1
|
Baumgardt SL, Fang J, Fu X, Liu Y, Xia Z, Zhao M, Chen L, Mishra R, Gunasekaran M, Saha P, Forbess JM, Bosnjak ZJ, Camara AKS, Kersten JR, Thorp EB, Kaushal S, Ge ZD. Genetic deletion or pharmacologic inhibition of histone deacetylase 6 protects the heart against ischaemia/reperfusion injury by limiting tumour necrosis factor alpha-induced mitochondrial injury in experimental diabetes. Cardiovasc Res 2024; 120:1456-1471. [PMID: 39001869 PMCID: PMC11472425 DOI: 10.1093/cvr/cvae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/01/2023] [Accepted: 04/06/2024] [Indexed: 07/15/2024] Open
Abstract
AIMS The histone deacetylase 6 (HDAC6) inhibitor, tubastatin A (TubA), reduces myocardial ischaemia/reperfusion injury (MIRI) in type 1 diabetic rats. It remains unclear whether HDAC6 regulates MIRI in type 2 diabetic animals. Diabetes augments the activity of HDAC6 and the generation of tumour necrosis factor alpha (TNF-α) and impairs mitochondrial complex I (mCI). Here, we examined how HDAC6 regulates TNF-α production, mCI activity, mitochondria, and cardiac function in type 1 and type 2 diabetic mice undergoing MIRI. METHODS AND RESULTS HDAC6 knockout, streptozotocin-induced type 1 diabetic, and obese type 2 diabetic db/db mice underwent MIRI in vivo or ex vivo in a Langendorff-perfused system. We found that MIRI and diabetes additively augmented myocardial HDAC6 activity and generation of TNF-α, along with cardiac mitochondrial fission, low bioactivity of mCI, and low production of adenosine triphosphate. Importantly, genetic disruption of HDAC6 or TubA decreased TNF-α levels, mitochondrial fission, and myocardial mitochondrial nicotinamide adenine dinucleotide levels in ischaemic/reperfused diabetic mice, concomitant with augmented mCI activity, decreased infarct size, and improved cardiac function. Moreover, HDAC6 knockout or TubA treatment decreased left ventricular dilation and improved cardiac systolic function 28 days after MIRI. H9c2 cardiomyocytes with and without HDAC6 knockdown were subjected to hypoxia/reoxygenation injury in the presence of high glucose. Hypoxia/reoxygenation augmented HDAC6 activity and TNF-α levels and decreased mCI activity. These negative effects were blocked by HDAC6 knockdown. CONCLUSION HDAC6 is an essential negative regulator of MIRI in diabetes. Genetic deletion or pharmacologic inhibition of HDAC6 protects the heart from MIRI by limiting TNF-α-induced mitochondrial injury in experimental diabetes.
Collapse
MESH Headings
- Animals
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/genetics
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/drug effects
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/drug therapy
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Histone Deacetylase 6/metabolism
- Histone Deacetylase 6/antagonists & inhibitors
- Histone Deacetylase 6/genetics
- Histone Deacetylase Inhibitors/pharmacology
- Mice, Knockout
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Mice, Inbred C57BL
- Hydroxamic Acids/pharmacology
- Mitochondrial Dynamics/drug effects
- Male
- Electron Transport Complex I/metabolism
- Electron Transport Complex I/genetics
- Isolated Heart Preparation
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Signal Transduction
- Mice
- Myocardial Infarction/enzymology
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Myocardial Infarction/prevention & control
- Myocardial Infarction/genetics
- Myocardial Infarction/physiopathology
- Ventricular Function, Left/drug effects
- Indoles
Collapse
Affiliation(s)
- Shelley L Baumgardt
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Xuebin Fu
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Yanan Liu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, The People’s Republic of China
| | - Ming Zhao
- The Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
| | - Ling Chen
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Rachana Mishra
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Muthukumar Gunasekaran
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Progyaparamita Saha
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Joseph M Forbess
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Judy R Kersten
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
| | - Sunjay Kaushal
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53206, USA
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 303 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Koo HY, Cho IY, Han K, Lee KN, Cho MH, Jin SM, Cho YH, Lee JH, Park YJ, Shin DW. Editor's Choice - Glycaemic Status and Risk of Abdominal Aortic Aneurysm: A Nationwide Cohort Study of Four Million Adults using Korean National Health Screening Data. Eur J Vasc Endovasc Surg 2024; 68:479-487. [PMID: 38844129 DOI: 10.1016/j.ejvs.2024.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE This retrospective cohort study aimed to confirm the previously reported inverse association between diabetes mellitus (DM) and abdominal aortic aneurysm (AAA) using large population based data. It also investigated the associations between AAA and impaired fasting glucose (IFG) and new onset DM (not yet treated). METHODS A representative dataset was obtained from the Korean National Health Insurance Service. Participants who were aged ≥ 50 years and received a national health examination in 2009 were included and followed until 31 December 2019. Glycaemic status was defined based on fasting plasma glucose level and the relevant diagnostic codes. AAA was ascertained using medical facility use records with relevant diagnostic codes or aneurysm repair surgery. A Cox proportional hazards model was used to examine the association between glycaemic status and AAA, with adjustment for confounders. Additionally, the interactions between glycaemic status and subgroups based on baseline characteristics were examined. RESULTS The study population comprised 4 162 640 participants. Participants with IFG or DM were significantly more likely to be male, older, and have comorbidities compared with normoglycaemic participants at baseline. The incidence of AAA was lower in participants with IFG or DM compared with normoglycaemic participants. The AAA risk was lower in patients with DM than in patients with IFG, and decreased linearly according to glycaemic status: the adjusted hazard ratio was 0.88 (95% confidence interval [CI] 0.85 - 0.91) for IFG, 0.72 (95% CI 0.67 - 0.78) for newly diagnosed DM, 0.65 (95% CI 0.61 - 0.69) for DM duration < 5 years, and 0.47 (95% CI 0.44 - 0.51) for DM duration ≥ 5 years compared with the normoglycaemia group. Both IFG and DM were related to reduced AAA risk in all subgroups, suggesting an independent association. CONCLUSION Both IFG and DM, even when not treated with antihyperglycaemic medication, were associated with a lower incidence of AAA. The AAA risk decreased linearly according to DM duration.
Collapse
Affiliation(s)
- Hye Yeon Koo
- Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Family Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Young Cho
- Department of Family Medicine & Supportive Care Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Kyu Na Lee
- Department of Biomedicine and Health Science, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi Hee Cho
- Samsung C&T Medical Clinic, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology, Department of Medicine, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yang Hyun Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Thoracic and Cardiovascular Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yang-Jin Park
- Division of Vascular Surgery, Department of Surgery, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Wook Shin
- Department of Family Medicine & Supportive Care Centre, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation/Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Xian J, Du R, Yuan H, Li J, Pei Q, Hao Y, Zeng X, Wang J, Ye T. The application of predictive value of diabetes autoantibody profile combined with clinical data and routine laboratory indexes in the classification of diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1349117. [PMID: 39247917 PMCID: PMC11377899 DOI: 10.3389/fendo.2024.1349117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Objective Currently, distinct use of clinical data, routine laboratory indicators or the detection of diabetic autoantibodies in the diagnosis and management of diabetes mellitus is limited. Hence, this study was aimed to screen the indicators, and to establish and validate a multifactorial logistic regression model nomogram for the non-invasive differential prediction of type 1 diabetes mellitus. Methods Clinical data, routine laboratory indicators, and diabetes autoantibody profiles of diabetic patients admitted between September 2018 and December 2022 were retrospectively analyzed. Logistic regression was used to select the independent influencing factors, and a prediction nomogram based on the multiple logistic regression model was constructed using these independent factors. Moreover, the predictive accuracy and clinical application value of the nomogram were evaluated using Receiver Operating Characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and clinical impact curves (CIC). Results A total of 522 diabetic patients were included in this study. These patients were randomized into training and validation sets in a 7:3 ratio. The predictors screened included age, prealbumin (PA), high-density lipoprotein cholesterol (HDL-C), islet cells autoantibodies (ICA), islets antigen 2 autoantibodies (IA-2A), glutamic acid decarboxylase antibody (GADA), and C-peptide levels. Based on these factors, a multivariate model nomogram was constructed, which had an Area Under Curve (AUC) of 0.966 and 0.961 for the training set and validation set, respectively. Subsequently, the calibration curves demonstrated a strong accuracy of the graph; the DCA and CIC results indicated that the graph could be used as a non-invasive valid predictive tool for the differential diagnosis of type 1 diabetes mellitus, clinically. Conclusion The established prediction model combining patient's age, PA, HDL-C, ICA, IA-2A, GADA, and C-peptide can assist in differential diagnosis of type 1 diabetes mellitus and type 2 diabetes mellitus and provides a basis for the clinical as well as therapeutic management of the disease.
Collapse
Affiliation(s)
- Jiawen Xian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Rongrong Du
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Hui Yuan
- School of Basic Medical Sciences and School of Stomatology, Mudanjiang Medical University, Heilongjiang, China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Qin Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Yongjie Hao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xi Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jingying Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
4
|
Moore MK, Jones GT, McCormick S, Williams MJA, Coffey S. Association between lipoprotein(a), LPA genetic risk score, aortic valve disease, and subsequent major adverse cardiovascular events. Eur J Prev Cardiol 2024; 31:1303-1311. [PMID: 38593219 DOI: 10.1093/eurjpc/zwae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
AIMS Cohort studies have demonstrated associations between calcific aortic valve disease (CAVD) and Lp(a). As Lp(a) is almost entirely genetically determined, in this study, we aim to determine whether Lp(a), when predicted from genetic data, is associated with CAVD and major adverse cardiovascular events (MACEs). METHODS AND RESULTS Patients undergoing coronary angiography between January 2012 and May 2013 were invited to participate in the study. Of 752 analysable participants, 446 had their Lp(a) measured and 703 had a calculable LPA genetic risk score (GRS). The primary outcomes were the presence of CAVD at baseline and MACE over a 7-year follow-up. The GRS explained 45% of variation in Lp(a). After adjustment for cardiac risk factors and coronary artery disease (CAD), the odds of CAVD increased with increasing Lp(a) [odds ratio (OR) 1.039 per 10-unit increase, 95% confidence interval (CI) 1.022-1.057, P < 0.001] and GRS (OR 1.054 per 10-unit increase, 95% CI 1.024-1.086; P < 0.001). Lipoprotein(a) and the GRS as continuous variables were not associated with subsequent MACEs. A dichotomized GRS (>54) was associated with MACE, but this relationship became non-significant when CAD classification was added into the model (OR 1.333, 95% CI 0.927-1.912; P = 0.12). CONCLUSION An LPA GRS can explain 45% of variation in Lp(a) levels, and both Lp(a) and the GRS are associated with CAVD. An elevated GRS is associated with future cardiac events in a secondary risk setting, but, if the CAD status is known, it does not provide additional prognostic information.
Collapse
Affiliation(s)
- Matthew K Moore
- Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, 201 Great King Street, Dunedin 9016, New Zealand
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, 201 Great King Street, Dunedin 9016, New Zealand
| | - Sally McCormick
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9016, New Zealand
| | - Michael J A Williams
- Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, 201 Great King Street, Dunedin 9016, New Zealand
- Department of Cardiology, Dunedin Hospital, Te Whatu Ora/Health New Zealand, 201 Great King Street, Dunedin 9016, New Zealand
| | - Sean Coffey
- Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, 201 Great King Street, Dunedin 9016, New Zealand
- Department of Cardiology, Dunedin Hospital, Te Whatu Ora/Health New Zealand, 201 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Tengbom J, Kontidou E, Collado A, Yang J, Alvarsson M, Brinck J, Rössner S, Zhou Z, Pernow J, Mahdi A. Differences in endothelial function between patients with Type 1 and Type 2 diabetes: effects of red blood cells and arginase. Clin Sci (Lond) 2024; 138:975-985. [PMID: 39037711 DOI: 10.1042/cs20240447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
The mechanisms underlying endothelial dysfunction in Type 1 and Type 2 diabetes (T1DM and T2DM) are unresolved. The red blood cells (RBCs) with increased arginase activity induce endothelial dysfunction in T2DM, but the implications of RBCs and the role of arginase inhibition in T1DM are unexplored. We aimed to investigate the differences in endothelial function in patients with T1DM and T2DM, with focus on RBCs and arginase. Thirteen patients with T1DM and twenty-six patients with T2DM, matched for HbA1c and sex were included. In vivo endothelium-dependent and -independent vasodilation (EDV and EIDV) were assessed by venous occlusion plethysmography before and after administration of an arginase inhibitor. RBCs were co-incubated with rat aortic segments for 18h followed by evaluation of endothelium-dependent (EDR) and -independent relaxation (EIDR) in isolated organ chambers. In vivo EDV, but not EIDV, was significantly impaired in patients with T2DM compared with patients with T1DM. Arginase inhibition resulted in improved EDV only in T2DM. RBCs from patients with T2DM induced impaired EDR but not EIDR in isolated aortic segments, whereas RBCs from patients with T1DM did not affect EDR nor EIDR. The present study demonstrates markedly impaired EDV in patients with T2DM in comparison with T1DM. In addition, it highlights the divergent roles of RBCs and arginase in mediating endothelial dysfunction in T1DM and T2DM. While endothelial dysfunction is mediated via RBCs and arginase in T2DM, these phenomena are not prominent in T1DM thereby indicating distinct differences in underlying mechanisms.
Collapse
Affiliation(s)
- John Tengbom
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eftychia Kontidou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Alvarsson
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Brinck
- Division of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sophia Rössner
- Division of Endocrinology, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Shen R, Pan C, Yi G, Li Z, Dong C, Yu J, Zhang J, Dong Q, Yu K, Zeng Q. Type 2 Diabetes, Circulating Metabolites, and Calcific Aortic Valve Stenosis: A Mendelian Randomization Study. Metabolites 2024; 14:385. [PMID: 39057708 PMCID: PMC11278608 DOI: 10.3390/metabo14070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Epidemiological studies have shown an association between type 2 diabetes (T2D) and calcific aortic valve stenosis (CAVS), but the potential causal relationship and underlying mechanisms remain unclear. Therefore, we conducted a two-sample and two-step Mendelian randomization (MR) analysis to evaluate the association of T2D with CAVS and the mediating effects of circulating metabolites and blood pressure using genome-wide association study (GWAS) summary statistics. The inverse variance weighted (IVW) method was used for the primary MR analysis, and comprehensive sensitivity analyses were performed to validate the robustness of the results. Our results showed that genetically predicted T2D was associated with increased CAVS risk (OR 1.153, 95% CI 1.096-1.214, p < 0.001), and this association persisted even after adjusting for adiposity traits in multivariable MR analysis. Furthermore, the two-step MR analysis identified 69 of 251 candidate mediators that partially mediated the effect of T2D on CAVS, including total branched-chain amino acids (proportion mediated: 23.29%), valine (17.78%), tyrosine (9.68%), systolic blood pressure (8.72%), the triglyceride group (6.07-11.99%), the fatty acid group (4.78-12.82%), and the cholesterol group (3.64-11.56%). This MR study elucidated the causal impact of T2D on CAVS risk independently of adiposity and identified potential mediators in this association pathways. Our findings shed light on the pathogenesis of CAVS and suggest additional targets for the prevention and intervention of CAVS attributed to T2D.
Collapse
Affiliation(s)
- Rui Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guiwen Yi
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiangmei Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Larsson SC, Chen J, Gill D, Burgess S, Yuan S. Risk Factors for Intracerebral Hemorrhage: Genome-Wide Association Study and Mendelian Randomization Analyses. Stroke 2024; 55:1582-1591. [PMID: 38716647 PMCID: PMC11122740 DOI: 10.1161/strokeaha.124.046249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The genetic and nongenetic causes of intracerebral hemorrhage (ICH) remain obscure. The present study aimed to uncover the genetic and modifiable risk factors for ICH. METHODS We meta-analyzed genome-wide association study data from 3 European biobanks, involving 7605 ICH cases and 711 818 noncases, to identify the genomic loci linked to ICH. To uncover the potential causal associations of cardiometabolic and lifestyle factors with ICH, we performed Mendelian randomization analyses using genetic instruments identified in previous genome-wide association studies of the exposures and ICH data from the present genome-wide association study meta-analysis. We performed multivariable Mendelian randomization analyses to examine the independent associations of the identified risk factors with ICH and evaluate potential mediating pathways. RESULTS We identified 1 ICH risk locus, located at the APOE genomic region. The lead variant in this locus was rs429358 (chr19:45411941), which was associated with an odds ratio of ICH of 1.17 (95% CI, 1.11-1.20; P=6.01×10-11) per C allele. Genetically predicted higher levels of body mass index, visceral adiposity, diastolic blood pressure, systolic blood pressure, and lifetime smoking index, as well as genetic liability to type 2 diabetes, were associated with higher odds of ICH after multiple testing corrections. Additionally, a genetic increase in waist-to-hip ratio and liability to smoking initiation were consistently associated with ICH, albeit at the nominal significance level (P<0.05). Multivariable Mendelian randomization analysis showed that the association between body mass index and ICH was attenuated on adjustment for type 2 diabetes and further that type 2 diabetes may be a mediator of the body mass index-ICH relationship. CONCLUSIONS Our findings indicate that the APOE locus contributes to ICH genetic susceptibility in European populations. Excess adiposity, elevated blood pressure, type 2 diabetes, and smoking were identified as the chief modifiable cardiometabolic and lifestyle factors for ICH.
Collapse
Affiliation(s)
- Susanna C. Larsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Sweden (S.C.L.)
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (S.C.L., S.Y.)
| | - Jie Chen
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (J.C.)
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom (D.G.)
| | - Stephen Burgess
- Department of Public Health and Primary Care (S.B.), University of Cambridge, United Kingdom
- MRC Biostatistics Unit (S.B.), University of Cambridge, United Kingdom
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (S.C.L., S.Y.)
| |
Collapse
|
8
|
Ruan Z, Zhao J. Differential ischemic stroke risk linked to novel subtypes of type 2 diabetes: insights from a Mendelian randomization analysis. Endocrine 2024; 84:980-988. [PMID: 38691263 DOI: 10.1007/s12020-024-03842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE This study employs a two-sample Mendelian randomization (MR) approach to investigate the variation in ischemic stroke risk across novel subtypes of adult-onset type 2 diabetes. METHODS Leveraging pooled genome-wide association study (GWAS) data from the Swedish ANDIS cohort, we explored the association of four newly identified type 2 diabetes subtypes-severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes (MARD)-with ischemic stroke risk. The outcome data for ischemic stroke and its three subtypes (large artery, cardioembolic, and small vessel stroke) were sourced from the MEGASTROKE Consortium. Our analysis applied multiple MR methods, focusing on the inverse-variance weighted (IVW) technique, complemented by thorough sensitivity analyses to examine heterogeneity and potential horizontal pleiotropy. RESULTS Our findings reveal a significant causal relationship between the SIDD subtype and small vessel stroke (OR = 1.06, 95% CI: 1.01-1.11, p = 0.025), while no causal associations were observed for SIRD with any stroke subtype. MOD was causally linked to small vessel stroke (OR = 1.07, 95% CI: 1.02-1.12, p = 0.004) and large artery stroke (OR = 1.07, 95% CI: 1.01-1.13, p = 0.015). Similarly, MARD showed a causal relationship with small vessel stroke (OR = 1.09, 95% CI: 1.03-1.16, p = 0.006) and overall ischemic stroke risk (OR = 1.04, 95% CI: 1.01-1.08, p = 0.010). CONCLUSIONS Our study highlights distinct causal links between specific type 2 diabetes subtypes and ischemic stroke risks, emphasizing the importance of subtype-specific prevention and treatment strategies.
Collapse
Affiliation(s)
- Zhichao Ruan
- Department of Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinxi Zhao
- Department of Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
9
|
Zabirnyk A, Evensen D, Kvitting JPE, Kaljusto ML, Stensløkken KO, Vaage J. Hyperglycemia-simulating environment attenuated experimentally induced calcification in cultured human aortic valve interstitial cells. SCAND CARDIOVASC J 2024; 58:2353070. [PMID: 38757904 DOI: 10.1080/14017431.2024.2353070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Objectives: The role of diabetes mellitus as a risk factor for the development of calcific aortic valve disease has not been fully clarified. Aortic valve interstitial cells (VICs) have been suggested to be crucial for calcification of the valve. Induced calcification in cultured VICs is a good in vitro model for aortic valve calcification. The purpose of this study was to investigate whether increased glucose levels increase experimentally induced calcification in cultured human VICs. Design: VICs were isolated from explanted calcified aortic valves after valve replacement. Osteogenic medium induced calcification of cultured VICs at different glucose levels (5, 15, and 25 mM). Calcium deposits were visualized using Alizarin Red staining and measured spectrophotometrically. Results: The higher the glucose concentration, the lower the level of calcification. High glucose (25 mM) reduced calcification by 52% compared with calcification at a physiological (5 mM) glucose concentration (correlation and regression analysis: r = -0.55, p = .025 with increased concentration of glucose). Conclusions: In vitro hyperglycemia-like conditions attenuated calcification in VICs. High glucose levels may trigger a series of events that secondarily stimulate calcification of VICs in vivo.
Collapse
Affiliation(s)
- Arsenii Zabirnyk
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital Ullevål, Oslo, Norway
| | - Daria Evensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital Ullevål, Oslo, Norway
| | - John-Peder Escobar Kvitting
- Department of Cardiothoracic Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mari-Liis Kaljusto
- Department of Cardiothoracic Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kåre-Olav Stensløkken
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Rawshani A, Eliasson B, Boren J, Sattar N, Bhatt D, El-Khalili L, Nordanstig J, Avdic T, Beckman JA, Gerstein HC, McGuire DK, Omerovic E, Rawshani A. Non-coronary peripheral arterial complications in people with type 2 diabetes: a Swedish retrospective cohort study. THE LANCET REGIONAL HEALTH. EUROPE 2024; 39:100888. [PMID: 38803635 PMCID: PMC11129337 DOI: 10.1016/j.lanepe.2024.100888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 05/29/2024]
Abstract
Background Few studies have explored long-term trends and risk factors for peripheral arterial complications in type 2 diabetes compared to the general population. Our research focuses on identifying optimal risk factors, their significance, risk associated with multifactorial risk factor control, and trends for these complications in diabetic patients versus general controls. Methods This study included persons with type 2 diabetes mellitus entered into the Swedish National Diabetes Register 2001-2019 and controls matched for age-, sex- and county of residence. Outcomes comprised of extracranial large artery disease, aortic aneurysm, aortic dissection, lower extremity arterial disease and diabetes foot disease. Standardized incidence rates and Cox regression were used for analyses. Findings The study comprises 655,250 persons with type 2 diabetes mellitus; average age 64.2; 43.8% women. Among persons with type 2 diabetes mellitus, the incidence rates per 100,000 person years for each non-coronary peripheral arterial complication event changed between 2001 and 2019 as follows: extracranial large artery disease 170.0-84.9; aortic aneurysm 40.6-69.2; aortic dissection 9.3 to 5.6; lower extremity artery disease from 338.8 to 190.8; and diabetic foot disease from 309.8 to 226.8. Baseline hemoglobin A1c (HbA1c), systolic blood pressure (SBP), smoking status and lipid levels were independently associated with all outcomes in the type 2 diabetes mellitus cohort. Within the cohort with type 2 diabetes mellitus, the risk for extracranial large artery disease and lower extremity artery disease increased in a stepwise fashion for each risk factor not within target. Excess risk for non-coronary peripheral arterial complications in the entire cohort for persons with type 2 diabetes mellitus, compared to matched controls, were as follows: extracranial large artery disease adjusted hazard ratio (HR) 1.69 (95% confidence interval (CI), 1.65-1.73), aortic aneurysm HR 0.89 (95% CI, 0.87-0.92), aortic dissection HR 0.51 (95% CI, 0.46-0.57) and lower extremity artery disease HR 2.59 (95% CI, 2.55-2.64). Interpretation The incidence of non-coronary peripheral arterial complications has declined significantly among persons with type 2 diabetes mellitus, with the exception of aortic aneurysm. HbA1c, smoking and blood pressure demonstrated greatest relative contribution for outcomes and lower levels of cardiometabolic risk factors are associated with reduced relative risk of outcomes. Funding Swedish Governmental and the County support of research and education of doctors, the Swedish Heart-Lung Foundation and Åke-Wibergs grant.
Collapse
Affiliation(s)
- Araz Rawshani
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Sweden
- Dept of Medicine, Sahlgrenska University Hospital, Sweden
| | - Björn Eliasson
- Dept of Medicine, Sahlgrenska University Hospital, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Sweden
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, Sweden
| | - Deepak Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linn El-Khalili
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - Joakim Nordanstig
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
- Department of Vascular Surgery at the Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tarik Avdic
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
- Dept of Medicine, Sahlgrenska University Hospital, Sweden
| | - Joshua A. Beckman
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hertzel C. Gerstein
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Darren K. McGuire
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Parkland Health and Hospital System, Dallas, TX, USA
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Sweden
| | - Aidin Rawshani
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Sweden
- Dept of Medicine, Sahlgrenska University Hospital, Sweden
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden
| |
Collapse
|
11
|
Lu Q, Lv J, Ye Y, Li Z, Wang W, Zhang B, Zhao Q, Zhao Z, Zhang H, Liu Q, Wang B, Yu Z, Guo S, Duan Z, Zhao Y, Gao R, Xu H, Wu Y. Prevalence and impact of diabetes in patients with valvular heart disease. iScience 2024; 27:109084. [PMID: 38375234 PMCID: PMC10875155 DOI: 10.1016/j.isci.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024] Open
Abstract
This study aimed to investigate the prevalence of diabetes in valvular heart disease (VHD), as well as the relationship of diabetes with severity of valvular lesions and clinical outcome. A total of 11,862 patients with significant (≥moderate) VHD from the China Valvular Heart Disease study were included in the analysis. The primary outcome was the composite of all-cause death, hospitalization for heart failure, and myocardial infarction during two-year follow-up. The prevalence of diabetes was 14.5% (1,721/11,862) in VHD. After adjusting for patients' demographics, diabetes was associated with a significantly lower risk of severe valvular lesion in aortic regurgitation and mitral regurgitation (MR). In multivariable analysis, diabetes was identified as an independent predictor of two-year outcome in patients with MR (hazard ratio: 1.345, 95% confidence interval: 1.069-1.692, p = 0.011). More efforts should be made to enhance our understanding and improve outcomes of concomitant VHD and diabetes.
Collapse
Affiliation(s)
- Qianhong Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Junxing Lv
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yunqing Ye
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhe Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Weiwei Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Bin Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qinghao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhenyan Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Haitong Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qingrong Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Bincheng Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zikai Yu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shuai Guo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhenya Duan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yanyan Zhao
- Medical Research & Biometrics Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Haiyan Xu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yongjian Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - for the CHINA-VHD collaborators
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Medical Research & Biometrics Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
12
|
Dai L, Zuo Y, Lv Y, Zeng H, Chen L. Diabetes status, genetic susceptibility, and incident arrhythmias: A prospective cohort study of 457,151 participants. Diabetes Metab Syndr 2024; 18:102971. [PMID: 38458077 DOI: 10.1016/j.dsx.2024.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
AIMS The association of diabetes onset age and duration with incident arrhythmias remains unclear. This study evaluates the association of diabetes onset age and duration with incident arrhythmias and assesses modifications by the genetic predisposition to atrial fibrillation (AF). METHODS We included 457,151 participants from the UK Biobank study. Multivariable Cox regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) were used for the association between diabetes status, genetic predisposition, and risk of incident arrhythmias. The polygenic risk score (PRS) for AF comprised 142 single-nucleotide variants. RESULTS Over 12 years of follow-up, we documented 23,518 AF, 9079 bradyarrhythmia, 9280 conduction system diseases, 3358 supraventricular arrhythmias, and 3095 ventricular arrhythmias. Compared with non-diabetes, the risks of AF increased by 19%, 25%, and 36% for those with diabetes durations <5, 5-9, and ≥10 years, respectively. After multivariate adjustment, with the increase in diabetes onset age, the HRs of outcomes were gradually attenuated. The multivariable-adjusted HRs (95% CI) of diabetes for AF were 1.46 (1.24-1.71) in early middle age (<55 years), 1.21 (1.12-1.30) in late middle age (55-64 years), and 1.15 (1.06-1.24) in the elderly population (≥65 years). A significant interaction between diabetes status and AF-PRS for incident AF was observed (P for interaction <0.001). The same trends were observed for the other arrhythmias. CONCLUSIONS Diabetes was associated with higher risks of incident arrhythmias, and younger age at onset of diabetes was significantly associated with higher risk of subsequent arrhythmias.
Collapse
Affiliation(s)
- Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
| | - Yuyue Zuo
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Lv
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China.
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Liarakos AL, Hasan N, Crabtree TSJ, Leelarathna L, Hammond P, Hussain S, Haq M, Aslam A, Gatdula E, Gibb FW, Lumb A, Bull K, Chinnasamy E, Carrieri G, Williams DM, Choudhary P, Ryder REJ, Wilmot EG. Real-world outcomes of Omnipod DASH system use in people with type 1 diabetes: Evidence from the Association of British Clinical Diabetologists (ABCD) study. Diabetes Res Clin Pract 2024; 209:111597. [PMID: 38417535 DOI: 10.1016/j.diabres.2024.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
AIMS To evaluate real-world outcomes in people with Type 1 Diabetes (PwT1D) initiated on Omnipod DASH® Insulin Management System. METHODS Anonymized clinical data were submitted to a secure web-based tool within the National Health Service network. Hemoglobin A1c (HbA1c), sensor-derived glucometrics, total daily dose of insulin (TDD), and patient-reported outcome changes between baseline and follow-up were assessed. Individuals were classified to "new-to-pump" (switched from multiple daily injections) and "established-on-pump" (switched from a tethered insulin pump) groups. RESULTS 276 individuals from 11 centers [66.7 % female; 92 % White British; median age 41 years (IQR 20-50); diabetes duration 20 years (IQR 11-31); 49.3 % within "new-to-pump" group] were included. Baseline HbA1c was 8.0 ± 1.3 % (64 ± 14 mmol/mol). At follow-up [3 years (IQR 1.5-3.2)], HbA1c reduced by 0.3 % [(3 mmol/mol); p = 0.002] across the total population, 0.4 % [(5 mmol/mol); p = 0.001] in those "new-to-pump" and remained unchanged in those "established-on-pump". TDD decreased in the "new-to-pump" cohort (baseline:44.9 ± 21.0units vs follow-up:38.1 ± 15.4units, p = 0.002). Of those asked, 141/143 (98.6 %) stated Omnipod DASH had a positive impact on quality of life. CONCLUSIONS Omnipod DASH was associated with improvements in HbA1c in PwT1D "new-to-pump" and maintained previous HbA1c levels in those "established-on-pump". User satisfaction in all groups and TDD reduction in those "new-to-pump" were reported.
Collapse
Affiliation(s)
- Alexandros L Liarakos
- Department of Diabetes and Endocrinology, University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, UK; School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Nebras Hasan
- Department of Diabetes and Endocrinology, University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, UK
| | - Thomas S J Crabtree
- Department of Diabetes and Endocrinology, University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, UK; School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Lalantha Leelarathna
- Diabetes, Endocrinology and Metabolism Center, Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Manchester, UK
| | - Peter Hammond
- Department of Diabetes and Endocrinology, Harrogate and District NHS Trust, Harrogate, UK
| | - Sufyan Hussain
- Department of Diabetes and Endocrinology, Guy's and St. Thomas' NHS Foundation Trust, London, UK; Department of Diabetes, School of Cardiovascular, Metabolic Medicine and Sciences, King's College London, London, UK
| | - Masud Haq
- Maidstone & Tunbridge Wells NHS Trust, Tunbridge Wells Hospital, Royal Tunbridge Wells, UK
| | - Aisha Aslam
- Diabetes, Endocrinology and Metabolism Center, Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Manchester, UK
| | - Erneda Gatdula
- Cardiff and Vale University Health Board, University Hospital of Llandough, Llandough, UK
| | - Fraser W Gibb
- Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK; University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Alistair Lumb
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Kirsty Bull
- Stockport Foundation Trust, Stepping Hill Hospital, Stockport, UK
| | - Eswari Chinnasamy
- Kingston Hospital NHS Foundation Trust, Kingston Hospital, Surrey, UK
| | - Giorgio Carrieri
- Somerset NHS Foundation Trust, Musgrove Park Hospital, Taunton, UK
| | - David M Williams
- Swansea Bay University Health Board, Morriston Hospital, Swansea, UK
| | - Pratik Choudhary
- Leicester Diabetes Center, University Hospitals of Leicester, Leicester, UK; Diabetes Research Center, College of Health Sciences, University of Leicester, Leicester, UK
| | - Robert E J Ryder
- Department of Diabetes and Endocrinology, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Emma G Wilmot
- Department of Diabetes and Endocrinology, University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, UK; School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
14
|
Rus M, Ardelean AI, Crisan S, Marian P, Pobirci OL, Huplea V, Judea Pusta C, Osiceanu GA, Stanis CE, Andronie-Cioara FL. Optimizing Atrial Fibrillation Care: Comparative Assessment of Anticoagulant Therapies and Risk Factors. Clin Pract 2024; 14:344-360. [PMID: 38391413 PMCID: PMC10888395 DOI: 10.3390/clinpract14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Atrial fibrillation (AF) is a common arrhythmia associated with various risk factors and significant morbidity and mortality. MATERIALS AND METHODS This article presents findings from a study involving 345 patients with permanent AF. This study examined demographics, risk factors, associated pathologies, complications, and anticoagulant therapy over the course of a year. RESULTS The results showed a slight predominance of AF in males (55%), with the highest incidence in individuals aged 75 and older (49%). Common risk factors included arterial hypertension (54%), dyslipidemia, diabetes mellitus type 2 (19.13%), and obesity (15.65%). Comorbidities such as congestive heart failure (35.6%), mitral valve regurgitation (60%), and dilated cardiomyopathy (32%) were prevalent among the patients. Major complications included congestive heart failure (32%), stroke (17%), and myocardial infarction (5%). Thromboembolic and bleeding risk assessment using CHA2DS2-VASc and HAS-BLED scores demonstrated a high thromboembolic risk in all patients. The majority of patients were receiving novel oral anticoagulants (NOACs) before admission (73%), while NOACs were also the most prescribed antithrombotic therapy at discharge (61%). CONCLUSIONS This study highlights the importance of risk factor management and appropriate anticoagulant therapy in patients with AF, to reduce complications and improve outcomes. The results support the importance of tailored therapeutic schemes, for optimal care of patients with AF.
Collapse
Affiliation(s)
- Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Simina Crisan
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Paula Marian
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Oana Lilliana Pobirci
- Department of Psycho Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Veronica Huplea
- Department of Psycho Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Claudia Judea Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Gheorghe Adrian Osiceanu
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Felicia Liana Andronie-Cioara
- Department of Psycho Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
15
|
Julián MT, Pérez-Montes de Oca A, Julve J, Alonso N. The double burden: type 1 diabetes and heart failure-a comprehensive review. Cardiovasc Diabetol 2024; 23:65. [PMID: 38347569 PMCID: PMC10863220 DOI: 10.1186/s12933-024-02136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Heart failure (HF) is increasing at an alarming rate, primary due to the rising in aging, obesity and diabetes. Notably, individuals with type 1 diabetes (T1D) face a significantly elevated risk of HF, leading to more hospitalizations and increased case fatality rates. Several risk factors contribute to HF in T1D, including poor glycemic control, female gender, smoking, hypertension, elevated BMI, and albuminuria. However, early and intensive glycemic control can mitigate the long-term risk of HF in individuals with T1D. The pathophysiology of diabetes-associated HF is complex and multifactorial, and the underlying mechanisms in T1D remain incompletely elucidated. In terms of treatment, much of the evidence comes from type 2 diabetes (T2D) populations, so applying it to T1D requires caution. Sodium-glucose cotransporter 2 inhibitors have shown benefits in HF outcomes, even in non-diabetic populations. However, most of the information about HF and the evidence from cardiovascular safety trials related to glucose lowering medications refer to T2D. Glycemic control is key, but the link between hypoglycemia and HF hospitalization risk requires further study. Glycemic variability, common in T1D, is an independent HF risk factor. Technological advances offer the potential to improve glycemic control, including glycemic variability, and may play a role in preventing HF. In summary, HF in T1D is a complex challenge with unique dimensions. This review focuses on HF in individuals with T1D, exploring its epidemiology, risk factors, pathophysiology, diagnosis and treatment, which is crucial for developing tailored prevention and management strategies for this population.
Collapse
Affiliation(s)
- María Teresa Julián
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alejandra Pérez-Montes de Oca
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Alonso
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
16
|
Mihanfar A, Akbarzadeh M, Ghazizadeh Darband S, Sadighparvar S, Majidinia M. SIRT1: a promising therapeutic target in type 2 diabetes mellitus. Arch Physiol Biochem 2024; 130:13-28. [PMID: 34379994 DOI: 10.1080/13813455.2021.1956976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
A significant increase in the worldwide incidence and prevalence of type 2 diabetic mellitus (T2DM) has elevated the need for studies on novel and effective therapeutic strategies. Sirtuin 1 (SIRT1) is an NAD + dependent protein deacetylase with a critical function in the regulation of glucose/lipid metabolism, insulin resistance, inflammation, oxidative stress, and mitochondrial function. SIRT1 is also involved in the regulation of insulin secretion from pancreatic β-cells and protecting these cells from inflammation and oxidative stress-mediated tissue damages. In this regard, major SIRT1 activators have been demonstrated to exert a beneficial impact in reversing T2DM-related complications including cardiomyopathy, nephropathy, retinopathy, and neuropathy, hence treating T2DM. Therefore, an accumulating number of recent studies have investigated the efficacy of targeting SIRT1 as a therapeutic strategy in T2DM. In this review we aimed to discuss the current understanding of the physiological and biological roles of SIRT1, then its implication in the pathogenesis of T2DM, and the therapeutic potential of SIRT1 in combating T2DM.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Akbarzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
17
|
Shantsila E, Choi EK, Lane DA, Joung B, Lip GY. Atrial fibrillation: comorbidities, lifestyle, and patient factors. THE LANCET REGIONAL HEALTH. EUROPE 2024; 37:100784. [PMID: 38362547 PMCID: PMC10866737 DOI: 10.1016/j.lanepe.2023.100784] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 02/17/2024]
Abstract
Modern anticoagulation therapy has dramatically reduced the risk of stroke and systemic thromboembolism in people with atrial fibrillation (AF). However, AF still impairs quality of life, increases the risk of stroke and heart failure, and is linked to cognitive impairment. There is also a recognition of the residual risk of thromboembolic complications despite anticoagulation. Hence, AF management is evolving towards a more comprehensive understanding of risk factors predisposing to the development of this arrhythmia, its' complications and interventions to mitigate the risk. This review summarises the recent advances in understanding of risk factors for incident AF and managing these risk factors. It includes a discussion of lifestyle, somatic, psychological, and socioeconomic risk factors. The available data call for a practice shift towards a more individualised approach considering an increasingly broader range of health and patient factors contributing to AF-related health burden. The review highlights the needs of people living with co-morbidities (especially with multimorbidity), polypharmacy and the role of the changing population demographics affecting the European region and globally.
Collapse
Affiliation(s)
- Eduard Shantsila
- Department of Primary Care and Mental Health, University of Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Brownlow Group GP Practice, Liverpool, United Kingdom
| | - Eue-Keun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Deirdre A. Lane
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg University, Denmark
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gregory Y.H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
18
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024; 149:e1-e156. [PMID: 38033089 PMCID: PMC11095842 DOI: 10.1161/cir.0000000000001193] [Citation(s) in RCA: 286] [Impact Index Per Article: 286.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anita Deswal
- ACC/AHA Joint Committee on Clinical Practice Guidelines liaison
| | | | | | | | | | - Paul L Hess
- ACC/AHA Joint Committee on Performance Measures liaison
| | | | | | | | | | - Kazuhiko Kido
- American College of Clinical Pharmacy representative
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt LL, Goldberger ZD, Gopinathannair R, Gorenek B, Hess PL, Hlatky M, Hogan G, Ibeh C, Indik JH, Kido K, Kusumoto F, Link MS, Linta KT, Marcus GM, McCarthy PM, Patel N, Patton KK, Perez MV, Piccini JP, Russo AM, Sanders P, Streur MM, Thomas KL, Times S, Tisdale JE, Valente AM, Van Wagoner DR. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2024; 83:109-279. [PMID: 38043043 PMCID: PMC11104284 DOI: 10.1016/j.jacc.2023.08.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
AIM The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Patients With Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.
Collapse
|
20
|
Panchal K, Lawson C, Chandramouli C, Lam C, Khunti K, Zaccardi F. Diabetes and risk of heart failure in people with and without cardiovascular disease: systematic review and meta-analysis. Diabetes Res Clin Pract 2024; 207:111054. [PMID: 38104900 DOI: 10.1016/j.diabres.2023.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND People with diabetes have an increased risk of heart failure (HF), compared to those without diabetes. However, no comprehensive systematic review and meta-analysis has explored whether these associations could differ in relation to prevalent cardiovascular disease (CVD). AIMS To estimate the association between diabetes and incident heart failure (HF), compared to without diabetes, in individuals with and without CVD. METHODS PubMed, Scopus, and Web of Science were searched for observational cohort studies from the earliest dates to 22nd March 2023. A random-effects model calculated the pooled relative risk (RR). RESULTS Of 11,609 articles, 31 and 6 studies reported data in people with type 2 diabetes (T2D) and type 1 diabetes (T1D) respectively. Individuals with T2D had an increased risk of HF irrespective of CVD prevalence: 1.61 (95% CI: 1.35-1.92) in those with CVD; 1.78 (1.60-1.99) without CVD; and 2.02 (1.75-2.33) with unspecified CVD prevalence. Meta-regression did not identify a significant difference comparing HF risk in T2D individuals with vs. without CVD (p = 0.232). CONCLUSION Peoplewith T2D, compared to those without diabetes, have similar increased risk of HF, regardless of CVD prevalence. Strategiesproven to lower HF risk in T2D individuals should be prioritized for those with and without CVD.
Collapse
Affiliation(s)
- Kajal Panchal
- University of Leicester, Leicester Diabetes Centre, UK.
| | - Claire Lawson
- University of Leicester, Department of Cardiovascular Sciences, UK.
| | | | | | | | | |
Collapse
|
21
|
Yoo J, Jeon J, Baek M, Song SO, Kim J. Impact of statin treatment on cardiovascular risk in patients with type 1 diabetes: a population-based cohort study. J Transl Med 2023; 21:806. [PMID: 37951886 PMCID: PMC10640735 DOI: 10.1186/s12967-023-04691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is a major complication in type 1 diabetes mellitus (T1D) patients. Previous studies have suggested that statins may be helpful for prevention of CVD in T1D, but there are limited data on the role of statins in T1D. We investigated the relationship between statin treatment and cardiovascular risk in T1D patients using a population-based cohort. METHODS We conducted a retrospective cohort study using the Korean nationwide health insurance database from January 2007 to December 2017. This study included 11,009 T1D patients aged ≥ 20 years without a prior history of CVD. The primary outcome was a composite development of stroke or myocardial infarction. Statin use during follow-up was treated as a time-varying variable. We performed a multivariable time-dependent Cox regression analysis adjusting for sex, age, type of insurance, hypertension, renal disease, and use of antiplatelets and renin-angiotensin-aldosterone system inhibitors. RESULTS During the mean follow-up of 9.9 ± 3.7 years of follow-up, 931 T1D patients (8.5%) suffered primary outcome. Statin treatment was associated with a reduced risk of the primary outcome (adjusted hazard ratio, 0.76; 95% confidence interval 0.66-0.88; p < 0.001). Statin use led to decreased risks of ischemic stroke and myocardial infarction, but was not related to hemorrhagic stroke. We also found that the risk of cardiovascular events decreased as the cumulative exposure duration of statins increased. CONCLUSIONS Statin use was associated with a lower risk of cardiovascular events in T1D patients. Further prospective studies are needed to confirm the potential role of statins in prevention of CVD in patients with T1D.
Collapse
Affiliation(s)
- Joonsang Yoo
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Jimin Jeon
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Minyoul Baek
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Sun Ok Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang, 10444, Republic of Korea.
| | - Jinkwon Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| |
Collapse
|
22
|
Varkevisser RDM, Mul D, Aanstoot HJ, Wolffenbuttel BHR, van der Klauw MM. Differences in lipid and blood pressure measurements between individuals with type 1 diabetes and the general population: a cross-sectional study. BMJ Open 2023; 13:e073690. [PMID: 37880169 PMCID: PMC10603478 DOI: 10.1136/bmjopen-2023-073690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVES Cardiovascular disease (CVD) is a precarious complication of type 1 diabetes (T1D). Alongside glycaemic control, lipid and blood pressure (BP) management are essential for the prevention of CVD. However, age-specific differences in lipid and BP between individuals with T1D and the general population are relatively unknown. DESIGN Cross-sectional study. SETTING Six diabetes outpatient clinics and individuals from the Lifelines cohort, a multigenerational cohort from the Northern Netherlands. PARTICIPANTS 2178 adults with T1D and 146 22 individuals without diabetes from the general population. PRIMARY AND SECONDARY OUTCOME MEASURES Total cholesterol, low-density lipoprotein cholesterol (LDL-cholesterol), systolic BP (SBP) and diastolic BP (DBP), stratified by age group, glycated haemoglobin category, medication use and sex. RESULTS In total, 2178 individuals with T1D and 146 822 without diabetes were included in this study. Total cholesterol and LDL-cholesterol were lower and SBP and DBP were higher in individuals with T1D in comparison to the background population. When stratified by age and medication use, total cholesterol and LDL-cholesterol were lower and SBP and DBP were higher in the T1D population. Men with T1D achieved lower LDL-cholesterol levels both with and without medication in older age groups in comparison to women. Women with T1D had up to 8 mm Hg higher SBP compared with the background population, this difference was not present in men. CONCLUSIONS Lipid and BP measurements are not comparable between individuals with T1D and the general population and are particularly unfavourable for BP in the T1D group. There are potential sex differences in the management of LDL-cholesterol and BP.
Collapse
Affiliation(s)
| | - Dick Mul
- Center for Focussed Diabetes Care and Research, Diabeter, Rotterdam, The Netherlands
| | - Henk-Jan Aanstoot
- Center for Focussed Diabetes Care and Research, Diabeter, Rotterdam, The Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Melanie M van der Klauw
- Department of Endocrinology, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Liu Z, Wang H, Yang Z, Lu Y, Zou C. Causal associations between type 1 diabetes mellitus and cardiovascular diseases: a Mendelian randomization study. Cardiovasc Diabetol 2023; 22:236. [PMID: 37659996 PMCID: PMC10475187 DOI: 10.1186/s12933-023-01974-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND The presence of type 1 diabetes mellitus (T1DM) has been demonstrated to pose an increased risk for developing cardiovascular diseases (CVDs). However, the causal relationships between T1DM and CVDs remain unclear due to the uncontrolled confounding factors and reverse causation bias of the observational studies. METHODS Summary statistics of T1DM and seven CVDs from the largest available genome-wide association studies (GWAS) of European ancestry and FinnGen biobank were extracted for the primary MR analysis, and the analysis was replicated using UK biobank (UKBB) for validation. Three complementary methods: inverse variance weighted (IVW), weighted median, and MR-Egger were used for the MR estimates. The potential pleiotropic effects were assessed by MR-Egger intercept and MR-PRESSO global test. Additionally, multivariable MR (MVMR) analysis was performed to examine whether T1DM has independent effects on CVDs with adjustment of potential confounding factors. Moreover, a two-step MR approach was used to assess the potential mediating effects of these factors on the causal effects between T1DM and CVDs. RESULTS Causal effects of T1DM on peripheral atherosclerosis (odds ratio [OR] = 1.06, 95% confidence interval [CI]: 1.02-1.10; p = 0.002)] and coronary atherosclerosis (OR = 1.03, 95% CI: 1.01-1.05; p = 0.001) were found. The results were less likely to be biased by the horizontal pleiotropic effects (both p values of MR-Egger intercept and MR-PRESSO Global test > 0.05). In the following MVMR analysis, we found the causal effects of T1DM on peripheral atherosclerosis and coronary atherosclerosis remain significant after adjusting for a series of potential confounding factors. Moreover, we found that hypertension partly mediated the causal effects of T1DM on peripheral atherosclerosis (proportion of mediation effect in total effect: 11.47%, 95% CI: 3.23-19.71%) and coronary atherosclerosis (16.84%, 95% CI: 5.35-28.33%). We didn't find significant causal relationships between T1DM and other CVDs, including heart failure (HF), coronary artery disease (CAD), atrial fibrillation (AF), myocardial infarction (MI) and stroke. For the reverse MR from CVD to T1DM, no significant causal relationships were identified. CONCLUSION This MR study provided evidence supporting the causal effect of T1DM on peripheral atherosclerosis and coronary atherosclerosis, with hypertension partly mediating this effect.
Collapse
Affiliation(s)
- Zirui Liu
- Department of Cardiology, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou City, Jiangsu Province, China
| | - Haocheng Wang
- Department of Cardiology, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou City, Jiangsu Province, China
| | - Zhengkai Yang
- Department of Cardiology, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou City, Jiangsu Province, China
| | - Yu Lu
- Department of Cardiology, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou City, Jiangsu Province, China
| | - Cao Zou
- Department of Cardiology, First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou City, Jiangsu Province, China.
| |
Collapse
|
24
|
Kvitkina T, Narres M, Claessen H, Metzendorf MI, Richter B, Icks A. Incidence of Stroke in People With Diabetes Compared to Those Without Diabetes: A Systematic Review. Exp Clin Endocrinol Diabetes 2023; 131:476-490. [PMID: 37279879 PMCID: PMC10506631 DOI: 10.1055/a-2106-4732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/24/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND One of the goals of the St. Vincent Declaration was to reduce serious complications of diabetes, including strokes. However, it remains uncertain whether this goal has been achieved. STUDY AIM To evaluate the incidence of stroke in the diabetic population and its differences regarding sex, ethnicity, age, and region, to compare the incidence rate in people with and without diabetes, and to investigate time trends. MATERIALS AND METHODS A systematic review was conducted according to the guidelines for meta-analysis of observational studies in epidemiology (the MOOSE group) and the PRISMA group guidelines. RESULTS Nineteen of the 6.470 studies retrieved were included in the analysis. The incidence of stroke in the population with diabetes ranged from 238 per 100,000 person-years in Germany in 2014 to 1191 during the 1990s in the United Kingdom. The relative risk comparing people with diabetes to those without diabetes varied between 1.0 and 2.84 for total stroke, 1.0 and 3.7 for ischemic stroke, and 0.68 and 1.6 for hemorrhagic stroke. Differences between fatal and non-fatal stroke were significant, depending on the time period and the population. We found decreasing time trends in people with diabetes and stable incidence rates of stroke over time in people without diabetes. CONCLUSION The considerable differences between results can partly be explained by differences in study designs, statistical methods, definitions of stroke, and methods used to identify patients with diabetes. The lack of evidence arising from these differences ought to be rectified by new studies.
Collapse
Affiliation(s)
- Tatjana Kvitkina
- Institute for Health Services Research and Health Economics, German
Diabetes Center, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, Centre for
Health and Society, Medical Faculty of the Heinrich-Heine University
Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg,
Germany
| | - Maria Narres
- Institute for Health Services Research and Health Economics, German
Diabetes Center, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, Centre for
Health and Society, Medical Faculty of the Heinrich-Heine University
Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg,
Germany
| | - Heiner Claessen
- Institute for Health Services Research and Health Economics, German
Diabetes Center, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, Centre for
Health and Society, Medical Faculty of the Heinrich-Heine University
Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg,
Germany
| | - Maria-Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General
Practice, Medical Faculty of the Heinrich-Heine University Düsseldorf,
Germany
| | - Bernd Richter
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General
Practice, Medical Faculty of the Heinrich-Heine University Düsseldorf,
Germany
| | - Andrea Icks
- Institute for Health Services Research and Health Economics, German
Diabetes Center, Düsseldorf, Germany
- Institute for Health Services Research and Health Economics, Centre for
Health and Society, Medical Faculty of the Heinrich-Heine University
Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg,
Germany
| |
Collapse
|
25
|
Haji M, Erqou S, Fonarow GC, Echouffo-Tcheugui JB. Type 1 diabetes and risk of heart failure: A systematic review and meta-analysis. Diabetes Res Clin Pract 2023; 202:110805. [PMID: 37356724 PMCID: PMC10530158 DOI: 10.1016/j.diabres.2023.110805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
AIM Robust data on type 1 diabetes (T1DM) and the risk of heart failure (HF) is scarce. METHODS We searched PubMed and EMBASE for relevant studies, abstracted data on HF incidence rate and adjusted relative risk (aRR) for T1DM, type 2 diabetes (T2DM) and controls, and pooled incidence rates and aRRs for HF across studies. RESULTS Four studies including 61,885 T1DM patients, 4,599,213 non-diabetic controls, and 248,021 T2DM patients (three studies) were included. The pooled average proportions of men were 56%, 54%, and 55%, for T1DM, T2DM, and controls, respectively. The corresponding pooled average participants' ages were 40, 65 and 57 years, respectively. Over a 1 to 12 years follow-up, 1378, 3993, 18,945 HF events occurred among individuals with T1DM, T2DM, and controls, yielding pooled HF incidence rates of 5.8 (95%CI: 4.1-7.6), 10.0 (95% CI: 6.1-13.9), 2.3 (95% CI: 1.5-3.2) per 1000 person-years, respectively. Compared to controls, T1DM patients had a 3-fold higher HF risk (aRR 3.4, 95% CI 2.71-4.26). The RR of HF was ∼ 5-fold higher in women (aRR: 4.9, 95% CI: 4.1-5.9) vs. 3-fold higher in men (aRR: 3.0, 95% CI: 2.2-4.0). CONCLUSIONS Individuals with T1DM had a substantially higher risk of HF compared to those without diabetes.
Collapse
Affiliation(s)
- Mohammed Haji
- Department of Medicine, Brown University, Providence, RI, USA
| | - Sebhat Erqou
- Department of Medicine, Brown University, Providence, RI, USA; Department of Medicine, Providence VA Medical Center, Providence, RI, USA
| | - Gregg C Fonarow
- Ahmanson-UCLA Cardiomyopathy Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Justin B Echouffo-Tcheugui
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, John Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Hwang IC, Kim S, Boo D, Park C, Yoo S, Yoon YE, Cho GY. Impact of glycemic control on the progression of aortic stenosis: a single-center cohort study using a common data model. BMC Endocr Disord 2023; 23:143. [PMID: 37430289 PMCID: PMC10331980 DOI: 10.1186/s12902-023-01403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a well-established risk factor for the progression of degenerative aortic stenosis (AS). However, no study has investigated the impact of glycemic control on the rate of AS progression. We aimed to assess the association between the degree of glycemic control and the AS progression, using an electronic health record-based common data model (CDM). METHODS We identified patients with mild AS (aortic valve [AV] maximal velocity [Vpeak] 2.0-3.0 m/sec) or moderate AS (Vpeak 3.0-4.0 m/sec) at baseline, and follow-up echocardiography performed at an interval of ≥ 6 months, using the CDM of a tertiary hospital database. Patients were divided into 3 groups: no DM (n = 1,027), well-controlled DM (mean glycated hemoglobin [HbA1c] < 7.0% during the study period; n = 193), and poorly controlled DM (mean HbA1c ≥ 7.0% during the study period; n = 144). The primary outcome was the AS progression rate, calculated as the annualized change in the Vpeak (△Vpeak/year). RESULTS Among the total study population (n = 1,364), the median age was 74 (IQR 65-80) years, 47% were male, the median HbA1c was 6.1% (IQR 5.6-6.9), and the median Vpeak was 2.5 m/sec (IQR 2.2-2.9). During follow-up (median 18.4 months), 16.1% of the 1,031 patients with mild AS at baseline progressed to moderate AS, and 1.8% progressed to severe AS. Among the 333 patients with moderate AS, 36.3% progressed to severe AS. The mean HbA1c level during follow-up showed a positive relationship with the AS progression rate (β = 2.620; 95% confidence interval [CI] 0.732-4.507; p = 0.007); a 1%-unit increase in HbA1c was associated with a 27% higher risk of accelerated AS progression defined as △Vpeak/year values > 0.2 m/sec/year (adjusted OR = 1.267 per 1%-unit increase in HbA1c; 95% CI 1.106-1.453; p < 0.001), and HbA1c ≥ 7.0% was significantly associated with an accelerated AS progression (adjusted odds ratio = 1.524; 95% CI 1.010-2.285; p = 0.043). This association between the degree of glycemic control and AS progression rate was observed regardless of the baseline AS severity. CONCLUSION In patients with mild to moderate AS, the presence of DM, as well as the degree of glycemic control, is significantly associated with accelerated AS progression.
Collapse
Affiliation(s)
- In-Chang Hwang
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, 82 Gumi-Ro-173-Gil, Seongnam, Gyeonggi, 13620, South Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Seok Kim
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Dachung Boo
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Changhyun Park
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Sooyoung Yoo
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Yeonyee E Yoon
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, 82 Gumi-Ro-173-Gil, Seongnam, Gyeonggi, 13620, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Goo-Yeong Cho
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, 82 Gumi-Ro-173-Gil, Seongnam, Gyeonggi, 13620, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Yeung AM, Huang J, Pandey A, Hashim IA, Kerr D, Pop-Busui R, Rhee CM, Shah VN, Bally L, Bayes-Genis A, Bee YM, Bergenstal R, Butler J, Fleming GA, Gilbert G, Greene SJ, Kosiborod MN, Leiter LA, Mankovsky B, Martens TW, Mathieu C, Mohan V, Patel KV, Peters A, Rhee EJ, Rosano GMC, Sacks DB, Sandoval Y, Seley JJ, Schnell O, Umpierrez G, Waki K, Wright EE, Wu AHB, Klonoff DC. Biomarkers for the Diagnosis of Heart Failure in People with Diabetes: A Consensus Report from Diabetes Technology Society. Prog Cardiovasc Dis 2023; 79:65-79. [PMID: 37178991 DOI: 10.1016/j.pcad.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Diabetes Technology Society assembled a panel of clinician experts in diabetology, cardiology, clinical chemistry, nephrology, and primary care to review the current evidence on biomarker screening of people with diabetes (PWD) for heart failure (HF), who are, by definition, at risk for HF (Stage A HF). This consensus report reviews features of HF in PWD from the perspectives of 1) epidemiology, 2) classification of stages, 3) pathophysiology, 4) biomarkers for diagnosing, 5) biomarker assays, 6) diagnostic accuracy of biomarkers, 7) benefits of biomarker screening, 8) consensus recommendations for biomarker screening, 9) stratification of Stage B HF, 10) echocardiographic screening, 11) management of Stage A and Stage B HF, and 12) future directions. The Diabetes Technology Society panel recommends 1) biomarker screening with one of two circulating natriuretic peptides (B-type natriuretic peptide or N-terminal prohormone of B-type natriuretic peptide), 2) beginning screening five years following diagnosis of type 1 diabetes (T1D) and at the diagnosis of type 2 diabetes (T2D), 3) beginning routine screening no earlier than at age 30 years for T1D (irrespective of age of diagnosis) and at any age for T2D, 4) screening annually, and 5) testing any time of day. The panel also recommends that an abnormal biomarker test defines asymptomatic preclinical HF (Stage B HF). This diagnosis requires follow-up using transthoracic echocardiography for classification into one of four subcategories of Stage B HF, corresponding to risk of progression to symptomatic clinical HF (Stage C HF). These recommendations will allow identification and management of Stage A and Stage B HF in PWD to prevent progression to Stage C HF or advanced HF (Stage D HF).
Collapse
Affiliation(s)
- Andrea M Yeung
- Diabetes Technology Society, Burlingame, CA, United States of America
| | - Jingtong Huang
- Diabetes Technology Society, Burlingame, CA, United States of America
| | - Ambarish Pandey
- UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Ibrahim A Hashim
- UT Southwestern Medical Center, Dallas, TX, United States of America
| | - David Kerr
- Diabetes Technology Society, Burlingame, CA, United States of America
| | | | - Connie M Rhee
- Division of Nephrology, Hypertension, and Kidney Transplantation, University of California Irvine, Orange, CA, United States of America
| | - Viral N Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Lia Bally
- Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Antoni Bayes-Genis
- Hospital Universitari Germans Trias I Pujol, CIBERCV, Universitat Autonoma Barcelona, Spain
| | | | - Richard Bergenstal
- International Diabetes Center, HealthPartners Institute, Minneapolis, MN, United States of America
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX and University of Mississippi, Jackson, MS, United States of America
| | | | - Gregory Gilbert
- Mills-Peninsula Medical Center, Burlingame, CA, United States of America
| | - Stephen J Greene
- Division of Cardiology, Duke University School of Medicine, Durham, NC, United States of America
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States of America
| | - Lawrence A Leiter
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | | | - Thomas W Martens
- International Diabetes Center and Park Nicollet Clinic, Minneapolis, MN, United States of America
| | | | - Viswanathan Mohan
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Chennai, India
| | - Kershaw V Patel
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, United States of America
| | - Anne Peters
- University of Southern California Keck School of Medicine, Los Angeles, CA, United States of America
| | - Eun-Jung Rhee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | - David B Sacks
- National Institutes of Health, Bethesda, MD, United States of America
| | - Yader Sandoval
- Minneapolis Heart Institute, Abbott Northwestern Hospital and Minneapolis Heart Institute Foundation, Minneapolis, MN, United States of America
| | | | - Oliver Schnell
- Forschergruppe Diabetes e.V., Munich-, Neuherberg, Germany
| | | | - Kayo Waki
- The University of Tokyo, Tokyo, Japan
| | - Eugene E Wright
- Charlotte Area Health Education Center, Charlotte, NC, United States of America
| | - Alan H B Wu
- University of California, San Francisco, San Francisco, CA, United States of America
| | - David C Klonoff
- Mills-Peninsula Medical Center, San Mateo, CA, United States of America.
| |
Collapse
|
28
|
Blomqvist M, Ivarsson A, Carlsson IM, Sandgren A, Jormfeldt H. Relationship between Physical Activity and Health Outcomes in Persons with Psychotic Disorders after Participation in a 2-Year Individualized Lifestyle Intervention. Issues Ment Health Nurs 2023:1-10. [PMID: 37364236 DOI: 10.1080/01612840.2023.2212771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
People with psychotic disorders have a significantly increased risk of physical diseases and excessive mortality rates. The aim of the study was to investigate relationships between changes in physical activity, levels of salutogenic health, and glycated hemoglobin among people with psychotic disorders after participation in an individualized lifestyle intervention. The results from analyses showed that self-reported increased physical activity was positively associated with the level of salutogenic health and negatively associated with the level of HbA1c on an individual level. The results indicate that coordinated, individualized, holistic and health-promoting nursing care is crucial to enabling enhanced lifestyle within this vulnerable target group.
Collapse
Affiliation(s)
- Marjut Blomqvist
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Andreas Ivarsson
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | | | - Anna Sandgren
- Center for Collaborative Palliative Care, Department of Health and Caring Sciences, Linnaeus University, Växjö, Sweden
| | | |
Collapse
|
29
|
Trohman RG, Huang HD, Sharma PS. Atrial fibrillation: primary prevention, secondary prevention, and prevention of thromboembolic complications: part 1. Front Cardiovasc Med 2023; 10:1060030. [PMID: 37396596 PMCID: PMC10311453 DOI: 10.3389/fcvm.2023.1060030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/14/2023] [Indexed: 07/04/2023] Open
Abstract
Atrial fibrillation (AF), is the most common sustained cardiac arrhythmia. It was once thought to be benign as long as the ventricular rate was controlled, however, AF is associated with significant cardiac morbidity and mortality. Increasing life expectancy driven by improved health care and decreased fertility rates has, in most of the world, resulted in the population aged ≥65 years growing more rapidly than the overall population. As the population ages, projections suggest that the burden of AF may increase more than 60% by 2050. Although considerable progress has been made in the treatment and management of AF, primary prevention, secondary prevention, and prevention of thromboembolic complications remain a work in progress. This narrative review was facilitated by a MEDLINE search to identify peer-reviewed clinical trials, randomized controlled trials, meta-analyses, and other clinically relevant studies. The search was limited to English-language reports published between 1950 and 2021. Atrial fibrillation was searched via the terms primary prevention, hyperthyroidism, Wolff-Parkinson-White syndrome, catheter ablation, surgical ablation, hybrid ablation, stroke prevention, anticoagulation, left atrial occlusion and atrial excision. Google and Google scholar as well as bibliographies of identified articles were reviewed for additional references. In these two manuscripts, we discuss the current strategies available to prevent AF, then compare noninvasive and invasive treatment strategies to diminish AF recurrence. In addition, we examine the pharmacological, percutaneous device and surgical approaches to prevent stroke as well as other types of thromboembolic events.
Collapse
Affiliation(s)
- Richard G. Trohman
- Section of Electrophysiology, Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | | | | |
Collapse
|
30
|
Karmali R, Sipko J, Majid M, Bruemmer D. Hyperlipidemia and Cardiovascular Disease in People with Type 1 Diabetes: Review of Current Guidelines and Evidence. Curr Cardiol Rep 2023; 25:435-442. [PMID: 37052761 DOI: 10.1007/s11886-023-01866-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the prevalence of cardiovascular disease in people with type 1 diabetes. We outline key risk factors associated with increased cardiovascular event rates and discuss the prevalence and mechanisms underlying hyperlipidemia in people with type 1 diabetes. Finally, we summarize the evidence to support early and more aggressive lipid-lowering therapy in people with type 1 diabetes and review current guideline recommendations. RECENT FINDINGS Comprehensive treatment of hyperglycemia, hypertension, and hyperlipidemia reduces adverse cardiovascular outcomes in people with type 2 diabetes. In contrast, evidence to support a comparable benefit of intensive cardiovascular risk factor management in people with type 1 diabetes is lacking from prospective, randomized trials and has only been shown in registries. Therefore, current treatment guidelines extrapolate prospective clinical trial evidence obtained in people with type 2 diabetes to provide similar treatment recommendations for people with type 1 and type 2 diabetes. Evidence supports the more aggressive treatment of cardiovascular risk factors in people with type 1 diabetes, who would likely benefit from early risk stratification and comprehensive risk factor management, including aggressive lipid-lowering therapy.
Collapse
Affiliation(s)
- Rehan Karmali
- Center for Cardiometabolic Health, Section of Preventive Cardiology and Rehabilitation, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue JB-815, Cleveland, OH, 44195, USA
| | - Joseph Sipko
- Center for Cardiometabolic Health, Section of Preventive Cardiology and Rehabilitation, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue JB-815, Cleveland, OH, 44195, USA
| | - Muhammad Majid
- Center for Cardiometabolic Health, Section of Preventive Cardiology and Rehabilitation, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue JB-815, Cleveland, OH, 44195, USA
| | - Dennis Bruemmer
- Center for Cardiometabolic Health, Section of Preventive Cardiology and Rehabilitation, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue JB-815, Cleveland, OH, 44195, USA.
| |
Collapse
|
31
|
Zhang W, Li D, Shan Y, Tao Y, Chen Q, Hu T, Gao M, Chen Z, Jiang H, Du C, Wang M, Guo K. Luteolin intake is negatively associated with all-cause and cardiac mortality among patients with type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15:59. [PMID: 36966325 PMCID: PMC10039598 DOI: 10.1186/s13098-023-01026-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/11/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Luteolin, a common flavonoid in our daily diet, has potent anti-diabetic effects. However, its prognostic impact on type 2 diabetes mellitus (T2DM) is still uncertain. This study aimed to clarify this association. METHODS In this prospective cohort study, 2,461 patients with T2DM were included from the National Health and Nutrition Examination Survey. Dietary luteolin intake was estimated by the type and amount of food consumed in a 24-hour dietary recall. All-cause and cardiac mortality were ascertained by National Death Index Mortality data (as of December 31, 2019). The association of luteolin intake with mortality risk was estimated by Cox proportional hazards model. RESULTS The median (interquartile range) luteolin intake was 0.355 (0.130, 0.835) mg/day. During the follow-up (median, 8.4 years), 561 all-cause deaths (including 136 cardiac deaths) were documented. Per-unit increment of luteolin intake (natural logarithm transformed) was found to reduce all-cause mortality by 7.0% (P = 0.024) and cardiac mortality by 22.6% (P = 0.001) in patients with T2DM. An inverse dose-response association was identified between luteolin intake (range: 0.005-9.870 mg/day) and mortality risk. The consistent result was also shown when stratified by age, gender, race, body mass index, HbA1c level, and T2DM duration. Moreover, luteolin intake increment was also shown to be associated with a lower C-reactive protein level at baseline (β =-0.332; 95% CI =-0.541, -0.122). CONCLUSION The current study confirmed that the dietary luteolin intake increment reduced all-cause mortality (especially cardiac mortality) in patients with T2DM, which may be attributed to the anti-inflammatory property of luteolin.
Collapse
Affiliation(s)
- Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang People’s Republic of China
| | - Duanbin Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang People’s Republic of China
| | - Yu Shan
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang People’s Republic of China
| | - Yecheng Tao
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang People’s Republic of China
| | - Qingqing Chen
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang People’s Republic of China
| | - Tianli Hu
- Department of Cardiology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang People’s Republic of China
| | - Menghan Gao
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Zhezhe Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang People’s Republic of China
| | - Hangpan Jiang
- Department of Cardiology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang People’s Republic of China
| | - Changqin Du
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang People’s Republic of China
| | - Min Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang People’s Republic of China
| | - Kai Guo
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 People’s Republic of China
| |
Collapse
|
32
|
Guo S, Huang Y, Liu X, Ma J, Zhu W. Association of type 1 diabetes mellitus and risk of atrial fibrillation: Systematic review and meta-analysis. Diabetes Res Clin Pract 2023; 199:110629. [PMID: 36948422 DOI: 10.1016/j.diabres.2023.110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
AIM Whether type 1 diabetes mellitus (T1DM) could be regarded as an independent risk factor for atrial fibrillation (AF) risk remains unclear, and thus we aimed to elaborate on this association in our meta-analysis. METHODS We systematically searched the Pubmed, Embase, Cochrane Library and Web of Science databases up to August 2022 for studies that were related to T1DM and AF incidence. Hazard ratios (HRs) and 95% confidence intervals (CIs) from each study were pooled via a random-effects model. RESULTS A total of four cohort studies were involved in our meta-analysis. Our pooled results suggested that T1DM patients had a higher AF risk (HR = 1.30, 95%CI 1.15-1.47) than the control group. In the subgroup analysis, a higher AF incidence was also found in female T1DM patients (HR = 1.50, 95%CI 1.26-1.79) than that in male patients. Compared with T1DM patients over 65 years, those with < 65 years showed an increased risk of AF (HR = 1.45, 95%CI 1.21-1.74). CONCLUSIONS Our meta-analysis demonstrated that T1DM was an independent risk factor for AF development, but further studies should be performed to provide more convincing evidence.
Collapse
Affiliation(s)
- Siyu Guo
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Yuwen Huang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510030, PR China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China.
| |
Collapse
|
33
|
Voicu G, Mocanu CA, Safciuc F, Anghelache M, Deleanu M, Cecoltan S, Pinteala M, Uritu CM, Droc I, Simionescu M, Manduteanu I, Calin M. Nanocarriers of shRNA-Runx2 directed to collagen IV as a nanotherapeutic system to target calcific aortic valve disease. Mater Today Bio 2023; 20:100620. [PMID: 37063777 PMCID: PMC10102408 DOI: 10.1016/j.mtbio.2023.100620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Runx2 is a key transcription factor involved in valvular interstitial cells (VIC) osteodifferentiation, a process actively entwined with the calcific aortic valve disease (CAVD). We hypothesize that a strategy intended to silence Runx2 could be a valuable novel therapeutic option for CAVD. To this intent, we aimed at (i) developing targeted nanoparticles for efficient delivery of short hairpin (sh)RNA sequences specific for Runx2 to the aortic valve employing a relevant mouse model for CAVD and (ii) investigate their therapeutic potential in osteoblast-differentiated VIC (oVIC) cultivated into a 3D scaffold. Since collagen IV was used as a target, a peptide that binds specifically to collagen IV (Cp) was conjugated to the surface of lipopolyplexes encapsulating shRNA-Runx2 (Cp-LPP/shRunx2). The results showed that Cp-LPP/shRunx2 were (i) cytocompatible; (ii) efficiently taken up by 3D-cultured oVIC; (iii) diminished the osteodifferentiation of human VIC (cultured in a 3D hydrogel-derived from native aortic root) by reducing osteogenic molecules expression, alkaline phosphatase activity, and calcium concentration; and (iv) were recruited in aortic valve leaflets in a murine model of atherosclerosis. Taken together, these data recommend Cp-LPP/shRunx2 as a novel targeted nanotherapy to block the progression of CAVD, with a good perspective to be introduced in practical use.
Collapse
Affiliation(s)
- Geanina Voicu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Cristina Ana Mocanu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Florentina Safciuc
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Maria Anghelache
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Mariana Deleanu
- “Liquid and Gas Chromatography” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Sergiu Cecoltan
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487, Iasi, Romania
| | - Cristina Mariana Uritu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487, Iasi, Romania
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115, Iasi, Romania
| | - Ionel Droc
- Central Military Hospital “Dr. Carol Davila”, Cardiovascular Surgery Clinic, Bucharest, Romania
| | - Maya Simionescu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Ileana Manduteanu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Manuela Calin
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
- Corresponding author. “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania.
| |
Collapse
|
34
|
Коротина МА, Починка ИГ, Стронгин ЛГ. [Use of metformin in patients with type 2 diabetes and acute myocardial infarction: safety and impact on glycemic control]. PROBLEMY ENDOKRINOLOGII 2023; 69:28-35. [PMID: 36842075 PMCID: PMC9978873 DOI: 10.14341/probl13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 02/27/2023]
Abstract
BACKGROUND Myocardial infarction (MI) in patients with diabetes type 2 (T2DM) occurs 1.5-3.0 times higher than in general population. Metformin is contraindicated for patients with T2DM and acute coronary syndrome due to the risk of developing lactic acidosis. Using metformin more than 48 hours of MI is a topical question, which will help to improve patient's safety. AIM To evaluate the safety and quality of glycemic control using metformin in patients with T2DM during inpatient treatment for MIMATERIALS AND METHODS: The study included 161 patients with T2DM, who were hospitalized consecutively with acute MI with ST-elevation and underwent percutaneous coronary intervention (PCI). Average time of metformin initiation was 5th day from admission. Creatinine was assessed at admission and 48 hours after PCI. The acid-base balance and lactate were assessed at admission and on the 3rd day after the start of using metformin. Criteria for the effectiveness of glycemic control was the proportion of glycemic measurements in target range of 6.1-10.0 mmol/l during hospitalization ("hospital time in range", hTIR). hTIR >55% was considered to be a critical level. The long-term outcome was estimated at 365 days after hospitalization. RESULTS Metformin was prescribed to 99 patients (61%) ("M+"group) during the hospitalization, 62 patients were in "M-"group. Use of metformin was accompanied with better glycemic control in the «M+» group compared to the «M-»: mean glycemia 9.3 ± 1.6 vs 10.3 ± 2.3 mmol/l (p=0,002), SD 2.87 ± 1.1 vs 3.26 ± 1.8 (p=0,049), hTIR 60 ± 18% vs 48 ± 23% (p<0,001). There were clinically insignificant changes in acid-base balance on the 3rd day from the start of metformin use in the "M+" group, the lactate level did not increase. Use of metformin before to hospitalization with MI was not associated with an increased risk of developing acute kidney injury (AKI): RR 0.85 (0.37-1.96), p=0,691. CONCLUSION Use of metformin in patients with T2DM and acute MI is associated with better glycemic control. Carrying out angiography in patients, treated with metformin before the hospitalization, is not accompanied by an increased risk of developing AKI. Appointment of metformin in 3-7 days after angiography does not lead to an increase level of lactate and significant deviations in acid-base balance.
Collapse
Affiliation(s)
| | - И. Г. Починка
- Приволжский исследовательский медицинский университет
| | | |
Collapse
|
35
|
Baumgardt SL, Fang J, Fu X, Liu Y, Xia Z, Zhao M, Chen L, Mishra R, Gunasekaran M, Saha P, Forbess JM, Bosnjak ZJ, Camara AKS, Kersten JR, Thorp E, Kaushal S, Ge ZD. Augmentation of Histone Deacetylase 6 Activity Impairs Mitochondrial Respiratory Complex I in Ischemic/Reperfused Diabetic Hearts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529462. [PMID: 36865233 PMCID: PMC9980088 DOI: 10.1101/2023.02.21.529462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND Diabetes augments activity of histone deacetylase 6 (HDAC6) and generation of tumor necrosis factor α (TNFα) and impairs the physiological function of mitochondrial complex I (mCI) which oxidizes reduced nicotinamide adenine dinucleotide (NADH) to nicotinamide adenine dinucleotide to sustain the tricarboxylic acid cycle and β-oxidation. Here we examined how HDAC6 regulates TNFα production, mCI activity, mitochondrial morphology and NADH levels, and cardiac function in ischemic/reperfused diabetic hearts. METHODS HDAC6 knockout, streptozotocin-induced type 1 diabetic, and obese type 2 diabetic db/db mice underwent myocardial ischemia/reperfusion injury in vivo or ex vivo in a Langendorff-perfused system. H9c2 cardiomyocytes with and without HDAC6 knockdown were subjected to hypoxia/reoxygenation injury in the presence of high glucose. We compared the activities of HDAC6 and mCI, TNFα and mitochondrial NADH levels, mitochondrial morphology, myocardial infarct size, and cardiac function between groups. RESULTS Myocardial ischemia/reperfusion injury and diabetes synergistically augmented myocardial HDCA6 activity, myocardial TNFα levels, and mitochondrial fission and inhibited mCI activity. Interestingly, neutralization of TNFα with an anti-TNFα monoclonal antibody augmented myocardial mCI activity. Importantly, genetic disruption or inhibition of HDAC6 with tubastatin A decreased TNFα levels, mitochondrial fission, and myocardial mitochondrial NADH levels in ischemic/reperfused diabetic mice, concomitant with augmented mCI activity, decreased infarct size, and ameliorated cardiac dysfunction. In H9c2 cardiomyocytes cultured in high glucose, hypoxia/reoxygenation augmented HDAC6 activity and TNFα levels and decreased mCI activity. These negative effects were blocked by HDAC6 knockdown. CONCLUSIONS Augmenting HDAC6 activity inhibits mCI activity by increasing TNFα levels in ischemic/reperfused diabetic hearts. The HDAC6 inhibitor, tubastatin A, has high therapeutic potential for acute myocardial infarction in diabetes.
Collapse
Affiliation(s)
- Shelley L. Baumgardt
- Departments of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Xuebin Fu
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Yanan Liu
- Departments of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, The People’s Republic of China
| | - Ming Zhao
- The Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, Illinois 60611
| | - Ling Chen
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Rachana Mishra
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Muthukumar Gunasekaran
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Progyaparamita Saha
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Joseph M. Forbess
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Zeljko J. Bosnjak
- Departments of Medicine and Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Amadou KS Camara
- Departments of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Judy R. Kersten
- Departments of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
| | - Edward Thorp
- Departments of Pathology and Pediatrics, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, Illinois 60611
| | - Sunjay Kaushal
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
| | - Zhi-Dong Ge
- Departments of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53206
- Cardiovascular-Thoracic Surgery and the Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Surgery, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois 60611
- Departments of Pathology and Pediatrics, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, Illinois 60611
| |
Collapse
|
36
|
Ashtary-Larky D, Niknam S, Alaeian MJ, Nadery M, Afrisham R, Fouladvand F, Ojani Z, Ghohpayeh MZ, Zamani M, Asbaghi O. The effect of green tea on blood pressure in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. J Herb Med 2023. [DOI: 10.1016/j.hermed.2022.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Kondratieva DS, Afanasiev SA, Muslimova EF. Diabetes mellitus — metabolic preconditioning in protecting the heart from ischemic damage? DIABETES MELLITUS 2022. [DOI: 10.14341/dm12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The negative impact of diabetes mellitus (DM) on the cardiovascular system has been confirmed by numerous clinical studies. However, there are experimental studies that show an increase in the resistance of the heart to ischemic and reperfusion damage in animals with DM. This phenomenon is characterized by a smaller size of the infarct zone, better preservation of the contractile function of the myocardium, and a lower incidence of ischemic and reperfusion arrhythmias. It is assumed that at a certain stage in the development of DM, a “metabolic window” is formed, in which metabolic alterations at the cellular level trigger adaptive mechanisms that increase the viability of cardiomyocytes. Published data confirm that the magnitude of the protective effect induced by DM is comparable to, and in some cases even exceeds, the effect of the preconditioning phenomenon. It is recognized that the mechanisms that protect the heart from ischemic and reperfusion damage against the background of DM are universal and are associated with the modulation of the antioxidant system, apoptosis factors, pro-inflammatory cytokines, and signaling systems that ensure cell survival. The one of the main pathogenic factor in DM is hyperglycemia, but under stress it plays the role of an adaptive mechanism aimed at meeting the increased energy demand in pathological conditions. Probably, at a certain stage of DM, hyperglycemia becomes a trigger for the development of protective effects and activates not only signaling pathways, but also the restructuring of energy metabolism, which makes it possible to maintain ATP production at a sufficient level to maintain the vital activity of heart cells under ischemia/reperfusion conditions. It is possible that an increased level of glucose, accompanied by the activation of insulin-independent mechanisms of its entry into cells, as well as the availability of this energy substrate, will contribute to a better restoration of energy production in heart cells after a infarction, which, in turn, will significantly reduce the degree of myocardial damage and will help preserve the contractile function of the heart. Identification of the conditions and mechanisms of the cardioprotective phenomenon induced by DM will make it possible to simulate the metabolic state in which the protection of cardiomyocytes from damaging factors is realized.
Collapse
Affiliation(s)
- D. S. Kondratieva
- Cardiology Research Institute, Tomsk National Research Medical Center
| | - S. A. Afanasiev
- Cardiology Research Institute, Tomsk National Research Medical Center
| | - E. F. Muslimova
- Cardiology Research Institute, Tomsk National Research Medical Center
| |
Collapse
|
38
|
Selig JI, Krug HV, Küppers C, Ouwens DM, Kraft FA, Adler E, Bauer SJ, Lichtenberg A, Akhyari P, Barth M. Interactive contribution of hyperinsulinemia, hyperglycemia, and mammalian target of rapamycin signaling to valvular interstitial cell differentiation and matrix remodeling. Front Cardiovasc Med 2022; 9:942430. [PMID: 36386326 PMCID: PMC9661395 DOI: 10.3389/fcvm.2022.942430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes and its major key determinants insulin resistance and hyperglycemia are known risk factors for calcific aortic valve disease (CAVD). The processes leading to molecular and structural alterations of the aortic valve are yet not fully understood. In previous studies, we could show that valvular interstitial cells (VIC) display canonical elements of classical insulin signaling and develop insulin resistance upon hyperinsulinemia and hyperglycemia accompanied by impaired glucose metabolism. Analyses of cultured VIC and aortic valve tissue revealed extracellular matrix remodeling and degenerative processes. Since PI3K signaling through mammalian target of rapamycin (mTOR) is involved in fibrotic processes of the heart, we aim at further functional investigation of this particular Akt-downstream signaling pathway in the context of diabetes-induced CAVD. Primary cultures of VIC were treated with hyperinsulinemia and hyperglycemia. Phosphorylation of mTOR(Ser2448) was determined by Western blot analysis after acute insulin stimulus. Inhibition of mTOR phosphorylation was performed by rapamycin. Phosphorylation of mTOR complex 1 (MTORC1) downstream substrates 4E-BP1(Thr37/46) and P70S6K(Thr389), and MTORC2 downstream substrate Akt(Ser473) as well as the PDK1-dependent phosphorylation of Akt(Thr308) was investigated. Markers for extracellular matrix remodeling, cell differentiation and degenerative changes were analyzed by Western blot analysis, semi-quantitative real-time PCR and colorimetric assays. Hyperinsulinemia and hyperglycemia lead to alterations of VIC activation, differentiation and matrix remodeling as well as to an abrogation of mTOR phosphorylation. Inhibition of mTOR signaling by rapamycin leads to a general downregulation of matrix molecules, but to an upregulation of α-smooth muscle actin expression and alkaline phosphatase activity. Comparison of expression patterns upon diabetic conditions and rapamycin treatment reveal a possible regulation of particular matrix components and key degeneration markers by MTORC1 downstream signaling. The present findings broaden the understanding of mitogenic signaling pathways in VIC triggered by hyperinsulinemia and hyperglycemia, supporting the quest for developing strategies of prevention and tailored treatment of CAVD in diabetic patients.
Collapse
Affiliation(s)
- Jessica I. Selig
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - H. Viviana Krug
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Caroline Küppers
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - D. Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Felix A. Kraft
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elena Adler
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian J. Bauer
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Payam Akhyari,
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
39
|
Dong Y, Liu J, Ma J, Quan J, Bao Y, Cui Y. The possible correlation between serum GRB2 levels and carotid atherosclerosis in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:963191. [PMID: 36176460 PMCID: PMC9513061 DOI: 10.3389/fendo.2022.963191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose Growth factor receptor-bound protein 2(GRB2), a bridging protein. An animal study showed that downregulation of GRB2 inhibited the activation of PI3K/AKT/NF-kB pathway which improved lipid accumulation and inflammatory infiltration in rats with atherosclerosis (AS), resulting in an anti-AS effect. This was the first study to investigate blood GRB2 levels in type 2 diabetes mellitus(T2DM) patients with carotid atherosclerosis (CAS), exploring its relationship with various metabolic indicators, and further, examining whether GRB2 has an AS effect in patients with T2DM. Methods A total of 203 participants were recruited in the study, including 69 T2DM patients without CAS (T2DM group), 67 T2DM patients with CAS (CAS group), and 67 in the age-sex-matched healthy subjects (Control group). Serum GRB2 levels were measured using enzyme-linked immunosorbent assay (ELISA) in 203 subjects who had received carotid ultrasonography. In addition, cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), fasting plasma glucose (FPG), glycosylated hemoglobin (HBA1c), fasting insulin (FINS), hypersensitive C-reactive protein (Hs-CRP), and Interleukin 6 (IL-6) were also tested. The correlation between serum GRB2 levels and other indexes was analyzed. Finally, we analyzed the risk factors affecting carotid intima-media thickness (CIMT) in T2DM patients. Results Serum GRB2 levels were increased in the T2DM group than in the control group, and further elevated in the CAS group (median 3.05 vs 4.40 vs 7.09 ng/ml, P<0.001). Spearman correlation analysis showed that GRB2 concentrations were negatively correlated with HDL-C, and positively associated with duration of diabetes, waist-to-hip ratio (WHR), TC, HBA1c, FPG, FINS, homeostasis model assessment-insulin resistance index (HOMA-IR), Hs-CRP, IL-6 and CIMT (P<0.01). Furthermore, serum GRB2 levels (P<0.001) remained independently related to CIMT after adjusting for the age, sex, duration of diabetes, and Body Mass Index (BMI) variables. Stepwise multiple linear regression analysis showed that IL-6, HDL-C, HBA1c, and CIMT are independent correlation factors of serum GRB2 (P<0.01). Univariate logistic regression suggested that disease duration, WHR, systolic blood pressure (SBP), TG, HDL-C, HBA1c, FPG, HOMA-IR, IL-6, Hs-CRP, and GRB2 independently associated with T2DM is combined with CAS(P<0.05). And multivariate logistic regression analysis showed that duration of diabetes, IL-6, and serum GRB2 levels were independent risk factors for T2DM combined with CAS (P<0.05), and serum GRB2 levels were a highly sensitive indicator of early AS (OR=1.405, 95% CI: 1.192-1.658 P<0.001). Moreover, the ROC curve AUC area of serum GRB2 expression levels was 0.80 (95%CI: 0.7291-0.8613, P < 0.001), with a sensitivity of 83.58% and specificity of 70.59%. The risk of CAS was substantially higher in patients with T2DM whose serum GRB2 concentration was >4.59 ng/ml. Conclusions Serum GRB2 concentrations were significantly increased in T2DM combined with CAS, and serum GRB2 levels were linearly correlated with CIMT, suggesting that GRB2 may be involved in the occurrence and development of T2DM with CAS, which can be used as a predictor of whether T2DM is combined with CAS.
Collapse
Affiliation(s)
- Yuyan Dong
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Juxiang Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Jing Ma
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jinxing Quan
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Yanxia Bao
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yaqiang Cui
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
40
|
Ko TY, Lin TT, Hsu JC, Yang YY, Chuang SL, Lin LY, Kao HL, Ho YL. Incidence, risk factors and predictors of cardiovascular mortality for aortic stenosis among patients with diabetes mellitus. Diabetes Res Clin Pract 2022; 191:110050. [PMID: 36030901 DOI: 10.1016/j.diabres.2022.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
AIMS To find the incidence, risk factors and predictors of cardiovascular (CV) mortality for aortic stenosis (AS) in patients with type 2 diabetes mellitus (T2DM). METHODS Between 2014 and 2019, 20,979 patients with T2DM who underwent echocardiography were enrolled for analysis. The mean follow-up period was 34 months. Multiple risk factors and outcomes for patients with and without AS were presented. RESULTS AS was present in 776 (3.70%) patients. Age, female, chronic kidney disease, hyperlipidemia, and peripheral arterial disease statistically increased risk of AS. The CV mortality (adjusted hazard ratio [aHR] = 1.97; 95% confidence interval [CI] 1.336 - 2.906, p < 0.001) and risk of hospitalization for heart failure (HHF) (aHR = 1.73, 95% CI 1.442-2.082, p < 0.001) were significantly increased in patients with AS, without significant differences in acute myocardial infarction and stroke. Severity of AS, body mass index (<27 kg/m2), hypertension, hyperuricemia, left ventricular dysfunction (ejection fraction < 50%), and hematocrit (<38%) were significantly associated with increased CV mortality and HHF. CONCLUSIONS AS was associated with an increased risk of CV mortality and HHF in patients with T2DM.
Collapse
Affiliation(s)
- Tsung-Yu Ko
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Tse Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jung Chi Hsu
- Division of Cardiology, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Yen-Yun Yang
- Integrative Medical Database Center, Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Lin Chuang
- Integrative Medical Database Center, Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Li Kao
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Lwun Ho
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
41
|
Zhou J, Lin J, Zheng Y. Association of cardiovascular risk factors and lifestyle behaviors with aortic aneurysm: A Mendelian randomization study. Front Genet 2022; 13:925874. [PMID: 36003339 PMCID: PMC9393757 DOI: 10.3389/fgene.2022.925874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Objective: To examine the causality between hypertension, diabetes, other cardiovascular risk factors, lifestyle behaviors, and the aortic aneurysm among patients of European ancestry. Methods: We performed two-sample Mendelian randomization (MR) analysis to investigate the causality of 12 modifiable risk factors with aortic aneurysm, including hypertension, body mass index (BMI), waist–hip ratio (WHR), diabetes, tobacco smoking, alcohol and coffee consumption, physical activity, and sleep duration. Genome-wide significant genetic instruments (p < 5 × 10–8) for risk factors were extracted from European-descent genome-wide association studies, whereas aortic aneurysm genetic instruments were selected from the UK Biobank and FinnGen cohort. The inverse-variance weighted MR was used as the main analysis, and MR-Egger (MRE), weighted median MR, MR pleiotropy residual sum and outlier, and Phenoscanner searching were performed as sensitivity analyses. Furthermore, we calculated MRE intercept to detect pleiotropy and Cochran’s Q statistics to assess heterogeneity and conducted bidirectional MR and MR Steiger tests to exclude the possibility of reverse causality. Results: We observed significantly higher risks for the aortic aneurysm in hypertension [pooled OR: 4.30 (95% CI 2.84–6.52)], BMI [OR: 1.58 (95% CI 1.37–1.81)], WHR [OR: 1.51 (95% CI 1.21–1.88)], WHR adjusted for BMI (WHRadjBMI) [OR: 1.35 (95% CI 1.12–1.63)], age of smoking initiation [OR: 1.63 (95% CI 1.18–2.26)], and tobacco use (initiation, cessation, and heaviness) [OR: 2.88 (95% CI 1.85–2.26)]. In sensitivity analysis, the causal effects of hypertension, BMI, WHRadjBMI, and tobacco use (initiation, cessation, and heaviness) remained robust. Conclusion: There was a positive causal relationship between hypertension, BMI, WHR, and WHRadjBMI and aortic aneurysm.
Collapse
Affiliation(s)
- Jiawei Zhou
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Lin
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yuehong Zheng,
| |
Collapse
|
42
|
Rawshani A, Sattar N, McGuire DK, Wallström O, Smith U, Borén J, Bergström G, Omerovic E, Rosengren A, Eliasson B, Bhatt DL, Rawshani A. Left-Sided Degenerative Valvular Heart Disease in Type 1 and Type 2 Diabetes. Circulation 2022; 146:398-411. [PMID: 35678729 DOI: 10.1161/circulationaha.121.058072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The role of diabetes in the development of valvular heart disease, and, in particular, the relation with risk factor control, has not been extensively studied. METHODS We included 715 143 patients with diabetes registered in the Swedish National Diabetes Register and compared them with 2 732 333 matched controls randomly selected from the general population. First, trends were analyzed with incidence rates and Cox regression, which was also used to assess diabetes as a risk factor compared with controls, and, second, separately in patients with diabetes according to the presence of 5 risk factors. RESULTS The incidence of valvular outcomes is increasing among patients with diabetes and the general population. In type 2 diabetes, systolic blood pressure, body mass index, and renal function were associated with valvular lesions. Hazard ratios for patients with type 2 diabetes who had nearly all risk factors within target ranges, compared with controls, were as follows: aortic stenosis 1.34 (95% CI, 1.31-1.38), aortic regurgitation 0.67 (95% CI, 0.64-0.70), mitral stenosis 1.95 (95% CI, 1.76-2.20), and mitral regurgitation 0.82 (95% CI, 0.79-0.85). Hazard ratios for patients with type 1 diabetes and nearly optimal risk factor control were as follows: aortic stenosis 2.01 (95% CI, 1.58-2.56), aortic regurgitation 0.63 (95% CI, 0.43-0.94), and mitral stenosis 3.47 (95% CI, 1.37-8.84). Excess risk in patients with type 2 diabetes for stenotic lesions showed hazard ratios for aortic stenosis 1.62 (95% CI, 1.59-1.65), mitral stenosis 2.28 (95% CI, 2.08-2.50), and excess risk in patients with type 1 diabetes showed hazard ratios of 2.59 (95% CI, 2.21-3.05) and 11.43 (95% CI, 6.18-21.15), respectively. Risk for aortic and mitral regurgitation was lower in type 2 diabetes: 0.81 (95% CI, 0.78-0.84) and 0.95 (95% CI, 0.92-0.98), respectively. CONCLUSIONS Individuals with type 1 and 2 diabetes have greater risk for stenotic lesions, whereas risk for valvular regurgitation was lower in patients with type 2 diabetes. Patients with well-controlled cardiovascular risk factors continued to display higher risk for valvular stenosis, without a clear stepwise decrease in risk between various degrees of risk factor control.
Collapse
Affiliation(s)
- Araz Rawshani
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, United Kingdom (N.S.)
| | - Darren K McGuire
- Department of Internal Medicine, University of Texas Southwestern Medical Center, and Parkland Health and Hospital System, Dallas (D.K.M.)
| | - Oskar Wallström
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden
| | - Ulf Smith
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Institute of Medicine, The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine (U.S., B.E., Aidin Rawshani), University of Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden
| | - Göran Bergström
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden (G.B., Aidin Rawshani)
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden
| | - Björn Eliasson
- Institute of Medicine, The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine (U.S., B.E., Aidin Rawshani), University of Gothenburg, Sweden
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA (D.L.B.)
| | - Aidin Rawshani
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Institute of Medicine, The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine (U.S., B.E., Aidin Rawshani), University of Gothenburg, Sweden.,Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden (G.B., Aidin Rawshani)
| |
Collapse
|
43
|
The relationship between body mass index, blood pressure, and atherosclerosis risk factors in type 1 and 2 diabetic patients from northwestern Algeria. Endocr Regul 2022; 56:190-200. [DOI: 10.2478/enr-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Objective. The present work was framed to study the relationship between body mass index (BMI), blood pressure, and atherosclerosis risk factors on the basis of three lipid ratios in type 1 (T1D) and type 2 diabetic (T2D) patients.
Methods. A prospective, comparative, and cross-sectional study was performed at the level of three health facilities in Sidi-Bel-Abbes city (north-western Algeria). Anthropometric parameters, systolic and diastolic blood pressures, and lipid profiles were assessed in adults T1D and T2D patients over a period of eleven months. Individual atherogenic risk factors were estimated based on lipid ratios in relation to corpulence and hypertension.
Results. From the total 237 adult diabetic patients, 90 T1D and 147 T2D ones were involved in the study. Total cholesterol (TC)/high-density lipoprotein (HDL) and triglycerides (TG)/HDL ratios were significantly higher in normal weight T2D comparing to T1D. The TC/HDL ratio was significantly higher (p=0.046) in obese men. Nevertheless, no significant differences were revealed in low-density lipoprotein (LDL)/HDL ratio between T1D and T2D patients. Higher TC/HDL ratios were observed in T2D patients (males and females) with normal blood pressure (systolic blood pressure, SBP ≤13.5 mmHg and diastolic blood pressure, DBP ≤8 mmHg) comparing to T1D patients. Likewise, the LDL/HDL ratio was significantly higher in T2D men with normal DBP (p=0.044).
Conclusion. The lipid ratios constitute good indices while managing diabetes. It is also recommended to screen T1D and T2D patients for hypertension, dyslipidemia, and obesity and initiate the management at early stages to prevent the related complications, such as atherosclerosis, as a priority.
Collapse
|
44
|
Indraratna P, Khasanova E, Gulsin GS, Tzimas G, Takagi H, Park KH, Lin FY, Shaw LJ, Lee SE, Narula J, Bax JJ, Chang HJ, Leipsic J. Plaque progression: Where, why, and how fast? A review of what we have learned from the analysis of patient data from the PARADIGM registry. J Cardiovasc Comput Tomogr 2022; 16:294-302. [PMID: 34824029 DOI: 10.1016/j.jcct.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022]
Abstract
Ischemic heart disease is the most common cause of mortality worldwide. The pathophysiology of myocardial infarction relates to temporal changes of atherosclerotic plaque culminating in plaque rupture, erosion or hemorrhage and the subsequent thrombotic response. Coronary computed tomographic angiography (CCTA) provides the ability to visualize and quantify plaque, and plaque progression can be measured on a per-patient basis by comparing findings of serial CCTA. The Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography IMaging (PARADIGM) registry was established with the objective of identifying patterns of plaque progression in a large population. The registry comprises over 2000 patients with multiple CCTA scans performed at least two years apart. Unlike previous CCTA registries, a semi-automated plaque quantification technique permitting detailed analysis of plaque progression was performed on all patients with interpretable studies. Since the registry was established, 19 peer-reviewed publications were identified, and all are reviewed and summarized in this article.
Collapse
Affiliation(s)
- Praveen Indraratna
- University of British Columbia and Department of Radiology, St. Paul's Hospital, Vancouver, Canada; Prince of Wales Clinical School, UNSW Sydney, Sydney, Australia.
| | - Elina Khasanova
- University of British Columbia and Department of Radiology, St. Paul's Hospital, Vancouver, Canada
| | - Gaurav S Gulsin
- University of British Columbia and Department of Radiology, St. Paul's Hospital, Vancouver, Canada; Department of Cardiovascular Sciences, University of Leicester and the Leicester NIHR Biomedical Research Centre, Leicester, United Kingdom
| | - Georgios Tzimas
- University of British Columbia and Department of Radiology, St. Paul's Hospital, Vancouver, Canada; Department of Heart Vessels, Cardiology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hidenobu Takagi
- University of British Columbia and Department of Radiology, St. Paul's Hospital, Vancouver, Canada; Department of Diagnostic Radiology, Tohoku University Hospital, Miyagi, Japan
| | - Keun-Ho Park
- University of British Columbia and Department of Radiology, St. Paul's Hospital, Vancouver, Canada; Division of Cardiology, Department of Internal Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Fay Y Lin
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, USA
| | - Leslee J Shaw
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, USA
| | - Sang-Eun Lee
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea; Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, South Korea
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, NY, USA
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Jonathon Leipsic
- University of British Columbia and Department of Radiology, St. Paul's Hospital, Vancouver, Canada
| |
Collapse
|
45
|
Carracedo M, Pawelzik SC, Artiach G, Pouwer MG, Plunde O, Saliba-Gustafsson P, Ehrenborg E, Eriksson P, Pieterman E, Stenke L, Princen HMG, Franco-Cereceda A, Bäck M. The tyrosine kinase inhibitor nilotinib targets discoidin domain receptor 2 in calcific aortic valve stenosis. Br J Pharmacol 2022; 179:4709-4721. [PMID: 35751904 PMCID: PMC9544120 DOI: 10.1111/bph.15911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose Tyrosine kinase inhibitors (TKI) used to treat chronic myeloid leukaemia (CML) have been associated with cardiovascular side effects, including reports of calcific aortic valve stenosis. The aim of this study was to establish the effects of first and second generation TKIs in aortic valve stenosis and to determine the associated molecular mechanisms. Experimental Approach Hyperlipidemic APOE*3Leiden.CETP transgenic mice were treated with nilotinib, imatinib or vehicle. Human valvular interstitial cells (VICs) were isolated and studied in vitro. Gene expression analysis was perfromed in aortic valves from 64 patients undergoing aortic valve replacement surgery. Key Results Nilotinib increased murine aortic valve thickness. Nilotinib, but not imatinib, promoted calcification and osteogenic activation and decreased autophagy in human VICs. Differential tyrosine kinase expression was detected between healthy and calcified valve tissue. Transcriptomic target identification revealed that the discoidin domain receptor DDR2, which is preferentially inhibited by nilotinib, was predominantly expressed in human aortic valves but markedly downregulated in calcified valve tissue. Nilotinib and selective DDR2 targeting in VICs induced a similar osteogenic activation, which was blunted by increasing the DDR2 ligand, collagen. Conclusions and Implications These findings suggest that inhibition of DDR2 by nilotinib promoted aortic valve thickening and VIC calcification, with possible translational implications for cardiovascular surveillance and possible personalized medicine in CML patients.
Collapse
Affiliation(s)
| | - Sven-Christian Pawelzik
- Department of Medicine, Karolinska Institutet.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| | | | - Marianne G Pouwer
- Metabolic Health Research, Gaubius Laboratory, The Netherlands Organization of Applied Scientific Research (TNO), Leiden, the Netherlands
| | | | | | | | | | - Elsbet Pieterman
- Metabolic Health Research, Gaubius Laboratory, The Netherlands Organization of Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Leif Stenke
- Department of Medicine, Karolinska Institutet.,Theme Cancer, Division of Hematology, Karolinska University Hospital
| | - Hans M G Princen
- Metabolic Health Research, Gaubius Laboratory, The Netherlands Organization of Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Anders Franco-Cereceda
- Department of Molecular Medicine and Surgery, Karolinska Institutet.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
46
|
Karayiannides S, Norhammar A, Landstedt-Hallin L, Friberg L, Pia L. Prognostic impact of type 1 and type 2 diabetes mellitus in atrial fibrillation and the effect of severe hypoglycaemia: A nationwide cohort study. Eur J Prev Cardiol 2022; 29:1759-1769. [PMID: 35580601 DOI: 10.1093/eurjpc/zwac093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022]
Abstract
AIMS To compare prognosis between individuals without diabetes, type 1 and type 2 diabetes in a nationwide atrial fibrillation cohort in Sweden and study the significance of severe hypoglycaemia. METHODS Using data from all-inclusive national registers, 309,611 patients with non-valvular atrial fibrillation were enrolled during 2013-2014. Of these, 2,221 had type 1 and 58,073 had type 2 diabetes. Patients were followed for all-cause mortality until March 27, 2017, and for myocardial infarction, ischaemic stroke and first-ever diagnosis of heart failure or dementia until December 31, 2015. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using Cox and competing risk regression. RESULTS Using individuals without diabetes as reference (HR = 1), the adjusted HRs in type 1 versus type 2 diabetes were for mortality 1.87 (CI 1.73-2.02) vs. 1.51 (CI 1.47-1.55), heart failure 1.59 (CI 1.42-1.78) vs. 1.41 (CI 1.34-1.48), myocardial infarction 2.49 (CI 2.17-2.85) vs. 1.70 (CI 1.59-1.81), ischaemic stroke 1.59 (CI 1.35-1.87) vs. 1.31 (CI 1.22-1.40) and dementia 1.46 (CI 1.15-1.85) vs. 1.28 (CI 1.18-1.40). Among individuals with type 2 diabetes, those with previous severe hypoglycaemia had increased risk of mortality (HR 1.26; CI 1.17-1.36) and dementia (HR 1.37; CI 1.08-1.73) compared with those without previous severe hypoglycaemia. CONCLUSION Presence of diabetes-regardless of type- in atrial fibrillation is associated with an increased risk of premature death, cardiovascular events and dementia. This increase is more pronounced in type 1 than in type 2 diabetes. A history of severe hypoglycaemia is associated with a worsened prognosis in type 2 diabetes.
Collapse
Affiliation(s)
- Stelios Karayiannides
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden.,Center for Diabetes, Academic Specialist Center, Region Stockholm, Sweden
| | - Anna Norhammar
- Cardiology Unit, Department of Medicine K2, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Physiology, Capio St Görans Hospital, Stockholm, Sweden
| | - Lena Landstedt-Hallin
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Leif Friberg
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Lundman Pia
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden.,Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Han K, Shi D, Yang L, Xie M, Zhong R, Wang Z, Gao F, Ma X, Zhou Y. Diabetes Is Associated With Rapid Progression of Aortic Stenosis: A Single-Center Retrospective Cohort Study. Front Cardiovasc Med 2022; 8:812692. [PMID: 35284496 PMCID: PMC8904744 DOI: 10.3389/fcvm.2021.812692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
Background Mounting evidence indicates that rapid progression of aortic stenosis (AS) is significantly associated with poor prognosis. Whether diabetes accelerates the progression of AS remains controversial. Objectives The purpose of the present study was to investigate whether diabetes was associated with rapid progression of AS. Methods We retrospectively analyzed 276 AS patients who underwent transthoracic echocardiography at least twice with a maximum interval ≥ 180 days from January 2016 to June 2021. AS severity was defined by specific threshold values for peak aortic jet velocity (Vmax) and/or mean pressure gradient. An increase of Vmax ≥ 0.3 m/s/year was defined as rapid progression. The binary Logistic regression models were used to determine the association between diabetes and rapid progression of AS. Results At a median echocardiographic follow-up interval of 614 days, the annual increase of Vmax was 0.16 (0.00–0.41) m/s. Compared with those without rapid progression, patients with rapid progression were older and more likely to have diabetes (P = 0.040 and P = 0.010, respectively). In the univariate binary Logistic regression analysis, diabetes was associated with rapid progression of AS (OR = 2.02, P = 0.011). This association remained significant in the multivariate analysis based on model 2 and model 3 (OR = 1.93, P = 0.018; OR = 1.93, P = 0.022). After propensity score-matching according to Vmax, diabetes was also associated rapid progression of AS (OR = 2.57, P = 0.045). Conclusions Diabetes was strongly and independently associated with rapid progression of AS.
Collapse
Affiliation(s)
- Kangning Han
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Dongmei Shi
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Lixia Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Meng Xie
- Department of Echocardiogram, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Rongrong Zhong
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Zhijian Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Fei Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Xiaoteng Ma
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Yujie Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| |
Collapse
|
48
|
Papazoglou AS, Kartas A, Moysidis DV, Tsagkaris C, Papadakos SP, Bekiaridou A, Samaras A, Karagiannidis E, Papadakis M, Giannakoulas G. Glycemic control and atrial fibrillation: an intricate relationship, yet under investigation. Cardiovasc Diabetol 2022; 21:39. [PMID: 35287684 PMCID: PMC8922816 DOI: 10.1186/s12933-022-01473-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Atrial fibrillation (AF) and diabetes mellitus (DM) constitute two major closely inter-related chronic cardiovascular disorders whose concurrent prevalence rates are steadily increasing. Although, the pathogenic mechanisms behind the AF and DM comorbidity are still vague, it is now clear that DM precipitates AF occurrence. DM also affects the clinical course of established AF; it is associated with significant increase in the incidence of stroke, AF recurrence, and cardiovascular mortality. The impact of DM on AF management and prognosis has been adequately investigated. However, evidence on the relative impact of glycemic control using glycated hemoglobin levels is scarce. This review assesses up-to-date literature on the association between DM and AF. It also highlights the usefulness of glycated hemoglobin measurement for the prediction of AF and AF-related adverse events. Additionally, this review evaluates current anti-hyperglycemic treatment in the context of AF, and discusses AF-related decision-making in comorbid DM. Finally, it quotes significant remaining questions and sets some future strategies with the potential to effectively deal with this prevalent comorbidity.
Collapse
Affiliation(s)
- Andreas S Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece.,Athens Naval Hospital, Athens, Greece
| | - Anastasios Kartas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | | | - Stavros P Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Bekiaridou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Athanasios Samaras
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - George Giannakoulas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece
| |
Collapse
|
49
|
Torp DC, Sandbæk A, Prætorius T. Technology acceptance of video consultations for Type 2 diabetes care in general practice: a cross-sectional survey of Danish general practitioners (Preprint). J Med Internet Res 2022; 24:e37223. [PMID: 36040765 PMCID: PMC9472039 DOI: 10.2196/37223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniel Cæsar Torp
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Annelli Sandbæk
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Thim Prætorius
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
50
|
Calcific aortic valve stenosis and COVID-19: clinical management, valvular damage, and pathophysiological mechanisms. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|