1
|
Myers ML, Conlon MT, Gallagher JR, Woolfork DD, Khorrami ND, Park WB, Stradtman-Carvalho RK, Harris AK. Analysis of polyclonal and monoclonal antibody to the influenza virus nucleoprotein in different oligomeric states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612748. [PMID: 39372734 PMCID: PMC11451747 DOI: 10.1101/2024.09.12.612748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Influenza virus nucleoprotein (NP) is one of the most conserved influenza proteins. Both NP antigen and anti-NP antibodies are used as reagents in influenza diagnostic kits, with applications in both clinical practice, and influenza zoonotic surveillance programs. Despite this, studies on the biochemical basis of NP diagnostic serology and NP epitopes are not as developed as for hemagglutinin (HA), the fast-evolving antigen which has been the critical component of current influenza vaccines. Here, we characterized the NP serology of mice, ferret, and human sera and the immunogenic effects of NP antigen presented as different structural complexes. Furthermore, we show that a classical anti-NP mouse mAb HB65 could detect NP in some commercial influenza vaccines. MAb HB65 bound a linear epitope with nanomolar affinity. Our analysis suggests that linear NP epitopes paired with their corresponding characterized detection antibodies could aid in designing and improving diagnostic technologies for influenza virus.
Collapse
Affiliation(s)
- Mallory L. Myers
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Michael T. Conlon
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
- Current Address: Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA 98195
| | - John R. Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - De’Marcus D. Woolfork
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Noah D. Khorrami
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - William B. Park
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Regan K. Stradtman-Carvalho
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| | - Audray K. Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, USA 20892
| |
Collapse
|
2
|
Ahmad Z, Wasif S, Bailey ES, Malik MW, Ranjha MA, Baig MZI, Hussain F, Ali TM, Ahmed H. Assessment of the Prevalence and Determinants of Vaccine Hesitancy in Pakistan. THE OPEN PUBLIC HEALTH JOURNAL 2024; 17. [DOI: 10.2174/0118749445298070240319081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 01/23/2025]
Abstract
Background
Global efforts were critical in controlling the COVID-19 pandemic, and the World Health Organization declared it no longer a public health emergency of international concern in May 2023. Pakistan faced six waves and used every available resource to combat the pandemic. Public knowledge, attitudes, and practices (KAP) are key to the success of preventative interventions.
Objective
The goal of this study was to examine KAP through an online study of the general population and to evaluate the prevalence and determinants of COVID-19 vaccine hesitancy in Pakistan.
Methods
Between October and December 2021, a survey of the public was undertaken in several areas across Pakistan. A questionnaire was designed with questions focused on participant`s KAP, and statistical analyses were conducted to observe the normality of the data, knowledge, attitude and practice scores and the correlation between knowledge and attitude.
Results
Out of 688 participants surveyed, 98% expressing a preference for the vaccine over contracting the disease-causing SARS-CoV-2 virus. Overall, the study respondents had a positive attitude (95%) towards preventive measures to protect against pandemic-related issues and had more interest in the vaccine if it were provided free of cost and if the vaccine could be provided at their homes (74%). For participants in this study, knowledge and attitude remained dependent and positively correlated (p < 0.05).
Conclusion
This study identified limitations in public health communication techniques used to promote the COVID-19 vaccine that prevented widespread uptake of prevention measures. Additionally, this study revealed that age, education, and gender were statistically significant determinants for vaccine hesitancy (practices) and should likely be considered while making policies for health promotion programs.
Collapse
|
3
|
Valizadeh P, Momtazmanesh S, Plazzi G, Rezaei N. Connecting the dots: An updated review of the role of autoimmunity in narcolepsy and emerging immunotherapeutic approaches. Sleep Med 2024; 113:378-396. [PMID: 38128432 DOI: 10.1016/j.sleep.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Narcolepsy type 1 (NT1) is a chronic disorder characterized by pathological daytime sleepiness and cataplexy due to the disappearance of orexin immunoreactive neurons in the hypothalamus. Genetic and environmental factors point towards a potential role for inflammation and autoimmunity in the pathogenesis of the disease. This study aims to comprehensively review the latest evidence on the autoinflammatory mechanisms and immunomodulatory treatments aimed at suspected autoimmune pathways in NT1. METHODS Recent relevant literature in the field of narcolepsy, its autoimmune hypothesis, and purposed immunomodulatory treatments were reviewed. RESULTS Narcolepsy is strongly linked to specific HLA alleles and T-cell receptor polymorphisms. Furthermore, animal studies and autopsies have found infiltration of T cells in the hypothalamus, supporting T cell-mediated immunity. However, the role of autoantibodies has yet to be definitively established. Increased risk of NT1 after H1N1 infection and vaccination supports the autoimmune hypothesis, and the potential role of coronavirus disease 2019 and vaccination in triggering autoimmune neurodegeneration is a recent finding. Alterations in cytokine levels, gut microbiota, and microglial activation indicate a potential role for inflammation in the disease's development. Reports of using immunotherapies in NT1 patients are limited and inconsistent. Early treatment with IVIg, corticosteroids, plasmapheresis, and monoclonal antibodies has seldomly shown some potential benefits in some studies. CONCLUSION The current body of literature supports that narcolepsy is an autoimmune disorder most likely caused by T-cell involvement. However, the potential for immunomodulatory treatments to reverse the autoinflammatory process remains understudied. Further clinical controlled trials may provide valuable insights into this area.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Giuseppe Plazzi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic, and Neural Sciences, Università Degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Lemcke R, Egebjerg C, Berendtsen NT, Egerod KL, Thomsen AR, Pers TH, Christensen JP, Kornum BR. Molecular consequences of peripheral Influenza A infection on cell populations in the murine hypothalamus. eLife 2023; 12:RP87515. [PMID: 37698546 PMCID: PMC10497288 DOI: 10.7554/elife.87515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.
Collapse
Affiliation(s)
- René Lemcke
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Christine Egebjerg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Nicolai T Berendtsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Allan R Thomsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
5
|
Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya JM, Ridgway WM, Gershwin ME. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun 2023; 139:103070. [PMID: 37390745 PMCID: PMC10258587 DOI: 10.1016/j.jaut.2023.103070] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 07/02/2023]
Abstract
Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - María Herrán
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Juan-Manuel Anaya
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Blattner M, Maski K. Central Disorders of Hypersomnolence. Continuum (Minneap Minn) 2023; 29:1045-1070. [PMID: 37590822 DOI: 10.1212/con.0000000000001265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE The goals of this article are to describe the clinical approach to and management of patients with central disorders of hypersomnolence, and to understand and differentiate available diagnostic tools. LATEST DEVELOPMENTS Updated clinical practice guidelines for the treatment of central disorders of hypersomnolence and narcolepsy specifically highlight new treatment options. Approval for a lower-sodium oxybate formulation that contains 92% less sodium than the standard sodium oxybate for the treatment of narcolepsy and idiopathic hypersomnia adds to the number of medications available for these disorders, allowing for a more tailored management of symptoms. ESSENTIAL POINTS Central disorders of hypersomnolence are characterized by excessive daytime sleepiness that impacts daily functions. These disorders can be differentiated by obtaining a detailed clinical sleep history and by a thoughtful interpretation of sleep diagnostic testing. Tailoring treatment approaches to meet the needs of individuals and accounting for medical and psychiatric comorbidities may improve quality of life.
Collapse
|
7
|
Cable J, Balachandran S, Daley-Bauer LP, Rustagi A, Antony F, Frere JJ, Strampe J, Kedzierska K, Cannon JL, McGargill MA, Weiskopf D, Mettelman RC, Niessl J, Thomas PG, Briney B, Valkenburg SA, Bloom JD, Bjorkman PJ, Iketani S, Rappazzo CG, Crooks CM, Crofts KF, Pöhlmann S, Krammer F, Sant AJ, Nabel GJ, Schultz-Cherry S. Viral immunity: Basic mechanisms and therapeutic applications-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1521:32-45. [PMID: 36718537 DOI: 10.1111/nyas.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Viruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Viral Immunity: Basic Mechanisms and Therapeutic Applications." This report presents concise summaries from several of the symposium presenters.
Collapse
Affiliation(s)
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Lisa P Daley-Bauer
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Justin J Frere
- East Harlem Health Outreach Partnership; Department of Medical Education; and Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie Strampe
- Bioinformatics Program, Boston University and National Emerging Infectious Diseases Laboratories, Boston, Massachusetts, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, California, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julia Niessl
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Jesse D Bloom
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Microbiology and Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Chelsea M Crooks
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kali F Crofts
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center and Faculty of Biology and Psychology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea J Sant
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gary J Nabel
- Modex Therapeutics Inc., an OPKO Health Company, Natick, Massachusetts, USA
| | - Stacey Schultz-Cherry
- Department of Laboratory Medicine and Department of Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Rzymski P, Szuster-Ciesielska A, Dzieciątkowski T, Gwenzi W, Fal A. mRNA vaccines: The future of prevention of viral infections? J Med Virol 2023; 95:e28572. [PMID: 36762592 DOI: 10.1002/jmv.28572] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Messenger RNA (mRNA) vaccines against COVID-19 are the first authorized biological preparations developed using this platform. During the pandemic, their administration has been proven to be a life-saving intervention. Here, we review the main advantages of using mRNA vaccines, identify further technological challenges to be met during the development of the mRNA platform, and provide an update on the clinical progress on leading mRNA vaccine candidates against different viruses that include influenza viruses, human immunodeficiency virus 1, respiratory syncytial virus, Nipah virus, Zika virus, human cytomegalovirus, and Epstein-Barr virus. The prospects and challenges of manufacturing mRNA vaccines in low-income countries are also discussed. The ongoing interest and research in mRNA technology are likely to overcome some existing challenges for this technology (e.g., related to storage conditions and immunogenicity of some components of lipid nanoparticles) and enhance the portfolio of vaccines against diseases for which classical formulations are already authorized. It may also open novel pathways of protection against infections and their consequences for which no safe and efficient immunization methods are currently available.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.,Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Willis Gwenzi
- Alexander von Humboldt Fellow & Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany.,Alexander von Humboldt Fellow & Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Andrzej Fal
- Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszynski University, Warsaw, Poland.,Department of Public Health, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
9
|
McAlpine LS, Zubair AS. Neurological sequelae of vaccines. Neurol Sci 2023; 44:1505-1513. [PMID: 36622478 PMCID: PMC9838503 DOI: 10.1007/s10072-022-06581-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023]
Abstract
IMPORTANCE Vaccines are a safe and efficacious way to prevent a variety of infectious diseases. Over the course of their existence, vaccines have prevented immeasurable morbidity and mortality in humans. Typical symptoms of systemic immune activation are common after vaccines and may include local soreness, myalgias, nausea, and malaise. In the vast majority of cases, the severity of the infectious disease outweighs the risk of mild adverse reactions to vaccines. Rarely, vaccines may be associated with neurological sequela that ranges in severity from headache to transverse myelitis, acute disseminated encephalomyelitis, and Guillain-Barre syndrome (GBS). Often, a causal link cannot be confirmed, and it remains unclear if disease onset is directly related to a recent vaccination. OBSERVATIONS This review serves to summarize reported neurologic sequelae of commonly used vaccines. It will also serve to discuss potential pathogenesis. It is important to note that many adverse events or reactions to vaccines are self-reported into databases, and causal proof cannot be obtained. CONCLUSIONS AND RELEVANCE Recognition of reported adverse effects of vaccines plays an important role in public health and education. Early identification of these symptoms can allow for rapid diagnosis and potential treatment. Vaccines are a safe option for prevention of infectious diseases.
Collapse
Affiliation(s)
- Lindsay S. McAlpine
- grid.47100.320000000419368710Department of Neurology, Yale University School of Medicine, 20 York Street, New Haven, CT 06510 USA
| | - Adeel S. Zubair
- grid.47100.320000000419368710Department of Neurology, Yale University School of Medicine, 20 York Street, New Haven, CT 06510 USA
| |
Collapse
|
10
|
Simakajornboon N, Mignot E, Maski K, Owens J, Rosen C, Ibrahim S, Hassan F, Chervin RD, Perry G, Brooks L, Kheirandish-Gozal L, Gozal D, Mason T, Robinson A, Malow B, Naqvi K, Chen ML, Jambhekar S, Halbower A, Graw-Panzer K, Dayyat E, Lew J, Melendres C, Kotagal S, Jain S, Super E, Dye T, Hossain MM, Tadesse D. Increased incidence of pediatric narcolepsy following the 2009 H1N1 pandemic: a report from the pediatric working group of the sleep research network. Sleep 2022; 45:6607480. [DOI: 10.1093/sleep/zsac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
This study was aimed to evaluate the yearly incidence of pediatric narcolepsy prior to and following the 2009 H1N1 pandemic and to evaluate seasonal patterns of narcolepsy onset and associations with H1N1 influenza infection in the United States. This was a multicenter retrospective study with prospective follow-up. Participants were recruited from members of the Pediatric Working Group of the Sleep Research Network including 22 sites across the United States. The main outcomes were monthly and yearly incident cases of childhood narcolepsy in the United States, and its relationship to historical H1N1 influenza data. A total of 950 participants were included in the analysis; 487 participants were male (51.3%). The mean age at onset of excessive daytime sleepiness (EDS) was 9.6 ± 3.9 years. Significant trend changes in pediatric narcolepsy incidence based on EDS onset (p < .0001) occurred over the 1998–2016 period, peaking in 2010, reflecting a 1.6-fold increase in narcolepsy incidence. In addition, there was significant seasonal variation in narcolepsy incident cases, with increased cases in spring (p < .05). Cross-correlation analysis demonstrated a significant correlation between monthly H1N1 infection and monthly narcolepsy incident cases (p = .397, p < .0001) with a lag time of 8 months. We conclude that there is a significant increase in pediatric narcolepsy incidence after the 2009 H1N1 pandemic in the United States. However, the magnitude of increase is lower than reported in European countries and in China. The temporal correlation between monthly H1N1 infection and monthly narcolepsy incidence, suggests that H1N1 infection may be a contributing factor to the increased pediatric narcolepsy incidence after the 2009 H1N1 pandemics.
Collapse
Affiliation(s)
- Narong Simakajornboon
- Division of Pulmonary and Sleep Medicine, Cincinnati Children’s Hospital Medical Center , Cincinnati, OH , USA
- Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| | - Emmanuel Mignot
- Department of Psychiatry and Behavioral Science, Stanford University , Palo Alto, CA , USA
| | - Kiran Maski
- Department of Neurology, Boston Children’s Hospital , Boston, MA , USA
| | - Judith Owens
- Department of Neurology, Boston Children’s Hospital , Boston, MA , USA
| | - Carol Rosen
- Department of Pediatric Pulmonary and Sleep Medicine, Rainbow Babies and Children’s of University Hospitals, Case Western Reserve University , Cleveland, OH , USA
| | - Sally Ibrahim
- Department of Pediatric Pulmonary and Sleep Medicine, Rainbow Babies and Children’s of University Hospitals, Case Western Reserve University , Cleveland, OH , USA
| | - Fauziya Hassan
- Sleep Disorders Center, University of Michigan , Ann Arbor, MI , USA
| | - Ronald D Chervin
- Sleep Disorders Center, University of Michigan , Ann Arbor, MI , USA
| | - Gayln Perry
- Department of Pediatrics, Children’s Mercy Hospitals and Clinics , Kansas City, MO , USA
| | - Lee Brooks
- Department of Pediatrics, Children’s Hospital of Philadelphia , Philadelphia, PA , USA
| | - Leila Kheirandish-Gozal
- Department of Child health and Child Health Research Institute, University of Missouri Health Center , Columbia, MO , USA
| | - David Gozal
- Department of Child health and Child Health Research Institute, University of Missouri Health Center , Columbia, MO , USA
| | - Thornton Mason
- Department of Pediatrics, Children’s Hospital of Philadelphia , Philadelphia, PA , USA
| | - Althea Robinson
- Sleep Disorders Center, Vanderbilt University , Nashville, TN , USA
| | - Beth Malow
- Sleep Disorders Center, Vanderbilt University , Nashville, TN , USA
| | - Kamal Naqvi
- Department of Pediatrics, University of Texas Southwestern , Dallas, TX , USA
| | - Maida L Chen
- Department of Pediatrics, Seattle Children’s Hospital , Seattle, WA , USA
| | - Supriya Jambhekar
- Division of Pediatric Pulmonary and Sleep Medicine , University of Arkansas Medical Sciences, Little Rock, AR , USA
| | - Ann Halbower
- Department of Pediatrics, Children hospital Colorado, University of Colorado , Denver, CO , USA
| | | | - Ehab Dayyat
- Division of Pediatric Neurology, Department of Pediatrics, Baylor Scott and White McLane Children’s Specialty Clinics , Temple, TX , USA
| | - Jenny Lew
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, George Washington University , Washington, DC , USA
| | - Cecilia Melendres
- Department of Pediatrics, John Hopkins University , Baltimore, MD , USA
| | - Suresh Kotagal
- Department of Neurology, Mayo Clinic , Rochester, MN , USA
| | - Sejal Jain
- Department of Pediatrics, University of Arizona , Tucson, AZ , USA
| | - Elizabeth Super
- Department of Pediatrics, Oregon Health and Sciences University , Portland, OR , USA
| | - Thomas Dye
- Division of Pulmonary and Sleep Medicine, Cincinnati Children’s Hospital Medical Center , Cincinnati, OH , USA
- Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| | - Md Monir Hossain
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center , Cincinnati, OH , USA
| | - Dawit Tadesse
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center , Cincinnati, OH , USA
| |
Collapse
|
11
|
Roy A, Verma N, Singh S, Pradhan P, Taneja S, Singh M. Immune-mediated liver injury following COVID-19 vaccination: A systematic review. Hepatol Commun 2022; 6:2513-2522. [PMID: 35507736 PMCID: PMC9348067 DOI: 10.1002/hep4.1979] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
Immune-mediated liver injury (ILI) following coronavirus disease 2019 (COVID-19) vaccination is not well-characterized. Therefore, we systematically reviewed the literature on ILI after COVID-19 vaccination. We searched PubMed, Cochrane, Ovid, Embase, and gray literature to include articles describing ILI following COVID-19 vaccination. Reports without confirmatory evidence from liver biopsy were excluded. Descriptive analysis, and study quality were reported as appropriate. Of the 1,048 articles found, 13 (good/fair quality; 23 patients) were included. Studies were primarily from Europe (n = 8), America (n = 2), Asia (n = 2), or Australia (n = 1). Patients were predominantly females (62.5%) of age 55.3 years (49.1-61.4), with an antecedent exposure to Moderna messenger RNA (mRNA)-1273 (47.8%), Pfizer-BioNTech BNT162b2 mRNA (39.2%), or ChAdOx1 nCoV-19 vaccine (13%). Pre-existing comorbidities (69.6%) were common, including liver disease in 26.1% and thyroid disorders in 13% of patients. About two-thirds of the patients were on concurrent medications (paracetamol, levothyroxine, statins, and non-steroidal anti-inflammatory drugs). Jaundice was the most common symptom (78.3%). Peak bilirubin, alanine aminotransferase, and alkaline phosphatase levels were 10.8 (6.8-14.8) mg/dl, 1,106.5 (757.0-1,702.5) U/L, and 229 (174.6-259.6) U/L, respectively. Histological findings were intense portal lymphoplasmacytic infiltrate with interface hepatitis. Steroids were used in 86.9% of patients, and complete response, recovering course, and death were reported in 56.5%, 39.1%, and 4.3% of patients, respectively. ILI following COVID-19 vaccination is rare. The diagnosis is established on temporal correlation, biochemical findings, and histopathology. Prognosis is excellent with corticosteroids. Causality establishment remains a challenge.
Collapse
Affiliation(s)
- Akash Roy
- Department of HepatologySanjay Gandhi Postgraduate Institute of Medical SciencesLucknowIndia
| | - Nipun Verma
- Department of HepatologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Surender Singh
- Department of HepatologySanjay Gandhi Postgraduate Institute of Medical SciencesLucknowIndia
| | - Pranita Pradhan
- Indian Council of Medical Research Center for Evidence‐Based Child HealthPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Sunil Taneja
- Department of HepatologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Meenu Singh
- Indian Council of Medical Research Center for Evidence‐Based Child HealthPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| |
Collapse
|
12
|
Dye TJ, Simakajornboon N. Narcolepsy in Children: Sleep disorders in children, A rapidly evolving field seeking consensus. Pediatr Pulmonol 2022; 57:1952-1962. [PMID: 34021733 DOI: 10.1002/ppul.25512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/09/2022]
Abstract
Narcolepsy is a life-long sleep disorder with two distinct subtypes, narcolepsy type I and narcolepsy type II. It is now well recognized that the loss of hypocretin neurons underlies the pathogenesis of narcolepsy type I, however, the pathogenesis of narcolepsy type II is currently unknown. Both genetic and environmental factors play an important role in the pathogenesis of narcolepsy. There is increasing evidence that autoimmune processes may play a critical role in the loss of hypocretin neurons. Infections especially streptococcus and influenza have been proposed as a potential trigger for the autoimmune-mediated mechanism. Several recent studies have shown increased cases of pediatric narcolepsy following the 2009 H1N1 pandemic. The increased cases in Europe seem to be related to a specific type of H1N1 influenza vaccination (Pandemrix), while the increased cases in China are related to influenza infection. Children with narcolepsy can have an unusual presentation at disease onset including complex motor movements which may lead to delayed diagnosis. All classic narcolepsy tetrads are present in only a small proportion of children. The diagnosis of narcolepsy is confirmed by either obtaining cerebrospinal fluid hypocretin or overnight sleep study with the multiple sleep latency test (MSLT). There are limitations of using MSLT in young children such that a negative MSLT test cannot exclude narcolepsy. HLA markers have limited utility in narcolepsy, but it may be useful in young children with clinical suspicion of narcolepsy. For management, both pharmacologic and non-pharmacologic treatments are important in the management of narcolepsy. Pharmacotherapy is primarily aimed to address excessive daytime sleepiness and REM-related symptoms such as cataplexy. In addition to pharmacotherapy, routine screening of behavioral and psychosocial issues is warranted to identify patients who would benefit from bio-behavior intervention.
Collapse
Affiliation(s)
- Thomas J Dye
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Narong Simakajornboon
- Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Labombarde JG, Pillai MR, Wehenkel M, Lin CY, Keating R, Brown SA, Crawford JC, Brice DC, Castellaw AH, Mandarano AH, Guy CS, Mejia JR, Lewis CD, Chang TC, Oshansky CM, Wong SS, Webby RJ, Yan M, Li Q, Marion TN, Thomas PG, McGargill MA. Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity. Cell Rep 2022; 38:110482. [PMID: 35263574 PMCID: PMC9036619 DOI: 10.1016/j.celrep.2022.110482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022] Open
Abstract
Infection and vaccination repeatedly expose individuals to antigens that are conserved between influenza virus subtypes. Nevertheless, antibodies recognizing variable influenza epitopes greatly outnumber antibodies reactive against conserved epitopes. Elucidating factors contributing to the paucity of broadly reactive influenza antibodies remains a major obstacle for developing a universal influenza vaccine. Here, we report that inducing broadly reactive influenza antibodies increases autoreactive antibodies in humans and mice and exacerbates disease in four distinct models of autoimmune disease. Importantly, transferring broadly reactive influenza antibodies augments disease in the presence of inflammation or autoimmune susceptibility. Further, broadly reactive influenza antibodies spontaneously arise in mice with defects in B cell tolerance. Together, these data suggest that self-tolerance mechanisms limit the prevalence of broadly reactive influenza antibodies, which can exacerbate disease in the context of additional risk factors.
Collapse
Affiliation(s)
- Jocelyn G. Labombarde
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Meenu R. Pillai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Chun-Yang Lin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rachael Keating
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David C. Brice
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ashley H. Castellaw
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Clifford S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Juan R. Mejia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Carlessia D. Lewis
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christine M. Oshansky
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Present address: Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China,Present address: State Key Laboratory of Respiratory Diseases & National Clinical Research Center for Respiratory Disease, Guangzhou, P.R. China,Present address: School of Public Health, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan–Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tony N. Marion
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Lead contact,Correspondence:
| |
Collapse
|
14
|
Bakhtadze S, Lim M, Craiu D, Cazacu C. Vaccination in acute immune-mediated/inflammatory disorders of the central nervous system. Eur J Paediatr Neurol 2021; 34:118-122. [PMID: 34487956 DOI: 10.1016/j.ejpn.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023]
Abstract
This review article covers the vaccination related issues in autoimmune disorders of central nervous system (CNS) including narcolepsy, anti-NMDAR encephalitis, Rasmussen encephalitis and febrile infection related epilepsy syndrome (FIRES). Beyond these conditions the immune mediated epilepsies related with autoimmune CNS disorders are discussed and indications and contraindications of vaccinations in these cases are also considered.
Collapse
Affiliation(s)
- Sophia Bakhtadze
- Department of Paediatric Neurology, Tbilisi State Medical University, 33 Vazha Pshavela ave, 0160, Tbilisi, Georgia.
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, Westminister Bridge Road, SE1 7EH, London, UK; Department Women and Children's Health, School of Life Course Sciences (SoLCS), King's College, Strand, WC2R 2LS, London, UK.
| | - Dana Craiu
- Department of Neurosciences, Pediatric Neurology Discipline II, Carol Davila University of Medicine and Pharmacy, Faculty of Medicine, Strada Dionisie Lupu No. 37, 020021, Bucharest/S2, Romania; Pediatric Neurology Clinic, Center of Expertise for Rare Disorders in Pediatric Neurology, EpiCARE Member, Sos. Berceni 10, Bucharest/S4, Romania.
| | - Cristina Cazacu
- Pediatric Neurology Clinic, Center of Expertise for Rare Disorders in Pediatric Neurology, EpiCARE Member, Sos. Berceni 10, Bucharest/S4, Romania.
| |
Collapse
|
15
|
Abstract
Most currently used conventional influenza vaccines are based on 1940s technology. Advances in vaccine immunogen design and delivery emerging over the last decade promise new options for improving influenza vaccines. In addition, new technologies for immune profiling provide better-defined immune correlates of protection and precise surrogate biomarkers for vaccine evaluations. Major technological advances include single-cell analysis, high-throughput antibody discovery, next-generation sequencing of antibody gene transcripts, antibody ontogeny, structure-guided immunogen design, nanoparticle display, delivery and formulation options, and better adjuvants. In this review, we provide our prospective outlook for improved influenza vaccines in the foreseeable future.
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Lu L, Xiong W, Mu J, Zhang Q, Zhang H, Zou L, Li W, He L, Sander JW, Zhou D. The potential neurological effect of the COVID-19 vaccines: A review. Acta Neurol Scand 2021; 144:3-12. [PMID: 33779985 PMCID: PMC8250748 DOI: 10.1111/ane.13417] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 02/05/2023]
Abstract
The coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has become a pandemic with people infected in almost all countries. The most efficient solution to end this pandemic is a safe and efficient vaccine. Classic platforms are used to develop vaccines including live‐attenuated vaccine, inactivated vaccine, protein subunit vaccine, and viral vector. Nucleic acid vaccine uses next‐generation platforms for their development. Vaccines are now rushing to the market. Eleven candidates are in advance development. These comprise inactivated vaccines, viral vector vaccine, nucleic acid vaccine, and the protein subunit vaccine platform, which are now quite advanced in trials in various geographic and ethnic populations. The reported severe adverse effects raised the worries about their safety. It becomes critical to know whether these vaccines will cause neurologic disorders like previously recognized vaccine‐related demyelinating diseases, fever‐induced seizure, and other possible deficits. We reviewed the most promising COVID‐2 vaccines with a particular interest in mechanism(s) and adverse effect(s). We exemplify potential neurological problems these vaccines could cause by looking at previous studies. The current evidence indicated a minor risk of the acute neurological disorders after the application. The observation of the long‐time effect is still needed.
Collapse
Affiliation(s)
- Lu Lu
- Department of Neurology West China Hospital of Sichuan University Chengdu China
- DInstitute of Brain science and Brain‐inspired technology of West China Hospital Sichuan University Chengdu China
| | - Weixi Xiong
- Department of Neurology West China Hospital of Sichuan University Chengdu China
- DInstitute of Brain science and Brain‐inspired technology of West China Hospital Sichuan University Chengdu China
| | - Jie Mu
- Department of Neurology West China Hospital of Sichuan University Chengdu China
- DInstitute of Brain science and Brain‐inspired technology of West China Hospital Sichuan University Chengdu China
| | - Qi Zhang
- Department of Neurology West China Hospital of Sichuan University Chengdu China
- DInstitute of Brain science and Brain‐inspired technology of West China Hospital Sichuan University Chengdu China
| | - Hesheng Zhang
- Department of Neurology West China Hospital of Sichuan University Chengdu China
- DInstitute of Brain science and Brain‐inspired technology of West China Hospital Sichuan University Chengdu China
| | - Ling Zou
- Department of Radiology West China Hospital of Sichuan UniversityThe International OfficeWest China Hospital of Sichuan University Chengdu China
| | - Weimin Li
- Department of Pulmonary & Critical Care Medicine West China Hospital of Sichuan University Chengdu China
| | - Li He
- Department of Neurology West China Hospital of Sichuan University Chengdu China
- DInstitute of Brain science and Brain‐inspired technology of West China Hospital Sichuan University Chengdu China
| | - Josemir W. Sander
- Department of Neurology West China Hospital of Sichuan University Chengdu China
- DInstitute of Brain science and Brain‐inspired technology of West China Hospital Sichuan University Chengdu China
- NIHR University College London Hospitals Biomedical Research CentreUCL Queen Square Institute of Neurology London United Kingdom
- Stichting Epilepsie Instellingen Nederland (SEIN) Heemstede Netherlands
| | - Dong Zhou
- Department of Neurology West China Hospital of Sichuan University Chengdu China
- DInstitute of Brain science and Brain‐inspired technology of West China Hospital Sichuan University Chengdu China
| |
Collapse
|
17
|
Vulpe SN, Rughiniş C. Social amplification of risk and "probable vaccine damage": A typology of vaccination beliefs in 28 European countries. Vaccine 2021; 39:1508-1515. [PMID: 33573865 DOI: 10.1016/j.vaccine.2021.01.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite lacking scientific support, vaccine hesitancy is widespread. While serious vaccine damage as a scientific fact is real yet statistically highly uncommon, emerging social and technological forces have amplified perceptions of risk for "probable vaccine damage", making it a widely shared intersubjective reality. METHODS Using the Eurobarometer 91.2 survey on a statistically representative EU27-UK sample interviewed in March 2019, we documented perceptions of vaccine risks and identified three belief configurations regarding vaccine effectiveness, safety, and usefulness, through exploratory cluster analysis. RESULTS The public beliefs in significant vaccine risks are frequent. Approximatively one-tenth of the EU27-UK population consider that vaccines are not rigorously tested before authorization, one-third believe that vaccines can overload or weaken the immune system and that they can cause the disease against which they protect, and almost one-half believe that vaccines can cause serious side effects. We identified three belief configurations: hesitant, confident, and trade-off clusters. The hesitant type (approx. 11% of EU27-UK respondents) is defined by the perception that vaccines are rather ineffective, affected by risks of probable vaccine damage, not well-tested, and useless; the confident type (approx. 59%) is defined by beliefs that vaccines are effective, safe, well-tested, and useful; and the trade-off type (approx. 29%) combines beliefs that vaccines are effective, well-tested and useful, with perceptions of probable vaccine damage. The vaccine-confident and the trade-off types have similar vaccination histories, indicating the significant role of other factors besides beliefs in inducing behavior. CONCLUSIONS The high proportion of varying public beliefs in significant vaccine risks and the presence of a trade-off type of vaccination assessment indicate the social normality of beliefs in probable vaccine damage. Communication campaigns should take into account the social normality of the perceived risk of "probable vaccine damage" across various social types, and patterns of concomitant trust and mistrust in vaccination.
Collapse
Affiliation(s)
- Simona-Nicoleta Vulpe
- Interdisciplinary School of Doctoral Studies, University of Bucharest, 36-46 Mihail Kogălniceanu, Bucharest, Romania.
| | - Cosima Rughiniş
- Department of Sociology, Faculty of Sociology and Social Work, University of Bucharest, 9 Schitu Măgureanu, Bucharest, Romania
| |
Collapse
|
18
|
Lamaisakul S, Tantituvanont A, Lipipun V, Ritthidej G. Development of novel cationic microemulsion as parenteral adjuvant for influenza vaccine. Asian J Pharm Sci 2020; 15:591-604. [PMID: 33193862 PMCID: PMC7610209 DOI: 10.1016/j.ajps.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 11/08/2022] Open
Abstract
Squalene-based oil-in-water (O/W) emulsions have been used as effective and safe adjuvants in approved influenza vaccines. However, there are concerns regarding the safety and side effects of increasing risk of narcolepsy. In present study, novel O/W microemulsions (MEs) containing wheat germ oil, D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) and Cremophor EL (CreEL) or Solutol HS15 were formulated with/without a cationic surfactant, cetyltrimethylammonium bromide (CTAB) and then sterilized by autoclaving. Their physical properties and biological efficacies were evaluated. The results demonstrated that autoclaving reduced the droplet size to ∼20 nm with narrow size distributions resulting in monodisperse systems with good stability up to 3 years. Hemolytic activity, viscosity, pH, and osmolality were appropriate for parenteral use. Bovine serum albumin (BSA), a model antigen, after mixing with MEs retained the protein integrity, assessed by SDS-PAGE and CD spectroscopy. Greater percentages of 28SC cell viability were observed from CreEL-based MEs. Uptake of FITC-BSA-MEs increased with the increasing concentration of CTAB confirmed by CLSM images. Furthermore, cationic CreEL-based MEs could induce Th1 cytokine synthesis with an increase in TNF-α and IL-12 levels and a decrease in IL-10 level. In vivo immunization study in mice of adjuvants admixed with influenza virus solution revealed that nonionic and selected cationic CreEL-MEs enhanced immune responses as measured by influenza-specific serum antibody titers and hemagglutination inhibition titers. Particularly, cationic CreEL-based ME showed better humoral and cellular immunity with higher IgG2a titer than nonionic CreEL-based ME and antigen alone. No differences in immune responses were observed between mice immunized with selected cationic CreEL-based ME and marketed adjuvant. In addition, the selected ME induced antigen-sparing while retained immune stimulating effects compared to antigen alone. No inflammatory change in muscle fiber structure was observed. Accordingly, the developed cationic CreEL-based ME had potential as novel adjuvant for parenteral influenza vaccine.
Collapse
Affiliation(s)
- Sakalanunt Lamaisakul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vimolmas Lipipun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Garnpimol Ritthidej
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
19
|
Ouyang H, Han F, Zhou ZC, Zhang J. Differences in clinical and genetic characteristics between early- and late-onset narcolepsy in a Han Chinese cohort. Neural Regen Res 2020; 15:1887-1893. [PMID: 32246636 PMCID: PMC7513989 DOI: 10.4103/1673-5374.280322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 01/16/2023] Open
Abstract
Early- and late-onset narcolepsy constitutes two distinct diagnostic subgroups. However, it is not clear whether symptomology and genetic risk factors differ between early- and late-onset narcoleptics. This study compared clinical data and single-nucleotide polymorphisms (SNPs) between early- and late-onset patients in a large cohort of 899 Han Chinese narcolepsy patients. Blood, cerebrospinal fluid, and clinical data were prospectively collected from patients, and patients were genotyped for 40 previously reported narcolepsy risk-conferring SNPs. Genetic risk scores (GRSs), associations of five different sets of SNPs (GRS1-GRS5) with early- and late-onset narcolepsy, were evaluated using logistic regression and receiver operating characteristic curves. Mean sleep latency was significantly shorter in early-onset cases than in late-onset cases. Symptom severity was greater among late-onset patients, with higher rates of sleep paralysis, hypnagogic hallucinations, health-related quality of life impairment, and concurrent presentation with four or more symptoms. Hypocretin levels did not differ significantly between early- and late-onset cases. Only rs3181077 (CCR1/CCR3) and rs9274477 (HLA-DQB1) were more prevalent among early-onset cases. Only GRS1 (26 SNPs; OR = 1.513, 95% CI: 0.893-2.585; P < 0.05) and GRS5 (6 SNPs; OR = 1.893, 95% CI: 1.204-2.993; P < 0.05) were associated with early-onset narcolepsy, with areas under the receiver operating characteristic curves of 0.731 and 0.732, respectively. Neither GRS1 nor GRS5 included SNPs in HLA regions. Our results indicate that symptomology and genetic risk factors differ between early- and late-onset narcolepsy. This protocol was approved by the Institutional Review Board (IRB) Panels on Medical Human Subjects at Peking University People's Hospital, China (approval No. Yuanlunshenlinyi 86) in October 2011.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Clinical Neurology, Peking University People's Hospital, Beijing, China
| | - Fang Han
- Department of Clinical Pulmonology, Peking University People's Hospital, Beijing, China
| | - Ze-Chen Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Clinical Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
20
|
Gill I, Sheils A, Reade E, O'Malley S, Carey A, Muldoon M, Wagle A, Crowe C, Lynch B. Narcolepsy in children and young people in Ireland: 2006-2017. Eur J Paediatr Neurol 2020; 28:52-57. [PMID: 32807682 DOI: 10.1016/j.ejpn.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/23/2020] [Accepted: 07/25/2020] [Indexed: 01/20/2023]
Abstract
AIM To describe the population of young people in Ireland diagnosed with narcolepsy with regards to vaccine exposure, symptomatology, investigation results and experience of medical treatment. METHOD Retrospective review of medical records at the single tertiary referral centre for young people with narcolepsy in Ireland. RESULTS Sixty-seven patients were diagnosed with narcolepsy between July 2006 and July 2017. Sixty-one (91%) of these developed symptoms after receiving the Pandemrix vaccine. The population was largely homogeneous with low hypocretin (87.5%), HLA DQB1∗0602 positivity (95%) and unremarkable findings on MRI Brain (100%). 77.6% experienced cataplexy; we also measured high levels of obesity, school non-attendance and psychosocial complexity. Symptoms often continued despite treatment, with multiple medications prescribed in 76.1% of patients. Prescription of sodium oxybate was associated with a significant reduction in BMI standard deviation scores at 6 months, with improved IOTF obesity scores seen at 36 month follow-up. CONCLUSIONS This paper describes the experience of narcolepsy in children and young people in Ireland from 2006 - 2017 at the national tertiary referral centre. Narcolepsy in children and young people in Ireland carries a significant burden of illness, with impact on participation in education as well as physical and mental health. Symptoms can be refractory to medical treatment. Referral to tertiary centres for prompt treatment and multidisciplinary input is essential.
Collapse
Affiliation(s)
- Irwin Gill
- Department of Neurodisability, Children's Health Ireland, Temple Street, Dublin, Ireland.
| | - Aishling Sheils
- Department of Dietetics, Children's Health Ireland, Temple Street, Dublin, Ireland
| | - Elaine Reade
- Department of Neurology, Children's Health Ireland, Temple Street, Dublin, Ireland
| | - Siobhan O'Malley
- Department of Neurology, Children's Health Ireland, Temple Street, Dublin, Ireland
| | - Aoife Carey
- Department of Neurology, Children's Health Ireland, Temple Street, Dublin, Ireland
| | - Maeve Muldoon
- Department of Dietetics, Children's Health Ireland, Temple Street, Dublin, Ireland
| | - Abigail Wagle
- Department of Dietetics, Children's Health Ireland, Temple Street, Dublin, Ireland
| | - Catherine Crowe
- Mater Private Sleep Clinic, Mater Private Hospital, Dublin, Ireland
| | - Bryan Lynch
- Department of Neurology, Children's Health Ireland, Temple Street, Dublin, Ireland
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This article discusses the central disorders of hypersomnolence, a group of disorders resulting in pathologic daytime sleepiness, particularly narcolepsy type 1 and narcolepsy type 2, idiopathic hypersomnia, and Kleine-Levin syndrome. Disease features, diagnostic testing, epidemiology, pathophysiology, and treatment are reviewed. RECENT FINDINGS Increasing evidence implicates autoimmunity in narcolepsy type 1, including a strong association with human leukocyte antigen-DQB1*06:02, association with a polymorphism in the T-cell receptor alpha locus in genome-wide association, and the identification of autoreactive T cells in patients with this type of narcolepsy. In contrast, the cause or causes of narcolepsy type 2 and idiopathic hypersomnia are unknown. Multiple treatment options exist, including two medications approved for the treatment of narcolepsy by the US Food and Drug Administration (FDA) in 2019. These include solriamfetol, a dopamine- and norepinephrine-reuptake inhibitor, and pitolisant, an H3-inverse agonist/antagonist that increases histaminergic neurotransmission. SUMMARY The central disorders of hypersomnolence all cause severe sleepiness but can be differentiated based on ancillary symptoms, diagnostic testing, and pathophysiology. It is important that these disorders are identified because multiple treatments are available to improve functioning and quality of life.
Collapse
|
22
|
Ouyang H, Wang S, Zheng Q, Zhang J. Constructing gene network for type 1 narcolepsy based on genome-wide association study and differential gene expression analysis (STROBE). Medicine (Baltimore) 2020; 99:e19985. [PMID: 32358372 PMCID: PMC7440059 DOI: 10.1097/md.0000000000019985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although many genes that affect narcolepsy risk have been identified, the interactions among these genes are still unclear. Moreover, there is a lack of research on the construction of the genetic network of narcolepsy. To screen candidate genes related to the onset of narcolepsy type 1, the function and distribution of important genes related to narcolepsy type 1 were studied and a gene network was constructed to study the pathogenesis of narcolepsy type 1.A case-control study (observational study) of 1075 Chinese narcoleptic patients and 1997 controls was conducted. The gene-sequencing data was analyzed using genome-wide association analysis. The candidate genes related to narcolepsy were identified by differential gene expression analysis and literature research. Then, the 28 candidate genes were input into the KEGG database and 32 pathway data related to candidate genes were obtained. A gene network, with the pathways as links and the genes as nodes, was constructed. According to our results, TNF, MHC II, NFATC2, and CXCL8 were the top genes in the gene network.TNF, MHC II, NFATC2, and CXCL8 are closely related to narcolepsy type I and require further study. By analyzing the pathways of disease-related genes and the network of gene interaction, we can provide an outlinefor the study of specific mechanisms of and treatments for narcolepsy.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Clinical Neurology, Peking University, People's Hospital
| | - Shiying Wang
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, Beijing, China
| | - Qiwen Zheng
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Clinical Neurology, Peking University, People's Hospital
| |
Collapse
|
23
|
Ravel JM, Mignot EJM. [Narcolepsy: From the discovery of a wake promoting peptide to autoimmune T cell biology and molecular mimicry with flu epitopes]. Biol Aujourdhui 2019; 213:87-108. [PMID: 31829930 DOI: 10.1051/jbio/2019026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 11/14/2022]
Abstract
Narcolepsy-cataplexy was first described in the late 19th century in Germany and France. Prevalence was established to be 0.05 % and a canine model was discovered in the 1970s. In 1983, a Japanese study found that all patients carried HLA-DR2, suggesting autoimmunity as the cause of the disease. Studies in the canine model established that dopaminergic stimulation underlies anti-narcoleptic action of psychostimulants, while antidepressants were found to suppress cataplexy through adrenergic reuptake inhibition. No HLA association was found in canines. A linkage study initiated in 1988 revealed in hypocretin (orexin) receptor two mutations as the cause of canine narcolepsy in 1999. In 1992, studies on African Americans showed that DQ0602 was a better marker than DR2 across all ethnic groups. In 2000, hypocretin-1/orexin A levels were measured in the cerebrospinal fluid (CSF) and found to be undetectable in most patients, establishing hypocretin deficiency as the cause of narcolepsy. Decreased CSF hypocretin-1 was then found to be secondary to the loss of the 70,000 neurons producing hypocretin in the hypothalamus, suggesting immune destruction of these cells as the cause of the disease. Additional genetic studies, notably genome wide associations (GWAS), found multiple genetic predisposing factors for narcolepsy. These were almost all involved in other autoimmune diseases, although a strong and unique association with T cell receptor (TCR) alpha and beta loci were observed. Nonetheless, all attempts to demonstrate presence of autoantibodies against hypocretin cells in narcolepsy failed, and the presumed autoimmune cause remained unproven. In 2009, association with strep throat infections were found, and narcolepsy onsets were found to occur more frequently in spring and summer, suggesting upper away infections as triggers. Following reports that narcolepsy cases were triggered by vaccinations and infections against influenza A 2009 pH1N1, a new pandemic strain that erupted in 2009, molecular mimicry with influenza A virus was suggested in 2010. This hypothesis was later confirmed by peptide screening showing higher activity of CD4+ T cell reactivity to a specific post-translationally amidated segment of hypocretin (HCRT-NH2) and cross-reactivity of specific TCRs with a pH1N1-specific segment of hemagglutinin that shares homology with HCRT-NH2. Strikingly, the most frequent TCR recognizing these antigens was found to carry sequences containing TRAJ24 or TRVB4-2, segments modulated by narcolepsy-associated genetic polymorphisms. Cross-reactive CD4+ T cells with these cross-reactive TCRs likely subsequently recruit CD8+ T cells that are then involved in hypocretin cell destruction. Additional flu mimics are also likely to be discovered since narcolepsy existed prior to 2009. The work that has been conducted over the years on narcolepsy offers a unique perspective on the conduct of research on the etiopathogeny of a specific disease.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Medicine, Stanford University, 3615 Porter Drive, Palo Alto, CA, USA
| | - Emmanuel J M Mignot
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Medicine, Stanford University, 3615 Porter Drive, Palo Alto, CA, USA
| |
Collapse
|
24
|
Esposito S, Toni G, Tascini G, Santi E, Berioli MG, Principi N. Environmental Factors Associated With Type 1 Diabetes. Front Endocrinol (Lausanne) 2019; 10:592. [PMID: 31555211 PMCID: PMC6722188 DOI: 10.3389/fendo.2019.00592] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that leads to progressive pancreatic ß-cell destruction and culminates in absolute insulin deficiency and stable hyperglycaemia. It is very likely that environmental factors play a role in triggering islet autoimmunity. Knowing whether they have true relevance in favoring T1D development is essential for the effective prevention of the disease. Moreover, prevention could be obtained directly interfering with the development of autoimmunity through autoantigen-based immunotherapy. In this narrative review, the present possibilities for the prevention of T1D are discussed. Presently, interventions to prevent T1D are generally made in subjects in whom autoimmunity is already activated and autoantibodies against pancreatic cell components have been detected. Practically, the goal is to slow down the immune process by preserving the normal structure of the pancreatic islets for as long as possible. Unfortunately, presently methods able to avoid the risk of autoimmune activation are not available. Elimination of environmental factors associated with T1D development, reverse of epigenetic modifications that favor initiation of autoimmunity in subjects exposed to environmental factors and use of autoantigen-based immunotherapy are possible approaches, although for all these measures definitive conclusions cannot be drawn. However, the road is traced and it is possible that in a not so distant future an effective prevention of the disease to all the subjects at risk can be offered.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
- *Correspondence: Susanna Esposito
| | - Giada Toni
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Giorgia Tascini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Elisa Santi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Maria Giulia Berioli
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | | |
Collapse
|
25
|
Medvedeva AV, Golovatyuk AO, Poluektov MG. Autoimmune mechanisms and new opportunities for treatment narcolepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:56-62. [DOI: 10.17116/jnevro201911904256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Influenza and sudden unexpected death: the possible role of peptide cross-reactivity. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2018-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
This study investigates the hypothesis that cross-reactions may occur between human cardiac proteins and influenza antigens, thus possibly representing the molecular mechanism underlying influenzaassociated sudden unexpected death (SUD). Using titin protein as a research model, data were obtained on (1) the occurrence of the titin octapeptide AELLVLLE or its mimic AELLVALE in influenza A virus hemagglutinin (HA) sequences; (2) the immunological potential of AELLVLLE and its mimic AELLVALE; (3) the possible role of the flanking amino acid aa) context of the two octapeptide determinants in eliciting cross-reactivity between the human cardiac titin protein and HA antigens.
Collapse
|
27
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PS, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95:100-123. [DOI: 10.1016/j.jaut.2018.10.012] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
|
28
|
Hyöty H, Leon F, Knip M. Developing a vaccine for type 1 diabetes by targeting coxsackievirus B. Expert Rev Vaccines 2018; 17:1071-1083. [PMID: 30449209 DOI: 10.1080/14760584.2018.1548281] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Virus infections have long been considered as a possible cause of type 1 diabetes (T1D). One virus group, enteroviruses (EVs), has been studied extensively, and clinical development of a vaccine against T1D-associated EV types has started. AREAS COVERED Epidemiological studies have indicated an association between EVs and T1D. These viruses have a strong tropism for insulin-producing β-cells; the destruction of these cells leads to T1D. The exact mechanisms by which EVs could cause T1D are not known, but direct infection of β-cells and virus-induced inflammation may play a role. Recent studies have narrowed down the epidemiological association to a subset of EVs: group B coxsackieviruses (CVBs). These findings have prompted efforts to develop vaccines against CVBs. Prototype CVB vaccines have prevented both infection and CVB-induced diabetes in mice. This review summarizes recent progress in the field and the specifics of what could constitute the first human vaccine developed for a chronic autoimmune disease. EXPERT COMMENTARY Manufacturing of a clinical CVB vaccine as well as preclinical studies are currently in progress in order to enable clinical testing of the first CVB vaccine. Ongoing scientific research projects can significantly facilitate this effort by providing insights into the mechanisms of the CVB-T1D association.
Collapse
Affiliation(s)
- Heikki Hyöty
- a Faculty of Medicine and Life Sciences, Department of Virology , University of Tampere , Tampere , Finland.,b Fimlab Laboratories , Pirkanmaa Hospital District , Tampere , Finland
| | | | - Mikael Knip
- d Children's Hospital , University of Helsinki and Helsinki University Hospital , Helsinki , Finland.,e Diabetes and Obesity Research Program , University of Helsinki , Helsinki , Finland.,f Folkhälsan Research Center , Helsinki , Finland.,g Center for Child Health Research , Tampere University Hospital , Tampere , Finland
| |
Collapse
|
29
|
Szabo ST, Thorpy MJ, Mayer G, Peever JH, Kilduff TS. Neurobiological and immunogenetic aspects of narcolepsy: Implications for pharmacotherapy. Sleep Med Rev 2018; 43:23-36. [PMID: 30503715 DOI: 10.1016/j.smrv.2018.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/22/2018] [Accepted: 09/27/2018] [Indexed: 01/19/2023]
Abstract
Excessive daytime sleepiness (EDS) and cataplexy are common symptoms of narcolepsy, a sleep disorder associated with the loss of hypocretin/orexin (Hcrt) neurons. Although only a few drugs have received regulatory approval for narcolepsy to date, treatment involves diverse medications that affect multiple biochemical targets and neural circuits. Clinical trials have demonstrated efficacy for the following classes of drugs as narcolepsy treatments: alerting medications (amphetamine, methylphenidate, modafinil/armodafinil, solriamfetol [JZP-110]), antidepressants (tricyclic antidepressants, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors), sodium oxybate, and the H3-receptor inverse agonist/antagonist pitolisant. Enhanced catecholamine availability and regulation of locus coeruleus (LC) norepinephrine (NE) neuron activity is likely central to the therapeutic activity of most of these compounds. LC NE neurons are integral to sleep/wake regulation and muscle tone; reduced excitatory input to the LC due to compromise of Hcrt/orexin neurons (likely due to autoimmune factors) results in LC NE dysregulation and contributes to narcolepsy/cataplexy symptoms. Agents that increase catecholamines and/or LC activity may mitigate EDS and cataplexy by elevating NE regulation of GABAergic inputs from the amygdala. Consequently, novel medications and treatment strategies aimed at preserving and/or modulating Hcrt/orexin-LC circuit integrity are warranted in narcolepsy/cataplexy.
Collapse
Affiliation(s)
- Steven T Szabo
- Duke University Medical Center, Durham, NC, USA; Durham Veterans Affairs Medical Center, Durham, NC, USA.
| | | | | | - John H Peever
- University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
30
|
Incidence rates of narcolepsy diagnoses in Taiwan, Canada, and Europe: The use of statistical simulation to evaluate methods for the rapid assessment of potential safety issues on a population level in the SOMNIA study. PLoS One 2018; 13:e0204799. [PMID: 30332477 PMCID: PMC6192586 DOI: 10.1371/journal.pone.0204799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
Background & objectives Vaccine safety signals require investigation, which may be done rapidly at the population level using ecological studies, before embarking on hypothesis-testing studies. Incidence rates were used to assess a signal of narcolepsy following AS03-adjuvanted monovalent pandemic H1N1 (pH1N1) influenza vaccination among children and adolescents in Sweden and Finland in 2010. We explored the utility of ecological data to assess incidence of narcolepsy following exposure to pandemic H1N1 virus or vaccination in 10 sites that used different vaccines, adjuvants, and had varying vaccine coverage. Methods We calculated incidence rates of diagnosed narcolepsy for periods defined by influenza virus circulation and vaccination campaign dates, and used Poisson regression to estimate incidence rate ratios (IRRs) comparing the periods during which wild-type virus circulated and after the start of vaccination campaigns vs. the period prior to pH1N1 virus circulation. We used electronic health care data from Sweden, Denmark, the United Kingdom, Canada (3 provinces), Taiwan, Netherlands, and Spain (2 regions) from 2003 to 2013. We investigated interactions between age group and adjuvant in European sites and conducted a simulation study to investigate how vaccine coverage, age, and the interval from onset to diagnosis may impact the ability to detect safety signals. Results Incidence rates of narcolepsy varied by age, continent, and period. Only in Taiwan and Sweden were significant time-period-by-age-group interactions observed. Associations were found for children in Taiwan (following pH1N1 virus circulation) and Sweden (following vaccination). Simulations showed that the individual-level relative risk of narcolepsy was underestimated using ecological methods comparing post- vs. pre-vaccination periods; this effect was attenuated with higher vaccine coverage and a shorter interval from disease onset to diagnosis. Conclusions Ecological methods can be useful for vaccine safety assessment but the results are influenced by diagnostic delay and vaccine coverage. Because ecological methods assess risk at the population level, these methods should be treated as signal-generating methods and drawing conclusions regarding individual-level risk should be avoided.
Collapse
|
31
|
Cao W, Mishina M, Amoah S, Mboko WP, Bohannon C, McCoy J, Mittal SK, Gangappa S, Sambhara S. Nasal delivery of H5N1 avian influenza vaccine formulated with GenJet™ or in vivo-jetPEI ® induces enhanced serological, cellular and protective immune responses. Drug Deliv 2018. [PMID: 29542358 PMCID: PMC6058713 DOI: 10.1080/10717544.2018.1450909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Avian influenza virus infection is a serious public health threat and preventive vaccination is the most cost-effective public health intervention strategy. Unfortunately, currently available unadjuvanted avian influenza vaccines are poorly immunogenic and alternative vaccine formulations and delivery strategies are in urgent need to reduce the high risk of avian influenza pandemics. Cationic polymers have been widely used as vectors for gene delivery in vitro and in vivo. In this study, we formulated H5N1 influenza vaccines with GenJet™ or in vivo-jetPEI®, and showed that these formulations significantly enhanced the immunogenicity of H5N1 vaccines and conferred protective immunity in a mouse model. Detailed analyses of adaptive immune responses revealed that both formulations induced mixed TH1/TH2 antigen-specific CD4 T-cell responses, antigen-specific cytotoxic CD8 T-cell and memory B-cell responses. Our findings suggest that cationic polymers merit future development as potential adjuvants for mucosal delivery of poorly immunogenic vaccines.
Collapse
Affiliation(s)
- Weiping Cao
- a Immunology and Pathogenesis Branch , National Center for Immunization and Respiratory Diseases , Atlanta , GA , USA.,b Influenza Division , Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Margarita Mishina
- a Immunology and Pathogenesis Branch , National Center for Immunization and Respiratory Diseases , Atlanta , GA , USA.,b Influenza Division , Centers for Disease Control and Prevention , Atlanta , GA , USA.,c Battelle Memorial Institute , Atlanta , GA , USA
| | - Samuel Amoah
- a Immunology and Pathogenesis Branch , National Center for Immunization and Respiratory Diseases , Atlanta , GA , USA.,b Influenza Division , Centers for Disease Control and Prevention , Atlanta , GA , USA.,c Battelle Memorial Institute , Atlanta , GA , USA
| | - Wadzanai P Mboko
- d Department of Comparative Pathobiology , Purdue University , West Lafayette , IN , USA
| | - Caitlin Bohannon
- a Immunology and Pathogenesis Branch , National Center for Immunization and Respiratory Diseases , Atlanta , GA , USA.,b Influenza Division , Centers for Disease Control and Prevention , Atlanta , GA , USA.,e Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program , Oak Ridge , TN , USA
| | - James McCoy
- f Department of Pathology and Laboratory Medicine , Emory University , Atlanta , GA , USA
| | - Suresh K Mittal
- d Department of Comparative Pathobiology , Purdue University , West Lafayette , IN , USA
| | - Shivaprakash Gangappa
- a Immunology and Pathogenesis Branch , National Center for Immunization and Respiratory Diseases , Atlanta , GA , USA.,b Influenza Division , Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Suryaprakash Sambhara
- a Immunology and Pathogenesis Branch , National Center for Immunization and Respiratory Diseases , Atlanta , GA , USA.,b Influenza Division , Centers for Disease Control and Prevention , Atlanta , GA , USA
| |
Collapse
|
32
|
Weibel D, Sturkenboom M, Black S, de Ridder M, Dodd C, Bonhoeffer J, Vanrolleghem A, van der Maas N, Lammers GJ, Overeem S, Gentile A, Giglio N, Castellano V, Kwong JC, Murray BJ, Cauch-Dudek K, Juhasz D, Campitelli M, Datta AN, Kallweit U, Huang WT, Huang YS, Hsu CY, Chen HC, Giner-Soriano M, Morros R, Gaig C, Tió E, Perez-Vilar S, Diez-Domingo J, Puertas FJ, Svenson LW, Mahmud SM, Carleton B, Naus M, Arnheim-Dahlström L, Pedersen L, DeStefano F, Shimabukuro TT. Narcolepsy and adjuvanted pandemic influenza A (H1N1) 2009 vaccines - Multi-country assessment. Vaccine 2018; 36:6202-6211. [PMID: 30122647 PMCID: PMC6404226 DOI: 10.1016/j.vaccine.2018.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND In 2010, a safety signal was detected for narcolepsy following vaccination with Pandemrix, an AS03-adjuvanted monovalent pandemic H1N1 influenza (pH1N1) vaccine. To further assess a possible association and inform policy on future use of adjuvants, we conducted a multi-country study of narcolepsy and adjuvanted pH1N1 vaccines. METHODS We used electronic health databases to conduct a dynamic retrospective cohort study to assess narcolepsy incidence rates (IR) before and during pH1N1 virus circulation, and after pH1N1 vaccination campaigns in Canada, Denmark, Spain, Sweden, Taiwan, the Netherlands, and the United Kingdom. Using a case-control study design, we evaluated the risk of narcolepsy following AS03- and MF59-adjuvanted pH1N1 vaccines in Argentina, Canada, Spain, Switzerland, Taiwan, and the Netherlands. In the Netherlands, we also conducted a case-coverage study in children born between 2004 and 2009. RESULTS No changes in narcolepsy IRs were observed in any periods in single study sites except Sweden and Taiwan; in Taiwan incidence increased after wild-type pH1N1 virus circulation and in Sweden (a previously identified signaling country), incidence increased after the start of pH1N1 vaccination. No association was observed for Arepanrix-AS03 or Focetria-MF59 adjuvanted pH1N1 vaccines and narcolepsy in children or adults in the case-control study nor for children born between 2004 and 2009 in the Netherlands case-coverage study for Pandemrix-AS03. CONCLUSIONS Other than elevated narcolepsy IRs in the period after vaccination campaigns in Sweden, we did not find an association between AS03- or MF59-adjuvanted pH1N1 vaccines and narcolepsy in children or adults in the sites studied, although power to evaluate the AS03-adjuvanted Pandemrix brand vaccine was limited in our study.
Collapse
Affiliation(s)
- Daniel Weibel
- Medical Informatics Department, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Miriam Sturkenboom
- Julius Global Health, University Utrecht Medical Center, Utrecht, The Netherlands
| | - Steven Black
- Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Maria de Ridder
- Medical Informatics Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caitlin Dodd
- Medical Informatics Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan Bonhoeffer
- Infectiology and Vaccinology University Children's Hospital, Basel, Switzerland; Brighton Collaboration Foundation, Basel, Switzerland
| | - Ann Vanrolleghem
- Medical Informatics Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nicoline van der Maas
- Dept. Epidemiology and Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gert Jan Lammers
- Leiden University Medical Centre, Leiden, The Netherlands; Sleep-Wake Center SEIN, Heemstede, The Netherlands
| | | | - Angela Gentile
- Hospital de Niños Ricardo Gutiérrez, Ciudad Autónoma de Buenos Aires, Argentina
| | - Norberto Giglio
- Hospital de Niños Ricardo Gutiérrez, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanesa Castellano
- Hospital de Niños Ricardo Gutiérrez, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jeffrey C Kwong
- Institute for Clinical Evaluative Sciences (ICES), Ontario, Canada
| | - Brian J Murray
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | | | - Diana Juhasz
- Institute for Clinical Evaluative Sciences (ICES), Ontario, Canada
| | | | | | - Ulf Kallweit
- Bern University Hospital and University of Bern, Bern, Switzerland; Witten/Herdecke University, Department of Rehabilitation, Witten/Herdecke, Germany
| | | | - Yu-Shu Huang
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and University, Taoyuan, Taiwan
| | - Chung-Yao Hsu
- Department of Neurology and Sleep Disorders Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsi-Chung Chen
- Department of Psychiatry and Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Maria Giner-Soriano
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Rosa Morros
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Carles Gaig
- Neurology Service and Multidisciplinary Sleep Disorders Unit, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ester Tió
- Althaia Xarxa Assistencial Universitària de Manresa, Neurology Service, Manresa, Barcelona, Spain
| | - Silvia Perez-Vilar
- Medical Informatics Department, Erasmus Medical Center, Rotterdam, The Netherlands; Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat (FISABIO), Vaccine Research, Valencia, Spain
| | - Javier Diez-Domingo
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat (FISABIO), Vaccine Research, Valencia, Spain
| | | | | | - Salaheddin M Mahmud
- Vaccine and Drug Evaluation Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Bruce Carleton
- Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Monika Naus
- Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Lisen Arnheim-Dahlström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lars Pedersen
- Clinical Medicine/Epidemiology, Aarhus University, Aarhus, Denmark
| | - Frank DeStefano
- Centers for Disease Control and Prevention (CDC), Immunization Safety Office, Atlanta, USA
| | - Tom T Shimabukuro
- Centers for Disease Control and Prevention (CDC), Immunization Safety Office, Atlanta, USA
| |
Collapse
|
33
|
Zhou F, Trieu MC, Davies R, Cox RJ. Improving influenza vaccines: challenges to effective implementation. Curr Opin Immunol 2018; 53:88-95. [DOI: 10.1016/j.coi.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
|
34
|
Segal Y, Shoenfeld Y. Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction. Cell Mol Immunol 2018; 15:586-594. [PMID: 29503439 PMCID: PMC6078966 DOI: 10.1038/cmi.2017.151] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/11/2017] [Accepted: 11/11/2017] [Indexed: 12/20/2022] Open
Abstract
Since the early 1800s vaccines have saved numerous lives by preventing lethal infections. However, during the past two decades, there has been growing awareness of possible adverse events associated with vaccinations, cultivating heated debates and leading to significant fluctuations in vaccination rates. It is therefore pertinent for the scientific community to seriously address public concern of adverse effects of vaccines to regain public trust in these important medical interventions. Such adverse reactions to vaccines may be viewed as a result of the interaction between susceptibility of the vaccinated subject and various vaccine components. Among the implicated mechanisms for these reactions is molecular mimicry. Molecular mimicry refers to a significant similarity between certain pathogenic elements contained in the vaccine and specific human proteins. This similarity may lead to immune crossreactivity, wherein the reaction of the immune system towards the pathogenic antigens may harm the similar human proteins, essentially causing autoimmune disease. In this review, we address the concept of molecular mimicry and its application in explaining post vaccination autoimmune phenomena. We further review the principal examples of the influenza, hepatitis B, and human papilloma virus vaccines, all suspected to induce autoimmunity via molecular mimicry. Finally, we refer to possible implications on the potential future development of better, safer vaccines.
Collapse
Affiliation(s)
- Yahel Segal
- Department of Medicine B, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, 52621, Israel
| | - Yehuda Shoenfeld
- Department of Medicine B, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, 52621, Israel.
- Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, Israel.
| |
Collapse
|
35
|
Leiva S, Madrazo J, Podesta C. Narcolepsy with cataplexy and hyperthyroidism sudden appeared after H1N1 vaccination. Sleep Sci 2018; 11:34-36. [PMID: 29796199 PMCID: PMC5916574 DOI: 10.5935/1984-0063.20180008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder, characterized by excessive
daytime sleepiness, cataplexy and fragmented nocturnal sleep. It is caused by a
hypocretin deficiency due to a significant reduction of the neurons producing
it. In the last years, it has been postulated that an autoimmune mechanism would
be responsible for the destruction of these neurons in those genetically
predisposed patients. The increased incidence of narcolepsy after the pandemic
H1N1 influenza vaccination campaign in 2009-2010 is known. We present below the
case of an adult patient who, 10 days after receiving H1N1 vaccination, suffers
a traffic accident after falling asleep. Subsequent studies revealed
hyperthyroidism due to Graves disease. In spite of the treatment, the patient
persisted with daily and disabling daytime sleepiness, sleep attacks and
episodes of generalized muscle atony with preservation of consciousness. A
nocturnal polysomnography and multiple sleep latency test (MSLT) were performed
with a diagnosis of NT1. The particularity of this case is the presentation of 2
autoimmune diseases triggered by an H1N1 vaccine without adjuvant, so far there
is only evidence of NT1 associated with vaccines with adjuvant and viral
infection. The association of both entities has made us reflect on the
autoimmune mechanism, reinforcing the theory of its role in the onset of the
disease.
Collapse
Affiliation(s)
- Silvia Leiva
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Unidad de Medicina del Sueño - Capital Federal - Buenos Aires - Argentina
| | - Jimena Madrazo
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Unidad de Medicina del Sueño - Capital Federal - Buenos Aires - Argentina
| | - Claudio Podesta
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Unidad de Medicina del Sueño - Capital Federal - Buenos Aires - Argentina
| |
Collapse
|
36
|
The value of Autoimmune Syndrome Induced by Adjuvant (ASIA) - Shedding light on orphan diseases in autoimmunity. Autoimmun Rev 2018. [DOI: 10.1016/j.autrev.2017.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
|
38
|
Palmieri B, Poddighe D, Vadalà M, Laurino C, Carnovale C, Clementi E. Severe somatoform and dysautonomic syndromes after HPV vaccination: case series and review of literature. Immunol Res 2018; 65:106-116. [PMID: 27503625 PMCID: PMC5406435 DOI: 10.1007/s12026-016-8820-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human papilloma virus (HPV) is recognized as a major cause for cervical cancer among women worldwide. Two HPV vaccines are currently available: Gardasil® and Cervarix®. Both vaccines enclose viral antigenic proteins, but differ as to the biological systems of culture and the adjuvant components. Recently, a collection of symptoms, indicating nervous system dysfunction, has been described after HPV vaccination. We retrospectively described a case series including 18 girls (aged 12–24 years) referred to our “Second Opinion Medical Network” for the evaluation of “neuropathy with autonomic dysfunction” after HPV vaccination. All girls complained of long-lasting and invalidating somatoform symptoms (including asthenia, headache, cognitive dysfunctions, myalgia, sinus tachycardia and skin rashes) that have developed 1–5 days (n = 11), 5–15 days (n = 5) and 15–20 days (n = 2) after the vaccination. These cases can be included in the recently described immune dysfunction named autoimmune/inflammatory syndrome induced by adjuvants (ASIA). HPV vaccine, through its adjuvant component, is speculated to induce an abnormal activation of the immune system, involving glia cells in the nervous system too. Further researches should aim at defining the pathological and clinical aspects of these post-vaccination diseases and identifying a genetic background predisposing to these adverse reactions.
Collapse
Affiliation(s)
- Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy.
| | - Dimitri Poddighe
- Department of Paediatrics, ASST Melegnano e Martesana, Vizzolo Predabissi, MI, Italy.
| | - Maria Vadalà
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Carmen Laurino
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council-Institute of Neuroscience, University Hospital L. Sacco, University of Milano, Milan, Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences, National Research Council-Institute of Neuroscience, University Hospital L. Sacco, University of Milano, Milan, Italy
| |
Collapse
|
39
|
Abstract
The emergence of autoimmunity after vaccination has been described in many case reports and series. Everyday there is more evidence that this relationship is more than casual. In humans, adjuvants can induce non-specific constitutional, musculoskeletal or neurological clinical manifestations and in certain cases can lead to the appearance or acceleration of an autoimmune disease in a subject with genetic susceptibility. The fact that vaccines and adjuvants can trigger a pathogenic autoimmune response is corroborated by animal models. The use of animal models has enabled the study of the effects of application of adjuvants in a homogeneous population with certain genetic backgrounds. In some cases, adjuvants may trigger generalized autoimmune response, resulting in multiple auto-antibodies, but sometimes they can reproduce human autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus, Sjögren syndrome, autoimmune thyroiditis and antiphospholipid syndrome and may provide insights about the potential adverse effects of adjuvants. Likewise, they give information about the clinical, immunological and histologic characteristics of autoimmune diseases in many organs, especially secondary lymphoid tissue. Through the description of the physiopathological characteristics of autoimmune diseases reproduced in animal models, new treatment targets can be described and maybe in the future, we will be able to recognize some high-risk population in whom the avoidance of certain adjuvants can reduce the incidence of autoimmune diseases, which typically results in high morbidity and mortality in young people. Herein, we describe the main animal models that can reproduce human autoimmune diseases with emphasis in how they are similar to human conditions.
Collapse
Affiliation(s)
- Jiram Torres Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Luis Luján
- Department of Animal Pathology, Zaragoza University, Saragossa, Spain
| | - Miri Blank
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 52621, Tel-Hashomer, Israel.
- Incumbent of the Laura Schwartz Kipp Chair for Research of Autoimmune Diseases, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
40
|
Sadam H, Pihlak A, Kivil A, Pihelgas S, Jaago M, Adler P, Vilo J, Vapalahti O, Neuman T, Lindholm D, Partinen M, Vaheri A, Palm K. Prostaglandin D2 Receptor DP1 Antibodies Predict Vaccine-induced and Spontaneous Narcolepsy Type 1: Large-scale Study of Antibody Profiling. EBioMedicine 2018; 29:47-59. [PMID: 29449194 PMCID: PMC5925455 DOI: 10.1016/j.ebiom.2018.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive. METHODS Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adolescents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 H1N1 infected, and 16 unvaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine international criteria of sleep disorders v3. FINDINGS Our data showed that although the immunoprofiles toward vaccination were generally similar in study groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as compared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemagglutinin of H1N1 to delineate exposure to H1N1. INTERPRETATION We propose that DP1 is a novel molecular target of autoimmune response and presents a potential diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify human autoimmune diseases, possibly facilitating the design of better therapies.
Collapse
Affiliation(s)
- Helle Sadam
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Arno Pihlak
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Anri Kivil
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia
| | | | | | - Priit Adler
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Olli Vapalahti
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin Katu 2, 00014 University of Helsinki, Finland; Virology and Immunology, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Toomas Neuman
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; IPDx Immunoprofiling Diagnostics GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medicum, Haartmaninkatu 8, 00014 University of Helsinki, Finland; Minerva Foundation Medical Research Institute, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Markku Partinen
- Finnish Narcolepsy Research Center, Helsinki Sleep Clinic, Vitalmed Research Center, Valimotie 21, 00380, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland
| | - Kaia Palm
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
41
|
Cruz-Valdez A, Valdez-Zapata G, Patel SS, Castelli FV, Garcia MG, Jansen WT, Arora AK, Heijnen E. MF59-adjuvanted influenza vaccine (FLUAD®) elicits higher immune responses than a non-adjuvanted influenza vaccine (Fluzone®): A randomized, multicenter, Phase III pediatric trial in Mexico. Hum Vaccin Immunother 2018; 14:386-395. [PMID: 28925801 PMCID: PMC5806633 DOI: 10.1080/21645515.2017.1373227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/31/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023] Open
Abstract
The poor immune response elicited by trivalent influenza vaccines (TIVs) in children can be enhanced by the addition of adjuvants. This observer-blind, randomized Phase III trial assessed the immunogenicity and safety of the MF59-adjuvanted trivalent influenza vaccine FLUAD® (aTIV) and a non-adjuvanted TIV, in healthy children (aged 6 to <72 months) from 3 centers in Mexico, during the 2014-2015 season. The primary objectives were to assess the non-inferiority of aTIV to TIV, measured by geometric mean titers (GMTs), and the safety of aTIV and TIV. Seroconversion was one of several secondary objectives. In total, 287 children were enrolled. The non-inferiority criteria for GMTs and seroconversion were met for aTIV for all 3 vaccine strains. Lower bounds of the 95% confidence intervals for all 3 aTIV:TIV vaccine ratios were >2, showing that the immunogenicity of aTIV was superior to that of TIV for all 3 strains. Solicited adverse events (AEs) were experienced more frequently with aTIV than TIV by younger children (aged 6 to <36 months), but were more frequent with TIV than aTIV in older children (aged 36 to <72 months) who had been vaccinated previously. More unsolicited AEs were associated with aTIV than the TIV. All AEs were of mild or moderate severity. No deaths, serious AEs, or AEs leading to premature withdrawal were reported. Overall, aTIV was highly immunogenic and was well tolerated in healthy children 6 to <72 months of age. These results indicate that aTIV may be a beneficial addition to national pediatric vaccination programs.
Collapse
Affiliation(s)
- Aurelio Cruz-Valdez
- Center of Investigation of Public Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | | | - Sanjay S. Patel
- Influenza Vaccines Development, Novartis Influenza Vaccines, Cambridge, MA, USA
| | | | | | - Wim T. Jansen
- Department of BioStatistics GSK, Amsterdam, The Netherlands
| | | | - Esther Heijnen
- Seasonal Influenza Vaccines, Seqirus, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Dye TJ, Gurbani N, Simakajornboon N. Epidemiology and Pathophysiology of Childhood Narcolepsy. Paediatr Respir Rev 2018; 25:14-18. [PMID: 28108192 DOI: 10.1016/j.prrv.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022]
Abstract
It is now recognized that there are two types of narcolepsy. Narcolepsy type I or Narcolepsy with cataplexy is caused by the loss of hypocretin or orexin neurons. Narcolepsy type II or narcolepsy without cataplexy has normal hypocretin and the etiology is unknown. Hypocretin is a neuropeptide produced by neurons in the lateral hypothalamus. Both genetic and environmental factors play a crucial role in the pathogenesis of narcolepsy. Most patients with narcolepsy type I and half of patients with narcolepsy type II carry HLA-DQB1*0602. HLA-DQB1*0602 forms a heterodimer with HLA-DQA1*0102 and may act as an antigen presenter to the T cell receptors, resulting in narcolepsy susceptibility. In addition, narcolepsy has been shown to be linked to polymorphisms in other non-HLA genes that may affect immune regulatory function, leading to speculation that autoimmune processes may play a crucial role in the loss of hypocretin neurons. Infections have been proposed as a potential trigger for the autoimmune-mediated mechanism. Several recent studies have shown increased cases of narcolepsy, especially in children and adolescents in relation with H1N1 influenza. The increased cases in Europe seems to be related to a specific type of H1N1 influenza vaccination (Pandemrix), while the increased cases in China are related to influenza infection. The data from the Pediatric Working Group of the Sleep Research Network have shown similar increases of early onset narcolepsy in the United States.
Collapse
Affiliation(s)
- Thomas J Dye
- Sleep Center, Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45219, USA
| | - Neepa Gurbani
- Sleep Center, Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45219, USA
| | - Narong Simakajornboon
- Sleep Center, Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45219, USA.
| |
Collapse
|
43
|
Abstract
Community-networks such as families and schools may foster and propagate some types of public health disasters. For such disasters, a communitarian-oriented ethical lens offers useful perspectives into the underlying relational nexus that favors the spread of infection. This chapter compares two traditional bioethical lenses—the communitarian and care ethics framework—vis-à-vis their capacities to engage the moral quandaries elicited by pandemic influenza. It argues that these quandaries preclude the analytical lens of ethical prisms that are individual-oriented but warrant a people-oriented approach. Adopting this dual approach offers both a contrastive and a complementary way of rethinking the underlying socioethical tensions elicited by pandemic influenza in particular and other public health disasters generally.
Collapse
|
44
|
Wilkins AL, Kazmin D, Napolitani G, Clutterbuck EA, Pulendran B, Siegrist CA, Pollard AJ. AS03- and MF59-Adjuvanted Influenza Vaccines in Children. Front Immunol 2017; 8:1760. [PMID: 29326687 PMCID: PMC5733358 DOI: 10.3389/fimmu.2017.01760] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Influenza is a major cause of respiratory disease leading to hospitalization in young children. However, seasonal trivalent influenza vaccines (TIVs) have been shown to be ineffective and poorly immunogenic in this population. The development of live-attenuated influenza vaccines and adjuvanted vaccines are important advances in the prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant systems 03 (AS03) have been used as adjuvants in both seasonal adjuvanted trivalent influenza vaccines (ATIVs) and pandemic monovalent influenza vaccines. Compared with non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent antibody response for both homologous and heterologous influenza strains in infants and young children. Evidence of a significant improvement in vaccine efficacy with these adjuvanted vaccines resulted in the use of the monovalent (A/H1N1) AS03-adjuvanted vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal MF59 ATIV for children aged 6 months to 2 years in Canada. The mechanism of action of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory cytokines and chemokines, including CXCL10, but independently of type-1 interferon. This proinflammatory response is associated with improved recruitment, activation and maturation of antigen presenting cells at the injection site. In young children MF59 ATIV produced more homogenous and robust transcriptional responses, more similar to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate immune response, which correlated with antibody titers were also identified. Differences were detected when comparing child and adult responses including opposite trends in gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation between magnitude of plasmablast response at day 7 and antibody titers at day 28 in children. These insights show the utility of novel approaches in understanding new adjuvants and their importance for developing improved influenza vaccines for children.
Collapse
Affiliation(s)
| | - Dmitri Kazmin
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Giorgio Napolitani
- Medical Research Council (MRC), Human Immunology Unit, University of Oxford, Oxford, United Kingdom
| | - Elizabeth A. Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Bali Pulendran
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pathology, and Microbiology & Immunology, Stanford University, Stanford, CA, United States
- Institute for Immunology, Transplantation and Infection, Stanford University, Stanford, CA, United States
| | | | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
45
|
Absence of anti-hypocretin receptor 2 autoantibodies in post pandemrix narcolepsy cases. PLoS One 2017; 12:e0187305. [PMID: 29220370 PMCID: PMC5722318 DOI: 10.1371/journal.pone.0187305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
Background A recent publication suggested molecular mimicry of a nucleoprotein (NP) sequence from A/Puerto Rico/8/1934 (PR8) strain, the backbone used in the construction of the reassortant strain X-179A that was used in Pandemrix® vaccine, and reported on anti-hypocretin (HCRT) receptor 2 (anti-HCRTR2) autoantibodies in narcolepsy, mostly in post Pandemrix® narcolepsy cases (17 of 20 sera). In this study, we re-examined this hypothesis through mass spectrometry (MS) characterization of Pandemrix®, and two other pandemic H1N1 (pH1N1)-2009 vaccines, Arepanrix® and Focetria®, and analyzed anti-HCRTR2 autoantibodies in narcolepsy patients and controls using three independent strategies. Methods MS characterization of Pandemrix® (2 batches), Arepanrix® (4 batches) and Focetria® (1 batch) was conducted with mapping of NP 116I or 116M spectrogram. Two sets of narcolepsy cases and controls were used: 40 post Pandemrix® narcolepsy (PP-N) cases and 18 age-matched post Pandemrix® controls (PP-C), and 48 recent (≤6 months) early onset narcolepsy (EO-N) cases and 70 age-matched other controls (O-C). Anti-HCRTR2 autoantibodies were detected using three strategies: (1) Human embryonic kidney (HEK) 293T cells with transient expression of HCRTR2 were stained with human sera and then analyzed by flow cytometer; (2) In vitro translation of [35S]-radiolabelled HCRTR2 was incubated with human sera and immune complexes of autoantibody and [35S]-radiolabelled HCRTR2 were quantified using a radioligand-binding assay; (3) Optical density (OD) at 450 nm (OD450) of human serum immunoglobulin G (IgG) binding to HCRTR2 stably expressed in Chinese hamster ovary (CHO)-K1 cell line was measured using an in-cell enzyme-linked immunosorbent assay (ELISA). Results NP 116M mutations were predominantly present in all batches of Pandemrix®, Arepanrix® and Focetria®. The wild-type NP109-123 (ILYDKEEIRRIWRQA), a mimic to HCRTR234-45 (YDDEEFLRYLWR), was not found to bind to DQ0602. Three or four subjects were found positive for anti-HCRTR2 autoantibodies using two strategies or the third one, respectively. None of the post Pandemrix® narcolepsy cases (0 of 40 sera) was found positive with all three strategies. Conclusion Anti-HCRTR2 autoantibody is not a significant biological feature of narcolepsy or of post Pandemrix® autoimmune responses.
Collapse
|
46
|
Rose NR. Negative selection, epitope mimicry and autoimmunity. Curr Opin Immunol 2017; 49:51-55. [DOI: 10.1016/j.coi.2017.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/26/2017] [Indexed: 12/17/2022]
|
47
|
Le Marechal M, Fressard L, Agrinier N, Verger P, Pulcini C. General practitioners' perceptions of vaccination controversies: a French nationwide cross-sectional study. Clin Microbiol Infect 2017; 24:858-864. [PMID: 29104170 DOI: 10.1016/j.cmi.2017.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/12/2017] [Accepted: 10/28/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVES We aimed to study general practitioners' (GPs') perceptions of vaccines that have been a subject of controversy in France. METHODS A cross-sectional survey in 2014 asked a representative national sample of GPs, randomly selected from the exhaustive database of health professionals in France, about their perceptions of the likelihood of serious adverse events potentially associated with six different vaccines: for two of them the association was based on some scientific evidence, whereas for the other four this is not the case. We performed a cluster analysis to construct a typology of GPs' perceptions about the likelihood of these potential six associations. Factors associated with certain clusters of interest were identified using logistic regression models. RESULTS Overall, 1582 GPs participated in the questionnaire survey (1582/1712 GPs who agreed to participate, 92%). Cluster analysis identified four groups of GPs according to their susceptibility to vaccine controversies: 1) limited susceptibility to controversies (52%); 2) overall unsure, but rejected the association between hepatitis B vaccine and multiple sclerosis (32%); 3) highly susceptible to controversies (11%); and 4) unsure (5%). We found that GPs who occasionally practised alternative medicine (OR 2.71, 95% CI 1.65-4.45), and those who considered information provided by mass media as reliable (OR 2.04, 95% CI 1.65-3.99) were more susceptible to controversies. CONCLUSIONS GPs had different profiles of susceptibility to vaccination controversies, and most of their perceptions of these controversies were not based on scientific evidence.
Collapse
Affiliation(s)
- M Le Marechal
- Université de Lorraine, EA 4360 APEMAC, Nancy, France
| | - L Fressard
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France; ORS PACA, Observatoire régional de la santé Provence-Alpes-Côte d'Azur, Marseille, France
| | - N Agrinier
- Université de Lorraine, EA 4360 APEMAC, Nancy, France; INSERM, CIC-1433 Epidémiologie clinique, CHRU de Nancy, Nancy, France
| | - P Verger
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France; ORS PACA, Observatoire régional de la santé Provence-Alpes-Côte d'Azur, Marseille, France; INSERM, F-CRIN, I-Reivac (Innovative clinical research network in vaccinology), France
| | - C Pulcini
- Université de Lorraine, EA 4360 APEMAC, Nancy, France; Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France; CHRU de Nancy, Service de Maladies Infectieuses et Tropicales, Nancy, France.
| |
Collapse
|
48
|
Yau ACY, Lönnblom E, Zhong J, Holmdahl R. Influence of hydrocarbon oil structure on adjuvanticity and autoimmunity. Sci Rep 2017; 7:14998. [PMID: 29118363 PMCID: PMC5678145 DOI: 10.1038/s41598-017-15096-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023] Open
Abstract
Mineral oils are extensively used in our daily life, in food, cosmetics, biomedicine, vaccines and in different industrial applications. However, exposure to these mineral oils has been associated with immune adjuvant effects and the development of autoimmune diseases. Here we investigate the structural impacts of the hydrocarbon oil molecules on their adjuvanticity and autoimmunity. First, we showed that hydrocarbon oil molecules with small atomic differences could result in experimental arthritis in DA rats differing in disease severity, incidence, weight change and serum levels of acute phase proteins. Injection of these hydrocarbon oils resulted in the activation, proliferation and elevated expression of Th1 and especially Th17 cytokines by the T cells, which correlate with the arthritogenicity of the T cells. Furthermore, the more arthritogenic hydrocarbon oils resulted in an increased production of autoantibodies against cartilage joint specific, triple-helical type II collagen epitopes. When injected together with ovalbumin, the more arthritogenic hydrocarbon oils resulted in an increased production of αβ T cell-dependent anti-ovalbumin antibodies. This study shows the arthritogenicity of hydrocarbon oils is associated with their adjuvant properties with implications to not only arthritis research but also other diseases and medical applications such as vaccines in which oil adjuvants are involved.
Collapse
Affiliation(s)
- Anthony C Y Yau
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Erik Lönnblom
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Jianghong Zhong
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
49
|
Ramberger M, Högl B, Stefani A, Mitterling T, Reindl M, Lutterotti A. CD4+ T-Cell Reactivity to Orexin/Hypocretin in Patients With Narcolepsy Type 1. Sleep 2017; 40:2741264. [PMID: 28364420 PMCID: PMC5806576 DOI: 10.1093/sleep/zsw070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Introduction Narcolepsy type 1 is accompanied by a selective loss of orexin/hypocretin (hcrt) neurons in the lateral hypothalamus caused by yet unknown mechanisms. Epidemiologic and genetic associations strongly suggest an immune-mediated pathogenesis of the disease. Methods We compared specific T-cell reactivity to orexin/hcrt peptides in peripheral blood mononuclear cells of narcolepsy type 1 patients to healthy controls by a carboxyfluorescein succinimidyl ester proliferation assay. Orexin/hcrt-specific T-cell reactivity was also determined by cytokine (interferon gamma and granulocyte-macrophage colony-stimulating factor) analysis. Individuals were considered as responders if the cell division index of CD3+CD4+ T cells and both stimulation indices of cytokine secretion exceeded the cutoff 3. Additionally, T-cell reactivity to orexin/hcrt had to be confirmed by showing reactivity to single peptides present in different peptide pools. Results Using these criteria, 3/15 patients (20%) and 0/13 controls (0%) showed orexin/hcrt-specific CD4+ T-cell proliferation (p = .2262). The heterogeneous reactivity pattern did not allow the identification of a preferential target epitope. Conclusions A significant role of orexin/hcrt-specific T cells in narcolepsy type 1 patients could not be confirmed in this study. Further studies are needed to assess the exact role of CD4+ T cells and possible target antigens in narcolepsy type 1 patients.
Collapse
Affiliation(s)
- Melanie Ramberger
- Clinical Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.,Thomas Mitterling is now at Department of Neurology, Wagner-Jauregg Hospital, Wagner-Jauregg Weg 15, A-4020 Linz, Austria.,Andreas Lutterotti is now at Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| | - Birgit Högl
- Clinical Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.,Thomas Mitterling is now at Department of Neurology, Wagner-Jauregg Hospital, Wagner-Jauregg Weg 15, A-4020 Linz, Austria.,Andreas Lutterotti is now at Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| | - Ambra Stefani
- Clinical Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.,Thomas Mitterling is now at Department of Neurology, Wagner-Jauregg Hospital, Wagner-Jauregg Weg 15, A-4020 Linz, Austria.,Andreas Lutterotti is now at Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| | - Thomas Mitterling
- Clinical Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.,Thomas Mitterling is now at Department of Neurology, Wagner-Jauregg Hospital, Wagner-Jauregg Weg 15, A-4020 Linz, Austria.,Andreas Lutterotti is now at Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.,Thomas Mitterling is now at Department of Neurology, Wagner-Jauregg Hospital, Wagner-Jauregg Weg 15, A-4020 Linz, Austria.,Andreas Lutterotti is now at Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| | - Andreas Lutterotti
- Clinical Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.,Thomas Mitterling is now at Department of Neurology, Wagner-Jauregg Hospital, Wagner-Jauregg Weg 15, A-4020 Linz, Austria.,Andreas Lutterotti is now at Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| |
Collapse
|
50
|
Synthetic Toll-Like Receptor 4 (TLR4) and TLR7 Ligands Work Additively via MyD88 To Induce Protective Antiviral Immunity in Mice. J Virol 2017; 91:JVI.01050-17. [PMID: 28724768 DOI: 10.1128/jvi.01050-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that the combination of synthetic small-molecule Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus hemagglutinin, inducing rapid and sustained immunity that is protective against influenza viruses in homologous, heterologous, and heterosubtypic murine challenge models. Combining the TLR4 and TLR7 ligands balances Th1 and Th2-type immune responses for long-lived cellular and neutralizing humoral immunity against the viral hemagglutinin. Here, we demonstrate that the protective response induced in mice by this combined adjuvant is dependent upon TLR4 and TLR7 signaling via myeloid differentiation primary response gene 88 (MyD88), indicating that the adjuvants function in vivo via their known receptors, with negligible off-target effects, to induce protective immunity. The combined adjuvant acts via MyD88 in both bone marrow-derived and non-bone marrow-derived radioresistant cells to induce hemagglutinin-specific antibodies and protect mice against influenza virus challenge. The protective efficacy generated by immunization with this adjuvant and recombinant hemagglutinin antigen is transferable with serum from immunized mice to recipient mice in a homologous, but not a heterologous, H1N1 viral challenge model. Depletion of CD4+ cells after an established humoral response in immunized mice does not impair protection from a homologous challenge; however, it does significantly impair recovery from a heterologous challenge virus, highlighting an important role for vaccine-induced CD4+ cells in cross-protective vaccine efficacy. The combination of the two TLR agonists allows for significant dose reductions of each component to achieve a level of protection equivalent to that afforded by either single agent at its full dose.IMPORTANCE Development of novel adjuvants is needed to enhance immunogenicity to provide better protection from seasonal influenza virus infection and improve pandemic preparedness. We show here that several dose combinations of synthetic TLR4 and TLR7 ligands are potent adjuvants for recombinant influenza virus hemagglutinin antigen induction of humoral and cellular immunity against viral challenges. The components of the combined adjuvant work additively to enable both antigen and adjuvant dose sparing while retaining efficacy. Understanding an adjuvant's mechanism of action is a critical component for preclinical safety evaluation, and we demonstrate here that a combined TLR4 and TLR7 adjuvant signals via the appropriate receptors and the MyD88 adaptor protein. This novel adjuvant combination contributes to a more broadly protective vaccine while demonstrating an attractive safety profile.
Collapse
|