1
|
Chiarlone SA, Gori A, Ravetta S, Armani A, Guardone L, Pedonese F, Bavetta S, Fiannacca C, Pussini N, Maurella C, Razzuoli E. Microbiological Analysis Conducted on Raw Milk Collected During Official Sampling in Liguria (North-West Italy) over a Ten-Year Period (2014-2023). Animals (Basel) 2025; 15:286. [PMID: 39858286 PMCID: PMC11763045 DOI: 10.3390/ani15020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Milk has been consumed by humans for thousands of years for its nutritional properties. In recent years, raw milk demand has increased, valued for its authenticity and connection to local traditions. In Italy, the sale of raw milk is allowed exclusively through direct sale from the producing farm to the final consumer, either at the producing farm itself or through vending machines. However, the consumption of raw milk is not without risks. Among these, microbiological ones are relevant. These can lead to severe symptoms, particularly in vulnerable populations. For this reason, although consumers are advised to boil raw milk before consumption, producing farms in Italy are required to meet the microbiological criteria outlined in the Provision of 25 January 2007. In this retrospective study, the results of the analyses performed on 355 raw milk samples collected in Liguria between 2014 and 2023 for the detection of Campylobacter spp., Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli O157 were analysed to better characterise the associated risk for consumers. The samples were collected during official controls by the local veterinary health services at vending machines of seven producing farms. Overall, six samples tested positive for C. jejuni, while only one sample tested positive for Salmonella enterica subsp. enterica, Serovar Veneziana. Listeria monocytogenes, S. aureus, and E. coli O157 were never responsible for non-compliances. Interestingly, three of the six samples positive for C. jejuni derived from the same producer. In farms where positive samples were detected, certain structural and/or operational non-compliances were identified. It can be concluded that, although the scenario in question does not present any cause for concern, it is nevertheless essential to implement a series of preventive measures in order to guarantee the safety of raw milk. These measures include the implementation of biosecurity practices, the maintenance of strict hygiene protocols during milking, and the adherence to the cold chain distribution protocol until the final stage of distribution.
Collapse
Affiliation(s)
- Sara Antonia Chiarlone
- Section of Ponente Ligure, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Martiri 6, 17056 Savona, SV, Italy; (S.A.C.); (N.P.)
| | - Andrea Gori
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, PI, Italy; (L.G.); (F.P.)
| | - Serena Ravetta
- Section of Genova e Portualità Marittima, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, GE, Italy; (S.R.); (E.R.)
| | - Andrea Armani
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, PI, Italy; (L.G.); (F.P.)
| | - Lisa Guardone
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, PI, Italy; (L.G.); (F.P.)
| | - Francesca Pedonese
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, PI, Italy; (L.G.); (F.P.)
| | - Salvatore Bavetta
- ASL3—Azienda Sociosanitaria Ligure 3, Sistema Sanitario Regionale Liguria, Via San Giovanni Battista n. 48, 16154 Genoa, GE, Italy; (S.B.); (C.F.)
| | - Caterina Fiannacca
- ASL3—Azienda Sociosanitaria Ligure 3, Sistema Sanitario Regionale Liguria, Via San Giovanni Battista n. 48, 16154 Genoa, GE, Italy; (S.B.); (C.F.)
| | - Nicola Pussini
- Section of Ponente Ligure, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Martiri 6, 17056 Savona, SV, Italy; (S.A.C.); (N.P.)
| | - Cristiana Maurella
- Epidemiologia-Sicurezza Alimentare Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 220, 10154 Torino, TO, Italy;
| | - Elisabetta Razzuoli
- Section of Genova e Portualità Marittima, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, GE, Italy; (S.R.); (E.R.)
| |
Collapse
|
2
|
Van der Eycken M, Hertogs K, Willems S, Heyndrickx M, Rasschaert G. A comparison of immersion-based and spray-based crate washing systems on the impact of Campylobacter spp. reduction. Br Poult Sci 2025:1-9. [PMID: 39757851 DOI: 10.1080/00071668.2024.2435013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 01/07/2025]
Abstract
1.During transport of broilers from farms to slaughterhouses, the interior of crates may become contaminated with faeces. When these crates are not cleaned and disinfected adequately, they pose a potential risk for the dissemination of pathogens, including Campylobacter spp., between slaughterhouses and farms.2. The aim of the trial was to compare the efficacy of immersion-based crate washing systems with a spray-based washing system in reducing Campylobacter spp. Therefore, the crate washing systems in two slaughterhouses were sampled. In one of these two slaughterhouses, the immersion-based crate washing system was replaced by a new spray-based system which was sampled. Samples were collected from the slaughterhouse equipment, the crate washing system as well as from the crates both before and after cleaning and disinfection (C&D). All samples were screened for the presence of Campylobacter spp.; water and crate samples were used for enumeration. Molecular typing was performed to investigate the source and routes of contamination.3. In all cases, crates were contaminated with Campylobacter spp. prior to washing. However, only the spray-based system achieved a significant reduction after C&D Molecular typing revealed that the same strains were present on the crates after C&D as before cleaning. Additionally, crates could become contaminated by previously cleaned crates via wash water in the immersion-based crate washing system.
Collapse
Affiliation(s)
- M Van der Eycken
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
- Formerly Employed at Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - K Hertogs
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
- Formerly Employed at Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - S Willems
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - M Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - G Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| |
Collapse
|
3
|
Adhikari Y, Bailey MA, Bourassa DV, Poudel S, Buhr RJ, Macklin KS. A Longitudinal Study on Campylobacter spp. in an Integrated Broiler Complex in the Southeast Region of the United States: Prevalence and Phylogenetic Analysis. J Food Prot 2025; 88:100420. [PMID: 39613029 DOI: 10.1016/j.jfp.2024.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Poultry meat products are considered the major contributors to Campylobacteriosis in humans. The objective of this study was to determine the prevalence status, critical entry points, and movement patterns of Campylobacter spp. along different stages of an integrated broiler complex. To isolate bacteria and perform phylogenetic analysis, a total of 790 environmental samples were collected from 38 production houses, a hatchery, 6 transport trucks, and a processing plant of a commercial broiler complex. Odds ratio and 95% confidence intervals were compared among different stages and sample types (α = 0.05). Altogether 17% (137/790) of samples and 61% (23/38) of production houses were positive for Campylobacter spp. Similarly, 34% (46/135) of samples were identified as Campylobacter jejuni (C. jejuni), and 61% (83/135) were identified as Campylobacter coli (C. coli). The odds of Campylobacter spp. detection in broiler farms' surroundings were 4 times (1.88-8.26; 95% CLs) more likely as compared to parent pullets and breeder farms' surroundings (p = 0.0004). Similarly, among different sample types, the odds of Campylobacter spp. detection in boot swabs and sponge-stick swabs were more likely as compared to fly paper samples (p ≤ 0.0024). In addition, the odds of Campylobacter spp. detection in postpick whole carcass rinses were 4 times (1.99-7.59; 95% CLs) more likely as compared to postchill carcass rinses (p = 0.0004). The phylogeny results of both C. jejuni and C. coli indicate multiple critical entry points of bacterial strains along the chain and suggest the possibility of transmission of Campylobacter spp. from broiler grow-out flocks through transport and to final raw products (29%) in the processing plant. The results indicate potential risks of foodborne infections in consumers from ingestion of contaminated raw or undercooked poultry meat. Therefore, a comprehensive control strategy may be essential to reduce or eliminate Campylobacter spp. or other zoonotic pathogens from the poultry food chain.
Collapse
Affiliation(s)
- Yagya Adhikari
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Matthew A Bailey
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Dianna V Bourassa
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Sabin Poudel
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Richard J Buhr
- USDA ARS Poultry Microbiological Safety and Processing Research Unit, Athens, Georgia, USA
| | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, Starkville, Mississippi, USA.
| |
Collapse
|
4
|
Gonzales BL, Ho-Palma AC, Andrade DA, Antay C, Valdivia-Carrera CA, Crotta M, Limon G, Gonzalez A, Guitian J, Gonzales-Gustavson E. Campylobacter spp. in chicken meat from traditional markets in Peru and its impact measured through a quantitative microbiological risk assessment. Food Res Int 2025; 200:115424. [PMID: 39779164 DOI: 10.1016/j.foodres.2024.115424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Campylobacter is a major cause of foodborne gastroenteritis worldwide, with the mishandling of contaminated chicken meat among the main pathways for human infection. Granted the disease burden due to this pathogen, systematic assessments of its potential impact are necessary. The aims of this study were to evaluate both presence and load of Campylobacter in chicken meat sold in traditional markets, assess risk factors related with the infrastructure and hygienic conditions of market stalls, and evaluate control strategies for campylobacteriosis in Peru through a quantitative microbiological risk assessment (QMRA), a data-driven, systematic approach to quantitatively assess risks by integrating empirical contamination levels, microbial behavior, and consumer exposure. Between February and December 2022, a total of 90 chicken meat samples from traditional markets were sampled and evaluated by both culture and quantitative real-time polymerase chain reaction (qPCR). Campylobacter spp. were detected in 28 % and 76 % of samples with a mean quantification of 3.3 log10 CFU/g and 4.9 log10 GC/g through culture and qPCR, respectively. Market stalls with tap water showed higher prevalence and loads, while those without refrigeration had higher quantifications. The QMRA analysis, using the most conservative parameters and bacterial load, indicated that the entire modeled population develops campylobacteriosis at least once annually. These results highlight the public health impact of Campylobacter, potentially linked to the alarming number of Guillain-Barré syndrome cases observed in Peru. Our study suggests that consumer-level interventions, such as reducing kitchen cross-contamination and improving chicken meat storage, could substantially reduce campylobacteriosis cases in this population.
Collapse
Affiliation(s)
- Brenda L Gonzales
- School of Medicine, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres 15102, Lima 41, Peru.
| | - Ana C Ho-Palma
- Department of Human Medicine, School of Human Medicine, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909, Huancayo 12006, Peru.
| | - Daniel A Andrade
- Department of Animal and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja 15021, Lima 41, Peru; Tropical and Highlands Veterinary Research Institute, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Jauja, 12150, Peru.
| | - Cristina Antay
- Department of Animal and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja 15021, Lima 41, Peru.
| | - Cesar A Valdivia-Carrera
- Department of Animal and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja 15021, Lima 41, Peru; Tropical and Highlands Veterinary Research Institute, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Jauja, 12150, Peru.
| | - Matteo Crotta
- Veterinary Epidemiology, Economics and Public Health Group, WOAH Collaborating Centre for Risk Analysis and Modelling, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom; European Food Safety Authority (EFSA), Via Carlo Magno, 43126, Parma, Italy.
| | - Georgina Limon
- Veterinary Epidemiology, Economics and Public Health Group, WOAH Collaborating Centre for Risk Analysis and Modelling, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom.
| | - Armando Gonzalez
- Department of Animal and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja 15021, Lima 41, Peru.
| | - Javier Guitian
- Veterinary Epidemiology, Economics and Public Health Group, WOAH Collaborating Centre for Risk Analysis and Modelling, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom.
| | - Eloy Gonzales-Gustavson
- Department of Animal and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja 15021, Lima 41, Peru; Tropical and Highlands Veterinary Research Institute, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Jauja, 12150, Peru; Global Health Center, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres 15102, Lima 41, Peru.
| |
Collapse
|
5
|
Marmion M, Macori G, Barroug S, Soro AB, Bourke P, Tiwari BK, Whyte P, Scannell AGM. Added insult to injury? The response of meat-associated pathogens to proposed antimicrobial interventions. Appl Microbiol Biotechnol 2024; 108:87. [PMID: 38189954 PMCID: PMC10774175 DOI: 10.1007/s00253-023-12849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024]
Abstract
Modern requirements for 'green label' meat products have led to the design of novel antimicrobial innovations which prioritise quality, safety and longevity. Plasma-functionalised water (PFW), ultraviolet light and natural antimicrobial compositions have been investigated and optimised for control of foodborne pathogens like Campylobacter jejuni and Salmonella enterica serovar Typhimurium. However, given the adaptive mechanisms present in bacteria under external stresses, it is imperative to understand the effect that sublethal treatment may have on the bacterial transcriptome. In this study, Salmonella Typhimurium and C. jejuni were treated with sublethal doses of ultraviolet light, a citrus juice/essential oil marinade, and 'spark' or 'glow' cold plasma generation system-produced PFW. Immediately after treatment, cells were lysed and RNA was extracted and purified. mRNA was converted to cDNA by reverse transcription-PCR and sequenced by an Illumina MiSeq® system. Sequences were filtered and analysed using the Tuxedo workflow. Sublethal treatment of Campylobacter jejuni and Salmonella Typhimurium led to increased immediate cellular and metabolic activity, as well as diversification in protein and metabolic functioning. There was further expression of pathogenesis and virulence-associated traits associated with spark PFW and marinade treatment of Salmonella Typhimurium. However, similar concerns were not raised with glow PFW or UV-treated samples. This study provides science-based evidence of the efficacy of multi-hurdle antimicrobial system using green-label marinades and PFW or UV to inactivate pathogens without upregulating virulence traits in surviving cells. This study will inform policymakers and food industry stakeholders and reinforces the need to incorporate in-line novel technologies to ensure consumer safety. KEY POINTS: • Salmonella and C. jejuni showed increased cell activity in immediate response to stress. • Virulence genes showed increased expression when treated with natural antimicrobials and sPFW. • Reduced immediate transcriptomic response to gPFW and UV treatment indicates lower risk.
Collapse
Affiliation(s)
- Maitiú Marmion
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland.
- UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland.
| | - Guerrino Macori
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
- UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Soukaina Barroug
- UCD School of Biosystems and Engineering, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Arturo B Soro
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K, Ireland
| | - Paula Bourke
- UCD School of Biosystems and Engineering, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
- UCD Centre for Food Safety, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, D04V4W8, Ireland
| |
Collapse
|
6
|
Delanglez F, Watteyn A, Ampe B, Garmyn A, Delezie E, Antonissen G, Sleeckx N, Kempen I, Demaître N, Van Meirhaeghe H, Tuyttens FAM. Survey of Flemish Poultry Farmers on How Birds Fit for Transport to the Slaughterhouse Are Selected, Caught, and Crated and Their Opinions Regarding the Pre-Transport Process. Animals (Basel) 2024; 14:3241. [PMID: 39595294 PMCID: PMC11591035 DOI: 10.3390/ani14223241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The pre-transport phase induces stress, fear, and injury in poultry, but management choices greatly influence this. Pre-transport practices for spent hens and broilers in Flanders (Belgium) were studied. Poultry farmers (31 of 156 layers and 48 of 203 broiler farmers completed the survey) were surveyed on the selection of unfit chickens, catching and crating, and farmer opinion. A minority of farmers made a specific selection of chickens unfit for transport prior to catching (layers 25%: 5.1 ± 5.9 h, broilers 39%: 6.8 ± 7.0 h). More layer (69%) than broiler farmers (19%) withdrew feed too early (EU regulations stipulate max. 12 h before expected slaughter time). Layer farmers withdrew water earlier than broiler farmers (47.9 ± 51.1 min vs. 20.6 ± 23.3 min). More broiler than layer farmers believed that the container type affects the birds' welfare (48% vs. 27%; p < 0.05). On broiler farms, mechanical catching was preferred for catchers' well-being, while upright catching was considered better for animal welfare than catching more than three chickens by one/two legs, wings, or mechanically. Poultry farmers should be sensitized about the need for additional selection before catching, including clear guidelines about judging which birds are fit for transport.
Collapse
Affiliation(s)
- Femke Delanglez
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (F.D.); (A.W.); (B.A.); (E.D.)
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Anneleen Watteyn
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (F.D.); (A.W.); (B.A.); (E.D.)
| | - Bart Ampe
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (F.D.); (A.W.); (B.A.); (E.D.)
| | - An Garmyn
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Evelyne Delezie
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (F.D.); (A.W.); (B.A.); (E.D.)
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Nathalie Sleeckx
- Experimental Poultry Centre, 2440 Geel, Belgium; (N.S.); (I.K.); (N.D.)
| | - Ine Kempen
- Experimental Poultry Centre, 2440 Geel, Belgium; (N.S.); (I.K.); (N.D.)
| | - Niels Demaître
- Experimental Poultry Centre, 2440 Geel, Belgium; (N.S.); (I.K.); (N.D.)
| | | | - Frank André Maurice Tuyttens
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (F.D.); (A.W.); (B.A.); (E.D.)
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| |
Collapse
|
7
|
Führ CA, Giombelli A, Cerutti MF, Bergmann GP, Kindlein L. Comparative Analysis of Quantitative Methods for Campylobacter spp. Quantification: ISO 10272-2:2017, Tempo ® and Real-Time PCR in Refrigerated and Frozen Turkey Cuts. Foods 2024; 13:3359. [PMID: 39517146 PMCID: PMC11544863 DOI: 10.3390/foods13213359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
New technologies for more effective microbiological assays are being adopted by the food industry to intervene more rapidly in its production chain. The aim of this study was to evaluate the alternative methods of TEMPO® CAM and real-time PCR (rtPCR) Biotecon® in comparison with the ISO 10272-2:2017 reference method for Campylobacter spp. quantification in turkey meat, aiming to validate a quick and easily replicable method in these meat matrices. A total of 416 samples were analyzed over a one-year period. The TEMPO® methodology showed inadequate performance with a significant difference (p < 0.05) compared with the reference methodology; therefore, its use was not recommended for turkey meat matrices. However, the performance of the rtPCR Biotecon® methodology showed adequate performance with no significant difference (p > 0.05), and its use was recommended in turkey meat matrices. The study was limited to exclusive research in turkey meat matrices, and expansion of the research into other matrices is recommended to verify whether the behavior of alternative methodologies is similar. The findings of this study illustrate the necessity for a thorough and comprehensive evaluation during the implementation of alternative methodologies that may potentially supplant conventional approaches.
Collapse
Affiliation(s)
- Carlos Alberto Führ
- Postgraduate Program in Foods of Animal Origin, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil;
| | | | | | - Guiomar Pedro Bergmann
- Department of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| | - Liris Kindlein
- Department of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| |
Collapse
|
8
|
Habib I, Mohamed MYI, Lakshmi GB, Al Marzooqi HM, Afifi HS, Shehata MG, Khan M, Ghazawi A, Abdalla A, Anes F. Quantitative assessment and genomic profiling of Campylobacter dynamics in poultry processing: a case study in the United Arab Emirates integrated abattoir system. Front Microbiol 2024; 15:1439424. [PMID: 39296292 PMCID: PMC11408311 DOI: 10.3389/fmicb.2024.1439424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
In the United Arab Emirates, no previous research has investigated the dynamics of the foodborne pathogen Campylobacter in broiler abattoir processing. This study conducted in one of the largest poultry producers in the UAE, following each key slaughter stage-defeathering, evisceration, and final chilling-five broiler carcasses were collected from 10 slaughter batches over a year. Additionally, one caecum was obtained from 15 chickens in each slaughter batch to evaluate the flock colonization. In total, 300 samples (150 carcasses and 150 caeca) were collected and enumerated for Campylobacter using standard methods. Campylobacter was pervasive in caecal samples from all slaughter batches, with 86% of carcasses post-defeathering and evisceration stages and 94% post-chilling tested positive for Campylobacter. Campylobacter coli predominates in 55.2% of positive samples, followed by Campylobacter jejuni in 21%, with both species co-existing in 23.8% of the samples. Campylobacter counts in caecal contents ranged from 6.7 to 8.5 log10 CFU/g, decreasing post-defeathering and evisceration to 3.5 log10 CFU/g of neck skin and further to 3.2 log10 CFU/g of neck skin post-evisceration. After chilling, 70% of carcasses exceeded 3 log10 CFU/g of neck skin. Whole-genome sequencing (WGS) of 48 isolates unveiled diverse sequence types and clusters, with isolates sharing the same clusters (less than 20 single nucleotide polymorphisms) between different farms, different flocks within the same farm, as well as in consecutive slaughter batches, indicating cross-contamination. Multiple antimicrobial resistance genes and mutations in gyrA T86I (conferring fluoroquinolone resistance) and an RNA mutation (23S r.2075; conferring macrolide resistance) were widespread, with variations between C. coli and C. jejuni. WGS results revealed that selected virulence genes (pglG, pseD, pseI, flaA, flaB, cdtA, and cdtC) were significantly present in C. jejuni compared to C. coli isolates. This study offers the first insights into Campylobacter dynamics in poultry processing in the UAE. This work provides a base for future research to explore additional contributors to Campylobacter contamination in primary production. In conclusion, effective Campylobacter management demands a comprehensive approach addressing potential contamination sources at every production and processing stage, guided by continued microbiological surveillance and genomic analysis to safeguard public health and food safety.
Collapse
Affiliation(s)
- Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed-Yousif Ibrahim Mohamed
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Glindya Bhagya Lakshmi
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hassan Mohamed Al Marzooqi
- Food Research Section, Applied Research and Capacity Building Division, Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Hanan Sobhy Afifi
- Food Research Section, Applied Research and Capacity Building Division, Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Mohamed Gamal Shehata
- Food Research Section, Applied Research and Capacity Building Division, Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTACITY), Alexandria, Egypt
| | - Mushtaq Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Abdalla
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Febin Anes
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Kim M, Barnett-Neefs C, Chavez RA, Kealey E, Wiedmann M, Stasiewicz MJ. Risk Assessment Predicts Most of the Salmonellosis Risk in Raw Chicken Parts is Concentrated in Those Few Products with High Levels of High-Virulence Serotypes of Salmonella. J Food Prot 2024; 87:100304. [PMID: 38777091 DOI: 10.1016/j.jfp.2024.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Salmonella prevalence declined in U.S. raw poultry products since adopting prevalence-based Salmonella performance standards, but human illnesses did not reduce proportionally. We used Quantitative Microbial Risk Assessment (QMRA) to evaluate public health risks of raw chicken parts contaminated with different levels of all Salmonella and specific high- and low-virulence serotypes. Lognormal Salmonella level distributions were fitted to 2012 USDA-FSIS Baseline parts survey and 2023 USDA-FSIS HACCP verification sampling data. Three different Dose-Response (DR) approaches included (i) a single DR for all serotypes, (ii) DR that reduces Salmonella Kentucky ST152 virulence, and (iii) multiple serotype-specific DR models. All scenarios found risk concentrated in the few products with high Salmonella levels. Using a single DR model with Baseline data (μ = -3.19, σ = 1.29 Log CFU/g), 68% and 37% of illnesses were attributed to the 0.7% and 0.06% of products with >1 and >10 CFU/g Salmonella, respectively. Using distributions from 2023 HACCP data (μ = -5.53, σ = 2.45), 99.8% and 99.0% of illnesses were attributed to the 1.3% and 0.4% of products with >1 and >10 CFU/g Salmonella, respectively. Scenarios with serotype-specific DR models showed more concentrated risk at higher levels. Baseline data showed 92% and 67% and HACCP data showed >99.99% and 99.96% of illnesses attributed to products with >1 and >10 CFU/g Salmonella, respectively. Regarding serotypes using Baseline or HACCP input data, 0.002% and 0.1% of illnesses were attributed to the 0.2% and 0.4% of products with >1 CFU/g of Kentucky ST152, respectively, while 69% and 83% of illnesses were attributed to the 0.3% and 0.6% of products with >1 CFU/g of Enteritidis, Infantis, or Typhimurium, respectively. Therefore, public health risk in chicken parts is concentrated in finished products with high levels and specifically high levels of high-virulence serotypes. Low-virulence serotypes like Kentucky contribute few human cases.
Collapse
Affiliation(s)
- Minho Kim
- Dept. of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S Goodwin Ave., Urbana, IL 61801, USA
| | - Cecil Barnett-Neefs
- Dept. of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S Goodwin Ave., Urbana, IL 61801, USA
| | - Ruben A Chavez
- Dept. of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S Goodwin Ave., Urbana, IL 61801, USA
| | - Erin Kealey
- Dept. of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S Goodwin Ave., Urbana, IL 61801, USA
| | - Martin Wiedmann
- Dept. of Food Science, Cornell University, 341 Stocking Hall, Ithaca, NY 14853, USA
| | - Matthew J Stasiewicz
- Dept. of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905 S Goodwin Ave., Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Xie K, Lin B, Sun X, Zhu P, Liu C, Liu G, Cao X, Pan J, Qiu S, Yuan X, Liang M, Jiang J, Yuan L. Identification and classification of the genomes of novel microviruses in poultry slaughterhouse. Front Microbiol 2024; 15:1393153. [PMID: 38756731 PMCID: PMC11096546 DOI: 10.3389/fmicb.2024.1393153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Microviridae is a family of phages with circular ssDNA genomes and they are widely found in various environments and organisms. In this study, virome techniques were employed to explore potential members of Microviridae in a poultry slaughterhouse, leading to the identification of 98 novel and complete microvirus genomes. Using a similarity clustering network classification approach, these viruses were found to belong to at least 6 new subfamilies within Microviridae and 3 higher-level taxonomic units. Genome size, GC content and genome structure of these new taxa showed evident regularities, validating the rationality of our classification method. Our method can divide microviruses into about 45 additional detailed clusters, which may serve as a new standard for classifying Microviridae members. Furthermore, by addressing the scarcity of host information for microviruses, the current study significantly broadened their host range and discovered over 20 possible new hosts, including important pathogenic bacteria such as Helicobacter pylori and Vibrio cholerae, as well as different taxa demonstrated different host specificities. The findings of this study effectively expand the diversity of the Microviridae family, providing new insights for their classification and identification. Additionally, it offers a novel perspective for monitoring and controlling pathogenic microorganisms in poultry slaughterhouse environments.
Collapse
Affiliation(s)
- Keming Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Benfu Lin
- Huadu District Animal Health Supervision Institution, Guangzhou, Guangdong, China
| | - Xinyu Sun
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Peng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Chang Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Guangfeng Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Jingqi Pan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Suiping Qiu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaoqi Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mengshi Liang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jingzhe Jiang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Wurtz KE, Herskin MS, Riber AB. Water deprivation in poultry in connection with transport to slaughter-a review. Poult Sci 2024; 103:103419. [PMID: 38484564 PMCID: PMC10950878 DOI: 10.1016/j.psj.2023.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 03/24/2024] Open
Abstract
Poultry are deprived of water when transported to slaughter, beginning shortly prior to catching of the first bird and lasting through catching and loading, the journey on the vehicle, time spent in lairage, and up until time of death. Our aim was to review existing knowledge on variables which may be useful in determining the length of time that poultry may go without water in connection with transport before their welfare begins to deteriorate. During transport, it is likely that birds experience a motivation to drink, which may transition into the negative emotional state of thirst if water is unavailable. Determining when drinking motivation reaches a threshold where welfare is negatively impacted is challenging. In the absence of water, birds may over time experience dehydration which may be detected through physiological indicators as their body attempts to maintain homeostasis. In poultry, plasma osmolality, arginine vasotocin, and chloride have been suggested as being most suitable for assessing dehydration resulting from periods of water deprivation that correspond with typical transport durations, due to their particular sensitivity during this period. While initial dehydration may not be associated with negative emotional states, it is likely that it eventually leads to discomfort, but additional behavioral and motivational studies are necessary to infer when this begins. Impacts of thermal conditions, genetics, and the condition of the individual bird on the development of a dehydrated state were also assessed, though more information is needed to fully understand these interactions. With the available literature, this review concludes that total transport (i.e., from the initial deprivation from water until time of slaughter) durations of longer than 6 h are likely associated with measurable physiological indicators of dehydration and may potentially be associated with negative emotional states, although more research is needed to clarify this. Current available knowledge and assessment tools are not sufficient to detect the degradation of welfare derived from thirst itself, which should be further examined to protect poultry welfare during transport.
Collapse
Affiliation(s)
- K E Wurtz
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark.
| | - M S Herskin
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - A B Riber
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| |
Collapse
|
12
|
Ssemanda JN, den Besten HMW, van Wagenberg CPA, Zwietering MH. Quantitative assessment of food safety interventions for Campylobacter spp. and Salmonella spp. along the chicken meat supply chain in Burkina Faso and Ethiopia. Int J Food Microbiol 2024; 415:110637. [PMID: 38422679 DOI: 10.1016/j.ijfoodmicro.2024.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Rural and small-scale chicken farming is a major source of income in most African countries, and chicken meat is an important source of nutrients. However, chicken meat can be contaminated with Campylobacter spp. and Salmonella spp., pathogens with a high reported burden of foodborne illnesses. Therefore, it is essential to control these pathogens in chicken meat. Quantitative microbial risk assessments (QMRA) can aid the development of effective food safety control measures and are currently lacking in chicken meat supply chains in the African context. In this study, we developed stochastic QMRA models for Salmonella spp. and Campylobacter spp. in the chicken meat supply chain in Burkina Faso and Ethiopia employing the modular process risk model in @Risk software. The study scope covered chicken farming, transport, slaughtering, consumer handling, and consumption. Effectiveness of candidate interventions was assessed against baseline models' outputs, which showed that the mean annual Campylobacter spp. risk estimates were 6482 cases of illness per 100,000 persons and 164 disability adjusted life years (DALYs) per 100,000 persons in Burkina Faso, and 12,145 cases and 272 DALYs per 100,000 persons in Ethiopia. For Salmonella spp., mean annual estimates were 2713 cases and 1212 DALYs per 100,000 persons in Burkina Faso, and 4745 cases and 432 DALYs per 100,000 persons in Ethiopia. Combining interventions (improved hand washing plus designated kitchen utensils plus improved cooking) resulted in 75 % risk reduction in Burkina Faso at restaurants and 93 to 94 % in Ethiopia at homes for both Salmonella spp. and Campylobacter spp. For Burkina Faso, adding good hygienic slaughter practices at the market to these combined interventions led to over 91 % microbial risk reduction. Interventions that involved multiple food safety actions in a particular step of the supply chain or combining different interventions from different steps of the supply chain resulted in more risk reduction than individual action interventions. Overall, this study demonstrates how diverse and scanty food supply chain information can be applied in QMRA to provide estimates that can be used to stimulate risk-based food safety action in African countries.
Collapse
Affiliation(s)
- James Noah Ssemanda
- Food Microbiology, Wageningen University & Research, 17, 6700 AA Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, 17, 6700 AA Wageningen, the Netherlands
| | - Coen P A van Wagenberg
- Wageningen Economic Research, Wageningen University & Research, 2970, 2502 LS, The Hague, the Netherlands
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
13
|
Beterams A, Püning C, Wyink B, Grosse-Kleimann J, Gölz G, Schönknecht A, Alter T, Reich F. Status quo: Levels of Campylobacter spp. and hygiene indicators in German slaughterhouses for broiler and turkey. Int J Food Microbiol 2024; 414:110610. [PMID: 38330527 DOI: 10.1016/j.ijfoodmicro.2024.110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/22/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Poultry is a common reservoir for Campylobacter and a main source for human campylobacteriosis. With broiler being the predominant poultry for food production, most food safety related research is conducted for this species, for turkey, few studies are available. Although animals are typically colonized at the farm level, the slaughtering process is considered an important factor in re- and cross-contamination. We examined the development of Campylobacter, E. coli and total colony counts (TCC) after several processing steps in three broiler and one turkey slaughterhouses. Whole carcass rinsing and neck skin sampling was applied for broilers resulting in 486 samples in total, while 126 neck skin samples were collected for turkeys. A decrease in the loads of the different bacterial groups along the broiler slaughtering process was observed. Campylobacter mean counts dropped from 4.5 ± 1.7 log10 CFU/ml after killing to 1.6 ± 0.4 log10 CFU/ml after chilling. However, an increase in Campylobacter counts was evident after evisceration before the values again decreased by the final processing step. Although the Campylobacter prevalence in the turkey samples showed a similar development, the bacterial loads were much lower with 1.7 ± 0.3 log10 CFU/g after killing and 1.7 ± 0.4 log10 CFU/g after chilling compared to those of broilers. The loads of E. coli and total colony count of turkey were higher after killing, were reduced by scalding and remained stable until after chilling. This study highlights trends during the slaughtering process in reducing the levels of Campylobacter, E. coli, and total colony counts for broiler and turkey carcasses, from the initial step to after chilling. These results contribute to our understanding of microbial dynamics during meat processing.
Collapse
Affiliation(s)
- A Beterams
- German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, D-10589 Berlin, Germany
| | - C Püning
- Institute of Food Safety and Food Hygiene, Center for Veterinary Public Health, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - B Wyink
- Frankenförder Forschungsgesellschaft, Potsdamer Straße 18a, 14943 Luckenwalde, Germany
| | - J Grosse-Kleimann
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Bünteweg 2, 30559 Hannover, Germany
| | - G Gölz
- Institute of Food Safety and Food Hygiene, Center for Veterinary Public Health, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - A Schönknecht
- Institute of Food Safety and Food Hygiene, Center for Veterinary Public Health, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - T Alter
- Institute of Food Safety and Food Hygiene, Center for Veterinary Public Health, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - F Reich
- German Federal Institute for Risk Assessment, Max-Dohrn-Strasse 8-10, D-10589 Berlin, Germany.
| |
Collapse
|
14
|
Zhang X, Tang M, Zhou Q, Lu J, Zhang H, Tang X, Ma L, Zhang J, Chen D, Gao Y. A broad host phage, CP6, for combating multidrug-resistant Campylobacter prevalent in poultry meat. Poult Sci 2024; 103:103548. [PMID: 38442560 DOI: 10.1016/j.psj.2024.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Campylobacter is a major cause of bacterial foodborne diarrhea worldwide. Consumption of raw or undercooked chicken meat contaminated with Campylobacter is the most common causative agent of human infections. Given the high prevalence of contamination in poultry meat and the recent rise of multi-drug-resistant (MDR) Campylobacter strains, an effective intervention method of reducing bird colonization is needed. In this study, the Campylobacter-specific lytic phage CP6 was isolated from chicken feces. Phage CP6 exhibited a broad host range against different MDR Campylobacter isolates (97.4% of strains were infected). Some biological characteristics were observed, such as a good pH (3-9) stability and moderate temperature tolerance (<50 ℃). The complete genome sequence revealed a linear double-stranded DNA (178,350 bp, group II Campylobacter phage) with 27.51% GC content, including 209 predicted open reading frames, among which only 54 were annotated with known functions. Phylogenetic analysis of the phage major capsid protein demonstrated that phage CP6 was closely related to Campylobacter phage CPt10, CP21, CP20, IBB35, and CP220. CP6 phage exerted good antimicrobial effects on MDR Campylobacter in vitro culture and reduced CFUs of the host cells by up to 1-log compared with the control in artificially contaminated chicken breast meat. Our findings suggested the potential of CP6 phage as a promising antimicrobial agent for combating MDR Campylobacter in food processing.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Qian Zhou
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Junxian Lu
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xiujun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Lina Ma
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Jing Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Dawei Chen
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Yushi Gao
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
15
|
Stevens MJA, Stephan R, Horlbog JA, Cernela N, Nüesch-Inderbinen M. Whole genome sequence-based characterization of Campylobacter isolated from broiler carcasses over a three-year period in a big poultry slaughterhouse reveals high genetic diversity and a recurring genomic lineage of Campylobacter jejuni. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 119:105578. [PMID: 38417639 DOI: 10.1016/j.meegid.2024.105578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Campylobacter is among the most frequent agents of bacterial gastroenteritis in Europe and is primarily linked to the consumption of contaminated food. The aim of this study was to assess genomic diversity and to identify antimicrobial resistance and virulence genes of 155 Campylobacter isolated from broiler carcasses (neck skin samples) in a large-scale Swiss poultry abattoir over a three-year period. Samples originated from broilers from three different types of farming systems (particularly animal-friendly stabling (PAFS), free-range farms, and organic farms). Campylobacter jejuni (n = 127) and Campylobacter coli (n = 28) were analysed using a whole genome sequencing (WGS) approach (MiniSeq; Illumina). Sequence types (STs) were determined in silico from the WGS data and isolates were assigned into complex types (CTs) using the cgMLST SeqSphere+ scheme. Antimicrobial resistance genes were identified using the Resistance Gene Identifier (RGI), and virulence genes were identified using the virulence factor database (VFDB). A high degree of genetic diversity was observed. Many sequence types (C. jejuni ST19, ST21, ST48, ST50, ST122, ST262 and C. coli ST827) occurred more than once and were distributed throughout the study period, irrespective of the year of isolation and of the broiler farming type. Antimicrobial resistance determinants included blaOXA and tet(O) genes, as well as the T86I substitution within GyrA. Virulence genes known to play a role in human Campylobacter infection were identified such as the wlaN, cstIII, neuA1, neuB1, and neuC1. Subtyping of the Campylobacter isolates identified the occurrence of a highly clonal population of C. jejuni ST21 that was isolated throughout the three-year study period from carcasses from farms with geographically different locations and different farming systems. The high rate of genetic diversity observed among broiler carcass isolates is consistent with previous studies. The identification of a persisting highly clonal C. jejuni ST21 subtype suggests that the slaughterhouse may represent an environment in which C. jejuni ST21 may survive, however, the ecological reservoir potentially maintaining this clone remains unknown.
Collapse
Affiliation(s)
- Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Jule Anna Horlbog
- National Reference Centre for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Magdalena Nüesch-Inderbinen
- National Reference Centre for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Leone C, Xu X, Mishra A, Thippareddi H, Singh M. Interventions to reduce Salmonella and Campylobacter during chilling and post-chilling stages of poultry processing: a systematic review and meta-analysis. Poult Sci 2024; 103:103492. [PMID: 38335673 PMCID: PMC10864810 DOI: 10.1016/j.psj.2024.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Salmonella and Campylobacter are common bacterial hazards causing foodborne illnesses worldwide. A large proportion of Salmonella and Campylobacter illnesses are attributed to contaminated poultry products that are mishandled or under cooked. Processing interventions such as chilling and post-chill dip are critical to reducing microbial contamination of poultry. A comprehensive search of the literature published between 2000 and 2021 was conducted in the databases Web of Science, Academic Search Complete, and Academic OneFile. Studies were included if they were in English and investigated the effects of interventions against Salmonella and/or Campylobacter on whole carcasses and/or parts during the chilling or post-chill stages of poultry processing. Random-effects meta-analyses were performed using the "meta" package in the R programming language. Subgroup analyses were assessed according to outcome measure reported, microorganism tested, processing stage assessed, and chemical treatment used. The results included 41 eligible studies. Eighteen studies reported results of 28 separate interventions against Salmonella and 31 reported results of 50 separate interventions against Campylobacter. No significant difference (P> 0.05) was observed when comparing the combined mean difference of all interventions targeting Salmonella to the combined mean difference of all interventions targeting Campylobacter or when comparing chilling times within each pathogen subgroup. For analyses examining antimicrobial additives, peroxyacetic acid (PAA) had the largest reduction against Salmonella population regardless of chilling time (P< 0.05). PAA also had the largest reduction against Campylobacter population and prevalence during primary chilling (P< 0.01). Air chilling showed a lower reduction for Campylobacter than any immersion chilling intervention (P< 0.05). Chilling time and antimicrobial used during poultry processing had varying effects depending on the pathogen and outcome measure investigated (concentration or prevalence). High heterogeneity and low sample numbers in most analyses suggest that more high-quality research that is well-designed and has transparent reporting of methodology and results is needed to corroborate the results.
Collapse
Affiliation(s)
- Cortney Leone
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Xinran Xu
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | | | - Manpreet Singh
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
17
|
Wang J, Vaddu S, Bhumanapalli S, Mishra A, Applegate T, Singh M, Thippareddi H. A systematic review and meta-analysis of the sources of Campylobacter in poultry production (preharvest) and their relative contributions to the microbial risk of poultry meat. Poult Sci 2023; 102:102905. [PMID: 37516002 PMCID: PMC10405099 DOI: 10.1016/j.psj.2023.102905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 07/31/2023] Open
Abstract
A systematic review and meta-analysis were conducted to idetnify the relative contributions of the sources of Campylobacter in poultry live production to Campylobacter prevalence of broiler meat. The keywords of Campylobacter, prevalence, live production, and broiler were used in Google Scholar to address the research interest. A total of 16,800 citations were identified, and 63 relevant citations were included in the meta-analysis after applying predetermined inclusion and exclusion criteria. A generalized linear mixed model approach combined with logit transformation was used in the current meta-analysis to stabilize the variance. The analysis revealed that Campylobacter is ubiquitous in the poultry house exterior environment including surroundings, wildlife, domestic animals, and farm vehicle, with a predicted prevalence of 14%. The recovery of Campylobacter in the interior environment of the poultry house is far less abundant than in the exterior, with a prevalence of 2%, including litter, water, insects, mice, feed, and air. A lack of evidence was observed for vertical transmission due to the day-old chicks being free of Campylobacter from 4 studies identified. Live birds are the predominant carrier of Campylobacter, with a predicted prevalence of 41%. Transportation equipment used for live haul had an overall prevalence of 39%, with vehicles showing a predicted prevalence of 44% and crates with a predicted prevalence of 22%. The results of this meta-analysis highlight the need to implement effective biosecurity measures to minimize the risk of Campylobacter in poultry meat, as human activity appears to be the primary factor for Campylobacter introduction.
Collapse
Affiliation(s)
- J Wang
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - S Vaddu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - S Bhumanapalli
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - A Mishra
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - T Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - M Singh
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - H Thippareddi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
El-Saadony MT, Saad AM, Yang T, Salem HM, Korma SA, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Selim S, Al Jaouni SK, Zaghloul RA, Abd El-Hack ME, El-Tarabily KA, Ibrahim SA. Avian campylobacteriosis, prevalence, sources, hazards, antibiotic resistance, poultry meat contamination, and control measures: a comprehensive review. Poult Sci 2023; 102:102786. [PMID: 37454641 PMCID: PMC10371856 DOI: 10.1016/j.psj.2023.102786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023] Open
Abstract
Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia, 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, 27411-1064
| |
Collapse
|
19
|
Dhaka P, Chantziaras I, Vijay D, Bedi JS, Makovska I, Biebaut E, Dewulf J. Can Improved Farm Biosecurity Reduce the Need for Antimicrobials in Food Animals? A Scoping Review. Antibiotics (Basel) 2023; 12:893. [PMID: 37237795 PMCID: PMC10215210 DOI: 10.3390/antibiotics12050893] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Limited and judicious antimicrobial usage (AMU) is considered the key to saving the success of human and veterinary medicine in treating infections. With the limited alternatives for antimicrobials, farm biosecurity (and herd management) is considered a promising tool to mitigate the non-judicious AMU and to maintain animal health, production, and welfare. The present scoping review aims to analyse the effect of farm biosecurity on AMU in livestock systems and formulate recommendations. Peer-reviewed manuscripts published between 2001-2022 were analyzed using the PRISMA framework using PubMed, Scopus, and Science Direct databases. After applying the inclusion criteria, 27 studies were found to assess the effect of farm biosecurity (or management practices) on AMU at the herd/farm level in quantitative/semi-quantitative terms. These studies were carried out in 16 countries, of which 74.1% (20/27) were from 11 European countries. The highest number of studies were from pig farms [51.8% (14/27)], followed by poultry (chicken) farms [25.9% (7/27)], cattle farms [11.1% (3/27)], and a single study from a turkey farm. Two studies include both pig and poultry farms. Most of the studies were cross-sectional [70.4% (19/27)], seven were longitudinal, and one was a case-control study. Complex interactions were observed among factors influencing AMU, such as biosecurity measures, farm characteristics, farmers' attitudes, availability of animal health services, stewardship, etc. A positive association between farm biosecurity and reduction in AMU was observed in 51.8% (14/27) of the studies, and 18.5% (5/27) showed that improvement in farm management practices was associated with a reduction in AMU. Two studies highlighted that coaching and awareness among farmers might lead to a decrease in AMU. A single study on economic assessment concluded biosecurity practices as a cost-effective way to reduce AMU. On the other hand, five studies showed an uncertain or spurious association between farm biosecurity and AMU. We recommend the reinforcement of the concept of farm biosecurity, especially in lower- and middle-income countries (LMICs). Further, there is a need to strengthen the evidence on the association between farm biosecurity and AMU in region- and species-specific farm settings.
Collapse
Affiliation(s)
- Pankaj Dhaka
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Ilias Chantziaras
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Deepthi Vijay
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Thrissur 680651, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Iryna Makovska
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Evelien Biebaut
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jeroen Dewulf
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
20
|
Buberg ML, Wasteson Y, Lindstedt BA, Witsø IL. In vitro digestion of ESC-resistant Escherichia coli from poultry meat and evaluation of human health risk. Front Microbiol 2023; 14:1050143. [PMID: 36846779 PMCID: PMC9947789 DOI: 10.3389/fmicb.2023.1050143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The spread of antimicrobial resistance (AMR) has become a threat against human and animal health. Third and fourth generation cephalosporins have been defined as critically important antimicrobials by The World Health Organization. Exposure to Extended spectrum cephalosporin-resistant E. coli may result in consumers becoming carriers if these bacteria colonize the human gut or their resistance genes spread to other bacteria in the gut microbiota. In the case that these resistant bacteria at later occasions cause disease, their resistance characteristics may lead to failure of treatment and increased mortality. We hypothesized that ESC-resistant E. coli from poultry can survive digestion and thereby cause infections and/or spread their respective resistance traits within the gastro-intestinal tract. Methods In this study, a selection of 31 ESC-resistant E. coli isolates from retail chicken meat was exposed to a static in vitro digestion model (INFOGEST). Their survival, alteration of colonizing characteristics in addition to conjugational abilities were investigated before and after digestion. Whole genome data from all isolates were screened through a custom-made virulence database of over 1100 genes for virulence- and colonizing factors. Results and discussion All isolates were able to survive digestion. Most of the isolates (24/31) were able to transfer their bla CMY2-containing plasmid to E. coli DH5-á, with a general decline in conjugation frequency of digested isolates compared to non-digested. Overall, the isolates showed a higher degree of cell adhesion than cell invasion, with a slight increase after digestion compared non-digested, except for three isolates that displayed a major increase of invasion. These isolates also harbored genes facilitating invasion. In the virulence-associated gene analysis two isolates were categorized as UPEC, and one isolate was considered a hybrid pathogen. Altogether the pathogenic potential of these isolates is highly dependent on the individual isolate and its characteristics. Poultry meat may represent a reservoir and be a vehicle for dissemination of potential human pathogens and resistance determinants, and the ESC-resistance may complicate treatment in the case of an infection.
Collapse
Affiliation(s)
- May Linn Buberg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bjørn Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ingun Lund Witsø
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway,*Correspondence: Ingun Lund Witsø ✉
| |
Collapse
|
21
|
Cryptosporidium infection induced the dropping of SCFAS and dysbiosis in intestinal microbiome of Tibetan pigs. Microb Pathog 2023; 174:105922. [PMID: 36462579 DOI: 10.1016/j.micpath.2022.105922] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The infection of Cryptosporidium in pigs causes digestive system ailments, diarrhea and weight loss serving as an economic burden, especially in newborn animals. The bacterial fermentation products of short-chain fatty acids have important roles in immune function, microbiota regulation, osmotic balance and metabolism. However, till now little knowledge is available about the effect of Cryptosporidium infection on microbiota and SCFAs in plateau pigs. Hence, we performed this study to explore the response of microbiota and SCFAs in the natural infection of Cryptosporidium in Tibetan pigs. Cryptosporidium positive (infected, G) and negative samples (healthy, J) in our previous study were used for high throughputsequencing and Gas Chromatography-Mass Spectrometer analysis. Over 81 000 and 74 000 filtered sequences were detected in healthy and infected Tibetan pigs, respectively. Lower sample richness and evenness were observed in Cryptosporidium infection, as alpha diversity analysis found that chao1 (p < 0.05), faith_pd (p < 0.05), and observed_features in group G were significantly lower than pigs in group J. A total of 4 and 27 significant different phyla and genera were found between group G and J. The changed genera were Psychrobacter, Desemzia, Succiniclasticum, Treponema, Campylobacter, Atopobium, Olsenella, Pediococcus, Peptococcus, Sharpea, Desulfovibrio, Acinetobacter, Rhodococcus, Anaerostipes, Turicibacter, Lactobacillus, RFN20, Phascolarctobacterium, Roseburia, Megasphaera, Streptococcus, Blautia, Lachnospira, rc4_4, Gemmiger, Dorea, Oribacterium and Prevotella, which affected the microbiota functions with 360 abundance changed enzymes, and pathways in L1, L2 and L3 levels of KEGG. The concentration of acetic acid (p < 0.01), butyric acid (p < 0.05) and caproic acid (p < 0.01) were lower in group G. In conclusion, the present study herein uncovered that the host responses to Cryptosporidium infection in Tibetan pigs with 27 of significantly changed genera decreased SCFAs in pigs, which may provide insights in further developing novel therapy against this protozoan.
Collapse
|
22
|
Bort B, Martí P, Mormeneo S, Mormeneo M, Iranzo M. Prevalence and Antimicrobial Resistance of Campylobacter spp. Isolated from Broilers Throughout the Supply Chain in Valencia, Spain. Foodborne Pathog Dis 2022; 19:717-724. [PMID: 36037011 DOI: 10.1089/fpd.2022.0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Campylobacter is a major foodborne pathogen and its antimicrobial resistance (AMR) has been described worldwide. The main objective of this study was to determine the occurrence and AMR of Campylobacter spp. isolated from broilers throughout the supply chain in Valencia, Spain. A total of 483 samples were included in the analysis: 430 from the slaughterhouse (chicken carcass and neck skin) and 53 from the point of sale (retail broiler and packaging). Taking into account the origin of the sample, the prevalence of Campylobacter spp. was 19% in carcass, 28.2% in neck skin, 36.7% in retail broiler, and 80% in packaging isolates. The prevalence of different species in the analyzed samples was 21.1% and 4.8% for Campylobacter jejuni and Campylobacter coli, respectively. AMR profiling of 125 Campylobacter isolates revealed that 122 (97.6%) of the isolates were resistant to one or more antimicrobials. C. jejuni samples presented high resistance to nalidixic acid and ciprofloxacin, 96.1% and 90.2% respectively, whereas C. coli showed 87% of resistance to both antimicrobials. Both species were resistant to tetracycline (C. jejuni 84.3% and C. coli 60.9%) and 26.1% of C. coli was resistant to streptomycin. These results showed no significant difference in the frequency of AMR (p ≥ 0.05) among isolates originated from different points in the food-processing chain at slaughterhouses and retail establishments. In contrast, three main patterns were detected: quinolone-tetracycline (64%), quinolone-only (17.6%), and quinolone-tetracycline-aminoglycosides (8%). Additionally, 12.8% of the isolates presented multidrug resistance, with significantly higher levels detected among C. coli (30.4%) isolates compared with C. jejuni (8.8%) and all the three strains were resistant to all six antibiotics tested. Therefore, these results indicate that broilers could be a source of antimicrobial-resistant Campylobacter in humans and consequently pose a risk to public health.
Collapse
Affiliation(s)
- Begoña Bort
- Department of Microbiology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Pedro Martí
- Public Health Laboratory of Valencia, Valencia, Spain
| | - Salvador Mormeneo
- Department of Microbiology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - María Mormeneo
- Department of Microbiology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - María Iranzo
- Department of Microbiology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
23
|
Prendergast DM, Lynch H, Whyte P, Golden O, Murphy D, Gutierrez M, Cummins J, Johnston D, Bolton D, Coffey A, Lucey B, O'Connor L, Byrne W. Genomic diversity, virulence and source of Campylobacter jejuni contamination in Irish poultry slaughterhouses by whole genome sequencing. J Appl Microbiol 2022; 133:3150-3160. [PMID: 35993276 PMCID: PMC9804324 DOI: 10.1111/jam.15753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 01/05/2023]
Abstract
AIMS The aim was to exploit whole genome sequencing (WGS) to assess genomic diversity, identify virulence genes and deduce the proportion of Campylobacter colonized broilers that directly contaminate their carcasses. METHODS AND RESULTS Campylobacter jejuni isolates (107) from caeca and carcass neck skin samples (50 pairs from the same batch plus 7 individual caeca) sampled at three poultry slaughterhouses over a one-year period were selected for sequencing (MiSeq; Illumina). FastQ files were submitted to BioNumerics for analysis using the wgMLST scheme for allele calling. Campylobacter cgMLST and hierarchical clustering was performed by applying the single linkage algorithm. Sequence types (STs) were determined in silico from the WGS data and isolates were assigned into clonal complexes (CCs) using the Campylobacter PubMLST.org database. Virulence genes were determined by downloading core sequences from the virulence factor database (VFDB) and the National Center for Biotechnology Information (NCBI). A high degree of diversity was observed with 23 different STs identified. ST257 and CC-21 were the most common STs and CCs, respectively. cgMLST analysis suggested that 56% of carcass contamination was a direct result of contamination from caeca from the same batch. Virulence genes known to play a role in human C. jejuni infection were identified such as the wlaN gene and the genes associated with lipooligosaccharide synthesis, which were identified in 30% of isolates. CONCLUSIONS Caecal colonization was the more plausible occurring source of C. jejuni contamination of broiler carcasses, compared with cross-contamination from another batch or the environment. The high rate of genetic diversity observed amongst caecal isolates is consistent with a wide variety of Campylobacter strains circulating in poultry flocks in Ireland. SIGNIFICANCE AND IMPACT OF STUDY The results will further inform broiler processors and regulators about the influence and importance of on-farm colonization versus slaughterhouse cross-contamination and the relationship between C. jejuni in caeca and carcasses during processing.
Collapse
Affiliation(s)
| | - Helen Lynch
- Department of Agriculture, Food and the MarineCelbridgeIreland,School of Veterinary Medicine, Veterinary Science CentreUniversity College DublinDublin 4Ireland
| | - Paul Whyte
- School of Veterinary Medicine, Veterinary Science CentreUniversity College DublinDublin 4Ireland
| | - Olwen Golden
- Department of Agriculture, Food and the MarineCelbridgeIreland
| | - Declan Murphy
- Department of Agriculture, Food and the MarineCelbridgeIreland
| | | | - Juliana Cummins
- Department of Agriculture, Food and the MarineCelbridgeIreland
| | - Dayle Johnston
- Department of Agriculture, Food and the MarineCelbridgeIreland
| | | | - Aidan Coffey
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Brigid Lucey
- Department of Biological SciencesMunster Technological UniversityCorkIreland
| | - Lisa O'Connor
- Food Safety Authority of Ireland, IFSCDublin 1Ireland
| | - William Byrne
- Department of Agriculture, Food and the MarineCelbridgeIreland
| |
Collapse
|
24
|
Al-Khresieh RO, Al-Daghistani HI, Abu-Romman SM, Abu-Niaaj LF. Genetic Signature and Serocompatibility Evidence for Drug Resistant Campylobacter jejuni. Antibiotics (Basel) 2022; 11:1421. [PMID: 36290079 PMCID: PMC9598221 DOI: 10.3390/antibiotics11101421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Campylobacteriosis, a foodborne illness, is one of the world's leading causes of gastrointestinal illness. This study investigates the link between human campylobacteriosis and the consumption of potentially contaminated food with Campylobacter jejuni. Three hundred sixty samples were collected from humans, chicken cloaca, raw chicken meat, unpasteurized milk, and vegetables. The chickens were obtained from licensed and non-licensed slaughterhouses, and only the necks and wings were studied. Samples were enriched under microaerobic conditions then cultured on the modified charcoal cefoperazone deoxycholate agar. Bacteria was identified by staining, biochemical testing, and molecular identification by the polymerase chain reaction for the virulence genes; hipO, asp, dnaJ, cadF, cdtA, cdtB, and cdtC. The genomic homogeneity of C. jejuni between human and chicken isolates was assessed by the serological Penner test and the pulse field gel electrophoresis (PFGE). Campylobacter was not detected in the vegetables and pasteurized milk, though, only twenty isolates from chickens and clinical samples were presumed to be Campylobacter based on their morphology. The biochemical tests confirmed that five isolates were C. coli, and fifteen isolates were C. jejuni including two isolates from humans, and the remaining were from chickens. The colonization of C. jejuni in chickens was significantly lower in necks (6.66%) obtained from licensed slaughterhouses compared to those obtained from non-licensed slaughterhouses (33.3%). The antimicrobial susceptibility test showed that all identified C. jejuni isolates were resistant to antibiotics, and the majority of isolates (53.5%) showed resistance against six antibiotics, though, all isolates were resistant to ciprofloxacin, tetracycline, and aztreonam. The Penner test showed P:21 as the dominant serotype in isolates from humans, necks, and cloaca. The serohomology of C. jejuni from human isolates and chicken necks, wings, and cloaca was 71%, 36%, 78%, respectively. The PFGE analysis of the pattern for DNA fragmentation by the restriction enzyme Smal showed a complete genotypic homology of C. jejuni human isolates and chicken necks compared to partial homology with cloacal isolates. The study brings attention to the need for effective interventions to ensure best practices for safe poultry production for commercial food chain supply to limit infection with foodborne pathogens, including Campylobacter.
Collapse
Affiliation(s)
- Rozan O. Al-Khresieh
- Department of Medical Laboratory Sciences, Faculty of Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Hala I. Al-Daghistani
- Department of Medical Laboratory Sciences, Faculty of Medical Allied Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Saeid M. Abu-Romman
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Lubna F. Abu-Niaaj
- Department of Agricultural and Life Sciences, John W. Garland College of Engineering, Science, Technology and Agriculture, Central State University, Wilberforce, OH 45384, USA
| |
Collapse
|
25
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello‐Rodríguez H, Dohmen W, Magistrali CF, Padalino B, Tenhagen B, Threlfall J, García‐Fierro R, Guerra B, Liébana E, Stella P, Peixe L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J 2022; 20:e07586. [PMID: 36304831 PMCID: PMC9593722 DOI: 10.2903/j.efsa.2022.7586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The transmission of antimicrobial resistance (AMR) between food-producing animals (poultry, cattle and pigs) during short journeys (< 8 h) and long journeys (> 8 h) directed to other farms or to the slaughterhouse lairage (directly or with intermediate stops at assembly centres or control posts, mainly transported by road) was assessed. Among the identified risk factors contributing to the probability of transmission of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), the ones considered more important are the resistance status (presence of ARB/ARGs) of the animals pre-transport, increased faecal shedding, hygiene of the areas and vehicles, exposure to other animals carrying and/or shedding ARB/ARGs (especially between animals of different AMR loads and/or ARB/ARG types), exposure to contaminated lairage areas and duration of transport. There are nevertheless no data whereby differences between journeys shorter or longer than 8 h can be assessed. Strategies that would reduce the probability of AMR transmission, for all animal categories include minimising the duration of transport, proper cleaning and disinfection, appropriate transport planning, organising the transport in relation to AMR criteria (transport logistics), improving animal health and welfare and/or biosecurity immediately prior to and during transport, ensuring the thermal comfort of the animals and animal segregation. Most of the aforementioned measures have similar validity if applied at lairage, assembly centres and control posts. Data gaps relating to the risk factors and the effectiveness of mitigation measures have been identified, with consequent research needs in both the short and longer term listed. Quantification of the impact of animal transportation compared to the contribution of other stages of the food-production chain, and the interplay of duration with all risk factors on the transmission of ARB/ARGs during transport and journey breaks, were identified as urgent research needs.
Collapse
|
26
|
Live-Attenuated Oral Vaccines to Reduce Campylobacter Colonization in Poultry. Vaccines (Basel) 2022; 10:vaccines10050685. [PMID: 35632441 PMCID: PMC9143049 DOI: 10.3390/vaccines10050685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
The control of Campylobacter in poultry at the pre-harvest level is critical to reducing foodborne infections with Campylobacter since the consumption of contaminated poultry is the most frequent cause of human campylobacteriosis. Although poultry vaccination is suggested as useful intervention measures, no Campylobacter vaccines are currently available. To develop live-attenuated oral Campylobacter vaccines, in this study, we evaluated the efficacy of pre-colonization by oxidative stress defense mutants, including knockout mutants of ahpC, katA, and sodB, in preventing Campylobacter jejuni from colonizing poultry. Interestingly, when chickens were pre-colonized with ΔahpC and ΔkatA mutants, rather than the ΔsodB mutant, the level of C. jejuni colonization was significantly reduced within 35 days. Further studies demonstrated when chickens were pre-colonized with the ΔahpC mutant by oral challenge with a high dose (ca., 5 × 108 CFU/bird) and a low dose (ca., 5 × 106 CFU/bird), it twice reduced the level of C. jejuni by 3.9 log10CFU/g feces and 3 log10CFU/g feces after 42 days, respectively, compared to the untreated control. Due to a colonization defect, the ΔahpC mutant was removed from chickens within 42 days. After excretion from the host, moreover, the ΔahpC mutant cannot survive in aerobic environments because of compromised aerotolerance. Our findings suggest that the ahpC mutant has a great potential for on-farm application to control C. jejuni at the pre-harvest level.
Collapse
|
27
|
McWhorter AR, Weerasooriya G, Willson NL, Chousalkar KK. Peroxyacetic acid and acidified sodium chlorite reduce microbial contamination on whole chicken carcasses obtained from two processing points. Food Microbiol 2022; 106:104035. [DOI: 10.1016/j.fm.2022.104035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022]
|
28
|
Bacterial community identification in poultry carcasses using high-throughput next generation sequencing. Int J Food Microbiol 2022; 364:109533. [DOI: 10.1016/j.ijfoodmicro.2022.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
|
29
|
Campylobacter jejuni Developed the Resistance to Bacteriophage CP39 by Phase Variable Expression of 06875 Encoding the CGPTase. Viruses 2022; 14:v14030485. [PMID: 35336892 PMCID: PMC8949473 DOI: 10.3390/v14030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage (phage) is regarded as an antimicrobial alternative for Campylobacter in food production. However, the development of phage resistance to the host is a main concern for the phage application. This study characterized the phage CP39 and investigated the phage resistance of CP39 in Campylobacter jejuni NCTC12662. We determined that phage CP39 belonged to the Myoviridae family by the WGS and phylogenetic analysis. Phage CP39 was confirmed as a capsular polysaccharide (CPS)-dependent phage by primary C. jejuni phage typing. It was further confirmed that the phage could not be adsorbed by the acapsular mutant ΔkpsM but showed the same lytic ability in both the wild-type strain NCTC 12662 and the ΔmotA mutant lacking motile flagella filaments. We further determined that the 06875 gene encoding CDP-glycerol:poly (glycerophosphate) glycerophosphotransferase (CGPTase) in the CPS loci was related to phage CP39 adsorption by SNP analysis and observed a rapid development of phage resistance in NCTC 12662 during the phage infection. Furthermore, we observed a high mutation frequency of 06875 (32%), which randomly occurred in nine different sites in the gene according to colony PCR sequencing. The mutation of the 06875 gene could cause the phase variable expression of non-functional protein and allow the bacteria against the phage infection by modifying the CPS. Our study confirmed the 06875 gene responsible for the CPS-phage adsorption for the first time and demonstrated the phase variable expression as a main mechanism for the bacteria to defend phage CP39. Our study provided knowledge for the evolutionary adaption of bacteria against the bacteriophage, which could add more information to understand the phage resistance mechanism before applying in the industry.
Collapse
|
30
|
Icen H, Corbo MR, Sinigaglia M, Korkmaz BIO, Bevilacqua A. Using Microbial Responses Viewer and a Regression Approach to Assess the Effect of pH, Activity of Water and Temperature on the Survival of Campylobacter spp. Foods 2022; 11:foods11050637. [PMID: 35267270 PMCID: PMC8909359 DOI: 10.3390/foods11050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed at developing a model for evaluating the survival of various Campylobacter jejuni strains under different conditions in culture media and poultry data from ComBase. Campylobacter data of culture media (116) and poultry (19) were collected from Microbial Responses Viewer, an additional tool of ComBase. The Weibull equation was selected as a suitable model for the analysis of survival data because of the nonlinearity of survival curves. Then, the fitting parameters (first reduction time and shape parameter) were analysed through a Kruskall–Wallis test and box-whisker plots, thus pointing out the existence of two classes of temperature (0–12 °C and 15–25 °C) and pH (4–6.5 and 7–7.5) acting on the viability of C. jejuni. Finally, a general regression model was used to build a comprehensive function; all factors were significant, but temperature was the most significant variable, followed by pH and water activity. In addition, desirability and prediction profiles highlighted a negative correlation of the first reduction time with temperature and a positive correlation with pH and water activity.
Collapse
Affiliation(s)
- Hayrunisa Icen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, Maltepe, Istanbul 34854, Turkey;
| | - Maria Rosaria Corbo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.R.C.); (M.S.)
| | - Milena Sinigaglia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.R.C.); (M.S.)
| | - Burcu Irem Omurtag Korkmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, Maltepe, Istanbul 34854, Turkey;
- Correspondence: (B.I.O.K.); (A.B.)
| | - Antonio Bevilacqua
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.R.C.); (M.S.)
- Correspondence: (B.I.O.K.); (A.B.)
| |
Collapse
|
31
|
Cheng X, Liu W, Wang Z, Yang R, Yu L, Du Q, Ge A, Liu C, Chi Z. Improved triple-module fluorescent biosensor for the rapid and ultrasensitive detection of Campylobacter jejuni in livestock and dairy. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Bacillus subtilis PS-216 Antagonistic Activities against Campylobacter jejuni NCTC 11168 Are Modulated by Temperature, Oxygen, and Growth Medium. Microorganisms 2022; 10:microorganisms10020289. [PMID: 35208741 PMCID: PMC8875091 DOI: 10.3390/microorganisms10020289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
As the incidence of Campylobacter jejuni and campylobacteriosis grows, so does the need for a better understanding and control of this pathogen. We studied the interactions of C. jejuni NCTC 11168 and a potential probiotic, Bacillus subtilis PS-216, in cocultures at different starting ratios and temperatures (20 °C, 37 °C, 42 °C), under different atmospheres (aerobic, microaerobic), and in different growth media (Mueller–Hinton, chicken litter medium, chicken intestinal-content medium). Under microaerobic conditions, B. subtilis effectively inhibited the growth of C. jejuni at 42 °C (log reduction, 4.19), even when C. jejuni counts surpassed B. subtilis by 1000-fold in the starting inoculum. This inhibition was weaker at 37 °C (log reduction, 1.63), while no impact on CFUs was noted at 20 °C, which is a temperature nonpermissive of C. jejuni growth. Under aerobic conditions, B. subtilis supported C. jejuni survival. B. subtilis PS-216 inhibited the growth of C. jejuni in sterile chicken litter (4.07 log reduction) and in sterile intestinal content (2.26 log reduction). In nonsterile intestinal content, B. subtilis PS-216 was able to grow, to a lesser extent, compared to Mueller–Hinton media, still showing potential as a chicken probiotic that could be integrated into the chicken intestinal microbiota. This study showed the strong influence of environmental parameters on the variability of C. jejuni and B. subtilis interactions. Furthermore, B. subtilis PS-216 antagonism was strongest against C. jejuni NCTC 11168 under conditions that might represent conditions in the chicken environment (42 °C, microaerobic atmosphere, chicken litter medium).
Collapse
|
33
|
Pilot Study on Poultry Meat from Antibiotic Free and Conventional Farms: Can Metagenomics Detect Any Difference? Foods 2022; 11:foods11030249. [PMID: 35159402 PMCID: PMC8834493 DOI: 10.3390/foods11030249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotic free farms are increasing in the poultry sector in order to address new EU regulations and consumer concerns. In this pilot study, we investigated whether the efforts of raising chickens without the use antibiotics make any difference in the microbiome of poultry meat eaten by consumers. To this aim we compared the microbiomes characterizing caeca and the corresponding carcasses of two groups of chickens reared, one reared on a conventional farm and one on an antibiotic-free intensive farm. The results showed a clear separation between the taxonomic, functional and antibiotic resistant genes in the caeca of the birds reared on the conventional and antibiotic free farm. However, that separation was completely lost on carcasses belonging to the two groups. The antibiotic-free production resulted in statistically significant lower antimicrobial resistance load in the caeca in comparison to the conventional production. Moreover, the antimicrobial resistance load on carcasses was much higher than in the caeca, without any significant difference between carcasses coming from the two types of farms. All in all, the results of this research highlighted the need to reduce sources of microbial contamination and antimicrobial resistance not only at the farm level but also at the post-harvest one.
Collapse
|
34
|
Sałamaszyńska-Guz A, Rasmussen PK, Murawska M, Douthwaite S. Campylobacter jejuni Virulence Factors Identified by Modulating Their Synthesis on Ribosomes With Altered rRNA Methylation. Front Cell Infect Microbiol 2022; 11:803730. [PMID: 35096652 PMCID: PMC8794745 DOI: 10.3389/fcimb.2021.803730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Campylobacter jejuni is a major cause of food poisoning worldwide, and remains the main infective agent in gastroenteritis and related intestinal disorders in Europe and the USA. As with all bacterial infections, the stages of adhesion to host tissue, survival in the host and eliciting disease all require the synthesis of proteinaceous virulence factors on the ribosomes of the pathogen. Here, we describe how C. jejuni virulence is attenuated by altering the methylation of its ribosomes to disrupt the composition of its proteome, and how this in turn provides a means of identifying factors that are essential for infection and pathogenesis. Specifically, inactivation of the C. jejuni Cj0588/TlyA methyltransferase prevents methylation of nucleotide C1920 in the 23S rRNA of its ribosomes and reduces the pathogen’s ability to form biofilms, to attach, invade and survive in host cells, and to provoke the innate immune response. Mass spectrometric analyses of C. jejuni TlyA-minus strains revealed an array of subtle changes in the proteome composition. These included reduced amounts of the cytolethal distending toxin (CdtC) and the MlaEFD proteins connected with outer membrane vesicle (OMV) production. Inactivation of the cdtC and mlaEFD genes confirmed the importance of their encoded proteins in establishing infection. Collectively, the data identify a subset of genes required for the onset of human campylobacteriosis, and serve as a proof of principle for use of this approach in detecting proteins involved in bacterial pathogenesis.
Collapse
Affiliation(s)
- Agnieszka Sałamaszyńska-Guz
- Division of Microbiology, Department of Pre-Clinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
- *Correspondence: Agnieszka Sałamaszyńska-Guz, ; Stephen Douthwaite,
| | | | - Małgorzata Murawska
- Division of Microbiology, Department of Pre-Clinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- *Correspondence: Agnieszka Sałamaszyńska-Guz, ; Stephen Douthwaite,
| |
Collapse
|
35
|
Törmä K, Lundén J, Kaukonen E, Fredriksson-Ahomaa M, Laukkanen-Ninios R. Prerequisites of inspection conditions for uniform post-mortem inspection in broiler chicken slaughterhouses in Finland. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Conjugative Plasmid-Mediated Extended Spectrum Cephalosporin Resistance in Genetically Diverse Escherichia coli from a Chicken Slaughterhouse. Animals (Basel) 2021; 11:ani11092491. [PMID: 34573460 PMCID: PMC8470599 DOI: 10.3390/ani11092491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
ESC-resistant E. coli isolates were collected from broiler chickens, a slaughterhouse, and retail meat to assess their dispersion and their involvement in cross-contamination. ESBL-/AmpC-producing E. coli were isolated during the slaughter process of all six investigated chicken flocks from scalding, feather removal, first conveyor, evisceration, second washing, third conveyor, and third washing areas, and from handling workers in the slaughterhouse. ESC-resistant E. coli isolates with the same pulsed-field gel electrophoresis type were found in the same site (scalding) on different sampling days. ESBL/AmpC-producing E. coli isolates were absent in the lairage area in the slaughterhouse, but present in the retail markets in 36.8% (7/19) of the chicken flocks. The blaCTX-M genes and blaCMY-2 were conjugated to recipient E. coli J53 in 67.5% (27/40) and 56.1% (23/41) of ESBL-producing and AmpC-producing E. coli isolates, respectively. The presence of the same conjugative plasmids was found in genetic diversity ESC-resistant E. coli colonies collected on different sampling days. Our study emphasizes that cross-contamination of ESBL/AmpC-producing E. coli in slaughterhouse has a crucial impact on the occurrence of ESC resistance in retail chicken meat.
Collapse
|
37
|
Harrison L, Mukherjee S, Hsu CH, Young S, Strain E, Zhang Q, Tillman GE, Morales C, Haro J, Zhao S. Core Genome MLST for Source Attribution of Campylobacter coli. Front Microbiol 2021; 12:703890. [PMID: 34326828 PMCID: PMC8313984 DOI: 10.3389/fmicb.2021.703890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Campylobacter species are among the leading foodborne bacterial agents of human diarrheal illness. The majority of campylobacteriosis has been attributed to Campylobacter jejuni (85% or more), followed by Campylobacter coli (5–10%). The distribution of C. jejuni and C. coli varies by host organism, indicating that the contribution to human infection may differ between isolation sources. To address the relative contribution of each source to C. coli infections in humans, core genome multilocus sequence type with a 200-allele difference scheme (cgMLST200) was used to determine cgMLST type for 3,432 C. coli isolated from food animals (n = 2,613), retail poultry meats (n = 389), human clinical settings (n = 285), and environmental sources (n = 145). Source attribution was determined by analyzing the core genome with a minimal multilocus distance methodology (MMD). Using MMD, a higher proportion of the clinical C. coli population was attributed to poultry (49.6%) and environmental (20.9%) sources than from cattle (9.8%) and swine (3.2%). Within the population of C. coli clinical isolates, 70% of the isolates that were attributed to non-cecal retail poultry, dairy cattle, beef cattle and environmental waters came from two cgMLST200 groups from each source. The most common antibiotic resistance genes among all C. coli were tetO (65.6%), blaOXA–193 (54.2%), aph(3′)-IIIa (23.5%), and aadE-Cc (20.1%). Of the antibiotic resistance determinants, only one gene was isolated from a single source: blaOXA–61 was only isolated from retail poultry. Within cgMLST200 groups, 17/17 cgMLST200-435 and 89/92 cgMLST200-707 isolates encoded for aph(3’)-VIIa and 16/16 cgMLST200-319 harbored aph(2’)-If genes. Distribution of blaOXA alleles showed 49/50 cgMLST200-5 isolates contained blaOXA–498 while blaOXA–460 was present in 37/38 cgMLST200-650 isolates. The cgMLST200-514 group revealed both ant(6)-Ia and sat4 resistance genes in 23/23 and 22/23 isolates, respectively. Also, cgMLST200-266 and cgMLST200-84 had GyrAT86I mutation with 16/16 (100%) and 14/15 (93.3%), respectively. These findings illustrate how cgMLST and MMD methods can be used to evaluate the relative contribution of known sources of C. coli to the human burden of campylobacteriosis and how cgMLST typing can be used as an indicator of antimicrobial resistance in C. coli.
Collapse
Affiliation(s)
- Lucas Harrison
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD, United States
| | - Sampa Mukherjee
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD, United States
| | - Chih-Hao Hsu
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD, United States
| | - Shenia Young
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD, United States
| | - Errol Strain
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD, United States
| | - Qijing Zhang
- College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Glenn E Tillman
- U.S. Department of Agriculture, Food Safety and Inspection Service, Athens, GA, United States
| | - Cesar Morales
- U.S. Department of Agriculture, Food Safety and Inspection Service, Athens, GA, United States
| | - Jovita Haro
- U.S. Department of Agriculture, Food Safety and Inspection Service, Athens, GA, United States
| | - Shaohua Zhao
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD, United States
| |
Collapse
|
38
|
Tang S, Yang R, Wu Q, Ding Y, Wang Z, Zhang J, Lei T, Wu S, Zhang F, Zhang W, Xue L, Zhang Y, Wei X, Pang R, Wang J. First report of the optrA-carrying multidrug resistance genomic island in Campylobacter jejuni isolated from pigeon meat. Int J Food Microbiol 2021; 354:109320. [PMID: 34229231 DOI: 10.1016/j.ijfoodmicro.2021.109320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Campylobacter spp., such as Campylobacter jejuni and Campylobacter coli, are important zoonotic Gram-negative pathogens that cause acute intestinal diseases in humans. The optrA gene, encoding an ATP-binding cassette F (ABC-F) protein that confers resistance to oxazolidinones and phenicols, has been found in C. coli in China. In this study, the optrA gene was first identified in C. jejuni collected from retail meat in China from 2013 to 2016. Nine strains, isolated from a pigeon meat sample, carry the optrA gene. The molecular characteristics of the optrA-positive strains were determined by whole genome sequencing. Pulsed-field gel electrophoresis, multilocus sequence typing, and single nucleotide polymorphism analyses demonstrated that the nine optrA-positive isolates were genetically homogeneous. Phylogenetic characteristics and sequence comparison revealed that optrA was located on a chromosome-borne multidrug resistance genomic island. The optrA gene along with the tet(O) gene formed two different translocatable units (TUs), thereby supporting the transmission of TU-associated resistance genes. The emergence and spread of such TUs and strains are of great concern in terms of food safety, and measures must be implemented to avoid their dissemination in other Gram-negative bacteria and food chains.
Collapse
Affiliation(s)
- Shengjun Tang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Feng Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weipei Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
39
|
Thornval NR, Hoorfar J. Progress in detection of Campylobacter in the food production chain. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
41
|
Ohnishi T, Hara-Kudo Y. Presence and quantification of pathogenic Arcobacter and Campylobacter species in retail meats available in Japan. Lett Appl Microbiol 2021; 73:81-87. [PMID: 33797068 DOI: 10.1111/lam.13478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 01/26/2023]
Abstract
We present estimations for the amounts of Arcobacter (A. butzleri, A. cryaerophilus and A. skirrowii) and Campylobacter (C. jejuni, C. coli and C. fetus) species in retail chicken, pork and beef meat using PCR-MPN. Arcobacter butzleri, A. cryaerophilus and C. jejuni were found in 100, 60 and 55% of chicken samples, respectively. No other Arcobacter or Campylobacter species were found in chicken. The MPNs of A. butzleri, A. cryaerophilus and C. jejuni were greater than 103 per 100 g in 50, 0 and 5% of samples, respectively. The MPN of A. butzleri was higher than that of C. jejuni in 95% of samples. In pork, A. butzleri and A. cryaerophilus were detected in 10 and 11 (50 and 55%) of 20 samples, respectively. No other Arcobacter or Campylobacter species were found in pork. Only one pork sample had more than 103 MPN per 100 g of A. cryaerophilus. For beef, only two samples tested positive for A. cryaerophilus, at 4600 and 92 MPN per 100 g. Overall, we found that the presence and MPNs of Arcobacter species are very high in chicken. In contrast, the positive ratios of Arcobacter in pork were high as chicken samples, but MPNs were lower than in chicken.
Collapse
Affiliation(s)
- T Ohnishi
- Division of Microbiology, National Institute of Health Sciences, Kanagawa, Japan
| | - Y Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
42
|
A One Health Perspective on a Multi-hurdle Approach to Combat Campylobacter spp. in Broiler Meat. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00167-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Antimicrobial Effect and the Mechanism of Diallyl Trisulfide against Campylobacter jejuni. Antibiotics (Basel) 2021; 10:antibiotics10030246. [PMID: 33801353 PMCID: PMC7999961 DOI: 10.3390/antibiotics10030246] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is an important foodborne pathogen causing campylobacteriosis. It can infect humans through the consumption of contaminated chicken products or via the direct handling of animals. Diallyl trisulfide (DATS) is a trisulfide compound from garlic extracts that has a potential antimicrobial effect on foodborne pathogens. This study investigated the antimicrobial activity of DATS on C. jejuni by evaluating the minimal inhibitory concentrations (MICs) of C. jejuni 81-168, and fourteen C. jejuni isolates from chicken carcasses. Thirteen of 14 C. jejuni isolates and 81-176 had MICs ≤ 32 μg/mL, while one isolate had MIC of 64 μg/mL. Scanning electron microscopy (SEM) analysis showed the disruption and shrink of C. jejuni bacterial cell membrane after the DATS treatment. A time-killing analysis further showed that DATS had a dose-dependent in vitro antimicrobial effect on C. jejuni during the 24 h treatment period. In addition, DATS also showed an antimicrobial effect in chicken through the decrease of C. jejuni colony count by 1.5 log CFU/g (cloacal sample) during the seven-day DATS treatment period. The transcriptional analysis of C. jejuni with 16 μg/mL (0.5× MIC) showed 210 differentially expression genes (DEGs), which were mainly related to the metabolism, bacterial membrane transporter system and the secretion system. Fourteen ABC transporter-related genes responsible for bacterial cell homeostasis and oxidative stress were downregulated, indicating that DATS could decrease the bacterial ability to against environmental stress. We further constructed five ABC transporter deletion mutants according to the RNA-seq analysis, and all five mutants proved less tolerant to the DATS treatment compared to the wild type by MIC test. This study elucidated the antimicrobial activity of DATS on C. jejuni and suggested that DATS could be used as a potential antimicrobial compound in the feed and food industry.
Collapse
|
44
|
Kwon BR, Wei B, Cha SY, Shang K, Zhang JF, Kang M, Jang HK. Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation. Animals (Basel) 2021; 11:246. [PMID: 33498355 PMCID: PMC7909429 DOI: 10.3390/ani11020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the prevalence, antimicrobial resistance, and genetic diversity of Campylobacter isolates that were obtained from whole chicken production stages in Korea. A total of 1348 samples were collected from 10 production lines. The prevalence of Campylobacter in breeder farm, broiler farm, slaughterhouse, and retail meat products was 50.0%, 3.3%, 13.4%, and 68.4%, respectively, and Campylobacter was not detected at the hatchery stage. Resistance to quinolones/fluoroquinolones was the most prevalent at all stages. Among the multidrug-resistant isolates, 16 isolates (19.8%) from breeder farm were resistant to both azithromycin and ciprofloxacin. A total of 182 isolates were subdivided into 82 pulsed-field gel electrophoresis (PFGE) genotypes with 100% similarity. Diverse genotypes were presented with discontinuous patterns along the whole production chain. Thirty percent of Campylobacter-free flocks became positive after slaughtering. An identical genotype was simultaneously detected from both breeder farm and retail meat, even from different production lines. This study reveals that antimicrobial-resistant Campylobacter contamination can occur at all stages of the chicken supply chain. In particular, the breeder farm and slaughterhouse should be the main control points, as they are the potential stages at which antimicrobial-resistant Campylobacter could spread to retail meat products by horizontal transmission.
Collapse
Affiliation(s)
- Bo-Ram Kwon
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Bai Wei
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Se-Yeoun Cha
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Jun-Feng Zhang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
| | - Min Kang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| | - Hyung-Kwan Jang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Jeonbuk National University, Iksan 54596, Korea; (B.-R.K.); (B.W.); (S.-Y.C.); (K.S.); (J.-F.Z.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Korea
| |
Collapse
|
45
|
Hertogs K, Haegeman A, Schaumont D, Gelaude P, De Zutter L, Dewulf J, Heyndrickx M, Rasschaert G. Contamination Sources and Transmission Routes for Campylobacter on (Mixed) Broiler Farms in Belgium, and Comparison of the Gut Microbiota of Flocks Colonized and Uncolonized with Campylobacter. Pathogens 2021; 10:66. [PMID: 33451094 PMCID: PMC7828549 DOI: 10.3390/pathogens10010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
Biosecurity seems to be the most promising tool for Campylobacter control on poultry farms. A longitudinal molecular epidemiological study was performed during two production cycles, in which the broilers, the poultry house, and the environment of 10 (mixed) broiler farms were monitored weekly. Cecal droppings from the second production cycle were also used for 16S metabarcoding to study the differences in the microbiota of colonized and uncolonized flocks. Results showed that 3 out of 10 farms were positive for Campylobacter in the first production cycle, and 4 out of 10 were positive in the second. Broilers became colonized at the earliest when they were four weeks old. The majority of the flocks (57%) became colonized after partial depopulation. Before colonization of the flocks, Campylobacter was rarely detected in the environment, but it was frequently isolated from cattle and swine. Although these animals appeared to be consistent carriers of Campylobacter, molecular typing revealed that they were not the source of flock colonization. In accordance with previous reports, this study suggests that partial depopulation appears to be an important risk factor for Campylobacter introduction into the broiler house. Metabarcoding indicated that two Campylobacter-free flocks carried high relative abundances of Megamonas in their ceca, suggesting potential competition with Campylobacter.
Collapse
Affiliation(s)
- Karolien Hertogs
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (K.H.); (A.H.); (D.S.); (M.H.)
- Department of Reproduction, Obstetrics and Herd health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Annelies Haegeman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (K.H.); (A.H.); (D.S.); (M.H.)
| | - Dries Schaumont
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (K.H.); (A.H.); (D.S.); (M.H.)
| | | | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Jeroen Dewulf
- Department of Reproduction, Obstetrics and Herd health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (K.H.); (A.H.); (D.S.); (M.H.)
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (K.H.); (A.H.); (D.S.); (M.H.)
| |
Collapse
|
46
|
Emanowicz M, Meade J, Bolton D, Golden O, Gutierrez M, Byrne W, Egan J, Lynch H, O'Connor L, Coffey A, Lucey B, Whyte P. The impact of key processing stages and flock variables on the prevalence and levels of Campylobacter on broiler carcasses. Food Microbiol 2020; 95:103688. [PMID: 33397618 DOI: 10.1016/j.fm.2020.103688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 01/01/2023]
Abstract
This study examined the impact of key processing stages and flock variables on the prevalence of Campylobacter on broiler carcasses. Overall, the prevalence of Campylobacter was 62% in caeca, and 68%, 65% and 62% in neck skin samples collected after evisceration, final wash and carcass chilling, respectively. Campylobacter were found in 32% of caeca, and 52%, 40% and 32% of neck skin samples collected after evisceration, final wash and carcass chilling, respectively from first thin broiler batches. Final thin broiler batches were more frequently contaminated with prevalences of 83% found in caeca, 80% in neck skin samples collected after evisceration and 83% found in neck skin samples collected after both final wash and carcass chilling stages (p < 0.05). Thinning status had a significant effect on Campylobacter counts with significantly higher counts observed in samples from final thin batches (p < 0.05). Highest Campylobacter concentrations in neck skin samples were observed at the evisceration stage in both first and final thin samples, with counts ranging from 2.0 to 3.8 log10 CFU/g and 2.3 to 4.8 log10 CFU/g in first and final thin batches, respectively. All first thin samples had counts below the European Union (EU) Process Hygiene Criterion threshold level of 3 log10 CFU/g after chilling while 52% of final thin batches had counts above this limit.
Collapse
Affiliation(s)
- Malgorzata Emanowicz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joseph Meade
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Olwen Golden
- National Reference Laboratory Campylobacter, Department of Agriculture, Food and the Marine Laboratories, Backweston Campus, Celbridge, Ireland
| | - Montserrat Gutierrez
- National Reference Laboratory Campylobacter, Department of Agriculture, Food and the Marine Laboratories, Backweston Campus, Celbridge, Ireland
| | - William Byrne
- National Reference Laboratory Campylobacter, Department of Agriculture, Food and the Marine Laboratories, Backweston Campus, Celbridge, Ireland
| | - John Egan
- National Reference Laboratory Campylobacter, Department of Agriculture, Food and the Marine Laboratories, Backweston Campus, Celbridge, Ireland
| | - Helen Lynch
- National Reference Laboratory Campylobacter, Department of Agriculture, Food and the Marine Laboratories, Backweston Campus, Celbridge, Ireland
| | - Lisa O'Connor
- Food Safety Authority of Ireland, IFSC, Dublin 1, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown Campus, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown Campus, Cork, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
47
|
Lu T, Marmion M, Ferone M, Wall P, Scannell AGM. On farm interventions to minimise Campylobacter spp. contamination in chicken. Br Poult Sci 2020; 62:53-67. [PMID: 32835499 DOI: 10.1080/00071668.2020.1813253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. This review explores current and proposed on-farm interventions and assess the potential of these interventions against Campylobacter spp. 2. Interventions such as vaccination, feed/water-additives and, most importantly, consistent biosecurity, exhibit potential for the effective control of this pathogen and its dissemination within the food chain. 3. Due to the extensive diversity in the Campylobacter spp. genome and surface-expressed proteins, vaccination of poultry is not yet regarded as a completely effective strategy. 4. The acidification of drinking water through the addition of organic acids has been reported to decrease the risk of Campylobacter spp. colonisation in broiler flocks. Whilst this treatment alone will not completely protect birds, use of water acidification in combination with in-feed measures to further reduce the level of Campylobacter spp. colonisation in poultry may be an option meriting further exploration. 5. The use of varied types of feed supplements to reduce the intestinal population and shedding rate of Campylobacter spp. in poultry is an area of growing interest in the poultry industry. Such supplements include pro - and pre-biotics, organic acids, bacteriocins and bacteriophage, which may be added to feed and water. 6. From the literature, it is clear that a distinct, albeit not unexpected, difference between the performance of in-feed interventions exists when examined in vitro compared to those determined in in vivo studies. It is much more likely that pooling some of the discussed approaches in the in-feed tool kit will provide an answer. 7. Whilst on-farm biosecurity is essential to maintain a healthy flock and reduce disease transmission, even the most stringent biosecurity measures may not have sufficient, consistent and predictable effects in controlling Campylobacter spp. Furthermore, the combination of varied dietary approaches and improved biosecurity measures may synergistically improve control.
Collapse
Affiliation(s)
- T Lu
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland
| | - M Marmion
- UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland
| | - M Ferone
- UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland
| | - P Wall
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Institute of Food and Health O'Brien Science Centre South, University College Dublin, National University of Ireland , Dublin, Ireland
| | - A G M Scannell
- UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Institute of Food and Health O'Brien Science Centre South, University College Dublin, National University of Ireland , Dublin, Ireland
| |
Collapse
|
48
|
Pavlova M, Alexandrova E, Donkov G, Mitova-Mineva Y, Kantardjiev T, Velev V. Campylobacter infections among Bulgarian children: molecular characterization and antimicrobial susceptibility. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1817783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Maria Pavlova
- Laboratory of Enteric Infections, Pathogenic Cocci and Diphtheria, Department of Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - Ekaterina Alexandrova
- Laboratory of Enteric Infections, Pathogenic Cocci and Diphtheria, Department of Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - George Donkov
- Department of Epidemiology, Faculty of Medicine, Medical University of Sofia, Bulgaria
| | | | - Todor Kantardjiev
- Laboratory of Enteric Infections, Pathogenic Cocci and Diphtheria, Department of Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - Valeri Velev
- Clinic of Pediatric Infectious Diseases, Hospital for Infectious and Parasitic Diseases ‘Prof. Iv. Kirov’, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|