1
|
Gömer A, Lang A, Janshoff S, Steinmann J, Steinmann E. Epidemiology and global spread of emerging tick-borne Alongshan virus. Emerg Microbes Infect 2024; 13:2404271. [PMID: 39259276 PMCID: PMC11423535 DOI: 10.1080/22221751.2024.2404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
The emergence and spread of novel viral pathogens is a major threat to human health, particularly in the context of climate and human-induced change in land use. Alongshan virus (ALSV) is a tick-borne virus associated with human disease, which was first identified in northeast China. More recently, several studies reported the emergence of ALSV in mammalian and arthropod hosts in multiple different countries outside of Asia, and the first viral genome sequencing data has become available. ALSV is a member of the Jingmenvirus group closely related to the Flaviviridae family. Unusually, the positive-sense, single-stranded RNA genome of ALSV is segmented and consists of four distinct segments, two of which show homology with the NS3 and NS5 protein encoding regions of non-segmented flaviviruses. Transmission of arthropod-borne pathogens will likely increase in the future due to environmental change mediated by a variety of environmental and ecological factors and increasing human encroachment into wild animal habitats. In this review, we present current knowledge of global ALSV distribution and emergence patterns, highlight genetic diversity, evolution and susceptible species. Finally, we discuss the role of this emerging tick-borne virus in the context of urbanization and global health.
Collapse
Affiliation(s)
- André Gömer
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arthur Lang
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Saskia Janshoff
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - Eike Steinmann
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Mori J, Brown W, Skinner D, Schlichting P, Novakofski J, Mateus‐Pinilla N. An Updated Framework for Modeling White-Tailed Deer ( Odocoileus virginianus) Habitat Quality in Illinois, USA. Ecol Evol 2024; 14:e70487. [PMID: 39493618 PMCID: PMC11531931 DOI: 10.1002/ece3.70487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
White-tailed deer (Odocoileus virginianus) are a cervid species found mostly in the Americas. Managing white-tailed deer requires understanding their relationship with the environment, which was characterized by Roseberry and Woolf (Wildlife Society Bulletin 1, 1998, 252) for all counties in Illinois, USA, who incorporated habitat quantity and quality in a deer habitat suitability index. However, this index was based on satellite imagery from 1996 and did not explore the smaller spatial scales used by deer. Our study addressed these gaps by developing a deer land cover utility (LCU) score for each TRS (township, range, and section), township, and county in Illinois based on the methodology outlined in Roseberry and Woolf (Wildlife Society Bulletin 1, 1998, 252) but using data from the National Land Cover Database (2001-2021). These deer LCU scores were validated against minimum deer population data using Bayesian regression with additional covariates relevant to hunting and deer density. These models performed well with Bayesian R 2 values of 0.501 (TRS), 0.5 (township), and 0.969 (county). The regression coefficients for the deer LCU scores were statistically significant (95% credibility interval not containing 0) and positive at the TRS, township, and county levels, reflecting the expected relationship between minimum deer density and deer LCU. Predictions made by these regression models on new data were accurate, with the median absolute difference between the true and predicted values being 0.398 deer/km2 for TRS', 0.085 deer/km2 for townships, and 0.066 deer/km2 for counties. This deer LCU could be used in other studies about deer in Illinois or studies in which deer are a relevant factor such as investigations about deer disease or tick distribution. This modeling approach could also be adapted to different wild species, locations, and/or time periods for which land cover data is available.
Collapse
Affiliation(s)
- Jameson Mori
- Illinois Natural History SurveyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - William Brown
- Illinois Natural History SurveyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Daniel Skinner
- Division of Wildlife ResourcesIllinois Department of Natural ResourcesSpringfieldIllinoisUSA
| | - Peter Schlichting
- Division of Wildlife ResourcesIllinois Department of Natural ResourcesSpringfieldIllinoisUSA
| | - Jan Novakofski
- Illinois Natural History SurveyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Nohra Mateus‐Pinilla
- Illinois Natural History SurveyUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Department of PathobiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Natural Resources and Environmental SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
3
|
Mazaleyrat A, Durand J, Carravieri I, Caillot C, Galley C, Capizzi S, Boué F, Frey-Klett P, Bournez L. Understanding Ixodes ricinus occurrence in private yards: influence of yard and landscape features. Int J Health Geogr 2024; 23:21. [PMID: 39390481 PMCID: PMC11468097 DOI: 10.1186/s12942-024-00380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Lyme borreliosis is the most frequent zoonotic disease in the northern hemisphere and is transmitted by ticks of the genus Ixodes. Although many people are bitten by ticks in private yards, our understanding of the factors associated with their presence in these areas remains limited. To address this gap, we used a citizen science approach to identify the local and landscape features associated with tick presence in yards. METHODS This study was conducted near Nancy, a city in northeastern France, from 2020 to 2022. Citizen scientists collected ticks in their yard on a single event (n = 185) and measured 13 yard features. Additionally, we computed 11 features related to the landscape composition and spatial configuration surrounding these yards. Using generalized linear mixed models, we determined the yard and landscape features associated with the presence of ticks and nymphal Ixodes ricinus (hereafter nymphs), the life stage, and species that mostly bite humans. RESULTS Despite a low density, ticks were found in 32% of the yards, including yards in urbanized areas. At the transect level, the likelihood of finding a nymph was nearly three times higher in transects shaded by vegetation compared to those in open areas, with no relationship between nymph occurrence and transect location or grass height. At the yard level, the occurrence of ticks and nymphs was related to both yard and landscape characteristics. Nymph and tick occurrence were more than twice as high in yards with signs of deer and a wood/brush pile compared to those without these characteristics, and increased with the connectivity of vegetation areas and the percentage of forest areas in the landscape. CONCLUSIONS Our study reveals that private yards across an urbanization gradient are locations of tick exposure with tick presence linked to both yard and landscape factors. These findings emphasize the importance of public awareness regarding tick exposure in yards and provide crucial insights for future public health prevention campaigns.
Collapse
Affiliation(s)
- Anna Mazaleyrat
- ANSES, Nancy Laboratory for Rabies and Wildlife, 54220, Malzéville, France
- Tous Chercheurs Laboratory, UMR 1136 'Interactions Arbres Micro-Organismes', Université de Lorraine, INRAE, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| | - Jonas Durand
- Tous Chercheurs Laboratory, UMR 1136 'Interactions Arbres Micro-Organismes', Université de Lorraine, INRAE, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| | - Irene Carravieri
- Tous Chercheurs Laboratory, UMR 1136 'Interactions Arbres Micro-Organismes', Université de Lorraine, INRAE, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
- Centre Permanent d'Initiatives Pour l'Environnement (CPIE), Nancy Champenoux, 54280, Champenoux, France
| | - Christophe Caillot
- ANSES, Nancy Laboratory for Rabies and Wildlife, 54220, Malzéville, France
| | - Cyril Galley
- Centre Permanent d'Initiatives Pour l'Environnement (CPIE), Nancy Champenoux, 54280, Champenoux, France
| | - Sandrine Capizzi
- Tous Chercheurs Laboratory, UMR 1136 'Interactions Arbres Micro-Organismes', Université de Lorraine, INRAE, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| | - Franck Boué
- ANSES, Nancy Laboratory for Rabies and Wildlife, 54220, Malzéville, France
| | - Pascale Frey-Klett
- Tous Chercheurs Laboratory, UMR 1136 'Interactions Arbres Micro-Organismes', Université de Lorraine, INRAE, Centre INRAE Grand Est-Nancy, 54280, Champenoux, France
| | - Laure Bournez
- ANSES, Nancy Laboratory for Rabies and Wildlife, 54220, Malzéville, France.
| |
Collapse
|
4
|
de Aquino LM, de Morais IML, Salvador VF, Trindade ASN, Leal LLLL, E Sousa LJMP, Vale FL, Zapa DMB, Ferreira LL, Soares VE, Cruz BC, Borges FDA, Monteiro CMDO, Costa-Junior LM, Lopes WDZ. Annual number of generations and biology of non-parasitic phase of Rhipicephalus microplus in irrigated and non-irrigated pasture in a tropical region. Vet Parasitol 2024; 331:110278. [PMID: 39116548 DOI: 10.1016/j.vetpar.2024.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
This study aimed to verify the number of R. microplus annual generations in irrigated and non-irrigated pastures compared to the constant ideal environment. It also sought to evaluate the biology of the non-parasitic phase of this tick for each generation in these different areas of pasture; assess the larvae population dynamics in the pasture of each tick generation, and evaluate the R. microplus population dynamics parasitizing cattle in non-irrigated pasture. In the field experiment, two sub-areas were subjected to artificial irrigation (IRRI-A and IRRI-B) with artesian water, while the other two remained non-irrigated (NIRRI-A and NIRRIG-B). When more than 75 % of the total surviving engorged females from all 90 repetitions of each area (irrigated or non-irrigated) produced mature larvae within one tick generation, two cattle were infested with approximately 10,000 R. microplus larvae from the tick colony used in this study. On the 22nd day post-infestation, a new tick generation was started by releasing these females in different areas (IRRI-B and NIRRIG-B). This procedure was repeated successively, and each year was analyzed independently. In both the non-irrigated and irrigated areas, there were five generations of R. microplus per year. It can be observed that there the number of annual generations of ticks in this region has increased when compared to 30 years ago. Under the constant ideal temperature and humidity conditions (B.O.D. chamber), R. microplus completed an average of 6.59 generations. In the environment, the longest generation was the first (July to October), while the 2nd, 3rd and 4th (December to March) were the most similar to B.O.D. conditions. Although the number of generations was the same in the different areas, the population density of R. microplus larvae was higher in the irrigated area, probably because the irrigation provided milder temperatures, higher relative humidity and lower saturation deficit values during about eight hours per day. Between the 3rd and 5th generation of ticks, there was an overlap of larvae in the pastures, belonging to different generations, and at each peak of infestation observed in cattle between these generations, there were up to 30 % of larvae from the previous generation, and consequently up to 70 % of larvae from the new generation.
Collapse
Affiliation(s)
- Lídia Mendes de Aquino
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | | | | - Francisca Letícia Vale
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Lorena Lopes Ferreira
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Breno Cayeiro Cruz
- Departamento de Patologia Veterinária, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Fernando de Almeida Borges
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Caio Marcio de Oliveira Monteiro
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Welber Daniel Zanetti Lopes
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
5
|
Eleftheriou A, Zeiger B, Jennings J, Pesapane R. Phenology and habitat associations of the invasive Asian longhorned tick from Ohio, USA. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:314-324. [PMID: 38567802 DOI: 10.1111/mve.12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/20/2024] [Indexed: 08/07/2024]
Abstract
Geographically expanding and invading ticks are a global concern. The Asian longhorned tick (ALT, Haemaphysalis longicornis) was introduced to the mid-Atlantic US between 2010 and 2017 and recently invaded Ohio, an inland state. To date, ALTs in the US have been associated with livestock exsanguination and transmission of the agent of bovine theileriosis. To inform management, studies describing tick ecology and epidemiology of associated disease agents are critical. In this study, we described phenology, habitat and host associations, and tested for agents of medical and veterinary concern at the site of the first known established ALT population in Ohio, where pesticide treatment was applied in early fall 2021. In spring-fall 2022, we sampled wildlife (small mammals) and collected ticks from forest, edge, and grassland habitats. We also opportunistically sampled harvested white-tailed deer at nearby processing stations and fresh wildlife carcasses found near roads. Field-collected ALTs were tested for five agents using real-time PCR. We found that ALT nymphs emerged in June, followed by adults, and concluded with larvae in the fall. ALTs were detected in all habitats but not in wildlife. We also found a 4.88% (2/41) prevalence of Anaplasma phagocytophilum across ALT adults and nymphs. Host and habitat associations were similar to other studies in the eastern United States, but two potential differences in phenology were identified. Whether ALTs will acquire more endemic disease agents requires further investigations. Our findings provide the first evidence regarding ALT life history from the Midwest region of the United States and can inform exposure risk and guide integrated management.
Collapse
Affiliation(s)
- Andreas Eleftheriou
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Zeiger
- College of Food, Agricultural, and Environmental Sciences, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Jazmin Jennings
- College of Arts and Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Risa Pesapane
- College of Veterinary Medicine, Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
- College of Food, Agricultural, and Environmental Sciences, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Ossa-López PA, Ramírez-Chaves HE, Rivera-Páez FA. Pathogens associated with ticks (Acari: Ixodidae) and mammals in the Orinoquia region of Colombia: An approach to understanding vector-pathogen-host interactions. Acta Trop 2024; 256:107282. [PMID: 38861832 DOI: 10.1016/j.actatropica.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
The hard tick clade (Ixodidae) currently comprises 762 species worldwide (266 Prostriata and 496 Metastriata). A quarter of hard ticks are found in the Neotropical region, and 42 species have been documented in Colombia. Ixodidae species are important vectors of pathogens such as bacteria, helminths, protozoa, and viruses. In tick-borne diseases, vertebrate hosts perform an important role in the transmission, maintenance, and spread of pathogens. Colombia ranks sixth among countries with the highest mammal biodiversity, with a total of 548 species, where some of these species may be involved in pathogen transmission cycles with ticks as vectors. This research evaluated the presence of two genera of bacteria (Borrelia and Rickettsia) and the protozoan (Babesia) in ticks and mammals in the Orinoquia region of Colombia, establishing interaction networks. The information comes from 734 mammals (655 wild and 79 domestic), belonging to 59 species. Tick infestation (n = 1,805) was found with 14.85 % (n = 109) of the examined mammals and corresponds to nine tick species confirmed morphologically and molecularly. To detect pathogens 272 ticks were collected while feeding on 96 mammals; samples from 93 mammals were analyzed. The presence of borreliae from the relapsing fever group (RFG) and the Lyme disease group (LDG) were detected. Rickettsia spp. was detected in ticks and mammals, while Babesia bigemina was only detected in ticks. This research is the first to address the prevalence of zoonotic pathogens in domestic and wild mammals infested with hard ticks in the Department of Arauca, Colombia. Considering that reporting cases of infections with Babesia, Borrelia, and Rickettsia in Colombia is not mandatory, their impact on public health cannot be estimated. This highlights the importance of continuously detecting, confirming, and identifying these and other important pathogens within the "One Health" framework, as they have a significant economic and medical-veterinary impact globally.
Collapse
Affiliation(s)
- Paula A Ossa-López
- Doctorado en Ciencias, Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia; Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Héctor E Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia; Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, 170004, Manizales, Caldas, Colombia
| | - Fredy A Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia.
| |
Collapse
|
7
|
Berthold A, Lloyd VK. Changes in the Transcriptome and Long Non-Coding RNAs but Not the Methylome Occur in Human Cells Exposed to Borrelia burgdorferi. Genes (Basel) 2024; 15:1010. [PMID: 39202370 PMCID: PMC11353914 DOI: 10.3390/genes15081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Lyme disease, caused by infection with members of the Lyme borreliosis group of Borrelia spirochete bacteria, is increasing in frequency and distribution worldwide. Epigenetic interactions between the mammalian host, tick, and bacterial pathogen are poorly understood. In this study, high-throughput next-generation sequencing (NGS) allowed for the in vitro study of the transcriptome, non-coding RNAs, and methylome in human host cells in response to Borrelia burgdorferi infection. We tested the effect of the Borrelia burgdorferi strain B31 on a human primary cell line (HUVEC) and an immortalized cell line (HEK-293) for 72 h, a long-duration time that might allow for epigenetic responses in the exposed human host cells. Differential gene expression was detected in both cell models in response to B. burgdorferi. More differentially expressed genes were found in HUVECs compared to HEK-293 cells. Borrelia burgdorferi exposure significantly induced genes in the interferon, in addition to cytokine and other immune response signaling in HUVECs. In HEK-293 cells, pre-NOTCH processing in Golgi was significantly downregulated in Borrelia-exposed cells. Other significantly altered gene expressions were found in genes involved in the extracellular matrix. No significant global methylation changes were detected in HUVECs or HEK-293 cells exposed to B. burgdorferi; however, two long non-coding RNAs and a pseudogene were deregulated in response to B. burgdorferi in HUVECs, suggesting that other epigenetic mechanisms may be initiated by infection.
Collapse
Affiliation(s)
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada;
| |
Collapse
|
8
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
9
|
Mokashi NV, Marusiak AB, Giandomenico D, Barbarin AM, Williams C, Seagle SW, Howard AG, Delamater PL, Boyce RM. Spatiotemporal patterns of Lyme disease in North Carolina: 2010-2020. LANCET REGIONAL HEALTH. AMERICAS 2024; 35:100792. [PMID: 38883560 PMCID: PMC11177193 DOI: 10.1016/j.lana.2024.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024]
Abstract
Background Lyme disease is the most common vector-borne disease in the United States with the majority of cases occurring in the Northeast, upper Midwest, and mid-Atlantic regions. While historically considered a low incidence state, North Carolina (NC) has reported an increasing number of cases over the past decade. Therefore, the aim of this study was to characterise the spatiotemporal evolution of Lyme disease in NC from 2010 to 2020. Methods Confirmed and probable cases reported to the NC Division of Public Health without associated travel to high-transmission state were included in the analysis. The study period was divided into four sub-periods and data were aggregated by zip code of residence. The absolute change in incidence was mapped and spatial autocorrelation analyses were performed within each sub-period. Findings We identified the largest absolute changes in incidence in zip codes located in northwestern NC along the Appalachian Mountains. The spatial distribution of cases became increasingly clustered over the study period (Moran's I of 0.012, p = 0.127 in 2010-2012 vs. 0.403, p < 0.0001 in 2019-2020). Identified clusters included 22 high-incidence zip codes in the 2019-2020 sub-period, largely overlapping with the same areas experiencing the greatest absolute changes in disease incidence. Interpretation Lyme disease has rapidly emerged in northwestern NC with some zip codes reporting incidence rates similar to historically high incidence regions across the US Northeast, mid-Atlantic, and upper Midwest. Efforts are urgently needed to raise awareness among medical providers to prevent excess morbidity. Funding Funding was provided by a "Creativity Hub" award from the UNC Office of the Vice Chancellor for Research. Additional support was provided by Southeastern Center of Excellence in Vector Borne Diseases (U01CK000662).
Collapse
Affiliation(s)
- Neha V Mokashi
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda Brown Marusiak
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dana Giandomenico
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis M Barbarin
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Carl Williams
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Steven W Seagle
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul L Delamater
- Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ross M Boyce
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Sirén APK, Berube J, Clarfeld LA, Sullivan CF, Simpson B, Wilson TL. Accounting for missing ticks: Use (or lack thereof) of hierarchical models in tick ecology studies. Ticks Tick Borne Dis 2024; 15:102342. [PMID: 38613901 DOI: 10.1016/j.ttbdis.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Ixodid (hard) ticks play important ecosystem roles and have significant impacts on animal and human health via tick-borne diseases and physiological stress from parasitism. Tick occurrence, abundance, activity, and key life-history traits are highly influenced by host availability, weather, microclimate, and landscape features. As such, changes in the environment can have profound impacts on ticks, their hosts, and the spread of diseases. Researchers recognize that spatial and temporal factors influence activity and abundance and attempt to account for both by conducting replicate sampling bouts spread over the tick questing period. However, common field methods notoriously underestimate abundance, and it is unclear how (or if) tick studies model the confounding effects of factors influencing activity and abundance. This step is critical as unaccounted variance in detection can lead to biased estimates of occurrence and abundance. We performed a descriptive review to evaluate the extent to which studies account for the detection process while modeling tick data. We also categorized the types of analyses that are commonly used to model tick data. We used hierarchical models (HMs) that account for imperfect detection to analyze simulated and empirical tick data, demonstrating that inference is muddled when detection probability is not accounted for in the modeling process. Our review indicates that only 5 of 412 (1 %) papers explicitly accounted for imperfect detection while modeling ticks. By comparing HMs with the most common approaches used for modeling tick data (e.g., ANOVA), we show that population estimates are biased low for simulated and empirical data when using non-HMs, and that confounding occurs due to not explicitly modeling factors that influenced both detection and abundance. Our review and analysis of simulated and empirical data shows that it is important to account for our ability to detect ticks using field methods with imperfect detection. Not doing so leads to biased estimates of occurrence and abundance which could complicate our understanding of parasite-host relationships and the spread of tick-borne diseases. We highlight the resources available for learning HM approaches and applying them to analyzing tick data.
Collapse
Affiliation(s)
- Alexej P K Sirén
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA; Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA.
| | - Juliana Berube
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Laurence A Clarfeld
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Cheryl F Sullivan
- Entomology Research Laboratory, University of Vermont, Burlington, VT, USA
| | - Benjamin Simpson
- Penobscot Nation Department of Natural Resources, Indian Island, ME, USA
| | - Tammy L Wilson
- U.S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
11
|
Busi A, Martínez-Sánchez ET, Alvarez-Londoño J, Rivera-Páez FA, Ramírez-Chaves HE, Fontúrbel FE, Castaño-Villa GJ. Environmental and ecological factors affecting tick infestation in wild birds of the Americas. Parasitol Res 2024; 123:254. [PMID: 38922478 PMCID: PMC11208200 DOI: 10.1007/s00436-024-08246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
The Americas hold the greatest bird diversity worldwide. Likewise, ectoparasite diversity is remarkable, including ticks of the Argasidae and Ixodidae families - commonly associated with birds. Considering that ticks have potential health implications for humans, animals, and ecosystems, we conducted a systematic review to evaluate the effects of bioclimatic, geographic variables, and bird species richness on tick infestation on wild birds across the Americas. We identified 72 articles that met our inclusion criteria and provided data on tick prevalence in wild birds. Using Generalized Additive Models, we assessed the effect of environmental factors, such as habitat type, climatic conditions, bird species richness, and geographic location, on tick infestation. Our findings show that most bird infestation case studies involved immature ticks, such as larvae or nymphs, while adult ticks represented only 13% of case studies. We found birds infested by ticks of the genera Amblyomma (68%), Ixodes (22%), Haemaphysalis (5%), Dermacentor (1%), and Rhipicephalus (0.8%) in twelve countries across the Americas. Our findings revealed that temperature variation and bird species richness were negatively associated with tick infestation, which also varied with geographic location, increasing in mid-latitudes but declining in extreme latitudes. Our results highlight the importance of understanding how environmental and bird community factors influence tick infestation in wild birds across the Americas and the dynamics of tick-borne diseases and their impact on biodiversity.
Collapse
Affiliation(s)
- Ana Busi
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Grupo de Investigación en Ecosistemas Tropicales, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Doctorado en Ciencias-Agrarias, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 64B No. 25-65, 170004, Manizales, Caldas, Colombia
| | - Estefani T Martínez-Sánchez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Doctorado en Ciencias-Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Johnathan Alvarez-Londoño
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Facultad de Ciencias Exactas y Naturales, Maestría en Ciencias Biológicas, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Fredy A Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Héctor E Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, 170004, Manizales, Caldas, Colombia
| | - Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Gabriel J Castaño-Villa
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 64B No. 25-65, 170004, Manizales, Caldas, Colombia.
| |
Collapse
|
12
|
Logan JJ, Knudby A, Leighton PA, Talbot B, McKay R, Ramsay T, Blanford JI, Ogden NH, Kulkarni MA. Ixodes scapularis density and Borrelia burgdorferi prevalence along a residential-woodland gradient in a region of emerging Lyme disease risk. Sci Rep 2024; 14:13107. [PMID: 38849451 PMCID: PMC11161484 DOI: 10.1038/s41598-024-64085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
The environmental risk of Lyme disease, defined by the density of Ixodes scapularis ticks and their prevalence of Borrelia burgdorferi infection, is increasing across the Ottawa, Ontario region, making this a unique location to explore the factors associated with environmental risk along a residential-woodland gradient. In this study, we collected I. scapularis ticks and trapped Peromyscus spp. mice, tested both for tick-borne pathogens, and monitored the intensity of foraging activity by deer in residential, woodland, and residential-woodland interface zones of four neighbourhoods. We constructed mixed-effect models to test for site-specific characteristics associated with densities of questing nymphal and adult ticks and the infection prevalence of nymphal and adult ticks. Compared to residential zones, we found a strong increasing gradient in tick density from interface to woodland zones, with 4 and 15 times as many nymphal ticks, respectively. Infection prevalence of nymphs and adults together was 15 to 24 times greater in non-residential zone habitats. Ecological site characteristics, including soil moisture, leaf litter depth, and understory density, were associated with variations in nymphal density and their infection prevalence. Our results suggest that high environmental risk bordering residential areas poses a concern for human-tick encounters, highlighting the need for targeted disease prevention.
Collapse
Affiliation(s)
- James J Logan
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
| | - Anders Knudby
- Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON, Canada
| | - Patrick A Leighton
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Roman McKay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Tim Ramsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Justine I Blanford
- Department of Earth Observation Science, Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Manisha A Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Pf B, Ac A, N VEB, Jr M. Cervids as Sentinels for Rickettsia spp. in Portugal. Acta Trop 2024; 254:107202. [PMID: 38565332 DOI: 10.1016/j.actatropica.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Cervids are highly exposed to ticks, however, their role in the life cycle of these rickettsiae has not been fully elucidated. Given the expanding distribution and growing population of deer species in Portugal, coupled with their direct and indirect interactions with humans during hunting, it becomes crucial to explore their role as sentinels and potential reservoirs of Rickettsia. The present investigation aimed to detect and evaluate exposure to Rickettsia in free-living deer from Portugal. Blood samples (n = 77) were collected from hunted game animals (red deer and fallow deer) from different areas throughout Portugal (Idanha-a-Nova, Monte Fidalgo, Montalvão and Arraiolos) and sera were tested by immunofluorescence assay, to detect antibodies. Additionally, blood DNA samples were screened for SFGR by nested-polymerase chain reaction targeting a fragment of the outer membrane protein B (ompB) gene, as well as for Anaplasma and Ehrlichia spp. targeting the 16S rRNA gene. Thirty-five per cent (25 deer and two fallow deer) tested positive (sera with a titer ≥1:64) for IgG antibodies against Rickettsia conorii. No rickettsial DNA was detected by PCR for the ompB gene, and all DNA samples tested negative for Anaplasma and Ehrlichia. As far as we know, this study is the first screening of cervid species in Portugal for Rickettsia antibodies. The findings suggest that these animals serve as useful sentinel indicators for the circulation of rickettsiae, offering a complementary perspective to studies focused on ticks. The increasing numbers of hunted deer in Portugal and the potential zoonotic features of Rickettsia spp. highlight the importance of continued surveillance directed at tick-borne diseases, especially those involving wild animals.
Collapse
Affiliation(s)
- Barradas Pf
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; 1H -TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Paredes, Portugal (PB, NVB).
| | - Abrantes Ac
- CECAV-Animal and Veterinary Research Centre, Trás-os-Montes e Alto Douro University, Quinta de Prados, Vila Real, Portugal (ACA)
| | - Vieira E Brito N
- 1H -TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Paredes, Portugal (PB, NVB)
| | - Mesquita Jr
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal (JRM)
| |
Collapse
|
14
|
Kulisz J, Hoeks S, Kunc-Kozioł R, Woźniak A, Zając Z, Schipper AM, Cabezas-Cruz A, Huijbregts MAJ. Spatiotemporal trends and covariates of Lyme borreliosis incidence in Poland, 2010-2019. Sci Rep 2024; 14:10768. [PMID: 38730239 PMCID: PMC11087522 DOI: 10.1038/s41598-024-61349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024] Open
Abstract
Lyme borreliosis (LB) is the most commonly diagnosed tick-borne disease in the northern hemisphere. Since an efficient vaccine is not yet available, prevention of transmission is essential. This, in turn, requires a thorough comprehension of the spatiotemporal dynamics of LB transmission as well as underlying drivers. This study aims to identify spatiotemporal trends and unravel environmental and socio-economic covariates of LB incidence in Poland, using consistent monitoring data from 2010 through 2019 obtained for 320 (aggregated) districts. Using yearly LB incidence values, we identified an overall increase in LB incidence from 2010 to 2019. Additionally, we observed a large variation of LB incidences between the Polish districts, with the highest risks of LB in the eastern districts. We applied spatiotemporal Bayesian models in an all-subsets modeling framework to evaluate potential associations between LB incidence and various potentially relevant environmental and socio-economic variables, including climatic conditions as well as characteristics of the vegetation and the density of tick host species. The best-supported spatiotemporal model identified positive relationships between LB incidence and forest cover, the share of parks and green areas, minimum monthly temperature, mean monthly precipitation, and gross primary productivity. A negative relationship was found with human population density. The findings of our study indicate that LB incidence in Poland might increase as a result of ongoing climate change, notably increases in minimum monthly temperature. Our results may aid in the development of targeted prevention strategies.
Collapse
Affiliation(s)
- Joanna Kulisz
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland.
| | - Selwyn Hoeks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500, Nijmegen, GL, The Netherlands
| | - Renata Kunc-Kozioł
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland
| | - Aneta Woźniak
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland
| | - Zbigniew Zając
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500, Nijmegen, GL, The Netherlands
| | - Alejandro Cabezas-Cruz
- Anses, UMR BIPAR, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500, Nijmegen, GL, The Netherlands
| |
Collapse
|
15
|
Dyczko D, Plewa-Tutaj K, Kiewra D. Entomopathogenic Fungi in Forest Habitats of Ixodes ricinus. INSECTS 2024; 15:341. [PMID: 38786897 PMCID: PMC11122030 DOI: 10.3390/insects15050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
(1) Background: In addition to the microclimate, host availability, and tick microbiota, soil environmental microorganisms can affect tick populations. This study aimed to (1) determine the presence and diversity of entomopathogenic fungi (EF) in forests, where ticks are abundant, and (2) estimate the effectiveness of the isolated EF strains against Ixodes ricinus. (2) Methods: EF were isolated using the trap insect method from soil collected from tick sites. A bioassay was used to estimate the effectiveness of EF against ticks. (3) Results: The presence of EF was found in all tested forest habitat types. A total of 53 strains belonging to the genera Metarhizium, Beauveria, and Isaria were isolated. All the six strains subjected to the bioassay showed potential efficacy against both adult and nymphal stages of I. ricinus; however, the strains differed in their effectiveness. The most effective isolate against I. ricinus was the soil environmental strain of Metarhizium anisopliae. (4) Conclusion: The study indicates that tick habitats can be the source of entomopathogenic fungi, which have a lethal effect on ticks, as demonstrated in preliminary laboratory tests with I. ricinus. However, for practical use, extensive field tests and further research on application methods and long-term effects are necessary to develop effective and sustainable tick management strategies.
Collapse
Affiliation(s)
| | - Kinga Plewa-Tutaj
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wrocław; 51-148 Wrocław, Poland; (D.D.); (D.K.)
| | | |
Collapse
|
16
|
Mbiri P, Matomola OC, Muleya W, Mhuulu L, Diegaardt A, Noden BH, Changula K, Chimwamurombe P, Matos C, Weiss S, Nepolo E, Chitanga S. Molecular Detection and Characterization of Rickettsia Species in Ixodid Ticks from Selected Regions of Namibia. Microorganisms 2024; 12:912. [PMID: 38792739 PMCID: PMC11124484 DOI: 10.3390/microorganisms12050912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Rickettsial pathogens are among the emerging and re-emerging vector-borne zoonoses of public health importance. Reports indicate human exposure to Rickettsial pathogens in Namibia through serological surveys, but there is a lack of data on infection rates in tick vectors, hindering the assessment of the relative risk to humans. Our study sought to screen Ixodid ticks collected from livestock for the presence of Rickettsia species in order to determine infection rates in ticks and to determine the Rickettsia species circulating in the country. We collected and pooled Hyalomma and Rhipicephalus ticks from two adjacent regions of Namibia (Khomas and Otjozondjupa) and observed an overall minimum Rickettsia infection rate of 8.6% (26/304), with an estimated overall pooled prevalence of 9.94% (95% CI: 6.5-14.3). There were no statistically significant differences in the estimated pooled prevalence between the two regions or tick genera. Based on the nucleotide sequence similarity and phylogenetic analysis of the outer membrane protein A (n = 9) and citrate synthase (n = 12) genes, BLAST analysis revealed similarity between Rickettsia africae (n = 2) and Rickettsia aeschlimannii (n = 11), with sequence identities ranging from 98.46 to 100%. Our initial study in Namibia indicates that both zoonotic R. africae and R. aeschlimannii are in circulation in the country, with R. aeschlimannii being the predominant species.
Collapse
Affiliation(s)
- Pricilla Mbiri
- Department of Production Animal Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
| | - Ophelia Chuma Matomola
- Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
| | - Walter Muleya
- Department of Preclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Lusia Mhuulu
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Azaria Diegaardt
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Bruce Howard Noden
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - Percy Chimwamurombe
- Department of Natural and Applied Sciences, Namibia University of Science & Technology, Windhoek 10005, Namibia;
| | - Carolina Matos
- Centre for International Health Protection, Robert Koch Institute, 13353 Berlin, Germany; (C.M.); (S.W.)
| | - Sabrina Weiss
- Centre for International Health Protection, Robert Koch Institute, 13353 Berlin, Germany; (C.M.); (S.W.)
| | - Emmanuel Nepolo
- Department of Human Biology and Translational Medicine, School of Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia; (L.M.); (A.D.); (E.N.)
| | - Simbarashe Chitanga
- Department of Preclinical Studies, School of Veterinary Medicine, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Private Bag 13301, Windhoek 10005, Namibia;
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, P.O. Box 50110, Lusaka 10101, Zambia
| |
Collapse
|
17
|
Boulanger N, Aran D, Maul A, Camara BI, Barthel C, Zaffino M, Lett MC, Schnitzler A, Bauda P. Multiple factors affecting Ixodes ricinus ticks and associated pathogens in European temperate ecosystems (northeastern France). Sci Rep 2024; 14:9391. [PMID: 38658696 DOI: 10.1038/s41598-024-59867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
In Europe, the main vector of tick-borne zoonoses is Ixodes ricinus, which has three life stages. During their development cycle, ticks take three separate blood meals from a wide variety of vertebrate hosts, during which they can acquire and transmit human pathogens such as Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis. In this study conducted in Northeastern France, we studied the importance of soil type, land use, forest stand type, and temporal dynamics on the abundance of ticks and their associated pathogens. Negative binomial regression modeling of the results indicated that limestone-based soils were more favorable to ticks than sandstone-based soils. The highest tick abundance was observed in forests, particularly among coniferous and mixed stands. We identified an effect of habitat time dynamics in forests and in wetlands: recent forests and current wetlands supported more ticks than stable forests and former wetlands, respectively. We observed a close association between tick abundance and the abundance of Cervidae, Leporidae, and birds. The tick-borne pathogens responsible for Lyme borreliosis, anaplasmosis, and hard tick relapsing fever showed specific habitat preferences and associations with specific animal families. Machine learning algorithms identified soil related variables as the best predictors of tick and pathogen abundance.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France.
- Centre National de Référence Borrelia, Centre Hospitalier Régional Universitaire, Strasbourg, France.
| | - Delphine Aran
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Armand Maul
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Baba Issa Camara
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Université de Lorraine, LCOMS EA 7306, 57073, Metz, France
| | - Cathy Barthel
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France
| | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | | | - Annick Schnitzler
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Museum National d'Histoire Naturelle, UMR 7194 HNHP CNRS/MNHN/UPVD, 75000, Paris, France
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France.
| |
Collapse
|
18
|
Janzén T, Choudhury F, Hammer M, Petersson M, Dinnétz P. Ticks - public health risks in urban green spaces. BMC Public Health 2024; 24:1031. [PMID: 38614967 PMCID: PMC11015579 DOI: 10.1186/s12889-024-18540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/07/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Urban green spaces are important for human health, but they may expose visitors to tick-borne diseases. This not only presents a potential public health challenge but also undermines the expected public health gains from urban green spaces. The aim of this study is to assess the public health risk of tick-borne diseases in an urban green space used for recreation in Stockholm, Sweden. METHODS We used a mixed method approach identifying both the magnitude of the tick hazard and the extent of the human exposure to tick-borne diseases. At six entry points to an urban green space, we sampled ticks and documented microhabitat conditions from five randomly assigned 2 m × 2 m plots. Surrounding habitat data was analyzed using geographical information system (GIS). Nymphs and adult ticks were tested for Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum using TaqMan qPCR. Positive B. burgdorferi (s.l.) ticks were further analyzed by nested PCR amplification and sequence analysis. Population census data and visitor count data were used to estimate the degree of human exposure to tick-borne diseases. To further understand the degree to which visitors get in contact with infected ticks we also conducted interviews with visitors to green spaces. RESULTS High tick densities were commonly found in humid broadleaved forest with low field vegetation. High pathogen prevalence was significantly correlated with increasing proportions of artificial areas. Integrating the tick hazard with human exposure we found that the public health risk of tick-borne diseases was moderate to high at most of the studied entry points. Many of the visitors frequently used urban green spaces. Walking was the most common activity, but visitors also engaged in activities with higher risk for tick encounters. Individual protective measures were connected to specific recreational activities such as picking berries or mushrooms. CONCLUSIONS The number of visitors can be combined with tick inventory data and molecular analyses of pathogen prevalence to make crude estimations of the public health risk of tick-borne diseases in urban green spaces. The risk of encountering infected ticks is omnipresent during recreational activities in urban green spaces, highlighting the need for public health campaigns to reduce the risk of tick-borne diseases.
Collapse
Affiliation(s)
- Thérese Janzén
- Department of Natural Science, Environment and Technology, Södertörn University, Hudding, Sweden.
| | - Firoza Choudhury
- Department of Natural Science, Environment and Technology, Södertörn University, Hudding, Sweden
| | - Monica Hammer
- Department of Natural Science, Environment and Technology, Södertörn University, Hudding, Sweden
| | - Mona Petersson
- Department of Natural Science, Environment and Technology, Södertörn University, Hudding, Sweden
| | - Patrik Dinnétz
- Department of Natural Science, Environment and Technology, Södertörn University, Hudding, Sweden
| |
Collapse
|
19
|
Pérez-Otáñez X, Rodríguez-Hidalgo R, Enríquez S, Celi-Erazo M, Benítez W, Saegerman C, Vaca-Moyano F, Ron-Garrido L, Vanwambeke SO. High-resolution prediction models for Rhipicephalus microplus and Amblyomma cajennense s.l. ticks affecting cattle and their spatial distribution in continental Ecuador using bioclimatic factors. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:439-462. [PMID: 38388882 PMCID: PMC11035444 DOI: 10.1007/s10493-023-00883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/29/2023] [Indexed: 02/24/2024]
Abstract
In Ecuador, the main tick species affecting cattle are Rhipicephalus microplus and Amblyomma cajennense sensu lato. Understanding their spatial distribution is crucial. To assess their distribution, data from 2895 farms visited between 2012 and 2017 were utilized. Ticks were collected during animal inspections, with each farm's location georeferenced. Bioclimatic variables and vapor pressure deficit data were obtained from Climatologies at High resolution for the Earth´s Land Surface Areas (CHELSA) dataset. They were overlaid to develop predictive maps for each species using Random Forest (RF) models. The cross-validation results for RF prediction models showed high accuracy for both R. microplus and A. cajennense s.l. presence with values of accuracy = 0.97 and 0.98, sensitivity = 0.96 and 0.99, and specificity = 0.96 and 0.93, respectively. A carefully selected subset of bioclimatic variables was used to describe the presence of each tick species. Higher levels of precipitation had positive effect on the presence of R. microplus but a negative effect on A. cajennense s.l. In contrast, isothermality (BIO3) was more important for the presence of A. cajennense s.l. compared to R. microplus. As a result, R. microplus had a broader distribution across the country, while A. cajennense s.l. was mainly found in coastal areas with evident seasonality. The coexistence of both species in some regions could be attributed to transitional zones, whereas high altitudes limited tick presence. This information can aid in developing appropriate tick management plans, particularly considering A. cajennense s.l.'s broad host range species and R. microplus's specificity for cattle. Moreover, the predictive models can identify areas at risk of associated challenging hemoparasite, requiring special attention and mitigation measures.
Collapse
Affiliation(s)
- Ximena Pérez-Otáñez
- Instituto de Investigación en Zoonosis-CIZ, Universidad Central del Ecuador, Quito, Ecuador.
- Center for Earth and Climate Research, Earth & Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-La-Neuve, Belgium.
| | - Richar Rodríguez-Hidalgo
- Instituto de Investigación en Zoonosis-CIZ, Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Sandra Enríquez
- Instituto de Investigación en Zoonosis-CIZ, Universidad Central del Ecuador, Quito, Ecuador
| | - Maritza Celi-Erazo
- Instituto de Investigación en Zoonosis-CIZ, Universidad Central del Ecuador, Quito, Ecuador
| | - Washington Benítez
- Instituto de Investigación en Zoonosis-CIZ, Universidad Central del Ecuador, Quito, Ecuador
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Science (UREAR-ULiège), Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| | - Franklin Vaca-Moyano
- Instituto de Investigación en Zoonosis-CIZ, Universidad Central del Ecuador, Quito, Ecuador
| | - Lenin Ron-Garrido
- Instituto de Investigación en Zoonosis-CIZ, Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito, Ecuador
| | - Sophie O Vanwambeke
- Center for Earth and Climate Research, Earth & Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
20
|
Boulanger N. [Anthropization and tick-borne diseases: the example of Lyme borreliosis]. C R Biol 2024; 346:35-41. [PMID: 37655860 DOI: 10.5802/crbiol.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 09/02/2023]
Abstract
Ticks and tick-borne diseases are on the rise throughout the world. The reasons are multifactorial but all associated with human practices, including climate change and socio-economic and eco systemic changes. In the northern hemisphere, Lyme borreliosis and its vector, the tick belonging to the Ixodes ricinus complex, are particularly studied. Changes in forestry and the expansion of certain wild ungulates since the Second World War could explain the increasing presence of this tick in our environment. As it is likely to transmit other microorganisms potentially pathogenic to humans, an integrated multidisciplinary approach to identify human practices promoting its expansion is critical to control the (re)emergence of infectious diseases. Other ticks also benefit from the same anthropised context to increase their numbers in the environment.
Collapse
|
21
|
Kouroupis D, Terzaki M, Moscha N, Sarvani A, Simoulidou E, Chatzimichailidou S, Giza E, Sapouridis G, Angelakis E, Petidis K, Pyrpasopoulou A. Aseptic Meningitis Linked to Borrelia afzelii Seroconversion in Northeastern Greece: An Emerging Infectious Disease Contested in the Region. Trop Med Infect Dis 2024; 9:25. [PMID: 38276636 PMCID: PMC10820939 DOI: 10.3390/tropicalmed9010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Borreliosis (Lyme disease) is a zoonosis, mediated to humans and small mammals through specific vectors (ticks), with increasing global incidence. It is associated with a variety of clinical manifestations and can, if not promptly recognized and left untreated, lead to significant disability. In Europe, the main Borrelia species causing disease in humans are Borrelia burgdorferi s.s., Borrelia afzelii, Borrelia garinii, and Borrelia spielmanii. The Ixodes ricinus tick is their principal vector. Although Lyme disease is considered endemic in the Balkan region and Turkey, and all three main Lyme pathogens have been detected in ticks collected in these countries, autochthonous Lyme disease remains controversial in Greece. We report a case of aseptic meningitis associated with antibody seroconversion against Borrelia afzelii in a young female patient from the prefecture of Thasos without any relevant travel history. The patient presented with fever and severe headache, and the cerebrospinal fluid examination showed lymphocytic pleocytosis. Serum analysis was positive for specific IgG antibodies against Borrelia afzelii. In the absence of typical erythema migrans, serological evidence of infection is required for diagnosis. Although atypical in terms of clinical presentation, the seasonality and geographical location of potential disease transmission in the reported patient should raise awareness among clinicians for a still controversial and potentially underreported emerging infectious disease in Greece.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.); (N.M.); (A.S.); (E.S.); (S.C.); (K.P.)
| | - Maria Terzaki
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.); (N.M.); (A.S.); (E.S.); (S.C.); (K.P.)
| | - Nikoletta Moscha
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.); (N.M.); (A.S.); (E.S.); (S.C.); (K.P.)
| | - Anastasia Sarvani
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.); (N.M.); (A.S.); (E.S.); (S.C.); (K.P.)
| | - Elisavet Simoulidou
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.); (N.M.); (A.S.); (E.S.); (S.C.); (K.P.)
| | - Sofia Chatzimichailidou
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.); (N.M.); (A.S.); (E.S.); (S.C.); (K.P.)
| | - Evangelia Giza
- Neurology Department, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | | | | | - Konstantinos Petidis
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.); (N.M.); (A.S.); (E.S.); (S.C.); (K.P.)
| | - Athina Pyrpasopoulou
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, 54642 Thessaloniki, Greece; (D.K.); (M.T.); (N.M.); (A.S.); (E.S.); (S.C.); (K.P.)
| |
Collapse
|
22
|
Chiang PS, Lai YW, Chung HH, Chia YT, Wang CC, Teng HJ, Chen SL. First molecular detection of a novel Babesia species from Haemaphysalis hystricis in Taiwan. Ticks Tick Borne Dis 2024; 15:102284. [PMID: 38016211 DOI: 10.1016/j.ttbdis.2023.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Newly recorded ticks and emerging tick-borne pathogens have recently been reported in subtropical and tropical East Asia. In this study, a total of 1,615 ticks (259 Haemaphysalis hystricis, 1334 Rhipicephalus microplus, 19 H. flava, and 3 R. haemaphysaloides) were collected by flagging from vegetation in Taiwan during 2019-2021. All 1,615 captured tick samples tested negative for SFTSV and Borrelia, but 12 of 356 tick samples tested positive for PCR amplification of a fragment of the 18S rRNA gene of Babesia spp., with an infection rate of 3.37 % (12/356) and a minimum infection rate of 0.74 % (12/1,615). Among the 12 detected Babesia spp., 11 were identified as Babesia bigemina in R. microplus, and the other one, detected in H. hystricis, was classified as an unnamed novel Babesia sp. Interestingly, the 18S rRNA sequence from the isolate detected in H. hystricis shared 98.79 % to 99.50 % identity with those of recent isolates from Japan, China and Nigeria. The exact origin of the Babesia species is not known, but the findings highlight the importance of international cooperation and the exchange of information on ticks and tick-borne pathogens. This represents a rare report of a Babesia sp. identified in H. hystricis, a tick species that has been proposed as a novel vector for some Babesia spp. This study supports H. hystricis as a possible vector of Babesia spp.
Collapse
Affiliation(s)
- Pai-Shan Chiang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 6, Linsen S. Road, Taipei City 10050, Taiwan
| | - Yi-Wen Lai
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 6, Linsen S. Road, Taipei City 10050, Taiwan
| | - Han-Hsuan Chung
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 6, Linsen S. Road, Taipei City 10050, Taiwan
| | - Yung-Ting Chia
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 6, Linsen S. Road, Taipei City 10050, Taiwan
| | - Chien-Cheng Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 6, Linsen S. Road, Taipei City 10050, Taiwan
| | - Hwa-Jen Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 6, Linsen S. Road, Taipei City 10050, Taiwan
| | - Shiu-Ling Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, No. 6, Linsen S. Road, Taipei City 10050, Taiwan.
| |
Collapse
|
23
|
Melis S, Batisti Biffignandi G, Olivieri E, Galon C, Vicari N, Prati P, Moutailler S, Sassera D, Castelli M. High-throughput screening of pathogens in Ixodes ricinus removed from hosts in Lombardy, northern Italy. Ticks Tick Borne Dis 2024; 15:102285. [PMID: 38035456 DOI: 10.1016/j.ttbdis.2023.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Ticks are important vectors of many pathogens in Europe, where the most impactful species is Ixodes ricinus. Recently, the geographical distribution of this tick species has been expanding, resulting in an increased risk of human exposure to tick bites. With the present study, we aimed to screen 350 I. ricinus specimens collected from humans and wild animals (mainly ungulates), to have a broader understanding of the tick-borne pathogens circulating in the Lombardy region, in northern Italy. To do so, we took advantage of a high-throughput real-time microfluidic PCR approach to screen ticks in a cost-effective and time-saving manner. Molecular analysis of the dataset revealed the presence of four genera of bacteria and two genera of protozoa: in ungulates, 77 % of collected ticks carried Anaplasma phagocytophilum, while the most common pathogen species in ticks removed from humans were those belonging to Borrelia burgdorferi sensu lato group (7.6 %). We also detected other pathogenic microorganisms, such as Rickettisa monacensis, Rickettsia helvetica, Neoehrlichia mikurensis, Babesia venatorum, and Hepatozoon martis. Besides, we also reported the presence of the pathogenic agent Borrelia miyamotoi in the area (1.4 % overall). The most common dual co-infection detected in the same tick individual involved A. phagocytophilum and Rickettsia spp. Our study provided evidence of the circulation of different tick-borne pathogens in a densely populated region in Italy.
Collapse
Affiliation(s)
- Sophie Melis
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Emanuela Olivieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Nadia Vicari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
24
|
El-Alfy ES, Abbas I, Saleh S, Elseadawy R, Fereig RM, Rizk MA, Xuan X. Tick-borne pathogens in camels: A systematic review and meta-analysis of the prevalence in dromedaries. Ticks Tick Borne Dis 2024; 15:102268. [PMID: 37769585 DOI: 10.1016/j.ttbdis.2023.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Published data on tick-borne pathogens (TBPs) in camels worldwide have been collected to provide an overview of the global prevalence and species diversity of camelid TBPs. Several TBPs have been detected in dromedary camels, raising concerns regarding their role as natural or maintenance hosts for tick-borne pathogens. Insubstantial evidence exists regarding the natural infection of camels with Babesia spp., Theileria spp., Anaplasma spp., and Ehrlichia spp., particularly because most of the camels were considered healthy at the time of sampling. Based on polymerase chain reaction (PCR) testing, a pooled prevalence of 35.3% (95% CI: 22.6-48.1%) was estimated for Anaplasma, which was the most frequently tested TBP in dromedaries, and DNA of Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, and A. platys-like were isolated, of which ruminants and dogs are reservoirs. Similarly, the estimated pooled prevalence for the two piroplasmid genera; Babesia and Theileria was approximately equal (10-12%) regardless of the detection method (microscopy or PCR testing). Nevertheless, Babesia caballi, Theileria equi, and Theileria annulata DNA have frequently been detected in camels but they have not yet been proven to be natural hosts. Scarce data detected Babesia microti, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) DNA in blood of dromedaries, although ticks of the genus Ixodes are distributed in limited areas where dromedaries are raised. Interestingly, a pooled seroprevalence of 47.7% (26.3-69.2%) was estimated for Crimean-Congo hemorrhagic fever virus, and viral RNA was detected in dromedary blood; however, their contribution to maintain the viral transmission cycles requires further experimental investigation. The substantially low incidence and scarcity of data on Rickettsia and Ehrlichia species could imply that camels were accidentally infected. In contrast, camels may play a role in the spread of Coxiella burnetii, which is primarily transmitted through the inhalation of aerosols emitted by diseased animals and contaminated environments. Bactrian camels showed no symptoms due to the examined TBPs, meanwhile, clinical disease was seen in alpacas infected with A. phagocytophilum. Similar to dromedaries, accidental tick bites may be the cause of TBP DNA found in the blood of Bactrian camels.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Somaya Saleh
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Elseadawy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ragab M Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
25
|
Hema DM, Biguezoton AS, Coulibaly A, Compaore M, Sawadogo I, Bationo RK, Dah FF, Kiendrebeogo M, Nebié RCH. Efficacy of local essential oils against Amblyomma variegatum tick from Burkina Faso. Vet Parasitol 2023; 324:110059. [PMID: 37939623 DOI: 10.1016/j.vetpar.2023.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
The native tick Amblyomma variegatum remains one of the most important tick species affecting cattle in West Africa. This hinders animal production by negatively impacting the health and reproduction of animals infested with the tick. Given the negative consequences on production quality and environmental health, the use of chemical products for tick control is increasingly being discouraged. Therefore, this study aimed to assess the acaricidal activity of essential oils such as Ageratum conyzoïdes, Cymbopogon citratus, Cymbopogon giganteus, Lippia multiflora and Ocimum gratissimum against specimens of A. variegatum from Burkina Faso. A larval immersion test was performed to investigate the larvicidal activities of these essential oils. Gas chromatography-mass spectrometry was used to determine the chemical compositions of essential oils. The chemical composition was predominantly oxygenated monoterpenes in A. conyzoïdes (48.71 %), C. citratus (99.9 %) and C. giganteus (73.63 %), while hydrocarbon monoterpenes were the most abundant in O. gratissimum (63.7 %) and hydrocarbon sesquiterpenes in L. multiflora (71.719 %). The recorded larvicidal activity, varied according to the species of plants and the dose applied. At a dose of 12.5 mg/mL, all essential oils studied, except L. multiflora (7.54 %), induced 100 % larval mortality. In this study, we highlight the promising larvicidal effects of local essential oils against A. variegatum. These essential oils can be used as bio-acaricides, which are effective and environmentally-friendly alternatives to chemical products. However, further investigations are required to determine the mechanisms of action of these essential oils for in vivo experimentation and their practical application in the control of A. variegatum ticks.
Collapse
Affiliation(s)
- Delphine M Hema
- Centre National de Recherche Scientifique et Technologique / CNRST / IRSAT, 03 BP 7047, Ouagadougou 03, Burkina Faso.
| | - Abel S Biguezoton
- Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), 01 B.P. 454, Bobo-Dioulasso 01, Burkina Faso
| | - Anass Coulibaly
- Centre National de Recherche Scientifique et Technologique / CNRST / IRSAT, 03 BP 7047, Ouagadougou 03, Burkina Faso
| | - Moussa Compaore
- Université Joseph Ki-Zerbo (UJKZ), 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Ignace Sawadogo
- Centre National de Recherche Scientifique et Technologique / CNRST / IRSAT, 03 BP 7047, Ouagadougou 03, Burkina Faso
| | - Rémy K Bationo
- Centre National de Recherche Scientifique et Technologique / CNRST / IRSAT, 03 BP 7047, Ouagadougou 03, Burkina Faso
| | - Firmin F Dah
- Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), 01 B.P. 454, Bobo-Dioulasso 01, Burkina Faso
| | | | - Roger C H Nebié
- Centre National de Recherche Scientifique et Technologique / CNRST / IRSAT, 03 BP 7047, Ouagadougou 03, Burkina Faso
| |
Collapse
|
26
|
Velusamy R, Ponnudurai G, Alagesan A, Rani N, Kolte SW, Rubinibala B. Epidemiology and molecular characterization of Theileria annulata in ticks collected from cattle in the central part of Tamil Nadu, India. Parasitol Res 2023; 122:3077-3086. [PMID: 37831206 DOI: 10.1007/s00436-023-07998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Tick-borne diseases are the most common in cattle in the tropical and subtropical regions of India and lead to substantial economic losses to small and marginal farmers. This study aimed to identify the diverse species of ticks infesting cattle in the central part of Tamil Nadu, India, and to assess the prevalence of Theileria annulata infection in various species of ticks through PCR. Out of 123 cross-bred and 105 native breed cattle examined for tick infestation, 40 (18%) and 29 (12.7%) cattle were infested with Ixodid ticks, respectively. The most prevalent tick species identified was Rhipicephalus microplus (n=589), followed by Hyalomma anatolicum (n=532), Hyalomma marginatum (n=145), Haemaphysalis intermedia (n=79), and Rhipicephalus haemophysaloides (n=1) found in the study area. The prevalence and intensity of the tick infestation were found to be higher in cross-bred (71.04%) than native breed cattle (28.96%), and there was no significant difference between the studied breeds (chi-square value =24; df =20; p value =0.24) was observed. However, a significant difference in the H. anatolicum tick infestation was observed between the Cauvery Delta (14.30%) and the North-Western (20%) zones of Tamil Nadu (p<0.05). DNA fragments of 193 bp derived from 18S rRNA gene sequences of T. annulata were amplified using species-specific primers. Of these, 16 out of 37 (43.2%) and 10 out of 39 (29%) pooled samples of H. anatolicum and 4 out of 18 (22.2%) and 1 out of 5 (20%) pooled samples of H. marginatum were found positive for T. annulata from the Cauvery Delta and North-Western zones, respectively. R. microplus, H. intermedia, and R. haemaphysaloides from these regions were negative. These findings confirm that H. anatolicum (52.17%) is the predominant vector for T.annulata rather than H. marginatum (18.84%), and the PCR is a useful method of determining the infection rates in ticks collected from animals carrying low levels of T. annulata piroplasms.
Collapse
Affiliation(s)
- Rangasamy Velusamy
- Department of Veterinary Parasitology, Veterinary College and Research Institute (TANUVAS), Orathanadu, 614 625, Tamil Nadu, India
| | - Gurusamy Ponnudurai
- Department of Veterinary Parasitology, Veterinary College and Research Institute (TANUVAS), Namakkal, 637 002, Tamil Nadu, India
| | - Alagarsamy Alagesan
- Poultry Disease Diagnosis and Surveillance Laboratory, Veterinary College and Research Institute Campus (TANUVAS), Namakkal, 637 002, Tamil Nadu, India.
| | - Natarajan Rani
- Department of Veterinary Parasitology, Veterinary College and Research Institute (TANUVAS), Namakkal, 637 002, Tamil Nadu, India
| | - Sunil W Kolte
- Department of Veterinary Parasitology, Nagpur Veterinary College, Seminary Hills, Nagpur, 440 006, Maharashtra, India
| | - Balan Rubinibala
- Department of Veterinary Parasitology, Madras Veterinary College (TANUVAS), Chennai, 600 007, Tamil Nadu, India
| |
Collapse
|
27
|
Urcuqui-Bustamante AM, Leahy JE, Sponarski C, Gardner AM. Collaborative Modeling of the Tick-Borne Disease Social-Ecological System: A Conceptual Framework. ECOHEALTH 2023; 20:453-467. [PMID: 38214874 DOI: 10.1007/s10393-023-01669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
Hard-bodied ticks have become a major concern in temperate regions because they transmit a variety of pathogens of medical significance. Ticks and pathogens interact with hosts in a complex social-ecological system (SES) that influences human exposure to tick-borne diseases (TBD). We argue that addressing the urgent public health threat posed by TBD requires an understanding of the integrated processes in the forest ecosystem that influence tick density and infection prevalence, transmission among ticks, animal hosts, and ultimately disease prevalence in humans. We argue that collaborative modeling of the human-tick SES is required to understand the system dynamics as well as move science toward policy action. Recent studies in human health have shown the importance of stakeholder participation in understanding the factors that contribute to human exposure to zoonotic diseases. We discuss how collaborative modeling can be applied to understand the impacts of forest management practices on ticks and TBD. We discuss the potential of collaborative modeling for encouraging participation of diverse stakeholders in discussing the implications of managing forest ticks in the absence of large-scale control policy.
Collapse
Affiliation(s)
| | - Jessica E Leahy
- School of Forest Resources, University of Maine, 105 Nutting Hall, Orono, ME, USA
| | - Carly Sponarski
- Northern Forestry Centre, Canadian Forest Service, Edmonton, AB, Canada
| | | |
Collapse
|
28
|
Gonzaga BCF, Barrozo MM, Coutinho AL, Pereira E Sousa LJM, Vale FL, Marreto L, Marchesini P, de Castro Rodrigues D, de Souza EDF, Sabatini GA, Costa-Júnior LM, Ferreira LL, Lopes WDZ, Monteiro C. Essential oils and isolated compounds for tick control: advances beyond the laboratory. Parasit Vectors 2023; 16:415. [PMID: 37964392 PMCID: PMC10647118 DOI: 10.1186/s13071-023-05969-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/12/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Tick control is a worldwide challenge due to its resistance to acaricides. Essential oils (EOs) and isolated compounds (EOCs) are potential alternatives for tick control technologies. METHODS A review with EOs and EOCs, under field and semi-field conditions, was performed based on Scopus, Web of Science and PubMed databases. Thirty-one studies published between 1991 and 2022 were selected. The search was performed using the following keywords: "essential oil" combined with "tick," "Ixodes," "Argas," "Rhipicephalus," "Amblyomma," "Hyalomma," "Dermacentor," "Haemaphysalis" and "Ornithodoros." The words "essential oil" and "tick" were searched in the singular and plural. RESULTS The number of studies increased over the years. Brazil stands out with the largest number (51.6%) of publications. The most studied tick species were Rhipicephalus microplus (48.4%), Ixodes scapularis (19.4%), Amblyomma americanum and R. sanguineus sensu lato (9.7% each). Cattle (70%) and dogs (13%) were the main target animal species. Regarding the application of EOs/EOCs formulations, 74% of the studies were conducted with topical application (spray, pour-on, foam, drop) and 26% with environmental treatment (spray). Efficacy results are difficult to evaluate because of the lack of information on the methodology and standardization. The nanotechnology and combination with synthetic acaricides were reported as an alternative to enhance the efficacy of EOs/EOCs. No adverse reactions were observed in 86.6% of the studies evaluating EOs/EOCs clinical safety. Studies regarding toxicity in non-target species and residues are scarce. CONCLUSIONS This article provides a comprehensive review on the use of EOs and EOCs to reduce tick infestations, in both the hosts and the environment. As future directions, we recommend the chemical characterization of EOs, methodology standardization, combination of EOs/EOCs with potential synergists, nanotechnology for new formulations and safety studies for target and non-target organisms, also considering the environmental friendliness.
Collapse
Affiliation(s)
- Bruno César Ferreira Gonzaga
- Programa de Pós-graduação em Ciência Animal - Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, Km 8, Campus Samambaia, Goiânia, GO, 74690-900, Brasil
- Faculdade de Medicina, Universidade Federal de Goiás, Campus Colemar Natal e Silva, Rua 235, s/n, Setor Leste Universitário, Goiânia, GO, 74605-050, Brasil
| | - Mayara Macêdo Barrozo
- Programa de Pós-graduação em Ciência Animal - Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, Km 8, Campus Samambaia, Goiânia, GO, 74690-900, Brasil
| | - Ana Lúcia Coutinho
- Programa de Pós-graduação em Ciência Animal - Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, Km 8, Campus Samambaia, Goiânia, GO, 74690-900, Brasil
| | - Lainny Jordana Martins Pereira E Sousa
- Programa de Pós-graduação em Ciência Animal - Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, Km 8, Campus Samambaia, Goiânia, GO, 74690-900, Brasil
| | - Francisca Letícia Vale
- Programa de Pós-graduação em Ciência Animal - Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, Km 8, Campus Samambaia, Goiânia, GO, 74690-900, Brasil
| | - Laís Marreto
- Programa de Pós-Graduação em Ciências Farmacêuticas - Faculdade de Farmácia, Universidade Federal de Goiás, Praça Universitária, no. 1166, Setor Universitário, Goiânia, GO, 74605-220, Brasil
| | - Paula Marchesini
- Programa de Pós-graduação em Ciência Animal - Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, Km 8, Campus Samambaia, Goiânia, GO, 74690-900, Brasil
| | | | | | | | - Lívio Martins Costa-Júnior
- Centro de Pesquisas do CCBS, Universidade Federal do Maranhão, Avenida dos Portugueses, no. 1966, São Luís, MA, 65080-805, Brasil
| | - Lorena Lopes Ferreira
- Departamento de Medicina Veterinária Preventiva - Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos, no. 6627, Campus Pampulha, Belo Horizonte, MG, 31270-901, Brasil
| | - Welber Daniel Zanetti Lopes
- Programa de Pós-graduação em Ciência Animal - Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, Km 8, Campus Samambaia, Goiânia, GO, 74690-900, Brasil
- Departamento de Biociências e Tecnologia - Instituto de Patologia Tropical e de Saúde Pública, Universidade Federal de Goiás-, Campus Colemar Natal e Silva - Rua 235, s/n - Setor Leste Universitário, Goiânia, GO, 74605-050, Brasil
| | - Caio Monteiro
- Programa de Pós-graduação em Ciência Animal - Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Rodovia Goiânia - Nova Veneza, Km 8, Campus Samambaia, Goiânia, GO, 74690-900, Brasil.
- Departamento de Biociências e Tecnologia - Instituto de Patologia Tropical e de Saúde Pública, Universidade Federal de Goiás-, Campus Colemar Natal e Silva - Rua 235, s/n - Setor Leste Universitário, Goiânia, GO, 74605-050, Brasil.
| |
Collapse
|
29
|
Hernández F, Manqui J, González-Acuña D, Beltrami E, Verdugo C, Acosta-Jamett G. Abundance and associated factors of Amblyomma tigrinum (Acari: Ixodidae) infesting wild foxes in north-central Chile. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e008223. [PMID: 37909605 DOI: 10.1590/s1984-29612023062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023]
Abstract
The tick Amblyomma tigrinum inhabits areas with diverse climatic conditions, with adult stages parasitizing wild canids, such as chilla (Lycalopex griseus) and culpeo (Lycalopex culpaeus) foxes. We described the infestation loads in wild foxes captured at three sites (periurban, rural and wild) through an anthropization gradient in north-central Chile. We tested whether local-scale environmental and/or individual host factors can predict tick abundance by using negative binomial models. During 2018-2020 (spring and summer), we captured 116 foxes (44 chillas and 72 culpeos), and 102 of them were infested with ticks (87.9%, CI=80.6-93.2%). We collected 996 A. tigrinum adult ticks, estimating a total mean abundance of 8.6±0.8 ticks/host. Periurban and rural foxes harbored greater tick loads than foxes from the wild site (2.34 and 1.71 greater, respectively) while tick abundance in summer decreased by up to 57% compared to spring. Tempered, more humid climate conditions of the periurban site could favor the development and survival of adults A. tigrinum; and ticks may have adopted a quiescent stage or similar survival mechanisms to cope with summer temperature increases related to the ongoing megadrought. Further studies are warranted to understand the underlying factors determining the life cycle of A. tigrinum at larger spatiotemporal scales.
Collapse
Affiliation(s)
- Felipe Hernández
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Center for Surveillance and Evolution of Infectious Diseases, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jonatan Manqui
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Programa de Magíster en Ecología Aplicada, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Esperanza Beltrami
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Verdugo
- Center for Surveillance and Evolution of Infectious Diseases, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Gerardo Acosta-Jamett
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Center for Surveillance and Evolution of Infectious Diseases, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
30
|
Tonk-Rügen M, Zając Z, Cabezas-Cruz A. Can Tick Microbiome Explain Nonlinear Relationship between Tick Abundance and Lyme Disease Incidence? Pathogens 2023; 12:1229. [PMID: 37887745 PMCID: PMC10610533 DOI: 10.3390/pathogens12101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Ticks (Acari: Ixodida) are hematophagous ectoparasitic arachnids that feed on the blood of vertebrate hosts, posing significant concern due to their unrivaled capacity to transmit various pathogens, which surpasses those of all other known arthropod vectors [...].
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Zbigniew Zając
- Department of Biology and Parasitology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| |
Collapse
|
31
|
Smith AT, Krasnov BR, Horak IG, Ueckermann EA, Matthee S. Ectoparasites associated with the Bushveld gerbil ( Gerbilliscus leucogaster) and the role of the host and habitat in shaping ectoparasite diversity and infestations. Parasitology 2023; 150:792-804. [PMID: 37272490 PMCID: PMC10478068 DOI: 10.1017/s0031182023000562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
Rodents are known hosts for various ectoparasite taxa such as fleas, lice, ticks and mites. South Africa is recognized for its animal diversity, yet little is published about the parasite diversity associated with wild rodent species. By focusing on a wildlife-human/domestic animal interface, the study aims to record ectoparasite diversity and levels of infestations of the Bushveld gerbil, Gerbilliscus leucogaster, and to establish the relationship between ectoparasite infestation parameters and host- and habitat factors. Rodents (n = 127) were trapped in 2 habitat types (natural and agricultural) during 2014–2020. More than 6500 individuals of 32 epifaunistic species represented by 21 genera and belonging to 5 taxonomic groups (fleas, sucking lice, ticks, mesostigmatan mites and trombiculid mites) were collected. Mesostigmatan mites and lice were the most abundant and fleas and mesostigmatan mites the most prevalent groups. Flea and mesostigmatan mite numbers and mesostigmatan mite species richness was significantly higher on reproductively active male than female rodents. Only ticks were significantly associated with habitat type, with significantly higher tick numbers and more tick species on rodents in the natural compared to the agricultural habitat. We conclude that the level of infestation by ectoparasites closely associated with the host (fleas and mites) was affected by host-associated factors, while infestation by ectoparasite that spend most of their life in the external environment (ticks) was affected by habitat type.
Collapse
Affiliation(s)
- Amber T. Smith
- Department of Conservation Ecology and Entomology, Stellenbosch University, 7602 Stellenbosch, South Africa
| | - Boris R. Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
| | - Ivan G. Horak
- Department of Zoology and Entomology, Rhodes University, PO Box 94, Makhanda 6140, South Africa
| | - Eddie A. Ueckermann
- Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, North-West, South Africa
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Stellenbosch University, 7602 Stellenbosch, South Africa
| |
Collapse
|
32
|
Jato-Espino D, Mayor-Vitoria F, Moscardó V, Capra-Ribeiro F, Bartolomé del Pino LE. Toward One Health: a spatial indicator system to model the facilitation of the spread of zoonotic diseases. Front Public Health 2023; 11:1215574. [PMID: 37457260 PMCID: PMC10340543 DOI: 10.3389/fpubh.2023.1215574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Recurrent outbreaks of zoonotic infectious diseases highlight the importance of considering the interconnections between human, animal, and environmental health in disease prevention and control. This has given rise to the concept of One Health, which recognizes the interconnectedness of between human and animal health within their ecosystems. As a contribution to the One Health approach, this study aims to develop an indicator system to model the facilitation of the spread of zoonotic diseases. Initially, a literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to identify relevant indicators related to One Health. The selected indicators focused on demographics, socioeconomic aspects, interactions between animal and human populations and water bodies, as well as environmental conditions related to air quality and climate. These indicators were characterized using values obtained from the literature or calculated through distance analysis, geoprocessing tasks, and other methods. Subsequently, Multi-Criteria Decision-Making (MCDM) techniques, specifically the Entropy and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methods, were utilized to combine the indicators and create a composite metric for assessing the spread of zoonotic diseases. The final indicators selected were then tested against recorded zoonoses in the Valencian Community (Spain) for 2021, and a strong positive correlation was identified. Therefore, the proposed indicator system can be valuable in guiding the development of planning strategies that align with the One Health principles. Based on the results achieved, such strategies may prioritize the preservation of natural landscape features to mitigate habitat encroachment, protect land and water resources, and attenuate extreme atmospheric conditions.
Collapse
Affiliation(s)
- Daniel Jato-Espino
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
| | - Fernando Mayor-Vitoria
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
| | - Vanessa Moscardó
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
| | - Fabio Capra-Ribeiro
- GREENIUS Research Group, Universidad Internacional de Valencia—VIU, Calle Pintor Sorolla, Valencia, Spain
- School of Architecture, College of Art and Design, Louisiana State University, Baton Rouge, LA, United States
| | | |
Collapse
|
33
|
Nemaungwe TM, van Dalen EMSP, Waniwa EO, Makaya PV, Chikowore G, Chidawanyika F. Biogeography of the theileriosis vector, Rhipicephalus appendiculatus under current and future climate scenarios of Zimbabwe. EXPERIMENTAL & APPLIED ACAROLOGY 2023:10.1007/s10493-023-00796-1. [PMID: 37171505 PMCID: PMC10293362 DOI: 10.1007/s10493-023-00796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Climate directly influences the epidemiology of vector-borne diseases at various spatial and temporal scales. Following the recent increased incidences of theileriosis in Zimbabwe, a disease mainly transmitted by Rhipicephalus appendiculatus, we determined lethal temperatures for the species and current and possible future distribution using the machine learning algorithm 'Maxent'. Rhipicephalus appendiculatus larvae had an upper lethal temperature (ULT50) of about 44 ± 0.5 °C and this was marginally higher for nymphs and adults at 46 ± 0.5 °C. Environmental temperatures recorded in selected zonal tick microhabitats were below the determined lethal limits, indicating the ability of the tick to survive these regions. The resultant model under current climatic conditions showed areas with high suitability indices to the eastern, northeastern and southeastern parts of the country, mainly in Masvingo, Manicaland and Mashonaland Central provinces. Future predictions as determined by 2050 climatic conditions indicate a reduction in suitable habitats with the tick receding to presently cooler high elevation areas such as the eastern Highlands of Zimbabwe and a few isolated pockets in the interior of the country. Lowveld areas show low suitability under current climatic conditions and are expected to remain unsuitable in future. Overall, the study shows that R. appendiculatus distribution is constrained by climatic factors and helps identify areas of where occurrence of the species and the disease it transmits is highly likely. This will assist in optimizing disease surveillance and vector management strategies targeted at the species.
Collapse
Affiliation(s)
- Tinotenda M Nemaungwe
- Division of Veterinary Technical Services, Ministry of Lands, Fisheries, Water and Rural Development, Harare, Zimbabwe
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Ellie M S P van Dalen
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Emily O Waniwa
- Division of Veterinary Technical Services, Ministry of Lands, Fisheries, Water and Rural Development, Harare, Zimbabwe
| | - Pious V Makaya
- Division of Veterinary Technical Services, Ministry of Lands, Fisheries, Water and Rural Development, Harare, Zimbabwe
| | - Gerald Chikowore
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Frank Chidawanyika
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
- International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
34
|
Fernández-Ruiz N, Estrada-Peña A, McElroy S, Morse K. Passive collection of ticks in New Hampshire reveals species-specific patterns of distribution and activity. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:575-589. [PMID: 37030013 PMCID: PMC10179451 DOI: 10.1093/jme/tjad030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023]
Abstract
Ticks and tick-borne diseases are increasing in the United States, including New Hampshire (NH). We report on the findings of an ongoing free crowdsourcing program spanning four years within NH. The date of tick's submission was recorded along with species, sex, stage, location they were collected (translated into latitude and longitude), the activity the individual was doing when the tick was found, and host species. A total of 14,252 ticks belonging to subclass Acari, family Ixodidae and genera Ixodes, Dermacentor, Amblyomma, and Haemaphysalis was recorded from the period 2018-2021 throughout NH. A total of 2,787 Ixodes scapularis and 1,041 Dermacentor variabilis, were tested for the presence of Borrelia sp. (Spirochaetales: Spirochaetaceae), B. burgdorferi sensu lato, B. miyamotoi, B. mayonii, Babesia microti (Piroplasmida: Babesiidae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), Francisella tularensis (Thiotrichales: Francisellaceae), and Rickettsia rickettsii (Rickettsiales: Rickettsiaceae) by PCR. For the I. scapularis ticks tested, the pathogen prevalence was 37% B. burgdorferi s.l. 1% B. miyamotoi, 6% A. phagocytophilum, and 5% Ba. microti. Only one D. variabilis resulted positive to F. tularensis. We created state-wide maps informing the differences of ticks as detailed by administrative divisions. Dermacentor variabilis peaked in June and I. scapularis peaked in May and October. The most reported activity by people with tick encounters was while walking/hiking, and the least was biking. Using the reported distribution of both species of ticks, we modeled their climate suitability in the target territory. In NH, I. scapularis and D. variabilis have distinct patterns of emergence, abundance, and distribution. Tick prevention is important especially during April-August when both tick species are abundant and active.
Collapse
Affiliation(s)
- Natalia Fernández-Ruiz
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| | | | | |
Collapse
|
35
|
Kjær LJ, Johansson M, Lindgren PE, Asghar N, Wilhelmsson P, Fredlund H, Christensson M, Wallenhammar A, Bødker R, Rasmussen G, Kjellander P. Potential drivers of human tick-borne encephalitis in the Örebro region of Sweden, 2010-2021. Sci Rep 2023; 13:7685. [PMID: 37169798 PMCID: PMC10175290 DOI: 10.1038/s41598-023-34675-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
Incidence of tick-borne encephalitis (TBE) has increased during the last years in Scandinavia, but the underlying mechanism is not understood. TBE human case data reported between 2010 and 2021 were aggregated into postal codes within Örebro County, south-central Sweden, along with tick abundance and environmental data to analyse spatial patterns and identify drivers of TBE. We identified a substantial and continuing increase of TBE incidence in Örebro County during the study period. Spatial cluster analyses showed significant hotspots (higher number of cases than expected) in the southern and northern parts of Örebro County, whereas a cold spot (lower number of cases than expected) was found in the central part comprising Örebro municipality. Generalised linear models showed that the risk of acquiring TBE increased by 12.5% and 72.3% for every percent increase in relative humidity and proportion of wetland forest, respectively, whereas the risk decreased by 52.8% for every degree Celsius increase in annual temperature range. However, models had relatively low goodness of fit (R2 < 0.27). Results suggest that TBE in Örebro County is spatially clustered, however variables used in this study, i.e., climatic variables, forest cover, water, tick abundance, sheep as indicator species, alone do not explain this pattern.
Collapse
Affiliation(s)
- Lene Jung Kjær
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Magnus Johansson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| | - Naveed Asghar
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Peter Wilhelmsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| | - Hans Fredlund
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Örebro County Council, Örebro, Sweden
| | - Madeleine Christensson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences (SLU), Riddarhyttan, Sweden
| | - Amélie Wallenhammar
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - René Bødker
- Section for Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Gunløg Rasmussen
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Örebro County Council, Örebro, Sweden
| | - Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences (SLU), Riddarhyttan, Sweden
| |
Collapse
|
36
|
Hassall RMJ, Burthe SJ, Schäfer SM, Hartemink N, Purse BV. Using mechanistic models to highlight research priorities for tick-borne zoonotic diseases: Improving our understanding of the ecology and maintenance of Kyasanur Forest Disease in India. PLoS Negl Trop Dis 2023; 17:e0011300. [PMID: 37126514 PMCID: PMC10174626 DOI: 10.1371/journal.pntd.0011300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/11/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
The risk of spillover of zoonotic diseases to humans is changing in response to multiple environmental and societal drivers, particularly in tropical regions where the burden of neglected zoonotic diseases is highest and land use change and forest conversion is occurring most rapidly. Neglected zoonotic diseases can have significant impacts on poor and marginalised populations in low-resource settings but ultimately receive less attention and funding for research and interventions. As such, effective control measures and interventions are often hindered by a limited ecological evidence base, which results in a limited understanding of epidemiologically relevant hosts or vectors and the processes that contribute to the maintenance of pathogens and spillover to humans. Here, we develop a generalisable next generation matrix modelling framework to better understand the transmission processes and hosts that have the greatest contribution to the maintenance of tick-borne diseases with the aim of improving the ecological evidence base and framing future research priorities for tick-borne diseases. Using this model we explore the relative contribution of different host groups and transmission routes to the maintenance of a neglected zoonotic tick-borne disease, Kyasanur Forest Disease Virus (KFD), in multiple habitat types. The results highlight the potential importance of transovarial transmission and small mammals and birds in maintaining this disease. This contradicts previous hypotheses that primates play an important role influencing the distribution of infected ticks. There is also a suggestion that risk could vary across different habitat types but currently more research is needed to evaluate this relationship. In light of these results, we outline the key knowledge gaps for this system and future research priorities that could inform effective interventions and control measures.
Collapse
Affiliation(s)
| | - Sarah J. Burthe
- UK Centre for Ecology & Hydrology, Edinburgh, United Kingdom
| | | | - Nienke Hartemink
- Biometris, Wageningen University and Research, Wageningen, The Netherlands
- Quantitative Veterinary Epidemiology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Bethan V. Purse
- UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
| |
Collapse
|
37
|
Fracasso G, Grillini M, Grassi L, Gradoni F, Rold GD, Bertola M. Effective Methods of Estimation of Pathogen Prevalence in Pooled Ticks. Pathogens 2023; 12:pathogens12040557. [PMID: 37111443 PMCID: PMC10146257 DOI: 10.3390/pathogens12040557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023] Open
Abstract
Since tick-borne diseases (TBDs) incidence, both in human and animal populations, is increasing worldwide, there is the need to assess the presence, distribution and prevalence of tick-borne pathogens. Reliable estimates on tick-borne pathogens (TBPs) prevalence represent the public health foundation to create risk maps and take effective prevention and control actions against TBDs. Tick surveillance consists of collecting and testing (usually in pools) thousands of specimens. Construction and analysis of tick pools represent a challenge due to the complexity of tick-borne pathogens and tick-borne diseases ecology. The aim of this study is to provide a practical guideline on appropriate pooling strategies and statistical analysis of infection prevalence through: (i) reporting the different pooling strategies and statistical methodologies commonly used to calculate pathogen prevalence in tick populations and (ii) practical comparison between statistical methods utilising a real dataset of infection prevalence in ticks collected in Northern Italy. Reporting detailed information on tick pool composition and size is as important as the correct TBPs prevalence estimation. Among the prevalence indexes, we suggest using maximum-likelihood estimates of pooled prevalence instead of minimum infection rate or pool positivity rate given the merits of the method and availability of software.
Collapse
Affiliation(s)
- Gerardo Fracasso
- Eco-Epidemiology Group, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Marika Grillini
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - Laura Grassi
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - Francesco Gradoni
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Graziana da Rold
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| |
Collapse
|
38
|
Rahravani M, Moravedji M, Mostafavi E, Mozoun MM, Zeeyaie AH, Mohammadi M, Seyfi H, Adhami G, Esmaeili S, Ameri M. Clinical, hematological and molecular evaluation of piroplasma and Anaplasma infections in small ruminants and tick vectors from Kurdistan province, western Iran. Res Vet Sci 2023; 159:44-56. [PMID: 37080001 DOI: 10.1016/j.rvsc.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Tick-borne haemoparasite infections are a major challenge in small ruminant (SR) production across tropical areas. The present study evaluated the prevalence of Theileria, Babesia and Anaplasma in SRs and their tick vectors and estimated the association between pathogen prevalence with clinical hematological findings among SR populations in Kurdistan province, western Iran. In total, 250 blood samples and 250 tick species (one per animal) were collected from SR populations, along with clinical and hematological examinations. Microscopy of blood smears and molecular analysis were performed to detect potential infection with Theileria, Babesia and Anaplasma. Moreover, haemoparasites were explored in the isolated ticks using semi-nested PCR. Based on microscopy, the prevalence of Theileria, Anaplasma and Babesia infections was 91.2%, 23.2% and 2.4%, respectively. Semi-nested PCR analysis of blood samples demonstrated 86.8%, 78.8% and 14% prevalence for T. ovis, A. ovis and B. ovis, respectively. Dermacentor marginatus and Rhipicephalus turanicus were predominant isolated tick vectors from SR, while D. marginatus was the most contaminated tick in all investigated counties. There were, also, a statistically significant association between the estimated molecular prevalence rates with semi-yellow conjunctiva (A. ovis), body temperature (T. ovis and A. ovis), heart rate (T. ovis and B. ovis), mean white blood cell count (T. ovis and A. ovis), mean red blood cell count (T. ovis and B. ovis), as well as mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration in all haemoparasite infections. Future studies are recommended to reveal the epidemiology of such infections in SRs in Iran.
Collapse
Affiliation(s)
- Maryam Rahravani
- Department of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Meysam Moravedji
- Department of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Ehsan Mostafavi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran; Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | - Ghazaaleh Adhami
- Department of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran; Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Ameri
- Clinical Pathology, Non-Clinical Safety (NCS), In Vitro/In Vivo Translation (IVIVT), GlaxoSmithKline, 1250 S. Collegeville Rd., Collegeville, PA. 19426, United States of America
| |
Collapse
|
39
|
Ravindran R, Hembram PK, Kumar GS, Kumar KGA, Deepa CK, Varghese A. Transovarial transmission of pathogenic protozoa and rickettsial organisms in ticks. Parasitol Res 2023; 122:691-704. [PMID: 36797442 PMCID: PMC9936132 DOI: 10.1007/s00436-023-07792-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Transovarial transmission (TOT) is an efficient vertical transmission of pathogens that is observed in many arthropod vectors. This method seems to be an evolutionarily unique development observed only in Babesia sensu stricto (clade VI) and Rickettsia spp., whereas transstadial transmission is the common/default way of transmission. Transovarial transmission does not necessarily contribute to the amplification of tick-borne pathogens but does contribute to the maintenance of disease in the environment. This review aims to provide an updated summary of previous reports on TOT of tick-borne pathogens.
Collapse
Affiliation(s)
- Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India.
| | - Prabodh Kumar Hembram
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Gatchanda Shravan Kumar
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | | | - Chundayil Kalarickal Deepa
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Anju Varghese
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| |
Collapse
|
40
|
Hansford KM, Gillingham EL, Vaux AGC, Cull B, McGinley L, Catton M, Wheeler BW, Tschirren B, Medlock JM. Impact of green space connectivity on urban tick presence, density and Borrelia infected ticks in different habitats and seasons in three cities in southern England. Ticks Tick Borne Dis 2023; 14:102103. [PMID: 36525762 DOI: 10.1016/j.ttbdis.2022.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Understanding the effects of local habitat and wider landscape connectivity factors on tick presence, nymph density and Borrelia species (spp.) prevalence in the tick population is important for identifying the public health risk from Lyme borreliosis. This multi-city study collected data in three southern England cities (Bath, Bristol, and Southampton) during spring, summer, and autumn in 2017. Focusing specifically on urban green space used for recreation which were clearly in urbanised areas, 72 locations were sampled. Additionally, geospatial datasets on urban green space coverage within 250 m and 1 km of sampling points, as well as distance to woodland were incorporated into statistical models. Distance to woodland was negatively associated with tick presence and nymph density, particularly during spring and summer. Furthermore, we observed an interaction effect between habitat and season for tick presence and nymph density, with woodland habitat having greater tick presence and nymph density during spring. Borrelia spp. infected Ixodes ricinus were found in woodland, woodland edge and under canopy habitats in Bath and Southampton. Overall Borrelia spp. prevalence in nymphs was 2.8%, similar to wider UK studies assessing prevalence in Ixodes ricinus in rural areas. Bird-related Borrelia genospecies dominated across sites, suggesting bird reservoir hosts may be important in urban green space settings for feeding and infecting ticks. Whilst overall density of infected nymphs across the three cities was low (0.03 per 100 m2), risk should be further investigated by incorporating data on tick bites acquired in urban settings, and subsequent Lyme borreliosis transmission.
Collapse
Affiliation(s)
- Kayleigh M Hansford
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK; European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK.
| | - Emma L Gillingham
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK
| | - Alexander G C Vaux
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Benjamin Cull
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Liz McGinley
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Matthew Catton
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Benedict W Wheeler
- European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK
| | | | - Jolyon M Medlock
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK; Health Protection Research Unit in Emerging & Zoonotic Infections, UK Health Security Agency, Porton Down, UK
| |
Collapse
|
41
|
Perveen N, Kundu B, Sudalaimuthuasari N, Al-Maskari RS, Muzaffar SB, Al-Deeb MA. Virome diversity of Hyalomma dromedarii ticks collected from camels in the United Arab Emirates. Vet World 2023; 16:439-448. [PMID: 37041826 PMCID: PMC10082741 DOI: 10.14202/vetworld.2023.439-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/30/2023] [Indexed: 03/18/2023] Open
Abstract
Background and Aim: Viruses are important components of the microbiome of ticks. Ticks are capable of transmitting several serious viral diseases to humans and animals. Hitherto, the composition of viral communities in Hyalomma dromedarii ticks associated with camels in the United Arab Emirates (UAE) remains unexplored. This study aimed to characterize the RNA virome diversity in male and female H. dromedarii ticks collected from camels in Al Ain, UAE.
Materials and Methods: We collected ticks, extracted, and sequenced RNA, using Illumina (NovaSeq 6000) and Oxford Nanopore (MinION).
Results: From the total generated sequencing reads, 180,559 (~0.35%) and 197,801 (~0.34%) reads were identified as virus-related reads in male and female tick samples, respectively. Taxonomic assignment of the viral sequencing reads was accomplished based on bioinformatic analyses. Further, viral reads were classified into 39 viral families. Poxiviridae, Phycodnaviridae, Phenuiviridae, Mimiviridae, and Polydnaviridae were the most abundant families in the tick viromes. Notably, we assembled the genomes of three RNA viruses, which were placed by phylogenetic analyses in clades that included the Bole tick virus.
Conclusion: Overall, this study attempts to elucidate the RNA virome of ticks associated with camels in the UAE and the results obtained from this study improve the knowledge of the diversity of viruses in H. dromedarii ticks.
Keywords: camels, Hyalomma dromedarii, nanopore technology, UAE, viral diversity, virome analysis, whole genome sequencing.
Collapse
Affiliation(s)
- Nighat Perveen
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| | - Biduth Kundu
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| | | | | | - Sabir Bin Muzaffar
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| | - Mohammad Ali Al-Deeb
- Department of Biology, United Arab Emirates University, Al-Ain, P.O. Box 15551, UAE
| |
Collapse
|
42
|
Gandy SL, Hansford KM, Medlock JM. Possible expansion of Ixodes ricinus in the United Kingdom identified through the Tick Surveillance Scheme between 2013 and 2020. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:96-104. [PMID: 36239468 PMCID: PMC10092138 DOI: 10.1111/mve.12612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The tick Ixodes ricinus (Ixodida: Ixodidae, Linnaeus) is the main vector of several pathogens including Borrelia burgdorferi s.l. (agent of Lyme borreliosis) and tick-borne encephalitis virus. Its distribution depends on many factors including suitable habitat, climate and presence of hosts. In this study, we present records of I. ricinus bites on humans, dogs (Canis lupus familiaris; Carnivora: Canidae, L.) and cats (Felis catus; Carnivora: Felidiae, L.) in the United Kingdom (UK) obtained through the Tick Surveillance Scheme between 2013 and 2020. We divided the UK into 20 km x 20 km grids and 9.2% (range 1.2%-30%) of grids had at least one record every year since 2013. Most regions reported a yearly increase in the percentage of grids reporting I. ricinus since 2013 and the highest changes occurred in the South and East England with 5%-6.7% of new grids reporting I. ricinus bites each year in areas that never reported ticks before. Spatiotemporal analyses suggested that, while all regions recorded I. ricinus in new areas every year, there was a yearly decline in the percentage of new areas covered, except for Scotland. We discuss potential drivers of tick expansion, including reforestation and increase in deer populations.
Collapse
Affiliation(s)
- Sara L. Gandy
- Medical Entomology & Zoonoses EcologyUK Health Security AgencySalisburyUK
| | - Kayleigh M. Hansford
- Medical Entomology & Zoonoses EcologyUK Health Security AgencySalisburyUK
- NIHR Health Protection Research Unit in Environmental Change and HealthLondonUK
| | - Jolyon M. Medlock
- Medical Entomology & Zoonoses EcologyUK Health Security AgencySalisburyUK
- NIHR Health Protection Research Unit in Environmental Change and HealthLondonUK
| |
Collapse
|
43
|
Wimms C, Aljundi E, Halsey SJ. Regional dynamics of tick vectors of human disease. CURRENT OPINION IN INSECT SCIENCE 2023; 55:101006. [PMID: 36702303 DOI: 10.1016/j.cois.2023.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The expansion of tick-borne diseases challenges ecologists, epidemiologists, and public health professionals to understand the mechanisms underlying its emergence. The vast majority of tick-borne disease research emphasizes Ixodes spp. and Borrelia burgdorferi, with less known about other Ixodidae ticks that serve as vectors for an increasing number of pathogens of public health concern. Here, we review and discuss the current knowledge of tick and tick-borne pathogens in an undersurveilled region of the United States. We discuss how landscape shifts may potentially influence tick vector dynamics and expansion. We also discuss the impact of climate change on the phenology of ticks and subsequent disease transmission. Increased efforts in the Central Plains to conduct basic science will help understand the patterns of tick distribution and pathogen prevalence. It is crucial to develop intensive datasets that may be used to generate models that can aid in developing mitigation strategies.
Collapse
Affiliation(s)
- Chantelle Wimms
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Evan Aljundi
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Samniqueka J Halsey
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
44
|
Huggins LG, Koehler AV, Gasser RB, Traub RJ. Advanced approaches for the diagnosis and chemoprevention of canine vector-borne pathogens and parasites-Implications for the Asia-Pacific region and beyond. ADVANCES IN PARASITOLOGY 2023; 120:1-85. [PMID: 36948727 DOI: 10.1016/bs.apar.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vector-borne pathogens (VBPs) of canines are a diverse range of infectious agents, including viruses, bacteria, protozoa and multicellular parasites, that are pernicious and potentially lethal to their hosts. Dogs across the globe are afflicted by canine VBPs, but the range of different ectoparasites and the VBPs that they transmit predominate in tropical regions. Countries within the Asia-Pacific have had limited prior research dedicated to exploring the epidemiology of canine VBPs, whilst the few studies that have been conducted show VBP prevalence to be high, with significant impacts on dog health. Moreover, such impacts are not restricted to dogs, as some canine VBPs are zoonotic. We reviewed the status of canine VBPs in the Asia-Pacific, with particular focus on nations in the tropics, whilst also investigating the history of VBP diagnosis and examining recent progress in the field, including advanced molecular methods, such as next-generation sequencing (NGS). These tools are rapidly changing the way parasites are detected and discovered, demonstrating a sensitivity equal to, or exceeding that of, conventional molecular diagnostics. We also provide a background to the armoury of chemopreventive products available for protecting dogs from VBP. Here, field-based research within high VBP pressure environments has underscored the importance of ectoparasiticide mode of action on their overall efficacy. The future of canine VBP diagnosis and prevention at a global level is also explored, highlighting how evolving portable sequencing technologies may permit diagnosis at point-of-care, whilst further research into chemopreventives will be essential if VBP transmission is to be effectively controlled.
Collapse
Affiliation(s)
- Lucas G Huggins
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia.
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Rebecca J Traub
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
45
|
Janzén T, Hammer M, Petersson M, Dinnétz P. Factors responsible for Ixodes ricinus presence and abundance across a natural-urban gradient. PLoS One 2023; 18:e0285841. [PMID: 37195993 DOI: 10.1371/journal.pone.0285841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
To better understand the spatial distribution of the common tick Ixodes ricinus, we investigated how local site factors and landscape characteristics influence tick presence and abundance in different greenspaces along the natural-urban gradient in Stockholm County, Sweden. Ticks and field data were collected in 2017 and 2019 and analyzed in relation to habitat type distributions estimated from land cover maps using geographical information system (GIS). A total of 1378 (992 larvae, 370 nymphs, 13 females, and 3 males) questing ticks were collected from 295 sampling plots in 47 different greenspaces. Ticks were present in 41 of the 47 greenspaces and our results show that both local site features such as vegetation height, and landscape characteristics like the amount of mixed coniferous forest, significantly affect tick abundance. Tick abundance was highest in rural areas with large natural and seminatural habitats, but ticks were also present in parks and gardens in highly urbanized areas. Greenspaces along the natural-urban gradient should be included in surveillance for ticks and tick-borne diseases, including highly urbanized sites that may be perceived by the public as areas with low risk for tick encounters.
Collapse
Affiliation(s)
- Thérese Janzén
- Södertörn University, School of Natural Sciences Technology and Environmental Studies, Huddinge, Sweden
| | - Monica Hammer
- Södertörn University, School of Natural Sciences Technology and Environmental Studies, Huddinge, Sweden
| | - Mona Petersson
- Södertörn University, School of Natural Sciences Technology and Environmental Studies, Huddinge, Sweden
| | - Patrik Dinnétz
- Södertörn University, School of Natural Sciences Technology and Environmental Studies, Huddinge, Sweden
| |
Collapse
|
46
|
Acaricide resistance and novel photosensitizing approach as alternative acaricides against the camel tick, Hyalomma dromedarii. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:87-101. [PMID: 36127561 DOI: 10.1007/s43630-022-00301-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/03/2022] [Indexed: 01/12/2023]
Abstract
The control of the camel tick, Hyalomma dromedarii is very crucial. This study evaluated the novel toxicity of photosensitizers and Phoxim insecticide against H. dromedarii males using the adult immersion tests. Ticks were subjected to sunlight for 10 min post-treatment (PT). The optical characters of the applied materials were determined by UV-Vis spectroscopy (250-900 nm wavelengths). The intensity of spectra decreased as dye concentration decreased. The optical bandgap energies of the dyes at different concentrations were not changed as the concentration changed and decreased as the absorption peak of individual dyes red-shifted. The mortalities 72 h PT reached 42.2%, 44.4%, 51.1%, 71.1%, 46.7%, 48.9%, 44.4%, and 55.6% for chlorophyllin, echinochrome, field stain, methylene blue, phthalocyanine, rhodamine 6G, riboflavin, and safranin, respectively. Methylene blue recorded the highest median lethal concentration (LC50 = 127 ppm) followed by safranin, field stain, rhodamine 6G, phthalocyanine, echinochrome riboflavin, and chlorophyllin (LC50 = 209, 251, 271, 303, 324, 332, and 362 ppm, respectively, 72 h PT). Their median lethal time, LT50, values PT with 240 ppm were 45, 87, 96, 72, 129, 115, 131, and 137 h, respectively. The relative toxicities of the LC50 values 72 h PT showed that chlorophyllin, echinochrome, field stain, methylene blue, phthalocyanine, rhodamine 6G, riboflavin, and safranin were 3.2, 3.6, 4.6, 9.1, 3.8, 4.3, 3.5, and 5.6 times, respectively, more effective than Phoxim. Methylene blue, safranin, and field stain showed a broad absorbance area indicating a large photoactivity and better phototoxicity and could be used as alternative agents to synthetic acaricides.
Collapse
|
47
|
Ghasemi A, Latifian M, Esmaeili S, Naddaf SR, Mostafavi E. Molecular surveillance for Rickettsia spp. and Bartonella spp. in ticks from Northern Iran. PLoS One 2022; 17:e0278579. [PMID: 36476750 PMCID: PMC9728842 DOI: 10.1371/journal.pone.0278579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Tick-borne zoonotic diseases pose a threat to public health; hence, identifying the pathogenic agents associated with them is critical. The prevalence of Bartonella and Rickettsia in Iran is unknown. This study aimed to detect Rickettsia spp. and Bartonella species in ticks in northeast Iran and conduct phylogenetic analysis on these bacteria. Ticks from the sample bank in the Research Center for Emerging and Re-emerging Diseases were included in this study. The ticks were collected in 2017 and 2018 from domestic animals (sheep, goats, cows, camels, horses, dogs, and donkeys) and rodents in Golestan, Mazandaran, and Guilan provinces. Molecular methods were used to examine the DNA extracted from these samples to detect Rickettsia spp. and Bartonella species. The study examined a total of 3999 ticks. Ixodes ricinus (46.4%), Rhipicephalus turanicus (26.3%), and Rhipicephalus sanguineus (17.1%) were the most prevalent species. Among 638 DNA pools, real-time-PCR detected Rickettsia spp. in 161 (25.2%), mostly belonging to Rh. sanguineus (48.9%) and Rh. turanicus (41.9%). Golestan Province had the highest number of positive pools (29.7%). No positive samples for Bartonella were detected in a 638 pooled samples. Eight distinct Rickettsia species were detected in 65 sequenced samples, the majority of which were R. massiliae (n = 32, 49.2%) and R. sibirica (n = 20, 30.8%). Other species included R. rhipicephali (n = 3), R. aeschlimannii (n = 5), R. helvetica (n = 5), R. asiatica (n = 4), R. monacensis (n = 6), and R. raoultii (n = 1). The research findings may provide helpful information about tick-borne Rickettsiae in Iran and help to clarify the role of these arthropods in maintaining these agents. Rickettsia species were found to be circulating in three Northern provinces; thus, it is recommended that this disease be considered in the differential diagnosis of febrile diseases caused by tick bites and febrile diseases with skin rashes such as Crimean-Congo hemorrhagic fever (CCHF).
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Department of Microbiology, Research Center of Reference Health Laboratories, Ministry of Health and Medical Education, Tehran, Iran
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
| | - Mina Latifian
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ehsan Mostafavi
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
48
|
Tiffin HS, Rajotte EG, Sakamoto JM, Machtinger ET. Tick Control in a Connected World: Challenges, Solutions, and Public Policy from a United States Border Perspective. Trop Med Infect Dis 2022; 7:388. [PMID: 36422939 PMCID: PMC9695313 DOI: 10.3390/tropicalmed7110388] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 07/30/2023] Open
Abstract
Ticks are able to transmit the highest number of pathogen species of any blood-feeding arthropod and represent a growing threat to public health and agricultural systems worldwide. While there are numerous and varied causes and effects of changes to tick-borne disease (re)emergence, three primary challenges to tick control were identified in this review from a U.S. borders perspective. (1) Climate change is implicated in current and future alterations to geographic ranges and population densities of tick species, pathogens they can transmit, and their host and reservoir species, as highlighted by Ixodes scapularis and its expansion across southern Canada. (2) Modern technological advances have created an increasingly interconnected world, contributing to an increase in invasive tick species introductions through the increased speed and frequency of trade and travel. The introduction of the invasive Haemaphysalis longicornis in the eastern U.S. exemplifies the challenges with control in a highly interconnected world. (3) Lastly, while not a new challenge, differences in disease surveillance, control, and management strategies in bordering countries remains a critical challenge in managing ticks and tick-borne diseases. International inter-agency collaborations along the U.S.-Mexico border have been critical in control and mitigation of cattle fever ticks (Rhipicephalus spp.) and highlight the need for continued collaboration and research into integrated tick management strategies. These case studies were used to identify challenges and opportunities for tick control and mitigation efforts through a One Health framework.
Collapse
|
49
|
Orkun Ö. Comprehensive screening of tick-borne microorganisms indicates that a great variety of pathogens are circulating between hard ticks (Ixodoidea: Ixodidae) and domestic ruminants in natural foci of Anatolia. Ticks Tick Borne Dis 2022; 13:102027. [PMID: 35970093 DOI: 10.1016/j.ttbdis.2022.102027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Grazing domestic ruminants serve as important reservoirs and/or amplificatory hosts in the ecology of tick-borne pathogens (TBPs) and tick vectors in the natural foci; however, many enzootic life cycles including ruminants and ticks are still unknown. This study investigated a wide range of TBPs circulating among ticks and grazing ruminants in the natural foci of Anatolia, Turkey. Tick specimens (n = 1815) were collected from cattle, sheep, and goats in three ecologically distinct areas (wooded, transitional, and semi-arid zones) of Anatolia and identified by species: Dermacentor marginatus, Dermacentor reticulatus, Hyalomma anatolicum, Hyalomma excavatum, Hyalomma marginatum, Hyalomma scupense, Haemaphysalis inermis, Haemaphysalis parva, Haemaphysalis punctata, Haemaphysalis sulcata, Ixodes ricinus, Rhipicephalus bursa, and Rhipicephalus turanicus. PCR-sequencing analyses revealed TBPs of great diversity, with 32 different agents identified in the ticks: six Babesia spp. (Babesia occultans, Babesia crassa, Babesia microti, Babesia rossi, Babesia sp. tavsan1, and Babesia sp. Ucbas); four Theileria spp., including one putative novel species (Theileria annulata, Theileria orientalis, Theileria ovis, and Theileria sp.); one Hepatozoon sp.; four Anaplasma spp., including one novel genotype (Anaplasma phagocytophilum, Anaplasma marginale, Anaplasma ovis, and Anaplasma sp.); six unnamed Ehrlichia spp. genotypes; Neoehrlichia mikurensis; nine spotted fever group rickettsiae, including one putative novel species (Rickettsia aeschlimannii, Rickettsia slovaca, Rickettsia hoogstraalii, Rickettsia monacensis with strain IRS3, Rickettsia mongolitimonae, Rickettsia raoultii, Candidatus Rickettsia goldwasserii, Candidatus Rickettsia barbariae, and Rickettsia sp.); and Borrelia valaisiana. Detailed phylogenetic analyses showed that some of the detected pathogens represent more than one haplotype, potentially relating to the tick species or the host. Additionally, the presence of Neoehrlichia mikurensis, an emerging pathogen for humans, was reported for the first time in Turkey, expanding its geographical distribution. Consequently, this study describes some previously unknown tick-borne protozoan and bacterial species/genotypes and provides informative epidemiological data on TBPs, which are related to animal and human health, serving the one health concept.
Collapse
Affiliation(s)
- Ömer Orkun
- Ticks and Tick-Borne Diseases Research Laboratory, Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
50
|
Numan M, Islam N, Adnan M, Zaman Safi S, Chitimia-Dobler L, Labruna MB, Ali A. First genetic report of Ixodes kashmiricus and associated Rickettsia sp. Parasit Vectors 2022; 15:378. [PMID: 36261834 PMCID: PMC9583563 DOI: 10.1186/s13071-022-05509-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Hard ticks (Ixodidae) are hematophagous ectoparasites that transmit various pathogens to a variety of hosts including humans. Transhumant herds have been involved in the spread of ticks and associated Rickettsia spp., and studies on this neglected topic have been unexplored in many regions including Pakistan. This study aimed to investigate ticks infesting transhumant herds of sheep (Ovis aries) and goats (Capra hircus) in district Shangla, Khyber Pakhtunkhwa, Pakistan. Methods Of the 144 examined animals, 112 hosts (68 sheep and 44 goats) of transhumant herds were infested by 419 ticks of different life stages including nymphs (105; 25%), males (58; 14%) and females (256; 61%). For molecular analyses, DNA was extracted from 64 collected ticks and subjected to PCR for the amplification of tick 16S rDNA and ITS2 partial sequences and for the amplification of rickettsial gltA and ompA gene sequences. Results All tick specimens were identified as Ixodes kashmiricus based on morphological features. The obtained 16S rDNA and ITS2 sequences showed 95.7% and 95.3% identity, respectively, with Ixodes kazakstani reported from Kyrgyzstan. In the phylogenetic tree, the sequences clustered with members of the Ixodes ricinus species complex, including I. kazakstani and Ixodes apronophorus. Additionally, rickettsial gltA and ompA partial sequences were 99.7% identical to Rickettsia sp. endosymbiont of Ixodes spp. from Panama and Costa Rica and 99.2% with Rickettsia endosymbiont from the USA. Phylogenetically, the rickettsial gltA and ompA partial sequences from I. kashmiricus clustered with various haplotypes of Rickettsia endosymbiont, which were sister cladded to Rickettsia monacensis. Conclusions This is the first genetic report of I. kashmiricus and associated Rickettsia sp. Large-scale tick surveillance studies across the country are needed to investigate Ixodes ticks and associated pathogens. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Muhammad Numan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Nabeela Islam
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Adnan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Punjab, Pakistan
| | | | - Marcelo B Labruna
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|