1
|
Zaitseva O, Sergushkina M, Polezhaeva T, Solomina O, Khudyakov A. Mechanisms of action of fungal polysaccharides and their therapeutic effect. Eur J Clin Nutr 2024:10.1038/s41430-024-01527-4. [PMID: 39433857 DOI: 10.1038/s41430-024-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The purpose of this article is to discuss the relationship between the therapeutic bioactivity of basidial fungal polysaccharides (BFPs) BFPs and their structural characteristics and conformational features, as well as to characterize the mechanisms of action of BFPs in diseases of various origins. METHODS The review was conducted using the PubMed (Medline), Scopus, Web of Science and the Russian Science Citation Index databases. 8645 records were identified, of which 5250 were studies (86 were randomized controlled trials). The period covered is from 1960 to the present. The most significant studies conducted mainly in Southeast Asian countries were selected for the review. RESULTS Based on clinical studies, as well as the results obtained on in vivo, in vitro and ex vivo models, it has been proven that BFPs have diverse and highly effective biological activity in the human body in various diseases. The production of BFPs-based vaccines is an innovative strategy from a clinical and biochemical point of view, since as potential immunoprotective and low-toxic biopolymers they have innate immune receptors in the body. Promising results have been obtained in the development of antidiabetic drugs, probiotic, renoprotective and neurodegenerative dietary supplements. CONCLUSIONS The biological activity, mechanism of action and specific therapeutic effect of BFPs largely depend on their structural and physicochemical characteristics. BFPs as multifunctional macromolecular complexes with low toxicity and high safety are ideal as new powerful pharmaceuticals for the treatment and prevention of many diseases.
Collapse
Affiliation(s)
- Oksana Zaitseva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation.
| | - Marta Sergushkina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Tatyana Polezhaeva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Olga Solomina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Andrey Khudyakov
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| |
Collapse
|
2
|
Wu P, Zhang C, Yin Y, Zhang X, Li Q, Yuan L, Sun Y, Zhou S, Ying S, Wu J. Bioactivities and industrial standardization status of Ganoderma lucidum: A comprehensive review. Heliyon 2024; 10:e36987. [PMID: 39435114 PMCID: PMC11492437 DOI: 10.1016/j.heliyon.2024.e36987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
Ganoderma lucidum (GL) is a potent source of bioactive compounds with diverse nutritional and pharmacological benefits. Its popularity as a dietary supplement, herbal remedy, and wellness product is steadily on the rise. Furthermore, the standardized advancement of the GL industry has facilitated reliable sourcing of raw materials and quality control measures, enhancing its utilization and endorsement in the realms of nutritional science and pharmaceutical research. This article provides a comprehensive overview of the recent advancements in research pertaining to the bioactive components of GL, particularly polysaccharides (GLP) and triterpenes (GLTs) as well as highlights the latest findings regarding their beneficial effects on human diseases, including anticancer, antidiabetes, liver protection and other aspects (such as regulating gut microbiota, antioxidant, antimicrobial, antiinflammatory and immune regulation). Furthermore, we summarized the potential applications of GL in the food and pharmaceutical sectors, while also examining the current status of standardization throughout the entire industrial chain of GL, both domestically and internationally. These information offer an insight and guidance for the prospects of industrial development and the innovative advancement of GL within the global health industry.
Collapse
Affiliation(s)
- Peng Wu
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Chengyun Zhang
- Wencheng County Food and Drug Comprehensive Testing Center, Wenzhou, China
| | - Yueyue Yin
- Lishui Institute for Quality Inspection and Testing, Lishui, China
| | | | - Qi Li
- Anhui Guotai Zhongxin Testing Technology Co., Ltd., Hefei, China
| | - Lijingyi Yuan
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Yahe Sun
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Shuhua Zhou
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Shanting Ying
- BRICS Standardization (Zhejiang) Research Center, Zhejiang Institute of Quality Sciences, Hangzhou, China
- National Market Regulation Digital Research and Application Technology Innovation Center, Zhejiang Standardization Think Tank, Hangzhou, China
| | - Jiayan Wu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
3
|
Gao YY, Liu XP, Zhou YH, He JY, Di B, Zheng XY, Guo PT, Zhang J, Wang CK, Jin L. The Addition of Hot Water Extract of Juncao-Substrate Ganoderma lucidum Residue to Diets Enhances Growth Performance, Immune Function, and Intestinal Health in Broilers. Animals (Basel) 2024; 14:2926. [PMID: 39457856 PMCID: PMC11503797 DOI: 10.3390/ani14202926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The purpose of this experiment was to investigate the effects of Hot Water Extract of Juncao-substrate Ganoderma lucidum Residue (HWE-JGLR) on the immune function and intestinal health of yellow-feather broilers. In an animal feeding experiment, 288 male yellow-feather broilers (1 day old) were randomly allocated to four treatment groups with six replicates of 12 birds each. The control (CON) group was fed a basal diet. HJ-1, HJ-2, and HJ-3 were fed a basal diet supplemented with 0.25%, 0.50%, and 1.00% HWE-JGLR, respectively. The feeding trial lasted for 63 d. The results showed increased ADFI (p = 0.033) and ADG (p = 0.045) of broilers in HJ-3, compared with the CON group. Moreover, higher contents of serum IL-4 and IL-10 and gene expression of IL-4 and IL-10 in jejunum mucosa and lower contents of serum IL-1β and gene expression of IL-1β in jejunum mucosa in HJ-3 were observed (p < 0.05). Additionally, the jejunal mucosal gene expression of Claudin-1 and ZO-1 in HJ-2 and HJ-3 was higher than that in the CON group (p < 0.05). As for the microbial community, compared with the CON group, the ACE index, Shannon index, and Shannoneven index of cecal microorganisms in HJ-2 and HJ-3 were elevated (p < 0.05). PCoA analysis showed that the cecal microbial structure of broilers in HJ-2 and HJ-3 was different from the CON group (p < 0.05). In contrast with the CON group, the broilers in HJ-2 and HJ-3 possessed more abundant Desulfobacterota at the phylum level and unclassified Lachnospiraceae, norank Clostridia vadinBB60 group and Blautia spp. at the genus level, while Turicibacter spp. and Romboutsia spp. were less (p < 0.05). In conclusion, dietary supplementation with HWE-JGLR can improve growth performance, enhance body immunity and intestinal development, and maintain the cecum microflora balance of yellow-feather broilers.
Collapse
Affiliation(s)
- Yu-Yun Gao
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Xiao-Ping Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Ying-Huan Zhou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Jia-Yi He
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Bin Di
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Xian-Yue Zheng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Ping-Ting Guo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Jing Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Chang-Kang Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
4
|
Liu G, Ji Y, Lei C, Gao H. Electrochemiluminescence assay for the impact of Ganoderma lucidum polysaccharides on resisting arsenic-induced apoptosis. Int J Biol Macromol 2024; 278:134906. [PMID: 39168217 DOI: 10.1016/j.ijbiomac.2024.134906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/28/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Ganoderma lucidum (G. lucidum) is a traditional edible fungus with strong medicinal value. G. lucidum polysaccharides (GLP) encapsulate many of the key beneficial properties of this species, providing a valuable tool for the treatment of a range of diseases. The present study was developed to explore the protective benefits of GLP treatment in the context of arsenic poisoning. Through microscopy and flow cytometry experiments, NaAsO2 was found to induce rat tracheal epithelial (RTE) cell apoptosis, together with reductions in cell surface epidermal growth factor receptor (EGFR) expression. GLP treatment, however, was able to reduce apoptosis rates and elevate the expression of EGFR relative to NaAsO2-treated cells. GLP extracts (50, 100, 200 mg·mL-1) prepared from four types of G. lucidum were administered to RTE cells damaged with arsenic, revealing limited differences in position resistance among these varieties. This work provides reference for the pharmaceutical and medical research of G. lucidum.
Collapse
Affiliation(s)
- Gen Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei, Anhui 235000, PR China; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| | - Yahui Ji
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei, Anhui 235000, PR China; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Chenchen Lei
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei, Anhui 235000, PR China; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Hui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei, Anhui 235000, PR China; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| |
Collapse
|
5
|
Chen H, Zhao L, You C, Liu J, Chen L, Gu Z, Shi G, Li J, Ding Z. Roles of α-1,3-glucosyltransferase in growth and polysaccharides biosynthesis of Ganoderma lucidum. Int J Biol Macromol 2024; 276:134031. [PMID: 39033891 DOI: 10.1016/j.ijbiomac.2024.134031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Ganoderma lucidum polysaccharides are valuable natural compounds possessing significant biological activity, with glycosyltransferases playing a crucial role in their biosynthesis. Although the function of β-1,3-glucosyltransferase in polysaccharides production is well understood, the role of α-1,3-glucosyltransferase in edible fungi remains unclear. In this study, over-expression of the α-1,3-glucosyltransferase gene in G. lucidum (glagt) was found to suppress the growth, with the maximum biomass and mycelial growth rate decreasing by 21.78 % and 79.61 %, respectively, a behavior distinct from β-1,3-glucosyltransferase. The fungal pellet diameter decreased by 38 % and the cell-wall thickness by 32.44 %, whereas intracellular and extracellular polysaccharides production increased by 27.58 % and 66.08 %, respectively. In the transcription level, overexpressing the glagt gene i) downregulated the citrate synthase and isocitrate dehydrogenase gene in the TCA cycle, disrupting energy metabolism and fungal growth; ii) upregulated key enzymes involved in UDP-glucose synthesis and glycosyltransferases (gl24465, gl24971, and gl22535); and iii) universally increased the transcriptional level of glucosidases gl21451, gl30087, and gl24581 by 22 %-397 %, contributing to cell-wall thinning to facilitate polysaccharides export. Conversely, the glagt gene downregulation promoted G. lucidum growth and decreased polysaccharides production. The results elucidate the roles of GLAGT and are expected to inspire in-depth exploration of polysaccharides biosynthesis pathways.
Collapse
Affiliation(s)
- Haixiu Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Cuiping You
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingyun Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Junxun Li
- Shandong Taishan Shengliyuan Group Co. Ltd., Shandong 271000, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Duan Y, Hu Z, Jin L, Zong T, Zhang X, Liu Y, Yang P, Sun J, Zhou W, Li G. Efficient degradation and enhanced anticomplementary activity of Belamcanda chinensis (L.) DC. polysaccharides via trifluoroacetic acid treatment with different degrees. Int J Biol Macromol 2024; 276:134117. [PMID: 39084989 DOI: 10.1016/j.ijbiomac.2024.134117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The degradation of Belamcanda chinensis (L.) DC. polysaccharides was carried out by five concentrations of trifluoroacetic acid (TFA) (1-5 mol/L), and their physicochemical properties, degradation kinetics and anticomplementary activity were investigated. The findings revealed a notable reduction in the molecular weight of BCP, from an initial value of 2.622 × 105 g/mol to a final value of 6.255 × 104 g/mol, and the water solubility index increased from 90.66 ± 0.42 % to 97.78 ± 0.43 %. The degraded polysaccharides of B. chinensis exhibited a comparable monosaccharide composition comprising Man, GalA, Glc, Gal, and Ara. As the concentration of TFA increased, the degradation rate constant increased from 1.468 × 10-3 to 5.943 × 10-3, and the process followed the first-order degradation kinetic model (R2 > 0.97) and the random fracture model (R2 > 0.96). Furthermore, the five degraded polysaccharides still exhibit good thermal stability. In vitro experiments showed that DBCP-3 exhibited more potent anticomplementary activity than the original polysaccharides and positive drugs, which was strongly correlated with its Mw (r = 0.6-0.8), inhibiting complement activation by blocking C2 and C4. These results indicated that TFA degradation has a positive effect on polysaccharides, of which DBCP-3 is expected to treat diseases involving hyperactivation of the complement system.
Collapse
Affiliation(s)
- Yuanqi Duan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Zhengyu Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Long Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Tieqiang Zong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Xiaohui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Yanan Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China
| | - Pengcheng Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Jinfeng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Wei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji 133002, PR China.
| |
Collapse
|
7
|
Cao Y, Yang Y, Liang Z, Guo W, Lv X, Ni L, Chen Y. Synthesis of Ganoderic Acids Loaded Zein-Chitosan Nanoparticles and Evaluation of Their Hepatoprotective Effect on Mice Given Excessive Alcohol. Foods 2024; 13:2760. [PMID: 39272525 PMCID: PMC11394847 DOI: 10.3390/foods13172760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Ganoderma lucidum, used in East Asia for its health benefits, contains ganoderic acids (GA) which have various pharmacological activities but are limited by poor water solubility and low oral bioaccessibility. This study synthesized and characterized ganoderic acids loaded zein-chitosan nanoparticles (GA-NPs), and investigated its advantages in alleviating alcoholic liver injury (ALI) in mice model. The GA-NPs demonstrated high encapsulation efficiency (92.68%), small particle size (177.20 nm), and a +29.53 mV zeta potential. The experimental results of alcohol-induced liver injury mouse model showed that GA-NPs significantly improved liver metabolic function, reduced alcohol-induced liver oxidative stress in liver by decreasing lactate dehydrogenase activity and malondialdehyde level, while increasing the activities of liver antioxidant enzymes and alcohol dehydrogenase. Moreover, GA-NPs were favorable to ameliorate intestinal microbiota dysbiosis in mice exposed to alcohol by increasing the proportion of probiotics such as Romboutsia, Faecalibaculum, Bifidobacterium and Turicibacter, etc., which were highly correlated with the improvement of liver function. Furthermore, GA-NPs modulated the mRNA expression related to ethanol metabolism, oxidative stress and lipid metabolism. Conclusively, this study revealed that GA-NPs have stronger hepatoprotective effects than non-encapsulated ganoderic acids on alleviating ALI by regulating intestinal microbiota and liver metabolism.
Collapse
Affiliation(s)
- Yingjia Cao
- Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Yuheng Yang
- Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou 350004, China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Youting Chen
- Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Hepatopancreatobiliary Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| |
Collapse
|
8
|
Zhong Y, Tan P, Lin H, Zhang D, Chen X, Pang J, Mu R. A Review of Ganoderma lucidum Polysaccharide: Preparations, Structures, Physicochemical Properties and Application. Foods 2024; 13:2665. [PMID: 39272434 PMCID: PMC11395056 DOI: 10.3390/foods13172665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Ganoderma lucidum (GL) is a kind of edible fungus with various functions and a precious medicinal material with a long history. Ganoderma lucidum polysaccharide (GLP) is one of the main bioactive substances in GL, with anti-tumor, anti-oxidation, anti-cancer, and other biological activities. GLP is closely related to human health, and the research on GLP is getting deeper. This paper reviewed the extraction and purification methods of GLP, the relationship between structure and activity, and the qualitative and quantitative methods. This review provides solutions for the analysis and application of GLP. At the same time, some new methods for extraction, purification and analysis of GLP, the relationship between advanced structures and activity, and future applications of and research into GLP were emphasized. As a kind of bioactive macromolecule, GLP has unique functional properties. Through the comprehensive summary of the extraction, purification, and analysis of GLP and its future prospects, we hope that this review can provide valuable reference for the further study of GLP.
Collapse
Affiliation(s)
- Yuanbo Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pingping Tan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Li L, Su Z, He Y, Zhong X, Fu C, Zou L, Li J, Zhang J. Physicochemical characterization and anti-angiogenesis activity of polysaccharides from Amauroderma rugosum, a medicinal and edible mushroom. Int J Biol Macromol 2024; 274:133478. [PMID: 38942412 DOI: 10.1016/j.ijbiomac.2024.133478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Amauroderma rugosum (AR) is commonly recognized as a medicinal fungus, often used as an alternative to Ganoderma lucidum. There is a scarcity of comprehensive and in-depth research on its bioactive polysaccharides and their associated biological activities. Herein, we isolated the polysaccharide fractions extracted from AR (ARPs) and investigated their primary structure and anti-angiogenic activities, given that various diseases are associated with excessive angiogenesis. Four polysaccharide fractions including ARP-0, ARP-1, ARP-2, and ARP-5 were heteropolysaccharides with different molecular weights, monosaccharide compositions, and micromorphologies, highlighting their varying bioactive profiles. Treatment of human umbilical vein endothelial cells with these polysaccharide fractions showed that only ARP-5 inhibited cell proliferation after vascular endothelial growth factor (VEGF) stimulation. Similarly, ARP-5 inhibited human umbilical vein endothelial cells migration, invasion, and tube formation upon VEGF (50 ng/mL) treatment. Moreover, compared with the insignificant effects of ARP-0, ARP-1, and ARP-2, ARP-5 impeded angiogenesis in zebrafish embryos. Additionally, ARP-5 downregulated the VEGF/VEGFR2 signaling pathway in a dose-dependent manner, suggesting that ARP-5 exerts its anti-angiogenic activities by blocking the VEGF/VEGFR2-mediated angiogenesis signaling pathway. Taken together, the study findings shed light on the primary structure and bioactivity of ARPs.
Collapse
Affiliation(s)
- Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ziye Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Xuemei Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Liang Zou
- School of Food and Biological Engineering Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, China..
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
10
|
Ji C, Ma Y, Xie Y, Guo J, Ba H, Zhou Z, Zhao K, Yang M, He X, Zheng W. Isolation and purification of carbohydrate components in functional food: a review. RSC Adv 2024; 14:23204-23214. [PMID: 39045398 PMCID: PMC11265275 DOI: 10.1039/d4ra02748e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Medicinal plants, increasingly utilized in functional foods, possess potent therapeutic properties and health-promoting functions, with carbohydrates playing a crucial role and exhibiting a range of effects, such as antioxidant, antitumor, immune-enhancing, antibacterial, anticoagulant, and hypoglycemic activities. However, comprehensively, accurately, rapidly, and economically assessing the quality of carbohydrate components is challenging due to their diverse and complex nature. Additionally, the purification and identification of carbohydrates also guarantee related efficacy research. This paper offers a thorough review of research progress carried out by both domestic and international scholars in the last decade on extracting, purifying, separating, identifying, and determining the content of carbohydrate components from functional foods, which are mainly composed of medicinal plants, and also explores the potential for achieving comprehensive quantitative analysis and evaluating structure-activity relationships of carbohydrate components. These findings aim to serve as a valuable reference for the future development and application of natural carbohydrate components in functional food and medicine.
Collapse
Affiliation(s)
- Chao Ji
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Ying Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Yuxin Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Junli Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Haoran Ba
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Zheng Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Kongxiang Zhao
- The Animal, Plant & Foodstuff Inspection Center of Tianjin Customs Tianjin 300387 China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University Kunming Yunnan 650201 China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University Kunming Yunnan 650201 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University Kunming Yunnan 650224 China
| | - Wenjie Zheng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University Kunming Yunnan 650224 China
| |
Collapse
|
11
|
Arroyo-Cruz LV, Sagardía-González S, Miller K, Ling T, Rivas F, Martínez-Montemayor MM. Selective Antineoplastic Potential of Fractionated Caribbean Native Ganoderma Species Extracts on Triple-Negative Breast Cancer Cells. Pharmaceuticals (Basel) 2024; 17:864. [PMID: 39065715 PMCID: PMC11279663 DOI: 10.3390/ph17070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor type 2 expression. It is known for its high malignancy, invasiveness, and propensity for metastasis, resulting in a poor prognosis due to the absence of beneficial therapeutic targets. Natural products derived from mushrooms have gained significant attention in neoplastic therapy due to their potential medicinal properties. The therapeutic potential of Ganoderma lucidum in breast cancer has been highlighted by our group, suggesting its use as an adjuvant treatment. The present study aims to assess the potential antineoplastic capacity of two Caribbean native Ganoderma species found in Puerto Rico, Ganoderma multiplicatum (G. multiplicatum) and Ganoderma martinicense (G. martinicense). Antiproliferative studies were conducted via cell viability assays after cultivation, harvesting, and fractionation of both species. The obtained results indicate that most of the fractions show some cytotoxicity against all cell lines, but 33% of the fractions (F1, F2, F7, F12) display selectivity towards cancer cell models. We demonstrate for the first time that native Ganoderma species can generate metabolites with anti-TNBC properties. Future avenues will focus on structure elucidation of the most active fractions of these Ganoderma extracts.
Collapse
Affiliation(s)
- Luz V. Arroyo-Cruz
- Department of Biochemistry, School of Medicine, Universidad Central del Caribe, Bayamón 00960-6032, Puerto Rico;
| | | | - Kurt Miller
- Huerto Rico, Carolina 00987, Puerto Rico; (S.S.-G.); (K.M.)
| | - Taotao Ling
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA; (T.L.); (F.R.)
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA; (T.L.); (F.R.)
| | | |
Collapse
|
12
|
Yi X, Qiu Y, Tang X, Lei Y, Pan Y, Raza SHA, Althobaiti NA, Albalawi AE, Al Abdulmonem W, Makhlof RTM, Alsaad MA, Zhang Y, Sun X. Effect of Five Different Antioxidants on the Effectiveness of Goat Semen Cryopreservation. Reprod Sci 2024; 31:1958-1972. [PMID: 38267808 DOI: 10.1007/s43032-024-01452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
The effective combination of semen cryopreservation and artificial insemination has a positive effect on the conservation of germplasm resources, production and breeding, etc. However, during the process of semen cryopreservation, the sperm cells are very susceptible to different degrees of physical, chemical, and oxidative stress damage. Oxidative damage is the most important factor that reduces semen quality, which is affected by factors such as dilution equilibrium, change of osmotic pressure, cold shock, and enzyme action during the freezing-thawing process, which results in the aggregation of a large amount of reactive oxygen species (ROS) in sperm cells and affects the quality of semen after thawing. Therefore, the method of adding antioxidants to semen cryoprotective diluent is usually used to improve the effect of semen cryopreservation. The aim of this experiment was to investigate the effects of adding five antioxidants (GLP, Mito Q, NAC, SLS, and SDS) to semen cryoprotection diluent on the cryopreservation effect of semen from Saanen dairy goats. The optimal preservation concentrations were screened by detecting sperm viability, plasma membrane integrity, antioxidant capacity, and acrosomal enzyme activities after thawing, and the experimental results were as follows: the optimal concentrations of GLP, Mito Q, NAC, SLS, and SDS added to semen cryopreservation diluent at different concentrations were 0.8 mg/mL, 150 nmol/L, 0.6 mg/mL, 0.15 mg/ mL, 0.6 mg/mL, and 0.15 mg/mL. The optimal concentrations of the five antioxidants were added to the diluent and analyzed after 1 week of cryopreservation, and it was found that sperm viability, plasma membrane integrity, and mitochondrial activity were significantly enhanced after thawing compared with the control group (P < 0.05), and their antioxidant capacity was significantly enhanced (P < 0.05). Therefore, the addition of the above five antioxidants to goat sperm cryodilution solution had a better enhancement of sperm cryopreservation. This study provides a useful reference for exploring the improvement of goat semen cryoprotection effect.
Collapse
Affiliation(s)
- Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanbo Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yichen Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yun Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Al Quwaiiyah, 19257, Al Quwaiiyah, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, 47913, Tabuk, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Raafat T M Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia
| | - Mohammad A Alsaad
- College of Medicine, Umm AL Qura University, 21955, Makkah, Saudi Arabia
| | - Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
13
|
Ma Y, Han J, Wang K, Han H, Hu Y, Li H, Wu S, Zhang L. Research progress of Ganoderma lucidum polysaccharide in prevention and treatment of Atherosclerosis. Heliyon 2024; 10:e33307. [PMID: 39022015 PMCID: PMC11253544 DOI: 10.1016/j.heliyon.2024.e33307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease resulting from dysregulated lipid metabolism, constituting the pathophysiological foundation of cardiovascular and cerebrovascular diseases. AS has a high incidence rate and mortality rate worldwide. As such, traditional Chinese medicine (TCM) has been widely used recently due to its stable therapeutic effect and high safety. Ganoderma lucidum polysaccharides (GLP) are the main active ingredients of Ganoderma lucidum, a Chinese herbal medicine. Research has also shown that GLP has anti-inflammatory and antioxidant properties, regulates gut microbiota, improves blood glucose and lipid levels, and inhibits obesity. Most of the current research on GLP anti-AS is focused on animal models. Thus, its clinical application remains to be discovered. In this review, we combine relevant research results and start with the pathogenesis and risk factors of GLP on AS, proving that GLP can prevent and treat AS, providing a scientific basis and reference for the future prevention and treatment of AS with GLP.
Collapse
Affiliation(s)
- YiZheng Ma
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - JingBo Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - KangFeng Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - Huan Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - YiBin Hu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - He Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - ShengXian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - LiJuan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| |
Collapse
|
14
|
Ni B, Xue K, Wang J, Zhou J, Wang L, Wang X, Liu T, Ye N, Jiang J. Integrating Chinese medicine into mainstream cancer therapies: a promising future. Front Oncol 2024; 14:1412370. [PMID: 38957318 PMCID: PMC11217489 DOI: 10.3389/fonc.2024.1412370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Malignant tumors are complex systemic chronic diseases and one of the major causes of human mortality. Targeted therapy, chemotherapy, immunotherapy, and radiotherapy are examples of mainstream allopathic medicine treatments that effective for intermediate and advanced malignant tumors. The ongoing use of conventional allopathic medicine has resulted in adverse responses and drug resistance, which have hampered its efficacy. As an important component of complementary and alternative medicine, Chinese medicine has been found to have antitumor effects and has played an important role in enhancing the therapeutic sensitivity of mainstream allopathic medicine, reducing the incidence of adverse events and improving immune-related functions. The combined application of adjuvant Chinese medicine and mainstream allopathic medicine has begun to gain acceptance and is gradually used in the field of antitumor therapy. Traditional natural medicines and their active ingredients, as well as Chinese patent medicines, have been proven to have excellent therapeutic efficacy and good safety in the treatment of various malignant tumors. This paper focuses on the mechanism of action and research progress of combining the above drugs with mainstream allopathic medicine to increase therapeutic sensitivity, alleviate drug resistance, reduce adverse reactions, and improve the body's immune function. To encourage the clinical development and use of Chinese herb adjuvant therapy as well as to provide ideas and information for creating safer and more effective anticancer medication combinations, the significant functions of Chinese herb therapies as adjuvant therapies for cancer treatment are described in detail.
Collapse
Affiliation(s)
- Baoyi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Kaiyuan Xue
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jilai Zhou
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lankang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Naijing Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiakang Jiang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Cao C, Liao Y, Yu Q, Zhang D, Huang J, Su Y, Yan C. Structural characterization of a galactoglucomannan with anti-neuroinflammatory activity from Ganoderma lucidum. Carbohydr Polym 2024; 334:122030. [PMID: 38553228 DOI: 10.1016/j.carbpol.2024.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
According to traditional Chinese medicine theory, Ganoderma lucidum (G. lucidum) presents certain effects for nourishing nerves and calming the mind. G. lucidum polysaccharides (GLPs) have various biological activities; however, the structural characterization and the structure-activity relationship in anti-neuroinflammation of GLPs needs to be further investigated. In this work, the crude polysaccharide GL70 exhibited a remarkable impact on enhancing the spatial learning and memory function, as well as reducing the anxiety symptoms of the lipopolysaccharide (LPS)-induced rat model of Alzheimer's disease (AD). A galactoglucomannan (GLP70-1-2) was isolated from GL70, and characterized by monosaccharide composition, partial acid hydrolysis, methylation, and NMR analysis. The backbone of GLP70-1-2 was →6)-α-D-glcp-(1 → 6)-β-D-galp-(1 → [6)-β-D-manp-(1]3 → 4)-α-D-Glcp-(1 → 6)-α-D-glcp-(1 → 2)-β-D-galp-(1 → [4)-α-D-glcp-(1 → 6)-β-D-manp-(1 → 2)-β-D-galp-(1]2 → 6)-β-D-glcp-(1 → 6)-β-D-glcp-(1→ with two side chains attached to O-4 of →6)-β-D-galp-(1→ and O-3 of →6)-β-D-glcp-(1→, respectively. In addition, GLP70-1-2 exhibited remarkable efficacy in decreasing the level of pro-inflammatory factors in LPS-activated BV2 cells through the TLR4/MyD88/NF-κB pathway. Collectively, GLP70-1-2 exhibited significant anti-neuroinflammatory activity and may have the potential for developing as a drug for AD.
Collapse
Affiliation(s)
- Chao Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuechan Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiqi Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifan Su
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Zhang N, Han Z, Zhang R, Liu L, Gao Y, Li J, Yan M. Ganoderma lucidum Polysaccharides Ameliorate Acetaminophen-Induced Acute Liver Injury by Inhibiting Oxidative Stress and Apoptosis along the Nrf2 Pathway. Nutrients 2024; 16:1859. [PMID: 38931214 PMCID: PMC11206445 DOI: 10.3390/nu16121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The excessive employment of acetaminophen (APAP) is capable of generating oxidative stress and apoptosis, which ultimately result in acute liver injury (ALI). Ganoderma lucidum polysaccharides (GLPs) exhibit hepatoprotective activity, yet the protective impact and potential mechanism of GLPs in relation to APAP-induced ALI remain ambiguous. The intention of this research was to scrutinize the effect of GLPs on APAP-induced ALI and to shed light on their potential mechanism. The results demonstrated that GLPs were capable of notably alleviating the oxidative stress triggered by APAP, as shown through a significant drop in the liver index, the activities of serum ALT and AST, and the amounts of ROS and MDA in liver tissue, along with an increase in the levels of SOD, GSH, and GSH-Px. Within these, the hepatoprotective activity at the high dose was the most conspicuous, and its therapeutic efficacy surpassed that of the positive drug (bifendate). The results of histopathological staining (HE) and apoptosis staining (TUNEL) indicated that GLPs could remarkably inhibit the necrosis of hepatocytes, the permeation of inflammatory cells, and the occurrence of apoptosis induced by APAP. Moreover, Western blot analysis manifested that GLPs enhanced the manifestation of Nrf2 and its subsequent HO-1, GCLC, and NQO1 proteins within the Nrf2 pathway. The results of qPCR also indicated that GLPs augmented the expression of antioxidant genes Nrf2, HO-1, GCLC, and NQO1. The results reveal that GLPs are able to set off the Nrf2 signaling path and attenuate ALI-related oxidative stress and apoptosis, which is a potential natural medicine for the therapy of APAP-induced liver injury.
Collapse
Affiliation(s)
- Nan Zhang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Zhongming Han
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
| | - Rui Zhang
- College of Traditional Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Z.H.); (R.Z.)
| | - Linling Liu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Yanliang Gao
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Jintao Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| | - Meixia Yan
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China; (N.Z.); (L.L.); (Y.G.); (J.L.)
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun 130112, China
| |
Collapse
|
17
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
18
|
Liu G, Ji Y. Electrochemiluminescent evaluation of GLUT4 expression in rat adipocytes induced by Ganoderma lucidum polysaccharides. Int J Biol Macromol 2024; 270:132106. [PMID: 38734335 DOI: 10.1016/j.ijbiomac.2024.132106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Glucose transporter 4 (GLUT4) directly facilitates cellular uptake of glucose and plays a crucial role in mammalian adipose tissue glucose metabolism. In this work, we constructed a cytosensor for sensitive electrochemiluminescence (ECL) detection of GLUT4 in rat adipocytes (RA cells). A carbon nanotube sponge (CNTSP) was selected to fabricate a permeable electrode to overcome the steric hindrance of cells on the electrode. The expression of GLUT4 after treatment with Ganoderma lucidum polysaccharide (GLP) was assessed by analyzing the luminescence emitted from cell-surface ECL probes. Our preliminary results suggest that GLP promote the expression of GLUT4, thereby enhancing the uptake of the fluorescent glucose 2-NBDG. Treatment with GLP affected GLUT4 expression in RA cells in a dose-dependent manner. Additionally, the ECL cytosensor contributes to the development of ECL imaging of receptors on the cell surface for clinical drug evaluation.
Collapse
Affiliation(s)
- Gen Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| | - Yahui Ji
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| |
Collapse
|
19
|
Bai G, Xie Y, Gao X, Xiao C, Yong T, Huang L, Cai M, Liu Y, Hu H, Chen S. Selective impact of three homogenous polysaccharides with different structural characteristics from Grifola frondosa on human gut microbial composition and the structure-activity relationship. Int J Biol Macromol 2024; 269:132143. [PMID: 38729493 DOI: 10.1016/j.ijbiomac.2024.132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Natural polysaccharides interact with gut microbes to enhance human well-being. Grifola frondosa is a polysaccharides-rich edible and medicinal mushroom. The prebiotic potential of G. frondosa polysaccharides has been explored in recent years, however, the relationship between their various structural features and prebiotic activities is poorly understood. In this study, three homogenous polysaccharides GFP10, GFP21 and GFP22 having different molecular weights (Mw), monosaccharide compositions and glycosidic linkages were purified from G. frondosa, and their effects on intestinal microbial composition were compared. GFP10 was a fucomannogalactan with an Mw of 23.0 kDa, and it selectively inhibited Enterobacter, while GFP21 was a fucomannogalactoglucan with an Mw of 18.6 kDa, and it stimulated Catenibacterium. GFP22 was a 4.9 kDa mannoglucan that selectively inhibited Klebsiella and boosted Bifidobacterium, Catenibacterium and Phascolarctobacterium, and prominently promoted the production of short-chain fatty acids (SCFAs). The selective modulation of gut microbiota by polysaccharides was structure-dependent. A relatively lower Mw and a high proportion of glycosidic linkages like T-Glcp, 1,3-Glcp, 1,3,6-Glcp and 1,4-Glcp might be more easily utilized to produce SCFAs and beneficial for the proliferation of Catenibacterium and Phascolarctobacterium. This research provided a valuable resource for further exploring the structure-activity relationship and prebiotic activity of G. frondosa polysaccharides.
Collapse
Affiliation(s)
- Guangjian Bai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Yizhen Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China; Guangdong Yuewei Edible Fungi Co., Ltd, China
| | - Xiong Gao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Chun Xiao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Tianqiao Yong
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Longhua Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Manjun Cai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Yuanchao Liu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China
| | - Huiping Hu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China.
| | - Shaodan Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, China.
| |
Collapse
|
20
|
Li W, Zhou Q, Lv B, Li N, Bian X, Chen L, Kong M, Shen Y, Zheng W, Zhang J, Luo F, Luo Z, Liu J, Wu JL. Ganoderma lucidum Polysaccharide Supplementation Significantly Activates T-Cell-Mediated Antitumor Immunity and Enhances Anti-PD-1 Immunotherapy Efficacy in Colorectal Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12072-12082. [PMID: 38750669 DOI: 10.1021/acs.jafc.3c08385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Ganoderma lucidum polysaccharide (GLP) is a prebiotic with immunomodulatory effects. However, the therapeutic potential of GLP in tumor immunotherapy has not been fully explored, especially in T cell-mediated antitumor immunity. In this study, we found that GLP significantly inhibited tumor growth and activated antitumor immunity in colorectal cancer (CRC). In the spleens and tumor tissues, the proportion of cytotoxic CD8+T cells and Th1 helper cells increased, while immunosuppressive Tregs decreased. Additionally, microbiota dysbiosis was alleviated by GLP, and short-chain fatty acid production was increased. Meanwhile, GLP decreased the ratio of kynurenine and tryptophan (Kyn/Trp) in the serum, which contributed to antitumor immunity of T cells. More importantly, the combination of GLP and the immune checkpoint inhibitor anti-PD-1 monoclonal antibody further enhanced the efficacy of anti-PD-1 immunotherapy. Thus, GLP as a prebiotic has the potential to be used in tumor immunotherapy.
Collapse
Affiliation(s)
- Wenshuai Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Zhou
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Lv
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mingjia Kong
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuru Shen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhongguang Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
21
|
Wang Y, Zhang K, Chen WM, Mao JH, Wang XM, Shao YH, Tu ZC, Liu J. Gut Microbiome-Serum Metabolism Revealed the Allergenicity of Ferulic Acid Combined with Glucose-Modified β-Lactoglobulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11746-11758. [PMID: 38718253 DOI: 10.1021/acs.jafc.4c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
A novel strategy combining ferulic acid and glucose was proposed to reduce β-lactoglobulin (BLG) allergenicity and investigate whether the reduction in allergenicity was associated with gut microbiome and serum metabolism. As a result, the multistructure of BLG changed, and the modified BLG decreased significantly the contents of IgE, IgG, IgG1, and mMCP-1 in serum, improved the diversity and structural composition of gut microbiota, and increased the content of short-chain fatty acids (SCFAs) in allergic mice. Meanwhile, allergic mice induced by BLG affected arachidonic acid, tryptophan, and other metabolic pathways in serum, the modified BLG inhibited the production of metabolites in arachidonic acid metabolism pathway and significantly increased tryptophan metabolites, and this contribution helps in reducing BLG allergenicity. Overall, reduced allergenicity of BLG after ferulic acid was combined with glucose modification by regulating gut microbiota, the metabolic pathways of arachidonic acid and tryptophan. The results may offer new thoughts alleviating the allergy risk of allergenic proteins.
Collapse
Affiliation(s)
- Yang Wang
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Kai Zhang
- Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, China
| | - Wen-Mei Chen
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ji-Hua Mao
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xu-Mei Wang
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hong Shao
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jun Liu
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
22
|
Ahmad MF, Ahmad FA, Hasan N, Alsayegh AA, Hakami O, Bantun F, Tasneem S, Alamier WM, Babalghith AO, Aldairi AF, Kambal N, Elbendary EY. Ganoderma lucidum: Multifaceted mechanisms to combat diabetes through polysaccharides and triterpenoids: A comprehensive review. Int J Biol Macromol 2024; 268:131644. [PMID: 38642691 DOI: 10.1016/j.ijbiomac.2024.131644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Diabetes is a chronic metabolic disorder. Diabetes complications can affect many organs and systems in the body. Ganoderma lucidum (G. lucidum) contains various compounds that have been studied for their potential antidiabetic effects, including polysaccharides, triterpenoids (ganoderic acids, ganoderol B), proteoglycans, and G. lucidum extracts. G. lucidum polysaccharides (GLPs) and triterpenoids have been shown to act through distinct mechanisms, such as improving glucose metabolism, modulating the mitogen-activated protein kinase (MAPK) system, inhibiting the nuclear factor-kappa B (NF-κB) pathway, and protecting the pancreatic beta cells. While GLPs exhibit a significant role in controlling diabetic nephropathy and other associated complications. This review states the G. lucidum antidiabetic mechanisms of action and potential biologically active compounds that contribute to diabetes management and associated complications. To make G. lucidum an appropriate replacement for the treatment of diabetes with fewer side effects, more study is required to completely comprehend the number of physiologically active compounds present in it as well as the underlying cellular mechanisms that influence their effects on diabetes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gurugram 122103, Haryana, India
| | - Nazim Hasan
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia; Nanotechnology research unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia.
| | - Abdulrahman A Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Othman Hakami
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia; Nanotechnology research unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Tasneem
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia
| | - Waleed M Alamier
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia; Nanotechnology research unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ahmad O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah F Aldairi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ehab Y Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
23
|
Elnahas MO, Elkhateeb WA, Daba GM. Nutritive profile, pharmaceutical potentials, and structural analysis of multifunctional bioactive fungal polysaccharides-A review. Int J Biol Macromol 2024; 266:130893. [PMID: 38493817 DOI: 10.1016/j.ijbiomac.2024.130893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Asian nations have long used edible fungi as food and medicine. Polysaccharides are among the main building units of the cell walls of fungi. Fungal polysaccharides have been documented in the medicinal and industrial sectors as products with a vast array of various biological activities and applications such as antitumor, antioxidant, anticancer, immunomodulation, and antiviral activities, etc. The goal of this review is to give insights into the various biological activities of mushroom polysaccharides and their potential as a medicine for human health. The extraction, purity, and structural analysis of fungal polysaccharides were also reviewed in this work. Also, future prospective, and challenges for fungal polysaccharides in pharmaceutical applications can be found in this review. Overall, this review serves as a valuable resource in exploring the therapeutic potential and applications of fungal polysaccharides. By building upon the existing knowledge base and addressing critical research gaps, researchers can find new opportunities for utilizing fungal polysaccharides as valuable therapeutic agents and functional ingredients in pharmaceuticals, nutraceuticals, and biotechnology.
Collapse
Affiliation(s)
- Marwa O Elnahas
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Waill A Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ghoson M Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
24
|
Wang P, Feng X, Lv Z, Liu J, Teng Q, Chen T, Liu Q. Temporal dynamics of lignin degradation in Quercus acutissima sawdust during Ganoderma lucidum cultivation. Int J Biol Macromol 2024; 268:131686. [PMID: 38643923 DOI: 10.1016/j.ijbiomac.2024.131686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Despite a fair amount of lignin conversion during mycelial growth, previous structural analyses have not yet revealed how lignin changes continuously and what the relationship is between lignin and ligninolytic enzymes. To clarify these aspects, Quercus acutissima sawdust attaching Ganoderma lucidum mycelium collected from different growth stage was subjected to analysis of lignin structure and ligninolytic enzyme activity. Two key periods of lignin degradation are found during the cultivation of G. lucidum: hypha rapid growth period and primordium formation period. In the first stage, laccase activity is associated with the opening of structures such as methoxyls, β-O-4' substructures and guaiacyl units in lignin, as well as the shortening of lignin chains. Manganese peroxidases and lignin peroxidases are more suitable for degrading short chain lignin. The structure of phenylcoumarans and syringyl changes greatly in the second stage. The results from sawdust attaching mycelium provide new insights to help improve the cultivation substrate formulation of G. lucidum and understand biomass valorization better.
Collapse
Affiliation(s)
- Peng Wang
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaobin Feng
- Cangzhou Academy of Agriculture and Forestry Sciences, Hebei 061000, China
| | - Ziwen Lv
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jia Liu
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Teng
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tong Chen
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qinghong Liu
- Department of Vegetables, College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Okay G, Kırıcı P, Mavral N, Utkan Korun ZE, Annac E, Kaplan S. Ganoderma lucidum and Hypericum perforatum Exhibit Anti-Inflammatory, Antioxidant, and Anti-Androgen Effect in Rat Model of Experimental Polycystic Ovarian Syndrome. Med Princ Pract 2024; 33:1-7. [PMID: 38599178 PMCID: PMC11324204 DOI: 10.1159/000538595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE Chronic inflammation is considered to be of key importance in the pathogenesis of polycystic ovarian syndrome (PCOS). Ganoderma lucidum polysaccharide (GLP) and Hypericum perforatum (HP) have been reported to have anti-inflammatory and antioxidant activities. We studied the effects of these agents on ovarian tissue in a rat model of experimental PCOS. MATERIALS AND METHODS Forty-two Sprague-Dawley female rats were divided into 6 groups with 7 animals in each group as listed below: Group 1: Control, Group 2: PCOS, Group 3: PCOS + HP, Group 4: HP only, Group 5: PCOS+ GLP, Group 6: GLP only. At the end of the experimental procedures, all the animals underwent bilateral oophorectomy and blood samples were collected. Ovarian tissue and blood samples were used for biochemical and histopathological analysis. RESULTS Follicle degeneration in the PCOS group showed a statistically significant increase compared to the other groups (p < 0.05). Cystic follicles were significantly reduced in the PCOS+GLP and PCOS+HP groups as compared to the PCOS group. Levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were elevated in PCOS rats (p < 0.01). Levels of sex hormone binding globulin (SHBG) levels were diminished (p < 0.01). Levels of malondialdehyde (MDA) and insulin-like growth factor 1 (IGF-1) were increased in PCOS rats as compared to the other groups (p < 0.02, p < 0.02, respectively). GLP supplementation diminished the levels of IGF-1 and MDA. GLP or HP supplementation increased reduced glutathione (GSH). CONCLUSION GLP and HP treatment normalizes SHBG levels while correcting PCOS-induced hyperandrogenemia. Both herbs regulate the redox balance by decreasing the levels of MDA and increasing the level of GSH.
Collapse
Affiliation(s)
- Gülin Okay
- Department of Obstetric and Gynecology, Izmir Economy University Faculty of Medicine, Medicalpoint Hospital, Izmir, Turkey
| | - Pınar Kırıcı
- Department of Obstetric and Gynecology, Adıyaman University Faculty of Medicine, Adıyaman, Turkey
| | - Nihal Mavral
- Department of Obstetrics and Gynecology, Private Lotus Hospital, ŞanlıUrfa, Turkey
| | | | - Ebru Annac
- Department of Histology and Embryology, Adiyaman University Faculty of Medicine, Adıyaman, Turkey
| | - Selçuk Kaplan
- Department of Obstetric and Gynecology, Elazıg Fethi Sekin City Training and Research Hospital, Elazıg, Turkey
| |
Collapse
|
26
|
Liu J, Zhang Z, Deng Y, Chen G. Effect of extraction method on the structure and bioactivity of polysaccharides from activated sludge. WATER RESEARCH 2024; 253:121196. [PMID: 38394931 DOI: 10.1016/j.watres.2024.121196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Resource recovery is a pivotal facet of waste activated sludge treatment, particularly within the framework of carbon neutrality and the circular economy. Polysaccharides are emerging as a valuable resource from waste activated sludge, and the choice of extraction method affects the properties of the polysaccharides, which is of utmost importance for subsequent application. This investigation examined the effects of six extraction methods (i.e., acidic, alkaline, ultrasonication, hot-water, microwave, and electric treatments) on the yield, chemical composition, structural characteristics, and bioactivities of polysaccharides extracted from sludge. For each extraction method, two operational parameters, namely the treatment time and strength (e.g., the acid and alkali concentration), were initially optimized in terms of the polysaccharide yield. The polysaccharide yield varied from 1.03 ± 0.12 % to 5.34 ± 0.10 % adopting the extraction methods under optimized conditions, and the alkaline extraction method had the highest yield of polysaccharides with a treatment time of 120 min and NaOH concentration of 1 %. At least one polysaccharide fraction was successfully purified from the crude polysaccharide of each extraction method. The compositions and structures of these fractions, including carbohydrate, protein, sulfate, uronic acid contents, and monosaccharide compositions, were determined. Carbohydrate was the dominant component, with the hot-water-2 fraction having the highest carbohydrate content (77.90 % ± 2.02 %). Monosaccharides in the polysaccharides were measured, with mannose, rhamnose, glucose, and xylose being found in all fractions, whereas ribose was exclusively found in the acid-1 fraction. The molecular weights of these fractions ranged between 1.60 × 104 Da and 7.11 × 106 Da. Furthermore, the bioactivities of the polysaccharides, encompassing five anti-oxidant and three anti-coagulant properties, were assessed, with the ultrasonication-1 fraction having superior performance in seven of the assays. Finally, the association among the fractions in terms of composition and bioactivity was assessed adopting cluster analysis and regression methods. The findings underscore the effect of the extraction method on the properties of polysaccharides extracted from sludge, thereby providing valuable insights for the prospective applications of polysaccharides.
Collapse
Affiliation(s)
- Jie Liu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zi Zhang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Wastewater Treatment Laboratory, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangzhou, China.
| |
Collapse
|
27
|
Li R, Shi G, Chen L, Liu Y. Polysaccharides extraction from Ganoderma lucidum using a ternary deep eutectic solvents of choline chloride/guaiacol/lactic acid. Int J Biol Macromol 2024; 263:130263. [PMID: 38368996 DOI: 10.1016/j.ijbiomac.2024.130263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
In this study, a purposefully formulated ternary deep eutectic solvents (DESs), consisting of choline chloride, guaiacol, and lactic acid in a molar ratio of 1:1:1, was synthesized for the extraction of polysaccharides from Ganoderma lucidum. The physicochemical properties of the synthesized DESs, including viscosity, density, pH, and hydrogen bonds, were comprehensively examined. Verification of the formation of the ternary DESs was accomplished through Fourier transform infrared and Nuclear magnetic resonance spectroscopies. Subsequently, response surface methodology was applied to optimize crucial parameters for polysaccharide extraction using DESs, resulting in a maximal extraction yield of 94.72 mg/g under the optimized conditions. Cyclic experiments demonstrated the commendable cyclic stability of the DESs, with a recovery rate exceeding 88 %. Furthermore, experiments on monosaccharide composition, molecular weight, and antioxidant activity of the isolated polysaccharides were conducted. Density functional theory was employed to gain insights into the molecular mechanism of polysaccharide extraction by DESs. The findings revealed a triple hydrogen bond interaction and a high binding energy (65.29 kcal/mol) between the DESs and glucose, highlighting their significant contribution to the high extraction effectiveness. This molecular-level understanding underscores the inherent superiority of DESs in the polysaccharide extraction processes, providing valuable insights for future applications in this field.
Collapse
Affiliation(s)
- Rongji Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangyuan Shi
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yun Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
28
|
Wei-Ye L, Hong-Bo G, Rui-Heng Y, Ai-Guo X, Jia-Chen Z, Zhao-Qian Y, Wen-Jun H, Xiao-Dan Y. UPLC-ESI-MS/MS-based widely targeted metabolomics reveals differences in metabolite composition among four Ganoderma species. Front Nutr 2024; 11:1335538. [PMID: 38562486 PMCID: PMC10982346 DOI: 10.3389/fnut.2024.1335538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The Chinese name "Lingzhi" refers to Ganoderma genus, which are increasingly used in the food and medical industries. Ganoderma species are often used interchangeably since the differences in their composition are not known. To find compositional metabolite differences among Ganoderma species, we conducted a widely targeted metabolomics analysis of four commonly used edible and medicinal Ganoderma species based on ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Through pairwise comparisons, we identified 575-764 significant differential metabolites among the species, most of which exhibited large fold differences. We screened and analyzed the composition and functionality of the advantageous metabolites in each species. Ganoderma lingzhi advantageous metabolites were mostly related to amino acids and derivatives, as well as terpenes, G. sinense to terpenes, and G. leucocontextum and G. tsugae to nucleotides and derivatives, alkaloids, and lipids. Network pharmacological analysis showed that SRC, GAPDH, TNF, and AKT1 were the key targets of high-degree advantage metabolites among the four Ganoderma species. Analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes demonstrated that the advantage metabolites in the four Ganoderma species may regulate and participate in signaling pathways associated with diverse cancers, Alzheimer's disease, and diabetes. Our findings contribute to more targeted development of Ganoderma products in the food and medical industries.
Collapse
Affiliation(s)
- Liu Wei-Ye
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Guo Hong-Bo
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Yang Rui-Heng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xu Ai-Guo
- Alpine Fungarium, Tibet Plateau Institute of Biology, Lasa, China
| | - Zhao Jia-Chen
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Yang Zhao-Qian
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Han Wen-Jun
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Yu Xiao-Dan
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
29
|
Xia J, He X, Yang W, Song H, Yang J, Zhang G, Yang Z, Chen H, Liang Z, Kollie L, Abozeid A, Zhang X, Li Z, Yang D. Unveiling the distribution of chemical constituents at different body parts and maturity stages of Ganoderma lingzhi by combining metabolomics with desorption electrospray ionization mass spectrometry imaging (DESI). Food Chem 2024; 436:137737. [PMID: 37857205 DOI: 10.1016/j.foodchem.2023.137737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Ganoderma lingzhi is an important medicinal fungus, which is widely used as dietary supplement and for pharmaceutical industries. However, the spatial distribution and dynamic accumulation pattern of active components such as ganoderic acids (GAs) among different parts of G. lingzhi fruiting body are still unclear. In this study, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with untargeted metabolomics analysis was applied to investigate the metabolites distribution within G. lingzhi fruiting body at four different maturity stages (squaring, opening, maturation and harvesting stage). A total of 132 metabolites were characterized from G. lingzhi, including 115 triterpenoids, 11 fatty acids and other component. Most of the GAs content in the cap was significantly higher than that in the stipe, with six components such as ganoderic acid B being extremely significant. GAs in the cap was mainly present in the bottom edge of the mediostratum layer, such as ganoderic A-I and ganoderic GS-1, while in the stipe, they were mainly distributed in the shell layer and the context layer, such as ganoderic A-F. Most ganoderic acids content in both the stipe and the cap of G. lingzhi was gradually decreased with the development of G. lingzhi. The GAs in the stipe was gradually transferred from the shell layer to the content layer, while the distribution of GAs among different tissues of the cap was not significantly changed. In addition, linoleic acid, 9-HODE, 9-KODE and other fatty acids were mainly accumulated in the opening and maturing stage of the caps. This study further clarifies the spatial dynamic distribution of GAs in G. lingzhi fruiting body at four different maturity stages (squaring, opening, maturation and harvesting stage), which provides a basis for the rational utilization of the medicinal parts of G. lingzhi. Furthermore, mass spectrometry imaging combined with non-target metabolome analysis provides a powerful tool for the spatial distribution of active substances in the different regions of the medicinal edible fungi.
Collapse
Affiliation(s)
- Jie Xia
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyu He
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wan Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongyan Song
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jihong Yang
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, Hangzhou, China
| | - Guoliang Zhang
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, Hangzhou, China
| | - Zongqi Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haimin Chen
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China; Shaoxing Academy of Biomedicne Co., Ltd of Zhejiang Sci-Tech University, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Health Food, Shaoxing, China
| | - Larwubah Kollie
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ann Abozeid
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China; Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkoom, Egypt
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Zhenhao Li
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd, Hangzhou, China.
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China; Shaoxing Academy of Biomedicne Co., Ltd of Zhejiang Sci-Tech University, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Health Food, Shaoxing, China.
| |
Collapse
|
30
|
Xiong W, Xia J, Peng X, Tan Y, Chen W, Zhou M, Yang C, Wang W. Novel therapeutic role of Ganoderma Polysaccharides in a septic mouse model - The key role of macrophages. Heliyon 2024; 10:e26732. [PMID: 38449666 PMCID: PMC10915390 DOI: 10.1016/j.heliyon.2024.e26732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Ganoderma lucidum polysaccharides (G. PS) have been recognized for their immune-modulating properties. In this study, we investigated the impact of G. PS in a sepsis mouse model, exploring its effects on survival, inflammatory cytokines, Treg cell differentiation, bacterial load, organ dysfunction, and related pathways. We also probed the role of macrophages through chlorphosphon-liposome pretreatment. Using the cecal ligation and puncture (CLP) model, we categorized mice into normal, PBS, and G. PS injection groups. G. PS significantly enhanced septic mouse survival, regulated inflammatory cytokines (TNF-α, IL-17A, IL-6, IL-10), and promoted CD4+Foxp3+ Treg cell differentiation in spleens. Additionally, G. PS reduced bacterial load, mitigated organ damage, and suppressed the NF-κB pathway. In vitro, G. PS facilitated CD4+ T cell differentiation into Treg cells via the p-STAT5 pathway. Chlorphosphon-liposome pretreatment heightened septic mortality, bacterial load, biochemical markers, and organ damage, emphasizing macrophages' involvement. G. PS demonstrated significant protective effects in septic mice by modulating inflammatory responses, enhancing Treg cell differentiation, diminishing bacterial load, and inhibiting inflammatory pathways. These findings illuminate the therapeutic potential of G. PS in sepsis treatment.
Collapse
Affiliation(s)
- Wei Xiong
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Jing Xia
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Xiaoyuan Peng
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Ying Tan
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Wansong Chen
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Minghua Zhou
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Ce Yang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| |
Collapse
|
31
|
He X, Liu L, Gu F, Huang R, Liu L, Nian Y, Zhang Y, Song C. Exploration of the anti-inflammatory, analgesic, and wound healing activities of Bletilla Striata polysaccharide. Int J Biol Macromol 2024; 261:129874. [PMID: 38307430 DOI: 10.1016/j.ijbiomac.2024.129874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Bletilla Striata (BS) Polysaccharide (BSP) is one of the main components of the traditional Chinese medicinal plant Bletilla striata Rchb. F. BSP has been widely used in antimicrobial and hemostasis treatments in clinics. Despite its use in skin disease treatment and cosmetology, the effects of BSP on wound healing remain unclear. Here we investigated the anti-inflammatory, antioxidant, and analgesic effects of BSP and explored its impact on morphological changes and inflammatory mediators during wound healing. A carrageenan-induced mouse paw edema model was established to evaluate the anti-inflammatory effect of BSP. Antioxidant indicators, including NO, SOD, and MDA, were measured in the blood and liver. The increased pain threshold induced by BSP was also determined using the hot plate test. A mouse excisional wound model was applied to evaluate the wound healing rate, and HE staining and Masson staining were used to detect tissue structure changes. In addition, ELISA was employed to detect the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in serum. BSP significantly decreased the concentration of NO and MDA in serum and liver while increasing SOD activity. It exhibited a notable improvement in mouse paw edema induced by carrageenan. BSP dose-dependently delayed the appearance of licking behavior in mice, indicating its analgesic effect. Compared to the control group, the wound healing rate was significantly improved in the BSP treatment group. HE and Masson staining results showed that the BSP and 'Jingwanhong' ointment groups had slightly milder inflammatory responses and significantly promoted more new granulation tissue formation. The levels of serum inflammatory mediators TNF-α, IL-1β, and IL-6 were reduced to varying degrees. The results demonstrated that BSP possesses anti-inflammatory, antioxidant, analgesic, and wound healing properties, and it may promote wound healing through inhibition of inflammatory cytokine synthesis and release.
Collapse
Affiliation(s)
- Xiaomei He
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Longyun Liu
- School of Biotechnology, Hefei Vocational and Technical College, Hefei 230000, China
| | - Fangli Gu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Renshu Huang
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China
| | - Li Liu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China
| | - Yuting Nian
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Cheng Song
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China; Anhui Provincial Collaborative Innovation Center of Modern Chinese Medicinal Industry, West Anhui University, Lu'an, Anhui 237012, China.
| |
Collapse
|
32
|
Li QZ, Xiong C, Wong WC, Zhou LW. Medium composition optimization and characterization of polysaccharides extracted from Ganoderma boninense along with antioxidant activity. Int J Biol Macromol 2024; 260:129528. [PMID: 38246471 DOI: 10.1016/j.ijbiomac.2024.129528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/15/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Ganoderma is a well-known medicinal macrofungal genus, of which several species have been thoroughly studied from the medicinal perspective, but most species are rarely involved in. In this study, we focus on the polysaccharides extracted from Ganoderma boninense and their antioxidant activity. Ganoderma boninense is a serious pathogen of oil palms that are cultivated commercially in Southeast Asia. Response surface methodology was conducted to optimize the liquid medium composition, and the mycelia biomass reached 7.063 g/L, that is, 1.4-fold compared with the seed medium. The crude and purified polysaccharides extracted from the fermentation broth showed well 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging abilities, and the scavenging abilities of purified polysaccharides reached 94.47 % and 99.88 %, respectively. Six fractions of polysaccharides were extracted and purified from fruiting bodies, mycelia and fermentation broth separately with the elution buffers of distilled water and 0.1 M NaCl solution. Generally, the polysaccharides from fruiting bodies showed stronger protective effect on H2O2-induced HepG2 cell oxidative damage than other fractions. A total of five to seven monosaccharides were identified in the six fractions of polysaccharides. The correlation analysis revealed that the content of fucose was significantly correlated with the antioxidant activity of polysaccharides, while xylose showed negative correlation results. In summary, the polysaccharides from G. boninense have a potential to be used as natural antioxidants.
Collapse
Affiliation(s)
- Qian-Zhu Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Xiong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Chee Wong
- Advanced Agriecological Research Sdn. Bhd., Kota Damansara, Petaling Jaya 47810, Selangor, Malaysia
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
33
|
Shen R, Ge Y, Qin Y, Gao H, Yu H, Wu H, Song H. Sporoderm-broken spores of Ganoderma lucidum modulate hepatoblastoma malignancy by regulating RACK1-mediated autophagy and tumour immunity. J Cell Mol Med 2024; 28:e18223. [PMID: 38451046 PMCID: PMC10919157 DOI: 10.1111/jcmm.18223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Hepatoblastoma (HB), a primary liver tumour, is notorious for its high metastatic potential and poor prognosis. Ganoderma lucidum, an edible mushroom species utilized in traditional Chinese medicine for addressing various tumour types, presents an intriguing avenue for HB treatment. However, the effectiveness of G. lucidum in managing HB and its underlying molecular mechanism necessitates further exploration. Standard in vitro assays were conducted to evaluate the impact of sporoderm-broken spores of G. lucidum (SBSGL) on the malignant characteristics of HB cells. The mechanism of SBSGL in treating HB and its tumour immunomodulatory effects were explored and validated by various experiments, including immunoprecipitation, Western blotting, mRFP-GFP-LC3 adenovirus transfection and co-localization analysis, as well as verified with in vivo experiments in this regard. The results showed that SBSGL effectively inhibited the malignant traits of HB cells and suppressed the O-GlcNAcylation of RACK1, thereby reducing its expression. In addition, SBSGL inhibited immune checkpoints and regulated cytokines. In conclusion, SBSGL had immunomodulatory effects and regulated the malignancy and autophagy of HB by regulating the O-GlcNAcylation of RACK1. These findings suggest that SBSGL holds promise as a potential anticancer drug for HB treatment.
Collapse
Affiliation(s)
- Rui Shen
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yang Ge
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yunpeng Qin
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Gao
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Hongyan Yu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Huazhang Wu
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
34
|
Chen S, Qin F, Yang Y, Zhao Y, Xiao S, Li W, Akihisa T, Jantrawut P, Ji J, Zhang J. Extraction, purification, structural characterization, and bioactivities of the genus Schisandra polysaccharides: A review. Int J Biol Macromol 2024; 262:130257. [PMID: 38423904 DOI: 10.1016/j.ijbiomac.2024.130257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The genus Schisandra, a member of the Magnoliaceae family, is a well-known tonic traditional Chinese medicine with a long history of traditional medicinal and functional food used in China. Polysaccharides are one of its main active constituents, which have a wide range of bioactivities, such as anti-inflammatory, anti-tumor, neuroprotection, anti-diabetes, hepatoprotection, immunomodulation, and anti-fatigue. In this paper, we review the extraction, isolation, purification, structural characterization, bioactivities, as well as structure-activity relationship of polysaccharides from the genus Schisandra. In conclusion, we hope that this review could provide reference for the subsequent research on structural, bioactivities, development and application of the genus Schisandra polysaccharides.
Collapse
Affiliation(s)
- Shujun Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Fang Qin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Ying Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Yu Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Shuyun Xiao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Wei Li
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Pensak Jantrawut
- Faculty of Pharmacy, Ching Mai University, Ching Mai, 50200, Thailand
| | - Jingyu Ji
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211112, China.
| |
Collapse
|
35
|
Fan J, Zhu J, Zhu H, Zhang Y, Xu H. Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Front Med (Lausanne) 2024; 10:1325491. [PMID: 38264044 PMCID: PMC10804854 DOI: 10.3389/fmed.2023.1325491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
In recent years, colon cancer has become one of the most common malignant tumors worldwide, posing a great threat to human health. Studies have shown that natural polysaccharides have rich biological activities and medicinal value, such as anti-inflammatory, anti-cancer, anti-oxidation, and immune-enhancing effects, especially with potential anti-colon cancer mechanisms. Natural polysaccharides can not only protect and enhance the homeostasis of the intestinal environment but also exert a direct inhibition effect on cancer cells, making it a promising strategy for treating colon cancer. Preliminary clinical experiments have demonstrated that oral administration of low and high doses of citrus pectin polysaccharides can reduce tumor volume in mice by 38% (p < 0.02) and 70% (p < 0.001), respectively. These results are encouraging. However, there are relatively few clinical studies on the effectiveness of polysaccharide therapy for colon cancer, and ensuring the effective bioavailability of polysaccharides in the body remains a challenge. In this article, we elucidate the impact of the physicochemical factors of polysaccharides on their anticancer effects and then reveal the anti-tumor effects and mechanisms of natural polysaccharides on colon cancer. Finally, we emphasize the challenges of using polysaccharides in the treatment of colon cancer and discuss future applications.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
González-Solís R, Mendoza G, Ramos A, Bandala VM, Montoya L, González-Bakker A, Padrón JM, Lagunes I, Trigos Á. Antiproliferative and Antibacterial Activity of Polyporoid Fungi from Veracruz, Mexico. Int J Med Mushrooms 2024; 26:73-86. [PMID: 38780424 DOI: 10.1615/intjmedmushrooms.2024052840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Polyporoid fungi represent a vast source of bioactive compounds with potential pharmacological applications. The importance of polyporoid fungi in traditional Chinese medicine has led to an extensive use of some species of Ganoderma for promoting health and longevity because their consumption is associated with several bioactivities. Nevertheless, bioactivity of some other members of the Polyporaceae family has also been reported. This work reports the antiproliferative and antibacterial activity of crude extracts obtained from fruiting bodies of polypore fungi collected from the central region of Veracruz, Mexico, aimed at understanding the diversity of polypore species with potential pharmacological applications. 29 collections were identified macro- and microscopically in 19 species of polyporoid fungi, belonging to 13 genera. The antiproliferative activity screening of extracts against solid tumor cell lines (A549, SW1573, HeLa, HBL-100, T-47D, WiDr) allow us to identify four extracts with strong bioactivity [half-maximal growth inhibition (GI50) ≤ 50 μg/mL]. After this, a phylogenetic analysis of DNA sequences from the ITS region obtained from bioactive specimens allowed us to identify three extracts as Pycnoporus sanguineus (GI50 = ≤ 10 μg/mL) and the fourth bioactive extract as Ganoderma oerstedii (GI50 = < 50 μg/mL. Likewise, extracts from P. sanguineus showed mild or moderate antibacterial activity against Escherichia coli, Staphylococcus aureus and Xanthomonas albilineas. Bioprospecting studies of polyporoid fungi add to the knowledge of the diversity of macrofungi in Mexico and allow us to select one of the bioactive P. sanguineus to continue the pursuit of bioactive compounds through mycochemical studies.
Collapse
Affiliation(s)
- Rosalba González-Solís
- Doctorado en Micología Aplicada, Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Xalapa 91010, Veracruz, Mexico
| | - Guillermo Mendoza
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Calle Médicos 5, Unidad del Bosque, 91010 Xalapa, Veracruz, México
| | - Antero Ramos
- Instituto de Ecología, A.C., Red Biodiversidad y Sistemática, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Victor M Bandala
- Instituto de Ecología, A.C., Red Biodiversidad y Sistemática, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Leticia Montoya
- Instituto de Ecología, A.C., Red Biodiversidad y Sistemática, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, La Laguna 38206, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, Apartado 456, E-38071, La Laguna, Spain
| | - Irene Lagunes
- Centro de Investigación de Micología Aplicada, Universidad Veracruzana, 91010, Xalapa, Veracruz, Mexico
| | - Ángel Trigos
- Centro de Investigación en Micología Aplicada, Universidad Veracruzana, Calle Médicos 5, Unidad del Bosque, 91010 Xalapa, Veracruz, México
| |
Collapse
|
37
|
Li J, Guo H, Dong Y, Yuan S, Wei X, Zhang Y, Dong L, Wang F, Bai T, Yang Y. Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism. Chin J Nat Med 2024; 22:4-14. [PMID: 38278558 DOI: 10.1016/s1875-5364(24)60558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 01/28/2024]
Abstract
Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.
Collapse
Affiliation(s)
- Jifeng Li
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Haolin Guo
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Ying Dong
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Xiaotong Wei
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Yuxin Zhang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Lu Dong
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Fei Wang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Ting Bai
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China.
| | - Yong Yang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China.
| |
Collapse
|
38
|
Yao J, Zeng J, Tang H, Shi Q, Li X, Tan J, Cheng Y, Li T, He J, Zhang Y. Preparation of Auricularia auricula polysaccharides and their protective effect on acute oxidative stress injury of Caenorhabditis elegans. Int J Biol Macromol 2023; 253:127427. [PMID: 37838122 DOI: 10.1016/j.ijbiomac.2023.127427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
This research enhanced the extraction procedure for Auricularia auricula crude polysaccharides by utilizing a modified Fenton reagent as a solvent, and obtained A. auricula polysaccharides (AAPs-VH) via alcohol precipitation and deproteinization. The HPLC profile revealed that the purified AAPs-VH using Sepharose 6FF was mainly a heteropolysaccharide, consisting primarily of mannose, glucuronic acid, glucose, and xylose. The Mw and Mn of the purified AAPs-VH were 87.646 kDa and 48.854 kDa, respectively. The FT-IR and NMR spectra revealed that the purified AAPs-VH belonged to pyranose and were mainly formed by (1 → 3)-linked-β-D glucan formation. In vivo experiments conducted with Caenorhabditis elegans, AAPs-VH was found to notably influence the lifespan, improve the antioxidant system, and decrease the level of cell apoptosis. This might be achieved by up-regulating the expression of genes in the IIS and TOR pathways. The study concludes that the modified Fenton reagent can increase Auricularia auricula polysaccharide solubleness and active sites, which may be an essential prompt for future studies.
Collapse
Affiliation(s)
- Jing Yao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jiangying Zeng
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Huinan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Qianwen Shi
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Xiangyu Li
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jingjing Tan
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yirui Cheng
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Tianyuan Li
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Jiyuan He
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
39
|
Jiang F, Chen R, Tang C, Li LQ, Yan JK, Zhang H. Polysaccharide extracted from cultivated Sanghuangporous vaninii spores using three-phase partitioning with enzyme/ultrasound pretreatment: Physicochemical characteristics and its biological activity in vitro. Int J Biol Macromol 2023; 253:126622. [PMID: 37657579 DOI: 10.1016/j.ijbiomac.2023.126622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Sanghuangporous vaninii, as a valuable dietary supplement and medicinal ingredient, contains abundant bioactive polysaccharides that have health-promoting effects. In the present study, four polysaccharides (SVSPs-C, SVSPs-E, SVSPs-U, and SVSPs-E/U) were extracted for the first time from S. vaninii spores by three-phase partitioning (TPP), enzyme pretreatment before TPP (E-TPP), ultrasonic pretreatment before TPP (U-TPP), and enzyme pretreatment followed by ultrasonic before TPP (E/U-TPP) methods, respectively. Their physicochemical characteristics and in vitro pharmacological functions were determined and compared. Results showed that four TPP-based extraction methods had remarkable impacts on the extraction yield, chemical properties, monosaccharide compositions, and molecular weights (Mw) of SVSPs. Specifically, SVSPs-E/U obtained by E/U-TPP showed the highest extraction yield (25.40 %), carbohydrate content (88.50 %), and the lowest protein content (0.86 %). The four SVSPs had high-Mw (183.8-329.1 kDa) and low-Mw (23.0-156.4 kDa) fractions and mainly consisted of galactose, glucose, and mannose with different contents. In vitro bioactivities assays indicated that SVSPs-E/U possessed stronger antioxidant, hypoglycemic, hypouricemic, immunostimulatory, and antitumor activities than those of SVSPs-C, SVSPs-E, and SVSPs-U. Therefore, our results provide an efficient and promising extraction technique for bioactive polysaccharides from S. vaninii spores, as well as SVSPs had the potential to be applied in functional food, pharmaceutical, and cosmetics fields.
Collapse
Affiliation(s)
- Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Long-Qing Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jing-Kun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
40
|
Xu YL, Yuan H, Li N, Xiao JH, Xu JW. Increased production and anti-senescence activity of exopolysaccharides in Ganoderma lingzhi by co-overexpression of β-1,3-glucan synthase and UDP-glucose pyrophosphorylase. Int J Biol Macromol 2023; 253:126778. [PMID: 37683745 DOI: 10.1016/j.ijbiomac.2023.126778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
A β-1,3-glucan synthase gene (gls) was cloned and overexpressed in Ganoderma lingzhi. The content of intracellular polysaccharides (IPS) in G. lingzhi overexpressing gls was 22.36 mg/100 mg dry weight (DW), 19 % higher than those in the wild-type (WT) strain. Overexpression of gls did not affect the expression of the phosphoglucomutase gene and the UDP-glucose pyrophosphorylase gene (ugp) in the polysaccharide biosynthesis. The gls and ugp were then simultaneously overexpressed in G. lingzhi for the first time. The combined overexpression of these two genes increased the IPS content and exopolysaccharides (EPS) production to a greater extent than the overexpression of gls independently. The maximum IPS content of the overexpressed strain was 24.61 mg/100 mg, and the maximum EPS production was 1.55 g/L, 1.31- and 1.50-fold higher than that in the WT strain, respectively. Moreover, the major EPS fractions from the overexpression strain contained more glucose (86.7 % and 72.5 %) than those from the WT strain (78.2 % and 62.9 %). Furthermore, the major fraction G+U-0.1 from the overexpression strain exhibited stronger antioxidant and anti-senescence activities than the WT-0.1 fraction from the WT strain. These findings will aid in the hyperproduction and application of Ganoderma polysaccharides and facilitate our understanding of mushroom polysaccharide biosynthesis.
Collapse
Affiliation(s)
- Yong-Liang Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan Yuan
- University Key Laboratory of Medicinal Biotechnology of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Na Li
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian-Hui Xiao
- University Key Laboratory of Medicinal Biotechnology of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
41
|
Ye D, Zhao Q, Ding D, Ma BL. Preclinical pharmacokinetics-related pharmacological effects of orally administered polysaccharides from traditional Chinese medicines: A review. Int J Biol Macromol 2023; 252:126484. [PMID: 37625759 DOI: 10.1016/j.ijbiomac.2023.126484] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Polysaccharides (TCMPs) derived from traditional Chinese medicines (TCMs), such as Ganoderma lucidum, Astragalus membranaceus, Lycium barbarum, and Panax ginseng, are considered to be the main active constituents in TCMs. However, the significant pharmacological effects of orally administered TCMPs do not align well with their poor pharmacokinetics. This article aims to review the literature published mainly from 2010 to 2022, focusing on the relationship between pharmacokinetics and pharmacological effects. It has been found that unabsorbed TCMPs can exert local pharmacological effects in the gut, including anti-inflammation, anti-oxidation, regulation of intestinal flora, modulation of intestinal immunity, and maintenance of intestinal barrier integrity. Unabsorbed TCMPs can also produce systemic pharmacological effects, such as anti-tumor activity and immune system modulation, by regulating intestinal flora and immunity. Conversely, some TCMPs can be absorbed and distributed to various tissues, especially the liver, where they exhibit tissue-protecting effects against inflammation and oxidative stress-induced damage and improve glucose and lipid metabolism. In future studies, it is important to improve quality control and experimental design. Furthermore, research on enhancing the oral bioavailability of TCMPs, exploring the activity of TCMP metabolites, investigating pharmacokinetic interactions between TCMPs and oral drugs, and developing oral drug delivery systems using TCMPs holds great significance.
Collapse
Affiliation(s)
- Dan Ye
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Zhao
- Department of Pharmacy, Jingan District Zhabei Central Hospital, Shanghai 200070, China
| | - Ding Ding
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
42
|
Hassan M, Shahzadi S, Ransom RF, Kloczkowski A. Nature's Own Pharmacy: Mushroom-Based Chemical Scaffolds and Their Therapeutic Implications. Int J Mol Sci 2023; 24:15596. [PMID: 37958579 PMCID: PMC10647524 DOI: 10.3390/ijms242115596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Mushrooms are new potential sources of valuable medicines, long neglected because of difficulties experienced in their cultivation. There is a large variety of medicinal mushrooms which possess significant therapeutic properties and are used as medications for various diseases because they contain several novel highly bioactive components. Medicinal mushrooms can be identified based on their morphology, size, mass, and the color of the stalk, cap and spore, and attachment to the stalk. Medicinal mushrooms possess a variety of important biological activities and are used as antioxidants, hepatoprotectors, anticancer, antidiabetic, anti-inflammatory, antiaging, antiviral, antiparasitic, and antimicrobial agents, among others. This review provides a basic overview of the chemical scaffolds present in mushrooms and their therapeutic implications in the human body.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
| | | | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (M.H.); (S.S.)
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
43
|
Yu C, Dong Q, Chen M, Zhao R, Zha L, Zhao Y, Zhang M, Zhang B, Ma A. The Effect of Mushroom Dietary Fiber on the Gut Microbiota and Related Health Benefits: A Review. J Fungi (Basel) 2023; 9:1028. [PMID: 37888284 PMCID: PMC10608147 DOI: 10.3390/jof9101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Mushroom dietary fiber is a type of bioactive macromolecule derived from the mycelia, fruiting bodies, or sclerotia of edible or medicinal fungi. The use of mushroom dietary fiber as a prebiotic has recently gained significant attention for providing health benefits to the host by promoting the growth of beneficial microorganisms; therefore, mushroom dietary fiber has promising prospects for application in the functional food industry and in drug development. This review summarizes methods for the preparation and modification of mushroom dietary fiber, its degradation and metabolism in the intestine, its impact on the gut microbiota community, and the generation of short-chain fatty acids (SCFAs); this review also systematically summarizes the beneficial effects of mushroom dietary fiber on host health. Overall, this review aims to provide theoretical guidance and a fresh perspective for the prebiotic application of mushroom dietary fiber in the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Qin Dong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Ruihua Zhao
- School of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Mengke Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Baosheng Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (C.Y.); (Q.D.); (M.C.); (L.Z.); (M.Z.); (B.Z.)
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Sonets IV, Dovidchenko NV, Ulianov SV, Yarina MS, Koshechkin SI, Razin SV, Krasnopolskaya LM, Tyakht AV. Unraveling the Polysaccharide Biosynthesis Potential of Ganoderma lucidum: A Chromosome-Level Assembly Using Hi-C Sequencing. J Fungi (Basel) 2023; 9:1020. [PMID: 37888276 PMCID: PMC10608111 DOI: 10.3390/jof9101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
Ganoderma lucidum exhibits the ability to synthesize a diverse range of biologically active molecules with significant pharmaceutical potential, including xylomannan and fucogalactan, which have demonstrated antitumor activity. However, there exists considerable intra-species variability in the capacity to produce these metabolites at high concentrations, likely reflecting the high genomic diversity observed from a limited number of strains sequenced to date. We employed high-throughput shotgun sequencing to obtain the complete genome sequence of G. lucidum strain 5.1, which is distinguished by its remarkable xylomannan synthesis capabilities. Through the utilization of semi-automatic reordering based on conformation capture (Hi-C) data, we substantially enhanced the assembly process, resulting in the generation of 12 chromosome-level scaffolds with a cumulative length of 39 Mbp. By employing both de novo and homology-based approaches, we performed comprehensive annotation of the genome, thereby identifying a diverse repertoire of genes likely involved in polysaccharide biosynthesis. The genome sequence generated in this study serves as a valuable resource for elucidating the molecular mechanisms underlying the medicinal potential of Ganoderma species, discovering novel pharmaceutically valuable compounds, and elucidating the ecological mechanisms of the species. Furthermore, the chromosome contact map obtained for the first time for this species extends our understanding of 3D fungal genomics and provides insights into the functional and structural organization within the fungal kingdom.
Collapse
Affiliation(s)
- Ignat V. Sonets
- Institute of Gene Biology, 34/5 Vavilova Street, 119334 Moscow, Russia; (I.V.S.); (S.V.U.); (S.V.R.); (A.V.T.)
| | - Nikita V. Dovidchenko
- Knomics LLC, 34 Bld. 1 Narodnogo Opolcheniya Street, 123423 Moscow, Russia; (N.V.D.); (S.I.K.)
- Institute of Protein Research, 4 Institutskaya Street, 142290 Pushchino, Russia
| | - Sergey V. Ulianov
- Institute of Gene Biology, 34/5 Vavilova Street, 119334 Moscow, Russia; (I.V.S.); (S.V.U.); (S.V.R.); (A.V.T.)
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Maria S. Yarina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia;
| | - Stanislav I. Koshechkin
- Knomics LLC, 34 Bld. 1 Narodnogo Opolcheniya Street, 123423 Moscow, Russia; (N.V.D.); (S.I.K.)
| | - Sergey V. Razin
- Institute of Gene Biology, 34/5 Vavilova Street, 119334 Moscow, Russia; (I.V.S.); (S.V.U.); (S.V.R.); (A.V.T.)
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | | | - Alexander V. Tyakht
- Institute of Gene Biology, 34/5 Vavilova Street, 119334 Moscow, Russia; (I.V.S.); (S.V.U.); (S.V.R.); (A.V.T.)
- Knomics LLC, 34 Bld. 1 Narodnogo Opolcheniya Street, 123423 Moscow, Russia; (N.V.D.); (S.I.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, 34/5 Vavilova Street, 119334 Moscow, Russia
| |
Collapse
|
45
|
Chen Z, Xiao G. One-Pot Assembly of the Highly Branched Tetradecasaccharide from Ganoderma lucidum Glycan GLSWA-1 with Immune-Enhancing Activities. Org Lett 2023; 25:7395-7399. [PMID: 37787430 DOI: 10.1021/acs.orglett.3c02898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The highly branched tetradecasaccharide repeating unit and shorter sequences of GLSWA-1 with immune-enhancing activities from Ganoderma lucidum have been prepared via a one-pot glycan assembly strategy. The synthetic route features (1) orthogonal one-pot glycosylation on the basis of PVB glycosylation to streamline glycan synthesis avoiding such issues as aglycone transfer, (2) one-pot assembly of oligosaccharides with up to four different glycosyl linkages, and (3) modular and convergent [4+5+5] one-pot assembly of the highly branched tetradecasaccharide.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650091, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
46
|
Yang Y, Zhu X, Liu Y, Xu N, Kong W, Ai X, Zhang H. Effect of Agaricus bisporus Polysaccharides (ABPs) on anti-CCV immune response of channel catfish. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109051. [PMID: 37689228 DOI: 10.1016/j.fsi.2023.109051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Herein, the effects of Agaricus bisporus Polysaccharides (ABPs) on anti-channel catfish virus (CCV) infections to promote their application in channel catfish culture were explored. Transcriptome and metabolome analyses were conducted on the spleen of a CCV-infected channel catfish model fed with or without ABPs. CCV infections upregulated many immune and apoptosis-related genes, such as IL-6, IFN-α3, IFN-γ1, IL-26, Casp3, Casp8, and IL-10, and activated specific immunity mediated by B cells. However, after adding ABPs, the expression of inflammation-related genes decreased in CCV-infected channel catfish, and the inflammatory inhibitors NLRC3 were upregulated. Meanwhile, the expression of apoptosis-related genes was reduced, indicating that ABPs can more rapidly and strongly enhance the immunity of channel catfish to resist viral infection. Moreover, the metabonomic analysis showed that channel catfish had a high energy requirement during CCV infection, and ABPs could enhance the immune function of channel catfish. In conclusion, ABPs can enhance the antiviral ability of channel catfish by enhancing immune response and regulating inflammation. Thus, these findings provided new insights into the antiviral response effects of ABPs, which might support their application in aquaculture.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
47
|
Luz DA, Pinheiro AM, Fontes-Júnior EA, Maia CSF. Neuroprotective, neurogenic, and anticholinergic evidence of Ganoderma lucidum cognitive effects: Crucial knowledge is still lacking. Med Res Rev 2023; 43:1504-1536. [PMID: 37052237 DOI: 10.1002/med.21957] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Ganoderma lucidum is a mushroom that has been widely used for centuries in Asian countries for its antiaging properties. It is popularly known as "Ling Zhi," "Reishi," and "Youngzhi," and because of its benefits, it is known as the "immortality mushroom." Pharmacological assays have revealed that G. lucidum ameliorates cognitive impairments through inhibition of β-amyloid and neurofibrillary tangle formation, antioxidant effect, reduction of inflammatory cytokine release and apoptosis, genic expression modulation, among other activities. Chemical investigations on G. lucidum have revealed the presence of metabolites such as triterpenes, which are the most explored in this field, as well as flavonoids, steroids, benzofurans, and alkaloids; in the literature, these have also been reported to have mnemonic activity. These properties of the mushroom make it a potential source of new drugs to prevent or reverse memory disorders, as actual medications are able to only alleviate some symptoms but are unable to stop the progress of cognitive impairments, with no impact on social, familiar, and personal relevance. In this review, we discuss the cognitive findings of G. lucidum reported in the literature, converging the proposed mechanisms through the several pathways that underlie memory and cognition processes. In addition, we highlight the gaps that deserve particular attention to support future studies.
Collapse
Affiliation(s)
- Diandra A Luz
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| | - Alana M Pinheiro
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| | - Enéas A Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| | - Cristiane S F Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Science, Faculty of Pharmacy, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
48
|
Zheng J, Shang M, Dai G, Dong J, Wang Y, Duan B. Bioactive polysaccharides from Momordica charantia as functional ingredients: a review of their extraction, bioactivities, structural-activity relationships, and application prospects. Crit Rev Food Sci Nutr 2023:1-24. [PMID: 37599638 DOI: 10.1080/10408398.2023.2248246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Momordica charantia L. is a well-known medicine and food homology plant with high pharmaceutical and nutritional values. Polysaccharides are carbohydrate polymers connected by glycosidic bonds, one of the key functional ingredients of M. charantia. Recently, M. charantia polysaccharides (MCPs) have attracted much attention from industries and researchers due to their anti-oxidant, anti-tumor, anti-diabetes, anti-bacteria, immunomodulatory, neuroprotection, and organ protection activities. However, the development and utilization of MCPs-based functional foods and medicines were hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of MCPs. Herein, we provide an overview of the extraction, purification, structural characterization, bioactivities, and mechanisms of MCPs. Besides, SAR, toxicities, application, and influences of the modification associated with bioactivities are spotlighted, and the potential development and future study direction are scrutinized. This review provides knowledge and research underpinnings for the further research and application of MCPs as therapeutic agents and functional food additives.
Collapse
Affiliation(s)
- Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Mingyue Shang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jingjing Dong
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yaping Wang
- College of Pharmaceutical Science, Dali University, Dali, China
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
49
|
Zhang H, Zhang J, Liu Y, Tang C. Recent Advances in the Preparation, Structure, and Biological Activities of β-Glucan from Ganoderma Species: A Review. Foods 2023; 12:2975. [PMID: 37569244 PMCID: PMC10419088 DOI: 10.3390/foods12152975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Ganoderma has served as a valuable food supplement and medicinal ingredient with outstanding active compounds that are essential for human protection against chronic diseases. Modern pharmacology studies have proven that Ganoderma β-d-glucan exhibits versatile biological activities, such as immunomodulatory, antitumor, antioxidant, and antiviral properties, as well as gut microbiota regulation. As a promising polysaccharide, β-d-glucan is widely used in the prevention and treatment of various diseases. In recent years, the extraction, purification, structural characterization, and pharmacological activities of polysaccharides from the fruiting bodies, mycelia, spores, and fermentation broth of Ganoderma species have received wide attention from scholars globally. Unfortunately, comprehensive studies on the preparation, structure and bioactivity, toxicology, and utilization of β-d-glucans from Ganoderma species still need to be further explored, which may result in limitations in future sustainable industrial applications of β-d-glucans. Thus, this review summarizes the research progress in recent years on the physicochemical properties, structural characteristics, and bioactivity mechanisms of Ganoderma β-d-glucan, as well as its toxicological assessment and applications. This review is intended to provide a theoretical basis and reference for the development and application of β-d-glucan in the fields of pharmaceuticals, functional foods, and cosmetics.
Collapse
Affiliation(s)
| | | | | | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China; (H.Z.); (J.Z.); (Y.L.)
| |
Collapse
|
50
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|