1
|
Zou Y, Ma X, Mao C, Chu S, Wang T, Jin W, Wang Y, Yu S, Gao J, Qiu L. Method comparison and re-calibration of three top-used immunoassays and one LC-MS/MS assay for four core cerebrospinal fluid biomarkers of Alzheimer's disease: an explorative study for harmonization. Clin Chim Acta 2025; 575:120352. [PMID: 40360016 DOI: 10.1016/j.cca.2025.120352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND We aimed to compare the analytical performance of four assays, for measuring β-amyloid 1-42 (Aβ1-42), β-amyloid 1-40 (Aβ1-40), total tau, and p-tau181 in cerebrospinal fluid (CSF) and evaluate the clinical performance for the diagnosis of Alzheimer's disease (AD). METHODS The measured concentrations and analytical performance, including precision, linearity, and accuracy of four assays were compared. The discriminative accuracy for amyloid positron emission tomography (PET) status based on different assays was evaluated. RESULTS The measurements of the four biomarkers based on the four assays demonstrated favorable agreement, while still significantly different. For the discrimination of PET status, the ratio of Aβ1-42/p-tau181 showed better diagnostic performance than other biomarkers, with liquid chromatography tandem-mass spectrometry (LC-MS/MS) and Lumipulse G assays performing better when combining all biomarkers for each assay. CONCLUSIONS It is crucial to promote the harmonization and standardization of pre-analytical and measurement procedures to achieve consistent and comparable results in different assays and laboratories.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China; Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan 250117 Shandong, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shanshan Chu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tianyi Wang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Jin
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yifei Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China.
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
2
|
Qiang Q, Skudder-Hill L, Toyota T, Huang Z, Wei W, Adachi H. CSF α-synuclein aggregation is associated with APOE ε4 and progressive cognitive decline in Alzheimer's disease. Neurobiol Aging 2025; 150:9-18. [PMID: 40043469 DOI: 10.1016/j.neurobiolaging.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 04/10/2025]
Abstract
At autopsy, around half of the Alzheimer's disease (AD) brains exhibit Lewy body pathology, and the main component of Lewy body pathology is α-synuclein aggregates. This study investigated the prevalence of cerebrospinal fluid (CSF) α-synuclein aggregation and its association with demographic factors and cognitive decline among 1619 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI), with the test for α-synuclein aggregation by seed amplification assay (SAA). This cohort consisted of 595 cognitively normal (CN) individuals, 765 with mild cognitive impairment (MCI), and 259 with AD dementia. The results showed a higher prevalence of positive α-synuclein aggregation status in the AD dementia group (37.07 %) and the MCI group (22.75 %) compared to CN controls (16.13 %). Additionally, APOE ε4 carriers exhibited a higher prevalence of α-synuclein aggregation compared to non-carriers: 20.12 % for APOE ε4-/- (non-carriers), 24.82 % for APOE ε4 + /-, and 30.92 % for APOE ε4 + /+ . Longitudinally, positive CSF α-synuclein aggregation associated with accelerated cognitive decline, especially in the MCI and AD groups. Notably, positive aggregation status did not significantly affect cognitive trajectories in CN individuals. Moreover, APOE ε4 carriers with positive CSF α-synuclein aggregation experienced more pronounced cognitive decline. This study provides evidence that CSF α-synuclein aggregation is associated with cognitive function and the APOE ε4 allele. These findings suggest that CSF α-synuclein SAA, in combination with APOE ε4 status, could serve as biomarkers for predicting cognitive decline in AD.
Collapse
Affiliation(s)
- Qiang Qiang
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, Shanghai, China; Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Loren Skudder-Hill
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tomoko Toyota
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Zhe Huang
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Wenshi Wei
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan.
| |
Collapse
|
3
|
Yu HH, Tan L, Jiao MJ, Lv YJ, Zhang XH, Tan CC, Xu W. Dissecting the clinical and pathological prognosis of MCI patients who reverted to normal cognition: a longitudinal study. BMC Med 2025; 23:260. [PMID: 40325426 PMCID: PMC12054060 DOI: 10.1186/s12916-025-04092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Controversy existed in the prognosis of reversion from mild cognitive impairment (MCI) to normal cognition (NC). We aim to depict the prognostic characteristics of cognition, neuroimaging, and pathology biomarkers, as well as the risk of Alzheimer's disease (AD) dementia for MCI reverters. METHODS A total of 796 non-demented participants (mean age = 73.3 years, female = 54.4%, MCI = 55.7%), who were divided into MCI reverters (n = 109), stable MCI (n = 334), and stable NC (n = 353) based on 2-year diagnosis changes, were subsequently followed up for 6 years. Cox proportional hazard regression models were applied to assess the AD dementia hazard. Linear mixed-effect models were used to evaluate the differences in changing rates of cognitive scores, brain volumes, brain metabolism, and AD biomarkers among three groups. RESULTS The 2-year MCI reversion rate was 18.17%. MCI reversion was associated with an 89.6% lower risk of AD dementia (HR = 0.104, 95% confidence interval = [0.033, 0.335], p < 0.001) than stable MCI. No significant difference in incident AD risk was found between MCI reverters and stable NC (p = 0.533). Compared to stable MCI, reverters exhibited slower decreases in cognitive performance (false discovery rate corrected p value [FDR-Q] < 0.050), brain volumes (FDR-Q < 0.050), brain metabolism (FDR-Q < 0.001), and levels of cerebrospinal fluid β-amyloid1-42 (FDR-Q = 0.008). The above-mentioned differences were not found between MCI reverters and stable NC (FDR-Q > 0.050). CONCLUSIONS Reversion from MCI to NC predicts a favorable prognosis of pathological, neurodegenerative, and cognitive trajectory.
Collapse
Affiliation(s)
- Hai-Hong Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Donghai Middle Road, No.5, Qingdao, China
- Medical College, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Donghai Middle Road, No.5, Qingdao, China
| | | | - Yi-Ju Lv
- Medical College, Qingdao University, Qingdao, China
| | | | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Donghai Middle Road, No.5, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Donghai Middle Road, No.5, Qingdao, China.
| |
Collapse
|
4
|
Wang S, Han L, Ni H, Ke S, Pan T. Association of cerebrospinal fluid ciliary neurotrophic factor levels with cognitive decline and disease progression. J Alzheimers Dis 2025; 105:573-581. [PMID: 40179226 DOI: 10.1177/13872877251329612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
BackgroundCiliary neurotrophic factor (CNTF) has been identified as a neuroprotective cytokine that can alleviate cognitive impairment in preclinical studies, although the association of cerebrospinal fluid (CSF) CNTF levels with cognitive decline and disease progression in living humans remains unclear.ObjectiveThis study aimed to explore the association between baseline CSF CNTF levels and the rate of cognitive decline in cognitively unimpaired (CU) and cognitively impaired (CI) older people respectively.MethodsA total of 667 participants were included in the study, comprising 161 CU and 506 CI individuals, with an average follow-up time of 3.97 years (SD = 2.99). Linear mixed-effects models were fitted with the Mini-Mental State Examination (MMSE) scores as the primary outcome. As sensitivity analyses, we used another three commonly used cognitive measures as secondary outcomes to test the robustness of our findings. In addition, a Cox proportional hazards model was used to the mild cognitive impairment (MCI) subgroup to investigate the association between baseline CSF CNTF levels and the progression from MCI to dementia.ResultsWe observed that higher baseline CSF CNTF levels were linked with a slower rate of cognitive decline in the CI group, while this association was absent in the CU group. These findings were consistent across different cognitive measures. Among MCI participants, higher levels of CSF CNTF were associated with a slower rate of disease progression to dementia.ConclusionsThe association between CSF CNTF levels and both cognitive decline and disease progression highlights the potential of CNTF as a therapeutic target in the context of Alzheimer's disease and related cognitive disorders.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Li Han
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Hong Ni
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Shaofa Ke
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Tengwei Pan
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
5
|
Guo Y, Liu T, Chen H, Zhou L, Huang W, Zhang K, Wang X, Wang Y, Zhou JH, Chen F. Decreased brain interstitial fluid dynamics is associated with risk of Alzheimer's disease-related cognitive decline. Brain Res Bull 2025; 224:111295. [PMID: 40081504 DOI: 10.1016/j.brainresbull.2025.111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/26/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Diffusion-tensor image analysis along the perivascular space (ALPS) index that has the potential to reflect brain interstitial fluid (ISF) dynamics may predict the development of Alzheimer's Disease (AD). We aimed to study whether brain ISF dynamics indicated by the ALPS index relate to AD dementia diagnosis and AD-related changes. METHODS This study included a discovery cohort (n = 180) and a validation cohort (n = 127), which were composed of cognitively normal, subjective memory concern, mild cognitive impairment, and AD dementia subjects. All participants underwent brain magnetic resonance imaging examination and neuropsychological evaluation. The diffusivities and diffusion-tensor image analysis along the perivascular space (ALPS) were calculated. The support vector machine (SVM) model for AD dementia diagnosis was built in the discovery cohort and validated in the validation cohort. Linear mixed-effects models were used to evaluate the association between the ALPS and cognitive decline. Cox regression models were used to evaluate the association between the ALPS and the risk of AD dementia. RESULTS There was a lower median ALPS index in the AD dementia group compared to other groups (all P < 0.05) for both cohorts. The SVM model for AD dementia diagnosis produced an AUC of 0.802 in the discovery cohort (P < 0.001) and 0.783 in the external validation cohort (P < 0.001). Higher ALPS levels were associated with less cognitive decline (P < 0.001). Moreover, lower baseline ALPS had a greater risk of converting to AD dementia (P = 0.014). CONCLUSIONS The SVM model based on diffusivities and ALPS was effective for AD dementia diagnosis, and higher ALPS levels are associated with a lower risk of AD-related changes. These findings suggest that ALPS may provide a useful AD progression or treatment biomarker.
Collapse
Affiliation(s)
- Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Tao Liu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| | - Huijuan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute (BHII), Weill Cornell Medicine, New York, NY, USA
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Kun Zhang
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiaoyi Wang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Juan Helen Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| |
Collapse
|
6
|
Kim H, Kulshreshtha A, Alonso A, Goldstein FC, Johnson EC, Gold ME, Quyyumi AA, Lah JJ. The association between pulse wave velocity and cerebrospinal fluid biomarkers for Alzheimer's disease. J Alzheimers Dis 2025:13872877251331235. [PMID: 40255037 DOI: 10.1177/13872877251331235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
We examined the association between arterial stiffness using non-invasive pulse wave velocity (PWV) and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers. We conducted a cross-sectional multivariate logistic regression analysis using established cut-off values for PWV and CSF biomarkers. Of the 739 participants, 69% were female, 84% were White, 12% were Black, and the mean age was 62. After adjustment for potential confounders, participants with high PWV had 94% (OR = 1.94, 95% CI 1.20-3.20) greater odds of AD biomarker positivity for tTau/Aβ42 and 108% (OR = 2.08, 95% Cl, 1.27-3.46) for pTau181/Aβ42. Our results suggest that higher arterial stiffness is associated with AD CSF biomarker positivity.
Collapse
Affiliation(s)
- Hyena Kim
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ambar Kulshreshtha
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Family and Preventive Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Felicia C Goldstein
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Erik Cb Johnson
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Matthew E Gold
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory School of Medicine, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory School of Medicine, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Cumplido-Mayoral I, Sánchez-Benavides G, Vilor-Tejedor N, López-Martos D, Brugulat-Serrat A, Milà-Alomà M, Falcon C, Cacciaglia R, Minguillón C, Fauria K, Kollmorgen G, Quijano-Rubio C, Molinuevo JL, Grau-Rivera O, Suárez-Calvet M, Vilaplana V, Gispert JD. Neuroimaging-derived biological brain age and its associations with glial reactivity and synaptic dysfunction cerebrospinal fluid biomarkers. Mol Psychiatry 2025:10.1038/s41380-025-02961-x. [PMID: 40221600 DOI: 10.1038/s41380-025-02961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 01/07/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Magnetic resonance Imaging (MRI)-derived brain-age prediction is a promising biomarker of biological brain aging. Accelerated brain aging has been found in Alzheimer's disease (AD) and other neurodegenerative diseases. However, no previous studies have investigated the relationship between specific pathophysiological pathways in AD and biological brain aging. Here, we studied whether glial reactivity and synaptic dysfunction are associated with biological brain aging in the earliest stages of the Alzheimer's continuum, and if these mechanisms are differently associated with AD-related cortical atrophy. We further evaluated their effects on cognitive decline. We included 380 cognitively unimpaired individuals from the ALFA+ study, for which we computed their brain-age deltas by subtracting chronological age from their brain age predicted by machine learning algorithms. We studied the cross-sectional linear associations between brain-age delta and cerebrospinal fluid (CSF) biomarkers of synaptic dysfunction (neurogranin, GAP43, synaptotagmin-1, SNAP25, and α-synuclein), glial reactivity (sTREM2, YKL-40, GFAP, and S100b) and inflammation (interleukin-6). We also studied the cross-sectional linear associations between AD signature and these CSF biomarkers, We further evaluated the mechanisms linking baseline brain-age delta and longitudinal cognitive decline by performing mediation analyses. To reproduce our findings on an independent cohort, we included 152 cognitively unimpaired and 310 mild cognitive impaired (MCI) individuals from the ADNI study. We found that higher CSF sTREM2 was associated with a younger brain-age after adjusting for AD pathology, both in ALFA+ cognitively unimpaired and in ADNI MCI individuals. Furthermore, we found that CSF sTREM2 fully mediated the link between older brain-age and cognitive decline in ALFA+. In summary, we showed that the protective microglial state reflected by higher CSF sTREM2 has a beneficial impact on biological brain aging that may partly explains the variability in cognitive decline in early AD stages, independently of AD pathology.
Collapse
Affiliation(s)
- Irene Cumplido-Mayoral
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Genetics, Radboud University, Nijmegen, Netherlands
| | - David López-Martos
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Global Brain Health Institute., San Francisco, CA, USA
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
- Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education (NCIRE), San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
- Hospital del Mar Medical Research Institute, Barcelona, Spain.
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain.
| | - Verónica Vilaplana
- Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
- Hospital del Mar Medical Research Institute, Barcelona, Spain.
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
8
|
Bao C, Luo H, Wang J, Liu X, Li Y, Yang J, Chen C, Yang R, Ba W, Lian X, Dunk M, Liu J, Xu W. Poor glymphatic function is associated with mild cognitive impairment and its progression to Alzheimer's disease: A DTI-ALPS study. J Prev Alzheimers Dis 2025:100156. [PMID: 40221240 DOI: 10.1016/j.tjpad.2025.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND We aimed to explore the association between ALPS index and both risks of MCI from cognitively normal (CN) and incident AD progressed from MCI, as well as potential mediating factors. METHODS This study included 519 adults including 253 (48.75 %) CN and 266 (51.25 %) MCI participants from Alzheimer's Disease Neuroimaging Initiative. Glymphatic function (assessed by along the perivascular space [ALPS] index) was measured by diffusion tensor image at baseline. Neurobiomarkers (Aβ and tau from CSF, plasma and PET) and cognitive functions were served as mediators. Data were analyzed using Cox and Laplace regression and mediation analysis. RESULTS During follow-up (median 3.6 years, interquartile range [IQR]: 2.0-4.9 years), 30 (11.86 %) participants developed MCI in the CN cohort and 73 (27.4 %) participants progressed to AD in the MCI cohort. The hazard ratios (95 % confidence intervals [CIs]) of the higher ALPS index was 0.605 (0.386-0.948) for MCI and 0.501 (0.356-0.706) for AD. In addition, participants with high ALPS index had 3.837 and 3.466 years prolonged onset of MCI and AD, separately. Aβ in choroid plexus (17.1 %), tau in cortex [Inferiortemporal (21.1 %), Middletemporal (AV1451:17.0 %, FTP:15.5 %), Superiortemporal(7.7 %), Meta_temporal (AV1451:17.5 %, FTP:16.6 %)], and executive function (14.1 %) mediated the association between ALPS and MCI-AD progression. CONCLUSION High ALPS index decreases MCI risk and delays MCI progression to AD by approximately 3.5 years. Aβ in choroid plexus, tau in cortex, and executive function may partially mediate the MCI-AD progression in relation to ALPS index.
Collapse
Affiliation(s)
- Cuiping Bao
- Department of Radiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin 300121, China
| | - Hongbin Luo
- Tianjin Jinnan District Center for Disease Control and Prevention, 28 Highway Road, Jinnan District, Tianjin 300350, China
| | - Jiao Wang
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Skockholm, Sweden
| | - Xuehuan Liu
- Department of Radiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin 300121, China
| | - Yiming Li
- Department of Radiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin 300121, China
| | - Jun Yang
- Department of Radiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin 300121, China
| | - Chong Chen
- Department of Clinical Laboratory, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin 300121, China
| | - Rongrong Yang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weili Ba
- Department of Radiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin 300121, China
| | - Xinying Lian
- Tianjin Fourth Central Hospital, The Affiliated Hospital of Tianjin Medical University, Zhongshan Rord 1st Tianjin 300140, China
| | - Michelle Dunk
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Skockholm, Sweden
| | - Jun Liu
- Tianjin Fourth Central Hospital, The Affiliated Hospital of Tianjin Medical University, Zhongshan Rord 1st Tianjin 300140, China; Tianjin Fourth Central Hospital, Tianjin University, Zhongshan Rord 1st, Tianjin 300140, China; The Institute of Translational Medicine, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, 300121, China.
| | - Weili Xu
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Skockholm, Sweden
| |
Collapse
|
9
|
Schöll M, Vrillon A, Ikeuchi T, Quevenco FC, Iaccarino L, Vasileva-Metodiev SZ, Burnham SC, Hendrix J, Epelbaum S, Zetterberg H, Palmqvist S. Cutting through the noise: A narrative review of Alzheimer's disease plasma biomarkers for routine clinical use. J Prev Alzheimers Dis 2025; 12:100056. [PMID: 39814656 DOI: 10.1016/j.tjpad.2024.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
As novel, anti-amyloid therapies have become more widely available, access to timely and accurate diagnosis has become integral to ensuring optimal treatment of patients with early-stage Alzheimer's disease (AD). Plasma biomarkers are a promising tool for identifying AD pathology; however, several technical and clinical factors need to be considered prior to their implementation in routine clinical use. Given the rapid pace of advancements in the field and the wide array of available biomarkers and tests, this review aims to summarize these considerations, evaluate available platforms, and discuss the steps needed to bring plasma biomarker testing to the clinic. We focus on plasma phosphorylated(p)-tau, specifically plasma p-tau217, as a robust candidate across both primary and secondary care settings. Despite the high performance and robustness demonstrated in research, plasma p-tau217, like all plasma biomarkers, can be affected by analytical and pre-analytical variability as well as patient comorbidities, sex, ethnicity, and race. This review also discusses the advantages of the two-point cut-off approach to mitigating these factors, and the challenges raised by the resulting intermediate range measurements, where clinical guidance is still unclear. Further validation of plasma p-tau217 in heterogeneous, real-world cohorts will help to increase confidence in testing and support establishing a standardized approach. Plasma biomarkers are poised to become a more affordable and less invasive alternative to PET and CSF testing. However, understanding the factors that impact plasma biomarker measurement and interpretation is critical prior to their implementation in routine clinical use.
Collapse
Affiliation(s)
- M Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK; Department of Neuropsychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - A Vrillon
- French Institute of Health and Medical Research (Inserm), Paris, France
| | - T Ikeuchi
- Niigata University Brain Research Institute, Niigata, Japan
| | - F C Quevenco
- Eli Lilly and Company, Indianapolis, IN, United States
| | - L Iaccarino
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | - S C Burnham
- Eli Lilly and Company, Indianapolis, IN, United States
| | - J Hendrix
- Eli Lilly and Company, Indianapolis, IN, United States
| | - S Epelbaum
- Eli Lilly and Company, Indianapolis, IN, United States
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - S Palmqvist
- Clinical Memory Research Unit, Clinical Sciences in Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Sweden.
| |
Collapse
|
10
|
Tandon R, Zhao L, Watson CM, Sarkar N, Elmor M, Heilman C, Sanders K, Hales CM, Yang H, Loring DW, Goldstein FC, Hanfelt JJ, Duong DM, Johnson ECB, Wingo AP, Wingo TS, Roberts BR, Seyfried NT, Levey AI, Lah JJ, Mitchell CS. Stratifying risk of Alzheimer's disease in healthy middle-aged individuals with machine learning. Brain Commun 2025; 7:fcaf121. [PMID: 40226382 PMCID: PMC11986205 DOI: 10.1093/braincomms/fcaf121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025] Open
Abstract
Alzheimer's disease has a prolonged asymptomatic phase during which pathological changes accumulate before clinical symptoms emerge. This study aimed to stratify the risk of clinical disease to inform future disease-modifying treatments. Cerebrospinal fluid analysis from participants in the Emory Healthy Brain Study was used to classify individuals based on amyloid beta 42 (Aβ42), total tau (tTau) and phosphorylated tau (pTau) levels. Cognitively normal (CN), biomarker-positive (CN)/BM+individuals were identified using a tTau: Aβ42 ratio > 0.24, determined by Gaussian mixture models. CN/BM+ individuals (n = 134) were classified as having asymptomatic Alzheimer's disease (AsymAD), while CN, biomarker-negative (CN/BM-) individuals served as controls (n = 134). Cognitively symptomatic, biomarker-positive individuals with an Alzheimer's disease diagnosis confirmed by the Emory Cognitive Neurology Clinic were labelled as Alzheimer's disease (n = 134). Study groups were matched for age, sex, race and education. Cerebrospinal fluid samples from these matched Emory Healthy Brain Study groups were analysed using targeted proteomics via selected reaction monitoring mass spectrometry. The targeted cerebrospinal fluid panel included 75 peptides from 58 unique proteins. Machine learning approaches identified a subset of eight peptides (ADQDTIR, AQALEQAK, ELQAAQAR, EPVAGDAVPGPK, IASNTQSR, LGADMEDVCGR, VVSSIEQK, YDNSLK) that distinguished between CN/BM- and symptomatic Alzheimer's disease samples with a binary classifier area under the curve performance of 0.98. Using these eight peptides, Emory Healthy Brain Study AsymAD cases were further stratified into 'Control-like' and 'Alzheimer's disease-like' subgroups, representing varying levels of risk for developing clinical disease. The eight peptides were evaluated in an independent dataset from the Alzheimer's Disease Neuroimaging Initiative, effectively distinguishing CN/BM- from symptomatic Alzheimer's disease cases (area under the curve = 0.89) and stratifying AsymAD individuals into control-like and Alzheimer's disease-like subgroups (area under the curve = 0.89). In the absence of matched longitudinal data, an established cross-sectional event-based disease progression model was employed to assess the generalizability of these peptides for risk stratification. In summary, results from two independent modelling methods and datasets demonstrate that the identified eight peptides effectively stratify the risk of progression from asymptomatic to symptomatic Alzheimer's disease.
Collapse
Affiliation(s)
- Raghav Tandon
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Liping Zhao
- Department of Biostatistics and Bioinformatics, Emory School of Public Health, Atlanta, GA 30322, USA
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
| | - Caroline M Watson
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Neel Sarkar
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Morgan Elmor
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Craig Heilman
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Katherine Sanders
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Chadwick M Hales
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Huiying Yang
- Department of Biostatistics and Bioinformatics, Emory School of Public Health, Atlanta, GA 30322, USA
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
| | - David W Loring
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Felicia C Goldstein
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - John J Hanfelt
- Department of Biostatistics and Bioinformatics, Emory School of Public Health, Atlanta, GA 30322, USA
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
| | - Duc M Duong
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Erik C B Johnson
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory School of Medicine, Atlanta, GA 30322, USA
- Division of Mental Health, Atlanta VA Medical Center, Atlanta, GA 30033, USA
| | - Thomas S Wingo
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Blaine R Roberts
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T Seyfried
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Allan I Levey
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - James J Lah
- Emory Goizueta Alzheimer’s Disease Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Machine Learning, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
11
|
Chahine LM, Lafontant DE, Choi SH, Iwaki H, Blauwendraat C, Singleton AB, Brumm MC, Alcalay RN, Merchant K, Nudelman KNH, Dagher A, Vo A, Tao Q, Venuto CS, Kieburtz K, Poston KL, Bressman S, Gonzalez-Latapi P, Avants B, Coffey C, Jennings D, Tolosa E, Siderowf A, Marek K, Simuni T. LRRK2-associated parkinsonism with and without in vivo evidence of alpha-synuclein aggregates: longitudinal clinical and biomarker characterization. Brain Commun 2025; 7:fcaf103. [PMID: 40114783 PMCID: PMC11925012 DOI: 10.1093/braincomms/fcaf103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/17/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Among LRRK2-associated parkinsonism cases with nigral degeneration, over two-thirds demonstrate evidence of pathologic alpha-synuclein, but many do not. Understanding the clinical phenotype and underlying biology in such individuals is critical for therapeutic development. Our objective was to compare clinical and biomarker features, and rate of progression over 4 years of follow-up, among LRRK2-associated parkinsonism cases with and without in vivo evidence of alpha-synuclein aggregates. Data were from the Parkinson's Progression Markers Initiative, a multicentre prospective cohort study. The sample included individuals diagnosed with Parkinson disease with pathogenic variants in LRRK2. Presence of CSF alpha-synuclein aggregation was assessed with seed amplification assay. A range of clinician- and patient-reported outcome assessments were administered. Biomarkers included dopamine transporter scan, CSF amyloid-beta1-42, total tau, phospho-tau181, urine bis(monoacylglycerol)phosphate levels and serum neurofilament light chain. Linear mixed-effects (LMMs) models examined differences in trajectory in CSF-negative and CSF-positive groups. A total of 148 LRRK2 parkinsonism cases (86% with G2019S variant), 46 negative and 102 positive for CSF alpha-synuclein seed amplification assay, were included. At baseline, the negative group was older than the positive group [median (inter-quartile range) 69.1 (65.2-72.3) versus 61.5 (55.6-66.9) years, P < 0.001] and a greater proportion were female [28 (61%) versus 43 (42%), P = 0.035]. Despite being older, the negative group had similar duration since diagnosis and similar motor rating scale [16 (11-23) versus 16 (10-22), P = 0.480] though lower levodopa equivalents. Only 13 (29%) of the negative group were hyposmic, compared with 75 (77%) of the positive group. The negative group, compared with the positive group, had higher per cent-expected putamenal dopamine transporter binding for their age and sex [0.36 (0.29-0.45) versus 0.26 (0.22-0.37), P < 0.001]. Serum neurofilament light chain was higher in the negative group compared with the positive group [17.10 (13.60-22.10) versus 10.50 (8.43-14.70) pg/mL; age-adjusted P-value = 0.013]. In terms of longitudinal change, the negative group remained stable in functional rating scale score in contrast to the positive group who had a significant increase (worsening) of 0.729 per year (P = 0.037), but no other differences in trajectory were found. Among individuals diagnosed with Parkinson disease with pathogenic variants in the LRRK2 gene, we found clinical and biomarker differences in cases without versus with in vivo evidence of CSF alpha-synuclein aggregates. LRRK2 parkinsonism cases without evidence of alpha-synuclein aggregates as a group exhibit less severe motor manifestations and decline. The underlying biology in LRRK2 parkinsonism cases without evidence of alpha-synuclein aggregates requires further investigation.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David-Erick Lafontant
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 55848, USA
| | - Seung Ho Choi
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 55848, USA
| | - Hirotaka Iwaki
- DataTecnica LLC, Washington, DC 20037, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 55848, USA
| | - Roy N Alcalay
- Tel Aviv Sourasky Medical Center, 64239 Tel-Aviv, Israel
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Andrew Vo
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Qin Tao
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Charles S Venuto
- Department of Neurology, Center for Health and Technology, University of Rochester Medical Center, Rochester, NY 14642,USA
| | - Karl Kieburtz
- Department of Neurology, Center for Health and Technology, University of Rochester Medical Center, Rochester, NY 14642,USA
| | - Kathleen L Poston
- Department of Neurology, Stanford University School of Medicine, Palo Alto, 94304 CA, USA
| | - Susan Bressman
- Department of Neurology, Icahn School of Medicine, Mount Sinai Beth Israel, New York City, NY 10029, USA
| | - Paulina Gonzalez-Latapi
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 55848, USA
| | - Danna Jennings
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Eduardo Tolosa
- Parkinson’s Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, 08028 Barcelona, Spain
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ken Marek
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA
| | - Tatyana Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Park SA, An YS, Park YJ, Lee JY, Jeon H, Kim YS, Lee K, Sun K, Lee SM, Moon SY. Comparative analysis of Elecsys and ELISA for differentiating amyloid-PET status in a Korean memory clinic based on cerebrospinal fluid biomarkers. J Alzheimers Dis 2025; 104:232-244. [PMID: 39956946 DOI: 10.1177/13872877251314886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BackgroundThe adoption of Alzheimer's disease (AD) biomarkers in clinical practice is expected to increase following recent approval of disease-modifying therapies. Fully automated immunoassays, Elecsys platform, offer convenience and enhanced reliability.ObjectiveThis study was performed to evaluate the performance of the Elecsys assay in a Korean clinical setting, comparing its effectiveness to ELISA for detecting amyloid-PET positivity.MethodsCerebrospinal fluid (CSF) Aβ42, pTau181, tTau, pTau181/Aβ42, and tTau/Aβ42 were evaluated using Elecsys kits on a Cobas e 411 analyzer and manual Innotest ELISA with paired frozen samples (n = 118) from subjects with cognitive status ranging from unimpaired to mild cognitive impairment and dementia.ResultsStrong linear correlations were observed between Elecsys- and ELISA-measured Aβ42, pTau181, and tTau levels. Receiver operating characteristic-based cutoff points for pTau181/Aβ42 (0.0252) and tTau/Aβ42 (0.258) in Elecsys demonstrated the highest areas under the curve (0.97 and 0.96) and predictive values (96.6% for both) for detecting amyloid-PET abnormalities. No cases of abnormal amyloid PET status were found without concurrent abnormal CSF biomarkers when considering Elecsys Aβ42 and the pTau181/Aβ42 ratio simultaneously. In addition, previously established cutoffs for combined ratios effectively differentiated amyloid PET status in our samples.ConclusionsThis study demonstrated the utility of Elecsys-measured CSF AD biomarkers in agreement with amyloid-PET classification in the Korean population. The pTau181/Aβ42 and tTau/Aβ42 ratios were the most accurate in detecting amyloid-PET (+), with Elecsys showing higher accuracy than ELISA. The study also supported the applicability of common cutoffs from Western countries for these biomarkers in our samples.
Collapse
Affiliation(s)
- Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young-Sil An
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yong-Jin Park
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ji-Yeong Lee
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyuna Jeon
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Yoon Seob Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Keun Lee
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyunghwa Sun
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun Min Lee
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - So Young Moon
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
13
|
Hu HY, Li HQ, Gong WK, Huang SY, Fu Y, Hu H, Dong Q, Cheng W, Tan L, Cui M, Yu JT. Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau. J Prev Alzheimers Dis 2025; 12:100037. [PMID: 39863331 DOI: 10.1016/j.tjpad.2024.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers. METHODS We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury. The associations of PSMD with changes in cognitive functions, AD pathologies (Aβ, tau, and neurodegeneration), and volumes of AD-signature regions of interest (ROI) or hippocampus were estimated. The associations between PSMD and the incidences of clinical progression were also tested. Covariates included age, sex, education, apolipoprotein E4 status, smoking, and hypertension. RESULTS Higher PSMD was associated with greater cognitive decline (β=-0.012, P < 0.001 for Mini-Mental State Examination score; β<0, P < 0.05 for four cognitive domains) and a higher risk of clinical progression from normal cognition to mild cognitive impairment (MCI) or AD (Hazard ratio=2.11 [1.38-3.23], P < 0.001). These associations persisted independently of amyloid status. PSMD did not predict changes in Aβ or tau levels, but predicted changes in volumes of AD-signature ROI (β=-0.003, P < 0.001) or hippocampus (β=-0.002, P = 0.010). Besides, the whole-brain PSMD could predict cognitive decline better than regional PSMDs. CONCLUSIONS PSMD may be a valuable biomarker for predicting cognitive decline and clinical progression to MCI and AD, providing insights besides traditional Aβ and tau pathways. Further research could elucidate its role in clinical assessments and therapeutic strategies.
Collapse
Affiliation(s)
- He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, PR China.
| | - Hong-Qi Li
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Wei-Kang Gong
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, PR China.
| | - Shu-Yi Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, PR China.
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, PR China.
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Wei Cheng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, PR China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, PR China.
| | - Mei Cui
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|
14
|
Sheng ZH, Liu JY, Ma JY, Mi YC, Wang H, Guo F, Ma LZ, Tan L. Frailty increases the risk of Alzheimer's disease in non-demented individuals: A longitudinal cohort study. J Alzheimers Dis 2025; 103:1023-1035. [PMID: 39956938 DOI: 10.1177/13872877241309081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND Frailty, which is considered a potential modifiable risk factor for dementia, continues to generate debate when it comes to Alzheimer's disease (AD). Furthermore, the underlying pathological mechanisms linking frailty to AD remain uncertain. OBJECTIVE We aimed to investigate the relationship between frailty and the risk of AD while elucidating the connections between frailty, AD biomarkers, and cognitive function. METHODS Total of 829 non-frail (261 robust, 568 pre-frail) and 94 frail individuals from the Alzheimer's Disease Neuroimaging Initiative database were recruited. Kaplan-Meier analysis and Cox regression assessed AD risk across diverse frail statuses in 923 non-demented individuals. Multiple linear regression, mixed effects models and causal mediation analyses bootstrapped 10,000 iterations were conducted to examined underlying associations. RESULTS The frail group had a 67.7% increased risk of AD than non-frail group (HR = 1.677; 95%CI, 1.179-2.385; p = 0.004), a 61.8% increased risk of AD than pre-frail group (HR = 1.618; 95%CI, 1.131-2.316; p = 0.009) and a far higher risk of AD than robust group (HR = 2.011; 95%CI, 1.263-3.202; p = 0.003). Frailty was associated with cognitive decline (global cognition, memory and executive function), whole brain and hippocampus atrophy, and ventricle dilation. Higher frail degree predicted faster cognitive decline, brain atrophy and ventricle dilation. Frailty's association with cognition was partially mediated by volume of whole brain (29.54%-30.17% of total effect), hippocampus (18.21%-24.55% of total effect), and ventricle (baseline, 7.62%-10.87% of total effect; change rate, 13.30%-24.33% of total effect). CONCLUSIONS Frailty as a potential risk factor for AD, further mechanisms investigation is warranted; mitigating frailty could potentially contribute to AD prevention.
Collapse
Affiliation(s)
- Ze-Hu Sheng
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jia-Yao Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jun-Yi Ma
- Shandong First Medical University, Jinan, China
| | - Yin-Chu Mi
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Hao Wang
- Department of Neurology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Fan Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Bittner T, Tonietto M, Klein G, Belusov A, Illiano V, Voyle N, Delmar P, Scelsi MA, Gobbi S, Silvestri E, Barakovic M, Napolitano A, Galli C, Abaei M, Blennow K, Barkhof F. Biomarker treatment effects in two phase 3 trials of gantenerumab. Alzheimers Dement 2025; 21:e14414. [PMID: 39887500 PMCID: PMC11848197 DOI: 10.1002/alz.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 02/01/2025]
Abstract
INTRODUCTION We report biomarker treatment effects in the GRADUATE I and II phase 3 studies of gantenerumab in early Alzheimer's disease (AD). METHODS Amyloid and tau positron emission tomography (PET), volumetric magnetic resonance imaging (vMRI), cerebrospinal fluid (CSF), and plasma biomarkers used to assess gantenerumab treatment related changes on neuropathology, neurodegeneration, and neuroinflammation over 116 weeks. RESULTS Gantenerumab reduced amyloid PET load, CSF biomarkers of amyloid beta (Aβ)40, total tau (t-tau), phosphorylated tau 181 (p-tau181), neurogranin, S100 calcium-binding protein B (S100B), neurofilament light (NfL), alpha-synuclein (α-syn), neuronal pentraxin-2 (NPTX2), and plasma biomarkers of t-tau, p-tau181, p-tau217, and glial fibrillary acidic protein (GFAP) while increasing plasma Aβ40, Aβ42. vMRI showed increased reduction in whole brain volume and increased ventricular expansion, while hippocampal volume was unaffected. Tau PET showed no treatment effect. DISCUSSION Robust treatment effects were observed for multiple biomarkers in GRADUATE I and II. Comparison across anti-amyloid antibodies indicates utility of p-tau and GFAP as biomarkers of amyloid plaque removal while NfL and tau PET seem unsuitable as consistent indicators of clinical efficacy. vMRI might be confounded by non-neurodegenerative brain volume changes. TRIAL REGISTRATION NUMBER (CLINICALTRIALS.GOV IDENTIFIER): NCT03444870 and NCT03443973. HIGHLIGHTS Gantenerumab significantly reduced brain amyloid load. Tau positron emission tomography showed no treatment effect in a small subset of participants. Volumetric magnetic resonance imaging showed increased whole brain volume reduction under treatment while hippocampal volume was unaffected. Robust treatment effects on cerebrospinal fluid and plasma biomarkers were found, despite lack of clinical efficacy.
Collapse
Affiliation(s)
- Tobias Bittner
- Genentech, Inc.South San FranciscoCaliforniaUSA
- F. Hoffmann‐La Roche LtdBaselSwitzerland
| | | | | | | | | | | | | | | | | | - Erica Silvestri
- F. Hoffmann‐La Roche LtdBaselSwitzerland
- A4P Consulting Ltd.SandwichUK
| | | | | | | | - Maryam Abaei
- F. Hoffmann‐La Roche LtdBaselSwitzerland
- A4P Consulting Ltd.SandwichUK
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Paris Brain InstituteICMPitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
| | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam UMCVrije UniversiteitAmsterdamthe Netherlands
- UCL Queen Square Institute of Neurology and Centre for Medical Image Computing, Queen SquareLondonUK
| |
Collapse
|
16
|
Shu H, Ding G, Xu X, Huang X, He R. Association of CSF soluble TREM1 levels with hippocampal atrophy in cognitively impaired older adults. Front Aging Neurosci 2025; 16:1481526. [PMID: 39877076 PMCID: PMC11772463 DOI: 10.3389/fnagi.2024.1481526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Background Recent studies have shown that cerebrospinal fluid (CSF) levels of soluble triggering receptor expressed on myeloid cells 1 (sTREM1) are elevated in individuals with Alzheimer's disease (AD), though the relationship between CSF sTREM1 and hippocampal atrophy remains to be elucidated. The primary aim of this study was to investigate the association between CSF sTREM1 levels and longitudinal changes in hippocampal volumes, and to determine if this relationship is moderated by cognitive status. Methods We included 576 participants, comprising 152 cognitively unimpaired (CU) and 424 cognitively impaired (CI) individuals. In the cross-sectional analyses, Pearson's correlation tests were conducted to examine the relationship between baseline CSF sTREM1 levels and hippocampal volumes in both CU and CI participants. For the longitudinal analyses, a linear mixed-effects model was employed to assess the significance of the three-way interaction between CSF sTREM1 levels, cognitive status, and follow-up time on adjusted hippocampal volume (aHV). Further stratified analyses based on cognitive status were performed to dissect the specific effects within each group. Results Our findings revealed significantly elevated baseline CSF sTREM1 levels in CI participants compared to CU participants. Cross-sectional analyses demonstrated that CSF sTREM1 levels were negatively associated with hippocampal volumes in both CU and CI participants. In the longitudinal analyses, the three-way interaction between CSF sTREM1 levels, cognitive status, and follow-up time was found to be significant for aHV. Stratified analyses indicated that, in CI participants, higher CSF sTREM1 levels were associated with a more accelerated rate of hippocampal atrophy, whereas no such association was observed in CU participants. Conclusion These results underscore the complex interplay between neuroinflammation, as reflected by CSF sTREM1 levels, hippocampal atrophy, and cognitive decline. The data suggest that neuroinflammation may contribute differently to hippocampal atrophy rates in CI versus CU individuals, highlighting the potential for targeted anti-inflammatory interventions in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Hao Shu
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, Zhejiang, China
| | - Gangyu Ding
- Department of Neurology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Jiading, Shanghai, China
| | - Xiaona Xu
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, Zhejiang, China
| | - Xuerong Huang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, Zhejiang, China
| | - Ruqian He
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Sheng Z, Wang L, Chen M, Zhong F, Wu S, Liang S, Song J, Chen L, Chen Y, Chen S, Yu W, Lü Y. Cerebrospinal fluid β2-microglobulin promotes the tau pathology through microglia-astrocyte communication in Alzheimer's disease. Alzheimers Res Ther 2025; 17:2. [PMID: 39748415 PMCID: PMC11697900 DOI: 10.1186/s13195-024-01665-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) β2-microglobulin (β2M) has been demonstrated as an important factor in β-amyloid (Aβ) neurotoxicity and a potential target for Alzheimer's disease (AD). However, more investigation is required to ascertain the relationship between β2M and glial activities in AD pathogenesis. METHODS In this study, 211 participants from the Alzheimer's disease Neuroimaging Initiative (ADNI) with CSF and Plasma β2M, CSF glial fibrillary acidic protein (GFAP), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), Aβ42, phosphorylated-tau (P-tau) and total tau (T-tau) were divided into four groups, stage 0, 1, 2, and suspected non-AD pathology (SNAP) based on the National Institute on Aging- Alzheimer's Association (NIA-AA) criteria. Multiple linear regression, linear mixed effects models, and causal mediation analyses bootstrapped 10,000 iterations were used to investigate the underlying associations among β2M and CSF biomarkers at baseline and during a longitudinal visit. RESULTS CSF β2M concentration decreased with amyloid in stage 1 compared with stage 0 and increased with tau pathology and neurodegeneration in stage 2 and SNAP compared with stage 1. Moreover, CSF β2M level was positively correlated with the Aβ42 (β = 0.230), P-tau (β = 0.564), T-tau (β = 0.603), GFAP (β = 0.552), and sTREM2 (β = 0.641) (all P < 0.001). CSF β2M was only longitudinally correlated with T-tau change. The correlation of CSF β2M with P-tau (proportion = 25.4%, P < 0.001) and T-tau (proportion = 26.7%, P < 0.001) was partially mediated by GFAP in total participants, reproduced in late-life individuals. Furthermore, the astrocyte cascade also partially mediated the pathological relationship between CSF β2M and tau pathology (β2M → GFAP → YKL-40 → P-tau/T-tau, IE: 0.424-0.435, all P < 0.001). Nevertheless, the mediation effects of sTREM2 were not significant. Additionally, there was no association between plasma β2M and CSF biomarkers. CONCLUSIONS CSF β2M is dynamic in AD pathology and associated with neuroinflammation. CSF GFAP might mediate the association between β2M and tau pathology, complementing the existing research on the effect of β2M in AD pathology and providing a new perspective on treatment.
Collapse
Affiliation(s)
- Zehu Sheng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Lanyang Wang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Fuxin Zhong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shijing Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shuyu Liang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Jiaqi Song
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lihua Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yingxi Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shiyu Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
18
|
Weiner MW, Kanoria S, Miller MJ, Aisen PS, Beckett LA, Conti C, Diaz A, Flenniken D, Green RC, Harvey DJ, Jack CR, Jagust W, Lee EB, Morris JC, Nho K, Nosheny R, Okonkwo OC, Perrin RJ, Petersen RC, Rivera‐Mindt M, Saykin AJ, Shaw LM, Toga AW, Tosun D, Veitch DP, for the Alzheimer's Disease Neuroimaging Initiative. Overview of Alzheimer's Disease Neuroimaging Initiative and future clinical trials. Alzheimers Dement 2025; 21:e14321. [PMID: 39711072 PMCID: PMC11775462 DOI: 10.1002/alz.14321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 12/24/2024]
Abstract
The overall goal of the Alzheimer's Disease Neuroimaging Initiative (ADNI) is to optimize and validate biomarkers for clinical trials while sharing all data and biofluid samples with the global scientific community. ADNI has been instrumental in standardizing and validating amyloid beta (Aβ) and tau positron emission tomography (PET) imaging. ADNI data were used for the US Food and Drug Administration (FDA) approval of the Fujirebio and Roche Elecsys cerebrospinal fluid diagnostic tests. Additionally, ADNI provided data for the trials of the FDA-approved treatments aducanumab, lecanemab, and donanemab. More than 6000 scientific papers have been published using ADNI data, reflecting ADNI's promotion of open science and data sharing. Despite its enormous success, ADNI has some limitations, particularly in generalizing its data and findings to the entire US/Canadian population. This introduction provides a historical overview of ADNI and highlights its significant accomplishments and future vision to pioneer "the clinical trial of the future" focusing on demographic inclusivity. HIGHLIGHTS: The Alzheimer's Disease Neuroimaging Initiative (ADNI) introduced a novel model for public-private partnerships and data sharing. It successfully validated amyloid and Tau PET imaging, as well as CSF and plasma biomarkers, for diagnosing Alzheimer's disease. ADNI generated and disseminated vital data for designing AD clinical trials.
Collapse
|
19
|
Shaw LM, Korecka M, Lee EB, Cousins KAQ, Vanderstichele H, Schindler SE, Tosun D, DeMarco ML, Brylska M, Wan Y, Burnham S, Sciulli A, Vulaj A, Tropea TF, Chen‐Plotkin A, Wolk DA, the Alzheimer's Disease Neuroimaging Initiative. ADNI Biomarker Core: A review of progress since 2004 and future challenges. Alzheimers Dement 2025; 21:e14264. [PMID: 39614747 PMCID: PMC11773510 DOI: 10.1002/alz.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND We describe the Alzheimer's Disease Neuroimaging Initiative (ADNI) Biomarker Core major activities from October 2004 to March 2024, including biobanking ADNI cerebrospinal fluid (CSF), plasma, and serum biofluid samples, biofluid analyses for Alzheimer's disease (AD) biomarkers in the Biomarker Core and various non-ADNI laboratories, and continuous assessments of pre-analytics. RESULTS Validated immunoassay and mass spectrometry-based assays were performed in CSF with a shift to plasma, a more accessible biofluid, as qualified assays became available. Performance comparisons across different CSF and plasma AD biomarker measurement platforms have enriched substantially the ADNI participant database enabling method performance determinations for AD pathology detection and longitudinal assessments of disease progression. DISCUSSION Close collaboration with academic and industrial partners in the validation and implementation of AD biomarkers for early detection of disease pathology in treatment trials and ultimately in clinical practice is a key factor for the success of the work done in the Biomarker Core. HIGHLIGHTS Describe ADNI Biomarker Core biobanking and sample distribution from 2007 to 2024. Discuss validated mass spectrometry and immunoassay methods for ADNI biofluid analyses. Review collaborations with academic and industrial partners to detect AD and progression. Discuss major challenges, and progress to date, for co-pathology detection. Implementation in the ATN scheme: co-pathology and modeling disease progression.
Collapse
Affiliation(s)
- Leslie M. Shaw
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Magdalena Korecka
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Edward B. Lee
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Katheryn A Q Cousins
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Suzanne E. Schindler
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Duygu Tosun
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mari L. DeMarco
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVan CouverCanada
| | - Magdalena Brylska
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Yang Wan
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Alexandria Sciulli
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Amberley Vulaj
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Thomas F. Tropea
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alice Chen‐Plotkin
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
20
|
Devinney MJ, Spector AR, Wright MC, Thomas J, Avasarala P, Moretti E, Dominguez JE, Smith PJ, Whitson HE, Veasey SC, Mathew JP, Berger M, INTUIT Study Investigators. The Role of Sleep Apnea in Postoperative Neurocognitive Disorders Among Older Noncardiac Surgery Patients: A Prospective Cohort Study. Anesth Analg 2025; 140:99-109. [PMID: 39688967 PMCID: PMC11652847 DOI: 10.1213/ane.0000000000007269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Obstructive sleep apnea is associated with increased dementia risk, yet its role in postoperative neurocognitive disorders is unclear. Here, we studied whether the severity of untreated obstructive sleep apnea is associated with the severity of postoperative neurocognitive disorder. METHODS In this single-center prospective cohort study, older noncardiac surgery patients aged 60 years and above underwent preoperative home sleep apnea testing, and pre- and postoperative delirium assessments and cognitive testing. Sleep apnea severity was determined using the measured respiratory event index (REI). Global cognitive change from before to 6 weeks (and 1 year) after surgery was used to measure postoperative neurocognitive disorder severity. Postoperative changes in individual cognitive domain performance along with subjective cognitive complaints and/or deficits in instrumental activities of daily living were used to measure postoperative neurocognitive disorder incidence. RESULTS Of 96 subjects who completed home sleep apnea testing, 58 tested positive for sleep apnea. In univariable analyses, sleep apnea severity was not associated with increased postoperative neurocognitive disorder severity at 6 weeks (global cognitive change ; [95% confidence interval [CI], -0.02 to 0.03]; P = .79) or 1-year after surgery (; [95% CI, -0.02 to 0.03]; P = .70). Adjusting for age, sex, baseline cognition, and surgery duration, sleep apnea severity remained not associated with increased postoperative neurocognitive disorder severity at 6 weeks (; [95% CI, -0.02 to 0.04]; P = .40) or 1-year after surgery (; [95% CI, -0.02 to 0.04]; P = .55). In a multivariable analysis, sleep apnea severity was not associated with postoperative neurocognitive disorder (either mild or major) incidence at 6 weeks (odds ratio [OR] = 0.89, [95% CI, 0.59-1.14]; P = .45) or 1-year postoperatively (OR = 1.01, [95% CI, 0.81-1.24]; P = .90). Sleep apnea severity was also not associated with postoperative delirium in univariable analyses (delirium incidence OR = 0.88, [95% CI, 0.59-1.10]; P = .37; delirium severity ; [95% CI, -0.02 to 0.03]; P = .79) or in multivariable analyses (delirium incidence OR = 1.07, [95% CI, 0.81-1.38]; P = .74; delirium severity OR = 0.95, [95% CI, 0.81-1.10]; P = .48). CONCLUSIONS In this older noncardiac surgery cohort, untreated sleep apnea was not associated with increased incidence or severity of postoperative neurocognitive disorder or delirium.
Collapse
Affiliation(s)
- Michael J Devinney
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Andrew R Spector
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Mary C Wright
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Jake Thomas
- Duke University School of Medicine, Durham, NC, USA
| | - Pallavi Avasarala
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Eugene Moretti
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer E Dominguez
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Patrick J Smith
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Heather E Whitson
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
- Division of Geriatric Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke/UNC Alzheimer’s Disease Researcher Center, Duke University and University of North Carolina at Chapel Hill
| | - Sigrid C Veasey
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
- Duke/UNC Alzheimer’s Disease Researcher Center, Duke University and University of North Carolina at Chapel Hill
| | | |
Collapse
|
21
|
Quispialaya KM, Therriault J, Aliaga A, Tissot C, Servaes S, Rahmouni N, Karikari TK, Benedet AL, Ashton NJ, Macedo AC, Lussier FZ, Stevenson J, Wang Y, Arias JF, Hosseini A, Matsudaira T, Jean‐Claude B, Gilfix BM, Zimmer ER, Soucy J, Pascoal TA, Gauthier S, Zetterberg H, Blennow K, Rosa‐Neto P, for the Alzheimer's Disease Neuroimaging Initiative. Plasma phosphorylated tau181 outperforms [ 18F] fluorodeoxyglucose positron emission tomography in the identification of early Alzheimer disease. Eur J Neurol 2024; 31:e16255. [PMID: 39447157 PMCID: PMC11555153 DOI: 10.1111/ene.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to compare the performance of plasma p-tau181 with that of [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) in the identification of early biological Alzheimer disease (AD). METHODS We included 533 cognitively impaired participants from the Alzheimer's Disease Neuroimaging Initiative. Participants underwent PET scans, biofluid collection, and cognitive tests. Receiver operating characteristic analyses were used to determine the diagnostic accuracy of plasma p-tau181 and [18F]FDG-PET using clinical diagnosis and core AD biomarkers ([18F]florbetapir-PET and cerebrospinal fluid [CSF] p-tau181) as reference standards. Differences in the diagnostic accuracy between plasma p-tau181 and [18F]FDG-PET were determined by bootstrap-based tests. Correlations of [18F]FDG-PET and plasma p-tau181 with CSF p-tau181, amyloid β (Aβ) PET, and cognitive performance were evaluated to compare associations between measurements. RESULTS We observed that both plasma p-tau181 and [18F]FDG-PET identified individuals with positive AD biomarkers in CSF or on Aβ-PET. In the MCI group, plasma p-tau181 outperformed [18F]FDG-PET in identifying AD measured by CSF (p = 0.0007) and by Aβ-PET (p = 0.001). We also observed that both plasma p-tau181 and [18F]FDG-PET metabolism were associated with core AD biomarkers. However, [18F]FDG-PET uptake was more closely associated with cognitive outcomes (Montreal Cognitive Assessment, Mini-Mental State Examination, Clinical Dementia Rating Sum of Boxes, and logical memory delayed recall, p < 0.001) than plasma p-tau181. CONCLUSIONS Overall, although both plasma p-tau181 and [18F]FDG-PET were associated with core AD biomarkers, plasma p-tau181 outperformed [18F]FDG-PET in identifying individuals with early AD pathophysiology. Taken together, our study suggests that plasma p-tau181 may aid in detecting individuals with underlying early AD.
Collapse
|
22
|
Studart-Neto A, Barbosa BJAP, Coutinho AM, de Souza LC, Schilling LP, da Silva MNM, Castilhos RM, Bertolucci PHF, Borelli WV, Gomes HR, Fernandes GBP, Barbosa MT, Balthazar MLF, Frota NAF, Forlenza OV, Smid J, Brucki SMD, Caramelli P, Nitrini R, Engelhardt E, Resende EDPF. Guidelines for the use and interpretation of Alzheimer's disease biomarkers in clinical practice in Brazil: recommendations from the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dement Neuropsychol 2024; 18:e2024C001. [PMID: 39534442 PMCID: PMC11556292 DOI: 10.1590/1980-5764-dn-2024-c001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, the diagnostic accuracy of Alzheimer's disease has been enhanced by the development of different types of biomarkers that indicate the presence of neuropathological processes. In addition to improving patient selection for clinical trials, biomarkers can assess the effects of new treatments on pathological processes. However, there is concern about the indiscriminate and poorly supported use of biomarkers, especially in asymptomatic individuals or those with subjective cognitive decline. Difficulties interpreting these tests, high costs, and unequal access make this scenario even more challenging in healthcare. This article presents the recommendations from the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology (Departamento Científico de Neurologia Cognitiva e Envelhecimento da Academia Brasileira de Neurologia) regarding the rational use and interpretation of Alzheimer's disease biomarkers in clinical practice. The clinical diagnosis of cognitive-behavioral syndrome is recommended as the initial step to guide the request for biomarkers.
Collapse
Affiliation(s)
- Adalberto Studart-Neto
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brazil
| | - Breno José Alencar Pires Barbosa
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade Federal de Pernambuco, Hospital das Clínicas, Recife, Centro de Ciências Médicas, Recife PE, Brazil
- Universidade Federal de Pernambuco, Empresa Brasileira de Serviços Hospitalares, Hospital das Clínicas, Departamento de Neurologia, Recife PE, Brazil
| | - Artur Martins Coutinho
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Radiologia, Centro de Medicina Nuclear, Laboratório de Investigação Médica (LIM 43), São Paulo SP, Brazil
- Hospital Sírio-Libanês, Medicina Nuclear e Serviço de PET-CT, São Paulo SP, Brazil
| | - Leonardo Cruz de Souza
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Unidade de Neurologia Cognitiva e do Comportamento, Belo Horizonte MG, Brazil
| | - Lucas Porcello Schilling
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Pontifícia Universidade do Rio Grande do Sul, Escola de Medicina, Serviço de Neurologia, Porto Alegre RS, Brazil
| | - Mari Nilva Maia da Silva
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Hospital Nina Rodrigues, Serviço de Neuropsiquiatria, São Luís MA, Brazil
| | - Raphael Machado Castilhos
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Centro de Neurologia Cognitiva e Comportamental, Porto Alegre RS, Brazil
| | - Paulo Henrique Ferreira Bertolucci
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | - Wyllians Vendramini Borelli
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Ciências Morfológicas, Porto Alegre RS, Brazil
| | - Hélio Rodrigues Gomes
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Laboratório de Líquido Cefalorraquidiano, São Paulo SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Laboratório de Investigação Médica (LIM 15), São Paulo SP, Brazil
- Departamento Científico de Líquido Cefalorraquiano, Academia Brasileira de Neurologia, São Paulo SP, Brazil
| | | | - Maira Tonidandel Barbosa
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Unidade de Neurologia Cognitiva e do Comportamento, Belo Horizonte MG, Brazil
| | - Marcio Luiz Figueredo Balthazar
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brazil
| | - Norberto Anízio Ferreira Frota
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Hospital Geral de Fortaleza, Serviço de Neurologia, Fortaleza CE, Brazil
- Universidade de Fortaleza, Fortaleza, CE, Brazil
| | - Orestes Vicente Forlenza
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brazil
| | - Jerusa Smid
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brazil
| | - Sonia Maria Dozzi Brucki
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brazil
| | - Paulo Caramelli
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Unidade de Neurologia Cognitiva e do Comportamento, Belo Horizonte MG, Brazil
| | - Ricardo Nitrini
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brazil
| | - Eliasz Engelhardt
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Neurologia Deolindo Couto, Rio de Janeiro RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brazil
| | - Elisa de Paula França Resende
- Academia Brasileira de Neurologia, Departamento Científico de Neurologia Cognitiva e do Envelhecimento, São Paulo SP, Brazil
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Unidade de Neurologia Cognitiva e do Comportamento, Belo Horizonte MG, Brazil
| |
Collapse
|
23
|
Cook N, Driscoll I, Gaitán JM, Glittenberg M, Betthauser TJ, Carlsson CM, Johnson SC, Asthana S, Zetterberg H, Blennow K, Kollmorgen G, Quijano-Rubio C, Dubal DB, Okonkwo OC. Amyloid-β positivity is less prevalent in cognitively unimpaired KLOTHO KL-VS heterozygotes. J Alzheimers Dis 2024; 102:480-490. [PMID: 39529379 PMCID: PMC12025201 DOI: 10.1177/13872877241289785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Klotho, encoded by the KLOTHO gene, is an anti-aging and neuroprotective protein. KLOTHO KL-VS heterozygosity (KL-VSHET) is hypothesized to be protective against the accumulation of Alzheimer's disease (AD) neuropathological hallmarks (amyloid-β (Aβ) and tau). OBJECTIVE We examine whether being positive for Aβ (A+) or tau (T+), or A/T joint status [positive for Aβ (A + T-), tau (A-T+), both (A + T+) or neither (A-T-)] vary by KL-VS and whether serum klotho protein levels vary based on A+, T+, or A/T status in a cohort enriched for AD risk. METHODS The sample consisted of 704 cognitively unimpaired, late middle-aged, and older adults; MeanAge(SD) = 64.9(8.3). Serum klotho was available for a sub-sample of 396 participants; MeanAge(SD) = 66.8(7.4). Covariate-adjusted logistic regression examined whether A + or T+, and multinomial regression examined whether A/T status, vary by KL-VS genotype. Covariate-adjusted linear regression examined whether serum klotho levels differ based on A+, T+, or A/T status. RESULTS A+ prevalence was lower in KL-VSHET (p = 0.05), with no differences in T + prevalence (p = 0.52). KL-VSHET also had marginally lower odds of being A + T- (p = 0.07). Serum klotho levels did not differ based on A+, T+, or A/T status (all ps ≥ 0.40). CONCLUSIONS KL-VSHET is associated with lower odds of being positive for Aβ, regardless of whether one is also positive for tau. Conversely, the likelihood of being tau positive did not differ based on KL-VS genotype. Our findings add to the growing KLOTHO literature and suggests the need for further research focused on understanding the mechanisms underlying KL-VS-related putative resilience to AD.
Collapse
Affiliation(s)
- Noah Cook
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ira Driscoll
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
| | - Julian M. Gaitán
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Matthew Glittenberg
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Tobey J. Betthauser
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M. Carlsson
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| | - Sterling C. Johnson
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
| | - Sanjay Asthana
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ozioma C. Okonkwo
- Department of Medicine and Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton VA Hospital, Madison, WI, USA
| |
Collapse
|
24
|
Vermunt L, Sutphen CL, Dicks E, de Leeuw DM, Allegri RF, Berman SB, Cash DM, Chhatwal JP, Cruchaga C, Day GS, Ewers M, Farlow MR, Fox NC, Ghetti B, Graff-Radford NR, Hassenstab J, Jucker M, Karch CM, Kuhle J, Laske C, Levin J, Masters CL, McDade E, Mori H, Morris JC, Perrin RJ, Preische O, Schofield PR, Suárez-Calvet M, Xiong C, Scheltens P, Teunissen CE, Visser PJ, Bateman RJ, Benzinger TLS, Fagan AM, Gordon BA, Tijms BM. Axonal damage and inflammation response are biological correlates of decline in small-world values: a cohort study in autosomal dominant Alzheimer's disease. Brain Commun 2024; 6:fcae357. [PMID: 39440304 PMCID: PMC11495221 DOI: 10.1093/braincomms/fcae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The grey matter of the brain develops and declines in coordinated patterns during the lifespan. Such covariation patterns of grey matter structure can be quantified as grey matter networks, which can be measured with magnetic resonance imaging. In Alzheimer's disease, the global organization of grey matter networks becomes more random, which is captured by a decline in the small-world coefficient. Such decline in the small-world value has been robustly associated with cognitive decline across clinical stages of Alzheimer's disease. The biological mechanisms causing this decline in small-world values remain unknown. Cerebrospinal fluid (CSF) protein biomarkers are available for studying diverse pathological mechanisms in humans and can provide insight into decline. We investigated the relationships between 10 CSF proteins and small-world coefficient in mutation carriers (N = 219) and non-carriers (N = 136) of the Dominantly Inherited Alzheimer Network Observational study. Abnormalities in Amyloid beta, Tau, synaptic (Synaptosome associated protein-25, Neurogranin) and neuronal calcium-sensor protein (Visinin-like protein-1) preceded loss of small-world coefficient by several years, while increased levels in CSF markers for inflammation (Chitinase-3-like protein 1) and axonal injury (Neurofilament light) co-occurred with decreasing small-world values. This suggests that axonal loss and inflammation play a role in structural grey matter network changes.
Collapse
Affiliation(s)
- Lisa Vermunt
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Neurochemistry Laboratory, Departmentt of Laboratory Medicine, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | | | - Ellen Dicks
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Diederick M de Leeuw
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | - Ricardo F Allegri
- Instituto de Investigaciones Neurológicas FLENI, Buenos Aires, Argentina
| | - Sarah B Berman
- Department of Neurology, Alzheimer’s Disease Research Center, and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carlos Cruchaga
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Martin R Farlow
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Nick C Fox
- Dementia Research Institute at UCL, University College London Institute of Neurology, London W1T 7NF, UK
- Department of Neurodegenerative Disease, Dementia Research Centre, London WC1N 3AR, UK
| | - Bernardino Ghetti
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | | | - Jason Hassenstab
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Celeste M Karch
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, University Hospital and University Basel, 4031 Basel, Switzerland
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Ludwig-Maximilians-Universität München, D-80539 München, Germany
| | - Colin L Masters
- Florey Institute, Melbourne, Parkville Vic 3052, Australia
- The University of Melbourne, Melbourne, Parkville Vic 3052, Australia
| | - Eric McDade
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, 558-8585 Osaka, Japan
| | - John C Morris
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard J Perrin
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Peter R Schofield
- Neuroscience Research Australia & School of Medical Sciences, NSW 2052 Sydney, Sydney, Australia
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, 08003 Barcelona, Spain
| | - Chengjie Xiong
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip Scheltens
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Life Science Partners, 1071 DV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Departmentt of Laboratory Medicine, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, 6229 ER Maastricht, Netherlands
| | | | | | - Anne M Fagan
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian A Gordon
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Betty M Tijms
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
25
|
Rousset RZ, Claessen T, van Harten AC, Lemstra AW, Pijnenburg YAL, van der Flier WM, den Braber A, Jeromin A, Verberk IMW, Teunissen CE. Performance of plasma p-tau217 and NfL in an unselected memory clinic setting. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70003. [PMID: 39583647 PMCID: PMC11584915 DOI: 10.1002/dad2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Plasma phosphorylated tau-217 (p-tau217) and neurofilament light (NfL) can differentiate between different dementias in selected cohorts. We aim to test the discrimination potential of these markers in a real-world cohort. METHODS We measured p-tau217 (ALZpath) and NfL (Quanterix) in 415 (unselected) consecutive memory clinic patients. Biomarker levels were dichotomized as low/high to create four biomarker profiles based on p-tau217 and NfL levels. RESULTS p-Tau217 levels were highest in patients with Alzheimer's disease (AD) dementia, whereas NfL levels were highest in patients with frontotemporal dementia (FTD). Low p-tau217/low NfL was associated mostly with non-neurological diagnoses (79%), and high p-tau217/low NfL indicated AD pathology at any stage (84%). Low p-tau217/high NfL indicated FTD (38%) and high p-tau217/high NfL indicated AD dementia (87%). DISCUSSION p-Tau217 can identify AD pathology at any disease stage. NfL can differentiate FTD from other diagnoses (e.g., AD dementia). Plasma p-tau217 and NfL can support clinical decision-making, and we suggest using them as complements to standard clinical assessment. Highlights Phosphorylated tau-2017 (p-tau217) can detect Alzheimer's disease (AD) across the clinical continuum.Neurofilament light (NfL) can differentiate frontotemporal dementia (FTD) from other diagnoses (AD dementia, dementia with Lewy bodies [DLB], and Psychiatry).p-Tau217 may detect AD co-pathology in other diseases or dementia types (e.g., DLB).p-Tau217 and NfL show potential for clinical implementation.
Collapse
Affiliation(s)
- Rebecca Z. Rousset
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceDe BoelelaanAmsterdamThe Netherlands
| | - Thomas Claessen
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceDe BoelelaanAmsterdamThe Netherlands
- Alzheimer CenterDepartment of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceDe BoelelaanAmsterdamThe Netherlands
| | - Argonde C. van Harten
- Alzheimer CenterDepartment of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceDe BoelelaanAmsterdamThe Netherlands
| | - Afina W. Lemstra
- Alzheimer CenterDepartment of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceDe BoelelaanAmsterdamThe Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer CenterDepartment of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceDe BoelelaanAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer CenterDepartment of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceDe BoelelaanAmsterdamThe Netherlands
| | - Anouk den Braber
- Alzheimer CenterDepartment of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceDe BoelelaanAmsterdamThe Netherlands
- Department of Biological PsychologyVrije Universiteit AmsterdamDe BoelelaanAmsterdamThe Netherlands
| | | | - Inge M. W. Verberk
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceDe BoelelaanAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceDe BoelelaanAmsterdamThe Netherlands
| |
Collapse
|
26
|
Wisse LEM, Spotorno N, Rossi M, Grothe MJ, Mammana A, Tideman P, Baiardi S, Strandberg O, Ticca A, van Westen D, Mattsson-Carlgren N, Palmqvist S, Stomrud E, Parchi P, Hansson O. MRI Signature of α-Synuclein Pathology in Asymptomatic Stages and a Memory Clinic Population. JAMA Neurol 2024; 81:1051-1059. [PMID: 39068668 PMCID: PMC11284633 DOI: 10.1001/jamaneurol.2024.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/15/2024] [Indexed: 07/30/2024]
Abstract
Importance The lack of an in vivo measure for α-synuclein (α-syn) pathology until recently has limited thorough characterization of its brain atrophy pattern, especially during early disease stages. Objective To assess the association of state-of-the-art cerebrospinal fluid (CSF) seed amplification assays (SAA) α-syn positivity (SAA α-syn+) with magnetic resonance imaging (MRI) structural measures, across the continuum from clinically unimpaired (CU) to cognitively impaired (CI) individuals, in 3 independent cohorts, and separately in CU and CI individuals, the latter reflecting a memory clinic population. Design, Setting, and Participants Cross-sectional data were used from the Swedish BioFINDER-2 study (inclusion, 2017-2023) as the discovery cohort and the Swedish BioFINDER-1 study (inclusion, 2007-2015) and Alzheimer's Disease Neuroimaging Initiative (ADNI; inclusion 2005-2022) as replication cohorts. All cohorts are from multicenter studies, but the BioFINDER cohorts used 1 MRI scanner. CU and CI individuals fulfilling inclusion criteria and without missing data points in relevant metrics were included in the study. All analyses were performed from 2023 to 2024. Exposures Presence of α-syn pathology, estimated by baseline CSF SAA α-syn. Main Outcomes and Measures The primary outcomes were cross-sectional structural MRI measures either through voxel-based morphometry (VBM) or regions of interest (ROI) including an automated pipeline for cholinergic basal forebrain nuclei CH4/4p (nucleus basalis of Meynert [NBM]) and CH1/2/3. Secondary outcomes were domain-specific cross-sectional cognitive measures. Analyses were adjusted for CSF biomarkers of Alzheimer pathology. Results A total of 2961 participants were included in this study: 1388 (mean [SD] age, 71 [10] years; 702 female [51%]) from the BioFINDER-2 study, 752 (mean [SD] age, 72 [6] years; 406 female [54%]) from the BioFINDER-1 study, and 821 (mean [SD] age, 75 [8] years; 449 male [55%]) from ADNI. In the BioFINDER-2 study, VBM analyses in the whole cohort revealed a specific association between SAA α-syn+ and the cholinergic NBM, even when adjusting for Alzheimer copathology. ROI-based analyses in the BioFINDER-2 study focused on regions involved in the cholinergic system and confirmed that SAA α-syn+ was indeed independently associated with smaller NBM (β = -0.271; 95% CI, -0.399 to -0.142; P <.001) and CH1/2/3 volumes (β = -0.227; 95% CI, -0.377 to -0.076; P =.02). SAA α-syn+ was also independently associated with smaller NBM volumes in the separate CU (β = -0.360; 95% CI, -0.603 to -0.117; P =.03) and CI (β = -0.251; 95% CI, -0.408 to -0.095; P =.02) groups. Overall, the association between SAA α-syn+ and NBM volume was replicated in the BioFINDER-1 study and ADNI cohort. In CI individuals, NBM volumes partially mediated the association of SAA α-syn+ with attention/executive impairments in all cohorts (BioFINDER-2, β = -0.017; proportion-mediated effect, 7%; P =.04; BioFINDER-1, β = -0.096; proportion-mediated effect, 19%; P =.04; ADNI, β = -0.061; proportion-mediated effect, 20%; P =.007). Conclusions and Relevance In this cohort study, SAA α-syn+ was consistently associated with NBM atrophy already during asymptomatic stages. Further, in memory clinic CI populations, SAA α-syn+ was associated with NBM atrophy, which partially mediated α-syn-induced attention/executive impairment.
Collapse
Affiliation(s)
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michel J. Grothe
- Reina Sofia Alzheimer Center, CIEN Foundation, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacion Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Angela Mammana
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Alice Ticca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, Lund, Sweden
- Image and Function, Skåne University Hospital, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
27
|
Guo Y, Chen SD, You J, Huang SY, Chen YL, Zhang Y, Wang LB, He XY, Deng YT, Zhang YR, Huang YY, Dong Q, Feng JF, Cheng W, Yu JT. Multiplex cerebrospinal fluid proteomics identifies biomarkers for diagnosis and prediction of Alzheimer's disease. Nat Hum Behav 2024; 8:2047-2066. [PMID: 38987357 DOI: 10.1038/s41562-024-01924-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Recent expansion of proteomic coverage opens unparalleled avenues to unveil new biomarkers of Alzheimer's disease (AD). Among 6,361 cerebrospinal fluid (CSF) proteins analysed from the ADNI database, YWHAG performed best in diagnosing both biologically (AUC = 0.969) and clinically (AUC = 0.857) defined AD. Four- (YWHAG, SMOC1, PIGR and TMOD2) and five- (ACHE, YWHAG, PCSK1, MMP10 and IRF1) protein panels greatly improved the accuracy to 0.987 and 0.975, respectively. Their superior performance was validated in an independent external cohort and in discriminating autopsy-confirmed AD versus non-AD, rivalling even canonical CSF ATN biomarkers. Moreover, they effectively predicted the clinical progression to AD dementia and were strongly associated with AD core biomarkers and cognitive decline. Synaptic, neurogenic and infectious pathways were enriched in distinct AD stages. Mendelian randomization did not support the significant genetic link between CSF proteins and AD. Our findings revealed promising high-performance biomarkers for AD diagnosis and prediction, with implications for clinical trials targeting different pathomechanisms.
Collapse
Affiliation(s)
- Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shu-Yi Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Lin Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin-Bo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Wang X, Ye T, Huang Z, Zhou W, Zhang J, for the Alzheimer’s Disease Neuroimaging Initiative. Individualized and Biomarker-Based Prognosis of Longitudinal Cognitive Decline in Early Symptomatic Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1301-1315. [PMID: 39434814 PMCID: PMC11491935 DOI: 10.3233/adr-240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/27/2024] [Indexed: 10/23/2024] Open
Abstract
Background Although individualized models using demographic, MRI, and biological markers have recently been applied in mild cognitive impairment (MCI), a similar study is lacking for patients with early Alzheimer's disease (AD) with biomarker evidence of abnormal amyloid in the brain. Objective We aimed to develop prognostic models for individualized prediction of cognitive change in early AD. Methods A total of 421 individuals with early AD (MCI or mild dementia due to AD) having biomarker evidence of abnormal amyloid in the brain were included in the current study. The primary cognitive outcome was the slope of change in Alzheimer's Disease Assessment Scale-cognitive subscale-13 (ADAS-Cog-13) over a period of up to 5 years. Results A model combining demographics, baseline cognition, neurodegenerative markers, and CSF AD biomarkers provided the best predictive performance, achieving an overfitting-corrected R2 of 0.59 (bootstrapping validation). A nomogram was created to enable clinicians or trialists to easily and visually estimate the individualized magnitude of cognitive change in the context of patient characteristics. Simulated clinical trials suggested that the inclusion of our nomogram into the enrichment strategy would lead to a substantial reduction of sample size in a trial of early AD. Conclusions Our findings may be of great clinical relevance to identify individuals with early AD who are likely to experience fast cognitive deterioration in clinical practice and in clinical trials.
Collapse
Affiliation(s)
- Xiwu Wang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Teng Ye
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziye Huang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Wenjun Zhou
- Research and Development, Hangzhou Shansier Medical Technologies Co., Ltd., Hangzhou, China
| | - Jie Zhang
- Department of Data Science, Hangzhou Shansier Medical Technologies Co., Ltd., Hangzhou, China
| | | |
Collapse
|
29
|
Li TR, Li BL, Xu XR, Zhong J, Wang TS, Liu FQ. Association of white matter hyperintensities with cognitive decline and neurodegeneration. Front Aging Neurosci 2024; 16:1412735. [PMID: 39328245 PMCID: PMC11425965 DOI: 10.3389/fnagi.2024.1412735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Background The relationship between white matter hyperintensities (WMH) and the core features of Alzheimer's disease (AD) remains controversial. Further, due to the prevalence of co-pathologies, the precise role of WMH in cognition and neurodegeneration also remains uncertain. Methods Herein, we analyzed 1803 participants with available WMH volume data, extracted from the ADNI database, including 756 cognitively normal controls, 783 patients with mild cognitive impairment (MCI), and 264 patients with dementia. Participants were grouped according to cerebrospinal fluid (CSF) pathology (A/T profile) severity. Linear regression analysis was applied to evaluate the factors associated with WMH volume. Modeled by linear mixed-effects, the increase rates (Δ) of the WMH volume, cognition, and typical neurodegenerative markers were assessed. The predictive effectiveness of WMH volume was subsequently tested using Cox regression analysis, and the relationship between WMH/ΔWMH and other indicators such as cognition was explored through linear regression analyses. Furthermore, we explored the interrelationship among amyloid-β deposition, cognition, and WMH using mediation analysis. Results Higher WMH volume was associated with older age, lower CSF amyloid-β levels, hypertension, and smoking history (all p ≤ 0.001), as well as cognitive status (MCI, p < 0.001; dementia, p = 0.008), but not with CSF tau levels. These results were further verified in any clinical stage, except hypertension and smoking history in the dementia stage. Although WMH could not predict dementia conversion, its increased levels at baseline were associated with a worse cognitive performance and a more rapid memory decline. Longitudinal analyses showed that baseline dementia and positive amyloid-β status were associated with a greater accrual of WMH volume, and a higher ΔWMH was also correlated with a faster cognitive decline. In contrast, except entorhinal cortex thickness, the WMH volume was not found to be associated with any other neurodegenerative markers. To a lesser extent, WMH mediates the relationship between amyloid-β and cognition. Conclusion WMH are non-specific lesions that are associated with amyloid-β deposition, cognitive status, and a variety of vascular risk factors. Despite evidence indicating only a weak relationship with neurodegeneration, early intervention to reduce WMH lesions remains a high priority for preserving cognitive function in the elderly.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Bai-Le Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin-Ran Xu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jin Zhong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Tai-Shan Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Neurology, Yangzhou Friendship Hospital, Yangzhou, China
| | - Feng-Qi Liu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
30
|
Bieger A, Brum WS, Borelli WV, Therriault J, De Bastiani MA, Moreira AG, Benedet AL, Ferrari-Souza JP, Da Costa JC, Souza DO, Castilhos RM, Schumacher Schuh AF, Fagundes Chaves ML, Schöll M, Zetterberg H, Blennow K, Pascoal TA, Gauthier S, Rosa-Neto P, Schilling LP, Zimmer ER. Influence of Different Diagnostic Criteria on Alzheimer Disease Clinical Research. Neurology 2024; 103:e209753. [PMID: 39167736 PMCID: PMC11338500 DOI: 10.1212/wnl.0000000000209753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/14/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Updates in Alzheimer disease (AD) diagnostic guidelines by the National Institute on Aging-Alzheimer's Association (NIA-AA) and the International Working Group (IWG) over the past 11 years may affect clinical diagnoses. We assessed how these guidelines affect clinical AD diagnosis in a cohort of cognitively unimpaired (CU) and cognitively impaired (CI) individuals. METHODS We applied clinical and biomarker data in algorithms to classify individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort according to the following diagnostic guidelines for AD: 2011 NIA-AA, 2016 IWG-2, 2018 NIA-AA, and 2021 IWG-3, assigning the following generic diagnostic labels: (1) not AD (nAD), (2) increased risk of developing AD (irAD), and (3) AD. Diagnostic labels were compared according to their frequency, convergence across guidelines, biomarker profiles, and prognostic value. We also evaluated the diagnostic discordance among the criteria. RESULTS A total of 1,195 individuals (mean age 73.2 ± 7.2 years, mean education 16.1 ± 2.7, 44.0% female) presented different repartitions of diagnostic labels according to the 2011 NIA-AA (nAD = 37.8%, irAD = 23.0%, AD = 39.2%), 2016 IWG-2 (nAD = 37.7%, irAD = 28.7%, AD = 33.6%), 2018 NIA-AA (nAD = 40.7%, irAD = 9.3%, AD = 50.0%), and 2021 IWG-3 (nAD = 51.2%, irAD = 8.4%, AD = 48.3%) frameworks. Discordant diagnoses across all guidelines were found in 512 participants (42.8%) (138 [91.4%] occurring in only β-amyloid [CU 65.4%, CI 34.6%] and 191 [78.6%] in only tau-positive [CU 71.7%, CI 28.3%] individuals). Differences in predicting cognitive impairment between nAD and irAD groups were observed with the 2011 NIA-AA (hazard ratio [HR] 2.21, 95% CI 1.34-3.65, p = 0.002), 2016 IWG-2 (HR 2.81, 95% CI 1.59-4.96, p < 0.000), and 2021 IWG-3 (HR 3.61, 95% CI 2.09-6.23, p < 0.000), but not with 2018 NIA-AA (HR 1.69, 95% CI 0.87-3.28, p = 0.115). DISCUSSION Over 42% of the studied population presented discordant diagnoses when using the different examined AD criteria, mostly in individuals with a single positive biomarker. Except for 2018 NIA-AA, all guidelines identified asymptomatic individuals at risk of cognitive impairment. Our findings highlight important differences between the guidelines, emphasizing the necessity for updated criteria with enhanced staging metrics, considering clinical, research, therapeutic, and trial design aspects.
Collapse
Affiliation(s)
- Andrei Bieger
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Wagner S Brum
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Wyllians V Borelli
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Joseph Therriault
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Marco A De Bastiani
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Amanda G Moreira
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Andrea L Benedet
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - João Pedro Ferrari-Souza
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Jaderson C Da Costa
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Diogo O Souza
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Raphael M Castilhos
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Artur Francisco Schumacher Schuh
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Marcia L Fagundes Chaves
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Michael Schöll
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Henrik Zetterberg
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Kaj Blennow
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Tharick A Pascoal
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Serge Gauthier
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Pedro Rosa-Neto
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Lucas P Schilling
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| | - Eduardo R Zimmer
- From the Graduate Program in Biological Sciences: Biochemistry (A.B., W.S.B., M.A.D.B., J.P.F.-S., D.O.S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Wallenberg Centre for Molecular and Translational Medicine (M.S.), University of Gothenburg, Sweden; Pharmacology and Therapeutics Graduate Program (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS); Memory Center (W.V.B.), Moinhos de Vento Hospital; Department of Anatomy (W.V.B.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; The McGill University Research Centre for Studies in Aging (J.T., A.L.B., T.A.P., S.G., P.R.-N., E.R.Z.), McGill University; Douglas Research Institute (J.T., P.R.-N.), Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University; Departments of Neurology and Neurosurgery (J.T., S.G., P.R.-N.) and Psychiatry (J.T., S.G., P.R.-N.), McGill University, Montreal, Canada; Graduate Program in Biological Sciences: Pharmacology and Therapeutics (A.G.M., A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Psychiatry and Neurochemistry (W.S.B., A.L.B., M.S., H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden; Department of Neurology and Psychiatry (J.P.F.-S., T.A.P.), University of Pittsburgh, PA; Brain Institute of Rio Grande do Sul (J.C.D.C., L.P.S., E.R.Z.), Pontíficia Universidade Católica do Rio Grande do Sul; Department of Biochemistry (D.O.S.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Neurology Service (R.M.C., A.F.S.-S., M.L.F.C.), Hospital de Clínicas de Porto Alegre; Department of Pharmacology (A.F.S.-S., E.R.Z.), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Neurodegenerative Disease (M.S., H.Z.), Queen Square Institute of Neurology, University College London, United Kingdom; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Gothenburg, Sweden; UK Dementia Research Institute at University College London (H.Z.), United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.)
| |
Collapse
|
31
|
Du L, Langhough RE, Wilson RE, Reyes RER, Hermann BP, Jonaitis EM, Betthauser TJ, Chin NA, Christian B, Chaby L, Jeromin A, Molfetta GD, Brum WS, Arslan B, Ashton N, Blennow K, Zetterberg H, Johnson SC. Longitudinal plasma phosphorylated-tau217 and other related biomarkers in a non-demented Alzheimer's risk-enhanced sample. Alzheimers Dement 2024; 20:6183-6204. [PMID: 38970274 PMCID: PMC11497664 DOI: 10.1002/alz.14100] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION Understanding longitudinal change in key plasma biomarkers will aid in detecting presymptomatic Alzheimer's disease (AD). METHODS Serial plasma samples from 424 Wisconsin Registry for Alzheimer's Prevention participants were analyzed for phosphorylated-tau217 (p-tau217; ALZpath) and other AD biomarkers, to study longitudinal trajectories in relation to disease, health factors, and cognitive decline. Of the participants, 18.6% with known amyloid status were amyloid positive (A+); 97.2% were cognitively unimpaired (CU). RESULTS In the CU, amyloid-negative (A-) subset, plasma p-tau217 levels increased modestly with age but were unaffected by body mass index and kidney function. In the whole sample, average p-tau217 change rates were higher in those who were A+ (e.g., simple slopes(se) for A+ and A- at age 60 were 0.232(0.028) and 0.038(0.013))). High baseline p-tau217 levels predicted faster preclinical cognitive decline. DISCUSSION p-tau217 stands out among markers for its strong association with disease and cognitive decline, indicating its potential for early AD detection and monitoring progression. HIGHLIGHTS Phosphorylated-tau217 (p-tau217) trajectories were significantly different in people who were known to be amyloid positive. Subtle age-related trajectories were seen for all the plasma markers in amyloid-negative cognitively unimpaired. Kidney function and body mass index were not associated with plasma p-tau217 trajectories. Higher plasma p-tau217 was associated with faster preclinical cognitive decline.
Collapse
Affiliation(s)
- Lianlian Du
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Rebecca E. Langhough
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Rachael E. Wilson
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Ramiro Eduardo Rea Reyes
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Bruce P. Hermann
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWisconsinUSA
| | - Erin M. Jonaitis
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Tobey J. Betthauser
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nathaniel A. Chin
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Bradley Christian
- Waisman Laboratory for Brain Imaging and BehaviorUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | | | - Guglielmo Di Molfetta
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Wagner S. Brum
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Burak Arslan
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Nicholas Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- ICM Paris Brain Institute, ICMPitie‐Salpetriere HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiAnhuiChina
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
32
|
Li T, Li B, Zhong J, Xu X, Wang T, Liu F, for the Alzheimer's Disease Neuroimaging Initiative. A prediction model of dementia conversion for mild cognitive impairment by combining plasma pTau181 and structural imaging features. CNS Neurosci Ther 2024; 30:e70051. [PMID: 39294845 PMCID: PMC11410557 DOI: 10.1111/cns.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
AIMS The early stages of Alzheimer's disease (AD) are no longer insurmountable. Therefore, identifying at-risk individuals is of great importance for precise treatment. We developed a model to predict cognitive deterioration in patients with mild cognitive impairment (MCI). METHODS Based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we constructed models in a derivation cohort of 761 participants with MCI (138 of whom developed dementia at the 36th month) and verified them in a validation cohort of 353 cognitively normal controls (54 developed MCI and 19 developed dementia at the 36th month). In addition, 1303 participants with available AD cerebrospinal fluid core biomarkers were selected to clarify the ability of the model to predict AD core features. We assessed 32 parameters as candidate predictors, including clinical information, blood biomarkers, and structural imaging features, and used multivariable logistic regression analysis to develop our prediction model. RESULTS Six independent variables of MCI deterioration were identified: apolipoprotein E ε4 allele status, lower Mini-Mental State Examination scores, higher levels of plasma pTau181, smaller volumes of the left hippocampus and right amygdala, and a thinner right inferior temporal cortex. We established an easy-to-use risk heat map and risk score based on these risk factors. The area under the curve (AUC) for both internal and external validations was close to 0.850. Furthermore, the AUC was above 0.800 in identifying participants with high brain amyloid-β loads. Calibration plots demonstrated good agreement between the predicted probability and actual observations in the internal and external validations. CONCLUSION We developed and validated an accurate prediction model for dementia conversion in patients with MCI. Simultaneously, the model predicts AD-specific pathological changes. We hope that this model will contribute to more precise clinical treatment and better healthcare resource allocation.
Collapse
Affiliation(s)
- Tao‐Ran Li
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Bai‐Le Li
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
- Beijing Children's Hospital, Beijing Pediatric Research InstituteCapital Medical University, National Center for Children's HealthBeijingChina
| | - Jin Zhong
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Xin‐Ran Xu
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tai‐Shan Wang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
- Department of NeurologyYangzhou Friendship HospitalYangzhouChina
| | - Feng‐Qi Liu
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | | |
Collapse
|
33
|
Lah JJ, Tian G, Risk BB, Hanfelt JJ, Wang L, Zhao L, Hales CM, Johnson ECB, Elmor MB, Malakauskas SJ, Heilman C, Wingo TS, Dorbin CD, Davis CP, Thomas TI, Hajjar IM, Levey AI, Parker MW. Lower Prevalence of Asymptomatic Alzheimer's Disease Among Healthy African Americans. Ann Neurol 2024; 96:463-475. [PMID: 38924596 DOI: 10.1002/ana.26960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) is believed to be more common in African Americans (AA), but biomarker studies in AA populations are limited. This report represents the largest study to date examining cerebrospinal fluid AD biomarkers in AA individuals. METHODS We analyzed 3,006 cerebrospinal fluid samples from controls, AD cases, and non-AD cases, including 495 (16.5%) self-identified black/AA and 2,456 (81.7%) white/European individuals using cutoffs derived from the Alzheimer's Disease Neuroimaging Initiative, and using a data-driven multivariate Gaussian mixture of regressions. RESULTS Distinct effects of race were found in different groups. Total Tauand phospho181-Tau were lower among AA individuals in all groups (p < 0.0001), and Aβ42 was markedly lower in AA controls compared with white controls (p < 0.0001). Gaussian mixture of regressions modeling of cerebrospinal fluid distributions incorporating adjustments for covariates revealed coefficient estimates for AA race comparable with 2-decade change in age. Using Alzheimer's Disease Neuroimaging Initiative cutoffs, fewer AA controls were classified as biomarker-positive asymptomatic AD (8.0% vs 13.4%). After adjusting for covariates, our Gaussian mixture of regressions model reduced this difference, but continued to predict lower prevalence of asymptomatic AD among AA controls (9.3% vs 13.5%). INTERPRETATION Although the risk of dementia is higher, data-driven modeling indicates lower frequency of asymptomatic AD in AA controls, suggesting that dementia among AA populations may not be driven by higher rates of AD. ANN NEUROL 2024;96:463-475.
Collapse
Affiliation(s)
- James J Lah
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Ganzhong Tian
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Benjamin B Risk
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John J Hanfelt
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Liangkang Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Liping Zhao
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Chadwick M Hales
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Erik C B Johnson
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Morgan B Elmor
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Sarah J Malakauskas
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Craig Heilman
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Cornelya D Dorbin
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Crystal P Davis
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Tiffany I Thomas
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Ihab M Hajjar
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Monica W Parker
- Department of Neurology, Emory University School of Medicine, Emory Brain Health Center, Atlanta, GA, USA
- Emory Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
34
|
Moody JN, Howard E, Nolan KE, Prieto S, Logue MW, Hayes JP, for the Alzheimer’s Disease Neuroimaging Initiative. Traumatic Brain Injury and Genetic Risk for Alzheimer's Disease Impact Cerebrospinal Fluid β-Amyloid Levels in Vietnam War Veterans. Neurotrauma Rep 2024; 5:760-769. [PMID: 39184178 PMCID: PMC11342050 DOI: 10.1089/neur.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Traumatic brain injuries (TBIs) may increase the risk for Alzheimer's disease (AD) and its neuropathological correlates, although the mechanisms of this relationship are unclear. The current study examined the synergistic effects of TBI and genetic risk for AD on β-amyloid (Aβ) levels among Vietnam War Veterans. We hypothesized that the combination of TBI and higher polygenic risk score (PRS) for AD would be associated with lower cerebrospinal fluid (CSF) Aβ42/40. Data were obtained from the Department of Defense Alzheimer's Disease Neuroimaging Initiative. Participants included Vietnam War Veterans without dementia who identified as White non-Hispanic/Latino and had available demographic, clinical assessment, genetic, and CSF biomarker data. Lifetime TBI history was assessed using The Ohio State University TBI Identification Method. Participants were categorized into those with and without TBI. Among those with a prior TBI, injury severity was defined as either mild or moderate/severe. CSF Aβ42/40 ratios were calculated. Genetic propensity for AD was assessed using PRSs. Hierarchical linear regression models examined the interactive effects of TBI and PRS for AD on Aβ42/40. Exploratory analyses examined the interaction between TBI severity and PRS. The final sample included 88 male Vietnam War Veterans who identified as White non-Hispanic/Latino (M age = 68.3 years), 49 of whom reported a prior TBI. There was a significant interaction between TBI and PRS, such that individuals with TBI and higher PRS for AD had lower Aβ42/40 (B = -0.45, 95% CI: -0.86 to -0.05, p = 0.03). This relationship may be stronger with increasing TBI severity (p = 0.05). Overall, TBI was associated with lower Aβ42/40, indicating greater amyloid deposition in the brain, in the context of greater polygenic risk for AD. These findings highlight who may be at increased risk for AD neuropathology following TBI.
Collapse
Affiliation(s)
- Jena N. Moody
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Erica Howard
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Kate E. Nolan
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Prieto
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- Psychiatry and Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jasmeet P. Hayes
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
35
|
Wang X, Ye T, Jiang D, Zhou W, Zhang J, for the Alzheimer’s Disease Neuroimaging Initiative. Characterizing the clinical heterogeneity of early symptomatic Alzheimer's disease: a data-driven machine learning approach. Front Aging Neurosci 2024; 16:1410544. [PMID: 39193492 PMCID: PMC11348433 DOI: 10.3389/fnagi.2024.1410544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is highly heterogeneous, with substantial individual variabilities in clinical progression and neurobiology. Amyloid deposition has been thought to drive cognitive decline and thus a major contributor to the variations in cognitive deterioration in AD. However, the clinical heterogeneity of patients with early symptomatic AD (mild cognitive impairment or mild dementia due to AD) already with evidence of amyloid abnormality in the brain is still unknown. Methods Participants with a baseline diagnosis of mild cognitive impairment or mild dementia, a positive amyloid-PET scan, and more than one follow-up Alzheimer's Disease Assessment Scale-Cognitive Subscale-13 (ADAS-Cog-13) administration within a period of 5-year follow-up were selected from the Alzheimer's Disease Neuroimaging Initiative database (n = 421; age = 73±7; years of education = 16 ± 3; percentage of female gender = 43%; distribution of APOE4 carriers = 68%). A non-parametric k-means longitudinal clustering analysis in the context of the ADAS-Cog-13 data was performed to identify cognitive subtypes. Results We found a highly variable profile of cognitive decline among patients with early AD and identified 4 clusters characterized by distinct rates of cognitive progression. Among the groups there were significant differences in the magnitude of rates of changes in other cognitive and functional outcomes, clinical progression from mild cognitive impairment to dementia, and changes in markers presumed to reflect neurodegeneration and neuronal injury. A nomogram based on a simplified logistic regression model predicted steep cognitive trajectory with an AUC of 0.912 (95% CI: 0.88 - 0.94). Simulation of clinical trials suggested that the incorporation of the nomogram into enrichment strategies would reduce the required sample sizes from 926.8 (95% CI: 822.6 - 1057.5) to 400.9 (95% CI: 306.9 - 516.8). Discussion Our findings show usefulness in the stratification of patients in early AD and may thus increase the chances of finding a treatment for future AD clinical trials.
Collapse
Affiliation(s)
- Xiwu Wang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Teng Ye
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Wenjun Zhou
- Research and Development, Hangzhou Shansier Medical Technologies Co., Ltd., Hangzhou, China
| | - Jie Zhang
- Department of Data Science, Hangzhou Shansier Medical Technologies Co., Ltd., Hangzhou, China
| | | |
Collapse
|
36
|
Altmann A, Aksman LM, Oxtoby NP, Young AL, Alexander DC, Barkhof F, Shoai M, Hardy J, Schott JM. Towards cascading genetic risk in Alzheimer's disease. Brain 2024; 147:2680-2690. [PMID: 38820112 PMCID: PMC11292901 DOI: 10.1093/brain/awae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024] Open
Abstract
Alzheimer's disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: amyloid (A), tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, in which each of the biomarkers can be either positive (+) or negative (-). Over the past decades, genome-wide association studies have implicated ∼90 different loci involved with the development of late-onset Alzheimer's disease. Here, we investigate whether genetic risk for Alzheimer's disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A-T- status, we used Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T- status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T- status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex and years of education. For progression from A-T- to A+T-, APOE-e4 burden showed a significant effect [hazard ratio (HR) = 2.88; 95% confidence interval (CI): 1.70-4.89; P < 0.001], whereas polygenic risk did not (HR = 1.09; 95% CI: 0.84-1.42; P = 0.53). Conversely, for the transition from A+T- to A+T+, the contribution of APOE-e4 burden was reduced (HR = 1.62; 95% CI: 1.05-2.51; P = 0.031), whereas the polygenic risk showed an increased contribution (HR = 1.73; 95% CI: 1.27-2.36; P < 0.001). The marginal APOE effect was driven by e4 homozygotes (HR = 2.58; 95% CI: 1.05-6.35; P = 0.039) as opposed to e4 heterozygotes (HR = 1.74; 95% CI: 0.87-3.49; P = 0.12). The genetic risk for late-onset Alzheimer's disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of the transition between ATN stages and a better understanding of the molecular processes leading to Alzheimer's disease, in addition to opening therapeutic windows for targeted interventions.
Collapse
Affiliation(s)
- Andre Altmann
- UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Leon M Aksman
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Neil P Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Alexandra L Young
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Daniel C Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Frederik Barkhof
- UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, 1081 HV, The Netherlands
| | - Maryam Shoai
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - John Hardy
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Jonathan M Schott
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| |
Collapse
|
37
|
Liang N, Nho K, Newman JW, Arnold M, Huynh K, Meikle PJ, Borkowski K, Kaddurah-Daouk R. Peripheral inflammation is associated with brain atrophy and cognitive decline linked to mild cognitive impairment and Alzheimer's disease. Sci Rep 2024; 14:17423. [PMID: 39075118 PMCID: PMC11286782 DOI: 10.1038/s41598-024-67177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammation is an important factor in Alzheimer's disease (AD). An NMR measurement in plasma, glycoprotein acetyls (GlycA), captures the overall level of protein production and glycosylation implicated in systemic inflammation. With its additional advantage of reducing biological variability, GlycA might be useful in monitoring the relationship between peripheral inflammation and brain changes relevant to AD. However, the associations between GlycA and these brain changes have not been fully evaluated. Here, we performed Spearman's correlation analyses to evaluate these associations cross-sectionally and determined whether GlycA can inform AD-relevant longitudinal measurements among participants in the Alzheimer's Disease Neuroimaging Initiative (n = 1506), with additional linear models and stratification analyses to evaluate the influences of sex or diagnosis status and confirm findings from Spearman's correlation analyses. We found that GlycA was elevated in AD patients compared to cognitively normal participants. GlycA correlated negatively with multiple concurrent regional brain volumes in females diagnosed with late mild cognitive impairment (LMCI) or AD. Baseline GlycA level was associated with executive function decline at 3-9 year follow-up in participants diagnosed with LMCI at baseline, with similar but not identical trends observed in the future decline of memory and entorhinal cortex volume. Results here indicated that GlycA is an inflammatory biomarker relevant to AD pathogenesis and that the stage of LMCI might be relevant to inflammation-related intervention.
Collapse
Affiliation(s)
- Nuanyi Liang
- West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, 95616, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, 95616, USA
- Department of Nutrition, University of California-Davis, Davis, CA, 95616, USA
- Western Human Nutrition Research Center, United States Department of Agriculture-Agriculture Research Service, Davis, CA, 95616, USA
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis, CA, 95616, USA.
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA.
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
38
|
Corriveau-Lecavalier N, Botha H, Graff-Radford J, Switzer AR, Przybelski SA, Wiste HJ, Murray ME, Reichard RR, Dickson DW, Nguyen AT, Ramanan VK, McCarter SJ, Boeve BF, Machulda MM, Fields JA, Stricker NH, Nelson PT, Grothe MJ, Knopman DS, Lowe VJ, Petersen RC, Jack CR, Jones DT. Clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome. Brain Commun 2024; 6:fcae183. [PMID: 39021510 PMCID: PMC11251771 DOI: 10.1093/braincomms/fcae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
Predominant limbic degeneration has been associated with various underlying aetiologies and an older age, predominant impairment of episodic memory and slow clinical progression. However, the neurological syndrome associated with predominant limbic degeneration is not defined. This endeavour is critical to distinguish such a syndrome from those originating from neocortical degeneration, which may differ in underlying aetiology, disease course and therapeutic needs. We propose a set of clinical criteria for a limbic-predominant amnestic neurodegenerative syndrome that is highly associated with limbic-predominant age-related TDP-43 encephalopathy but also other pathologic entities. The criteria incorporate core, standard and advanced features, including older age at evaluation, mild clinical syndrome, disproportionate hippocampal atrophy, impaired semantic memory, limbic hypometabolism, absence of neocortical degeneration and low likelihood of neocortical tau, with degrees of certainty (highest, high, moderate and low). We operationalized this set of criteria using clinical, imaging and biomarker data to validate its associations with clinical and pathologic outcomes. We screened autopsied patients from Mayo Clinic and Alzheimer's Disease Neuroimaging Initiative cohorts and applied the criteria to those with an antemortem predominant amnestic syndrome (Mayo, n = 165; Alzheimer's Disease Neuroimaging Initiative, n = 53) and who had Alzheimer's disease neuropathological change, limbic-predominant age-related TDP-43 encephalopathy or both pathologies at autopsy. These neuropathology-defined groups accounted for 35, 37 and 4% of cases in the Mayo cohort, respectively, and 30, 22 and 9% of cases in the Alzheimer's Disease Neuroimaging Initiative cohort, respectively. The criteria effectively categorized these cases, with Alzheimer's disease having the lowest likelihoods, limbic-predominant age-related TDP-43 encephalopathy patients having the highest likelihoods and patients with both pathologies having intermediate likelihoods. A logistic regression using the criteria features as predictors of TDP-43 achieved a balanced accuracy of 74.6% in the Mayo cohort, and out-of-sample predictions in an external cohort achieved a balanced accuracy of 73.3%. Patients with high likelihoods had a milder and slower clinical course and more severe temporo-limbic degeneration compared to those with low likelihoods. Stratifying patients with both Alzheimer's disease neuropathological change and limbic-predominant age-related TDP-43 encephalopathy from the Mayo cohort according to their likelihoods revealed that those with higher likelihoods had more temporo-limbic degeneration and a slower rate of decline and those with lower likelihoods had more lateral temporo-parietal degeneration and a faster rate of decline. The implementation of criteria for a limbic-predominant amnestic neurodegenerative syndrome has implications to disambiguate the different aetiologies of progressive amnestic presentations in older age and guide diagnosis, prognosis, treatment and clinical trials.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Aaron R Switzer
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 3224, USA
| | - Robert Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 3224, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nikki H Stricker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY 40506, USA
| | - Michel J Grothe
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- Wallenberg Center for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Mastenbroek SE, Sala A, Vállez García D, Shekari M, Salvadó G, Lorenzini L, Pieperhoff L, Wink AM, Lopes Alves I, Wolz R, Ritchie C, Boada M, Visser PJ, Bucci M, Farrar G, Hansson O, Nordberg AK, Ossenkoppele R, Barkhof F, Gispert JD, Rodriguez-Vieitez E, Collij LE. Continuous β-Amyloid CSF/PET Imbalance Model to Capture Alzheimer Disease Heterogeneity. Neurology 2024; 103:e209419. [PMID: 38862136 PMCID: PMC11244744 DOI: 10.1212/wnl.0000000000209419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/29/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Discordance between CSF and PET biomarkers of β-amyloid (Aβ) might reflect an imbalance between soluble and aggregated species, possibly reflecting disease heterogeneity. Previous studies generally used binary cutoffs to assess discrepancies in CSF/PET biomarkers, resulting in a loss of information on the extent of discordance. In this study, we (1) jointly modeled Aβ-CSF/PET data to derive a continuous measure of the imbalance between soluble and fibrillar pools of Aβ, (2) investigated factors contributing to this imbalance, and (3) examined associations with cognitive trajectories. METHODS Across 822 cognitively unimpaired (n = 261) and cognitively impaired (n = 561) Alzheimer's Disease Neuroimaging Initiative individuals (384 [46.7%] females, mean age 73.0 ± 7.4 years), we fitted baseline CSF-Aβ42 and global Aβ-PET to a hyperbolic regression model, deriving a participant-specific Aβ-aggregation score (standardized residuals); negative values represent more soluble relative to aggregated Aβ and positive values more aggregated relative to soluble Aβ. Using linear models, we investigated whether methodological factors, demographics, CSF biomarkers, and vascular burden contributed to Aβ-aggregation scores. With linear mixed models, we assessed whether Aβ-aggregation scores were predictive of cognitive functioning. Analyses were repeated in an early independent validation cohort of 383 Amyloid Imaging to Prevent Alzheimer's Disease Prognostic and Natural History Study individuals (224 [58.5%] females, mean age 65.2 ± 6.9 years). RESULTS The imbalance model could be fit (pseudo-R2 = 0.94) in both cohorts, across CSF kits and PET tracers. Although no associations were observed with the main methodological factors, lower Aβ-aggregation scores were associated with larger ventricular volume (β = 0.13, p < 0.001), male sex (β = -0.18, p = 0.019), and homozygous APOE-ε4 carriership (β = -0.56, p < 0.001), whereas higher scores were associated with increased uncorrected CSF p-tau (β = 0.17, p < 0.001) and t-tau (β = 0.16, p < 0.001), better baseline executive functioning (β = 0.12, p < 0.001), and slower global cognitive decline (β = 0.14, p = 0.006). In the validation cohort, we replicated the associations with APOE-ε4, CSF t-tau, and, although modestly, with cognition. DISCUSSION We propose a novel continuous model of Aβ CSF/PET biomarker imbalance, accurately describing heterogeneity in soluble vs aggregated Aβ pools in 2 independent cohorts across the full Aβ continuum. Aβ-aggregation scores were consistently associated with genetic and AD-associated CSF biomarkers, possibly reflecting disease heterogeneity beyond methodological influences.
Collapse
Affiliation(s)
- Sophie E Mastenbroek
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Arianna Sala
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - David Vállez García
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Mahnaz Shekari
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Gemma Salvadó
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Luigi Lorenzini
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Leonard Pieperhoff
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Alle Meije Wink
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Isadora Lopes Alves
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Robin Wolz
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Craig Ritchie
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Mercè Boada
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Pieter Jelle Visser
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Marco Bucci
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Gill Farrar
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Oskar Hansson
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Agneta K Nordberg
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Rik Ossenkoppele
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Frederik Barkhof
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Juan Domingo Gispert
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Elena Rodriguez-Vieitez
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Lyduine E Collij
- From the Department of Radiology and Nuclear Medicine (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc; Amsterdam Neuroscience (S.E.M., D.V.G., L.L., L.P., A.M.W., F.B., L.E.C.), Brain Imaging, the Netherlands; Clinical Memory Research Unit (S.E.M., G.S., O.H., R.O., L.E.C.), Department of Clinical Sciences Malmö, Lund University; Division of Clinical Geriatrics (A.S., M. Bucci, A.K.N., E.R.-V.), Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Coma Science Group (A.S.), GIGA-Consciousness, University of Liège; Centre du Cerveau2 (A.S.), University Hospital of Liège, Belgium; Barcelonaβeta Brain Research Center (BBRC) (M.S., G.S., J.D.G.), Pasqual Maragall Foundation; IMIM (Hospital del Mar Medical Research Institute) (M.S., J.D.G.), Barcelona; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (M.S., J.D.G.), Instituto de Salud Carlos III, Madrid; Universitat Pompeu Fabra (M.S.), Barcelona, Spain; Brain Research Center (I.L.A.), Amsterdam, the Netherlands; IXICO (R.W.), London; Centre for Clinical Brain Sciences (C.R.), University of Edinburgh, United Kingdom; Ace Alzheimer Center Barcelona (M. Boada), Universitat Internacional de Catalunya, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED) (M. Boada), Instituto de Salud Carlos III, Madrid, Spain; Alzheimer Center Amsterdam (P.J.V., R.O.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.J.V.), Neurodegeneration; Alzheimer Center Limburg (P.J.V.), School for Mental Health and Neuroscience, Maastricht University, the Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging (M. Bucci, A.K.N.), Karolinska University Hospital, Stockholm, Sweden; GE Healthcare (G.F.), Amersham, United Kingdom; Memory Clinic (O.H.), Skåne University Hospital, Malmö, Sweden; and Centre for Medical Image Computing (F.B.), and Queen Square Institute of Neurology, UCL, London, United Kingdom
| |
Collapse
|
40
|
Wang W, Huang J, Qian S, Zheng Y, Yu X, Jiang T, Ai R, Hou J, Ma E, Cai J, He H, Wang X, Xie C. Amyloid-β but not tau accumulation is strongly associated with longitudinal cognitive decline. CNS Neurosci Ther 2024; 30:e14860. [PMID: 39014268 PMCID: PMC11251873 DOI: 10.1111/cns.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) pathology is featured by the extracellular accumulation of amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles in the brain. We studied whether Aβ and tau accumulation are independently associated with future cognitive decline in the AD continuum. METHODS Data were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) public database. A total of 1272 participants were selected based on the availability of Aβ-PET and CSF tau at baseline and of those 777 participants with follow-up visits. RESULTS We found that Aβ-PET and CSF tau pathology were related to cognitive decline across the AD clinical spectrum, both as potential predictors for dementia progression. Among them, Aβ-PET (A + T- subjects) is an independent reliable predictor of longitudinal cognitive decline in terms of ADAS-13, ADNI-MEM, and MMSE scores rather than tau pathology (A - T+ subjects), indicating tau accumulation is not closely correlated with future cognitive impairment without being driven by Aβ deposition. Of note, a high percentage of APOE ε4 carriers with Aβ pathology (A+) develop poor memory and learning capacity. Interestingly, this condition is not recurrence in terms of the ADNI-MEM domain when adding APOE ε4 status. Finally, the levels of Aβ-PET SUVR related to glucose hypometabolism more strongly in subjects with A + T- than A - T+ both happen at baseline and longitudinal changes. CONCLUSIONS In conclusion, Aβ-PET alone without tau pathology (A + T-) measure is an independent reliable predictor of longitudinal cognitive decline but may nonetheless forecast different status of dementia progression. However, tau accumulation alone without Aβ pathology background (A - T+) was not enough to be an independent predictor of cognitive worsening.
Collapse
Affiliation(s)
- Wenwen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated HospitalYuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiani Huang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shuangjie Qian
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi Zheng
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xinyue Yu
- Alberta InstituteWenzhou Medical UniversityWenzhouZhejiangChina
| | - Tao Jiang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ruixue Ai
- Department of Clinical Molecular Biology, Akershus University HospitalUniversity of OsloLørenskogNorway
| | - Jialong Hou
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Enzi Ma
- Department of NeurologyTraditional Chinese and Western Medicine Hospital of WenzhouWenzhouZhejiangChina
| | - Jinlai Cai
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Haijun He
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - XinShi Wang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Chenglong Xie
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Oujiang LaboratoryWenzhouZhejiangChina
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Geriatrics, Geriatric Medical CenterThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
41
|
Lázaro I, Grau‐Rivera O, Suárez‐Calvet M, Fauria K, Minguillón C, Shekari M, Falcón C, García‐Prat M, Huguet J, Molinuevo JL, Gispert J, Sala‐Vila A, for the ALFA study. Omega-3 blood biomarkers relate to brain glucose uptake in individuals at risk of Alzheimer's disease dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12596. [PMID: 38974876 PMCID: PMC11224768 DOI: 10.1002/dad2.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Brain glucose hypometabolism is a preclinical feature of Alzheimer's disease (AD). Dietary omega-3 fatty acids promote brain glucose metabolism, but clinical research is incipient. Circulating omega-3s objectively reflect their dietary intake. METHODS This was a cross-sectional study in 320 cognitively unimpaired participants at increased risk of AD dementia. Using lipidomics, we determined blood docosahexaenoic (DHA) and alpha-linolenic (ALA) acid levels (omega-3s from marine and plant origin, respectively). We assessed brain glucose metabolism using [18-F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). RESULTS Blood ALA directly related to FDG uptake in brain areas known to be affected in AD. Stronger associations were observed in apolipoprotein E ε4 carriers and homozygotes. For DHA, significant direct associations were restricted to amyloid beta-positive tau-positive participants. DISCUSSION Blood omega-3 directly relate to preserved glucose metabolism in AD-vulnerable brain regions in individuals at increased risk of AD dementia. This adds to the benefits of omega-3 supplementation in the preclinical stage of AD dementia. Highlights Blood omega-3s were related to brain glucose uptake in participants at risk of Alzheimer's disease (AD) dementia.Complementary associations were observed for omega-3 from marine and plant sources.Foods rich in omega-3 might be useful in early features of AD.
Collapse
Affiliation(s)
- Iolanda Lázaro
- Hospital del Mar Research InstituteBarcelonaSpain
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Instituto de Salud Carlos IIIMadridSpain
| | - Oriol Grau‐Rivera
- Hospital del Mar Research InstituteBarcelonaSpain
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Marc Suárez‐Calvet
- Hospital del Mar Research InstituteBarcelonaSpain
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Servei de NeurologiaHospital del MarBarcelonaSpain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
| | - Carolina Minguillón
- Hospital del Mar Research InstituteBarcelonaSpain
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
| | - Mahnaz Shekari
- Hospital del Mar Research InstituteBarcelonaSpain
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)Instituto de Salud Carlos IIIMadridSpain
- Department of Medicine and Life SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red BioingenieríaBiomateriales y Nanomedicina (CIBERBBN)Instituto de Salud Carlos IIIMadridSpain
| | - Marina García‐Prat
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
| | - Jordi Huguet
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Lundbeck A/SCopenhagenDenmark
| | - Juan‐Domingo Gispert
- Hospital del Mar Research InstituteBarcelonaSpain
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red BioingenieríaBiomateriales y Nanomedicina (CIBERBBN)Instituto de Salud Carlos IIIMadridSpain
| | - Aleix Sala‐Vila
- Hospital del Mar Research InstituteBarcelonaSpain
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Instituto de Salud Carlos IIIMadridSpain
- Fatty Acid Research InstituteSioux FallsSouth DakotaUSA
| | | |
Collapse
|
42
|
Wang Y, Ye M, Ji Q, Liu Q, Xu X, Zhan Y. The longitudinal trajectory of CSF sTREM2: the alzheimer's disease neuroimaging initiative. Alzheimers Res Ther 2024; 16:138. [PMID: 38926894 PMCID: PMC11202383 DOI: 10.1186/s13195-024-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) is considered a biomarker of microglia activity. The objective of this study was to investigate the trajectory of CSF sTREM2 levels over time and examine its association with sex. METHODS A total of 1,017 participants from the Alzheimer's Disease Neuroimaging Initiative Study (ADNI) with at least one CSF sTREM2 record were included. The trajectory of CSF sTREM2 was analyzed using a growth curve model. The association between CSF sTREM2 levels and sex was assessed using linear mixed-effect models. RESULTS CSF sTREM2 levels were increased with age over time (P < 0.0001). No significant sex difference was observed in sTREM2 levels across the entire sample; however, among the APOE ε4 allele carriers, women exhibited significantly higher sTREM2 levels than men (β = 0.146, P = 0.002). CONCLUSION Our findings highlight the association between CSF sTREM2 levels and age-related increments, underscoring the potential influence of aging on sTREM2 dynamics. Furthermore, our observations indicate a noteworthy association between sex and CSF sTREM2 levels, particularly in individuals carrying the APOE ε4 allele.
Collapse
Affiliation(s)
- Yu Wang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Meijie Ye
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qi Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xiaowei Xu
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
43
|
Orduña Dolado A, Stomrud E, Ashton NJ, Nilsson J, Quijano-Rubio C, Jethwa A, Brum WS, Brinkmalm Westman A, Zetterberg H, Blennow K, Janelidze S, Hansson O. Effects of time of the day at sampling on CSF and plasma levels of Alzheimer' disease biomarkers. Alzheimers Res Ther 2024; 16:132. [PMID: 38909218 PMCID: PMC11193266 DOI: 10.1186/s13195-024-01503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Studies suggest that cerebrospinal fluid (CSF) levels of amyloid-β (Aβ)42 and Aβ40 present a circadian rhythm. However sustained sampling of large volumes of CSF with indwelling intrathecal catheters used in most of these studies might have affected CSF dynamics and thereby confounded the observed fluctuations in the biomarker levels. METHODS We included 38 individuals with either normal (N = 20) or abnormal (N = 18) CSF Aβ42/Aβ40 levels at baseline. CSF and plasma were collected at two visits separated by an average of 53 days with lumbar punctures and venipunctures performed either in the morning or evening. At the first visit, sample collection was performed in the morning for 17 participants and the order was reversed for the remaining 21 participants. CSF and plasma samples were analyzed for Alzheimer' disease (AD) biomarkers, including Aβ42, Aβ40, GFAP, NfL p-tau181, p-tau217, p-tau231 and t-tau. CSF samples were also tested using mass spectrometry for 22 synaptic and endo-lysosomal proteins. RESULTS CSF Aβ42 (mean difference [MD], 0.21 ng/mL; p = 0.038), CSF Aβ40 (MD, 1.85 ng/mL; p < 0.001), plasma Aβ42 (MD, 1.65 pg/mL; p = 0.002) and plasma Aβ40 (MD, 0.01 ng/mL, p = 0.002) were increased by 4.2-17.0% in evening compared with morning samples. Further, CSF levels of 14 synaptic and endo-lysosomal proteins, including neurogranin and neuronal pentraxin-1, were increased by 4.5-13.3% in the evening samples (MDrange, 0.02-0.56 fmol/µl; p < 0.042). However, no significant differences were found between morning and evening levels for the Aβ42/Aβ40 ratio, different p-tau variants, GFAP and NfL. There were no significant interaction between sampling time and Aβ status for any of the biomarkers, except that CSF t-tau was increased (by 5.74%) in the evening samples compared to the morning samples in Aβ-positive (MD, 16.46 ng/ml; p = 0.009) but not Aβ-negative participants (MD, 1.89 ng/ml; p = 0.47). There were no significant interactions between sampling time and order in which samples were obtained. DISCUSSION Our findings provide evidence for diurnal fluctuations in Aβ peptide levels, both in CSF and plasma, while CSF and plasma p-tau, GFAP and NfL were unaffected. Importantly, Aβ42/Aβ40 ratio remained unaltered, suggesting that it is more suitable for implementation in clinical workup than individual Aβ peptides. Additionally, we show that CSF levels of many synaptic and endo-lysosomal proteins presented a diurnal rhythm, implying a build-up of neuronal activity markers during the day. These results will guide the development of unified sample collection procedures to avoid effects of diurnal variation for future implementation of AD biomarkers in clinical practice and drug trials.
Collapse
Affiliation(s)
- Anna Orduña Dolado
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sölvegatan 19, BMC B11, Lund, 221 84, Sweden.
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sölvegatan 19, BMC B11, Lund, 221 84, Sweden
- Memory Clinic, Skåne University Hospital, S:t Johannesgatan 8, Malmö, SE-20502, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ann Brinkmalm Westman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Pitié-Salpêtrière Hospital, Paris Brain Institute, ICM, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sölvegatan 19, BMC B11, Lund, 221 84, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Sölvegatan 19, BMC B11, Lund, 221 84, Sweden.
- Memory Clinic, Skåne University Hospital, S:t Johannesgatan 8, Malmö, SE-20502, Sweden.
| |
Collapse
|
44
|
Alzheimer’s Disease Neuroimaging Initiative, Li R, Zhu X, Lee S. Model Selection for Exposure-Mediator Interaction. DATA SCIENCE IN SCIENCE 2024; 3:2360892. [PMID: 38947225 PMCID: PMC11210705 DOI: 10.1080/26941899.2024.2360892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
In mediation analysis, the exposure often influences the mediating effect, i.e., there is an interaction between exposure and mediator on the dependent variable. When the mediator is high-dimensional, it is necessary to identify non-zero mediatorsM and exposure-by-mediator ( X -by- M ) interactions. Although several high-dimensional mediation methods can naturally handle X -by- M interactions, research is scarce in preserving the underlying hierarchical structure between the main effects and the interactions. To fill the knowledge gap, we develop the XMInt procedure to select M and X -by- M interactions in the high-dimensional mediators setting while preserving the hierarchical structure. Our proposed method employs a sequential regularization-based forward-selection approach to identify the mediators and their hierarchically preserved interaction with exposure. Our numerical experiments showed promising selection results. Further, we applied our method to ADNI morphological data and examined the role of cortical thickness and subcortical volumes on the effect of amyloid-beta accumulation on cognitive performance, which could be helpful in understanding the brain compensation mechanism.
Collapse
Affiliation(s)
| | - Ruiyang Li
- Department of Biostatistics, Columbia University, New York, USA
| | - Xi Zhu
- Department of Psychiatry, Columbia University, New York, USA
- Mental Health Data Science, New York State Psychiatric Institute and Research Foundation for Mental Hygiene, Inc., New York, USA
| | - Seonjoo Lee
- Department of Biostatistics, Columbia University, New York, USA
- Department of Psychiatry, Columbia University, New York, USA
- Mental Health Data Science, New York State Psychiatric Institute and Research Foundation for Mental Hygiene, Inc., New York, USA
| |
Collapse
|
45
|
Huang S, Zhang Y, Guo Y, Du J, Ren P, Wu B, Feng J, Alzheimer's Disease Neuroimaging Initiative, Cheng W, Yu J. Glymphatic system dysfunction predicts amyloid deposition, neurodegeneration, and clinical progression in Alzheimer's disease. Alzheimers Dement 2024; 20:3251-3269. [PMID: 38501315 PMCID: PMC11095446 DOI: 10.1002/alz.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Although glymphatic function is involved in Alzheimer's disease (AD), its potential for predicting the pathological and clinical progression of AD and its sequential association with core AD biomarkers is poorly understood. METHODS Whole-brain glymphatic activity was measured by diffusion tensor image analysis along the perivascular space (DTI-ALPS) in participants with AD dementia (n = 47), mild cognitive impairment (MCI; n = 137), and normal controls (n = 235) from the Alzheimer's Disease Neuroimaging Initiative. RESULTS ALPS index was significantly lower in AD dementia than in MCI or controls. Lower ALPS index was significantly associated with faster changes in amyloid positron emission tomography (PET) burden and AD signature region of interest volume, higher risk of amyloid-positive transition and clinical progression, and faster rates of amyloid- and neurodegeneration-related cognitive decline. Furthermore, the associations of the ALPS index with cognitive decline were fully mediated by amyloid PET and brain atrophy. DISCUSSION Glymphatic failure may precede amyloid pathology, and predicts amyloid deposition, neurodegeneration, and clinical progression in AD. HIGHLIGHTS The analysis along the perivascular space (ALPS) index is reduced in patients with Alzheimer's disease (AD) dementia, prodromal AD, and preclinical AD. Lower ALPS index predicted accelerated amyloid beta (Aβ) positron emission tomography (PET) burden and Aβ-positive transition. The decrease in the ALPS index occurs before cerebrospinal fluid Aβ42 reaches the positive threshold. ALPS index predicted brain atrophy, clinical progression, and cognitive decline. Aβ PET and brain atrophy mediated the link of ALPS index with cognitive decline.
Collapse
Affiliation(s)
- Shu‐Yi Huang
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ya‐Ru Zhang
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu Guo
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jing Du
- Centre for Healthy Brain Ageing (CHeBA)Discipline of Psychiatry and Mental HealthSchool of Clinical MedicineUNSWSydneyNew South WalesAustralia
| | - Peng Ren
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Bang‐Sheng Wu
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jian‐Feng Feng
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| | | | - Wei Cheng
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeFudan UniversityShanghaiChina
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer CenterFudan UniversityShanghaiChina
| | - Jin‐Tai Yu
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
46
|
Levine TF, Dessenberger SJ, Allison SL, Head D. Alzheimer disease biomarkers are associated with decline in subjective memory, attention, and spatial navigation ability in clinically normal adults. J Int Neuropsychol Soc 2024; 30:313-327. [PMID: 38014546 DOI: 10.1017/s135561772300070x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Subtle changes in memory, attention, and spatial navigation abilities have been associated with preclinical Alzheimer disease (AD). The current study examined whether baseline AD biomarkers are associated with self- and informant-reported decline in memory, attention, and spatial navigation. METHOD Clinically normal (Clinical Dementia Rating Scale (CDR®) = 0) adults aged 56-93 (N = 320) and their informants completed the memory, divided attention, and visuospatial abilities (which assesses spatial navigation) subsections of the Everyday Cognition Scale (ECog) annually for an average of 4 years. Biomarker data was collected within (±) 2 years of baseline (i.e., cerebrospinal fluid (CSF) p-tau181/Aβ42 ratio and hippocampal volume). Clinical progression was defined as CDR > 0 at time of final available ECog. RESULTS Self- and informant-reported memory, attention, and spatial navigation significantly declined over time (ps < .001). Baseline AD biomarkers were significantly associated with self- and informant-reported decline in cognitive ability (ps < .030), with the exception of p-tau181/Aβ42 ratio and self-reported attention (p = .364). Clinical progression did not significantly moderate the relationship between AD biomarkers and decline in self- or informant-reported cognitive ability (ps > .062). Post-hoc analyses indicated that biomarker burden was also associated with self- and informant-reported decline in total ECog (ps < .002), and again clinical progression did not significantly moderate these relationships (ps > .299). CONCLUSIONS AD biomarkers at baseline may indicate risk of decline in self- and informant-reported change in memory, attention, and spatial navigation ability. As such, subjectively reported decline in these domains may have clinical utility in tracking the subtle cognitive changes associated with the earliest stages of AD.
Collapse
Affiliation(s)
- Taylor F Levine
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Steven J Dessenberger
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Samantha L Allison
- Neurosciences Institute at Intermountain Medical Center, Murray, UT, USA
| | - Denise Head
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
- Charles F. and Joanna Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
47
|
Oosthoek M, Vermunt L, de Wilde A, Bongers B, Antwi-Berko D, Scheltens P, van Bokhoven P, Vijverberg EGB, Teunissen CE. Utilization of fluid-based biomarkers as endpoints in disease-modifying clinical trials for Alzheimer's disease: a systematic review. Alzheimers Res Ther 2024; 16:93. [PMID: 38678292 PMCID: PMC11055304 DOI: 10.1186/s13195-024-01456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Clinical trials in Alzheimer's disease (AD) had high failure rates for several reasons, including the lack of biological endpoints. Fluid-based biomarkers may present a solution to measure biologically relevant endpoints. It is currently unclear to what extent fluid-based biomarkers are applied to support drug development. METHODS We systematically reviewed 272 trials (clinicaltrials.gov) with disease-modifying therapies starting between 01-01-2017 and 01-01-2024 and identified which CSF and/or blood-based biomarker endpoints were used per purpose and trial type. RESULTS We found that 44% (N = 121) of the trials employed fluid-based biomarker endpoints among which the CSF ATN biomarkers (Aβ (42/40), p/tTau) were used most frequently. In blood, inflammatory cytokines, NFL, and pTau were most frequently employed. Blood- and CSF-based biomarkers were used approximately equally. Target engagement biomarkers were used in 26% (N = 72) of the trials, mainly in drugs targeting inflammation and amyloid. Lack of target engagement markers is most prominent in synaptic plasticity/neuroprotection, neurotransmitter receptor, vasculature, epigenetic regulators, proteostasis and, gut-brain axis targeting drugs. Positive biomarker results did not always translate to cognitive effects, most commonly the small significant reductions in CSF tau isoforms that were seen following anti-Tau treatments. On the other hand, the positive anti-amyloid trials results on cognitive function were supported by clear effect in most fluid markers. CONCLUSIONS As the field moves towards primary prevention, we expect an increase in the use of fluid-based biomarkers to determine disease modification. Use of blood-based biomarkers will rapidly increase, but CSF markers remain important to determine brain-specific treatment effects. With improving techniques, new biomarkers can be found to diversify the possibilities in measuring treatment effects and target engagement. It remains important to interpret biomarker results in the context of the trial and be aware of the performance of the biomarker. Diversifying biomarkers could aid in the development of surrogacy biomarkers for different drug targets.
Collapse
Affiliation(s)
- Marlies Oosthoek
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Lisa Vermunt
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Arno de Wilde
- EQT Life Sciences, Johannes Vermeersplein 9, 1071 DV, Amsterdam, The Netherlands
| | - Bram Bongers
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Daniel Antwi-Berko
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Philip Scheltens
- EQT Life Sciences, Johannes Vermeersplein 9, 1071 DV, Amsterdam, The Netherlands
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Everard G B Vijverberg
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Laboratory Medicine, Neurochemistry Laboratory, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Fujishima M, Kawasaki Y, Mitsuhashi T, Matsuda H. Impact of amyloid and tau positivity on longitudinal brain atrophy in cognitively normal individuals. Alzheimers Res Ther 2024; 16:77. [PMID: 38600602 PMCID: PMC11005141 DOI: 10.1186/s13195-024-01450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Individuals on the preclinical Alzheimer's continuum, particularly those with both amyloid and tau positivity (A + T +), display a rapid cognitive decline and elevated disease progression risk. However, limited studies exist on brain atrophy trajectories within this continuum over extended periods. METHODS This study involved 367 ADNI participants grouped based on combinations of amyloid and tau statuses determined through cerebrospinal fluid tests. Using longitudinal MRI scans, brain atrophy was determined according to the whole brain, lateral ventricle, and hippocampal volumes and cortical thickness in AD-signature regions. Cognitive performance was evaluated with the Preclinical Alzheimer's Cognitive Composite (PACC). A generalized linear mixed-effects model was used to examine group × time interactions for these measures. In addition, progression risks to mild cognitive impairment (MCI) or dementia were compared among the groups using Cox proportional hazards models. RESULTS A total of 367 participants (48 A + T + , 86 A + T - , 63 A - T + , and 170 A - T - ; mean age 73.8 years, mean follow-up 5.1 years, and 47.4% men) were included. For the lateral ventricle and PACC score, the A + T - and A + T + groups demonstrated statistically significantly greater volume expansion and cognitive decline over time than the A - T - group (lateral ventricle: β = 0.757 cm3/year [95% confidence interval 0.463 to 1.050], P < .001 for A + T - , and β = 0.889 cm3/year [0.523 to 1.255], P < .001 for A + T + ; PACC: β = - 0.19 /year [- 0.36 to - 0.02], P = .029 for A + T - , and β = - 0.59 /year [- 0.80 to - 0.37], P < .001 for A + T +). Notably, the A + T + group exhibited additional brain atrophy including the whole brain (β = - 2.782 cm3/year [- 4.060 to - 1.504], P < .001), hippocampus (β = - 0.057 cm3/year [- 0.085 to - 0.029], P < .001), and AD-signature regions (β = - 0.02 mm/year [- 0.03 to - 0.01], P < .001). Cox proportional hazards models suggested an increased risk of progressing to MCI or dementia in the A + T + group versus the A - T - group (adjusted hazard ratio = 3.35 [1.76 to 6.39]). CONCLUSIONS In cognitively normal individuals, A + T + compounds brain atrophy and cognitive deterioration, amplifying the likelihood of disease progression. Therapeutic interventions targeting A + T + individuals could be pivotal in curbing brain atrophy, cognitive decline, and disease progression.
Collapse
Affiliation(s)
- Motonobu Fujishima
- Department of Radiology, Kumagaya General Hospital, 4-5-1 Nakanishi, Kumagaya, 360-8567, Japan.
| | - Yohei Kawasaki
- Department of Biostatistics, Graduate School of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, 350-0495, Japan
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan
- Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, 7-61-2 Yatsuyamada, Koriyama, 963-8052, Japan
| |
Collapse
|
49
|
Ferrari-Souza JP, Brum WS, Hauschild LA, Da Ros LU, Ferreira PCL, Bellaver B, Leffa DT, Bieger A, Tissot C, Lussier FZ, De Bastiani MA, Povala G, Benedet AL, Therriault J, Wang YT, Ashton NJ, Zetterberg H, Blennow K, Martins SO, Souza DO, Rosa-Neto P, Karikari TK, Pascoal TA, Zimmer ER. Vascular risk burden is a key player in the early progression of Alzheimer's disease. Neurobiol Aging 2024; 136:88-98. [PMID: 38335912 PMCID: PMC11416150 DOI: 10.1016/j.neurobiolaging.2023.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024]
Abstract
Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-β1-42 (Aβ1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF Aβ1-42 or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.
Collapse
Affiliation(s)
- João Pedro Ferrari-Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wagner S Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lucas A Hauschild
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas U Da Ros
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pâmela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas T Leffa
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrei Bieger
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cécile Tissot
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Firoza Z Lussier
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sheila O Martins
- Department of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
50
|
Jonaitis EM, Jeffers B, VandenLangenberg M, Ma Y, Van Hulle C, Langhough R, Du L, Chin NA, Przybelski RJ, Hogan KJ, Christian BT, Betthauser TJ, Okonkwo OC, Bendlin BB, Asthana S, Carlsson CM, Johnson SC. CSF Biomarkers in Longitudinal Alzheimer Disease Cohorts: Pre-Analytic Challenges. Clin Chem 2024; 70:538-550. [PMID: 38431278 PMCID: PMC10908554 DOI: 10.1093/clinchem/hvad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/27/2023] [Indexed: 03/05/2024]
Abstract
BACKGROUND The sensitivity of amyloid to pre-analytic factors complicates cerebrospinal fluid (CSF) diagnostics for Alzheimer disease. We report reliability and validity evidence for automated immunoassays from frozen and fresh CSF samples in an ongoing, single-site research program. METHODS CSF samples were obtained from 2 Wisconsin cohorts (1256 measurements; 727 participants). Levels of amyloid beta 1-42 (Aβ42), phosphorylated tau 181 (pTau181), and total tau (tTau) were obtained using an Elecsys cobas e 601 platform. Repeatability and fixed effects of storage tube type, extraction method, and freezing were assessed via mixed models. Concordance with amyloid positron emission tomography (PET) was investigated with 238 participants having a temporally proximal PET scan. RESULTS Repeatability was high with intraclass correlation (ICC) ≥0.9, but tube type strongly affected measurements. Discriminative accuracy for PET amyloid positivity was strong across tube types (area under the curve [AUC]: Aβ42, 0.87; pTau181Aβ42 , 0.96), although optimal thresholds differed. CONCLUSIONS Under real-world conditions, the Elecsys platform had high repeatability. However, strong effects of pre-analytic factors suggest caution in drawing longitudinal inferences.
Collapse
Affiliation(s)
- Erin M Jonaitis
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Beckie Jeffers
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Monica VandenLangenberg
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Yue Ma
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Carol Van Hulle
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Rebecca Langhough
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Lianlian Du
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Nathaniel A Chin
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Robert J Przybelski
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Kirk J Hogan
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Bradley T Christian
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Tobey J Betthauser
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Barbara B Bendlin
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center of the Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Cynthia M Carlsson
- Geriatric Research Education and Clinical Center of the Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center of the Wm. S. Middleton Memorial Veterans Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|