding cassette domains, insect ABC transporters have been divided into eight subfamilies (ABCA–ABCH). This review describes the functions and mechanisms of ABC transporters in insecticide detoxification, plant toxic secondary metabolites transport and insecticidal activity of Bt toxin. With improved understanding of the role and mechanisms of ABC transporter in resistance to insecticides and Bt toxins, we can identify valuable target sites for developing new strategies to control pests and manage resistance and achieve green pest control.
Collapse
Affiliation(s)
- Chao Wu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
32
|
Sato R, Adegawa S, Li X, Tanaka S, Endo H. Function and Role of ATP-Binding Cassette Transporters as Receptors for 3D-Cry Toxins. Toxins (Basel) 2019; 11:E124. [PMID: 30791434 PMCID: PMC6409751 DOI: 10.3390/toxins11020124] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
When ABC transporter family C2 (ABCC2) and ABC transporter family B1 (ABCB1) were heterologously expressed in non-susceptible cultured cells, the cells swelled in response to Cry1A and Cry3 toxins, respectively. Consistent with the notion that 3D-Cry toxins form cation-permeable pores, Bombyx mori ABCC2 (BmABCC2) facilitated cation-permeable pore formation by Cry1A when expressed in Xenopus oocytes. Furthermore, BmABCC2 had a high binding affinity (KD) to Cry1Aa of 3.1 × 10-10 M. These findings suggest that ABC transporters, including ABCC2 and ABCB1, are functional receptors for 3D-Cry toxins. In addition, the Cry2 toxins most distant from Cry1A toxins on the phylogenetic tree used ABC transporter A2 as a receptor. These data suggest that 3D-Cry toxins use ABC transporters as receptors. In terms of inducing cell swelling, ABCC2 has greater activity than cadherin-like receptor. The pore opening of ABC transporters was hypothesized to be linked to their receptor function, but this was repudiated by experiments using mutants deficient in export activity. The synergistic relationship between ABCC2 and cadherin-like receptor explains their ability to cause resistance in one species of insect.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Satomi Adegawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Xiaoyi Li
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Shiho Tanaka
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Haruka Endo
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
33
|
Jin M, Liao C, Chakrabarty S, Zheng W, Wu K, Xiao Y. Transcriptional response of ATP-binding cassette (ABC) transporters to insecticides in the cotton bollworm, Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:46-59. [PMID: 30765056 DOI: 10.1016/j.pestbp.2018.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
When any living organism is frequently exposed to any drugs or toxic substances, they evolve different detoxification mechanism to confront with toxicants during absorption and metabolism. Likewise, the insects have evolved detoxification mechanisms as they are frequently exposed to different toxic secondary plant metabolites and commercial insecticides. ABC transporter superfamily is one of the largest and ubiquitous group of proteins which play an important role in phase III of the detoxification process. However, knowledge about this gene family remains largely unknown. To help fill this gap, we have identified a total of 54 ABC transporters in the Helicoverpa armigera genome which are classified into eight subfamilies (A-H) by phylogenetic analysis. The temporal and spatial expression profiles of these 54 ABC transporters throughout H. armigera development stages and seven tissues and their responses to five different insecticides, were investigated using RNA-seq analysis. Furthermore, the mRNA expression of eight selected genes in different tissues and six genes responses to insecticides were confirmed by the quantitative real-time PCR (RT-qPCR). Moreover, H. armigera become more sensitive to abamectin and indoxacarb when P-gp was inhibited. These results provide a foundation for further studies of ABCs in H. armigera.
Collapse
Affiliation(s)
- Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, China
| | - Chongyu Liao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weigang Zheng
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
34
|
Yuan YY, Li M, Fan F, Qiu XH. Comparative transcriptomic analysis of larval and adult Malpighian tubules from the cotton bollworm Helicoverpa armigera. INSECT SCIENCE 2018; 25:991-1005. [PMID: 29178196 DOI: 10.1111/1744-7917.12561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Malpighian tubules (MTs) are usually considered the key excretory and osmoregulatory organs of insects. However, increasing evidence has suggested that MTs perform many more functions than just osmoregulation. Until now, the molecular and physiological functions of MTs in the cotton bollworm (Helicoverpa armigera), a very important agricultural pest, are largely unknown. In this study, the transcriptomes of H. armigera MTs from larvae, male adults and female adults were sequenced using RNA-Seq technology, and comparative analyses of transcriptomes between two life stages (larval and adult) and between adult sexes were conducted. We generated a total of 84 643 high-quality unigenes, and identified a large number of abundant transcripts putatively encoding proteins involved in diuresis, detoxification, immunity, carbohydrate transport and metabolism, development and reproduction. We found that the expression pattern of unigenes was relatively similar between female and male adult MTs, but different between larval and adult MTs. Our data suggest that insect MTs may take multiple physiological functions as versatile organs. The extensive alterations in gene expression in MTs occurred from larvae to adults reflect an ecological adaptation to different feeding habits. Sexual dimorphism in the cotton bollworm is somewhat indicated by the transcriptional difference of genes related to carbohydrate metabolism, detoxification, immunity and reproduction in the MTs of male and female adults.
Collapse
Affiliation(s)
- Yi-Yang Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fan Fan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Xing-Hui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Denecke S, Swevers L, Douris V, Vontas J. How do oral insecticidal compounds cross the insect midgut epithelium? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:22-35. [PMID: 30366055 DOI: 10.1016/j.ibmb.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The use of oral insecticidal molecules (small molecules, peptides, dsRNA) via spray or plant mediated applications represents an efficient way to manage damaging insect species. With the exception of Bt toxins that target the midgut epithelium itself, most of these compounds have targets that lie within the hemocoel (body) of the insect. Because of this, one of the greatest factors in determining the effectiveness of an oral insecticidal compound is its ability to traverse the gut epithelium and enter the hemolymph. However, for many types of insecticidal compounds, neither the pathway taken across the gut nor the specific genes which influence uptake are fully characterized. Here, we review how different types of insecticidal compounds enter or cross the midgut epithelium through passive (diffusion) or active (transporter based, endocytosis) routes. A deeper understanding of how insecticidal molecules cross the gut will help to best utilize current insecticides and also provide for more rational design of future ones.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences & Applications, NCSR "Demokritos", Athens, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
36
|
Saremba BM, Murch SJ, Tymm FJM, Rheault MR. The metabolic fate of dietary nicotine in the cabbage looper, Trichoplusia ni (Hübner). JOURNAL OF INSECT PHYSIOLOGY 2018; 109:1-10. [PMID: 29859839 DOI: 10.1016/j.jinsphys.2018.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Cabbage looper (Trichoplusia ni) larvae are generalist herbivores that feed on numerous cultivated plants and weeds including crucifers, other vegetables, flowers, and field crops. Consuming plant material from a wide range of plant species exposes these larvae to a considerable variety of plant secondary metabolites involved in chemical defense against herbivory. The ability of the cabbage looper larvae to detoxify plant secondary metabolites, such as nicotine, has been attributed to the rapid induction of excretion via the Malpighian tubules. However, the role of metabolism in the detoxification of plant secondary metabolites in cabbage looper larvae is not well studied. We investigated nicotine metabolism in 4th larval instar cabbage looper using UPLC-MS/MS analysis to resolve the time course of nicotine metabolism, the kinetic distribution of nicotine, and the presence or absence of major metabolites of nicotine in larval tissue and excretions. The major metabolite found in our analysis was cotinine, with trace amounts of cotinine N-oxide and nicotine N-oxide. The nicotine metabolites detected are similar to those of the nicotine-tolerant Lepidopteran tobacco hornworm (Manduca sexta). The results of our study demonstrate that the 5'C-oxidation of nicotine to cotinine is the primary pathway for nicotine metabolism in cabbage looper larvae. This study showed that metabolism of nicotine and subsequent excretion of nicotine and its metabolites occurs in the larvae of the cabbage looper. Our results suggest that 5'C-oxidation in lepidopteran insects is a conserved metabolic pathway for the detoxification of plant secondary metabolites.
Collapse
Affiliation(s)
- Brett M Saremba
- Department of Biology, The University of British Columbia, 3187 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Susan J Murch
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada.
| | - Fiona J M Tymm
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Mark R Rheault
- Department of Biology, The University of British Columbia, 3187 University Way, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
37
|
Chen L, Wei J, Liu C, Zhang W, Wang B, Niu L, Liang G. Specific Binding Protein ABCC1 Is Associated With Cry2Ab Toxicity in Helicoverpa armigera. Front Physiol 2018; 9:745. [PMID: 29971014 PMCID: PMC6018205 DOI: 10.3389/fphys.2018.00745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/28/2018] [Indexed: 01/10/2023] Open
Abstract
A pyramid strategy combining the crystal (Cry) 1A and 2A toxins in Bacillus thuringiensis (Bt) crops are active against many species of insects and nematode larvae. It has been widely used to delay pest adaption to genetically modified plants and broaden the insecticidal spectrum in many countries. Unfortunately, Cry2A can also bind with the specific receptor proteins of Cry1A. ATP-binding cassette (ABC) transporters can interact with Cry1A toxins as receptors in the insect midgut, and ABC transporter mutations result in resistance to Bt proteins. However, there is limited knowledge of the ABC transporters that specifically bind to Cry2Ab. Here, we cloned the ABCC1 gene in Helicoverpa armigera, which expressed at all larval stages and in nine different tissues. Expression levels were particularly high in fifth-instar larvae and Malpighian tubules. The two heterologously expressed HaABCC1 transmembrane domain peptides could specifically bind to Cry2Ab with high affinity levels. Moreover, transfecting HaABCC1 into the Spodoptera frugiperda nine insect cell significantly increased its mortality when exposed to Cry2Ab in vitro, and silencing HaABCC1 in H. armigera by RNA interference significantly reduced the mortality of larvae exposed to Cry2Ab in vivo. Altogether current results suggest that HaABCC1 serves as a functional receptor for Cry2Ab.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jizhen Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanna Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingjie Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - LinLin Niu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:703-728. [PMID: 29160609 DOI: 10.1111/tpj.13773] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
Herbivorous arthropods have interacted with plants for millions of years. During feeding they release chemical cues that allow plants to detect the attack and mount an efficient defense response. A signaling cascade triggers the expression of hundreds of genes, which encode defensive proteins and enzymes for synthesis of toxic metabolites. This direct defense is often complemented by emission of volatiles that attract beneficial parasitoids. In return, arthropods have evolved strategies to interfere with plant defenses, either by producing effectors to inhibit detection and downstream signaling steps, or by adapting to their detrimental effect. In this review, we address the current knowledge on the molecular and chemical dialog between plants and herbivores, with an emphasis on co-evolutionary aspects.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
39
|
Zhong H, Li F, Chen J, Zhang J, Li F. Comparative transcriptome analysis reveals host-associated differentiation in Chilo suppressalis (Lepidoptera: Crambidae). Sci Rep 2017; 7:13778. [PMID: 29062034 PMCID: PMC5653757 DOI: 10.1038/s41598-017-14137-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/06/2017] [Indexed: 11/18/2022] Open
Abstract
The striped stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae), is one of the most serious rice pests. Besides attacking rice, it also feeds on an economically important vegetable crop, water-oat Zizania latifolia. The species feeding on water-oat has higher growth and survival rate than those on rice, suggesting their success in adaptation to the new host plant. However, little is known about the molecular mechanisms of host plant adaptation. Here we investigated the midgut transcriptome responses of C. suppressalis larvae reared on rice and water-oat. A total of 1,633 differentially expressed genes were identified, with a greater number up-regulated on the more delicious new host. The up-regulation of most digestive and detoxification-related genes may be the result of adaptation to the changes in nutritional requirements and toxic chemicals during host shift. In contrast, down-regulation of ribosomal genes may be related to their better development performance when feeding on the new host. In conclusion, our results suggest that transcriptional regulation of genes related to digestion, detoxification and ribosome may play an important role in adaptation of C. suppressalis to a new host plant.
Collapse
Affiliation(s)
- Haiying Zhong
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fengbo Li
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jianming Chen
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Juefeng Zhang
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fang Li
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
40
|
Müller C, Vogel H, Heckel DG. Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Mol Ecol 2017; 26:6370-6383. [DOI: 10.1111/mec.14349] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/31/2017] [Accepted: 09/05/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Caroline Müller
- Department of Chemical Ecology; Bielefeld University; Bielefeld Germany
| | - Heiko Vogel
- Department of Entomology; Max Planck Institute for Chemical Ecology; Jena Germany
| | - David G. Heckel
- Department of Entomology; Max Planck Institute for Chemical Ecology; Jena Germany
| |
Collapse
|
41
|
Tian L, Song T, He R, Zeng Y, Xie W, Wu Q, Wang S, Zhou X, Zhang Y. Genome-wide analysis of ATP-binding cassette (ABC) transporters in the sweetpotato whitefly, Bemisia tabaci. BMC Genomics 2017; 18:330. [PMID: 28446145 PMCID: PMC5405539 DOI: 10.1186/s12864-017-3706-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background ABC transporter superfamily is one of the largest and ubiquitous groups of proteins. Because of their role in detoxification, insect ABC transporters have gained more attention in recent years. In this study, we annotated ABC transporters from a newly sequenced sweetpotato whitefly genome. Bemisia tabaci Q biotype is an emerging global invasive species that has caused extensive damages to field crops as well as ornamental plants. Results A total of 55 ABC transporters containing all eight described subfamilies (A to H) were identified in the B. tabaci Q genome, including 8 ABCAs, 3 ABCBs, 6 ABCCs, 2 ABCDs, 1 ABCE, 3 ABCFs, 23 ABCGs and 9 ABCHs. In comparison to other species, subfamilies G and H in both phloem- and blood-sucking arthropods are expanded. The temporal expression profiles of these 55 ABC transporters throughout B. tabaci developmental stages and their responses to imidacloprid, a neonicotinoid insecticide, were investigated using RNA-seq analysis. Furthermore, the mRNA expression of 24 ABC transporters (44% of the total) representing all eight subfamilies was confirmed by the quantitative real-time PCR (RT-qPCR). Furthermore, mRNA expression levels estimated by RT-qPCR and RNA-seq analyses were significantly correlated (r = 0.684, p < 0.01). Conclusions It is the first genome-wide analysis of the entire repertoire of ABC transporters in B. tabaci. The identification of these ABC transporters, their temporal expression profiles during B. tabaci development, and their response to a neonicotinoid insecticide lay the foundation for functional genomic understanding of their contribution to the invasiveness of B. tabaci. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3706-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lixia Tian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianxue Song
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rongjun He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
42
|
du Rand EE, Pirk CWW, Nicolson SW, Apostolides Z. The metabolic fate of nectar nicotine in worker honey bees. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:14-22. [PMID: 27840286 DOI: 10.1016/j.jinsphys.2016.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Honey bees (Apis mellifera) are generalist pollinators that forage for nectar and pollen of a very large variety of plant species, exposing them to a diverse range of secondary metabolites produced as chemical defences against herbivory. Honey bees can tolerate high levels of many of these toxic compounds, including the alkaloid nicotine, in their diet without incurring apparent fitness costs. Very little is known about the underlying detoxification processes mediating this tolerance. We examined the metabolic fate of nicotine in newly emerged worker bees using radiolabeled nicotine and LC-MS/MS analysis to determine the kinetic distribution profile of nicotine as well as the absence or presence and identity of any nicotine-derived metabolites. Nicotine metabolism was extensive; virtually no unmetabolised nicotine were recovered from the rectum. The major metabolite found was 4-hydroxy-4-(3-pyridyl) butanoic acid, the end product of 2'C-oxidation of nicotine. It is the first time that 4-hydroxy-4-(3-pyridyl) butanoic acid has been identified in an insect as a catabolite of nicotine. Lower levels of cotinine, cotinine N-oxide, 3'hydroxy-cotinine, nicotine N-oxide and norcotinine were also detected. Our results demonstrated that formation of 4-hydroxy-4-(3-pyridyl) butanoic acid is quantitatively the most significant pathway of nicotine metabolism in honey bees and that the rapid excretion of unmetabolised nicotine does not contribute significantly to nicotine tolerance in honey bees. In nicotine-tolerant insects that do not rely on the rapid excretion of nicotine like the Lepidoptera, it is possible that the 2'C-oxidation of nicotine is the conserved metabolic pathway instead of the generally assumed 5'C-oxidation pathway.
Collapse
Affiliation(s)
- Esther E du Rand
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Christian W W Pirk
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Susan W Nicolson
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Zeno Apostolides
- Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
43
|
Krempl C, Heidel-Fischer HM, Jiménez-Alemán GH, Reichelt M, Menezes RC, Boland W, Vogel H, Heckel DG, Joußen N. Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 78:69-77. [PMID: 27687846 DOI: 10.1016/j.ibmb.2016.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/03/2016] [Accepted: 09/23/2016] [Indexed: 05/27/2023]
Abstract
Gossypol is a polyphenolic secondary metabolite produced by cotton plants, which is toxic to many organisms. Gossypol's aldehyde groups are especially reactive, forming Schiff bases with amino acids of proteins and cross-linking them, inhibiting enzyme activities and contributing to toxicity. Very little is known about gossypol's mode of action and its detoxification in cotton-feeding insects that can tolerate certain concentrations of this compound. Here, we tested the toxicity of gossypol and a gossypol derivative lacking free aldehyde groups (SB-gossypol) toward Helicoverpa armigera and Heliothis virescens, two important pests on cotton plants. Larval feeding studies with these two species on artificial diet supplemented with gossypol or SB-gossypol revealed no detectable toxicity of gossypol, when the aldehyde groups were absent. A cytochrome P450 enzyme, CYP6AE14, is upregulated in H. armigera feeding on gossypol, and has been claimed to directly detoxify gossypol. However, using in vitro assays with heterologously expressed CYP6AE14, no metabolites of gossypol were detected, and further studies suggest that gossypol is not a direct substrate of CYP6AE14. Furthermore, larvae feeding on many other plant toxins also upregulate CYP6AE14. Our data demonstrate that the aldehyde groups are critical for the toxicity of gossypol when ingested by H. armigera and H. virescens larvae, and suggest that CYP6AE14 is not directly involved in gossypol metabolism, but may play a role in the general stress response of H. armigera larvae toward plant toxins.
Collapse
Affiliation(s)
- Corinna Krempl
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Hanna M Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Guillermo Hugo Jiménez-Alemán
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Riya Christina Menezes
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| | - Nicole Joußen
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| |
Collapse
|