1
|
Lagunas-Rangel FA, Liepinsh E, Fredriksson R, Alsehli AM, Williams MJ, Dambrova M, Jönsson J, Schiöth HB. Off-target effects of statins: molecular mechanisms, side effects and the emerging role of kinases. Br J Pharmacol 2024; 181:3799-3818. [PMID: 39180421 DOI: 10.1111/bph.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
Statins are one of the most important classes of drugs. In this analytical review, we elucidate the intricate molecular mechanisms and toxicological rationale regarding both the on- (targeting 3-hydroxy-3-methylglutaryl-coenzyme A reductase [HMGCR]) and off-target effects of statins. Statins interact with a number of membrane kinases, such as epidermal growth factor receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (HER2) and MET proto-oncogene, receptor tyrosine kinase (MET), as well as cytosolic kinases, such as SRC proto-oncogene, non-receptor tyrosine kinase (Src) and show inhibitory activity at nanomolar concentrations. In addition, they interact with calcium ATPases and peroxisome proliferator-activated receptor α (PPARα/NR1C1) at higher concentrations. Statins interact with mitochondrial complexes III and IV, and their inhibition of coenzyme Q10 synthesis also impairs the functioning of complexes I and II. Statins act as inhibitors of kinases, calcium ATPases and mitochondrial complexes, while activating PPARα. These off-target effects likely contribute to the side effects observed in patients undergoing statin therapy, including musculoskeletal symptoms and hepatic effects. Interestingly, some off-target effects of statins could also be the cause of favourable outcomes, relating to repurposing statins in conditions such as inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ahmed M Alsehli
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Michael J Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, Riga, Latvia
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Liepinsh E, Zvejniece L, Clemensson L, Ozola M, Vavers E, Cirule H, Korzh S, Skuja S, Groma V, Briviba M, Grinberga S, Liu W, Olszewski P, Gentreau M, Fredriksson R, Dambrova M, Schiöth HB. Hydroxymethylglutaryl-CoA reductase activity is essential for mitochondrial β-oxidation of fatty acids to prevent lethal accumulation of long-chain acylcarnitines in the mouse liver. Br J Pharmacol 2024; 181:2750-2773. [PMID: 38641905 DOI: 10.1111/bph.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGCR), and exert adverse effects on mitochondrial function, although the mechanisms underlying these effects remain unclear. We used a tamoxifen-induced Hmgcr-knockout (KO) mouse model, a multi-omics approach and mitochondrial function assessments to investigate whether decreased HMGCR activity impacts key liver energy metabolism pathways. EXPERIMENTAL APPROACH We established a new mouse strain using the Cre/loxP system, which enabled whole-body deletion of Hmgcr expression. These mice were crossed with Rosa26Cre mice and treated with tamoxifen to delete Hmgcr in all cells. We performed transcriptomic and metabolomic analyses and thus evaluated time-dependent changes in metabolic functions to identify the pathways leading to cell death in Hmgcr-KO mice. KEY RESULTS Lack of Hmgcr expression resulted in lethality, due to acute liver damage caused by rapid disruption of mitochondrial fatty acid β-oxidation and very high accumulation of long-chain (LC) acylcarnitines in both male and female mice. Gene expression and KO-related phenotype changes were not observed in other tissues. The progression to liver failure was driven by diminished peroxisome formation, which resulted in impaired mitochondrial and peroxisomal fatty acid metabolism, enhanced glucose utilization and whole-body hypoglycaemia. CONCLUSION AND IMPLICATIONS Our findings suggest that HMGCR is crucial for maintaining energy metabolism balance, and its activity is necessary for functional mitochondrial β-oxidation. Moreover, statin-induced adverse reactions might be rescued by the prevention of LC acylcarnitine accumulation.
Collapse
Affiliation(s)
- Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | | | | | - Melita Ozola
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | | | - Monta Briviba
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Wen Liu
- Uppsala University, Uppsala, Sweden
| | | | | | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | | |
Collapse
|
3
|
Tan JWH, Wylie-Sears J, Seebauer CT, Mulliken JB, Francois M, Holm A, Bischoff J. R(+) Propranolol decreases lipid accumulation in hemangioma-derived stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601621. [PMID: 39005472 PMCID: PMC11245031 DOI: 10.1101/2024.07.01.601621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Infantile hemangioma (IH) is a benign vascular tumor that undergoes an initial rapid growth phase followed by spontaneous involution. A fibrofatty residuum remains in many tumors and often necessitates resection. We recently discovered that R(+) propranolol, the non-β blocker enantiomer, inhibits blood vessel formation of IH patient-derived hemangioma stem cells (HemSC) xenografted in mice. HemSC are multipotent cells with the ability to differentiate into endothelial cells, pericytes, and adipocytes. Objectives We investigated how R(+) propranolol affects HemSC adipogenic differentiation and lipid accumulation, in vitro and in a preclinical murine model for IH. Methods We conducted a 10-day adipogenesis assay on 4 IH patient-derived HemSCs. Oil Red O (ORO) staining was used to identify the onset and level of lipid accumulation in HemSC while quantitative real-time polymerase chain reaction was conducted to determine the temporal expression of key factors implicated in adipogenesis. 5-20µM R(+) propranolol treatment was added to HemSC induced to undergo adiogenesis for 4 and 8 days, followed by quantification of lipid-stained areas and transcript levels of key adipogenic factors. We immunostained for lipid droplet-associated protein Perilipin 1 (PLIN1) in HemSC-xenograft sections from mice treated with R(+) propranolol and quantified the area using ImageJ. Results We found that different patient-derived HemSC exhibit a robust and heterogenous adipogenic capacity when induced for adipogenic differentiation in vitro. Consistently across four IH patient-derived HemSC isolates, R(+) propranolol reduced ORO-stained areas and lipoprotein lipase (LPL) transcript levels in HemSC after 4 and 8 days of adipogenic induction. In contrast, R(+) propranolol had no significant inhibitory effect on transcript levels encoding adipogenic transcription factors. In a pre-clinical HemSC xenograft model, PLIN1-positive area was significantly reduced in xenograft sections from mice treated with R(+) propranolol, signifying reduced lipid accumulation. Conclusions Our findings suggest a novel regulatory role for the R(+) enantiomer of propranolol in modulating lipid accumulation in HemSC. This highlights a novel role of R(+) propranolol in the involuting phase of IH and a strategy to reduce fibrofatty residua in IH. What is already known about this topic? Propranolol is the mainstay treatment for infantile hemangioma (IH), the most common tumor of infancy, but its use can be associated with concerning β-blocker side effects.R(+) propranolol, the enantiomer largely devoid of β-blocker activity, was recently shown to inhibit endothelial differentiation of hemangioma-derived stem cells (HemSC) in vitro and reduce blood vessel formation in a HemSC-derived xenograft murine model of IH. What does this study add? R(+) propranolol inhibits lipid accumulation in HemSC in vitro.R(+) propranolol does not affect mRNA transcript levels of key adipogenic transcription factors in differentiating HemSC in vitro.R(+) propranolol reduces lipid accumulation in a pre-clinical xenograft murine model of IH. What is the translational message? The R(+) enantiomer of propranolol could be advantageous in terms of reduction in β-adrenergic side effects and fibrofatty tissue formation in the involuting phase of IH.Less fibrofatty residua might reduce the need for surgical resection.Disfigurement and associated psychosocial impacts might be improved in this young patient cohort.
Collapse
|
4
|
Dowdy T, Vilamu HM, Lita A, Li A, Yamasaki T, Zhang L, Chari R, Song H, Zhang M, Zhang W, Briceno N, Davis D, Gilbert MR, Larion M. Targeting the sphingolipid rheostat in IDH1 mut glioma alters cholesterol homeostasis and triggers apoptosis via membrane degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591321. [PMID: 38903071 PMCID: PMC11188108 DOI: 10.1101/2024.04.26.591321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The cross-regulation of metabolism and trafficking is not well understood for the vital sphingolipids and cholesterol constituents of cellular compartments. While reports are starting to surface on how sphingolipids like sphingomyelin (SM) dysregulate cholesterol levels in different cellular compartments (Jiang et al., 2022), limited research is available on the mechanisms driving the relationship between sphingolipids and cholesterol homeostasis, or its biological implications. Previously, we have identified sphingolipid metabolism as a unique vulnerability for IDH1 mut gliomas via a rational drug design. Herein, we show how modulating sphingolipid levels affects cholesterol homeostasis in brain tumors. However, we unexpectedly discovered for the first time that C17 sphingosine and NDMS addition to cancer cells alters cholesterol homeostasis by impacting its cellular synthesis, uptake, and efflux leading to a net decrease in cholesterol levels and inducing apoptosis. Our results reflect a reverse correlation between the levels of sphingosines, NDMS, and unesterified, free cholesterol in the cells. We show that increasing sphingosine and NDMS (a sphingosine analog) levels alter not only the trafficking of cholesterol between membranes but also the efflux and synthesis of cholesterol. We also demonstrate that despite the effort to remove free cholesterol by ABCA1-mediated efflux or by suppressing machinery for the influx (LDLR) and biosynthetic pathway (HMGCR), apoptosis is inevitable for IDH1 mut glioma cells. This is the first study that shows how altering sphingosine levels directly affects cholesterol homeostasis in cancer cells and can be used to manipulate this relationship to induce apoptosis in IDH1 mut gliomas.
Collapse
|
5
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Takahashi H, Nishitani K, Kawarasaki S, Martin-Morales A, Nagai H, Kuwata H, Tokura M, Okaze H, Mohri S, Ara T, Ito T, Nomura W, Jheng HF, Kawada T, Inoue K, Goto T. Metabolome analysis reveals that cyclic adenosine diphosphate ribose contributes to the regulation of differentiation in mice adipocyte. FASEB J 2024; 38:e23391. [PMID: 38145327 DOI: 10.1096/fj.202300850rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Adipocytes play a key role in energy storage and homeostasis. Although the role of transcription factors in adipocyte differentiation is known, the effect of endogenous metabolites of low molecular weight remains unclear. Here, we analyzed time-dependent changes in the levels of these metabolites throughout adipocyte differentiation, using metabolome analysis, and demonstrated that there is a positive correlation between cyclic adenosine diphosphate ribose (cADPR) and Pparγ mRNA expression used as a marker of differentiation. We also found that the treatment of C3H10T1/2 adipocytes with cADPR increased the mRNA expression of those marker genes and the accumulation of triglycerides. Furthermore, inhibition of ryanodine receptors (RyR), which are activated by cADPR, caused a significant reduction in mRNA expression levels of the marker genes and triglyceride accumulation in adipocytes. Our findings show that cADPR accelerates adipocytic differentiation via RyR pathway.
Collapse
Affiliation(s)
- Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Nishitani
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Agustin Martin-Morales
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroyuki Nagai
- Gifu Prefectural Research Institute for Health and Environmental Science, Gifu, Japan
| | - Hidetoshi Kuwata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Motohiro Tokura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Haruka Okaze
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shinsuke Mohri
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takeshi Ara
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tetsuro Ito
- Gifu Prefectural Research Institute for Health and Environmental Science, Gifu, Japan
- Laboratory of Pharmacognosy, Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Gifu, Japan
| | - Wataru Nomura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kyoto, Japan
| | - Huei-Fen Jheng
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kyoto, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Tiwari M, Mcilroy GD. From scarcity to solutions: Therapeutic strategies to restore adipose tissue functionality in rare disorders of lipodystrophy. Diabet Med 2023; 40:e15214. [PMID: 37638531 DOI: 10.1111/dme.15214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
AIMS Lipodystrophy is a rare disorder characterised by abnormal or deficient adipose tissue formation and distribution. It poses significant challenges to affected individuals, including the development of severe metabolic complications like diabetes and fatty liver disease. These conditions are often chronic, debilitating and life-threatening, with limited treatment options and a lack of specialised expertise. This review aims to raise awareness of lipodystrophy disorders and highlights therapeutic strategies to restore adipose tissue functionality. METHODS Extensive research has been conducted, including both historical and recent advances. We have examined and summarised the literature to provide an overview of potential strategies to restore adipose tissue functionality and treat/reverse metabolic complications in lipodystrophy disorders. RESULTS A wealth of basic and clinical research has investigated various therapeutic approaches for lipodystrophy. These include ground-breaking methods such as adipose tissue transplantation, innovative leptin replacement therapy, targeted inhibition of lipolysis and cutting-edge gene and cell therapies. Each approach shows great potential in addressing the complex challenges posed by lipodystrophy. CONCLUSIONS Lipodystrophy disorders require urgent attention and innovative treatments. Through rigorous basic and clinical research, several promising therapeutic strategies have emerged that could restore adipose tissue functionality and reverse the severe metabolic complications associated with this condition. However, further research and collaboration between academics, clinicians, patient advocacy groups and pharmaceutical companies will be crucial in transforming these scientific breakthroughs into effective and viable treatment options for individuals and families affected by lipodystrophy. Fostering such interdisciplinary partnerships could pave the way for a brighter future for those battling this debilitating disorder.
Collapse
Affiliation(s)
- Mansi Tiwari
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - George D Mcilroy
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
8
|
Nikpay M. Genome-wide search identified DNA methylation sites that regulate the metabolome. Front Genet 2023; 14:1093882. [PMID: 37274792 PMCID: PMC10233745 DOI: 10.3389/fgene.2023.1093882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Background: Identifying DNA methylation sites that regulate the metabolome is important for several purposes. In this study, publicly available GWAS data were integrated to find methylation sites that impact metabolome through a discovery and replication scheme and by using Mendelian randomization. Results: The outcome of analyses revealed 107 methylation sites associated with 84 metabolites at the genome-wide significance level (p<5e-8) at both the discovery and replication stages. A large percentage of the observed associations (85%) were with lipids, significantly higher than expected (p = 0.0003). A number of CpG (methylation) sites showed specificity e.g., cg20133200 within PFKP was associated with glucose only and cg10760299 within GATM impacted the level of creatinine; in contrast, there were sites associated with numerous metabolites e.g., cg20102877 on the 2p23.3 region was associated with 39 metabolites. Integrating transcriptome data enabled identifying genes (N = 82) mediating the impact of methylation sites on the metabolome and cardiometabolic traits. For example, PABPC4 mediated the impact of cg15123755-HDL on type-2 diabetes. KCNK7 mediated the impact of cg21033440-lipids on hypertension. POC5, ILRUN, FDFT1, and NEIL2 mediated the impact of CpG sites on obesity through metabolic pathways. Conclusion: This study provides a catalog of DNA methylation sites that regulate the metabolome for downstream applications.
Collapse
|
9
|
Kawarasaki S, Sawazaki H, Iijima H, Takahashi H, Nomura W, Inoue K, Kawada T, Goto T. Combined treatment with teneligliptin and canagliflozin additively suppresses high-fat diet-induced body weight gain in mice with modulation of lipid metabolism-related gene expression. Eur J Pharmacol 2023; 947:175682. [PMID: 36965744 DOI: 10.1016/j.ejphar.2023.175682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
In the treatment of type 2 diabetes mellitus (T2DM), comprehensive management of multiple risk factors, such as blood glucose, body weight, and lipids, is important to prevent disease progression. Although the combination of dipeptidyl peptidase-4 (DPP-4) inhibitor and sodium-glucose co-transporter 2 (SGLT2) inhibitor is often used clinically, the effects of this combination, other than glucose metabolism, have yet to be thoroughly investigated. In this study, we evaluated the effects of combined treatment with a DPP-4 inhibitor, teneligliptin, and an SGLT2 inhibitor, canagliflozin, on the body weight and lipid metabolism in high-fat diet (HFD)-induced obese mice. We found that monotherapy with teneligliptin or canagliflozin showed suppressive effects on high-fat diet-induced body weight gain and reduced inguinal white adipose tissue (iWAT) mass, and combined treatment additively reduced body weight gain and iWAT mass. Teneligliptin significantly increased oxygen consumption during the light phase, and this effect was preserved in the combined treatment. The combined treatment did not alter the mRNA expression levels of thermogenesis-related genes in adipose tissue but showed the tendency to additively induce mRNA of fatty acid oxidation-related genes in brown adipose tissue and tended to additively decrease mRNA of fatty acid synthesis-related genes in iWAT and liver tissues. These results suggest that combined treatment with teneligliptin and canagliflozin additively suppresses HFD-induced body weight gain with increasing oxygen consumption and modulating the expression of lipid metabolism-related genes. This combination therapy may provide effective body weight management for patients with T2DM and obesity.
Collapse
Affiliation(s)
- Satoko Kawarasaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Honami Sawazaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Hiroaki Iijima
- Medical Affairs Department, Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Tokyo, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan
| | - Kazuo Inoue
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan.
| |
Collapse
|
10
|
Kwon J, Yeh YS, Kawarasaki S, Minamino H, Fujita Y, Okamatsu-Ogura Y, Takahashi H, Nomura W, Matsumura S, Yu R, Kimura K, Saito M, Inagaki N, Inoue K, Kawada T, Goto T. Mevalonate biosynthesis pathway regulates the development and survival of brown adipocytes. iScience 2023; 26:106161. [PMID: 36895651 PMCID: PMC9988578 DOI: 10.1016/j.isci.2023.106161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The high thermogenic activity of brown adipose tissue (BAT) has received considerable attention. Here, we demonstrated the role of the mevalonate (MVA) biosynthesis pathway in the regulation of brown adipocyte development and survival. The inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme in the MVA pathway and the molecular target of statins, suppressed brown adipocyte differentiation by suppressing protein geranylgeranylation-mediated mitotic clonal expansion. The development of BAT in neonatal mice exposed to statins during the fetal period was severely impaired. Moreover, statin-induced geranylgeranyl pyrophosphate (GGPP) deficiency led to the apoptosis of mature brown adipocytes. Brown adipocyte-specific Hmgcr knockout induced BAT atrophy and disrupted thermogenesis. Importantly, both genetic and pharmacological inhibition of HMGCR in adult mice induced morphological changes in BAT accompanied by an increase in apoptosis, and statin-treated diabetic mice showed worsened hyperglycemia. These findings revealed that MVA pathway-generated GGPP is indispensable for BAT development and survival.
Collapse
Affiliation(s)
- Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Yu-Sheng Yeh
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Hiroto Minamino
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshihito Fujita
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuko Okamatsu-Ogura
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Wataru Nomura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Shigenobu Matsumura
- Division of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka 583-0872, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kazuhiro Kimura
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masayuki Saito
- Departments of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Yeh YS, Iwase M, Kawarasaki S, Kwon J, Rodriguez-Velez A, Zhang X, Jeong SJ, Goto T, Razani B. Subcutaneous Transplantation of White Adipose Tissue. Methods Mol Biol 2023; 2662:183-192. [PMID: 37076681 DOI: 10.1007/978-1-0716-3167-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
In the research setting, white adipose tissue (WAT) transplantation, also known as fat transplantation, is often used to understand the physiological function of adipocytes or associated stromal vascular cells such as macrophages in the context of local and systemic metabolism. The mouse is the most common animal model used where WAT from a donor is transferred either to a subcutaneous site of the same organism or to a subcutaneous region of a recipient. Here, we describe in detail the procedure for heterologous fat transplantation, and, given the need for survival surgery, peri- and postoperative care and subsequent histological confirmation of fat grafts will also be discussed.
Collapse
Affiliation(s)
- Yu-Sheng Yeh
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Mari Iwase
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Pittsburgh, PA, USA
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jungin Kwon
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Astrid Rodriguez-Velez
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiangyu Zhang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tsuyoshi Goto
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA.
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Statin-Induced Geranylgeranyl Pyrophosphate Depletion Promotes PCSK9-Dependent Adipose Insulin Resistance. Nutrients 2022; 14:nu14245314. [PMID: 36558473 PMCID: PMC9853319 DOI: 10.3390/nu14245314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Statin treatment is accepted to prevent adverse cardiovascular events. However, statin therapy has been reported to be dose-dependently associated with increased risk for new-onset type 2 diabetes mellitus (T2DM). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is expressed in adipose tissue and is positively correlated with lipid metabolism. It is, however, unknown if PCSK9 participates in adipocyte insulin resistance occurring as a result of statin use. Our goal was to use an in vitro adipose tissue explant approach to support the hypothesis that PCSK9 regulates statin-induced new-onset T2DM. Studies were performed using Pcsk-/- and C57Bl/6J control mice. Pcsk9-/- and control mice were fed a high-fat diet to affect a state of chronically altered lipid metabolism and increased PCSK9. Epididymal fat was excised and incubated with atorvastatin (1 µmol/L) in the absence and presence of insulin or geranylgeranyl pyrophosphate (GGPP). PCSK9 mRNA was evaluated using quantitative rtPCR. We further examined the effects of atorvastatin on insulin-mediated AKT signaling in adipose tissue explants by immunoblotting. Atorvastatin was found to upregulate PCSK9 gene expression in adipose tissue. The metabolic intermediate GGPP is required to downregulate PCSK9 expression. PCSK9 deficiency protects against statin-induced impairments in insulin signaling. Moreover, supplementation with GGPP reversed atorvastatin-induced suppression of insulin signaling. Furthermore, the basal and atorvastatin-stimulated release of free fatty acids was observed in adipose tissue from wild-type mice but not PCSK9 deficient mice. Collectively, we describe a novel mechanism for PCSK9 expression in adipose tissue that could mediate statin-impaired adipose insulin resistance.
Collapse
|
13
|
Signore IA, Palma K, Soto G, Sepúlveda S, Suazo J, Aránguiz M, Colombo A. Inhibition of the
3‐hydroxy‐3‐methyl‐glutaryl‐CoA
reductase diminishes the survival and size of chondrocytes during orofacial morphogenesis in zebrafish, and ensures normal cell size and survival. Orthod Craniofac Res 2022. [DOI: 10.1111/ocr.12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/20/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Iskra A. Signore
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina Universidad de Chile Santiago Chile
| | - Karina Palma
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina Universidad de Chile Santiago Chile
| | - Gabriela Soto
- Departamento de Anatomía Patológica, Facultad de Medicina Universidad de Chile Santiago Chile
| | - Santiago Sepúlveda
- Departamento de Anatomía Patológica, Facultad de Medicina Universidad de Chile Santiago Chile
| | - José Suazo
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología Universidad de Chile Santiago Chile
| | - Millisent Aránguiz
- Departamento de Anatomía Patológica, Facultad de Medicina Universidad de Chile Santiago Chile
| | - Alicia Colombo
- Departamento de Anatomía Patológica, Facultad de Medicina Universidad de Chile Santiago Chile
- Servicio de Anatomía Patológica Hospital Clínico de la Universidad de Chile Santiago Chile
| |
Collapse
|
14
|
Shu X, Wu J, Zhang T, Ma X, Du Z, Xu J, You J, Wang L, Chen N, Luo M, Wu J. Statin-Induced Geranylgeranyl Pyrophosphate Depletion Promotes Ferroptosis-Related Senescence in Adipose Tissue. Nutrients 2022; 14:nu14204365. [PMID: 36297049 PMCID: PMC9607568 DOI: 10.3390/nu14204365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Statin treatment is accepted to prevent adverse cardiovascular events. However, atorvastatin, an HMG-CoA reductase inhibitor, has been reported to exhibit distinct effects on senescent phenotypes. Whether atorvastatin can induce adipose tissue senescence and the mechanisms involved are unknown. The effects of atorvastatin-induced senescence were examined in mouse adipose tissue explants. Here, we showed that statin initiated higher levels of mRNA related to cellular senescence markers and senescence-associated secretory phenotype (SASP), as well as increased accumulation of the senescence-associated β-galactosidase (SA-β-gal) stain in adipose tissues. Furthermore, we found that the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and Fe2+ were elevated in adipose tissues treated with atorvastatin, accompanied by a decrease in the expression of glutathione (GSH), and glutathione peroxidase 4 (GPX4), indicating an iron-dependent ferroptosis. Atorvastatin-induced was prevented by a selective ferroptosis inhibitor (Fer-1). Moreover, supplementation with geranylgeranyl pyrophosphate (GGPP), a metabolic intermediate, reversed atorvastatin-induced senescence, SASP, and lipid peroxidation in adipose tissue explants. Atorvastatin depleted GGPP production, but not Fer-1. Atorvastatin was able to induce ferroptosis in adipose tissue, which was due to increased ROS and an increase in cellular senescence. Moreover, this effect could be reversed by the supplement of GGPP. Taken together, our results suggest that the induction of ferroptosis contributed to statin-induced cell senescence in adipose tissue.
Collapse
Affiliation(s)
- Xin Shu
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
| | - Jiaqi Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
| | - Tao Zhang
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
| | - Xiaoyu Ma
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
| | - Zuoqin Du
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
| | - Jin Xu
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
| | - Jingcan You
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
| | - Liqun Wang
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
| | - Ni Chen
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
| | - Mao Luo
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Southwest Medical University, Luzhou 646000, China
- Correspondence: ; Tel./Fax: +86-830-3161702
| |
Collapse
|
15
|
Jalaleddine N, Hachim M, Al-Hroub H, Saheb Sharif-Askari N, Senok A, Elmoselhi A, Mahboub B, Samuel Kurien NM, Kandasamy RK, Semreen MH, Halwani R, Soares NC, Al Heialy S. N6-Acetyl-L-Lysine and p-Cresol as Key Metabolites in the Pathogenesis of COVID-19 in Obese Patients. Front Immunol 2022; 13:827603. [PMID: 35663953 PMCID: PMC9161728 DOI: 10.3389/fimmu.2022.827603] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the growing number of the vaccinated population, COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global health burden. Obesity, a metabolic syndrome affecting one-third of the population, has proven to be a major risk factor for COVID-19 severe complications. Several studies have identified metabolic signatures and disrupted metabolic pathways associated with COVID-19, however there are no reports evaluating the role of obesity in the COVID-19 metabolic regulation. In this study we highlight the involvement of obesity metabolically in affecting SARS-CoV-2 infection and the consequent health complications, mainly cardiovascular disease. We measured one hundred and forty-four (144) metabolites using ultra high-performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) to identify metabolic changes in response to SARS-CoV-2 infection, in lean and obese COVID-19 positive (n=82) and COVID-19 negative (n=24) patients. The identified metabolites are found to be mainly correlating with glucose, energy and steroid metabolisms. Further data analysis indicated twelve (12) significantly yet differentially abundant metabolites associated with viral infection and health complications, in COVID-19 obese patients. Two of the detected metabolites, n6-acetyl-l-lysine and p-cresol, are detected only among the COVID-19 cohort, exhibiting significantly higher levels in COVID-19 obese patients when compared to COVID-19 lean patients. These metabolites have important roles in viral entry and could explain the increased susceptibility of obese patients. On the same note, a set of six metabolites associated with antiviral and anti-inflammatory functions displayed significantly lower abundance in COVID-19 obese patients. In conclusion, this report highlights the plasma metabolome of COVID-19 obese patients as a metabolic feature and signature to help improve clinical outcomes. We propose n6-acetyl-l-lysine and p-cresol as potential metabolic markers which warrant further investigations to better understand their involvement in different metabolic pathways in COVID-19.
Collapse
Affiliation(s)
- Nour Jalaleddine
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mahmood Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Hamza Al-Hroub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Adel Elmoselhi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Pulmonary Medicine and Allergy and Sleep Medicine, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Nimmi Moni Samuel Kurien
- Department of Pulmonary Medicine and Allergy and Sleep Medicine, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Richard K Kandasamy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Mohammad H Semreen
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
16
|
The mevalonate pathway in breast cancer biology. Cancer Lett 2022; 542:215761. [DOI: 10.1016/j.canlet.2022.215761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
|
17
|
Doerfler AM, Han J, Jarrett KE, Tang L, Jain A, Saltzman A, De Giorgi M, Chuecos M, Hurley AE, Li A, Morand P, Ayala C, Goodlett DR, Malovannaya A, Martin JF, de Aguiar Vallim TQ, Shroyer N, Lagor WR. Intestinal Deletion of 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Promotes Expansion of the Resident Stem Cell Compartment. Arterioscler Thromb Vasc Biol 2022; 42:381-394. [PMID: 35172604 PMCID: PMC8957608 DOI: 10.1161/atvbaha.122.317320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The intestine occupies the critical interface between cholesterol absorption and excretion. Surprisingly little is known about the role of de novo cholesterol synthesis in this organ, and its relationship to whole body cholesterol homeostasis. Here, we investigate the physiological importance of this pathway through genetic deletion of the rate-limiting enzyme. METHODS Mice lacking 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) in intestinal villus and crypt epithelial cells were generated using a Villin-Cre transgene. Plasma lipids, intestinal morphology, mevalonate pathway metabolites, and gene expression were analyzed. RESULTS Mice with intestine-specific loss of Hmgcr were markedly smaller at birth, but gain weight at a rate similar to wild-type littermates, and are viable and fertile into adulthood. Intestine lengths and weights were greater relative to body weight in both male and female Hmgcr intestinal knockout mice. Male intestinal knockout had decreased plasma cholesterol levels, whereas fasting triglycerides were lower in both sexes. Lipidomics revealed substantial reductions in numerous nonsterol isoprenoids and sterol intermediates within the epithelial layer, but cholesterol levels were preserved. Hmgcr intestinal knockout mice also showed robust activation of SREBP-2 (sterol-regulatory element binding protein-2) target genes in the epithelium, including the LDLR (low-density lipoprotein receptor). At the cellular level, loss of Hmgcr is compensated for quickly after birth through a dramatic expansion of the stem cell compartment, which persists into adulthood. CONCLUSIONS Loss of Hmgcr in the intestine is compatible with life through compensatory increases in intestinal absorptive surface area, LDLR expression, and expansion of the resident stem cell compartment.
Collapse
Affiliation(s)
- Alexandria M. Doerfler
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Han
- University of Victoria - Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Kelsey E. Jarrett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, USA
| | - Li Tang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Saltzman
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Marcel Chuecos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| | - Ayrea E. Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Ang Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Pauline Morand
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, USA
| | - Claudia Ayala
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - David R. Goodlett
- University of Victoria - Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - James F. Martin
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas USA
| | - Thomas Q. de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA
- Johnsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, USA
| | - Noah Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - William R. Lagor
- Molecular Physiology and Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas USA
| |
Collapse
|
18
|
Macias-Velasco JF, St Pierre CL, Wayhart JP, Yin L, Spears L, Miranda MA, Carson C, Funai K, Cheverud JM, Semenkovich CF, Lawson HA. Parent-of-origin effects propagate through networks to shape metabolic traits. eLife 2022; 11:e72989. [PMID: 35356864 PMCID: PMC9075957 DOI: 10.7554/elife.72989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Parent-of-origin effects are unexpectedly common in complex traits, including metabolic and neurological traits. Parent-of-origin effects can be modified by the environment, but the architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. Previously, quantitative trait loci (QTL) showing context-specific parent-of-origin effects on metabolic traits were mapped in the F16 generation of an advanced intercross between LG/J and SM/J inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting another mechanism is needed to explain these parent-of-origin effects phenomena. We propose that non-imprinted genes can generate complex parent-of-origin effects on metabolic traits through interactions with imprinted genes. Here, we employ data from mouse populations at different levels of intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse lines to test this hypothesis. Using multiple populations and incorporating genetic, genomic, and physiological data, we leverage orthogonal evidence to identify networks of genes through which parent-of-origin effects propagate. We identify a network comprised of three imprinted and six non-imprinted genes that show parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and the genes comprising it jointly serve cellular functions associated with growth. We focus on two genes, Nnat and F2r, whose interaction associates with serum glucose levels across generations in high-fat-fed females. Single-cell RNAseq reveals that Nnat expression increases and F2r expression decreases in pre-adipocytes along an adipogenic trajectory, a result that is consistent with our observations in bulk white adipose tissue.
Collapse
Affiliation(s)
- Juan F Macias-Velasco
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Celine L St Pierre
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Jessica P Wayhart
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Li Yin
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Larry Spears
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Mario A Miranda
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Caryn Carson
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of UtahSalt Lake CityUnited States
| | | | - Clay F Semenkovich
- Department of Medicine, Washington University School of MedicineSaint LouisUnited States
| | - Heather A Lawson
- Department of Genetics, Washington University School of MedicineSaint LouisUnited States
| |
Collapse
|
19
|
Noushahi HA, Khan AH, Noushahi UF, Hussain M, Javed T, Zafar M, Batool M, Ahmed U, Liu K, Harrison MT, Saud S, Fahad S, Shu S. Biosynthetic pathways of triterpenoids and strategies to improve their Biosynthetic Efficiency. PLANT GROWTH REGULATION 2022; 97:439-454. [PMID: 35382096 PMCID: PMC8969394 DOI: 10.1007/s10725-022-00818-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/18/2022] [Indexed: 05/13/2023]
Abstract
"Triterpenoids" can be considered natural products derived from the cyclization of squalene, yielding 3-deoxytriterpenes (hydrocarbons) or 3-hydroxytriterpenes. Triterpenoids are metabolites of these two classes of triterpenes, produced by the functionalization of their carbon skeleton. They can be categorized into different groups based on their structural formula/design. Triterpenoids are an important group of compounds that are widely used in the fields of pharmacology, food, and industrial biotechnology. However, inadequate synthetic methods and insufficient knowledge of the biosynthesis of triterpenoids, such as their structure, enzymatic activity, and the methods used to produce pure and active triterpenoids, are key problems that limit the production of these active metabolites. Here, we summarize the derivatives, pharmaceutical properties, and biosynthetic pathways of triterpenoids and review the enzymes involved in their biosynthetic pathway. Furthermore, we concluded the screening methods, identified the genes involved in the pathways, and highlighted the appropriate strategies used to enhance their biosynthetic production to facilitate the commercial process of triterpenoids through the synthetic biology method.
Collapse
Affiliation(s)
- Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
- Plant Breeding and Phenomic Centre, Faculty of Agricultural Sciences, University of Talca, 3460000 Talca, Chile
| | - Aamir Hamid Khan
- National Key Lab of Crop Genetics Improvement, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Usama Farhan Noushahi
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, 54000 Lahore, Pakistan
| | - Mubashar Hussain
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Maimoona Zafar
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Umair Ahmed
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ke Liu
- Tasmanian Institute of Agriculture, University of Tasmania, 7250 Burnie, Tasmania Australia
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, 7250 Burnie, Tasmania Australia
| | - Shah Saud
- College of Life Science, Linyi University, 276000 Linyi, Shandong China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, 570228 Haikou, China
- Department of Agronomy, The University of Haripur, 22620 Haripur, Pakistan
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
20
|
Laka K, Makgoo L, Mbita Z. Cholesterol-Lowering Phytochemicals: Targeting the Mevalonate Pathway for Anticancer Interventions. Front Genet 2022; 13:841639. [PMID: 35391801 PMCID: PMC8981032 DOI: 10.3389/fgene.2022.841639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
There are a plethora of cancer causes and the road to fully understanding the carcinogenesis process remains a dream that keeps changing. However, a list of role players that are implicated in the carcinogens process is getting lengthier. Cholesterol is known as bad sterol that is heavily linked with cardiovascular diseases; however, it is also comprehensively associated with carcinogenesis. There is an extensive list of strategies that have been used to lower cholesterol; nevertheless, the need to find better and effective strategies remains vastly important. The role played by cholesterol in the induction of the carcinogenesis process has attracted huge interest in recent years. Phytochemicals can be dubbed as magic tramp cards that humans could exploit for lowering cancer-causing cholesterol. Additionally, the mechanisms that are regulated by phytochemicals can be targeted for anticancer drug development. One of the key role players in cancer development and suppression, Tumour Protein 53 (TP53), is crucial in regulating the biogenesis of cholesterol and is targeted by several phytochemicals. This minireview covers the role of p53 in the mevalonate pathway and how bioactive phytochemicals target the mevalonate pathway and promote p53-dependent anticancer activities.
Collapse
Affiliation(s)
| | | | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| |
Collapse
|
21
|
Migdał M, Tralle E, Nahia KA, Bugajski Ł, Kędzierska KZ, Garbicz F, Piwocka K, Winata CL, Pawlak M. Multi-omics analyses of early liver injury reveals cell-type-specific transcriptional and epigenomic shift. BMC Genomics 2021; 22:904. [PMID: 34920711 PMCID: PMC8684102 DOI: 10.1186/s12864-021-08173-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background Liver fibrosis is a wound-healing response to tissue injury and inflammation hallmarked by the extracellular matrix (ECM) protein deposition in the liver parenchyma and tissue remodelling. Different cell types of the liver are known to play distinct roles in liver injury response. Hepatocytes and liver endothelial cells receive molecular signals indicating tissue injury and activate hepatic stellate cells which produce ECM proteins upon their activation. Despite the growing knowledge on the molecular mechanism underlying hepatic fibrosis in general, the cell-type-specific gene regulatory network associated with the initial response to hepatotoxic injury is still poorly characterized. Results In this study, we used thioacetamide (TAA) to induce hepatic injury in adult zebrafish. We isolated three major liver cell types - hepatocytes, endothelial cells and hepatic stellate cells - and identified cell-type-specific chromatin accessibility and transcriptional changes in an early stage of liver injury. We found that TAA induced transcriptional shifts in all three cell types hallmarked by significant alterations in the expression of genes related to fatty acid and carbohydrate metabolism, as well as immune response-associated and vascular-specific genes. Interestingly, liver endothelial cells exhibit the most pronounced response to liver injury at the transcriptome and chromatin level, hallmarked by the loss of their angiogenic phenotype. Conclusion Our results uncovered cell-type-specific transcriptome and epigenome responses to early stage liver injury, which provide valuable insights into understanding the molecular mechanism implicated in the early response of the liver to pro-fibrotic signals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08173-1.
Collapse
|
22
|
Tippetts TS, Holland WL, Summers SA. Cholesterol - the devil you know; ceramide - the devil you don't. Trends Pharmacol Sci 2021; 42:1082-1095. [PMID: 34750017 PMCID: PMC8595778 DOI: 10.1016/j.tips.2021.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
Ectopic lipids play a key role in numerous pathologies, including heart disease, stroke, and diabetes. Of all the lipids studied, perhaps the most well understood is cholesterol, a widely used clinical biomarker of cardiovascular disease and a target of pharmacological interventions (e.g., statins). Thousands of studies have interrogated the regulation and action of this disease-causing sterol. As a growing body of literature indicates, a new class of lipid-based therapies may be on the horizon. Ceramides are cholesterol-independent biomarkers of heart disease and diabetes in humans. Studies in rodents suggest that they are causative agents of disease, as lowering ceramides through genetic or pharmacological interventions prevents cardiovascular disease and diabetes. Herein, we discuss the evidence supporting the potential of therapeutics targeting ceramides to treat cardiometabolic disease, contrasting it with the robust datasets that drove the creation of cholesterol-lowering pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Scott A. Summers
- Correspondence should be addressed to: Scott A. Summers, Department of Nutrition and Integrative Physiology, University of Utah College of Health, 15N, 2030 East, Rm 3110, Salt Lake City Utah 84112, , Tel: 801-585-9359
| |
Collapse
|
23
|
Sarsenbayeva A, Jui BN, Fanni G, Barbosa P, Ahmed F, Kristófi R, Cen J, Chowdhury A, Skrtic S, Bergsten P, Fall T, Eriksson JW, Pereira MJ. Impaired HMG-CoA Reductase Activity Caused by Genetic Variants or Statin Exposure: Impact on Human Adipose Tissue, β-Cells and Metabolome. Metabolites 2021; 11:574. [PMID: 34564389 PMCID: PMC8468287 DOI: 10.3390/metabo11090574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
Inhibition of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase is associated with an increased risk of new-onset type 2 diabetes. We studied the association of genetic or pharmacological HMG-CoA reductase inhibition with plasma and adipose tissue (AT) metabolome and AT metabolic pathways. We also investigated the effects of statin-mediated pharmacological inhibition of HMG-CoA reductase on systemic insulin sensitivity by measuring the HOMA-IR index in subjects with or without statin therapy. The direct effects of simvastatin (20-250 nM) or its active metabolite simvastatin hydroxy acid (SA) (8-30 nM) were investigated on human adipocyte glucose uptake, lipolysis, and differentiation and pancreatic insulin secretion. We observed that the LDL-lowering HMGCR rs12916-T allele was negatively associated with plasma phosphatidylcholines and sphingomyelins, and HMGCR expression in AT was correlated with various metabolic and mitochondrial pathways. Clinical data showed that statin treatment was associated with HOMA-IR index after adjustment for age, sex, BMI, HbA1c, LDL-c levels, and diabetes status in the subjects. Supra-therapeutic concentrations of simvastatin reduced glucose uptake in adipocytes and normalized fatty acid-induced insulin hypersecretion from β-cells. Our data suggest that inhibition of HMG-CoA reductase is associated with insulin resistance. However, statins have a very mild direct effect on AT and pancreas, hence, other tissues as the liver or muscle appear to be of greater importance.
Collapse
Affiliation(s)
- Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Bipasha Nandi Jui
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Pedro Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Jing Cen
- Department of Medical Cell Biology, Uppsala University, 751 85 Uppsala, Sweden; (J.C.); (A.C.); (P.B.)
| | - Azazul Chowdhury
- Department of Medical Cell Biology, Uppsala University, 751 85 Uppsala, Sweden; (J.C.); (A.C.); (P.B.)
| | - Stanko Skrtic
- Innovation Strategies & External Liaison, Pharmaceutical Technologies & Development, AstraZeneca, 431 83 Gothenburg, Sweden;
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, 751 85 Uppsala, Sweden; (J.C.); (A.C.); (P.B.)
| | - Tove Fall
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Jan W. Eriksson
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| | - Maria J. Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden; (A.S.); (B.N.J.); (G.F.); (F.A.); (R.K.); (T.F.); (J.W.E.)
| |
Collapse
|
24
|
Schumacher MM, DeBose-Boyd RA. Posttranslational Regulation of HMG CoA Reductase, the Rate-Limiting Enzyme in Synthesis of Cholesterol. Annu Rev Biochem 2021; 90:659-679. [PMID: 34153214 DOI: 10.1146/annurev-biochem-081820-101010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.
Collapse
Affiliation(s)
- Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;
| |
Collapse
|
25
|
Okamura Y, Miyanishi H, Kinoshita M, Kono T, Sakai M, Hikima JI. A defective interleukin-17 receptor A1 causes weight loss and intestinal metabolism-related gene downregulation in Japanese medaka, Oryzias latipes. Sci Rep 2021; 11:12099. [PMID: 34103614 PMCID: PMC8187396 DOI: 10.1038/s41598-021-91534-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
In the intestine, the host must be able to control the gut microbiota and efficiently absorb transiently supplied metabolites, at the risk of enormous infection. In mammals, the inflammatory cytokine interleukin (IL)-17A/F is one of the key mediators in the intestinal immune system. However, many functions of IL-17 in vertebrate intestines remain unclarified. In this study, we established a gene-knockout (KO) model of IL-17 receptor A1 (IL-17RA1, an IL-17A/F receptor) in Japanese medaka (Oryzias latipes) using genome editing technique, and the phenotypes were compared to wild type (WT) based on transcriptome analyses. Upon hatching, homozygous IL-17RA1-KO medaka mutants showed no significant morphological abnormality. However, after 4 months, significant weight decreases and reduced survival rates were observed in IL-17RA1-KO medaka. Comparison of gene-expression patterns in WT and IL-17RA1-KO medaka revealed that various metabolism- and immune-related genes were significantly down-regulated in IL-17RA1-KO medaka intestine, particularly genes related to mevalonate metabolism (mvda, acat2, hmgcs1, and hmgcra) and genes related to IL-17 signaling (such as il17c, il17a/f1, and rorc) were found to be decreased. Conversely, expression of genes related to cardiovascular system development, including fli1a, sox7, and notch1b in the anterior intestine, and that of genes related to oxidation-reduction processes including ugp2a, aoc1, and nos1 in posterior intestine was up-regulated in IL-17RA1-KO medaka. These findings show that IL-17RA regulated immune- and various metabolism-related genes in the intestine for maintaining the health of Japanese medaka.
Collapse
Affiliation(s)
- Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture , Kyoto University, Kyoto, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture , University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
26
|
Park M, Kim JY, Kang JM, Lee HJ, Banga JP, Kim GJ, Lew H. PRL-1 overexpressed placenta-derived mesenchymal stem cells suppress adipogenesis in Graves' ophthalmopathy through SREBP2/HMGCR pathway. Stem Cell Res Ther 2021; 12:304. [PMID: 34051850 PMCID: PMC8164285 DOI: 10.1186/s13287-021-02337-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/18/2021] [Indexed: 11/25/2022] Open
Abstract
Background Graves’ ophthalmopathy (GO) is a disorder, in which orbital connective tissues get in inflammation and increase in volume. Stimulants such as thyroid-stimulating hormone (TSH), insulin-like growth factor 1(IGF-1), IL-1, interferon γ, and platelet-derived growth factor cause differentiation into adipocytes of orbital fibroblasts (OFs) in the orbital fat and extraocular muscles. Human placental mesenchymal stem cells (hPMSCs) are known to have immune modulation effects on disease pathogenesis. Some reports suggest that hPMSCs can elicit therapeutic effects, but to date, research on this has been insufficient. In this study, we constructed PRL-1 overexpressed hPMSCs (hPMSCsPRL-1) in an attempt to enhance the suppressive function of adipogenesis in GO animal models. Methods In order to investigate the anti-adipogenic effects, primary OFs were incubated with differentiation medium for 10 days. After co-culturing with hPMSCsPRL-1, the characteristics of the OFs were analyzed using Nile red stain and quantitative real-time polymerase chain reaction. We then examined the in vivo regulatory effectiveness of hPMSCsPRL-1 in a GO mouse model that immunized by leg muscle electroporation of pTriEx1.1Neo-hTSHR A-subunit plasmid. Human PMSCsPRL-1 injection was performed in left orbit. We also analyzed the anti-adipogenic effects of hPMSCsPRL-1 in the GO model. Results We found that hPMSCsPRL-1 inhibited adipogenic activation factors, specifically PPARγ, C/EBPα, FABP4, SREBP2, and HMGCR, by 75.1%, 50%, 79.6%, 81.8%, and 87%, respectively, compared with naïve hPMSCs in adipogenesis-induced primary OFs from GO. Moreover, hPMSCsPRL-1 more effectively inhibited adipogenic factors ADIPONECTIN and HMGCR by 53.2% and 31.7%, respectively, than hPMSCs, compared with 15.8% and 29.8% using steroids in the orbital fat of the GO animal model. Conclusion Our findings suggest that hPMSCsPRL-1 would restore inflammation and adipogenesis of GO model and demonstrate that they could be applied as a novel treatment for GO patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02337-2.
Collapse
Affiliation(s)
- Mira Park
- Department of Ophthalmology, Bundang CHA Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea.,Research Institute of Placental Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Jun Mo Kang
- CHA Advanced Research Institute, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Hey Jin Lee
- CHA Advanced Research Institute, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | | | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| | - Helen Lew
- Department of Ophthalmology, Bundang CHA Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
27
|
Association of metabolites with obesity based on two gene variants, MC4R rs17782313 and BDNF rs6265. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166144. [PMID: 33862146 DOI: 10.1016/j.bbadis.2021.166144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Previous genome-wide association analyses for obesity related genes demonstrated the association of BDNF gene variant rs6265 and MC4R gene variant rs17782313 with body mass index (BMI). However, the associated metabolite pathways are still behind the curtain. The aim of the current study is to investigate the associations of metabolic changes in obesity with MC4R gene variant rs17782313 and BDNF variant rs6265. Gas chromatography-mass spectrometry based untargeted metabolomics approach was used and 42 identified serum metabolites were selected for statistical analyses. Significant association of seven metabolites with MC4R gene variant rs17782313 based on obesity and thirty metabolites with obesity dependent BDNF variant rs6265 using additive model (adjusted p < 0.05) was observed. This study highlights the importance of alteration of fatty acid biosynthesis, probably due to high consumption of fats may cause to develop obesity. But obesity is a complex disorder and the full clarification of this complex machinery is still distant. To understand the obesity in a better way, more studies are required to identify remaining metabolites and also mechanism of these metabolic entities.
Collapse
|
28
|
Marti JLG, Wells A, Brufsky AM. Dysregulation of the mevalonate pathway during SARS-CoV-2 infection: An in silico study. J Med Virol 2021; 93:2396-2405. [PMID: 33331649 PMCID: PMC9553089 DOI: 10.1002/jmv.26743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 triggers a dysregulated innate immune system activation. As the mevalonate pathway (MVP) prevents the activation of inflammasomes and cytokine release and regulates endosomal transport, compromised signaling could be associated with the pathobiology of COVID-19. Prior transcriptomic studies of host cells in response to SARS-CoV-2 infection have not reported to date the effects of SARS-CoV-2 on the MVP. In this study, we accessed public data sets to report in silico investigations into gene expression. In addition, we proposed candidate genes that are thought to have a direct association with the pathogenesis of COVID-19, and which may be dependent on signals derived from the MVP. Our results revealed dysregulation of genes involved in the MVP. These results were not found when investigating the gene expression data from host cells infected with H3N2 influenza virus, H1N1 influenza virus, or respiratory syncytial virus. Our manually curated gene set showed significant gene expression variability in A549 cells infected with SARS-CoV-2, as per Blanco-Melo et al. data set (GSE147507). In light of the present findings, SARS-CoV-2 could hijack the MVP, leading to hyperinflammatory responses. Prompt reconstitution of this pathway with available agents should be considered in future studies.
Collapse
Affiliation(s)
- Juan Luis Gomez Marti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Adam M. Brufsky
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Park J, Sohn JH, Han SM, Park YJ, Huh JY, Choe SS, Kim JB. Adipocytes Are the Control Tower That Manages Adipose Tissue Immunity by Regulating Lipid Metabolism. Front Immunol 2021; 11:598566. [PMID: 33584664 PMCID: PMC7876236 DOI: 10.3389/fimmu.2020.598566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence reveals that adipose tissue is an immunologically active organ that exerts multiple impacts on the regulation of systemic energy metabolism. Adipose tissue immunity is modulated by the interactions between adipocytes and various immune cells. Nevertheless, the underlying mechanisms that control inter-cellular interactions between adipocytes and immune cells in adipose tissue have not been thoroughly elucidated. Recently, it has been demonstrated that adipocytes utilize lipid metabolites as a key mediator to initiate and mediate diverse adipose tissue immune responses. Adipocytes present lipid antigens and secrete lipid metabolites to determine adipose immune tones. In addition, the interactions between adipocytes and adipose immune cells are engaged in the control of adipocyte fate and functions upon metabolic stimuli. In this review, we discuss an integrated view of how adipocytes communicate with adipose immune cells using lipid metabolites. Also, we briefly discuss the newly discovered roles of adipose stem cells in the regulation of adipose tissue immunity.
Collapse
Affiliation(s)
- Jeu Park
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jee Hyung Sohn
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang Mun Han
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Yoon Jeong Park
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
30
|
Yi Y, Hu W, Zhao C, Wu M, Zeng H, Xiong M, Lv W, Wu Y, Zhang Q. Deciphering the Emerging Roles of Adipocytes and Adipose-Derived Stem Cells in Fat Transplantation. Cell Transplant 2021; 30:963689721997799. [PMID: 33650919 PMCID: PMC7930646 DOI: 10.1177/0963689721997799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Autologous fat transplantation is widely regarded as an increasingly popular method for augmentation or reshaping applications in soft tissue defects. Although the fat transplantation is of simple applicability, low donor site morbidity and excellent biocompatibility, the clinical unpredictability and high resorption rates of the fat grafts remain an inevitable problem. In the sites of fat transplantation, the most essential components are the adipocyte and adipose-derived stem cells (ADSCs). The survival of adipocytes is the direct factor determining fat retention. The efficacy of fat transplantation is reduced by fat absorption and fibrosis due to the inadequate blood flow, adipocyte apoptosis and fat necrosis. ADSCs, a heterogeneous mixture of cells in adipose tissue, are closely related to tissue survival. ADSCs exhibit the ability of multilineage differentiation and remarkable paracrine activity, which is crucial for graft survival. This article will review the recent existing research on the mechanisms of adipocytes and ADSCs in fat transplantation, especially including adipocyte apoptosis, mature adipocyte dedifferentiation, adipocyte browning, ADSCs adipogenic differentiation and ADSCs angiogenesis. The in-depth understanding of the survival mechanism will be extremely valuable for achieving the desired filling effects.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Jin Y, Ji Y, Song Y, Choe SS, Jeon YG, Na H, Nam TW, Kim HJ, Nahmgoong H, Kim SM, Kim JW, Nam KT, Seong JK, Hwang D, Park CB, Lee IH, Kim JB, Lee HW. Depletion of Adipocyte Becn1 Leads to Lipodystrophy and Metabolic Dysregulation. Diabetes 2021; 70:182-195. [PMID: 33046512 PMCID: PMC7881852 DOI: 10.2337/db19-1239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/02/2020] [Indexed: 11/13/2022]
Abstract
Becn1/Beclin-1 is a core component of the class III phosphatidylinositol 3-kinase required for autophagosome formation and vesicular trafficking. Although Becn1 has been implicated in numerous diseases such as cancer, aging, and neurodegenerative disease, the role of Becn1 in white adipose tissue and related metabolic diseases remains elusive. In this study, we show that adipocyte-specific Becn1 knockout mice develop severe lipodystrophy, leading to adipose tissue inflammation, hepatic steatosis, and insulin resistance. Ablation of Becn1 in adipocytes stimulates programmed cell death in a cell-autonomous manner, accompanied by elevated endoplasmic reticulum (ER) stress gene expression. Furthermore, we observed that Becn1 depletion sensitized mature adipocytes to ER stress, leading to accelerated cell death. Taken together, these data suggest that adipocyte Becn1 would serve as a crucial player for adipocyte survival and adipose tissue homeostasis.
Collapse
Affiliation(s)
- Young Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yul Ji
- Department of Biological Sciences, Center for Adipocyte Structure-Function, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Yaechan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sung Sik Choe
- Department of Biological Sciences, Center for Adipocyte Structure-Function, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Yong Geun Jeon
- Department of Biological Sciences, Center for Adipocyte Structure-Function, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Heeju Na
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Tae Wook Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hye Jeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hahn Nahmgoong
- Department of Biological Sciences, Center for Adipocyte Structure-Function, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sung Min Kim
- Department of Biological Sciences, Center for Adipocyte Structure-Function, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chan Bae Park
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - In Hye Lee
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jae Bum Kim
- Department of Biological Sciences, Center for Adipocyte Structure-Function, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Ganbold M, Ferdousi F, Arimura T, Tominaga K, Isoda H. New Amphiphilic Squalene Derivative Improves Metabolism of Adipocytes Differentiated From Diabetic Adipose-Derived Stem Cells and Prevents Excessive Lipogenesis. Front Cell Dev Biol 2020; 8:577259. [PMID: 33251210 PMCID: PMC7672044 DOI: 10.3389/fcell.2020.577259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Squalene (Sq) is a natural compound, found in various plant oils, algae, and larger quantity in deep-sea shark liver. It is also known as an intermediate of cholesterol synthesis in plants and animals including humans. Although evidences demonstrated its antioxidant, anticancer, hypolipidemic, and hepatoprotective and cardioprotective effects, its biological effects in cellular function might have been underestimated because of the water-insoluble property. To overcome this hydrophobicity, we synthesized new amphiphilic Sq derivative (HH-Sq). On the other hand, adipose-derived stem cells (ASCs) are a valuable source in regenerative medicine for its ease of accessibility and multilineage differentiation potential. Nevertheless, impaired cellular functions of ASCs derived from diabetic donor have still been debated controversially. In this study, we explored the effect of the HH-Sq in comparison to Sq on the adipocyte differentiation of ASCs obtained from subjects with type 2 diabetes. Gene expression profile by microarray analysis at 14 days of adipogenic differentiation revealed that HH-Sq induced more genes involved in intracellular signaling processes, whereas Sq activated more transmembrane receptor pathway-related genes. In addition, more important number of down-regulated and up-regulated genes by Sq and HH-Sq were not overlapped, suggesting the compounds might not only have difference in their chemical property but also potentially exert different biological effects. Both Sq and HH-Sq improved metabolism of adipocytes by enhancing genes associated with energy homeostasis and insulin sensitivity, SIRT1, PRKAA2, and IRS1. Interestingly, Sq increased significantly early adipogenic markers and lipogenic gene expression such as PPARG, SREBF1, and CEBPA, but not HH-Sq. As a consequence, smaller and fewer lipid droplet formation was observed in HH-Sq-treated adipocytes. Based on our findings, we report that both Sq and HH-Sq improved adipocyte metabolism, but only HH-Sq prevented excessive lipogenesis without abrogating adipocyte differentiation. The beneficial effect of HH-Sq provides an importance of synthesized derivatives from a natural compound with therapeutic potentials in the application of cell therapies.
Collapse
Affiliation(s)
- Munkhzul Ganbold
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, Japan
| | - Farhana Ferdousi
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Arimura
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, Japan
| | - Kenichi Tominaga
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, Japan
| | - Hiroko Isoda
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), Tsukuba, Ibaraki, Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
33
|
De Giorgi M, Jarrett KE, Burton JC, Doerfler AM, Hurley A, Li A, Hsu RH, Furgurson M, Patel KR, Han J, Borchers CH, Lagor WR. Depletion of essential isoprenoids and ER stress induction following acute liver-specific deletion of HMG-CoA reductase. J Lipid Res 2020; 61:1675-1686. [PMID: 33109681 PMCID: PMC7707164 DOI: 10.1194/jlr.ra120001006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.
Collapse
Affiliation(s)
- Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Kelsey E Jarrett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Jason C Burton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Alexandria M Doerfler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ayrea Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ang Li
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Rachel H Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Mia Furgurson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Kalyani R Patel
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Jun Han
- Genome British Columbia Proteomics Centre, University of Victoria, Victoria, British Columbia, Canada
| | - Christoph H Borchers
- Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, Quebec, Canada; Department of Data Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Wei L, Zheng YY, Sun J, Wang P, Tao T, Li Y, Chen X, Sang Y, Chong D, Zhao W, Zhou Y, Wang Y, Jiang Z, Qiu T, Li CJ, Zhu MS, Zhang X. GGPP depletion initiates metaflammation through disequilibrating CYB5R3-dependent eicosanoid metabolism. J Biol Chem 2020; 295:15988-16001. [PMID: 32913122 DOI: 10.1074/jbc.ra120.015020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
Metaflammation is a primary inflammatory complication of metabolic disorders characterized by altered production of many inflammatory cytokines, adipokines, and lipid mediators. Whereas multiple inflammation networks have been identified, the mechanisms by which metaflammation is initiated have long been controversial. As the mevalonate pathway (MVA) produces abundant bioactive isoprenoids and abnormal MVA has a phenotypic association with inflammation/immunity, we speculate that isoprenoids from the MVA may provide a causal link between metaflammation and metabolic disorders. Using a line with the MVA isoprenoid producer geranylgeranyl diphosphate synthase (GGPPS) deleted, we find that geranylgeranyl pyrophosphate (GGPP) depletion causes an apparent metaflammation as evidenced by abnormal accumulation of fatty acids, eicosanoid intermediates, and proinflammatory cytokines. We also find that GGPP prenylate cytochrome b 5 reductase 3 (CYB5R3) and the prenylated CYB5R3 then translocate from the mitochondrial to the endoplasmic reticulum (ER) pool. As CYB5R3 is a critical NADH-dependent reductase necessary for eicosanoid metabolism in ER, we thus suggest that GGPP-mediated CYB5R3 prenylation is necessary for metabolism. In addition, we observe that pharmacological inhibition of the MVA pathway by simvastatin is sufficient to inhibit CYB5R3 translocation and induces smooth muscle death. Therefore, we conclude that the dysregulation of MVA intermediates is an essential mechanism for metaflammation initiation, in which the imbalanced production of eicosanoid intermediates in the ER serve as an important pathogenic factor. Moreover, the interplay of MVA and eicosanoid metabolism as we reported here illustrates a model for the coordinating regulation among metabolite pathways.
Collapse
Affiliation(s)
- Lisha Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yan-Yan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yeqiong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yongjuan Sang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Danyang Chong
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuwei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhihui Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tiantian Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Xuena Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Medical School of Nanjing University and Nanjing Drum Tower Hospital Affiliated with Nanjing University Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
35
|
Takata K, Goto T, Kuroda M, Kimura Y, Harada I, Ueda K, Kawada T, Kioka N. Stiffness of the extracellular matrix regulates differentiation into beige adipocytes. Biochem Biophys Res Commun 2020; 532:205-210. [PMID: 32859378 DOI: 10.1016/j.bbrc.2020.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022]
Abstract
Beige/brite adipocytes, which express high levels of uncoupling protein 1 (UCP1) to generate heat using stored triglycerides, are induced under specific stimuli such as cold exposure in inguinal white adipose tissue (iWAT). Although extracellular microenvironments such as extracellular matrix (ECM) stiffness are known to regulate cell behaviors, including cell differentiation into adipocytes, the effect on iWAT cells is unknown. In this study, we show that rigid ECM promotes the cell spreading of iWAT-derived preadipocytes. Furthermore, the expression of UCP1 and other thermogenic genes in iWAT cells is promoted when the cells are cultured on rigid ECM. The expression of mTOR, a kinase known to regulate the differentiation to beige adipocytes, is decreased on rigid substrates. These results suggest that ECM stiffness plays an important role in the differentiation to beige adipocytes.
Collapse
Affiliation(s)
- Kyoko Takata
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Technology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Mito Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Ichiro Harada
- Medical Products Technology Development Center, R&D Headquarters, Canon Inc., Ohta-ku, Tokyo, 146-8501, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Teruo Kawada
- Division of Food Science and Technology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
36
|
Kim J, Choi JH, Oh T, Ahn B, Unno T. Codium fragile Ameliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice. Nutrients 2020; 12:nu12061848. [PMID: 32575855 PMCID: PMC7353201 DOI: 10.3390/nu12061848] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Codium fragile (CF) is a functional seaweed food that has been used for its health effects, including immunostimulatory, anti-inflammatory, anti-obesity and anti-cancer activities, but the effect of CF extracts on obesity via regulation of intestinal microflora is still unknown. This study investigated anti-obesity effects of CF extracts on gut microbiota of diet-induced obese mice. C57BL/6 mice fed a high-fat (HF) diet were given CF extracts intragastrically for 12 weeks. CF extracts significantly decreased animal body weight and the size of adipocytes, while reducing serum levels of cholesterol and glucose. In addition, CF extracts significantly shifted the gut microbiota of mice by increasing the abundance of Bacteroidetes and decreasing the abundance of Verrucomicrobia species, in which the portion of beneficial bacteria (i.e., Ruminococcaceae, Lachnospiraceae and Acetatifactor) were increased. This resulted in shifting predicted intestinal metabolic pathways involved in regulating adipocytes (i.e., mevalonate metabolism), energy harvest (i.e., pyruvate fermentation and glycolysis), appetite (i.e., chorismate biosynthesis) and metabolic disorders (i.e., isoprene biosynthesis, urea metabolism, and peptidoglycan biosynthesis). In conclusion, our study showed that CF extracts ameliorate intestinal metabolism in HF-induced obese mice by modulating the gut microbiota.
Collapse
Affiliation(s)
- Jungman Kim
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
| | - Jae Ho Choi
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
| | - Taehwan Oh
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, Wando 59108, Korea; (T.O.); (B.A.)
| | - Byungjae Ahn
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, Wando 59108, Korea; (T.O.); (B.A.)
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-64-754-3354
| |
Collapse
|
37
|
Pelargonidin suppresses adipogenesis in 3T3-L1 cells through inhibition of PPAR-γ signaling pathway. Arch Biochem Biophys 2020; 686:108365. [DOI: 10.1016/j.abb.2020.108365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
|
38
|
Iwase M, Tokiwa S, Seno S, Mukai T, Yeh YS, Takahashi H, Nomura W, Jheng HF, Matsumura S, Kusudo T, Osato N, Matsuda H, Inoue K, Kawada T, Goto T. Glycerol kinase stimulates uncoupling protein 1 expression by regulating fatty acid metabolism in beige adipocytes. J Biol Chem 2020; 295:7033-7045. [PMID: 32273338 DOI: 10.1074/jbc.ra119.011658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/02/2020] [Indexed: 11/06/2022] Open
Abstract
Browning of adipose tissue is induced by specific stimuli such as cold exposure and consists of up-regulation of thermogenesis in white adipose tissue. Recently, it has emerged as an attractive target for managing obesity in humans. Here, we performed a comprehensive analysis to identify genes associated with browning in murine adipose tissue. We focused on glycerol kinase (GYK) because its mRNA expression pattern is highly correlated with that of uncoupling protein 1 (UCP1), which regulates the thermogenic capacity of adipocytes. Cold exposure-induced Ucp1 up-regulation in inguinal white adipose tissue (iWAT) was partially abolished by Gyk knockdown (KD) in vivo Consistently, the Gyk KD inhibited Ucp1 expression induced by treatment with the β-adrenergic receptors (βAR) agonist isoproterenol (Iso) in vitro and resulted in impaired uncoupled respiration. Gyk KD also suppressed Iso- and adenylate cyclase activator-induced transcriptional activation and phosphorylation of the cAMP response element-binding protein (CREB). However, we did not observe these effects with a cAMP analog. Therefore Gyk KD related to Iso-induced cAMP products. In Iso-treated Gyk KD adipocytes, stearoyl-CoA desaturase 1 (SCD1) was up-regulated, and monounsaturated fatty acids such as palmitoleic acid (POA) accumulated. Moreover, a SCD1 inhibitor treatment recovered the Gyk KD-induced Ucp1 down-regulation and POA treatment down-regulated Iso-activated Ucp1 Our findings suggest that Gyk stimulates Ucp1 expression via a mechanism that partially depends on the βAR-cAMP-CREB pathway and Gyk-mediated regulation of fatty acid metabolism.
Collapse
Affiliation(s)
- Mari Iwase
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Soshi Tokiwa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
| | - Takako Mukai
- Faculty of Human Sciences, Tezukayama Gakuin University, Sakai 590-0113, Japan
| | - Yu-Sheng Yeh
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Haruya Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Nomura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
| | - Huei-Fen Jheng
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Sigenobu Matsumura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsuya Kusudo
- Faculty of Human Sciences, Tezukayama Gakuin University, Sakai 590-0113, Japan
| | - Naoki Osato
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan .,Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
| |
Collapse
|
39
|
Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1873:188351. [PMID: 32007596 DOI: 10.1016/j.bbcan.2020.188351] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer is a multifaceted global disease. Transformation of a normal to a malignant cell takes several steps, including somatic mutations, epigenetic alterations, metabolic reprogramming and loss of cell growth control. Recently, the mevalonate pathway has emerged as a crucial regulator of tumor biology and a potential therapeutic target. This pathway controls cholesterol production and posttranslational modifications of Rho-GTPases, both of which are linked to several key steps of tumor progression. Inhibitors of the mevalonate pathway induce pleiotropic antitumor-effects in several human malignancies, identifying the pathway as an attractive candidate for novel therapies. In this review, we will provide an overview about the role and regulation of the mevalonate pathway in certain aspects of cancer initiation and progression and its potential for therapeutic intervention in oncology.
Collapse
|
40
|
Kawarasaki S, Sawazaki H, Iijima H, Ng SP, Kwon J, Mohri S, Iwase M, Jheng HF, Takahashi H, Nomura W, Inoue K, Kawada T, Goto T. Comparative Analysis of the Preventive Effects of Canagliflozin, a Sodium-Glucose Co-Transporter-2 Inhibitor, on Body Weight Gain Between Oral Gavage and Dietary Administration by Focusing on Fatty Acid Metabolism. Diabetes Metab Syndr Obes 2020; 13:4353-4359. [PMID: 33235475 PMCID: PMC7678695 DOI: 10.2147/dmso.s269916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Sodium-glucose co-transporter-2 (SGLT2) inhibitors have various pleiotropic effects, including body weight reduction, and therefore have the potential to be used in various applications. However, such effects have not been fully investigated; thus, non-clinical studies using animal models are needed. In animal experiments, SGLT2 inhibitors are usually administered by oral or dietary methods. However, the detailed characteristics of these dosing methods, especially to induce their pleiotropic effects, have not been reported. Therefore, we compared the preventive effects of canagliflozin, an SGLT2 inhibitor, on body weight gain following oral gavage and dietary administration methods in a mouse model of diet-induced obesity. METHODS Canagliflozin was dosed by oral gavage or dietary administration for 9 weeks to 6-week-old C57BL/6N mice fed a high-fat diet, and parameters related to obesity were evaluated. RESULTS The suppression of body weight gain, fat mass, and hepatic lipid content was observed following both dosing methods, whereas the effect on body weight tended to be stronger in the dietary administration group. In adipose tissue, fatty acid synthase expression was significantly decreased in the dietary administration group, and its expression was significantly correlated with fat mass. However, the expression of genes related to fatty acid oxidation was unchanged, indicating that the preventive effect on body weight gain was mediated mainly through the suppression of lipid synthesis rather than the promotion of lipid oxidation. CONCLUSION Canagliflozin prevented body weight gain through the suppression of lipid synthesis via both dosing methods, although there were some differences in the efficacy. The findings of our study can help to identify new mechanisms of action of SGLT2 inhibitors and potential applications.
Collapse
Affiliation(s)
- Satoko Kawarasaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
| | - Honami Sawazaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
| | - Hiroaki Iijima
- Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Tokyo, Japan
| | - Su-Ping Ng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
| | - Jungin Kwon
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
| | - Shinsuke Mohri
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
| | - Mari Iwase
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto606-8317, Japan
| | - Kazuo Inoue
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto606-8317, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto606-8317, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto606-8317, Japan
- Correspondence: Tsuyoshi Goto Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji611-0011, JapanTel +81-774-38-3753Fax +81-774-38-3752 Email
| |
Collapse
|
41
|
Liu Q, Miao Y, Wang X, Lv G, Peng Y, Li K, Li M, Qiu L, Lin J. Structure-based virtual screening and biological evaluation of novel non-bisphosphonate farnesyl pyrophosphate synthase inhibitors. Eur J Med Chem 2020; 186:111905. [DOI: 10.1016/j.ejmech.2019.111905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 02/09/2023]
|
42
|
Fu CH, Lee TJ, Huang CC, Chang PH, Tsai JW, Chuang LP, Su Pang JH. Simvastatin inhibits the proliferation of HL-60 clone 15- derived eosinophils by inducing the arrest of the cell cycle in the G1/S phase. Eur J Pharmacol 2019; 856:172400. [DOI: 10.1016/j.ejphar.2019.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
|
43
|
Balaz M, Wolfrum C. Statins: benefits and risks revisited. Aging (Albany NY) 2019; 11:4300-4302. [PMID: 31303605 PMCID: PMC6660028 DOI: 10.18632/aging.102056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/23/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Miroslav Balaz
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach 8603, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach 8603, Switzerland
| |
Collapse
|
44
|
Kawarasaki S, Kuwata H, Sawazaki H, Sakamoto T, Nitta T, Kim CS, Jheng HF, Takahashi H, Nomura W, Ara T, Takahashi N, Tomita K, Yu R, Kawada T, Goto T. A new mouse model for noninvasive fluorescence-based monitoring of mitochondrial UCP1 expression. FEBS Lett 2019; 593:1201-1212. [PMID: 31074834 DOI: 10.1002/1873-3468.13430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 05/05/2019] [Indexed: 01/08/2023]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) is well known for its thermogenic function in brown adipose tissue (BAT). Since UCP1 expends energy on thermogenesis, UCP1 activation has been considered an approach to ameliorate obesity. As a tool for uncovering yet unknown mechanisms of UCP1 activation, we generated a transgenic mouse model in which UCP1 expression levels are reflected in fluorescence derived from monomeric red fluorescent protein 1 (mRFP1). In these UCP1-mRFP1 BAC transgenic mice, fluorescence intensity mimics the change in UCP1 expression levels evoked through physiological or pharmacological stimulation. This transgenic mouse model will be useful in the search for bioactive compounds with the ability to induce UCP1 and for revealing undiscovered mechanisms of BAT activation.
Collapse
Affiliation(s)
- Satoko Kawarasaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Hidetoshi Kuwata
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Honami Sawazaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Tomoya Sakamoto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Takahiro Nitta
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Chuu-Sook Kim
- Department of Food Science and Nutrition, University of Ulsan, South Korea
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Japan
| | - Takeshi Ara
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Japan
| | - Koichi Tomita
- Department of Anatomy and Developmental Neurobiology, Graduate school of Biomedical Sciences, Tokushima University, Japan
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, South Korea
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Japan
| |
Collapse
|