1
|
Abuljadayel D, Alotibi A, Algothmi K, Basingab F, Alhazmi S, Almuhammadi A, Alharthi A, Alyoubi R, Bahieldin A. Gut microbiota of children with autism spectrum disorder and healthy siblings: A comparative study. Exp Ther Med 2024; 28:430. [PMID: 39328398 PMCID: PMC11425773 DOI: 10.3892/etm.2024.12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/01/2024] [Indexed: 09/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental abnormality that impairs social communication. The human gut microbiome (GM) influences a variety of local processes, including dysbiosis and the defense against pathogenic microorganisms. The aim of the present study was to categorize and identify molecular biomarkers for ASD. In the present study, metagenomics whole genome shotgun sequencing was used to identify the gut microbiota in autistic individuals. Fecal samples from four children with ASD and four healthy control siblings, aged 3-10 years old, were examined using bioinformatics analysis. A total of 673,091 genes were cataloged, encompassing 25 phyla and 2 kingdoms based on the taxonomy analysis. The results revealed 257 families, 34 classes, 84 orders, and 1,314 genera among 4,339 species. The top 10 most abundant genes and corresponding functional genes for each group were determined after the abundance profile was screened. The results showed that children with ASD had a higher abundance of certain gut microbiomes than their normal siblings and vice versa. The phyla Firmicutes and Proteobacteria were the most abundant in ASD. The Thermoanaerobacteria class was also restricted to younger healthy individuals. Moreover, the Lactobacillaceae family was more abundant in children with ASD. Additionally, it was discovered that children with ASD had a higher abundance of the Bacteroides genus and a lower abundance of the Bifidobacterium and Prevotella genera. In conclusion, there were more pathogenic genera and species and higher levels of biomass, diversity and richness in the GM of children with ASD.
Collapse
Affiliation(s)
- Dalia Abuljadayel
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asalah Alotibi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khloud Algothmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Central Lab of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science in Zulfi, Majmaaha University, Zulfi 11932, Saudi Arabia
| | - Reem Alyoubi
- College of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Noori AS, Rajabi P, Sargolzaei J, Alaghmand A. Correlation of biochemical markers and inflammatory cytokines in autism spectrum disorder (ASD). BMC Pediatr 2024; 24:696. [PMID: 39487445 PMCID: PMC11529241 DOI: 10.1186/s12887-024-05182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
INTRODUCTION Autism Spectrum Disorder (ASD) is a disorder that severely affects neurodevelopment, and its underlying causes are not yet entirely understood. Research suggests that there may be a connection between the occurrence of ASD and changes in immune responses. This study aims to know if some biochemical and inflammatory cytokines are promising biomarkers for ASD and whether they are involved in the pathogenesis of ASD. METHODS The serum levels of CRP, TNF-α, TGF-β, IL-1β, IL-10, 1 L-8, and IL-6 were measured in all of the patients (n = 22) and in the healthy (n = 12) children using ELISA method. RESULTS The serum concentrations of IL-10 and IL-8 were significantly lower in the ASD patients compared to the control group (p < 0.05) and there were not significant differences between CRP, TNF-α, TGF-β, IL-6 and IL-1β levels in two groups. There were positive correlations between CRP and IL-10, also CRP and IL-8, in ASD group. In contrast to the ASD patients, the correlations of IL-8, IL-10, and CRP were not significant in the control group. CONCLUSION In conclusion, this study highlights the potential role of certain biochemical markers and inflammatory cytokines in ASD. Specifically, the lower levels of IL-10 and IL-8 in ASD patients, along with the significant correlations between CRP and these cytokines, suggest an altered immune response in individuals with ASD. These findings support the hypothesis that immune dysregulation may be involved in ASD pathogenesis. Further research is needed to explore these biomarkers and their mechanistic links to ASD, which could lead to improved diagnostics or therapeutic strategies.
Collapse
Affiliation(s)
- Ali Sabbah Noori
- Department of Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
| | - Parisa Rajabi
- Department of Psychiatry, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran.
| | - Anita Alaghmand
- Department of Psychiatry, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
3
|
AbdEl-Raouf K, El-Ganzuri MA, El-Sayed WM. Therapeutic effects of a new bithiophene against aluminum -induced Alzheimer's disease in a rat model: Pathological and ultrastructural approach. Tissue Cell 2024; 90:102529. [PMID: 39181091 DOI: 10.1016/j.tice.2024.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Alzheimer's disease (AD) remains of unknown etiology and lacks a cure. This study aimed to evaluate the therapeutic potential of a novel bithiophene derivative at two doses against AlCl3-induced AD in a rat model. Adult male rats (Rattus norvegicus) were divided into six groups (n=6): Group one consisted of naïve animals, group two received bithiophene (1 mg/kg) every other day for 30 days, and groups 3-6 were subjected to AlCl3 (100 mg/kg, equivalent to 20.23 mg Al3+) for 45 consecutive days. Groups four and five received low (0.5 mg/kg) or high (1 mg/kg) doses of bithiophene, respectively. Group six received memantine (20 mg/kg) daily for 30 days. All treatments were administered orally. Aluminum exposure resulted in severe degeneration of both histological and ultrastructural aspects of cells. Administration of the low dose of bithiophene significantly restored the number of CA1 pyramidal cells and the thickness of the stratum granulosum of the dentate gyrus. However, the high dose of bithiophene increased viable CA1 pyramidal cell numbers significantly without restoring the thickness of the stratum granulosum or reducing vacuolization or pyknotic changes. The low dose of bithiophene restored the normal histological and cytological structure of both cortical and hippocampal neurons affected by dementia. Further investigation is required to explore the molecular mechanisms underlying the ameliorative effects on Alzheimer's disease-induced deteriorations in the cortex and hippocampus.
Collapse
Affiliation(s)
- Kholoud AbdEl-Raouf
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Monir A El-Ganzuri
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
4
|
Anastasescu CM, Gheorman V, Stoicanescu EC, Popescu F, Gheorman V, Udriștoiu I. Immunological Biomarkers in Autism Spectrum Disorder: The Role of TNF-Alpha and Dependent Trends in Serum IL-6 and CXCL8. Life (Basel) 2024; 14:1201. [PMID: 39337983 PMCID: PMC11432970 DOI: 10.3390/life14091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has seen a rise in prevalence, and the immune system's role in brain development is increasingly recognized. This study investigates the relationship between immune dysregulation and ASD by examining serum concentrations of interleukin 6 (IL-6), interleukin 8 (CXCL8), and tumor necrosis factor alpha (TNF-alpha) in children. METHODS Serum samples from 45 children with ASD and 30 controls, aged 2 to 12 years, were analyzed using electrochemiluminescence, chemiluminescent microparticle immunoassay, and chemiluminescent immunoassay. ASD symptoms were assessed using the Autism Spectrum Rating Scale (ASRS) and Social Communication Questionnaire (SCQ). RESULTS No significant correlation was observed between CXCL8 levels and ASD. IL-6 levels showed a trend toward elevation in boys with ASD. TNF-alpha levels were significantly higher in children with ASD under 5 years compared to older children and controls, though no correlation with symptom severity was found. CONCLUSIONS TNF-alpha may be a potential biomarker for early ASD detection, especially in younger children. Further research on larger cohorts is needed to understand the role of immune dysregulation in ASD.
Collapse
Affiliation(s)
| | - Veronica Gheorman
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen-Cristi Stoicanescu
- Pediatry Department, Emergency Clinical Hospital Râmnicu-Vâlcea, 200300 Râmnicu-Vâlcea, Romania;
| | - Florica Popescu
- Pharmacology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (I.U.)
| | - Ion Udriștoiu
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (I.U.)
| |
Collapse
|
5
|
Gevezova M, Ivanov Z, Pacheva I, Timova E, Kazakova M, Kovacheva E, Ivanov I, Sarafian V. Bioenergetic and Inflammatory Alterations in Regressed and Non-Regressed Patients with Autism Spectrum Disorder. Int J Mol Sci 2024; 25:8211. [PMID: 39125780 PMCID: PMC11311370 DOI: 10.3390/ijms25158211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Autism spectrum disorder (ASD) is associated with multiple physiological abnormalities. Current laboratory and clinical evidence most commonly report mitochondrial dysfunction, oxidative stress, and immunological imbalance in almost every cell type of the body. The present work aims to evaluate oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and inflammation-related molecules such as Cyclooxygenase-2 (COX-2), chitinase 3-like protein 1 (YKL-40), Interleukin-1 beta (IL-1β), Interleukin-9 (IL-9) in ASD children with and without regression compared to healthy controls. Children with ASD (n = 56) and typically developing children (TDC, n = 12) aged 1.11 to 11 years were studied. Mitochondrial activity was examined in peripheral blood mononuclear cells (PBMCs) isolated from children with ASD and from the control group, using a metabolic analyzer. Gene and protein levels of IL-1β, IL-9, COX-2, and YKL-40 were investigated in parallel. Our results showed that PBMCs of the ASD subgroup of regressed patients (ASD R(+), n = 21) had a specific pattern of mitochondrial activity with significantly increased maximal respiration, respiratory spare capacity, and proton leak compared to the non-regressed group (ASD R(-), n = 35) and TDC. Furthermore, we found an imbalance in the studied proinflammatory molecules and increased levels in ASD R(-) proving the involvement of inflammatory changes. The results of this study provide new evidence for specific bioenergetic profiles of immune cells and elevated inflammation-related molecules in ASD. For the first time, data on a unique metabolic profile in ASD R(+) and its comparison with a random group of children of similar age and sex are provided. Our data show that mitochondrial dysfunction is more significant in ASD R(+), while in ASD R(-) inflammation is more pronounced. Probably, in the group without regression, immune mechanisms (immune dysregulation, leading to inflammation) begin initially, and at a later stage mitochondrial activity is also affected under exogenous factors. On the other hand, in the regressed group, the initial damage is in the mitochondria, and perhaps at a later stage immune dysfunction is involved.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Zdravko Ivanov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
| | - Iliana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.); (I.I.)
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Elena Timova
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Maria Kazakova
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Eleonora Kovacheva
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.); (I.I.)
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Wang Y, Ullah H, Deng T, Ren X, Zhao Z, Xin Y, Qiu J. Social isolation induces intestinal barrier disorder and imbalances gut microbiota in mice. Neurosci Lett 2024; 826:137714. [PMID: 38479554 DOI: 10.1016/j.neulet.2024.137714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Social isolation, a known stressor, can have detrimental effects on both physical and mental health. Recent scientific attention has been drawn to the gut-brain axis, a bidirectional communication system between the central nervous system and gut microbiota, suggesting that gut microbes may influence brain function. This study aimed to explore the impact of social isolation on the intestinal barrier and gut microbiota. 40 male BALB/c mice were either individually housed or kept in groups for 8 and 15 weeks. Socially isolated mice exhibited increased anxiety-like behavior, with significant differences between the 8-week and 15-week isolation groups (P < 0.05). After 8 weeks of isolation, there was a reduction in tight junction protein expression in the intestinal mechanical barrier. Furthermore, after 15 weeks of isolation, both tight junction protein and mucin expression, key components of the intestinal chemical barrier, decreased. This was accompanied by a substantial increase in inflammatory cytokines (IL-6 mRNA, IL-10, and TNF-α) in colon tissue in the 15-week isolated group (P < 0.05). Additionally, Illumina MiSequencing revealed significant alterations in the gut microbiota of socially isolated mice, including reduced Firmicutes and Bacteroides compared to the control group. Lactobacillus levels also decreased in the socially isolated mice.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Hidayat Ullah
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Ting Deng
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Xinxiu Ren
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Zinan Zhao
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Juanjuan Qiu
- Central Lab, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
8
|
Huang W, Liu Z, Li Z, Meng S, Huang Y, Gao M, Zhong N, Zeng S, Wang L, Zhao W. Identification of Immune Infiltration and Iron Metabolism-Related Subgroups in Autism Spectrum Disorder. J Mol Neurosci 2024; 74:12. [PMID: 38236354 DOI: 10.1007/s12031-023-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with a broad spectrum of symptoms and prognoses. Effective therapy requires understanding this variability. ASD children's cognitive and immunological development may depend on iron homoeostasis. This study employs a machine learning model that focuses on iron metabolism hub genes to identify ASD subgroups and describe immune infiltration patterns. A total of 97 control and 148 ASD samples were obtained from the GEO database. Differentially expressed genes (DEGs) and an iron metabolism gene collection achieved the intersection of 25 genes. Unsupervised cluster analysis determined molecular subgroups in individuals with ASD based on 25 genes related to iron metabolism. We assessed gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, gene set variation analysis (GSVA), and immune infiltration analysis to compare iron metabolism subtype effects. We employed machine learning to identify subtype-predicting hub genes and utilized both training and validation sets to assess gene subtype prediction accuracy. ASD can be classified into two iron-metabolizing molecular clusters. Metabolic enrichment pathways differed between clusters. Immune infiltration showed that clusters differed immunologically. Cluster 2 had better immunological scores and more immune cells, indicating a stronger immune response. Machine learning screening identified SELENBP1 and CAND1 as important genes in ASD's iron metabolism signaling pathway. These genes express in the brain and have AUC values over 0.8, implying significant predictive power. The present study introduces iron metabolism signaling pathway indicators to predict ASD subtypes. ASD is linked to immune cell infiltration and iron metabolism disorders.
Collapse
Affiliation(s)
- Wenyan Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, Guangdong, China
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Zhenni Liu
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Ziling Li
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Si Meng
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Yuhang Huang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Min Gao
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Ning Zhong
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Sujuan Zeng
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Lijing Wang
- Department of Pedodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, Guangdong, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
9
|
Villarreal VR, Katusic MZ, Myers SM, Weaver AL, Nocton JJ, Voigt RG. Risk of Autoimmune Disease in Research-Identified Cases of Autism Spectrum Disorder: A Longitudinal, Population-Based Birth Cohort Study. J Dev Behav Pediatr 2024; 45:e46-e53. [PMID: 38364086 PMCID: PMC10878713 DOI: 10.1097/dbp.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 09/18/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Determine the risk of autoimmune disease in research-identified cases of autism spectrum disorder (ASD) compared with referents using a longitudinal, population-based birth cohort. METHODS ASD incident cases were identified from a population-based birth cohort of 31,220 individuals. Inclusive ASD definition based on DSM-IV-TR autistic disorder, Asperger syndrome, and pervasive developmental disorder, not otherwise specified, was used to determine ASD cases. For each ASD case, 2 age- and sex-matched referents without ASD were identified. Diagnosis codes assigned between birth and December 2017 were electronically obtained. Individuals were classified as having an autoimmune disorder if they had at least 2 diagnosis codes more than 30 days apart. Cox proportional hazards models were fit to estimate the hazard ratio (HR) between ASD status and autoimmune disorder. RESULTS Of 1014 ASD cases, 747 (73.7%) were male. Fifty ASD cases and 59 of the 1:2 matched referents were diagnosed with first autoimmune disorder at the median age of 14 and 17.1 years, respectively. ASD cases had increased risk of autoimmune disease compared with matched referents (HR 1.74; 95% confidence interval [CI], 1.21-2.52). The increased risk was statistically significant among male patients (HR 2.01; 95% CI, 1.26-3.21) but not among the smaller number of female subjects (HR 1.38; 95% CI, 0.76-2.50). CONCLUSION This study provides evidence from a longitudinal, population-based birth cohort for co-occurrence of ASD and autoimmune disorders. Thus, children with ASD should be monitored for symptoms of autoimmune disease and appropriate workup initiated.
Collapse
Affiliation(s)
- Veronica R Villarreal
- Division of Pediatric Neurology/Neurodevelopment, Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | | | - Scott M Myers
- Geisinger Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA
- Geisinger Commonwealth School of Medicine, Scranton, PA
| | - Amy L Weaver
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - James J Nocton
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI
| | - Robert G Voigt
- Meyer Center for Developmental Pediatrics, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
10
|
Akintunde ME, Lin YP, Krakowiak P, Pessah IN, Hertz-Picciotto I, Puschner B, Ashwood P, Van de Water J. Ex vivo exposure to polybrominated diphenyl ether (PBDE) selectively affects the immune response in autistic children. Brain Behav Immun Health 2023; 34:100697. [PMID: 38020477 PMCID: PMC10654005 DOI: 10.1016/j.bbih.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Children on the autism spectrum have been shown to have immune dysregulation that often correlates with behavioral deficits. The role of the post-natal environment in this dysregulation is an area of active investigation. We examined the association between plasma levels of polybrominated diphenyl ether (PBDE) and immune cell function in age-matched autistic children and non-autistic controls. Plasma from children on the autism spectrum (n = 38) and typically developing controls (TD; n = 60) were analyzed for 14 major PBDE congeners. Cytokine/chemokine production was measured in peripheral blood mononuclear cell (PBMC) supernatants with and without ex vivo BDE-49 exposure. Total plasma concentration (∑PBDE14) and individual congener levels were also correlated with T cell function. ∑PBDE14 did not differ between diagnostic groups but correlated with reduced immune function in children on the autism spectrum. In autistic children, IL-2 and IFN-γ production was reduced in association with several individual BDE congeners, especially BDE-49 (p = 0.001). Furthermore, when PBMCs were exposed ex vivo to BDE-49, cells from autistic children produced elevated levels of IL-6, TNF-α, IL-1β, MIP-1α and MCP-1 (p < 0.05). Therefore, despite similar plasma levels of PBDE, these data suggest that PBMC function was differentially impacted in the context of several PBDE congeners in autistic children relative to TD children where increased body burden of PBDE significantly correlated with a suppressed immune response in autistic children but not TD controls. Further, acute ex vivo exposure of PBMCs to BDE-49 stimulates an elevated cytokine response in AU cases versus a depressed response in TD controls. These data suggest that exposure to the toxicant BDE-49 differentially impacts immune cell function in autistic children relative to TD children providing evidence for an underlying association between susceptibility to PBDE exposure and immune anomalies in children on the autism spectrum.
Collapse
Affiliation(s)
- Marjannie Eloi Akintunde
- School of Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Yan-ping Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Paula Krakowiak
- The MIND Institute, University of California, Davis, United States
- School of Public Health Sciences, University of California, Davis, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Irva Hertz-Picciotto
- The MIND Institute, University of California, Davis, United States
- School of Public Health Sciences, University of California, Davis, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Paul Ashwood
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
- School of Medicine, Department of Microbiology and Immunology, University of California, Davis, United States
| | - Judy Van de Water
- School of Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| |
Collapse
|
11
|
Ziliotto M, Kulmann-Leal B, Kaminski VDL, Nunes GT, Riesgo RDS, Roman T, Schuch JB, Chies JAB. HLA-G*14 bp indel variant in autism spectrum disorder in a population from southern Brazil. J Neuroimmunol 2023; 383:578194. [PMID: 37683302 DOI: 10.1016/j.jneuroim.2023.578194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Altered immune response during pregnancy has been associated with ASD susceptibility. HLA-G is expressed by the trophoblast at the maternal/fetal interface and induces allogenic tolerance toward the fetus. A 14-bp insertion in the HLA-G 3'UTR (rs371194629) was associated with reduced levels of HLA-G. We aimed to assess the influence of the HLA-G*14 bp indel variant in ASD susceptibility and symptomatology in a Brazilian admixed sample. The insertion genotype (14 bp+/14 bp+) was firstly associated with hetero aggression, but statistical significance was lost after correction (p = 0.035, pcorrected = 0.35). No association between the HLA-G variant and susceptibility to ASD or differential clinical manifestations were observed.
Collapse
Affiliation(s)
- Marina Ziliotto
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Universidade Anhembi Morumbi, São José dos Campos, São Paulo, Brazil
| | - Guilherme Tyska Nunes
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Rudimar Dos Santos Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Tatiana Roman
- Laboratory of Psychiatric Genetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Jaqueline Bohrer Schuch
- Laboratory of Psychiatric Genetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
12
|
Mirarchi A, Albi E, Beccari T, Arcuri C. Microglia and Brain Disorders: The Role of Vitamin D and Its Receptor. Int J Mol Sci 2023; 24:11892. [PMID: 37569267 PMCID: PMC10419106 DOI: 10.3390/ijms241511892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Accounting for 5-20% of the total glial cells present in the adult brain, microglia are involved in several functions: maintenance of the neural environment, response to injury and repair, immunesurveillance, cytokine secretion, regulation of phagocytosis, synaptic pruning, and sculpting postnatal neural circuits. Microglia contribute to some neurodevelopmental disorders, such as Nasu-Hakola disease (NHD), Tourette syndrome (TS), autism spectrum disorder (ASD), and schizophrenia. Moreover, microglial involvement in neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, has also been well established. During the last two decades, epidemiological and research studies have demonstrated the involvement of vitamin D3 (VD3) in the brain's pathophysiology. VD3 is a fat-soluble metabolite that is required for the proper regulation of many of the body's systems, as well as for normal human growth and development, and shows neurotrophic and neuroprotective actions and influences on neurotransmission and synaptic plasticity, playing a role in various neurological diseases. In order to better understand the exact mechanisms behind the diverse actions of VD3 in the brain, a large number of studies have been performed on isolated cells or tissues of the central nervous system (CNS). Here, we discuss the involvement of VD3 and microglia on neurodegeneration- and aging-related diseases.
Collapse
Affiliation(s)
- Alessandra Mirarchi
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (E.A.); (T.B.)
| | - Cataldo Arcuri
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
13
|
Al-Mazidi SH, El-Ansary A, Abualnaja A, AlZarroug A, Alharbi T, Al-Ayadhi LY. Exploring the Potential Role of ADAM 17 and ADAM 22 in the Etiology of Autism Spectrum Disorders. Brain Sci 2023; 13:972. [PMID: 37371450 DOI: 10.3390/brainsci13060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) encompasses a group of disorders characterized by difficulties with social interaction and repetitive behavior. The condition is supposed to originate from early shifts in brain development, while the underlying processes are unknown. Moreover, a considerable number of patients with ASD experience digestive difficulties. Metalloproteases (ADAMs) are a class of enzymes capable of cleaving membrane-bound proteins. Members of this family, ADAM17 and ADAM22, have the ability to cleave proteins like the pro-inflammatory cytokine TNF-ά and glutamate synaptic molecules, which are both engaged in neuro-inflammation and glutamate excitotoxicity as crucial etiological mechanisms in ASD. ADAM17 and ADAM22 may also have a role in ASD microbiota-gut-brain axis connections by regulating immunological and inflammatory responses in the intestinal tract. SUBJECTS AND METHODS Using ELISA kits, the plasma levels of ADAM17 and ADAM22 were compared in 40 children with ASD and 40 typically developing children. All of the autistic participants' childhood autism rating scores (CARS), social responsiveness scales (SRS), and short sensory profiles (SSP) were evaluated as indicators of ASD severity. RESULTS Our results showed that plasma levels of ADAM17 were significantly lower in ASD children than in control children, while ADAM22 demonstrated non-significantly lower levels. Our data also indicate that while ADAM17 correlates significantly with age, ADAM22 correlates significantly with CARS as a marker of ASD severity. CONCLUSIONS Our interpreted data showed that alteration in ADAM17 and ADAM22 might be associated with glutamate excitotoxicity, neuroinflammation, and altered gut microbiota as etiological mechanisms of ASD and could be an indicator of the severity of the disorder.
Collapse
Affiliation(s)
- Sarah H Al-Mazidi
- Department of Physiology, Faculty of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi 110281, United Arab Emirates
- Autism Research and Treatment Centre, King Saud University, Riyadh 11461, Saudi Arabia
| | - Amani Abualnaja
- Department of Physiology, Faculty of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Abdullah AlZarroug
- Department of Physiology, Faculty of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Turki Alharbi
- Department of Physiology, Faculty of Medicine, Imam Mohammed Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Centre, King Saud University, Riyadh 11461, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
14
|
Fatehi M, Fatehi L, Mowbray O. Autism spectrum disorder, parent coping, and parent concerns during the COVID-19 pandemic. CHILDREN AND YOUTH SERVICES REVIEW 2023; 149:106923. [PMID: 36960037 PMCID: PMC10019039 DOI: 10.1016/j.childyouth.2023.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The COVID-19 outbreak beginning in 2019 has created a challenging period for families who have children with autism spectrum disorder (ASD). The purpose of this study was to examine parents' perceptions about the consequences of the pandemic on their child who has ASD and parents' concerns and resources during the pandemic. Data was collected between July to November 2020 from U.S. parents who have at least one child with ASD between 3 and 21 years old. An online survey, consisting of 88 items, was developed and distributed online in newsletters and Twitter pages of several ASD organizations, and various caregiving support groups on Facebook. Descriptive analysis showed that during the data collection time (N = 57), 79% of the children had immediate access to electronic devices to utilize online services. Many of the children used remote learning services for less than 2 h (74%) per day. Many children had difficulties following social distance rules. They spent more time in passive activities than active activities. Twenty-five percent of parents reported that they drank alcohol more often during the pandemic. However, parents who participated in support groups consumed less alcohol. Also, child symptom severity was associated with parents taking less times for themselves. These results can assist practitioners in identifying specific difficulties that parents and children with ASD experienced during the pandemic. This work also underlines the parents' needs for community supports and mental health services.
Collapse
Affiliation(s)
- Mariam Fatehi
- University of Georgia, School of Social Work, United States
| | - Leila Fatehi
- University of Georgia, School of Social Work, United States
| | - Orion Mowbray
- University of Georgia, School of Social Work, United States
| |
Collapse
|
15
|
Kaminski VDL, Michita RT, Ellwanger JH, Veit TD, Schuch JB, Riesgo RDS, Roman T, Chies JAB. Exploring potential impacts of pregnancy-related maternal immune activation and extracellular vesicles on immune alterations observed in autism spectrum disorder. Heliyon 2023; 9:e15593. [PMID: 37305482 PMCID: PMC10256833 DOI: 10.1016/j.heliyon.2023.e15593] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders usually observed in early life, with impacts on behavioral and social skills. Incidence of ASD has been dramatically increasing worldwide, possibly due to increase in awareness/diagnosis as well as to genetic and environmental triggers. Currently, it is estimated that ∼1% of the world population presents ASD symptoms. In addition to its genetic background, environmental and immune-related factors also influence the ASD etiology. In this context, maternal immune activation (MIA) has recently been suggested as a component potentially involved in ASD development. In addition, extracellular vesicles (EVs) are abundant at the maternal-fetal interface and are actively involved in the immunoregulation required for a healthy pregnancy. Considering that alterations in concentration and content of EVs have also been associated with ASD, this article raises a debate about the potential roles of EVs in the processes surrounding MIA. This represents the major differential of the present review compared to other ASD studies. To support the suggested correlations and hypotheses, findings regarding the roles of EVs during pregnancy and potential influences on ASD are discussed, along with a review and update concerning the participation of infections, cytokine unbalances, overweight and obesity, maternal anti-fetal brain antibodies, maternal fever, gestational diabetes, preeclampsia, labor type and microbiota unbalances in MIA and ASD.
Collapse
Affiliation(s)
- Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunologia Aplicada, Instituto de Ciência e Tecnologia - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Rafael Tomoya Michita
- Laboratório de Genética Molecular Humana, Universidade Luterana do Brasil - ULBRA, Canoas, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Degani Veit
- Instituto de Ciências Básicas da Saúde, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jaqueline Bohrer Schuch
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rudimar dos Santos Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tatiana Roman
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Aldossari AA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Ayadhi LY, Alanazi MM, Shahid M, Alwetaid MY, Hussein MH, Ahmad SF. Upregulation of Inflammatory Mediators in Peripheral Blood CD40 + Cells in Children with Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24087475. [PMID: 37108638 PMCID: PMC10138695 DOI: 10.3390/ijms24087475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.
Collapse
Affiliation(s)
- Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Alkhiari R, Adler JR. Psychiatric and Neurological Manifestations of Celiac Disease in Adults. Cureus 2023; 15:e35712. [PMID: 36875248 PMCID: PMC9984242 DOI: 10.7759/cureus.35712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/06/2023] Open
Abstract
Celiac disease (CD), a chronic inflammatory disorder of the intestines, affects 0.7% to 1.4% of the world's population. CD causes diarrhea, abdominal discomfort, bloating, flatulence, and, in rare cases, constipation in the digestive tract. Since the identification of gluten as the disease-causing antigen, CD patients have been treated with a gluten-free diet, which is advantageous but has limitations for certain patient groups. CD is associated with mood disorders, such as manic-depressive disease, schizophrenia, and bipolar disorder, as well as other disorders such as depression and anxiety. The relationship between CD and psychological issues is not entirely understood. Here, we look at the most recent psychiatric data as they pertain to CD, as well as the relevant psychiatric manifestations that have been associated with this condition. Clinicians should examine mental health factors when a CD diagnosis is established. More research is needed to understand the pathophysiology of CD's psychiatric manifestations.
Collapse
Affiliation(s)
| | - John R Adler
- Department of Medicine, Qassim University, Qassim, SAU
| |
Collapse
|
18
|
Sharma V, Choudhury SP, Kumar S, Nikolajeff F. Saliva based diagnostic methodologies for a fast track detection of autism spectrum disorder: A mini-review. Front Neurosci 2023; 16:893251. [PMID: 36685230 PMCID: PMC9846176 DOI: 10.3389/fnins.2022.893251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is considered a complicated neurodevelopment disorder with rising prevalence globally. ASD is characterized by a series of events including varying degrees of defects in communication, learning, and social interaction which is accompanied by stereotypical behavioral patterns. Despite extensive research, the current diagnosis for ASD is complex and almost solely based on the behavioral assessments of the suspected individuals. The multifactorial etiopathology of this disease along with the diversity of symptoms among different individuals adds to the current intricacies for accurate prognosis of ASD. Hence, there exists a dire need for biologically relevant biomarkers for an early diagnosis and for tracking the efficacy of therapeutic interventions. Until recently, among various biofluids, saliva has gained increasing interest for biomarker identification, the advantages include the non-invasive nature and ease of sample handling. This mini-review aims to provide a succinct summary of recent literature on saliva-based diagnostic modalities for ASD, examine various studies that highlight the potential use of proteomic and/or RNA-based biomarkers. Finally, some conclusive perspectives of using the salivary system for ASD mechanistic details and diagnosis are also discussed.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | | | - Saroj Kumar
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden,Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden,*Correspondence: Fredrik Nikolajeff,
| |
Collapse
|
19
|
Maternal treatment with sodium butyrate reduces the development of autism-like traits in mice offspring. Biomed Pharmacother 2022; 156:113870. [DOI: 10.1016/j.biopha.2022.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
20
|
Lim S, Lee S. Chemical Modulators for Targeting Autism Spectrum Disorders: From Bench to Clinic. Molecules 2022; 27:molecules27165088. [PMID: 36014340 PMCID: PMC9414776 DOI: 10.3390/molecules27165088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by diverse behavioral symptoms such as repetitive behaviors, social deficits, anxiety, hyperactivity, and irritability. Despite their increasing incidence, the specific pathological mechanisms of ASD are still unknown, and the degree and types of symptoms that vary from patient to patient make it difficult to develop drugs that target the core symptoms of ASD. Although various atypical antipsychotics and antidepressants have been applied to regulate ASD symptoms, these drugs can only alleviate the symptoms and do not target the major causes. Therefore, development of novel drugs targeting factors directly related to the onset of ASD is required. Among the various factors related to the onset of ASD, several chemical modulators to treat ASD, focused on serotonin (5-hydroxytryptamine, 5-HT) and glutamate receptors, microbial metabolites, and inflammatory cytokines, are explored in this study. In particular, we focus on the chemical drugs that have improved various aspects of ASD symptoms in animal models and in clinical trials for various ages of patients with ASD.
Collapse
Affiliation(s)
- Songhyun Lim
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Sanghee Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-958-5138
| |
Collapse
|
21
|
Kim A, Zisman CR, Holingue C. Influences of the Immune System and Microbiome on the Etiology of ASD and GI Symptomology of Autistic Individuals. Curr Top Behav Neurosci 2022; 61:141-161. [PMID: 35711026 DOI: 10.1007/7854_2022_371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Autism Spectrum Disorder is a developmental condition associated with impairments in communication and social interactions, and repetitive and restricted behavior or interests. Autistic individuals are more likely to experience gastrointestinal (GI) symptoms than neurotypical individuals. This may be partially due to dysbiosis of the gut microbiome. In this article, we describe the interaction of the microbiome and immune system on autism etiology. We also summarize the links between the microbiome and gastrointestinal and related symptoms among autistic individuals. We report that microbial interventions, including diet, probiotics, antibiotics, and fecal transplants, and immune-modulating therapies such as cytokine blockade during the preconception, pregnancy, and postnatal period may impact the neurodevelopment, behavior, and gastrointestinal health of autistic individuals.
Collapse
Affiliation(s)
- Amanda Kim
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Corina R Zisman
- Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
22
|
Shen L, Zhang H, Lin J, Gao Y, Chen M, Khan NU, Tang X, Hong Q, Feng C, Zhao Y, Cao X. A Combined Proteomics and Metabolomics Profiling to Investigate the Genetic Heterogeneity of Autistic Children. Mol Neurobiol 2022; 59:3529-3545. [PMID: 35348996 DOI: 10.1007/s12035-022-02801-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) has become one of the most common neurological developmental disorders in children. However, the study of ASD diagnostic markers faces significant challenges due to the existence of heterogeneity. In this study, genetic testing was performed on children who were clinically diagnosed with ASD. Children with ASD susceptibility genes and healthy controls were studied. The proteomics of plasma and peripheral blood mononuclear cells (PBMCs) as well as plasma metabolomics were carried out. The results showed that although there was genetic heterogeneity in children with ASD, the differentially expressed proteins (DEPs) in plasma, peripheral blood mononuclear cells, and differential metabolites in plasma could still effectively distinguish autistic children from controls. The mechanism associated with them focuses on several common and previously reported mechanisms of ASD. The biomarkers for ASD diagnosis could be found by taking differentially expressed proteins and differential metabolites into consideration. Integrating omics data, glycerophospholipid metabolism and N-glycan biosynthesis might play a critical role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.,Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
| | - Yan Gao
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, People's Republic of China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
| |
Collapse
|
23
|
Tian J, Gao X, Yang L. Repetitive Restricted Behaviors in Autism Spectrum Disorder: From Mechanism to Development of Therapeutics. Front Neurosci 2022; 16:780407. [PMID: 35310097 PMCID: PMC8924045 DOI: 10.3389/fnins.2022.780407] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social communication, social interaction, and repetitive restricted behaviors (RRBs). It is usually detected in early childhood. RRBs are behavioral patterns characterized by repetition, inflexibility, invariance, inappropriateness, and frequent lack of obvious function or specific purpose. To date, the classification of RRBs is contentious. Understanding the potential mechanisms of RRBs in children with ASD, such as neural connectivity disorders and abnormal immune functions, will contribute to finding new therapeutic targets. Although behavioral intervention remains the most effective and safe strategy for RRBs treatment, some promising drugs and new treatment options (e.g., supplementary and cell therapy) have shown positive effects on RRBs in recent studies. In this review, we summarize the latest advances of RRBs from mechanistic to therapeutic approaches and propose potential future directions in research on RRBs.
Collapse
Affiliation(s)
| | | | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|
24
|
Exploring polygenic contributors to subgroups of comorbid conditions in autism spectrum disorder. Sci Rep 2022; 12:3416. [PMID: 35233033 PMCID: PMC8888546 DOI: 10.1038/s41598-022-07399-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/10/2022] [Indexed: 11/12/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) have heterogeneous comorbid conditions. This study examined whether comorbid conditions in ASD are associated with polygenic risk scores (PRS) of ASD or PRS of comorbid conditions in non-ASD specific populations. Genome-wide single nucleotide polymorphism (SNP) data were obtained from 1386 patients with ASD from the Autism Genetic Resource Exchange (AGRE) study. After excluding individuals with missing clinical information concerning comorbid conditions, a total of 707 patients were included in the study. A total of 18 subgroups of comorbid conditions (‘topics’) were identified using a machine learning algorithm, topic modeling. PRS for ASD were computed using a genome-wide association meta-analysis of 18,381 cases and 27,969 controls. From these 18 topics, Topic 6 (over-represented by allergies) (p = 1.72 × 10−3) and Topic 17 (over-represented by sensory processing issues such as low pain tolerance) (p = 0.037) were associated with PRS of ASD. The associations between these two topics and the multi-locus contributors to their corresponding comorbid conditions based on non-ASD specific populations were further explored. The results suggest that these two topics were not associated with the PRS of allergies and chronic pain disorder, respectively. Note that characteristics of the present AGRE sample and those samples used in the original GWAS for ASD, allergies, and chronic pain disorder, may differ due to significant clinical heterogeneity that exists in the ASD population. Additionally, the AGRE sample may be underpowered and therefore insensitive to weak PRS associations due to a relatively small sample size. Findings imply that susceptibility genes of ASD may contribute more to the occurrence of allergies and sensory processing issues in individuals with ASD, compared with the susceptibility genes for their corresponding phenotypes in non-ASD individuals. Since these comorbid conditions (i.e., allergies and pain sensory issues) may not be attributable to the corresponding comorbidity-specific biological factors in non-ASD individuals, clinical management for these comorbid conditions may still depend on treatments for core symptoms of ASD.
Collapse
|
25
|
Kim E, Paik D, Ramirez RN, Biggs DG, Park Y, Kwon HK, Choi GB, Huh JR. Maternal gut bacteria drive intestinal inflammation in offspring with neurodevelopmental disorders by altering the chromatin landscape of CD4 + T cells. Immunity 2022; 55:145-158.e7. [PMID: 34879222 PMCID: PMC8755621 DOI: 10.1016/j.immuni.2021.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/29/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023]
Abstract
Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Donggi Paik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo N Ramirez
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Delaney G Biggs
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Youngjun Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ho-Keun Kwon
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
26
|
McLellan J, Kim DHJ, Bruce M, Ramirez-Celis A, Van de Water J. Maternal Immune Dysregulation and Autism-Understanding the Role of Cytokines, Chemokines and Autoantibodies. Front Psychiatry 2022; 13:834910. [PMID: 35722542 PMCID: PMC9201050 DOI: 10.3389/fpsyt.2022.834910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is acknowledged as a highly heterogeneous, behaviorally defined neurodevelopmental disorder with multiple etiologies. In addition to its high heritability, we have come to recognize a role for maternal immune system dysregulation as a prominent risk factor for the development of ASD in the child. Examples of these risk factors include altered cytokine/chemokine activity and the presence of autoantibodies in mothers that are reactive to proteins in the developing brain. In addition to large clinical studies, the development of pre-clinical models enables the ability to evaluate the cellular and molecular underpinnings of immune-related pathology. For example, the novel animal models of maternal autoantibody-related (MAR) ASD described herein will serve as a preclinical platform for the future testing of targeted therapeutics for one 'type' of ASD. Identification of the cellular targets will advance precision medicine efforts toward tailored therapeutics and prevention. This minireview highlights emerging evidence for the role of maternal immune dysregulation as a potential biomarker, as well as a pathologically relevant mechanism for the development of ASD in offspring. Further, we will discuss the current limitations of these models as well as potential avenues for future research.
Collapse
Affiliation(s)
- Janna McLellan
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Danielle H J Kim
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Matthew Bruce
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Alexandra Ramirez-Celis
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Judy Van de Water
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
27
|
Brusov O, Klyushnik T, Zozulya S, Karpova N, Shilov Y, Nikitina S, Simashkova N. Paired and partial correlations of immune parameters of neuro-immuno-test and coagulation parameters of thrombodynamics test in children with children’s autism. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:68-73. [DOI: 10.17116/jnevro202212209268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Nadeem A, Ahmad SF, Al-Harbi NO, Al-Ayadhi LY, Sarawi W, Attia SM, Bakheet SA, Alqarni SA, Ali N, AsSobeai HM. Imbalance in pro-inflammatory and anti-inflammatory cytokines milieu in B cells of children with autism. Mol Immunol 2021; 141:297-304. [PMID: 34915269 DOI: 10.1016/j.molimm.2021.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
B cells play multiple roles in preservation of healthy immune system including management of immune responses by expression of pro- and anti-inflammatory cytokines. Several earlier studies have documented that B cells express both pro-inflammatory cytokines such as IL-6, TNF-α as well as anti-inflammatory cytokines such as IL-10. However, it is yet to be examined whether these pro-/anti-inflammatory cytokines are expressed in B cells of children with autism spectrum disorder (ASD). Pathophysiology of ASD begins in early childhood and is characterized by repetitive/restricted behavioral patterns, and dysfunction in communal/communication skills. ASD pathophysiology also has a strong component of immune dysfunction which has been highlighted in numerous earlier publications. In this study, we specifically explored pro-/anti-inflammatory cytokines (IL-6, IL-17A, IFN-γ, TNF-α, IL-10) in B cells of ASD subjects and compared them typically developing control (TDC) children. Present study shows that inflammatory cytokines such as IL-6 and TNF-α are elevated in B cells of ASD subjects, while anti-inflammatory cytokine, IL-10 is decreased in ASD group when compared to TDC group. Further, TLR4 activation by its ligand, lipopolysaccharide (LPS) further upregulates inflammatory potential of B cells from ASD group by increasing IL-6 expression, whereas LPS has no significant effect on IL-10 expression in ASD group. Furthermore, LPS-induced inflammatory signaling of IL-6 in B cells of ASD subjects was partially mitigated by the pretreatment with NF-kB inhibitor. Present study propounds the idea that B cells could be crucial players in causing immune dysfunction in ASD subjects through an imbalance in expression of pro-/anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Homood M AsSobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Bilginer Ç, Yıldırım S, Törenek R, Özkaya AK. Patients with autism in the emergency department: cause of admissions and challenges. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2021; 69:710-716. [PMID: 37547546 PMCID: PMC10402859 DOI: 10.1080/20473869.2021.2009996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 08/08/2023]
Abstract
Objective: This study aims to understand the presentations of autism spectrum disorder (ASD) patients in a tertiary hospital's emergency department (ED) in Turkey, and the difficulties of families face in the ED. Method: Clinical characteristics of ASD patients who presented to the ED between 1 January 2015 and 15 November 2020 were obtained by retrospective file review. The caregivers of the patients who had presented to the ED in 2020 were interviewed by a phone call. Results: There were 740 applications of 224 patients (192 boys, 32 girls). Almost half of the patients were between 0 and 5 years old. Respiratory problems were the most common cause of admissions in all age groups. The second common reasons for ED visits were gastrointestinal problems in 0-5 years old, traumatic injuries/poisoning in 6-12 years old, and epilepsy/syncope in 13-17 years old. Psychiatric problems were less common (2.7%) than other reasons for admission. The most challenging issue for children was "the crowded waiting area, and the long waiting period" and followed by "physical restraint imposed on the child," "noise," and "bright light." Conclusion: As the clinicians' awareness and use of more accurate diagnostic tools have increased, the ASD prevalence has gradually increased. To increase the quality of healthcare services for these patients, awareness studies and new interventions are needed.
Collapse
Affiliation(s)
- Çilem Bilginer
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selman Yıldırım
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Rümeysa Törenek
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Kağan Özkaya
- Department of Child Emergency, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
30
|
De Giacomo A, Gargano CD, Simone M, Petruzzelli MG, Pedaci C, Giambersio D, Margari L, Ruggieri M. B and T Immunoregulation: A New Insight of B Regulatory Lymphocytes in Autism Spectrum Disorder. Front Neurosci 2021; 15:732611. [PMID: 34776843 PMCID: PMC8581677 DOI: 10.3389/fnins.2021.732611] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction: Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by a complex pathogenesis, by impairment social communication and interaction, and may also manifest repetitive patterns of behavior. Many studies have recognized an alteration of the immune response as a major etiological component in ASDs. Despite this, it is still unclear the variation of the function of the immune response. Aim: Our aim is to investigate the levels of immunological markers in peripheral blood of children with ASD such as: regulatory B and T cells, memory B and natural killer (NK) cells. Materials and Methods: We assessed various subsets of immune cells in peripheral blood (regulatory B and T cells, B-cell memory and natural killer cells) by multi-parametric flow cytometric analysis in 26 ASD children compared to 16 healthy controls (HCs) who matched age and gender. Results: No significant difference was observed between B-cell memory and NK cells in ASDs and HCs. Instead, regulatory B cells and T cells were decreased (p < 0.05) in ASD subjects when compared to HCs. Discussion: Regulatory B and T cells have a strategic role in maintaining the immune homeostasis. Their functions have been associated with the development of multiple pathologies especially in autoimmune diseases. According to our study, the immunological imbalance of regulatory B and T cells may play a pivotal role in the evolution of the disease, as immune deficiencies could be related to the severity of the ongoing disorder.
Collapse
Affiliation(s)
- Andrea De Giacomo
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Concetta Domenica Gargano
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Marta Simone
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Giuseppina Petruzzelli
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Chiara Pedaci
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Donatella Giambersio
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Margari
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maddalena Ruggieri
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
31
|
Brennan C, Weintraub H, Tennant S, Meyers C. Speech, Language, and Communication Deficits and Intervention in a Single Case of Pediatric Autoimmune Encephalitis. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2021; 30:2350-2367. [PMID: 34491819 DOI: 10.1044/2021_ajslp-20-00395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Purpose The current literature on pediatric autoimmune encephalitis (AE) focuses on medical identification/diagnosis and medical treatments. Data about the identification and treatment of communication disorders in these children are limited. This clinical focus article provides an example of the speech, language, and communication characteristics, intervention, and recovery of a single child with medical diagnoses of pediatric AE and pediatric acute-onset neuropsychiatric syndrome (PANS) and special education eligibility under the autism spectrum disorder category. Method This is an in-depth illustrative/descriptive case study. Medical, educational, and speech-language documentation of one child diagnosed with AE at age 7 years was reviewed. Methods included interviews with family members, teachers, and the school speech-language pathologist and reviews of documentation including evaluations, reports, and Individualized Education Programs. Results This child received special education and therapy services through his public school and a university speech-language clinic. He concurrently received medical treatment for AE and PANS. Comprehensive augmentative and alternative communication (AAC) intervention included the use of core words, modeling, parallel talk, self-talk, expansive recasts, shared book reading, family counseling, and collaboration with the parents and the school speech-language pathologist. The child made progress on all goals despite irregular attendance to therapy due to medical complications. Discussion Because experimental research including this population is currently limited, this descriptive case study provides valuable information to clinicians, educators, pediatricians, medical diagnosticians, and anyone providing services to a child with a complex neuropsychological disorder like AE. Future research is needed with more children who have AE, especially experimental investigations of the intervention methods utilized here. Additional research of more children with AE can provide information about the scope and severity of speech, language, and communication needs and the trajectory of recovery given AAC intervention.
Collapse
Affiliation(s)
- Christine Brennan
- Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder
| | - Haley Weintraub
- Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder
| | - Sherri Tennant
- Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder
| | - Christina Meyers
- Department of Speech, Language, and Hearing Sciences, University of Colorado Boulder
| |
Collapse
|
32
|
O'Connor TG, Ciesla AA. Maternal Immune Activation Hypotheses for Human Neurodevelopment: Some Outstanding Questions. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:471-479. [PMID: 34688920 PMCID: PMC9021321 DOI: 10.1016/j.bpsc.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
The Maternal Immune Activation (MIA) hypothesis is a leading model for understanding prenatal influences on individual differences in, and clinical syndromes of, neurodevelopment. Experimental animal and human research has proliferated in recent years, and there is now a sizable research base. Several meta-analyses demonstrate general support for an association between prenatal immune activation and neurodevelopment in human research. However, questions remain about the nature of the immune activation, the network of underlying mechanisms involved, and the breadth of impact across behavioral phenotypes. Complementing recent reviews of results, the current review places particular emphasis on how advances in understanding mechanisms may be improved with greater attention to addressing the methodological variation and limitations of existing studies, and identifies areas for further clinical research.
Collapse
Affiliation(s)
- Thomas G O'Connor
- Department of Psychiatry, University of Rochester; Department of Psycholog, University of Rochestery; Department of Neuroscience, University of Rochester; Department of Obstetrics and Gynecology, University of Rochester; Wynne Center for Family Research, University of Rochester.
| | | |
Collapse
|
33
|
Prosperi M, Santocchi E, Brunori E, Cosenza A, Tancredi R, Muratori F, Calderoni S. Prevalence and Clinical Features of Celiac Disease in a Cohort of Italian Children with Autism Spectrum Disorders. Nutrients 2021; 13:nu13093046. [PMID: 34578922 PMCID: PMC8468707 DOI: 10.3390/nu13093046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental conditions whose etiopathogenesis derives from a complex interaction between genetic liability and environmental factors. In this framework, mounting evidence suggests that immune system dysfunction could be a risk factor contributing to the development of ASD in at least a subpopulation of individuals. In particular, some studies suggest an association between celiac disease (CD)—a long-term autoimmune disorder that primarily affects the small intestine triggered by the ingestion of gluten—and ASD, while others hypothesized a random link. This investigation aimed to evaluate the prevalence of CD in a large sample of school-aged children with ASD and to characterize their clinical profile. Methods: Medical records of 405 children with ASD aged 5–11 years (mean age: 7.2 years; SD: 1.8 years) consecutively referred to a tertiary-care university hospital between January 2014 and December 2018 were reviewed; among them, 362 had carried out serological testing for CD. Results: Nine patients with positive CD serology were identified, eight of which satisfied the criteria for CD diagnosis. The estimated CD prevalence in ASD children was 2.18% (95% CI, 0.8–3.7), which was not statistically different (1.58%; p = 0.36) from that of an Italian population, matched for age range, considered as a control group (95% CI, 1.26–1.90). Three out of the eight ASD patients with CD did not have any symptoms suggestive of CD. Conclusions: Our findings did not show a higher prevalence of CD in ASD children than in the control population, but could suggest the utility of routine CD screening, given its frequent atypical clinical presentation in this population.
Collapse
Affiliation(s)
- Margherita Prosperi
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (M.P.); (E.S.); (E.B.); (A.C.); (R.T.); (F.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Elisa Santocchi
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (M.P.); (E.S.); (E.B.); (A.C.); (R.T.); (F.M.)
| | - Elena Brunori
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (M.P.); (E.S.); (E.B.); (A.C.); (R.T.); (F.M.)
| | - Angela Cosenza
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (M.P.); (E.S.); (E.B.); (A.C.); (R.T.); (F.M.)
| | - Raffaella Tancredi
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (M.P.); (E.S.); (E.B.); (A.C.); (R.T.); (F.M.)
| | - Filippo Muratori
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (M.P.); (E.S.); (E.B.); (A.C.); (R.T.); (F.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; (M.P.); (E.S.); (E.B.); (A.C.); (R.T.); (F.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050886323; Fax: +39-050886200
| |
Collapse
|
34
|
Izvolskaia M, Sharova V, Zakharova L. Perinatal Inflammation Reprograms Neuroendocrine, Immune, and Reproductive Functions: Profile of Cytokine Biomarkers. Inflammation 2021; 43:1175-1183. [PMID: 32279161 DOI: 10.1007/s10753-020-01220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viral and bacterial infections causing systemic inflammation are significant risk factors for developing body. Inflammatory processes can alter physiological levels of regulatory factors and interfere with developmental mechanisms. The brain is the main target for the negative impact of inflammatory products during critical ontogenetic periods. Subsequently, the risks of various neuropsychiatric diseases such as Alzheimer's and Parkinson's diseases, schizophrenia, and depression are increased in the offspring. Inflammation-induced physiological disturbances can cause immune and behavioral disorders, reproductive deficiencies, and infertility. The influence of maternal immune stress is mediated by the regulation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, monocyte chemotactic protein 1, leukemia-inhibiting factor, and tumor necrosis factor-alpha secretion in the maternal-fetal system. The increasing number of patients with neuronal and reproductive disorders substantiates the identification of biomarkers for these disorders targeted at their therapy.
Collapse
Affiliation(s)
- Marina Izvolskaia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Viktoriya Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Liudmila Zakharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| |
Collapse
|
35
|
Taheri M, Younesi Z, Moradi S, Honarmand Tamizkar K, Razjouyan K, Arsang-Jang S, Ghafouri-Fard S, Neishabouri SM. Altered expression of CCAT1 and CCAT2 lncRNAs in autism spectrum disorder. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Teskey G, Anagnostou E, Mankad D, Smile S, Roberts W, Brian J, Bowdish DME, Foster JA. Intestinal permeability correlates with behavioural severity in very young children with ASD: A preliminary study. J Neuroimmunol 2021; 357:577607. [PMID: 34044209 DOI: 10.1016/j.jneuroim.2021.577607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Systemic inflammation is known to alter behaviour, and since it has been reported that individuals with autism spectrum disorder (ASD) have higher levels of circulating cytokines, it has been hypothesized that systemic inflammation may exacerbate behaviours characteristic of ASD. The acute phase proteins α-2-macroglobulin, C-reactive protein, haptoglobin, serum amyloid P, serum amyloid A, ferritin and tissue plasminogen activator, as well as markers of intestinal permeability (intestinal fatty acid binding protein and lipopolysaccharide) were quantitated in the plasma of very young children with ASD. Behaviour severity was measured using the Autism Diagnostic Interview-Revised (ADI-R), the Autism Diagnostic Observation Schedule (ADOS) and the Vineland Adaptive Behaviour Scale (VABS). An increase in circulating I-FABP correlated with more severe deficits in communication, communication + social interaction as well as maladaptive behaviour. The acute phase protein haptoglobin was associated with more severe social interaction and communication + social interaction. In summary, I-FABP, a marker of intestinal epithelial damage, was associated with more severe behavioural phenotypes in very young children with ASD. In addition, the acute phase protein, haptoglobin, was associated with behaviour.
Collapse
Affiliation(s)
- Grace Teskey
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Deepali Mankad
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Canada
| | - Sharon Smile
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Canada
| | - Wendy Roberts
- Sick Kids, University of Toronto, Toronto, ON, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Dawn M E Bowdish
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
37
|
Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, Scicchitano M, Oppedisano F, Bosco F, Ruga S, Zito MC, Macri R, Palma E, Muscoli C, Mollace V. The Contribution of Gut Microbiota-Brain Axis in the Development of Brain Disorders. Front Neurosci 2021; 15:616883. [PMID: 33833660 PMCID: PMC8021727 DOI: 10.3389/fnins.2021.616883] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Different bacterial families colonize most mucosal tissues in the human organism such as the skin, mouth, vagina, respiratory, and gastrointestinal districts. In particular, the mammalian intestine hosts a microbial community of between 1,000 and 1,500 bacterial species, collectively called "microbiota." Co-metabolism between the microbiota and the host system is generated and the symbiotic relationship is mutually beneficial. The balance that is achieved between the microbiota and the host organism is fundamental to the organization of the immune system. Scientific studies have highlighted a direct correlation between the intestinal microbiota and the brain, establishing the existence of the gut microbiota-brain axis. Based on this theory, the microbiota acts on the development, physiology, and cognitive functions of the brain, although the mechanisms involved have not yet been fully interpreted. Similarly, a close relationship between alteration of the intestinal microbiota and the onset of several neurological pathologies has been highlighted. This review aims to point out current knowledge as can be found in literature regarding the connection between intestinal dysbiosis and the onset of particular neurological pathologies such as anxiety and depression, autism spectrum disorder, and multiple sclerosis. These disorders have always been considered to be a consequence of neuronal alteration, but in this review, we hypothesize that these alterations may be non-neuronal in origin, and consider the idea that the composition of the microbiota could be directly involved. In this direction, the following two key points will be highlighted: (1) the direct cross-talk that comes about between neurons and gut microbiota, and (2) the degree of impact of the microbiota on the brain. Could we consider the microbiota a valuable target for reducing or modulating the incidence of certain neurological diseases?
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
38
|
Early Life Exposure to Air Pollution and Autism Spectrum Disorder: Findings from a Multisite Case-Control Study. Epidemiology 2021; 31:103-114. [PMID: 31592868 DOI: 10.1097/ede.0000000000001109] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Epidemiologic studies have reported associations between prenatal and early postnatal air pollution exposure and autism spectrum disorder (ASD); however, findings differ by pollutant and developmental window. OBJECTIVES We examined associations between early life exposure to particulate matter ≤2.5 µm in diameter (PM2.5) and ozone in association with ASD across multiple US regions. METHODS Our study participants included 674 children with confirmed ASD and 855 population controls from the Study to Explore Early Development, a multi-site case-control study of children born from 2003 to 2006 in the United States. We used a satellite-based model to assign air pollutant exposure averages during several critical periods of neurodevelopment: 3 months before pregnancy; each trimester of pregnancy; the entire pregnancy; and the first year of life. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for study site, maternal age, maternal education, maternal race/ethnicity, maternal smoking, and month and year of birth. RESULTS The air pollution-ASD associations appeared to vary by exposure time period. Ozone exposure during the third trimester was associated with ASD, with an OR of 1.2 (95% CI: 1.1, 1.4) per 6.6 ppb increase in ozone. We additionally observed a positive association with PM2.5 exposure during the first year of life (OR = 1.3 [95% CI: 1.0, 1.6] per 1.6 µg/m increase in PM2.5). CONCLUSIONS Our study corroborates previous findings of a positive association between early life air pollution exposure and ASD, and identifies a potential critical window of exposure during the late prenatal and early postnatal periods.
Collapse
|
39
|
Garbulowski M, Diamanti K, Smolińska K, Baltzer N, Stoll P, Bornelöv S, Øhrn A, Feuk L, Komorowski J. R.ROSETTA: an interpretable machine learning framework. BMC Bioinformatics 2021; 22:110. [PMID: 33676405 PMCID: PMC7937228 DOI: 10.1186/s12859-021-04049-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Machine learning involves strategies and algorithms that may assist bioinformatics analyses in terms of data mining and knowledge discovery. In several applications, viz. in Life Sciences, it is often more important to understand how a prediction was obtained rather than knowing what prediction was made. To this end so-called interpretable machine learning has been recently advocated. In this study, we implemented an interpretable machine learning package based on the rough set theory. An important aim of our work was provision of statistical properties of the models and their components. RESULTS We present the R.ROSETTA package, which is an R wrapper of ROSETTA framework. The original ROSETTA functions have been improved and adapted to the R programming environment. The package allows for building and analyzing non-linear interpretable machine learning models. R.ROSETTA gathers combinatorial statistics via rule-based modelling for accessible and transparent results, well-suited for adoption within the greater scientific community. The package also provides statistics and visualization tools that facilitate minimization of analysis bias and noise. The R.ROSETTA package is freely available at https://github.com/komorowskilab/R.ROSETTA . To illustrate the usage of the package, we applied it to a transcriptome dataset from an autism case-control study. Our tool provided hypotheses for potential co-predictive mechanisms among features that discerned phenotype classes. These co-predictors represented neurodevelopmental and autism-related genes. CONCLUSIONS R.ROSETTA provides new insights for interpretable machine learning analyses and knowledge-based systems. We demonstrated that our package facilitated detection of dependencies for autism-related genes. Although the sample application of R.ROSETTA illustrates transcriptome data analysis, the package can be used to analyze any data organized in decision tables.
Collapse
Affiliation(s)
- Mateusz Garbulowski
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Klev Diamanti
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karolina Smolińska
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nicholas Baltzer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Patricia Stoll
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Susanne Bornelöv
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jan Komorowski
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Swedish Collegium for Advanced Study, Uppsala, Sweden.
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.
- Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
40
|
Pintacuda G, Martín JM, Eggan KC. Mind the translational gap: using iPS cell models to bridge from genetic discoveries to perturbed pathways and therapeutic targets. Mol Autism 2021; 12:10. [PMID: 33557935 PMCID: PMC7869517 DOI: 10.1186/s13229-021-00417-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by impaired social interactions as well as the presentation of restrictive and repetitive behaviors. ASD is highly heritable but genetically heterogenous with both common and rare genetic variants collaborating to predispose individuals to the disorder. In this review, we synthesize recent efforts to develop human induced pluripotent stem cell (iPSC)-derived models of ASD-related phenotypes. We firstly address concerns regarding the relevance and validity of available neuronal iPSC-derived models. We then critically evaluate the robustness of various differentiation and cell culture protocols used for producing cell types of relevance to ASD. By exploring iPSC models of ASD reported thus far, we examine to what extent cellular and neuronal phenotypes with potential relevance to ASD can be linked to genetic variants found to underlie it. Lastly, we outline promising strategies by which iPSC technology can both enhance the power of genetic studies to identify ASD risk factors and nominate pathways that are disrupted across groups of ASD patients that might serve as common points for therapeutic intervention.
Collapse
Affiliation(s)
- Greta Pintacuda
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Jacqueline M Martín
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin C Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
41
|
Dysregulation of Ki-67 Expression in T Cells of Children with Autism Spectrum Disorder. CHILDREN-BASEL 2021; 8:children8020116. [PMID: 33562037 PMCID: PMC7915849 DOI: 10.3390/children8020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral abnormalities such as impairments in social function and deficits in communication. The etiology of autism is unknown in most cases, but many studies have pointed towards the immune system as a causative agent in autism. Specific studies implicated lymphocytes, natural killer (NK) cells, monocytes, cytokines, and specific transcription factors in the development of ASD. The protein Ki-67 is n expressed in the proliferating cells and is used as a tool in several disorders. Ki-67 plays a crucial role in many neurological diseases. However, Ki-67 role in ASD is not fully understood. In this study, we investigated the possible role of Ki-67 expression in autistic children. We compared Ki-67 production in CD3+, CD4+, CD8+, CXCR4+, CXCR7+, CD45R+, HLA-DR+, GATA3+, Helios+, and FOXP3+ peripheral blood mononuclear cells (PBMCs) in autistic children to typically developing (TD) controls using immunofluorescence staining. We also determined Ki-67 mRNA levels in PBMCs using RT–PCR. The results revealed that autistic children had significantly increased numbers of CD3+Ki-67+, CD4+Ki-67+, CD8+Ki-67+, CXCR4+Ki-67+, CXCR7+Ki-67+, CD45R+Ki-67+, HLA-DR+Ki-67+, CXCR4+GATA3+, GATA3+Ki-67+ cells and decreased Helios+Ki-67+ and FOXP3+Ki-67+ cells compared with TD controls. In addition, the autistic children showed upregulation of Ki-67 mRNA levels compared with TD controls. Further studies need to be carried out to assess the exact role of Ki-67 and its therapeutic potential in ASD.
Collapse
|
42
|
Panisi C, Guerini FR, Abruzzo PM, Balzola F, Biava PM, Bolotta A, Brunero M, Burgio E, Chiara A, Clerici M, Croce L, Ferreri C, Giovannini N, Ghezzo A, Grossi E, Keller R, Manzotti A, Marini M, Migliore L, Moderato L, Moscone D, Mussap M, Parmeggiani A, Pasin V, Perotti M, Piras C, Saresella M, Stoccoro A, Toso T, Vacca RA, Vagni D, Vendemmia S, Villa L, Politi P, Fanos V. Autism Spectrum Disorder from the Womb to Adulthood: Suggestions for a Paradigm Shift. J Pers Med 2021; 11:70. [PMID: 33504019 PMCID: PMC7912683 DOI: 10.3390/jpm11020070] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The wide spectrum of unique needs and strengths of Autism Spectrum Disorders (ASD) is a challenge for the worldwide healthcare system. With the plethora of information from research, a common thread is required to conceptualize an exhaustive pathogenetic paradigm. The epidemiological and clinical findings in ASD cannot be explained by the traditional linear genetic model, hence the need to move towards a more fluid conception, integrating genetics, environment, and epigenetics as a whole. The embryo-fetal period and the first two years of life (the so-called 'First 1000 Days') are the crucial time window for neurodevelopment. In particular, the interplay and the vicious loop between immune activation, gut dysbiosis, and mitochondrial impairment/oxidative stress significantly affects neurodevelopment during pregnancy and undermines the health of ASD people throughout life. Consequently, the most effective intervention in ASD is expected by primary prevention aimed at pregnancy and at early control of the main effector molecular pathways. We will reason here on a comprehensive and exhaustive pathogenetic paradigm in ASD, viewed not just as a theoretical issue, but as a tool to provide suggestions for effective preventive strategies and personalized, dynamic (from womb to adulthood), systemic, and interdisciplinary healthcare approach.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | | | - Federico Balzola
- Division of Gastroenterology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Turin, 10126 Turin, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20138 Milan, Italy;
| | - Alessandra Bolotta
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Marco Brunero
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Ernesto Burgio
- ECERI—European Cancer and Environment Research Institute, Square de Meeus 38-40, 1000 Bruxelles, Belgium;
| | - Alberto Chiara
- Dipartimento Materno Infantile ASST, 27100 Pavia, Italy;
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Luigi Croce
- Centro Domino per l’Autismo, Universita’ Cattolica Brescia, 20139 Milan, Italy;
| | - Carla Ferreri
- National Research Council of Italy, Institute of Organic Synthesis and Photoreactivity (ISOF), 40129 Bologna, Italy;
| | - Niccolò Giovannini
- Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Alessandro Ghezzo
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy;
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy;
| | - Andrea Manzotti
- RAISE Lab, Foundation COME Collaboration, 65121 Pescara, Italy;
| | - Marina Marini
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Lucia Migliore
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Lucio Moderato
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
| | - Davide Moscone
- Associazione Spazio Asperger ONLUS, Centro Clinico CuoreMenteLab, 00141 Rome, Italy;
| | - Michele Mussap
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
| | - Antonia Parmeggiani
- Child Neurology and Psychiatry Unit, IRCCS ISNB, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Valentina Pasin
- Milan Institute for health Care and Advanced Learning, 20124 Milano, Italy;
| | | | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | - Andrea Stoccoro
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Tiziana Toso
- Unione Italiana Lotta alla Distrofia Muscolare UILDM, 35100 Padova, Italy;
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy, 70126 Bari, Italy;
| | - David Vagni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy;
| | | | - Laura Villa
- Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy;
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria, 09042 Cagliari, Italy
| |
Collapse
|
43
|
Sarovic D. A Unifying Theory for Autism: The Pathogenetic Triad as a Theoretical Framework. Front Psychiatry 2021; 12:767075. [PMID: 34867553 PMCID: PMC8637925 DOI: 10.3389/fpsyt.2021.767075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
This paper presents a unifying theory for autism by applying the framework of a pathogenetic triad to the scientific literature. It proposes a deconstruction of autism into three contributing features (an autistic personality dimension, cognitive compensation, and neuropathological risk factors), and delineates how they interact to cause a maladaptive behavioral phenotype that may require a clinical diagnosis. The autistic personality represents a common core condition, which induces a set of behavioral issues when pronounced. These issues are compensated for by cognitive mechanisms, allowing the individual to remain adaptive and functional. Risk factors, both exogenous and endogenous ones, show pathophysiological convergence through their negative effects on neurodevelopment. This secondarily affects cognitive compensation, which disinhibits a maladaptive behavioral phenotype. The triad is operationalized and methods for quantification are presented. With respect to the breadth of findings in the literature that it can incorporate, it is the most comprehensive model yet for autism. Its main implications are that (1) it presents the broader autism phenotype as a non-pathological core personality domain, which is shared across the population and uncoupled from associated features such as low cognitive ability and immune dysfunction, (2) it proposes that common genetic variants underly the personality domain, and that rare variants act as risk factors through negative effects on neurodevelopment, (3) it outlines a common pathophysiological mechanism, through inhibition of neurodevelopment and cognitive dysfunction, by which a wide range of endogenous and exogenous risk factors lead to autism, and (4) it suggests that contributing risk factors, and findings of immune and autonomic dysfunction are clinically ascertained rather than part of the core autism construct.
Collapse
Affiliation(s)
- Darko Sarovic
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,MedTech West, Gothenburg, Sweden
| |
Collapse
|
44
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
45
|
de Leão ERLP, de Souza DNC, de Moura LVB, da Silveira Júnior AM, Dos Santos ALG, Diniz DG, Diniz CWP, Sosthenes MCK. Lateral septum microglial changes and behavioral abnormalities of mice exposed to valproic acid during the prenatal period. J Chem Neuroanat 2020; 111:101875. [PMID: 33127448 DOI: 10.1016/j.jchemneu.2020.101875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Most animal model studies of autism spectrum disorder (ASD) have been performed in males, which may be a reflex of the 3-times higher prevalence in boys than in girls. For this reason, little is known about the mechanisms underlying disease progression in females, and nothing is known about potential associations between microglial changes in the lateral septum (LS) and adult female cognition. Prenatal exposure to valproic acid (VPA) in mice has been widely used as an experimental model of autism-like behaviors associated with cellular changes. However, no study has reported the influence of VPA exposure in utero and its consequences on limbic system-dependent tasks or the microglial response in the LS in adult female mice. We compared the exploratory activity and risk assessment in novel environments of BALB/c control mice to mice exposed in utero to VPA and estimated the total number of microglia in the LS using an optical fractionator. On day 12.5 of pregnancy, females received diluted VPA or saline by gavage. After weaning, VPA exposed or control pups were separately housed in standard laboratory cages. At 5 months of age, all mice underwent behavioral testing and their brain sections were immunolabelled using IBA-1 antibody. In the open field test, VPA group showed a greater distance traveled, which was accompanied by less immobility, less time spent on the periphery and a greater number, crossed lines. Similar findings were found in the elevated plus maze test, where VPA mice traveled greater distances, immobility was significantly higher than that of control and VPA group spent less time on the closed arms of apparatus. Stereological analysis demonstrated higher microglial total number and density in the LS of VPA mice, as the cell count was greater, but the volume was similar. Therefore, we suggest that an increase in microglia in the LS may be part of the cellular changes associated with behavioral dysfunction in the VPA model of ASD.
Collapse
Affiliation(s)
- Ellen Rose Leandro Ponce de Leão
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Dilza Nazaré Colares de Souza
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Larissa Victória Barra de Moura
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Antonio Morais da Silveira Júnior
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Alinne Lorrany Gomes Dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil; Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.
| |
Collapse
|
46
|
Garcia-Gutierrez E, Narbad A, Rodríguez JM. Autism Spectrum Disorder Associated With Gut Microbiota at Immune, Metabolomic, and Neuroactive Level. Front Neurosci 2020; 14:578666. [PMID: 33117122 PMCID: PMC7578228 DOI: 10.3389/fnins.2020.578666] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence suggesting a link between the autism spectrum disorder (ASD) and the gastrointestinal (GI) microbiome. Experimental and clinical studies have shown that patients diagnosed with ASD display alterations of the gut microbiota. These alterations do not only extend to the gut microbiota composition but also to the metabolites they produce, as a result of its connections with diet and the bidirectional interaction with the host. Thus, production of metabolites and neurotransmitters stimulate the immune system and influence the central nervous system (CNS) by stimulation of the vagal nerve, as an example of the gut-brain axis pathway. In this review we compose an overview of the interconnectivity of the different GI-related elements that have been associated with the development and severity of the ASD in patients and animal models. We review potential biomarkers to be used in future studies to unlock further connections and interventions in the treatment of ASD.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Program, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
47
|
Ventura G, Calvano CD, Porcelli V, Palmieri L, De Giacomo A, Xu Y, Goodacre R, Palmisano F, Cataldi TRI. Phospholipidomics of peripheral blood mononuclear cells (PBMCs): the tricky case of children with autism spectrum disorder (ASD) and their healthy siblings. Anal Bioanal Chem 2020; 412:6859-6874. [DOI: 10.1007/s00216-020-02817-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
|
48
|
Alolaby RR, Jiraanont P, Durbin-Johnson B, Jasoliya M, Tang HT, Hagerman R, Tassone F. Molecular Biomarkers Predictive of Sertraline Treatment Response in Young Children With Autism Spectrum Disorder. Front Genet 2020; 11:308. [PMID: 32346385 PMCID: PMC7174723 DOI: 10.3389/fgene.2020.00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Sertraline is one among several selective serotonin reuptake inhibitors (SSRIs) that exhibited improvement of language development in Autism Spectrum Disorder (ASD); however, the molecular mechanism has not been elucidated. A double blind, randomized, 6-month, placebo-controlled, clinical trial of low-dose sertraline in children ages (3–6 years) with ASD was conducted at the UC Davis MIND Institute. It aimed at evaluating the efficacy and benefit with respect to early expressive language development and global clinical improvement. This study aimed to identify molecular biomarkers that might be key players in the serotonin pathway and might be predictive of a clinical response to sertraline. Fifty eight subjects with the diagnosis of ASD were randomized to sertraline or placebo. Eight subjects from the sertraline arm and five from the placebo arm discontinued from the study. Furthermore, four subjects did not have a successful blood draw. Hence, genotypes for 41 subjects (20 on placebo and 21 on sertraline) were determined for several genes involved in the serotonin pathway including the serotonin transporter-linked polymorphic region (5-HTTLPR), the tryptophan hydroxylase 2 (TPH2), and the Brain-Derived Neurotrophic Factor (BDNF). In addition, plasma levels of BDNF, Matrix metallopeptidase 9 (MMP-9) and a selected panel of cytokines were determined at baseline and post-treatment. Intent-to-treat analysis revealed several primary significant correlations between molecular changes and the Mullen Scales of Early Learning (MSEL) and Clinical Global Impression Scale – Improvement (CGI-I) of treatment and control groups but they were not significant after adjustment for multiple testing. Thus, sertraline showed no benefit for treatment of young children with ASD in language development or changes in molecular markers in this study. These results indicate that sertraline may not be beneficial for the treatment of children with ASD; however, further investigation of larger groups as well as longer term follow-up studies are warranted.
Collapse
Affiliation(s)
- Reem Rafik Alolaby
- College of Health Sciences, California Northstate University, Rancho Cordova, CA, United States
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Mittal Jasoliya
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Hiu-Tung Tang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Davis, Davis, CA, United States.,Department of Pediatrics, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California Davis Medical Center, Davis, Davis, CA, United States
| |
Collapse
|
49
|
Hollander E, Uzunova G, Taylor BP, Noone R, Racine E, Doernberg E, Freeman K, Ferretti CJ. Randomized crossover feasibility trial of helminthic Trichuris suis ova versus placebo for repetitive behaviors in adult autism spectrum disorder. World J Biol Psychiatry 2020; 21:291-299. [PMID: 30230399 DOI: 10.1080/15622975.2018.1523561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objectives: Inflammatory mechanisms are implicated in the aetiology of autism spectrum disorder (ASD), and use of the immunomodulator Trichuris suis Ova (TSO) is a novel treatment approach. This pilot study determined the effect sizes for TSO versus placebo on repetitive behaviours, irritability and global functioning in adults with ASD.Methods: A 28-week double-blind, randomised two-period crossover study of TSO versus placebo in ten ASD adults, aged 17-35, was completed, with a 4-week washout between each 12-week period at Montefiore Medical Center, Albert Einstein College of Medicine. Subjects with ASD, history of seasonal, medication or food allergies, Y-BOCS ≥6 and IQ ≥70 received 2,500 TSO ova or matching placebo every 2 weeks of each 12-week period.Results: Large effect sizes for improvement in repetitive behaviours (d = 1.0), restricted interests (d = 0.82), rigidity (d = 0.79) and irritability (d = 0.78) were observed after 12 weeks of treatment. No changes were observed in the social-communication domain. Differences between treatment groups did not reach statistical significance. TSO had only minimal, non-serious side effects.Conclusions: This proof-of-concept study demonstrates the feasibility of TSO for the treatment of ASD, including a favourable safety profile, and moderate to large effect sizes for reducing repetitive behaviours and irritability.Clinicaltrials.gov: NCT01040221.
Collapse
Affiliation(s)
- Eric Hollander
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Genoveva Uzunova
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Bonnie P Taylor
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Rachel Noone
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Emma Racine
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ellen Doernberg
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Katherine Freeman
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Casara Jean Ferretti
- Autism and Obsessive-Compulsive Spectrum Program, and Anxiety and Depression Research Program Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
50
|
Santocchi E, Guiducci L, Prosperi M, Calderoni S, Gaggini M, Apicella F, Tancredi R, Billeci L, Mastromarino P, Grossi E, Gastaldelli A, Morales MA, Muratori F. Effects of Probiotic Supplementation on Gastrointestinal, Sensory and Core Symptoms in Autism Spectrum Disorders: A Randomized Controlled Trial. Front Psychiatry 2020; 11:550593. [PMID: 33101079 PMCID: PMC7546872 DOI: 10.3389/fpsyt.2020.550593] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The microbiota-gut-brain axis has been recently recognized as a key modulator of neuropsychiatric health. In this framework, probiotics (recently named "psychobiotics") may modulate brain activity and function, possibly improving the behavioral profiles of children with Autism Spectrum Disorder (ASD). We evaluated the effects of probiotics on autism in a double-blind randomized, placebo-controlled trial of 85 preschoolers with ASD (mean age, 4.2 years; 84% boys). Participants were randomly assigned to probiotics (De Simone Formulation) (n=42) or placebo (n=43) for six months. Sixty-three (74%) children completed the trial. No differences between groups were detected on the primary outcome measure, the Total Autism Diagnostic Observation Schedule - Calibrated Severity Score (ADOS-CSS). An exploratory secondary analysis on subgroups of children with or without Gastrointestinal Symptoms (GI group, n= 30; NGI group, n=55) revealed in the NGI group treated with probiotics a significant decline in ADOS scores as compared to that in the placebo group, with a mean reduction of 0.81 in Total ADOS CSS and of 1.14 in Social-Affect ADOS CSS over six months. In the GI group treated with probiotics we found greater improvements in some GI symptoms, adaptive functioning, and sensory profiles than in the GI group treated with placebo. These results suggest potentially positive effects of probiotics on core autism symptoms in a subset of ASD children independent of the specific intermediation of the probiotic effect on GI symptoms. Further studies are warranted to replicate and extend these promising findings on a wider population with subsets of ASD patients which share targets of intervention on the microbiota-gut-brain axis. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT02708901.
Collapse
Affiliation(s)
- Elisa Santocchi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Letizia Guiducci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Margherita Prosperi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Sara Calderoni,
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabio Apicella
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Raffaella Tancredi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Lucia Billeci
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Enzo Grossi
- Department of Autism Research, Villa Santa Maria Institute, Tavernerio, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | | | - Filippo Muratori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|