1
|
Jiang J, Hu S, Hu K, Xiao L, Lin J, Chen Y, Zhang D, Ou Y, Zhang J, Yuan L, Wang W, Yu P. Novel impact of metal ion-induced cell death on diabetic cardiomyopathy pathogenesis and therapy. Apoptosis 2025; 30:1152-1181. [PMID: 40042744 DOI: 10.1007/s10495-025-02090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 06/16/2025]
Abstract
Diabetes mellitus is a common chronic metabolic disease, with its prevalence escalating annually. Diabetic cardiomyopathy is a leading cause of mortality among diabetic patients, characterized by intricate metabolic disturbances and myocardial cell demise. Various forms of cellular death pathways including apoptosis, pyroptosis, autophagic cell death, necroptosis, ferroptosis, and entosis have been identified in diabetic cardiomyopathy. Inhibiting myocardial cell death pathways has shown promise in mitigating diabetic cardiomyopathy progression. However, there are still gaps in understanding the role of metal ions in diabetic cardiomyopathy pathogenesis. Recent research endeavors have found that iron, copper, zinc, calcium, manganese and other metal elements related to cell death play an intricate and critical role in the pathogenesis and progression of diabetic cardiomyopathy. Notably, many animal studies have shown that the development and progression of diabetic cardiomyopathy can be alleviated by inhibiting the cell death process induced by these metal ions. Therefore, we review the molecular mechanisms underlying the death of various metal ions and the potential pathophysiological roles they play in diabetic cardiomyopathy. In addition, the value of these metal ions in the treatment of diabetic cardiomyopathy is also described.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
| | - Shengnan Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Leyang Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Jitao Lin
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999007, Hong Kong
| | - Yangliu Ou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Linhui Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan University, Haikou, 570311, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Zhao J, Han M, Nie Q, Wen X, Geng H, Zou Y, Li S, Xie W. Network pharmacology combined with experimental analysis to explore the mechanism of the XinShuaiNing formula on heart failure. 3 Biotech 2025; 15:110. [PMID: 40191450 PMCID: PMC11965065 DOI: 10.1007/s13205-025-04288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/22/2025] [Indexed: 04/09/2025] Open
Abstract
This study was conducted to elucidate the mechanism of action of the Traditional Chinese Medicine XinShuaiNing (XSN) formula in CHF based on network pharmacology. A total of 489 compounds in the XSN formula were screened. These compounds predicted 778 targets. A search of CHF yielded 789 corresponding targets, and 151 intersections between the potential targets of the XSN formula and CHF, involving AKT1, AGT, eNOS, and VEGF. Abdominal aortic coarctation (AAC) was used to establish a CHF rat model, and isoproterenol-induced H9c2 cells to establish a myocardial injury cell model. The results showed that the XSN formula downregulated ET-1, BNP, and Hcy and upregulated the ALB levels and also relieved cardiac histopathological damage. The XSN formula reduced the content of pro-inflammatory factors and inhibited the apoptosis of cardiomyocytes. In addition, the expression of fibronectin, α-SMA, collagen 1, and collagen 3 was downregulated by XSN formula treatment, and the fibrotic areas of myocardial tissue were reduced. The XSN formula promoted phosphorylation of AKT1-induced VEGF and eNOS signaling and inhibited AGT signaling. Besides, the XSN formula can affect the apoptosis of H9c2 cells by affecting AKT1, AGT, eNOS, and VEGF. The XSN formula regulates inflammatory factors by inducing phosphorylation of AKT1, upregulating eNOS and VEGF, and downregulating AGT to protect cardiomyocytes from apoptosis and myocardial fibrosis to alleviate CHF. In conclusion, this study identified the target of XSN prescription through network pharmacology screening and experimental validation and confirmed its anti-inflammatory, antiapoptotic, and antifibrotic effects.
Collapse
Affiliation(s)
- Jue Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingjun Han
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Nie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyu Geng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyun Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Sirizi MAG, Esmailidehaj M, Mohamadi-Zarch SM, Yadeghari M, Azizian H. Cardioprotective effects of GPER agonist in ovariectomized diabetic rats: reversing ER stress and structural changes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2855-2865. [PMID: 39298018 DOI: 10.1007/s00210-024-03438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
The incidence of diabetic cardiomyopathy (DCM) significantly increases in postmenopausal women, suggesting protective roles of estrogen. Excessive endoplasmic reticulum (ER) stress alters myocardial structure, which plays a crucial role in DCM. The G protein-coupled estrogen receptor (GPER) has been demonstrated to have cardioprotective effects, but it remains unclear whether these effects involve the amelioration of structural changes induced by ER stress. The objective of this study was to determine whether GPER can prevent cardiac structural changes by attenuating ER stress. Female ovariectomized (OVX) rats were divided into three groups: OVX, OVX + T2D, and OVX + T2D + G1. T2D was induced by a high-fat diet, and streptozotocin and G1, a GPER agonist, were administered for 6 weeks. Finally, histological changes of the myocardium were examined and the expression of sarcoplasmic reticulum calcium ATPase (SERCA2α), GRP78 as an ER stress marker, and apoptotic signalings were determined by Western blot. We observed that the induction of T2D resulted in an increased cardiac weight index, left ventricular wall thickness, and myocyte diameter. However, GPER activation reversed these changes. T2D increased cardiac protein levels of GRP78, caspase-12, and Bax, while decreasing levels of SERCA2α and Bcl-2. Nevertheless, GPER activation reduced the expression of GRP78 in OVX + T2D rats. Furthermore, GPER activation significantly reduced cardiac caspase-12 and Bax levels and increased SERCA2α and Bcl-2 expression. In conclusion, our data suggest that GPER activation ameliorates DCM by inhibiting ER stress-induced cardiac structural changes. These findings provide a new potential target for therapeutic intervention and drug discovery specifically tailored for postmenopausal diabetic women.
Collapse
Affiliation(s)
- Mohammad Amin Ghaffari Sirizi
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mansour Esmailidehaj
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed-Mahdi Mohamadi-Zarch
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Maryam Yadeghari
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
- Department of Anatomy and Cell BioloAAgy, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Azizian
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
4
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Heart Failure: A Deficiency of Energy-A Path Yet to Discover and Walk. Biomedicines 2024; 12:2589. [PMID: 39595155 PMCID: PMC11592498 DOI: 10.3390/biomedicines12112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure is a complex syndrome and our understanding and therapeutic approach relies mostly on its phenotypic presentation. Notably, the heart is characterized as the most energy-consuming organ, being both a producer and consumer, in order to satisfy multiple cardiac functions: ion exchange, electromechanical coordination, excitation-contraction coupling, etc. By obtaining further knowledge of the cardiac energy field, we can probably better characterize the basic pathophysiological events occurring in heart disease patients and understand the metabolic substance changes, the relationship between the alteration of energy production/consumption, and hence energetic deficiency not only in the heart as a whole but in every single cardiac territory, which will hopefully provide us with the opportunity to uncover the beginning of the heart failure process. In this respect, using (a) newer imaging techniques, (b) biomedicine, (c) nanotechnology, and (d) artificial intelligence, we can gain a deeper understanding of this complex syndrome. This, in turn, can lead to earlier and more effective therapeutic approaches, ultimately improving human health. To date, the scientific community has not given sufficient attention to the energetic starvation model. In our view, this review aims to encourage scientists and the medical community to conduct studies for a better understanding and treatment of this syndrome.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
| | - Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistiran University of Athens, 124 62 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| |
Collapse
|
5
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
6
|
Zhang X, Dong X, Jie H, Li S, Li H, Su Y, Li L, Kang L, Dong B, Zhang Y. Downregulation of the (pro)renin receptor alleviates ferroptosis-associated cardiac pathological changes via the NCOA 4-mediated ferritinophagy pathway in diabetic cardiomyopathy. Int Immunopharmacol 2024; 138:112605. [PMID: 38963979 DOI: 10.1016/j.intimp.2024.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Ferroptosis, characterized by the accumulation of reactive oxygen species and lipid peroxidation, is involved in various cardiovascular diseases. (Pro)renin receptor (PRR) in performs as ligands in the autophagic process, and its function in diabetic cardiomyopathy (DCM) is not fully understood. We investigated whether PRR promotes ferroptosis through the nuclear receptor coactivator 4 (NCOA 4)-mediated ferritinophagy pathway and thus contributes to DCM. We first established a mouse model of DCM with downregulated and upregulated PRR expression and used a ferroptosis inhibitor. Myocardial inflammation and fibrosis levels were then measured, cardiac function and ferroptosis-related indices were assessed. In vitro, neonatal rat ventricular primary cardiomyocytes were cultured with high glucose and transfected with recombinant adenoviruses knocking down or overexpressing the PRR, along with a ferroptosis inhibitor and small interfering RNA for the ferritinophagy receptor, NCOA4. Ferroptosis levels were measured in vitro. The results showed that the knockdown of PRR not only alleviated cardiomyocyte ferroptosis in vivo but also mitigated the HG-induced ferroptosis in vitro. Moreover, administration of Fer-1 can inhibit HG-induced ferroptosis. NCOA4 knockdown blocked the effect of PRR on ferroptosis and improved cell survival. Our result indicated that inhibition of PRR and NCOA4 expression provides a new therapeutic strategy for the treatment of DCM. The effect of PRR on the pathological process of DCM in mice may be in promoting cardiomyocyte ferroptosis through the NCOA 4-mediated ferritinophagy pathway.
Collapse
Affiliation(s)
- XinYu Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - XueFei Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - HaiPeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - ShengNan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - HuiXin Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China; Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan 250021, China
| | - YuDong Su
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China; Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan 250021, China
| | - Lei Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China
| | - Li Kang
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China; Department of Cardiology, Shandong University of Traditional Chinese Medicine, Jinan 250021, China.
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250021, China.
| |
Collapse
|
7
|
Li Z, Wang B, Bai D, Zhang L. Brazil nut ( Bertholletia excelsa) and metformin abrogate cardiac complication in fructose/STZ-induced type 2 diabetic rats by attenuating oxidative stress and modulating the MAPK-mTOR/NFkB/IL-10 signaling pathways. Food Nutr Res 2024; 68:10749. [PMID: 39239455 PMCID: PMC11375446 DOI: 10.29219/fnr.v68.10749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 09/07/2024] Open
Abstract
Background The global prevalence of diabetic heart complication has been on the increase, and some of the drugs that are currently used to treat diabetes mellitus (DM) have not been able to mitigate this complication. Objective This study determines the effect of Brazil nut (Bertholletia excelsa) and metformin on diabetic cardiomyopathy (DCM) in fructose/streptozotocin (STZ)-induced type 2 diabetic rats and also characterizes using Gas Chromatography Mass Spectrophotometry and Fourier Transform Infrared the bioactive compounds in 50% aqueous ethanol extract of Brazil nut. Design After inducing type 2 DM, 30 male albino Wistar rats were separated into five groups that comprised of six rats per group, and they were treated as follows: groups 1 (Control) and 2 (Diabetic control) rats received rat pellets and distilled water; group 3 (Diabetic + Brazil nut) received rat pellets and Brazil nut extract (100 mg/kg, orally) dissolved in distilled water, group 4 (Diabetic + metformin) received metformin (100 mg/kg, orally) dissolved in distilled water, while group 5 (Diabetic + Brazil nut + metformin) received oral administrations of Brazil nut (100 mg/kg) and metformin (100 mg/kg) dissolved in distilled water. This study lasted for 6 weeks. The dose of Brazil nut used was selected from our pilot study on the minimum therapeutic dose of different concentrations of Brazil nut extract. Results STZ administration induced insulin resistance, hyperglycemia, loss of weight, dyslipidemia, oxidative stress, inflammation, apoptosis, alteration of mammalian target of rapamycin, mitogen-activated protein kinase, heart function markers (creatine kinase MB, lactate dehydrogenase, and aspartate amino transaminase), and heart histology of the diabetic control, which was ameliorated after treatment with Brazil nut and metformin, but their combined treatment was better than the single treatments. Conclusion This study shows that Brazil nut contains several bioactive compounds that support its biological properties as well as its candidature as a complementary therapy to metformin in mitigating cardiac complications arising from DM in rats.
Collapse
Affiliation(s)
- Zhenzuo Li
- Department of Endocrinology, The Fourth People's Hospital of Jinan, Jinan, China
| | - Baolan Wang
- Department of Endocrinology, The Fourth People's Hospital of Jinan, Jinan, China
| | - Dongfang Bai
- Department of Endocrinology, Taian City Central Hospital, Taian, China
| | - Li Zhang
- Department of Endocrinology, The Fourth People's Hospital of Jinan, Jinan, China
| |
Collapse
|
8
|
Li FJ, Fu S, Ye H, Hu YH, Chen J, Privratsky JR, Yu W, Dong F, Reiter RJ, Dong M, Guo J, Ren J. Metallothionein Alleviates Glutathione Depletion-Induced Oxidative Cardiomyopathy through CISD1-Dependent Regulation of Ferroptosis in Murine Hearts. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:912-926. [PMID: 38417695 DOI: 10.1016/j.ajpath.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
This study was designed to discern the effect of heavy scavenger metallothionein on glutathione (GSH) deprivation-evoked cardiac anomalies and mechanisms involved with an emphasis on ferroptosis. Wild-type and cardiac metallothionein transgenic mice received GSH synthase inhibitor buthionine sulfoximine (BSO; 30 mmol/L in drinking water) for 14 days before assessment of myocardial morphology and function. BSO evoked cardiac remodeling and contractile anomalies, including cardiac hypertrophy, interstitial fibrosis, enlarged left ventricular chambers, deranged ejection fraction, fraction shortening, cardiomyocyte contractile capacity, intracellular Ca2+ handling, sarcoplasmic reticulum Ca2+ reuptake, loss of mitochondrial integrity (mitochondrial swelling, loss of aconitase activity), mitochondrial energy deficit, carbonyl damage, lipid peroxidation, ferroptosis, and apoptosis. Metallothionein itself did not affect myocardial morphology and function, although it mitigated BSO-provoked myocardial anomalies, loss of mitochondrial integrity and energy, and ferroptosis. Immunoblotting revealed down-regulated sarco(endo)plasmic reticulum Ca2+-ATPase 2a, glutathione peroxidase 4, ferroptosis-suppressing CDGSH iron-sulfur domain 1 (CISD1), and mitochondrial regulating glycogen synthase kinase-3β phosphorylation with elevated p53, myosin heavy chain-β isozyme, IκB phosphorylation, and solute carrier family 7 member 11 (SLC7A11) as well as unchanged SLC39A1, SLC1A5, and ferroptosis-suppressing protein 1 following BSO challenge, all of which, except glutamine transporter SLC7A11 and p53, were abrogated by metallothionein. Inhibition of CISD1 using pioglitazone nullified GSH-offered benefit against BSO-induced cardiomyocyte ferroptosis and contractile and intracellular Ca2+ derangement. Taken together, these findings support a regulatory modality for CISD1 in the impedance of ferroptosis in metallothionein-offered protection against GSH depletion-evoked cardiac aberration.
Collapse
Affiliation(s)
- Feng-Juan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shouzhi Fu
- Department of ICU/Emergency, Wuhan Third Hospital, Wuhan University, Wuhan, China
| | - Hua Ye
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Burns and Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, China
| | - Yi-Han Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianxin Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jamie R Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Jun Ren
- National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Cai L. Invited Perspective: New Insight into Cadmium-Related Osteoporosis Yields Hope for Prevention and Therapy. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:61301. [PMID: 38896781 PMCID: PMC11218703 DOI: 10.1289/ehp15263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Affiliation(s)
- Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville (U of L) School of Medicine, Louisville, Kentucky, USA
- Department of Radiation Oncology, U of L School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, U of L School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Liu S, Wang L, Zhang Z, Leng Y, Yang Y, Fu X, Xie H, Gao H, Xie C. The potential of astragalus polysaccharide for treating diabetes and its action mechanism. Front Pharmacol 2024; 15:1339406. [PMID: 38659573 PMCID: PMC11039829 DOI: 10.3389/fphar.2024.1339406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Type 2 diabetes presents a significant global health burden and is frequently linked to serious clinical complications, including diabetic cardiomyopathy, nephropathy, and retinopathy. Astragalus polysaccharide (APS), extracted from Astragalus membranaceus, exhibits various biochemical and physiological effects. In recent years, a growing number of researchers have investigated the role of APS in glucose control and the treatment of diabetes and its complications in various diabetes models, positioning APS as a promising candidate for diabetes therapy. This review surveys the literature on APS from several databases over the past 20 years, detailing its mechanisms of action in preventing and treating diabetes mellitus. The findings indicate that APS can address diabetes by enhancing insulin resistance, modulating the immune system, protecting islet cells, and improving the intestinal microbiota. APS demonstrates positive pharmacological value and clinical potential in managing diabetic complications, including diabetic retinopathy, nephropathy, cardiomyopathy, cognitive dysfunction, wound healing, and more. However, further research is necessary to explore APS's bioavailability, optimal dosage, and additional clinical evidence.
Collapse
Affiliation(s)
- Shiyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luyao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zehua Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - YuLin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Lee S, Lee Y, Kim Y, Kim H, Rhyu H, Yoon K, Lee CD, Lee S. Beneficial effects of cannabidiol from Cannabis. APPLIED BIOLOGICAL CHEMISTRY 2024; 67:32. [DOI: 10.1186/s13765-024-00867-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/26/2024] [Indexed: 01/05/2025]
Abstract
AbstractCannabis, traditionally used for recreation due to psychoactive compounds in its leaves, flowers, and seeds, has not been thoroughly explored for potential therapeutic benefits. Δ9-trans-Tetrahydrocannabinol, a key cannabinoid in cannabis, causes hallucinogenic effects and delirium symptoms. In contrast, cannabidiol (CBD) does not induce hallucinations and has shown effectiveness in treating symptoms of various rare, incurable diseases. Cannabis exhibits neuroprotective, anti-inflammatory, anti-thrombotic, anti-bacterial, analgesic, and antiepileptic properties, recently attracting more attention. This review aims to summarize comprehensively the impact of cannabis on human health, focusing on endocannabinoids and their receptors. It also delves into recent CBD research advancements, highlighting the compound’s potential medical applications. Overall, this paper provides valuable insights into the prospective development of medical cannabis, with a particular emphasis on CBD.
Collapse
|
12
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
13
|
Pei Z, Xiong Y, Jiang S, Guo R, Jin W, Tao J, Zhang Z, Zhang Y, Zou Y, Gong Y, Ren J. Heavy Metal Scavenger Metallothionein Rescues Against Cold Stress-Evoked Myocardial Contractile Anomalies Through Regulation of Mitophagy. Cardiovasc Toxicol 2024; 24:85-101. [PMID: 38356081 DOI: 10.1007/s12012-023-09823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/24/2023] [Indexed: 02/16/2024]
Abstract
Cold stress prompts an increased prevalence of cardiovascular morbidity yet the underneath machinery remains unclear. Oxidative stress and autophagy appear to contribute to cold stress-induced cardiac anomalies. Our present study evaluated the effect of heavy metal antioxidant metallothionein on cold stress (4 °C)-induced in cardiac remodeling and contractile anomalies and cell signaling involved including regulation of autophagy and mitophagy. Cold stress (3 weeks) prompted interstitial fibrosis, mitochondrial damage (mitochondrial membrane potential and TEM ultrastructure), oxidative stress (glutathione, reactive oxygen species and superoxide), lipid peroxidation, protein injury, elevated left ventricular (LV) end systolic and diastolic diameters, decreased fractional shortening, ejection fraction, Langendorff heart function, cardiomyocyte shortening, maximal velocities of shortening/relengthening, and electrically stimulated intracellular Ca2+ rise along with elongated relaxation duration and intracellular Ca2+ clearance, the responses of which were overtly attenuated or mitigated by metallothionein. Levels of apoptosis, cell death (Bax and loss of Bcl2, IL-18), and autophagy (LC3BII-to-LC3BI ratio, Atg7 and Beclin-1) were overtly upregulated with comparable p62 under cold stress. Cold stress also evoked elevated mitophagy (decreased TOM20, increased Parkin and FUNDC1 with unaltered BNIP3). Cold stress overtly dampened phosphorylation of autophagy/mitophagy inhibitory molecules Akt and mTOR, stimulated and suppressed phosphorylation of ULK1 and eNOS, respectively, in the absence of altered pan protein levels. Cold stress-evoked responses in cell death, autophagy, mitophagy and their regulatory domains were overtly attenuated or ablated by metallothionein. Suppression of autophagy and mitophagy with 3-methyladenine, bafilomycin A1, cyclosporine A, and liensinine rescued hypothermia-instigated cardiomyocyte LC3B puncta formation and mechanical anomalies. Our findings support a protective nature for metallothionein in deep hypothermia-evoked cardiac abnormalities associated with regulation of autophagy and mitophagy.
Collapse
Affiliation(s)
- Zhaohui Pei
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China.
| | - Yayuan Xiong
- The First Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Shasha Jiang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
| | - Wei Jin
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Zhenzhong Zhang
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yingmei Zhang
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yan Gong
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Jun Ren
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Cai L, Tan Y, Holland B, Wintergerst K. Diabetic Cardiomyopathy and Cell Death: Focus on Metal-Mediated Cell Death. Cardiovasc Toxicol 2024; 24:71-84. [PMID: 38321349 PMCID: PMC11517829 DOI: 10.1007/s12012-024-09836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Cardiac myocyte death is an essential initiator of the pathogenesis and progression of various etiological cardiomyopathies, including diabetic cardiomyopathy (DCM), a disease that has been reported since 1972. Cardiac cell death has been detected in the hearts of patients with diabetes and in animal models, and the role of cell death in the pathogenesis of DCM has been extensively investigated. The first review by the authors, specifically focusing on "Cell death and diabetic cardiomyopathy," was published in the journal, Cardiovascular Toxicology in 2003. Over the past two decades, studies investigating the role of cardiac cell death in the pathogenesis of DCM have gained significant attention, resulting in the discovery of several new kinds of cell death involving different mechanisms, including apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis. After the 20th anniversary of the review published in 2003, we now provide an update with a focus on the potential role of metal-mediated cell death, ferroptosis, and cuproptosis in the development of DCM in compliance with this special issue. The intent of our review is to further stimulate work in the field to advance the body of knowledge and continue to drive efforts to develop more advanced therapeutic approaches to prevent cell death, particularly metal-dependent cell death, and, ultimately, to reduce or prevent the development of DCM.
Collapse
Affiliation(s)
- Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA.
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA.
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Yi Tan
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Brian Holland
- Division of Cardiology, Department of Pediatrics, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kupper Wintergerst
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, 570 S. Preston Street, Baxter I, Rm: 304F, Louisville, KY, USA
- Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
15
|
Yang G, Zhang Q, Dong C, Hou G, Li J, Jiang X, Xin Y. Nrf2 prevents diabetic cardiomyopathy via antioxidant effect and normalization of glucose and lipid metabolism in the heart. J Cell Physiol 2024; 239:e31149. [PMID: 38308838 DOI: 10.1002/jcp.31149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 02/05/2024]
Abstract
Metabolic disorders and oxidative stress are the main causes of diabetic cardiomyopathy. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a powerful antioxidant effect and prevents the progression of diabetic cardiomyopathy. However, the mechanism of its cardiac protection and direct action on cardiomyocytes are not well understood. Here, we investigated in a cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) the direct effect of Nrf2 on cardiomyocytes in DCM and its mechanism. In this study, cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) were used to directly observe whether cardiomyocyte-specific overexpression of Nrf2 can prevent diabetic cardiomyopathy and correct glucose and lipid metabolism disorders in the heart. Compared to wild-type mice, Nrf2-TG mice showed resistance to diabetic cardiomyopathy in a streptozotocin-induced type 1 diabetes mouse model. This was primarily manifested as improved echocardiography results as well as reduced myocardial fibrosis, cardiac inflammation, and oxidative stress. These results showed that Nrf2 can directly act on cardiomyocytes to exert a cardioprotective role. Mechanistically, the cardioprotective effects of Nrf2 depend on its antioxidation activity, partially through improving glucose and lipid metabolism by directly targeting lipid metabolic pathway of AMPK/Sirt1/PGC-1α activation via upstream genes of sestrin2 and LKB1, and indirectly enabling AKT/GSK-3β/HK-Ⅱ activity via AMPK mediated p70S6K inhibition.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qihe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Guowen Hou
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Fu H, Sen L, Zhang F, Liu S, Wang M, Mi H, Liu M, Li B, Peng S, Hu Z, Sun J, Li R. Mesenchymal stem cells-derived extracellular vesicles protect against oxidative stress-induced xenogeneic biological root injury via adaptive regulation of the PI3K/Akt/NRF2 pathway. J Nanobiotechnology 2023; 21:466. [PMID: 38049845 PMCID: PMC10696851 DOI: 10.1186/s12951-023-02214-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Xenogeneic extracellular matrices (xECM) for cell support have emerged as a potential strategy for addressing the scarcity of donor matrices for allotransplantation. However, the poor survival rate or failure of xECM-based organ transplantation is due to the negative impacts of high-level oxidative stress and inflammation on seed cell viability and stemness. Herein, we constructed xenogeneic bioengineered tooth roots (bio-roots) and used extracellular vesicles from human adipose-derived mesenchymal stem cells (hASC-EVs) to shield bio-roots from oxidative damage. Pretreatment with hASC-EVs reduced cell apoptosis, reactive oxygen species generation, mitochondrial changes, and DNA damage. Furthermore, hASC-EV treatment improved cell proliferation, antioxidant capacity, and odontogenic and osteogenic differentiation, while significantly suppressing oxidative damage by activating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) nuclear translocation via p62-associated Kelch-like ECH-associated protein 1 (KEAP1) degradation. Inhibition of PI3K/Akt and Nrf2 knockdown reduced antioxidant capacity, indicating that the PI3K/Akt/NRF2 pathway partly mediates these effects. In subcutaneous grafting experiments using Sprague-Dawley rats, hASC-EV administration significantly enhanced the antioxidant effect of the bio-root, improved the regeneration efficiency of periodontal ligament-like tissue, and maximized xenograft function. Conclusively, therefore, hASC-EVs have the potential to be used as an immune modulator and antioxidant for treating oxidative stress-induced bio-root resorption and degradation, which may be utilized for the generation and restoration of other intricate tissues and organs.
Collapse
Affiliation(s)
- Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Lin Sen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Fangqi Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Sirui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Meiyue Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hongyan Mi
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Mengzhe Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Zelong Hu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
18
|
Wang M, Tang J, Zhang S, Pang K, Zhao Y, Liu N, Huang J, Kang J, Dong S, Li H, Tian Z, Duan B, Lu F, Zhang W. Exogenous H 2S initiating Nrf2/GPx4/GSH pathway through promoting Syvn1-Keap1 interaction in diabetic hearts. Cell Death Discov 2023; 9:394. [PMID: 37875467 PMCID: PMC10598017 DOI: 10.1038/s41420-023-01690-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Excessive ROS accumulation contributes to cardiac injury in type 2 diabetes mellitus. Hydrogen sulfide (H2S) is a vital endogenous gasotransmitter to alleviate cardiac damage in diabetic cardiomyopathy (DCM). However, the underlying mechanisms remain unclear. In this study, we investigated the effects of NaHS administration in db/db mice via intraperitoneal injection for 20 weeks and the treatment of high glucose (HG), palmitate (PA) and NaHS in HL-1 cardiomyocytes for 48 h, respectively. H2S levels were decreased in hearts of db/db mice and HL-1 cardiomyocytes exposed to HG and PA, which were restored by NaHS. Exogenous H2S activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4)/glutathione (GSH) pathway, suppressed ferroptosis and mitigated mitochondrial apoptosis in db/db mice. However, these effects were abrogated after Nrf2 knockdown. NaHS treatment elevated the ubiquitination level of Kelch-like ECH-associated protein (Keap1) by preserving its E3 ligase synoviolin (Syvn1), resulting in Nrf2 nuclear translocation. H2S facilitated the sulfhydration of Syvn1-cys115 site, a post-translational modification. Transfecting Syvn1 C115A in cardiomyocytes exposed to HG and PA partially attenuated the effects of NaHS on Nrf2 and cell death. Our findings suggest that exogenous H2S regulates Nrf2/GPx4/GSH pathway by promoting the Syvn1-Keap1 interaction to reduce ferroptosis and mitochondrial apoptosis in DCM.
Collapse
Affiliation(s)
- Mengyi Wang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Jingyuan Tang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Shiwu Zhang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Kemiao Pang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Jiayi Huang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Jiaxin Kang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Hongxia Li
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Zhen Tian
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China
| | - Binhong Duan
- Department of Endocrinology, Heilongjiang Provincial Hospital, 150036, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China.
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, 150081, Harbin, China.
| |
Collapse
|
19
|
Cai L, Tan Y, Watson S, Wintergerst K. Diabetic cardiomyopathy - Zinc preventive and therapeutic potentials by its anti-oxidative stress and sensitizing insulin signaling pathways. Toxicol Appl Pharmacol 2023; 477:116694. [PMID: 37739320 PMCID: PMC10616760 DOI: 10.1016/j.taap.2023.116694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Oxidative stress and insulin resistance are two key mechanisms for the development of diabetic cardiomyopathy (DCM, cardiac remodeling and dysfunction). In this review, we discussed how zinc and metallothionein (MT) protect the heart from type 1 or type 2 diabetes (T1D or T2D) through its anti-oxidative function and insulin-mediated PI3K/Akt signaling activation. Both T1D and T2D-induced DCM, shown by cardiac structural remodeling and dysfunction, in wild-type mice, but not in cardiomyocyte-specific overexpressing MT mice. In contrast, mice with global MT gene deletion were more susceptible to the development of DCM. When we used zinc to treat mice with either T1D or T2D, cardiac remodeling and dysfunction were significantly prevented along with increased cardiac MT expression. To support the role of zinc homeostasis in insulin signaling pathways, treatment of diabetic mice with zinc showed the preservation of phosphorylation levels of insulin-mediated glucose metabolism-related Akt2 and GSK-3β and even rescued cardiac pathogenesis induced by global deletion of Akt2 gene in a MT-dependent manner. These results suggest the protection by zinc from DCM is through both the induction of MT and sensitization of insulin signaling. Combined our own and other works, this review comprehensively summarized the roles of zinc homeostasis in the development and progression of DCM and its therapeutic implications. At the end, we provided pre-clinical and clinical evidence for the preventive and therapeutic potential of zinc supplementation through its anti-oxidative stress and sensitizing insulin signaling actions. Understanding the intricate connections between zinc and DCM provides insights for the future interventional approaches.
Collapse
Affiliation(s)
- Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America; Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States of America.
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States of America.
| | - Sara Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, United States of America
| | - Kupper Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States of America; Wendy Novak Diabetes Institute, Norton Healthcare, Louisville, KY, United States of America; Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY, United States of America
| |
Collapse
|
20
|
Li Q, Zhang S, Yang G, Wang X, Liu F, Li Y, Chen Y, Zhou T, Xie D, Liu Y, Zhang L. Energy metabolism: A critical target of cardiovascular injury. Biomed Pharmacother 2023; 165:115271. [PMID: 37544284 DOI: 10.1016/j.biopha.2023.115271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Cardiovascular diseases are the main killers threatening human health. Many studies have shown that abnormal energy metabolism plays a key role in the occurrence and development of acute and chronic cardiovascular diseases. Regulating cardiac energy metabolism is a frontier topic in the treatment of cardiovascular diseases. However, we are not very clear about the choice of different substrates, the specific mechanism of energy metabolism participating in the course of cardiovascular disease, and how to develop appropriate drugs to regulate energy metabolism to treat cardiovascular disease. Therefore, this paper reviews how energy metabolism participates in cardiovascular pathophysiological processes and potential drugs aimed at interfering energy metabolism.It is expected to provide good suggestions for promoting the clinical prevention and treatment of cardiovascular diseases from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dingxiong Xie
- Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation Ministry of Education, China.
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| |
Collapse
|
21
|
Dorward AM, Stewart AJ, Pitt SJ. The role of Zn2+ in shaping intracellular Ca2+ dynamics in the heart. J Gen Physiol 2023; 155:e202213206. [PMID: 37326614 PMCID: PMC10276528 DOI: 10.1085/jgp.202213206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Increasing evidence suggests that Zn2+ acts as a second messenger capable of transducing extracellular stimuli into intracellular signaling events. The importance of Zn2+ as a signaling molecule in cardiovascular functioning is gaining traction. In the heart, Zn2+ plays important roles in excitation-contraction (EC) coupling, excitation-transcription coupling, and cardiac ventricular morphogenesis. Zn2+ homeostasis in cardiac tissue is tightly regulated through the action of a combination of transporters, buffers, and sensors. Zn2+ mishandling is a common feature of various cardiovascular diseases. However, the precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during normal cardiac function and during pathological conditions are not fully understood. In this review, we consider the major pathways by which the concentration of intracellular Zn2+ is regulated in the heart, the role of Zn2+ in EC coupling, and discuss how Zn2+ dyshomeostasis resulting from altered expression levels and efficacy of Zn2+ regulatory proteins are key drivers in the progression of cardiac dysfunction.
Collapse
Affiliation(s)
- Amy M. Dorward
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
22
|
Bashir Z, Chen EW, Tori K, Ghosalkar D, Aurigemma GP, Dickey JB, Haines P. Insight into different phenotypic presentations of heart failure with preserved ejection fraction. Prog Cardiovasc Dis 2023; 79:80-88. [PMID: 37442358 DOI: 10.1016/j.pcad.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for half of all HF diagnoses, and its prevalence is increasing at an alarming rate. Lately, it has been recognized as a clinical syndrome due to diverse underlying etiology and pathophysiological mechanisms. The classic echocardiographic features of HFpEF have been well described as preserved ejection fraction (≥50%), left ventricular hypertrophy, and left atrial enlargement. However, echocardiography can play a key role in identifying the principal underlying mechanism responsible for HFpEF in the individual patient. The recognition of different phenotypic presentations of HFpEF (infiltrative, metabolic, genetic, and inflammatory) can assist the clinician in tailoring the appropriate management, and offer prognostic information. The goal of this review is to highlight several key phenotypes of HFpEF and illustrate the classic clinical scenario and echocardiographic features of each phenotype with real patient cases.
Collapse
Affiliation(s)
- Zubair Bashir
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Edward W Chen
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Dhairyasheel Ghosalkar
- Division of Cardiovascular Medicine, Department of Medicine, Stony Brook University Hospital, NY, USA
| | - Gerard P Aurigemma
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - John B Dickey
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Philip Haines
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
23
|
Song XT, Wei YL, Rui YF, Fan L. Echocardiographic evaluation of the effect of dapagliflozin on epicardial adipose tissue and left ventricular systolic function in type 2 diabetes mellitus. J Diabetes Complications 2023; 37:108509. [PMID: 37235925 DOI: 10.1016/j.jdiacomp.2023.108509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Epicardial adipose tissue (EAT) is associated with cardiovascular disease, and sodium-glucose cotransporter-2 inhibitors (SGLT-2I) have been reported to reduce the occurrence of cardiovascular events. This study was designed to investigate the effect of an SGLT-2 inhibitor (dapagliflozin) on EAT and left ventricular (LV) systolic function in type 2 diabetes mellitus (T2DM) patients during a 6-month follow-up. METHODS Twenty-seven T2DM patients who received dapagliflozin for the first time were enrolled in this study to measure EAT thickness and evaluate LV function before and after 6 months of SGLT-2 administration. The thickness of EAT was measured as the echo-free space between the free wall of the right ventricle and the visceral layer of the pericardium at end-systole by echocardiography. LV systolic function was evaluated by LV global longitudinal strain (LV GLS) obtained through two-dimensional speckle tracking echocardiography (2D-STE) technology. RESULTS After a 6-month follow-up, twenty-five patients completed this study. The values of EAT thickness, HbA1c, body weight, body mass index (BMI), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were significantly reduced, while the LV GLS value was significantly increased. Moreover, the increase in LV GLS was independently associated with the reduction in EAT thickness, HbA1c, weight, and SBP (all p < 0.05). CONCLUSIONS Dapagliflozin can reduce EAT thickness and improve LV systolic function in T2DM patients. 2D-STE can be used for the early evaluation of the beneficial effect of dapagliflozin on LV systolic function. The improvement in LV systolic function is independently associated with a reduction in EAT thickness.
Collapse
Affiliation(s)
- Xiang-Ting Song
- Department of Echocardiography, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Yu-Long Wei
- Department of Risk Management, Suning Bank, Nanjing, Jiangsu 210006, China
| | - Yi-Fei Rui
- Department of Echocardiography, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Li Fan
- Department of Echocardiography, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
24
|
Amin S, Sheikh KA, Iqubal A, Ahmed Khan M, Shaquiquzzaman M, Tasneem S, Khanna S, Najmi AK, Akhter M, Haque A, Anwer T, Mumtaz Alam M. Synthesis, in-Silico studies and biological evaluation of pyrimidine based thiazolidinedione derivatives as potential anti-diabetic agent. Bioorg Chem 2023; 134:106449. [PMID: 36889200 DOI: 10.1016/j.bioorg.2023.106449] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Despite the advancements in the management of Diabetes mellitus, the design and synthesis of drug molecule which ameliorates the hyperglycemia and associated secondary complications in diabetic patients, still remains a challenge. Herein, we report the synthesis, characterization and anti-diabetic evaluation of pyrimidine-thiazolidinedione derivatives. The synthesized compounds were characterized by 1H NMR, 13C NMR, FTIR and Mass Spectroscopic analytical techniques. The in-silico ADME studies depicted that the compounds were within the permissible limits of the Lipinski's rule of five. The compounds 6e and 6m showing the best results in OGTT were evaluated for in-vivo anti-diabetic evaluation in STZ induced diabetic rats. Administration of 6e and 6m for four weeks decreased the blood glucose levels significantly. Compound 6e (4.5 mg/kg p.o.) was the most potent compound of the series. It reduced the level of blood glucose to 145.2 ± 1.35 compared to the standard Pioglitazone (150.2 ± 1.06). Moreover, the 6e and 6m treated group did not show increase in bodyweight. The biochemical estimations showed that the levels of ALT, ASP, ALP, urea, creatinine, blood urea nitrogen, total protein and LDH restored to normal in 6e and 6m treated groups as compared to STZ control group. The histopathological studies supported the results obtained in biochemical estimations. Both the compounds did not show any toxicity. Moreover, the histopathological studies of pancreas, liver, heart and kidney revealed that the structural integrity of these tissues restored to almost normal in 6e and 6m treated groups as compared to STZ control group. Based upon these findings it can be concluded that the pyrimidine-based thiazolidinedione derivatives represent novel anti-diabetic agents with least side effects.
Collapse
Affiliation(s)
- Shaista Amin
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Khursheed A Sheikh
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - M Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sharba Tasneem
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Suruchi Khanna
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - A K Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Anzarul Haque
- Department of Pharmaceutics, Buraydah College of Pharmacy and Dentistry, PO Box-31717, Buraydah, Al-Qassim, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology, College of Pharmacy, Jazan University, Saudi Arabia
| | - M Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
25
|
Li K, Li Y, Ding H, Chen J, Zhang X. Metal-Binding Proteins Cross-Linking with Endoplasmic Reticulum Stress in Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:jcdd10040171. [PMID: 37103050 PMCID: PMC10143100 DOI: 10.3390/jcdd10040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
The endoplasmic reticulum (ER), an essential organelle in eukaryotic cells, is widely distributed in myocardial cells. The ER is where secreted protein synthesis, folding, post-translational modification, and transport are all carried out. It is also where calcium homeostasis, lipid synthesis, and other processes that are crucial for normal biological cell functioning are regulated. We are concerned that ER stress (ERS) is widespread in various damaged cells. To protect cells' function, ERS reduces the accumulation of misfolded proteins by activating the unfolded protein response (UPR) pathway in response to numerous stimulating factors, such as ischemia or hypoxia, metabolic disorders, and inflammation. If these stimulatory factors are not eliminated for a long time, resulting in the persistence of the UPR, it will aggravate cell damage through a series of mechanisms. In the cardiovascular system, it will cause related cardiovascular diseases and seriously endanger human health. Furthermore, there has been a growing number of studies on the antioxidative stress role of metal-binding proteins. We observed that a variety of metal-binding proteins can inhibit ERS and, hence, mitigate myocardial damage.
Collapse
Affiliation(s)
- Kejuan Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Hong Ding
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Jianshu Chen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| | - Xiaowei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730031, China
| |
Collapse
|
26
|
Hara T, Yoshigai E, Ohashi T, Fukada T. Zinc in Cardiovascular Functions and Diseases: Epidemiology and Molecular Mechanisms for Therapeutic Development. Int J Mol Sci 2023; 24:ijms24087152. [PMID: 37108314 PMCID: PMC10139119 DOI: 10.3390/ijms24087152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Zinc is an essential trace element that plays an important physiological role in numerous cellular processes. Zinc deficiency can result in diverse symptoms, such as impairment of the immune response, skin disorders, and impairments in cardiovascular functions. Recent reports have demonstrated that zinc acts as a signaling molecule, and its signaling pathways, referred to as zinc signals, are related to the molecular mechanisms of cardiovascular functions. Therefore, comprehensive understanding of the significance of zinc-mediated signaling pathways is vital as a function of zinc as a nutritional component and of its molecular mechanisms and targets. Several basic and clinical studies have reported the relationship between zinc level and the onset and pathology of cardiovascular diseases, which has attracted much attention in recent years. In this review, we summarize the recent findings regarding the effects of zinc on cardiovascular function. We also discuss the importance of maintaining zinc homeostasis in the cardiovascular system and its therapeutic potential as a novel drug target.
Collapse
Affiliation(s)
- Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Emi Yoshigai
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Takuto Ohashi
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Toshiyuki Fukada
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| |
Collapse
|
27
|
Granieri MC, Rocca C, De Bartolo A, Nettore IC, Rago V, Romeo N, Ceramella J, Mariconda A, Macchia PE, Ungaro P, Sinicropi MS, Angelone T. Quercetin and Its Derivative Counteract Palmitate-Dependent Lipotoxicity by Inhibiting Oxidative Stress and Inflammation in Cardiomyocytes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3492. [PMID: 36834186 PMCID: PMC9958705 DOI: 10.3390/ijerph20043492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Cardiac lipotoxicity plays an important role in the pathogenesis of obesity-related cardiovascular disease. The flavonoid quercetin (QUE), a nutraceutical compound that is abundant in the "Mediterranean diet", has been shown to be a potential therapeutic agent in cardiac and metabolic diseases. Here, we investigated the beneficial role of QUE and its derivative Q2, which demonstrates improved bioavailability and chemical stability, in cardiac lipotoxicity. To this end, H9c2 cardiomyocytes were pre-treated with QUE or Q2 and then exposed to palmitate (PA) to recapitulate the cardiac lipotoxicity occurring in obesity. Our results showed that both QUE and Q2 significantly attenuated PA-dependent cell death, although QUE was effective at a lower concentration (50 nM) when compared with Q2 (250 nM). QUE decreased the release of lactate dehydrogenase (LDH), an important indicator of cytotoxicity, and the accumulation of intracellular lipid droplets triggered by PA. On the other hand, QUE protected cardiomyocytes from PA-induced oxidative stress by counteracting the formation of malondialdehyde (MDA) and protein carbonyl groups (which are indicators of lipid peroxidation and protein oxidation, respectively) and intracellular ROS generation, and by improving the enzymatic activities of catalase and superoxide dismutase (SOD). Pre-treatment with QUE also significantly attenuated the inflammatory response induced by PA by reducing the release of key proinflammatory cytokines (IL-1β and TNF-α). Similar to QUE, Q2 (250 nM) also significantly counteracted the PA-provoked increase in intracellular lipid droplets, LDH, and MDA, improving SOD activity and decreasing the release of IL-1β and TNF-α. These results suggest that QUE and Q2 could be considered potential therapeutics for the treatment of the cardiac lipotoxicity that occurs in obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Immacolata Cristina Nettore
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Naomi Romeo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Paola Ungaro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “Gaetano Salvatore”, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
- National Institute of Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
28
|
Xue K, Chen S, Chai J, Yan W, Zhu X, Ji D, Wu Y, Liu H, Wang W. Nitration of cAMP-Response Element Binding Protein Participates in Myocardial Infarction-Induced Myocardial Fibrosis via Accelerating Transcription of Col1a2 and Cxcl12. Antioxid Redox Signal 2023; 38:709-730. [PMID: 36324232 DOI: 10.1089/ars.2021.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aims: Myocardial fibrosis after myocardial infarction (MI) leads to heart failure. Nitration of protein can alter its function. cAMP-response element binding protein (CREB) is a key transcription factor involved in fibrosis. However, little is known about the role of nitrated CREB in MI-induced myocardial fibrosis. Meanwhile, downstream genes of transcription factor CREB in myocardial fibrosis have not been identified. This study aims to verify the hypothesis that nitrated CREB promotes MI-induced myocardial fibrosis via regulating the transcription of Col1a2 and Cxcl12. Results: Our study showed that (1) the level of nitrative stress was elevated and nitrated CREB was higher in the myocardium after MI. Tyr182, 307, and 336 were the nitration sites of CREB; (2) with the administration of peroxynitrite (ONOO-) scavengers, CREB phosphorylation, nuclear translocation, and binding activity to TORC2 (transducers of regulated CREB-2) were attenuated; (3) the expressions of extracellular matrix (ECM) proteins were upregulated and downregulated in accordance with the expression alteration of CREB both in vitro and in vivo; (4) CREB accelerated transcription of Col1a2 and Cxcl12 after MI directly. With the administration of ONOO- scavengers, ECM protein expressions were attenuated; meanwhile, the messenger RNA (mRNA) levels of Col1a2 and Cxcl12 were alleviated as well. Innovation and Conclusion: Nitration of transcription factor CREB participates in MI-induced myocardial fibrosis through enhancing its phosphorylation, nuclear translocation, and binding activity to TORCs, among which CREB transcripts Col1a2 and Cxcl12 directly. These data indicated that nitrated CREB might be a potential therapeutic target against MI-induced myocardial fibrosis.
Collapse
Affiliation(s)
- Ke Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China.,Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuai Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Xinyu Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| |
Collapse
|
29
|
Forte M, Rodolico D, Ameri P, Catalucci D, Chimenti C, Crotti L, Schirone L, Pingitore A, Torella D, Iacovone G, Valenti V, Schiattarella GG, Perrino C, Sciarretta S. Molecular mechanisms underlying the beneficial effects of exercise and dietary interventions in the prevention of cardiometabolic diseases. J Cardiovasc Med (Hagerstown) 2022; 24:e3-e14. [PMID: 36729582 DOI: 10.2459/jcm.0000000000001397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cardiometabolic diseases still represent a major cause of mortality worldwide. In addition to pharmacological approaches, lifestyle interventions can also be adopted for the prevention of these morbid conditions. Lifestyle changes include exercise and dietary restriction protocols, such as calorie restriction and intermittent fasting, which were shown to delay cardiovascular ageing and elicit health-promoting effects in preclinical models of cardiometabolic diseases. Beneficial effects are mediated by the restoration of multiple molecular mechanisms in heart and vessels that are compromised by metabolic stress. Exercise and dietary restriction rescue mitochondrial dysfunction, oxidative stress and inflammation. They also improve autophagy. The result of these effects is a marked improvement of vascular and heart function. In this review, we provide a comprehensive overview of the molecular mechanisms involved in the beneficial effects of exercise and dietary restriction in models of diabetes and obesity. We also discuss clinical studies and gap in animal-to-human translation.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico.,Department of Internal Medicine, University of Genova, Genova
| | - Daniele Catalucci
- Humanitas Research Hospital, IRCCS, Rozzano.,National Research Council, Institute of Genetic and Biomedical Research - UOS, Milan
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital.,Department of Medicine and Surgery, Università Milano-Bicocca, Milan
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | - Annachiara Pingitore
- Department of General and Specialistic Surgery 'Paride Stefanini' Sapienza University of Rome
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro
| | | | | | - Gabriele G Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Sebastiano Sciarretta
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | | |
Collapse
|
30
|
Mladenov M, Bogdanov J, Bogdanov B, Hadzi-Petrushev N, Kamkin A, Stojchevski R, Avtanski D. Efficacy of the monocarbonyl curcumin analog C66 in the reduction of diabetes-associated cardiovascular and kidney complications. Mol Med 2022; 28:129. [PMID: 36316651 PMCID: PMC9620630 DOI: 10.1186/s10020-022-00559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a polyphenolic compound derived from turmeric that has potential beneficial properties for cardiovascular and renal diseases and is relatively safe and inexpensive. However, the application of curcumin is rather problematic due to its chemical instability and low bioavailability. The experimental results showed improved chemical stability and potent pharmacokinetics of one of its analogs - (2E,6E)-2,6-bis[(2-trifluoromethyl)benzylidene]cyclohexanone (C66). There are several advantages of C66, like its synthetic accessibility, structural simplicity, improved chemical stability (in vitro and in vivo), presence of two reactive electrophilic centers, and good electron-accepting capacity. Considering these characteristics, we reviewed the literature on the application of C66 in resolving diabetes-associated cardiovascular and renal complications in animal models. We also summarized the mechanisms by which C66 is preventing the release of pro-oxidative and pro-inflammatory molecules in the priming and in activation stage of cardiomyopathy, renal fibrosis, and diabetic nephropathy. The cardiovascular protective effect of C66 against diabetes-induced oxidative damage is Nrf2 mediated but mainly dependent on JNK2. In general, C66 causes inhibition of JNK2, which reduces cardiac inflammation, fibrosis, oxidative stress, and apoptosis in the settings of diabetic cardiomyopathy. C66 exerts a powerful antifibrotic effect by reducing inflammation-related factors (MCP-1, NF-κB, TNF-α, IL-1β, COX-2, and CAV-1) and inducing the expression of anti-inflammatory factors (HO-1 and NEDD4), as well as targeting TGF-β/SMADs, MAPK/ERK, and PPAR-γ pathways in animal models of diabetic nephropathy. Based on the available evidence, C66 is becoming a promising drug candidate for improving cardiovascular and renal health.
Collapse
Affiliation(s)
- Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, Moscow, Russia
| | - Jane Bogdanov
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Bogdan Bogdanov
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, Moscow, Russia
| | - Radoslav Stojchevski
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, 110 E 59th Street, Suite 8B, Room 837, 10022, New York, NY, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, 110 E 59th Street, Suite 8B, Room 837, 10022, New York, NY, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
31
|
Wang S, Tian C, Gao Z, Zhang B, Zhao L. Research status and trends of the diabetic cardiomyopathy in the past 10 years (2012–2021): A bibliometric analysis. Front Cardiovasc Med 2022; 9:1018841. [PMID: 36337893 PMCID: PMC9630656 DOI: 10.3389/fcvm.2022.1018841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Background Diabetic cardiomyopathy is one of the most life-threatening diabetic complications. However, the previous studies only discuss a particular aspect or characteristic of DCM, the current state and trends were explored by limited research. We aimed to perform a systemically bibliometric study of DCM research progress status in the past decade, visualize the internal conceptual structure and potential associations, and further explore the prospective study trends. Methods Articles related to DCM published from January 2012 to December 2021 were collected in the Web of Science core collection (WoSCC) database on June 24, 2022. We exported all bibliographic records, including titles, abstracts, keywords, authorship, institutions, addresses, publishing sources, references, citation times, and year of publication. In addition, the journal Impact Factor and Hirsch index were obtained from the Journal Citation Report. We conducted the data screening, statistical analysis, and visualization via the Bibliometrix R package. VOS viewer software was employed to generate the collaboration network map among countries and institutions for better performance in visualization. Results In total, 1,887 original research articles from 2012 to 2021 were identified. The number of annual publications rapidly increased from 107 to 278, and a drastic increase in citation times was observed in 2017–2019. As for global contributions, the United States was the most influential country with the highest international collaboration, while China was the most productive country. Professor Cai Lu was the most prolific author. Shandong University published the most articles. Cardiovascular Diabetology journal released the most DCM-related articles. “Metabolic Stress-induced Activation of FoxO1 Triggers Diabetic Cardiomyopathy in Mice” Battiprolu PK et al., J Clin Invest, 2012. was the most top-cited article regarding local citations. The top three keywords in terms of frequency were apoptosis, oxidative stress, and fibrosis. The analysis of future topic trends indicated that “Forkhead box protein O1,” “Heart failure with preserved ejection fraction,” “Dapagliflozin,” “Thioredoxin,” “Mitochondria dysfunction,” “Glucose,” “Pyroptosis,” “Cardiac fibroblast” and “Long non-coding RNA” could be promising hotspots. Conclusion This study provides meaningful insights into DCM, which is expected to assist cardiologists and endocrinologists in exploring frontiers and future research directions in the domain through a refined and concise summary.
Collapse
Affiliation(s)
- Sicheng Wang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanxi Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Boxun Zhang,
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Linhua Zhao,
| |
Collapse
|
32
|
Tao S, Yang D, Zhang L, Yu L, Wang Z, Li L, Zhang J, Yao R, Huang L, Shao M. Knowledge domain and emerging trends in diabetic cardiomyopathy: A scientometric review based on CiteSpace analysis. Front Cardiovasc Med 2022; 9:891428. [PMID: 36093165 PMCID: PMC9452758 DOI: 10.3389/fcvm.2022.891428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To review the literature related to diabetic cardiomyopathy (DCM), and investigate research hotspots and development trends of this field in the relevant studies based on CiteSpace software of text mining and visualization in scientific literature. Methods The relevant literature from the last 20 years was retrieved from the Web of Science (WoS) Core Collection database. After manual selection, each document record includes title, authors, year, organization, abstract, keywords, citation, descriptors, and identifiers. We imported the downloaded data into CiteSpace V (version 5.8.R2) to draw the knowledge map and conduct cooperative network analysis, cluster analysis, burst keyword analysis, and co-citation analysis. Results After manual screening, there were 3,547 relevant pieces of literature published in the last 18 years (from 2004 to 2021), including 2,935 articles and reviews, which contained 15,533 references, and the number was increasing year by year. The publications of DCM were dedicated by 778 authors of 512 institutions in 116 countries. The People's Republic of China dominated this field (1,117), followed by the USA (768) and Canada (176). In general, most articles were published with a focus on “oxidative stress,” “heart failure,” “diabetic cardiomyopathy,” “dysfunction,” “cardiomyopathy,” “expression,” “heart,” “mechanism,” and “insulin resistance.” Then, 10 main clusters were generated with a modularity Q of 0.6442 and a weighted mean silhouette of 0.8325 by the log-likelihood ratio (LLR) algorithm, including #0 heart failure, #1 perfused heart, #2 metabolic disease, #3 protective effect, #4 diabetic patient, #5 cardiac fibrosis, #6 vascular complication, #7 mitochondrial dynamics, #8 sarcoplasmic reticulum, and #9 zinc supplementation. The top five references with the strongest citation bursts include “Boudina and Abel”, “Jia et al.”, “Fang et al.”, “Poornima et al.”, and “Aneja et al.”. Conclusion The global field of DCM has expanded in the last 20 years. The People's Republic of China contributes the most. However, there is little cooperation among authors and institutions. Overall, this bibliometric study identified the hotspots in DCM research, including “stress state,” “energy metabolism,” “autophagy,” “apoptosis,” “inflammation,” “fibrosis,” “PPAR,” etc. Thus, further research focuses on these topics that may be more helpful to identify, prevent DCM and improve prophylaxis strategies to bring benefit to patients in the near future.
Collapse
Affiliation(s)
- Shiyi Tao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Deshuang Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lanxin Zhang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lintong Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jin Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiqi Yao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Li Huang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Mingjing Shao
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Mingjing Shao
| |
Collapse
|
33
|
Maherinia H, Peeri M, Azarbayjani M, Delfan M. Aerobic exercise training combined with probiotic supplement improves antioxidant defence of cardiomyocytes by regulating Nrf2 and caspase3 gene expression in type 2 diabetic rats. COMPARATIVE EXERCISE PHYSIOLOGY 2022; 18:255-264. [DOI: 10.3920/cep200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
This study aimed to evaluate the effect of four weeks of aerobic exercise training combined with probiotic supplementation on mRNA levels of Nrf-2 and caspase-3 genes, superoxide dismutase (SOD), and serum total antioxidant capacity (TAC) in rats with type 2 diabetes. 40 male Wistar diabetic rats were divided into five groups: healthy placebo control group (NC), diabetic control group without supplement (DC), diabetic control group with supplement (SDC), diabetic aerobic training group without supplement (DT), and diabetic aerobic training group with probiotic supplement (SDT). Each training group performed training five days per week for four weeks and each session of training consisted of 30 min running on a treadmill with an intensity of 65-60% of maximum speed. Simultaneously, rats were fed probiotic supplements. Serum glucose, SOD, and TAC were analysed. The real-time PCR technique was used to determine the gene expression of Nrf-2 and caspase-3. Both aerobic exercise training and probiotic supplementation interactively reduced caspase 3 gene expression, increased Nrf-2 gene expression and enhanced TAC in the left ventricle of diabetic rats. Also, the reduction of caspase-3 mRNA in the left ventricle was more effective in the SDT group than in other diabetic groups. There was no interaction effect on SOD. However, a simultaneous effect of training and supplementation was observed on increasing TAC levels when compared to the DC group. Pearson’s correlation showed that the heart weight gain in the SDT group occurred only by decreasing the expression of the caspase-3 gene. Based on these results, probiotics combined with exercise training can be a strategy for improving the antioxidant defence system and preventing risk factors of diabetic cardiomyocytes, especially cell death and myocardial ischemia.
Collapse
Affiliation(s)
- H. Maherinia
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M. Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M.A. Azarbayjani
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M. Delfan
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
34
|
TRPC1 Contributes to Endotoxemia-induced Myocardial Dysfunction via Mediating Myocardial Apoptosis and Autophagy. Pharmacol Res 2022; 181:106262. [PMID: 35598715 DOI: 10.1016/j.phrs.2022.106262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Cardiac dysfunction is a vital complication of endotoxemia (ETM) with limited therapeutic options. Transient receptor potential canonical channel (TRPC)1 was involved in various heart diseases. While, the role of TRPC1 in ETM-induced cardiac dysfunction remains to be defined. In this study, we found that TRPC1 protein expression was significantly upregulated in hearts of lipopolysaccharide (LPS)-challenged mice. What's more, TRPC1 knockdown significantly alleviated LPS-induced cardiac dysfunction and injury. Further myocardial mRNA-sequencing analysis revealed that TRPC1 might participate in pathogenesis of ETM-induced cardiac dysfunction via mediating myocardial apoptosis and autophagy. Data showed that knockdown of TRPC1 significantly ameliorated LPS-induced myocardial apoptotic injury, cardiomyocytes autophagosome accumulation, and myocardial autophagic flux. Simultaneously, deletion of TRPC1 reversed LPS-induced molecular changes of apoptosis/autophagy signaling pathway in cardiomyocytes. Moreover, TRPC1 could promote LPS-triggered intracellular Ca2+ release, subsequent calpain activation and caveolin-1 degradation. Either blocking calpain by PD150606 or enhancing the amount of caveolin-1 scaffolding domain that interacts with TRPC1 by cell-permeable peptide cavtratin significantly alleviated the LPS-induced cardiac dysfunction and cardiomyocytes apoptosis/autophagy. Furthermore, cavtratin could inhibit LPS-induced calpain activation in cardiomyocytes. caveolin-1 could directly interact with calpain 2 both in vivo and in vitro. Importantly, cecal ligation and puncture-stimulated cardiac dysfunction and mortality were significantly alleviated in Trpc1-/- and cavtratin-treated mice, which further validated the contribution of TRPC1-caveolin-1 signaling axis in sepsis-induced pathological process. Overall, this study indicated that TRPC1 could promote LPS-triggered intracellular Ca2+ release, mediate caveolin-1 reduction, and in turn activates calpain to regulate myocardial apoptosis and autophagy, contributing to ETM-induced cardiac dysfunction of mice.
Collapse
|
35
|
Song XT, Wang SK, Zhang PY, Fan L, Rui YF. Association between epicardial adipose tissue and left ventricular function in type 2 diabetes mellitus: Assessment using two-dimensional speckle tracking echocardiography. J Diabetes Complications 2022; 36:108167. [PMID: 35272930 DOI: 10.1016/j.jdiacomp.2022.108167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Epicardial adipose tissue (EAT) is the visceral fat between the myocardium and the visceral pericardium. Dysfunctional EAT can cause cardiovascular diseases. The aim of this study was to investigate the association between EAT and left ventricular function in type 2 diabetes mellitus (T2DM) patients by two-dimensional speckle tracking echocardiography (2D-STE). METHODS We prospectively enrolled 116 T2DM patients who were divided into two groups according to their left ventricular global longitudinal strain (GLS): 53 with GLS <18% and 63 with GLS ≥18%. The thickness of EAT was measured as the echo-free space between the free wall of the right ventricle and the visceral layer of pericardium at end-systole. LV systolic function was evaluated by GLS measured by 2D-STE. LV diastolic function was defined as the ratio of the early diastolic transmitral flow velocity (E) to average mitral annular velocity (e¯). RESULTS Compared with patients with GLS ≥18% group, the age, body mass index (BMI), waist circumference (WC), systolic blood pressure (SBP), diastolic blood pressure (DBP), low-density lipoprotein cholesterol (LDL-C), glycosylated hemoglobinA1c (HbA1c), E/e¯, and thickness of EAT were higher in patients with GLS <18% group (all P < 0.05). Multivariate linear regression analysis revealed that the thickness of EAT was independently associated with left ventricular GLS and E/e¯. CONCLUSIONS Thickened EAT is associated with impaired left ventricular function in T2DM patients. To investigate the association between EAT and left ventricular function can help us gain a deeper understanding of the pathogenesis of impaired cardiac function in T2DM patients.
Collapse
Affiliation(s)
- Xiang-Ting Song
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China; Department of Echocardiography, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China; Department of Echocardiography, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Shu-Kui Wang
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China.
| | - Ping-Yang Zhang
- Department of Echocardiography, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China.
| | - Li Fan
- Department of Echocardiography, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Yi-Fei Rui
- Department of Echocardiography, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| |
Collapse
|
36
|
Attenuation of ROS/Chloride Efflux-Mediated NLRP3 Inflammasome Activation Contributes to Alleviation of Diabetic Cardiomyopathy in Rats after Sleeve Gastrectomy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4608914. [PMID: 35498125 PMCID: PMC9042617 DOI: 10.1155/2022/4608914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) can develop in diabetes mellitus and is a major cause of morbidity and mortality. Surgical bariatric surgery procedures, such as sleeve gastrectomy (SG), result in remission of type 2 diabetes and have benefits regarding systolic and diastolic myocardial function. The NLR family pyrin domain containing 3 (NLRP3) inflammasome appears to participate in the development of DCM. However, whether SG surgery affects myocardial NLRP3 inflammasome-related pyroptosis to improve cardiac function remains unclear. This study was aimed at investigating the effect of SG surgery on NLRP3-associated pyroptosis in rats with DCM. We also examined cellular phenotypes and molecular mechanisms in high glucose-stimulated myocytes. The rat model of DCM was established by high-fat diet feeding and low-dose streptozotocin injection. We observed a metabolic benefit of SG, including a reduced body weight, food intake, and blood glucose levels and restored glucose tolerance and insulin sensitivity postoperatively. We observed a marked decline in glucose uptake in rats with DCM, and this was restored after SG. Also, SG alleviated the dysfunction of myocardial contraction and diastole, delayed the progression of DCM, and reduced the NLRP3 inflammasome-mediated myocardial pyroptosis in vivo. H9c2 cardiomyocytes showed membrane disruption and DNA damage under a high glucose stimulus, which suggested myocardial pyroptosis. Using a ROS scavenger or chloride channel blocker in vitro restored myocardial NLRP3-mediated pyroptosis. Furthermore, we found that chloride efflux acted downstream of ROS generation. In conclusion, SG may ameliorate or even reverse the progression of DCM. Our study provides evidence that the SG operation alleviates NLRP3 inflammasome dysregulation in DCM. Clearance of ROS overburden and suppression of chloride efflux due to SG might act as the proximal event before inhibition of NLRP3 inflammasome in the myocardium, thus contributing to morphological and functional alleviation of DCM.
Collapse
|
37
|
Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants (Basel) 2022; 11:antiox11040784. [PMID: 35453469 PMCID: PMC9030255 DOI: 10.3390/antiox11040784] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Type 2 diabetes is a redox disease. Oxidative stress and chronic inflammation induce a switch of metabolic homeostatic set points, leading to glucose intolerance. Several diabetes-specific mechanisms contribute to prominent oxidative distress in the heart, resulting in the development of diabetic cardiomyopathy. Mitochondrial overproduction of reactive oxygen species in diabetic subjects is not only caused by intracellular hyperglycemia in the microvasculature but is also the result of increased fatty oxidation and lipotoxicity in cardiomyocytes. Mitochondrial overproduction of superoxide anion radicals induces, via inhibition of glyceraldehyde 3-phosphate dehydrogenase, an increased polyol pathway flux, increased formation of advanced glycation end-products (AGE) and activation of the receptor for AGE (RAGE), activation of protein kinase C isoforms, and an increased hexosamine pathway flux. These pathways not only directly contribute to diabetic cardiomyopathy but are themselves a source of additional reactive oxygen species. Reactive oxygen species and oxidative distress lead to cell dysfunction and cellular injury not only via protein oxidation, lipid peroxidation, DNA damage, and oxidative changes in microRNAs but also via activation of stress-sensitive pathways and redox regulation. Investigations in animal models of diabetic cardiomyopathy have consistently demonstrated that increased expression of the primary antioxidant enzymes attenuates myocardial pathology and improves cardiac function.
Collapse
|
38
|
Cai Z, Yuan S, Luan X, Feng J, Deng L, Zuo Y, Li J. Pyroptosis-Related Inflammasome Pathway: A New Therapeutic Target for Diabetic Cardiomyopathy. Front Pharmacol 2022; 13:842313. [PMID: 35355717 PMCID: PMC8959892 DOI: 10.3389/fphar.2022.842313] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pyroptosis is a highly specific type of inflammatory programmed cell death that is mediated by Gasdermine (GSDM). It is characterized by inflammasome activation, caspase activation, and cell membrane pore formation. Diabetic cardiomyopathy (DCM) is one of the leading diabetic complications and is a critical cause of fatalities in chronic diabetic patients, it is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as hypertension, significant valvular disease, etc. There are no specific drugs in treating DCM despite decades of basic and clinical investigations. Although the relationship between DCM and pyroptosis is not well established yet, current studies provided the impetus for us to clarify the significance of pyroptosis in DCM. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of DCM and summary the potential use of approaches targeting this pathway which may be future anti-DCM strategies.
Collapse
Affiliation(s)
- Zhengyao Cai
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Suxin Yuan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- *Correspondence: Jian Feng,
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yumei Zuo
- Department of outpatient, The 13th Retired Cadre Recuperation Clinic Of Chengdu, Institute of Cardiovascular Research, Chengdu, China
| | - Jiafu Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
39
|
Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, Wang Q, Tan Y, Keller BB, Tong Q, Zheng Y, Cai L. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B 2022; 12:708-722. [PMID: 35256941 PMCID: PMC8897044 DOI: 10.1016/j.apsb.2021.10.005] [Citation(s) in RCA: 302] [Impact Index Per Article: 100.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/21/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023] Open
Abstract
Herein, we define the role of ferroptosis in the pathogenesis of diabetic cardiomyopathy (DCM) by examining the expression of key regulators of ferroptosis in mice with DCM and a new ex vivo DCM model. Advanced glycation end-products (AGEs), an important pathogenic factor of DCM, were found to induce ferroptosis in engineered cardiac tissues (ECTs), as reflected through increased levels of Ptgs2 and lipid peroxides and decreased ferritin and SLC7A11 levels. Typical morphological changes of ferroptosis in cardiomyocytes were observed using transmission electron microscopy. Inhibition of ferroptosis with ferrostatin-1 and deferoxamine prevented AGE-induced ECT remodeling and dysfunction. Ferroptosis was also evidenced in the heart of type 2 diabetic mice with DCM. Inhibition of ferroptosis by liproxstatin-1 prevented the development of diastolic dysfunction at 3 months after the onset of diabetes. Nuclear factor erythroid 2-related factor 2 (NRF2) activated by sulforaphane inhibited cardiac cell ferroptosis in both AGE-treated ECTs and hearts of DCM mice by upregulating ferritin and SLC7A11 levels. The protective effect of sulforaphane on ferroptosis was AMP-activated protein kinase (AMPK)-dependent. These findings suggest that ferroptosis plays an essential role in the pathogenesis of DCM; sulforaphane prevents ferroptosis and associated pathogenesis via AMPK-mediated NRF2 activation. This suggests a feasible therapeutic approach with sulforaphane to clinically prevent ferroptosis and DCM.
Collapse
Affiliation(s)
- Xiang Wang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Xinxin Chen
- Department of Burn Surgery, First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Wenqian Zhou
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Hongbo Men
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Terigen Bao
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Yike Sun
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Quanwei Wang
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradley B. Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY 40202, USA
| | - Qian Tong
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Zheng
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
40
|
MacKenzie S, Bergdahl A. Zinc Homeostasis in Diabetes Mellitus and Vascular Complications. Biomedicines 2022; 10:biomedicines10010139. [PMID: 35052818 PMCID: PMC8773686 DOI: 10.3390/biomedicines10010139] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress represents an impaired metabolic system that promotes damage to cells and tissues. This is the predominant factor that leads to the development and progression of diabetes and diabetic complications. Research has indicated that zinc plays a consequential mechanistic role in the protection against oxidative stress as zinc is required for the proper functioning of the antioxidant system, the suppression of inflammatory mediators, and the modulation of zinc transporters. Recently, the mechanisms surrounding ZnT8, ZIP7, and metallothionein have shown to be of particular pathogenic importance and are considered as potential therapeutic targets in disease management. The literature has shown that zinc dysregulation is associated with diabetes and may be considered as a leading contributor to the deleterious vascular alterations exhibited by the disease. Although further investigation is required, studies have indicated the favorable use of zinc supplementation in the protection against and prevention of oxidative stress and its consequences over the course of the condition. This review aims to provide a comprehensive account of zinc homeostasis, the oxidative mechanisms governed by zinc status, current therapeutic targets, and the impact of zinc supplementation in the prevention of disease onset and in mitigating vascular complications.
Collapse
|
41
|
Du S, Shi H, Xiong L, Wang P, Shi Y. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:1011669. [PMID: 36313744 PMCID: PMC9616119 DOI: 10.3389/fendo.2022.1011669] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Canagliflozin (Cana), an anti-diabetes drug belongs to sodium-glucose cotransporter 2 inhibitor, is gaining interest because of its extra cardiovascular benefits. Ferroptosis is a new mode of cell death, which can promote the occurrence of diabetic cardiomyopathy (DCM). Whether Cana can alleviate DCM by inhibiting ferroptosis is the focus of this study. Here, we induced DCM models in diabetic C57BL6 mice and treated with Cana. Meanwhile, in order to exclude its hypoglycemic effect, the high glucose model in H9C2 cells were established. In the in vivo study, we observed that Cana could effectively alleviate the damage of cardiac function in DCM mice, including the increasing of lactate dehydrogenase (LDH) and cardiac troponin I (cTnI), the alleviating of myocardial fiber breakage, inflammation, collagen fiber deposition and mitochondrial structural disorder. We evaluated reactive oxygen species (ROS) levels by DCFH-DA and BODIPY 581/591 C11, in vitro Cana reduced ROS and lipid ROS in H9C2 cells induced by high glucose. Meanwhile, JC-1 fluorochrome assay showed that the decreased mitochondrial membrane potential (MMP) was increased by Cana. Furthermore, the inhibitory effects of Cana on myocardial oxidative stress and ferroptosis were verified in vivo and in vitro by protein carbonyl (PCO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH). As a key inducer of ferroptosis, the deposition of total iron and Fe2+ can be inhibited by Cana both in vivo and in vitro. In addition, western blot results indicated that the expression of ferritin heavy-chain (FTN-H) was down-regulated, and cystine-glutamate antiporter (xCT) was up-regulated by Cana in DCM mice and cells, suggesting that Cana inhibit ferroptosis by balancing cardiac iron homeostasis and promoting the system Xc-/GSH/GPX4 axis in DCM. These findings underscore the fact that ferroptosis plays an important role in the development and progression of DCM and targeting ferroptosis may be a novel strategy for prevention and treatment. In conclusion, Cana may exert some of its cardiovascular benefits by attenuating ferroptosis.
Collapse
Affiliation(s)
- Shuqin Du
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
- School of Medicine, Jiaxing University, Jiaxing, China
| | - Hanqiang Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
| | - Lie Xiong
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
| | - Ping Wang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
- *Correspondence: Yanbo Shi,
| |
Collapse
|
42
|
Bonet G, Carrasquer A, Peiró ÓM, Sanchez-Gimenez R, Lal-Trehan N, Del-Moral-Ronda V, Fort-Gallifa I, Bardají A. Clinical characteristics and prognostic implications of diabetes and myocardial injury in patients admitted to the emergency room. BMC Cardiovasc Disord 2021; 21:414. [PMID: 34461832 PMCID: PMC8404360 DOI: 10.1186/s12872-021-02220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND This study aimed to investigate the clinical features and prognosis of diabetes and myocardial injury in patients admitted to the emergency department. METHODS We analyzed the clinical data of all consecutive patients admitted to the emergency department during the years 2012 and 2013 with at least 1 cardiac Troponin I (cTnI Ultra Siemens, Advia Centaur) determination, and were classified according to the status of diabetes mellitus (DM) and myocardial injury (MI). Clinical events were evaluated in a 4-year follow-up. RESULTS A total of 3622 patients were classified according to the presence of DM (n = 924 (25.55%)) and MI (n = 1049 (28.96%)). The proportion of MI in patients with DM was 40% and 25% in patients without DM. Mortality during follow-up was 10.9% in non-DM patients without MI, 21.3% in DM patients without MI, 40.1% in non-DM patients with MI, and 52.8% in DM patients with MI. A competitive risk model was used to obtain the Hazard Ratio (HR) for readmission for myocardial infarction or heart failure. There was a similar proportion of readmission for myocardial infarction and heart failure at a four-year follow-up in patients with DM or MI, which was much higher when DM was associated with MI, with respect to patients without DM or MI. The HR (95% Coefficient Interval) for myocardial infarction in the DM without MI, non-DM with MI, and DM with MI groups with respect to the non-DM without MI group was 2511 (1592-3960), 2682 (1739-4138), and 5036 (3221-7876), respectively. The HR (95% CI) for the risk of readmission for heart failure in the DM without MI, non-DM with MI, and DM with MI groups with respect to the non-DM without MI group was 2663 (1825-3886), 2562 (1753-3744) and 4292 (2936-6274), respectively. CONCLUSIONS The association of DM and MI in patients treated in an Emergency Service identifies patients at very high risk of mortality and cardiovascular events.
Collapse
Affiliation(s)
- Gil Bonet
- Department of Cardiology, Joan XXIII University Hospital, Calle Dr Mallafré Guash 4, 43005, Tarragona, Spain
- Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Rovira I Virgili University, Tarragona, Spain
| | - Anna Carrasquer
- Department of Cardiology, Joan XXIII University Hospital, Calle Dr Mallafré Guash 4, 43005, Tarragona, Spain
- Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Rovira I Virgili University, Tarragona, Spain
| | - Óscar M Peiró
- Department of Cardiology, Joan XXIII University Hospital, Calle Dr Mallafré Guash 4, 43005, Tarragona, Spain
- Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Rovira I Virgili University, Tarragona, Spain
| | - Raul Sanchez-Gimenez
- Department of Cardiology, Joan XXIII University Hospital, Calle Dr Mallafré Guash 4, 43005, Tarragona, Spain
- Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Rovira I Virgili University, Tarragona, Spain
| | - Nisha Lal-Trehan
- Department of Cardiology, Joan XXIII University Hospital, Calle Dr Mallafré Guash 4, 43005, Tarragona, Spain
- Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Rovira I Virgili University, Tarragona, Spain
| | - Victor Del-Moral-Ronda
- Department of Cardiology, Joan XXIII University Hospital, Calle Dr Mallafré Guash 4, 43005, Tarragona, Spain
- Pere Virgili Health Research Institute (IISPV), Tarragona, Spain
- Rovira I Virgili University, Tarragona, Spain
| | - Isabel Fort-Gallifa
- Clinical Laboratory, Catalan Institute of Health, Camp de Tarragona-Terres de L'Ebre, Tarragona, Spain
| | - Alfredo Bardají
- Department of Cardiology, Joan XXIII University Hospital, Calle Dr Mallafré Guash 4, 43005, Tarragona, Spain.
- Pere Virgili Health Research Institute (IISPV), Tarragona, Spain.
- Rovira I Virgili University, Tarragona, Spain.
| |
Collapse
|
43
|
Wu X, Zhang T, Lyu P, Chen M, Ni G, Cheng H, Xu G, Li X, Wang L, Shang H. Traditional Chinese Medication Qiliqiangxin Attenuates Diabetic Cardiomyopathy via Activating PPARγ. Front Cardiovasc Med 2021; 8:698056. [PMID: 34336956 PMCID: PMC8322738 DOI: 10.3389/fcvm.2021.698056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Diabetic cardiomyopathy is the primary complication associated with diabetes mellitus and also is a major cause of death and disability. Limited pharmacological therapies are available for diabetic cardiomyopathy. Qiliqiangxin (QLQX), a Chinese medication, has been proven to be beneficial for heart failure patients. However, the role and the underlying protective mechanisms of QLQX in diabetic cardiomyopathy remain largely unexplored. Methods: Primary neonatal rat cardiomyocytes (NRCMs) were treated with glucose (HG, 40 mM) to establish the hyperglycemia-induced apoptosis model in vitro. Streptozotocin (STZ, 50 mg/kg/day for 5 consecutive days) was intraperitoneally injected into mice to establish the diabetic cardiomyopathy model in vivo. Various analyses including qRT-PCR, western blot, immunofluorescence [terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining] histology (hematoxylin-eosin and Masson's trichrome staining), and cardiac function (echocardiography) were performed in these mice. QLQX (0.5 μg/ml in vitro and 0.5 g/kg/day in vivo) was used in this study. Results: QLQX attenuated hyperglycemia-induced cardiomyocyte apoptosis via activating peroxisome proliferation-activated receptor γ (PPARγ). In vivo, QLQX treatment protected mice against STZ-induced cardiac dysfunction and pathological remodeling. Conclusions: QLQX attenuates diabetic cardiomyopathy via activating PPARγ.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Lyu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengli Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiling Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guie Xu
- Cardiac Regeneration and Ageing Lab, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Institute of Cardiovascular Sciences, Shanghai University, Shanghai, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Huang S, Wang J, Men H, Tan Y, Lin Q, Gozal E, Zheng Y, Cai L. Cardiac metallothionein overexpression rescues diabetic cardiomyopathy in Akt2-knockout mice. J Cell Mol Med 2021; 25:6828-6840. [PMID: 34053181 PMCID: PMC8278119 DOI: 10.1111/jcmm.16687] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
To efficiently prevent diabetic cardiomyopathy (DCM), we have explored and confirmed that metallothionein (MT) prevents DCM by attenuating oxidative stress, and increasing expression of proteins associated with glucose metabolism. To determine whether Akt2 expression is critical to MT prevention of DCM, mice with either global Akt2 gene deletion (Akt2-KO), or cardiomyocyte-specific overexpressing MT gene (MT-TG) or both combined (MT-TG/Akt2-KO) were used. Akt2-KO mice exhibited symptoms of DCM (cardiac remodelling and dysfunction), and reduced expression of glycogen and glucose metabolism-related proteins, despite an increase in total Akt (t-Akt) phosphorylation. Cardiac MT overexpression in MT-TG/Akt2-KO mice prevented DCM and restored glucose metabolism-related proteins expression and baseline t-Akt phosphorylation. Furthermore, phosphorylation of ERK1/2 increased in the heart of MT-TG/Akt2-KO mice, compared with Akt2-KO mice. As ERK1/2 has been implicated in the regulation of glucose transport and metabolism this increase could potentially underlie MT protective effect in MT-TG/Akt2-KO mice. Therefore, these results show that although our previous work has shown that MT preserving Akt2 activity is sufficient to prevent DCM, in the absence of Akt2 MT may stimulate alternative or downstream pathways protecting from DCM in a type 2 model of diabetes, and that this protection may be associated with the ERK activation pathway.
Collapse
Affiliation(s)
- Shan Huang
- Department of PediatricsPediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Cardiovascular DiseaseThe First Hospital of Jilin UniversityChangchunChina
| | - Jiqun Wang
- Department of PediatricsPediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Cardiovascular DiseaseThe First Hospital of Jilin UniversityChangchunChina
| | - Hongbo Men
- Department of PediatricsPediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Cardiovascular DiseaseThe First Hospital of Jilin UniversityChangchunChina
| | - Yi Tan
- Department of PediatricsPediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Qian Lin
- Department of PediatricsPediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Evelyne Gozal
- Department of PediatricsPediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
| | - Yang Zheng
- Department of Cardiovascular DiseaseThe First Hospital of Jilin UniversityChangchunChina
| | - Lu Cai
- Department of PediatricsPediatric Research InstituteUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKYUSA
- Department of Radiation OncologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
45
|
Guo W, Zhao L, Mo F, Peng C, Li L, Xu Y, Guo W, Sun A, Yan H, Wang L. The prognostic value of the triglyceride glucose index in patients with chronic heart failure and type 2 diabetes: A retrospective cohort study. Diabetes Res Clin Pract 2021; 177:108786. [PMID: 33812901 DOI: 10.1016/j.diabres.2021.108786] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
AIMS The triglyceride glucose (TyG) index is a marker of insulin resistance. However, the prognostic value thereof in patients with chronic heart failure (CHF) and type 2 diabetes remains unclear. METHODS This study included patients diagnosed with CHF and type 2 diabetes in Fuwai Hospital of Chinese Academy of Medical Sciences, Shenzhen, from January 2017 to July 2019. The primary endpoint was cardiovascular death or rehospitalization for heart failure. RESULTS The study included 546 patients with CHF and type 2 diabetes. We divided the patients into three groups (T1 [TyG index < 8.55], T2 [TyG index ≥ 8.55 and < 9.06], and T3 [TyG index ≥ 9.06]) according to the TyG index level. The incidence of the primary outcome in the T3 group was significantly higher than that in the T1 group. There was no significant difference between the T1 and T2 groups. The trend test revealed a positive correlation between the TyG index and the incidence of the primary outcome (P = 0.001). CONCLUSIONS There is a positive correlation between the TyG index and the prognosis of patients with CHF and type 2 diabetes.
Collapse
Affiliation(s)
- Wenqin Guo
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Lingyue Zhao
- Department of Ambulatory Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital,Shenzhen, China
| | - Fanrui Mo
- Department of Cardiology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Changnong Peng
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Xu
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Wenyu Guo
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Aimei Sun
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Hongbing Yan
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
| | - Lili Wang
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
| |
Collapse
|
46
|
Song XT, Fan L, Yan ZN, Rui YF. Echocardiographic evaluation of the effect of poor blood glucose control on left ventricular function and ascending aorta elasticity. J Diabetes Complications 2021; 35:107943. [PMID: 33934972 DOI: 10.1016/j.jdiacomp.2021.107943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Type 2 diabetes mellitus (T2DM) is associated with high cardiovascular risk. Preclinical left ventricular (LV) dysfunction and subclinical arterial stiffness have been documented in patients with T2DM. The aims of this study were to investigate whether there were any differences in LV function and ascending aorta elasticity between T2DM patients with controlled [defined as glycosylated hemoglobin (HbA1c) <6.5%] and uncontrolled (HbA1c ≥6.5%) blood glucose. METHODS We studied 86 T2DM patients: 42 T2DM patients with controlled blood glucose (controlled T2DM group) and 44 T2DM patients with uncontrolled blood glucose (uncontrolled T2DM group), and 40 healthy subjects as control. They all underwent transthoracic echocardiography examination, LV systolic function was evaluated by global longitudinal strain (GLS) and LV diastolic function was defined as the ratio of the early diastolic transmitral flow velocity (E) to average mitral annular velocity (e¯). Ascending aorta inner diameters and brachial blood pressure were measured to calculate ascending aorta elastic parameters: compliance (C), distensibility (D), strain (S), stiffness index (SI), Peterson's elastic modulus (EM). RESULTS Compared to control, T2DM patients had reduced GLS, increased E/e ̅ and impaired ascending aorta elasticity. Furthermore, LV function and ascending aorta elasticity were more severely damaged in uncontrolled T2DM group compared with controlled T2DM group. By Pearson correlation analysis, the level of HbA1c was independently associated with the parameters of the LV function and ascending aorta elasticity. CONCLUSIONS T2DM can impair the LV myocardial function and ascending aorta elastic properties, which may be further impaired by poor blood glucose control.
Collapse
Affiliation(s)
- Xiang-Ting Song
- Department of Echocardiography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China.
| | - Li Fan
- Department of Echocardiography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Zi-Ning Yan
- Department of Echocardiography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Yi-Fei Rui
- Department of Echocardiography, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
47
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
48
|
Chun KJ, Lee CH, Kim KW, Lee SM, Kim SY. Effects of Androgen Receptor Inhibition on Kanamycin-Induced Hearing Loss in Rats. Int J Mol Sci 2021; 22:ijms22105307. [PMID: 34070066 PMCID: PMC8158097 DOI: 10.3390/ijms22105307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Megalin has been proposed as an endocytic receptor for aminoglycosides as well as estrogen and androgen. We aimed to investigate the otoprotective effects of antiandrogens (flutamide, FM) on kanamycin (KM)-induced hearing loss in rats. Rats were divided into four groups. The KM group was administered KM (20 mg/kg/day) for 5 days, while the FM group received FM (15 mg/kg/day) for 10 days. In the KM + FM group, KM and FM (15 mg/kg/day) were simultaneously injected for 5 days and then FM was injected for 5 days. Auditory brainstem responses were measured. Western blotting and/or quantitative reverse transcriptase-polymerase chain reaction were performed for megalin, cytochrome P450 1A1 (Cyp1a1), Cyp1b1, metallothionein 1A (MT1A), MT2A, tumor necrosis factor (TNF)-α, caspase 3, and cleaved caspase 3. The FM + KM group showed attenuated auditory thresholds when compared with the KM group at 4, 8, 16, and 32 kHz (all p < 0.05). The KM + FM group showed lower megalin and Cyp1b1 levels than the KM group (all p < 0.05). The KM + FM group revealed lower MT1A, TNFα, and caspase 3 protein levels, compared with those in the KM group (all p < 0.05). Androgen receptor inhibition protects against cochlear injuries in KM-induced hearing loss rats by attenuating megalin expression, revealing anti-inflammatory and anti-apoptotic effects.
Collapse
|
49
|
Zhang Z, Si YF, Hu W, Yan P, Yu Y. Treatment with XMU-MP-1 erases hyperglycaemic memory in hearts of diabetic mice. Biochem Pharmacol 2021; 188:114574. [PMID: 33887258 DOI: 10.1016/j.bcp.2021.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/27/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Hyperglycaemic memory refers to the damages occurred under early hyperglycaemic environment in organs of diabetic patients persisting after intensive glycaemic control. Mammalian sterile 20-like kinase 1 (Mst1) contributes to the development of diabetic cardiomyopathy. Here, we investigated the role of Mst1 in hyperglycaemic memory and test the effect of XMU-MP-1, a Mst1 inhibitor, on hyperglycaemic memory in hearts. Eight weeks after induction of type 1 diabetes by injection with streptozotocin (STZ) in mice, glycaemic control was obtained by means of insulin treatment and maintained for 4 additional weeks. In the diabetic mice, insulin treatment alone did not reduce phosphorylation of Mst1 or improve cardiac function. Treatment with XMU-MP-1 alone immediately after induction of diabetes for 12 weeks did not improve myocardial function in mice. But treatment with XMU-MP-1 for the later 4 weeks relieved myocardial dysfunction when glycaemic control was obtained by insulin treatment simultaneously. Mst1 deficiency and glycaemic control synergistically improved myocardial function and reduced apoptosis in myocardium of diabetic mice. Mechanistically, when Mst1 was deficient or inhibited by XMU-MP-1, AMPK was activated and mitochondrial dysfunction was attenuated. In vitro, treatment with AMPK activator reversed the detrimental effects of Mst1 overexpression in cultured cardiomyocytes. XMU-MP-1 might thus be envisaged as a complement for insulin treatment against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhigang Zhang
- Department of Cardiology, Putuo Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Fang Si
- Department of Ophthalmology, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenying Hu
- Department of Cardiology, Putuo Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengyong Yan
- Department of Cardiology, Putuo Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
50
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|