1
|
Nikrandt G, Chmurzynska A. Decoding Betaine: A Critical Analysis of Therapeutic Potential Compared with Marketing Hype-A Narrative Review. J Nutr 2024; 154:3167-3176. [PMID: 39270852 DOI: 10.1016/j.tjnut.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Research interest in betaine supplementation has surged in recent years, for both enhancing sports performance and treating metabolic conditions. This surge aligns with an expanding market for betaine supplements, which are often marketed as promising aids for a range of metabolic conditions. Despite numerous in vitro and in vivo studies elucidating betaine's involvement in crucial metabolic pathways, consensus remains elusive on its clinical efficacy as a dietary supplement, based on results from randomized controlled trials. One analysis of dietary betaine intake in 28 observational studies showed a mean intake of 182 mg/d of betaine, with the main sources including grain-based foods, baked products, grains, cereals, and vegetables. Analysis of the results from human randomized clinical trials has shown that betaine supplementation improves body composition when combined with physical activity. Additionally, betaine supplementation decreases serum homocysteine levels, but does not affect liver enzymes, triglycerides, or high-density lipoprotein cholesterol levels, although it does increase total cholesterol and low-density lipoprotein cholesterol levels at doses ≥4 g/d. Market analysis has demonstrated that betaine is a popular supplement for supporting various physiological processes, such as digestibility, methylation, physical performance, and liver or cardiovascular health. Manufacturers suggest a diverse range of applications for betaine supplements, with 14 different uses identified. Additionally, high variability can be seen in the recommended usage directions for betaine. This narrative research sheds light on the evolving landscape of betaine supplementation and highlights the need for further investigation to clarify its clinical efficacy.
Collapse
Affiliation(s)
- Grzegorz Nikrandt
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
2
|
Singh SK, Yadav P, Patel D, Tanwar SS, Sherawat A, Khurana A, Bhatti JS, Navik U. Betaine ameliorates doxorubicin-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and fibrosis through the modulation of AMPK/Nrf2/TGF-β expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:4134-4147. [PMID: 38651543 DOI: 10.1002/tox.24291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/11/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Doxorubicin (DOX) is a broad-spectrum antibiotic with potent anti-cancer activity. Nevertheless, despite having effective anti-neoplasm activity, its use has been clinically restricted due to its life-threatening side effects, such as cardiotoxicity. It is evident that betaine has anti-oxidant, and anti-inflammatory activity and has several beneficial effects, such as decreasing the amyloid-β generation, reducing obesity, improving steatosis and fibrosis, and activating AMP-activated protein kinase (AMPK). However, whether betaine could mitigate DOX-induced cardiomyopathy is still unexplored. Cardiomyopathy was induced in male Sprague Dawley rats using DOX (4 mg/kg dose with a cumulative dose of 20 mg/kg, i.p.). Further, betaine (200 and 400 mg/kg) was co-treated with DOX through oral gavage for 28 days. After the completion of the study, several biochemical, oxidative stress parameters, histopathology, western blotting, and qRT-PCR were performed. Betaine treatment significantly reduced CK-MB, LDH, SGOT, and triglyceride levels, which are associated with cardiotoxicity. DOX-induced increased oxidative stress was also mitigated by betaine intervention as the SOD, catalase, MDA, and nitrite levels were restored. The histopathological investigation also confirmed the cardioprotective effect of betaine against DOX-induced cardiomyopathy as the tissue injury was reversed. Further, molecular analysis revealed that betaine suppressed the DOX-induced increased expression of phospho-p53, phospho-p38 MAPK, NF-kB p65, and PINK 1 with an upregulation of AMPK and downregulation of Nrf2 expression. Interestingly, qRT-PCR experiments show that betaine treatment alleviates the DOX-induced increase in inflammatory (TNF-α, NLRP3, and IL-6) and fibrosis (TGF-β and Acta2) related gene expression, halting the cardiac injury. Interestingly, betaine also improves the mRNA expression of Nrf2, thus modulating the expression of antioxidant proteins and preventing oxidative damage. Here, we provide the first evidence that betaine treatment prevents DOX-induced cardiomyopathy by inhibiting oxidative stress, inflammation, and fibrosis by regulating AMPK/Nrf2/TGF-β expression. We believe that betaine can be utilized as a potential novel therapeutic strategy for preventing DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Sumeet Kumar Singh
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Poonam Yadav
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Dhaneshvaree Patel
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Sampat Singh Tanwar
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
| | - Abhishek Sherawat
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Amit Khurana
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University Punjab, Bathinda, Punjab, India
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
3
|
Zawieja E, Drabińska N, Jeleń H, Szwengiel A, Durkalec-Michalski K, Chmurzynska A. Betaine supplementation modulates betaine concentration by methylenetetrahydrofolate reductase genotype, but has no effect on amino acid profile in healthy active males: A randomized placebo-controlled cross-over study. Nutr Res 2024; 127:63-74. [PMID: 38876040 DOI: 10.1016/j.nutres.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Betaine supplementation is used by athletes, but its mechanism of action is still not fully understood. We hypothesized that betaine supplementation would increase betaine concentration and alter amino acid profiles in relation to MTHFR genotype and dose in physically active males. The study followed a randomized placebo-controlled cross-over design. Blood samples were collected before and after each supplementation period. Serum was analyzed for amino acid profile, homocysteine, betaine, choline, and trimethylamine N-oxide (TMAO) concentrations. For the washout analysis, only participants starting with betaine were included (n = 20). Statistical analysis revealed no differences in the amino acid profile after betaine supplementation. However, betaine concentration significantly increased after betaine supplementation (from 4.89 ± 1.59 µg/mL to 17.31 ± 9.21 µg/mL, P < .001), with a greater increase observed in MTHFR (C677T, rs180113) T-allele carriers compared to CC (P = .027). Betaine supplementation caused a decrease in homocysteine concentration (from 17.04 ± 4.13 µmol/L to 15.44 ± 3.48 µmol/L, P = .00005) and a non-significant increase in TMAO concentrations (from 0.27 ± 0.20 µg/ml to 0.44 ± 0.70 µg/ml, P = .053), but had no effect on choline concentrations. Serum betaine concentrations were not significantly different after the 21-day washout from the baseline values (baseline: 4.93 ± 1.87 µg/mL and after washout: 4.70 ± 1.70 µg/mL, P = 1.000). In conclusion, betaine supplementation increased betaine and decreased homocysteine concentrations, but did not affect the amino acid profile or choline concentrations in healthy active males. Betaine concentrations may be dependent on MTHFR genotype.
Collapse
Affiliation(s)
- Emilia Zawieja
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Natalia Drabińska
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Henryk Jeleń
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, Poland
| | | | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
4
|
Lee ASE, Rotella K, Agyemang A, Ho HE, Oishi K, Cunningham-Rundles C. Biallelic MTHFD1 variants presenting as severe combined immunodeficiency. Clin Immunol 2023; 255:109768. [PMID: 37690615 DOI: 10.1016/j.clim.2023.109768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Ashley Sang Eun Lee
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Karina Rotella
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Amanda Agyemang
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hsi-En Ho
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
5
|
Dobrijević D, Pastor K, Nastić N, Özogul F, Krulj J, Kokić B, Bartkiene E, Rocha JM, Kojić J. Betaine as a Functional Ingredient: Metabolism, Health-Promoting Attributes, Food Sources, Applications and Analysis Methods. Molecules 2023; 28:4824. [PMID: 37375378 DOI: 10.3390/molecules28124824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Betaine is a non-essential amino acid with proven functional properties and underutilized potential. The most common dietary sources of betaine are beets, spinach, and whole grains. Whole grains-such as quinoa, wheat and oat brans, brown rice, barley, etc.-are generally considered rich sources of betaine. This valuable compound has gained popularity as an ingredient in novel and functional foods due to the demonstrated health benefits that it may provide. This review study will provide an overview of the various natural sources of betaine, including different types of food products, and explore the potential of betaine as an innovative functional ingredient. It will thoroughly discuss its metabolic pathways and physiology, disease-preventing and health-promoting properties, and further highlight the extraction procedures and detection methods in different matrices. In addition, gaps in the existing scientific literature will be emphasized.
Collapse
Affiliation(s)
- Dejan Dobrijević
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Institute for Children and Youth Health Care of Vojvodina, 21000 Novi Sad, Serbia
| | - Kristian Pastor
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nataša Nastić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| | - Jelena Krulj
- Institute of Food Technology (FINS), University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Kokić
- Institute of Food Technology (FINS), University of Novi Sad, 21000 Novi Sad, Serbia
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, 44307 Kaunas, Lithuania
| | - João Miguel Rocha
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Jovana Kojić
- Institute of Food Technology (FINS), University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
6
|
Lu XT, Wang YN, Mo QW, Huang BX, Wang YF, Huang ZH, Luo Y, Maierhaba W, He TT, Li SY, Huang RZ, Yang MT, Liu XZ, Liu ZY, Chen S, Fang AP, Zhang XG, Zhu HL. Effects of low-dose B vitamins plus betaine supplementation on lowering homocysteine concentrations among Chinese adults with hyperhomocysteinemia: a randomized, double-blind, controlled preliminary clinical trial. Eur J Nutr 2023; 62:1599-1610. [PMID: 36717385 PMCID: PMC9886420 DOI: 10.1007/s00394-023-03087-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023]
Abstract
PURPOSE To test the hypothesis that daily supplementation with low-dose B vitamins plus betaine could significantly reduce plasma homocysteine concentrations in Chinese adults with hyperhomocysteinemia and free from background mandatory folic acid fortification. METHODS One hundred apparently healthy adults aged 18-65 years with hyperhomocysteinemia were recruited in South China from July 2019 to June 2021. They were randomly assigned to either the supplement group (daily supplementation: 400 μg folic acid, 8 mg vitamin B6, 6.4 μg vitamin B12 and 1 g betaine) or the placebo group for 12 weeks. Fasting venous blood was collected at baseline, week 4 and week 12 to determine the concentrations of homocysteine, folate, vitamin B12 and betaine. Generalized estimation equations were used for statistical analysis. RESULTS Statistically significant increments in blood concentrations of folate, vitamin B12 and betaine after the intervention in the supplement group indicated good participant compliance. At baseline, there were no significant differences in plasma homocysteine concentration between the two groups (P = 0.265). After 12-week supplementation, compared with the placebo group, there was a significant reduction in plasma homocysteine concentrations in the supplement group (mean group difference - 3.87; covariate-adjusted P = 0.012; reduction rate 10.1%; covariate-adjusted P < 0.001). In the supplement group, the decreased concentration of plasma homocysteine was associated with increments of blood concentrations of both folate (β = -1.680, P = 0.004) and betaine (β = -1.421, P = 0.020) after 12 weeks of supplementation. CONCLUSIONS Daily supplementation with low-dose B vitamins plus betaine for 12 weeks effectively decreased plasma homocysteine concentrations in Chinese adults with hyperhomocysteinemia. TRIAL REGISTRATION This trial was registered at clinicaltrials.gov as NCT03720249 on October 25, 2018. Website: https://clinicaltrials.gov/ct2/show/NCT03720249 .
Collapse
Affiliation(s)
- Xiao-Ting Lu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yi-Na Wang
- Department of VIP Medical Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Qi-Wan Mo
- Medical Examination Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Bi-Xia Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yu-Fang Wang
- BYHEALTH Institute of Nutrition and Health, No.3 Kehui 3Rd Street, No.99 Kexue Avenue Central, Guangzhou, 510663 Guangdong China
| | - Zi-Hui Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Yan Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Wusiman Maierhaba
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Tong-Tong He
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Shu-Yi Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Rong-Zhu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Meng-Tao Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Xiao-Zhan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Ai-Ping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xu-Guang Zhang
- BYHEALTH Institute of Nutrition and Health, No.3 Kehui 3Rd Street, No.99 Kexue Avenue Central, Guangzhou, 510663 Guangdong China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhong Shan Road 2, Guangzhou, 510080 Guangdong China ,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
7
|
Betaine Reduces Lipid Anabolism and Promotes Lipid Transport in Mice Fed a High-Fat Diet by Influencing Intestinal Protein Expression. Foods 2022; 11:foods11162421. [PMID: 36010422 PMCID: PMC9407371 DOI: 10.3390/foods11162421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Betaine is more efficient than choline and methionine methyl donors, as it can increase nitrogen storage, promote fat mobilisation and fatty acid oxidation and change body fat content and distribution. Lipid is absorbed primarily in the small intestine after consumption, which is also the basis of lipid metabolism. This study was conducted to establish a mouse model of obesity in Kunming mice of the same age and similar body weight, and to assess the effect of betaine on the intestinal protein expression profile of mice using a proteomic approach. Analysis showed that betaine supplementation reversed the reduction in expression of proteins related to lipid metabolism and transport in the intestine of mice induced by a high-fat diet (HFD). For example, the addition of betaine resulted in a significant upregulation of microsomal triglyceride transfer protein (Mttp), apolipoprotein A-IV (Apoa4), fatty-acid-binding protein 1 (Fabp1) and fatty-acid-binding protein 2 (Fabp2) expression compared to the HFD group (p < 0.05), which exhibited accelerated lipid absorption and then translocation from the intestine into the body’s circulation, in addition to a significant increase in Acetyl-CoA acyltransferase (Acaa1a) protein expression, hastening lipid metabolism in the intestine (p < 0.05). Simultaneously, a significant reduction in protein expression of alpha-enolase 1 (Eno1) as the key enzyme for gluconeogenesis in mice in the betaine-supplemented group resulted in a reduction in lipid synthesis in the intestine (p < 0.05). These findings provide useful information for understanding the changes in the protein profile of the small intestine in response to betaine supplementation and the potential physiological regulation of diets’ nutrient absorption.
Collapse
|
8
|
The Effect of 3-Week Betaine Supplementation on Blood Biomarkers of Cardiometabolic Health in Young Physically Active Males. Metabolites 2022; 12:metabo12080731. [PMID: 36005603 PMCID: PMC9415743 DOI: 10.3390/metabo12080731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
Betaine (BET) supplementation decreases homocysteine concentration in plasma, but it may also have an adverse effect on health by increasing blood lipid concentrations, at least in overweight and obese individuals. The aim of this study was to evaluate the effect of BET supplementation on the lipid profile and concentrations of homocysteine, inflammatory cytokines, and liver enzymes in physically active, healthy males. This was a randomized, placebo (PL)-controlled, double-blinded, crossover trial. BET (2.5 or 5.0 g/d) was administered for 21 days. Before and after supplementation with BET or PL, anthropometric measurements and blood were collected in a fasted state. Our results show that BET supplementation significantly decreased homocysteine concentration (from 17.1 ± 4.0 μmol/L before BET to 15.6 ± 3.5 μmol/L after BET, p = 0.009, η2 = 0.164). However, the intervention had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triacylglycerol, interleukins 1β and 6, and tumour necrosis factor α concentrations, or alanine and aspartate activities. In addition, there were no interactions between the MTHFR genotype and BET dose. In conclusion, BET supplementation may be beneficial for homocysteine concentration in healthy, physically active males, with no detrimental effect on lipid profile.
Collapse
|
9
|
Thomas MS, Puglisi M, Malysheva O, Caudill MA, Sholola M, Cooperstone JL, Fernandez ML. Eggs Improve Plasma Biomarkers in Patients with Metabolic Syndrome Following a Plant-Based Diet-A Randomized Crossover Study. Nutrients 2022; 14:nu14102138. [PMID: 35631279 PMCID: PMC9147178 DOI: 10.3390/nu14102138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Plant-based (PB) diets are considered a healthy dietary pattern; however, eggs are not always included in this dietary regime. We hypothesized that the addition of two eggs per day would increase HDL cholesterol as well as plasma lutein, zeaxanthin and choline in individuals with metabolic syndrome (MetS). In this randomized controlled crossover intervention, we recruited 30 participants (49.3 ± 8 y) with MetS who followed a PB diet for 13 weeks. A registered dietitian advised all subjects on food selection and followed them through the intervention to ensure compliance. Participants underwent a 2-week washout with no eggs or spinach (a source of dietary lutein and zeaxanthin) and were randomly allocated to consume spinach (70 g) with either two eggs (EGG) or the equivalent amount of egg substitute (SUB) for breakfast for 4 weeks. After a 3-week washout, they were allocated the alternate breakfast. A total of 24 participants (13 women/11 men) finished the intervention. Plasma lipids, glucose, insulin, anthropometrics, plasma lutein, zeaxanthin, choline and trimethylamine oxide (TMAO) were assessed at baseline and the end of each intervention. When we compared individuals consuming the EGG versus the SUB breakfast, we observed a lower body weight (p < 0.02) and a higher HDL cholesterol (p < 0.025) after the EGG diet. There were no differences in plasma LDL cholesterol, triglycerides, glucose, insulin, or blood pressure. The number of large HDL particles measured by NMR was higher after EGG (p < 0.01) as compared to SUB. Plasma choline was higher in both treatments (p < 0.01) compared to baseline (8.3 ± 2.1 μmol/L). However, plasma choline values were higher in EGG (10.54 ± 2.8 μmol/L) compared to SUB (9.47 ± 2.7 μmol/L) p < 0.025. Both breakfasts increased plasma lutein compared to baseline (p < 0.01), while plasma zeaxanthin was only increased in the egg intervention (p < 0.01). These results indicate that consuming a plant-based diet in combination with whole eggs increases plasma HDL cholesterol, choline and zeaxanthin, important biomarkers in subjects with MetS.
Collapse
Affiliation(s)
- Minu S. Thomas
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (M.S.T.); (M.P.)
| | - Michael Puglisi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (M.S.T.); (M.P.)
| | - Olga Malysheva
- Department of Human Nutrition, Division of Nutritional Science, Cornell University, Ithaca, NY 14860, USA; (O.M.); (M.A.C.)
| | - Marie A. Caudill
- Department of Human Nutrition, Division of Nutritional Science, Cornell University, Ithaca, NY 14860, USA; (O.M.); (M.A.C.)
| | - Maria Sholola
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (J.L.C.)
| | - Jessica L. Cooperstone
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (J.L.C.)
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (M.S.T.); (M.P.)
- Correspondence:
| |
Collapse
|
10
|
Betaine Supplementation Causes an Increase in Fatty Acid Oxidation and Carbohydrate Metabolism in Livers of Mice Fed a High-Fat Diet: A Proteomic Analysis. Foods 2022; 11:foods11060881. [PMID: 35327303 PMCID: PMC8949908 DOI: 10.3390/foods11060881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Betaine, a common methyl donor whose methylation is involved in the biosynthesis of carnitine and phospholipids in animals, serves as food and animal feed additive. The present study used liquid chromatography-mass spectrometry (LC-MS) to analyze the liver protein profile of mice on a high fat (HF) diet to investigate the mechanism by which betaine affects hepatic metabolism. Although betaine supplementation had no significant effect on body weight, a total of 103 differentially expressed proteins were identified between HF diet + 1% betaine group (HFB) and HF diet group by LC-MS (fold change > 2, p < 0.05). The addition of 1% betaine had a significant enhancement of the expression of enzymes related to fatty acid oxidation metabolism, such as hydroxyacyl-Coenzyme A dehydrogenase (HADHA), enoyl Coenzyme A hydratase 1 (ECHS1) (p < 0.05) etc., and the expression of apolipoprotein A-II (APOA2) protein was significantly reduced (p < 0.01). Meanwhile, the protein expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and succinate-CoA ligase (SUCLG1) were highly significant (p < 0.01). Pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the functions of differential proteins involved fatty acid catabolism, carbohydrate metabolism, tricarboxylic acid cycle (TCA) and peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway. Protein−protein interaction (PPI) analysis discovered that acetyl-Coenzyme A acetyltransferase 1 (ACAT1), HADHA and ECHS1 were central hubs of hepatic proteomic changes in the HFB group of mice. Betaine alleviates hepatic lipid accumulation by enhancing fatty acid oxidation and accelerating the TCA cycle and glycolytic process in the liver of mice on an HF diet.
Collapse
|
11
|
Романюк С, Тихоненко Т, Сіромолот А, Гузик М, Луговська Н, Галкін О, Кучмеровська Т, Колибо Д, Комісаренко С. РОЗРОБЛЕННЯ ЗАСОБУ ДЛЯ ПОКРАЩЕННЯ КОГНІТИВНИХ ФУНКЦІЙ ТА ЗНИЖЕННЯ РІВНЯ ГОМОЦИСТЕЇНУ. SCIENCE AND INNOVATION 2022. [DOI: 10.15407/scine18.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Вступ. Гіпергомоцистеїнемія є небезпечним метаболічним порушенням, що призводить до виникнення низки захворювань.Проблематика. Нагальним завданням є розроблення препаратів, які здатні знижувати рівень гомоцистеїну, не спричиняючи побічних ефектів.Мета. Розробити дієтичну добавку, що при мінімальному вмісті компонентів, які здатні викликати побічні реакції, знижує рівень гомоцистеїну; а також дослідити, чи впливає розроблена добавка на когнітивні здібності тварин, та впровадити її у виробництво.Матеріали й методи. До складу розробленої дієтичної добавки «Альфакогнітин» включено вітаміни В6, В9, В12, С і холін. Моделювання експериментальної гіпергомоцистенемії у щурів проводили шляхом утримання тварин наL-метіоніновій дієті. Вміст гомоцистеїну у крові визначали за допомогою іонообмінної рідинно-колонної хроматографії з використанням автоматичного аналізатору амінокислот. Поведінкові реакції та когнітивні здібності щурів досліджували за допомогою поведінкових тестів «Відкрите поле», «Електрична стимуляція кінцівки» і «Соціальнавзаємодія». Роботи щодо впровадження у виробництво виконано за участі компанії ТОВ «Нутрімед» (Київ).Результати. Показано, що у тварин із гіпергомоцистеїнемією «Альфакогнітин» знижував рівень гомоцистеїну, підвищував когнітивні здібності, ефективність соціальної взаємодії та комунікабельність, а також нормалізував функціональні порушення пам’яті та здатності до навчання. Затверджено технічні умови виробництва дієтичної добавки,відпрацьовано пілотну технологію отримання її капсульованої форми та виготовлено дослідну партію.Висновки. «Альфакогнітин» може знижувати рівень гомоцистеїну, що дозволяє використовувати його з метою нормалізації функціонального стану серцево-судинної та нервової систем за гіпергомоцистеїнемії, а також для покращення когнітивних функцій, зокрема після захворювання на COVID-19.
Collapse
|
12
|
Human Serum Betaine and Associated Biomarker Concentrations Following a 14 Day Supplemental Betaine Loading Protocol and during a 28 Day Washout Period: A Pilot Investigation. Nutrients 2022; 14:nu14030498. [PMID: 35276860 PMCID: PMC8839982 DOI: 10.3390/nu14030498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Several previous investigations have employed betaine supplementation in randomized controlled crossover designs to assess its ostensible ergogenic potential. Nevertheless, prior methodology is predicated on limited pharmacokinetic data and an appropriate betaine-specific washout period is hitherto undescribed. The purpose of the present pilot investigation was therein to determine whether a 28 day washout period was sufficient to return serum betaine concentrations to baseline following a supplementation protocol. Five resistance-trained men (26 ± 6 y) supplemented with 6 g/day betaine anhydrous for 14 days and subsequently visited the lab 10 additional times during a 28 day washout period. Participants underwent venipuncture to assess serum betaine and several other parameters before (PRE) and periodically throughout the washout timeframe (POST0, -4, -7, -10, -13, -16, -19, -22, -25 and -28). All analyses were performed at a significance level of p < 0.05. While analyses failed to detect any differences in any other serum biomarker (p > 0.05), serum betaine was significantly elevated from PRE-to-POST0 (p = 0.047; 2.31 ± 1.05 to 11.1 ± 4.91 µg·mL−1) and was statistically indistinguishable from baseline at POST4 (p = 1.00). Nevertheless, visual data assessment and an inability to assess skeletal muscle concentrations would otherwise suggest that a more conservative 7 day washout period is sufficient to truly return both serum-and-skeletal muscle betaine content to pre-supplementation levels.
Collapse
|
13
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Pan XF, Yang JJ, Shu XO, Moore SC, Palmer ND, Guasch-Ferré M, Herrington DM, Harada S, Eliassen H, Wang TJ, Gerszten RE, Albanes D, Tzoulaki I, Karaman I, Elliott P, Zhu H, Wagenknecht LE, Zheng W, Cai H, Cai Q, Matthews CE, Menni C, Meyer KA, Lipworth LP, Ose J, Fornage M, Ulrich CM, Yu D. Associations of circulating choline and its related metabolites with cardiometabolic biomarkers: an international pooled analysis. Am J Clin Nutr 2021; 114:893-906. [PMID: 34020444 PMCID: PMC8408854 DOI: 10.1093/ajcn/nqab152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Choline is an essential nutrient; however, the associations of choline and its related metabolites with cardiometabolic risk remain unclear. OBJECTIVE We examined the associations of circulating choline, betaine, carnitine, and dimethylglycine (DMG) with cardiometabolic biomarkers and their potential dietary and nondietary determinants. METHODS The cross-sectional analyses included 32,853 participants from 17 studies, who were free of cancer, cardiovascular diseases, chronic kidney diseases, and inflammatory bowel disease. In each study, metabolites and biomarkers were log-transformed and standardized by means and SDs, and linear regression coefficients (β) and 95% CIs were estimated with adjustments for potential confounders. Study-specific results were combined by random-effects meta-analyses. A false discovery rate <0.05 was considered significant. RESULTS We observed moderate positive associations of circulating choline, carnitine, and DMG with creatinine [β (95% CI): 0.136 (0.084, 0.188), 0.106 (0.045, 0.168), and 0.128 (0.087, 0.169), respectively, for each SD increase in biomarkers on the log scale], carnitine with triglycerides (β = 0.076; 95% CI: 0.042, 0.109), homocysteine (β = 0.064; 95% CI: 0.033, 0.095), and LDL cholesterol (β = 0.055; 95% CI: 0.013, 0.096), DMG with homocysteine (β = 0.068; 95% CI: 0.023, 0.114), insulin (β = 0.068; 95% CI: 0.043, 0.093), and IL-6 (β = 0.060; 95% CI: 0.027, 0.094), but moderate inverse associations of betaine with triglycerides (β = -0.146; 95% CI: -0.188, -0.104), insulin (β = -0.106; 95% CI: -0.130, -0.082), homocysteine (β = -0.097; 95% CI: -0.149, -0.045), and total cholesterol (β = -0.074; 95% CI: -0.102, -0.047). In the whole pooled population, no dietary factor was associated with circulating choline; red meat intake was associated with circulating carnitine [β = 0.092 (0.042, 0.142) for a 1 serving/d increase], whereas plant protein was associated with circulating betaine [β = 0.249 (0.110, 0.388) for a 5% energy increase]. Demographics, lifestyle, and metabolic disease history showed differential associations with these metabolites. CONCLUSIONS Circulating choline, carnitine, and DMG were associated with unfavorable cardiometabolic risk profiles, whereas circulating betaine was associated with a favorable cardiometabolic risk profile. Future prospective studies are needed to examine the associations of these metabolites with incident cardiovascular events.
Collapse
Affiliation(s)
- Xiong-Fei Pan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jae Jeong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - David M Herrington
- Section on Cardiology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sei Harada
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Heather Eliassen
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Thomas J Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Robert E Gerszten
- Broad Institute of Harvard and Massachusetts Institute of Technology and Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charles E Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Katie A Meyer
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Loren P Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Ose
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Cornelia M Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Van Every DW, Plotkin DL, Delcastillo K, Cholewa J, Schoenfeld BJ. Betaine Supplementation: A Critical Review of Its Efficacy for Improving Muscle Strength, Power, and Body Composition. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Al Za'abi M, Ali H, Al Sabahi M, Ali BH. The salutary action of melatonin and betaine, given singly or concomitantly, on cisplatin-induced nephrotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1693-1701. [PMID: 34003327 DOI: 10.1007/s00210-021-02097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Cisplatin (CP) is commonly used in the treatment of various solid tumors. Its use, however, is hampered by nephrotoxicity. In this study, we compared the effect of betaine and melatonin given singly, with that of a combination of these two agents on CP-induced nephrotoxicity in mice. CP (20 mg/kg, given intraperitoneally on the 8th day of 12 days of the experiment) showed the typical physiological, biochemical, and histologic features of nephrotoxicity. CP-treated mice showed a significant reduction in food intake, body weight, and urine and fecal output. It also induced significant increases in the plasma concentrations of urea, creatinine, uric acid, phosphorous, adiponectin, interleukin-1β, interleukin-6, transforming growth factor -β1, tumor necrosis factor-α, and cystatin C. All these effects were significantly reduced by daily administration of betaine or melatonin at oral doses of 200 mg/kg and 10 mg/kg, respectively. Furthermore, using the two agents in combination caused further significant reductions in the above parameters. These findings suggest that betaine and melatonin concomitant use is likely to provide greater protection against CP-induced nephrotoxicity than when they are given singly, rendering them potentially suitable and safe agents to use in clinical trials to assess their possible beneficial actions in cancer patients receiving CP.
Collapse
Affiliation(s)
- Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman.
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Postal code 123, Oman
| | - Mohammed Al Sabahi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoud, P. O. Box 35, Muscat, Postal code 123, Oman
| |
Collapse
|
17
|
Jiang Q, Wang L, Si X, Tian JL, Zhang Y, Gui HL, Li B, Tan DH. Current progress on the mechanisms of hyperhomocysteinemia-induced vascular injury and use of natural polyphenol compounds. Eur J Pharmacol 2021; 905:174168. [PMID: 33984300 DOI: 10.1016/j.ejphar.2021.174168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease is one of the most common diseases in the elderly population, and its incidence has rapidly increased with the prolongation of life expectancy. Hyperhomocysteinemia is an independent risk factor for various cardiovascular diseases, including atherosclerosis, and damage to vascular function plays an initial role in its pathogenesis. This review presents the latest knowledge on the mechanisms of vascular injury caused by hyperhomocysteinemia, including oxidative stress, endoplasmic reticulum stress, protein N-homocysteinization, and epigenetic modification, and discusses the therapeutic targets of natural polyphenols. Studies have shown that natural polyphenols in plants can reduce homocysteine levels and regulate DNA methylation by acting on oxidative stress and endoplasmic reticulum stress-related signaling pathways, thus improving hyperhomocysteinemia-induced vascular injury. Natural polyphenols obtained via daily diet are safer and have more practical significance in the prevention and treatment of chronic diseases than traditional drugs.
Collapse
Affiliation(s)
- Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Jin-Long Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Ye Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Hai-Long Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - De-Hong Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
18
|
Ashtary-Larky D, Bagheri R, Ghanavati M, Asbaghi O, Tinsley GM, Mombaini D, Kooti W, Kashkooli S, Wong A. Effects of betaine supplementation on cardiovascular markers: A systematic review and Meta-analysis. Crit Rev Food Sci Nutr 2021; 62:6516-6533. [PMID: 33764214 DOI: 10.1080/10408398.2021.1902938] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Controversy regarding the effects of betaine supplementation on cardiovascular markers has persisted for decades. This systematic review and meta-analysis compared the effects of betaine supplementation on cardiovascular disease (CVD) markers. Studies examining betaine supplementation on CVD markers published up to February 2021 were identified through PubMed, the Cochrane Library, Web of Science, Embase, and SCOPUS. Betaine supplementation had a significant effect on concentrations of betaine (MD: 82.14 μmol/L, 95% CI: 67.09 to 97.20), total cholesterol (TC) (MD: 14.12 mg/dl, 95% CI%: 9.23 to 19.02), low-density lipoprotein (LDL) (MD: 10.26 mg/dl, 95% CI: 6.14 to 14.38)], homocysteine (WMD: -1.30 micromol/L, 95% CI: -1.61 to -0.98), dimethylglycine (DMG) (MD: 21.33 micromol/L, 95% CI: 13.87 to 28.80), and methionine (MD: 2.06 micromol/L, 95% CI: 0.23 to 3.88). Moreover, our analysis indicated that betaine supplementation did not affect serum concentrations of triglyceride (TG), high-density lipoprotein (HDL), fasting blood glucose (FBG), C-reactive protein (CRP), liver enzymes [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT)], and blood pressure. Our subgroup analysis suggested that a maximum dose of 4 g/d might have homocysteine-lowering effects without any adverse effect on lipid profiles reported with doses of ≥4 g/d. In conclusion, the present systematic review and meta-analysis supports the advantage of a lower dose of betaine supplementation (<4 g/d) on homocysteine concentrations without the lipid-augmenting effect observed with a higher dosage.
Collapse
Affiliation(s)
- Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Matin Ghanavati
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Grant M Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Delsa Mombaini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Wesam Kooti
- Lung Diseases & Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sara Kashkooli
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Texas, USA
| |
Collapse
|
19
|
Stipanuk MH. Metabolism of Sulfur-Containing Amino Acids: How the Body Copes with Excess Methionine, Cysteine, and Sulfide. J Nutr 2020; 150:2494S-2505S. [PMID: 33000151 DOI: 10.1093/jn/nxaa094] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolism of excess methionine (Met) to homocysteine (Hcy) by transmethylation is facilitated by the expression of methionine adenosyltransferase (MAT) I/III and glycine N-methyltransferase (GNMT) in liver, and a lack of either enzyme results in hypermethioninemia despite normal concentrations of MATII and methyltransferases other than GNMT. The further metabolism of Hcy by the transsulfuration pathway is facilitated by activation of cystathionine β-synthase (CBS) by S-adenosylmethionine (SAM) as well as the relatively high KM of CBS for Hcy. Transmethylation plus transsulfuration effects catabolism of the Met molecule along with transfer of the sulfur atom of Met to serine to synthesize cysteine (Cys). Oxidation and excretion of Met sulfur depend upon Cys catabolism and sulfur oxidation pathways. Excess Cys is oxidized by cysteine dioxygenase 1 (CDO1) and further metabolized to taurine or sulfate. Some Cys is normally metabolized by desulfhydration pathways, and the hydrogen sulfide (H2S) produced is further oxidized to sulfate. If Cys or Hcy concentrations are elevated, Cys or Hcy desulfhydration can result in excess H2S and thiosulfate production. Excess Cys or Met may also promote their limited metabolism by transamination pathways.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
20
|
Kaye AD, Jeha GM, Pham AD, Fuller MC, Lerner ZI, Sibley GT, Cornett EM, Urits I, Viswanath O, Kevil CG. Folic Acid Supplementation in Patients with Elevated Homocysteine Levels. Adv Ther 2020; 37:4149-4164. [PMID: 32845472 PMCID: PMC7497502 DOI: 10.1007/s12325-020-01474-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Introduction Folic acid is the most important dietary determinant of homocysteine (Hcy). Hcy serves as a critical intermediate in methylation reactions. It is created from methionine and either converted back to methionine or transformed into cysteine. This process is aided through several enzymes and three vitamins, folic acid, B12, and B6. Daily supplementation with 0.5–5.0 mg of folic acid typically lowers plasma Hcy levels by approximately 25%. Hyperhomocysteinemia is a known risk factor for coronary artery disease. In this regard, elevated levels of Hcy have been found in a majority of patients with vascular disease. Methods A literature review of folic acid supplementation for various disease states including cardiovascular disease was conducted. This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors. Results In this review, we discuss the biochemistry of folic acid, Hcy biosynthesis, Hcy and hydrogen sulfide bioavailability, pathogenesis of hyperhomocysteinemia and its role as a risk factor for disease, and treatment studies with folic acid supplementation in disease states. Conclusion Folic acid supplementation should be recommended to any patient who has an elevated Hcy level, and this level should be measured and treated at an early age, since folic acid is easily obtained and may likely reduce vascular disease and other deleterious pathologic processes in high-risk populations.
Collapse
|
21
|
Machek SB, Cardaci TD, Willoughby DS. Blood Flow Restriction Training and Betaine Supplementation as a Novel Combined Modality to Augment Skeletal Muscle Adaptation: A Short Review. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Azzini E, Ruggeri S, Polito A. Homocysteine: Its Possible Emerging Role in At-Risk Population Groups. Int J Mol Sci 2020; 21:ijms21041421. [PMID: 32093165 PMCID: PMC7073042 DOI: 10.3390/ijms21041421] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Increased plasma homocysteine is a risk factor for several pathological disorders. The present review focused on the role of homocysteine (Hcy) in different population groups, especially in risk conditions (pregnancy, infancy, old age), and on its relevance as a marker or etiological factor of the diseases in these age groups, focusing on the nutritional treatment of elevated Hcy levels. In pregnancy, Hcy levels were investigated in relation to the increased risk of adverse pregnancy outcomes such as small size for gestational age at birth, preeclampsia, recurrent abortions, low birth weight, or intrauterine growth restriction. In pediatric populations, Hcy levels are important not only for cardiovascular disease, obesity, and renal disease, but the most interesting evidence concerns study of elevated levels of Hcy in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Finally, a focus on the principal pathologies of the elderly (cardiovascular and neurodegenerative disease, osteoporosis and physical function) is presented. The metabolism of Hcy is influenced by B vitamins, and Hcy-lowering vitamin treatments have been proposed. However, clinical trials have not reached a consensus about the effectiveness of vitamin supplementation on the reduction of Hcy levels and improvement of pathological condition, especially in elderly patients with overt pathologies, suggesting that other dietary and non-dietary factors are involved in high Hcy levels. The importance of novel experimental designs focusing on intra-individual variability as a complement to the typical case-control experimental designs and the study of interactions between different factors it should be emphasized.
Collapse
|
23
|
Zawieja EE, Zawieja B, Chmurzynska A. Betaine Supplementation Moderately Increases Total Cholesterol Levels: A Systematic Review and Meta-Analysis. J Diet Suppl 2019; 18:105-117. [DOI: 10.1080/19390211.2019.1699223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Emilia E. Zawieja
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Bogna Zawieja
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Agata Chmurzynska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
24
|
Gao X, Zhang H, Guo XF, Li K, Li S, Li D. Effect of Betaine on Reducing Body Fat-A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019; 11:nu11102480. [PMID: 31623137 PMCID: PMC6835719 DOI: 10.3390/nu11102480] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/22/2022] Open
Abstract
Animal studies have shown the beneficial effect of betaine supplementation on reducing body fat, while the data from human studies are controversial and inconsistent. The objective of the present systematic review was to investigate the effects of betaine intervention on treating obesity in humans and quantitatively evaluate the pooled effects based on randomized controlled trials with a meta-analysis. The PubMed and Scopus databases, and the Cochrane Library, were searched up to September 2019. Weighted mean differences were calculated for net changes in obesity-related indices by using a random-effects model. Publication bias was estimated using Begg’s test. Six studies with 195 participants were identified. Betaine supplementation significantly reduced the total body fat mass (−2.53 kg; 95% CI: −3.93, −0.54 kg; I2 = 6.6%, P = 0.36) and body fat percentage (−2.44%; 95% CI: −4.20, −0.68%; I2 = 0.0%, P = 0.44). No changes were observed regarding body weight (−0.29 kg; 95% CI: −1.48, 0.89 kg; I2 = 0.00%, P = 0.99) and body mass index (−0.10 kg/m2; 95% CI: −5.13, 0.31 kg/m2; I2 = 0.00%, P = 0.84). The results suggested that dietary betaine supplementation might be an effective approach for reducing body fat.
Collapse
Affiliation(s)
- Xiang Gao
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Huijun Zhang
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Xiao-Fei Guo
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Kelei Li
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Shan Li
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Duo Li
- Institute of Nutrition and Health, College of Life Sciences, Qingdao University, Qingdao 266071, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
James PT, Jawla O, Mohammed NI, Ceesay K, Akemokwe FM, Sonko B, Sise EA, Prentice AM, Silver MJ. A novel nutritional supplement to reduce plasma homocysteine in nonpregnant women: A randomised controlled trial in The Gambia. PLoS Med 2019; 16:e1002870. [PMID: 31408467 PMCID: PMC6691988 DOI: 10.1371/journal.pmed.1002870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Infant DNA methylation profiles are associated with their mother's periconceptional nutritional status. DNA methylation relies on nutritional inputs for one-carbon metabolic pathways, including the efficient recycling of homocysteine. This randomised controlled trial in nonpregnant women in rural Gambia tests the efficacy of a novel nutritional supplement designed to improve one-carbon-related nutrient status by reducing plasma homocysteine, and assesses its potential future use in preconception trials. METHODS AND FINDINGS We designed a novel drink powder based on determinants of plasma homocysteine in the target population and tested it in a three-arm, randomised, controlled trial. Nonpregnant women aged between 18 and 45 from the West Kiang region of The Gambia were randomised in a 1:1:1 allocation to 12 weeks daily supplementation of either (a) a novel drink powder (4 g betaine, 800 μg folic acid, 5.2 μg vitamin B12, and 2.8 mg vitamin B2), (b) a widely used multiple micronutrient tablet (United Nations Multiple Micronutrient Preparation [UNIMMAP]) containing 15 micronutrients, or (c) no intervention. The trial was conducted between March and July 2018. Supplementation was observed daily. Fasted venepuncture samples were collected at baseline, midline (week 5), and endline (week 12) to measure plasma homocysteine. We used linear regression models to determine the difference in homocysteine between pairs of trial arms at midline and endline, adjusted for baseline homocysteine, age, and body mass index (BMI). Blood pressure and pulse were measured as secondary outcomes. Two hundred and ninety-eight eligible women were enrolled and randomised. Compliance was >97.8% for both interventions. At endline (our primary endpoint), the drink powder and UNIMMAP reduced mean plasma homocysteine by 23.6% (-29.5 to -17.1) and 15.5% (-21.2 to -9.4), respectively (both p < 0.001), compared with the controls. Compared with UNIMMAP, the drink powder reduced mean homocysteine by 8.8% (-15.8 to -1.2; p = 0.025). The effects were stronger at midline. There was no effect of either intervention on blood pressure or pulse compared with the control at endline. Self-reported adverse events (AEs) were similar in both intervention arms. There were two serious AEs reported over the trial duration, both in the drink powder arm, but judged to be unrelated to the intervention. Limitations of the study include the use of a single targeted metabolic outcome, homocysteine. CONCLUSIONS The trial confirms that dietary supplements can influence metabolic pathways that we have shown in previous studies to predict offspring DNA methylation. Both supplements reduced homocysteine effectively and remain potential candidates for future epigenetic trials in pregnancy in rural Gambia. TRIAL REGISTRATION Clinicaltrials.gov Reference NCT03431597.
Collapse
Affiliation(s)
- Philip T. James
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Ousubie Jawla
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nuredin I. Mohammed
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kabiru Ceesay
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fatai M. Akemokwe
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bakary Sonko
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ebrima A. Sise
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matt J. Silver
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
26
|
Huang F, Chen X, Jiang X, Niu J, Cui C, Chen Z, Sun J. Betaine ameliorates prenatal valproic-acid-induced autism-like behavioral abnormalities in mice by promoting homocysteine metabolism. Psychiatry Clin Neurosci 2019; 73:317-322. [PMID: 30821067 DOI: 10.1111/pcn.12833] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
AIM Abnormally high levels of homocysteine (Hcy) are associated with autism spectrum disorder. Betaine is a methyl group donor in Hcy metabolism, and is known to prevent noxious Hcy accumulation. This study explored whether betaine could influence Hcy metabolism in a mouse model of autism and ameliorate behavioral abnormalities. METHODS Pregnant ICR mice were administered valproic acid (VPA) intraperitoneally on Embryonic Day 12.5. Serum Hcy concentrations in the offspring were measured by enzyme-linked immunosorbent assay. Expressions of Hcy-metabolism-related enzymes, betaine-Hcy methyltransferase, cystathionine β-synthase, and methionine synthase, were measured by quantitative reverse transcription polymerase chain reaction and western blotting. Offspring were treated by either betaine or saline at the age of 8 weeks and serum Hcy concentrations were measured. Social behaviors were assessed by sniff-duration test and three-chamber test. Repetitive behavior was evaluated by marble-burying test. Tail-flick test was performed to measure nociceptive sensitivity. RESULTS Prenatal VPA-exposed mice showed significantly elevated Hcy concentrations and decreased betaine-Hcy methyltransferase expression. Treatment with betaine could reduce Hcy level in VPA-exposed mice, attenuate social impairment and repetitive behavior, and normalize nociceptive sensitivity in this model. CONCLUSION Betaine could ameliorate autism-like features and play a beneficial role in a mouse autism model induced by prenatal VPA exposure.
Collapse
Affiliation(s)
- Fei Huang
- Psychiatric Ward, Qingdao Mental Health Center, Qingdao, China
| | - Xiaoqin Chen
- Psychiatric Ward, Qingdao Mental Health Center, Qingdao, China
| | - Xiangzhi Jiang
- Psychiatric Ward, Qingdao Mental Health Center, Qingdao, China
| | - Juan Niu
- Psychological Clinic, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cuicui Cui
- Psychosomatic Ward, Shandong Mental Health Center, Jinan, China
| | - Zhenli Chen
- Psychosomatic Ward, Shandong Mental Health Center, Jinan, China
| | - Jun Sun
- Psychiatric Ward, Qingdao Mental Health Center, Qingdao, China
| |
Collapse
|
27
|
Drobny A, Meloh H, Wächtershäuser E, Hellmann B, Mueller AS, van der Klis JD, Fitzenberger E, Wenzel U. Betaine-rich sugar beet molasses protects from homocysteine-induced reduction of survival in Caenorhabditis elegans. Eur J Nutr 2019; 59:779-786. [PMID: 30863895 DOI: 10.1007/s00394-019-01944-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Homocysteine (Hcy) in humans represents a blood-borne biomarker which predicts the risk of age-related diseases and mortality. Using the nematode Caenorhabditis elegans, we tested whether feeding betaine-rich sugar beet molasses affects the survival under heat stress in the presence of Hcy, in spite of a gene loss in betaine-homocysteine methyltransferase. METHODS Knockdown of the genes relevant for remethylation or transsulfuration of Hcy was achieved by RNA interference (RNAi). Survival assay was conducted under heat stress at 37 °C and Hcy levels were determined by enzyme-linked immunosorbent assay. RESULTS Addition of 500 mg/l betaine-rich sugar beet molasses (SBM) prevented the survival reduction that was caused by exposure to Hcy at 37 °C. Although SBM was no longer capable of reducing Hcy levels under RNAi versus homologues for 5, 10-methylenetetrahydrofolate reductase or cystathionine-β-synthase, it still enabled the survival extension by SBM under exposure to Hcy. In contrast, RNAi for the small heat shock protein hsp-16.2 or the foxo transcription factor daf-16 both prevented the extension of survival by betaine-rich molasses in the presence of Hcy. CONCLUSIONS Our studies demonstrate that betaine-rich SBM is able to prevent survival reduction caused by Hcy in C. elegans in dependence on hsp-16.2 and daf-16 but independent of the remethylation pathway.
Collapse
Affiliation(s)
- Alice Drobny
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Hedda Meloh
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Eike Wächtershäuser
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Bernhard Hellmann
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Andreas S Mueller
- Delacon Biotechnik GmbH, Weissenwolffstraße 14, 4221, Steyregg, Austria
| | | | - Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
28
|
Guilliams TG. MTHFR, Homocysteine and Nutrient Needs. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
McBreairty LE, Bertolo RF. The dynamics of methionine supply and demand during early development. Appl Physiol Nutr Metab 2016; 41:581-7. [PMID: 27177124 DOI: 10.1139/apnm-2015-0577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Methionine is an indispensable amino acid that, when not incorporated into protein, is converted into the methyl donor S-adenosylmethionine as entry into the methionine cycle. Following transmethylation, homocysteine is either remethylated to reform methionine or irreversibly trans-sulfurated to form cysteine. Methionine flux to transmethylation and to protein synthesis are both high in the neonate and this review focuses on the dynamics of methionine supply and demand during early development, when growth requires expansion of pools of protein and transmethylation products such as creatine and phosphatidylcholine (PC). The nutrients folate and betaine (derived from choline) donate a methyl group during remethylation, providing an endogenous supply of methionine to meet the methionine demand. During early development, variability in the dietary supply of these methionine cycle-related nutrients can affect both the supply and the demand of methionine. For example, a greater need for creatine synthesis can limit methionine availability for protein and PC synthesis, whereas increased availability of remethylation nutrients can increase protein synthesis if dietary methionine is limiting. Moreover, changes to methyl group availability early in life can lead to permanent changes in epigenetic patterns of DNA methylation, which have been implicated in the early origins of adult disease phenomena. This review aims to summarize how changes in methyl supply and demand can affect the availability of methionine for various functions and highlights the importance of variability in methionine-related nutrients in the infant diet.
Collapse
Affiliation(s)
- Laura E McBreairty
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
30
|
Nagata C, Wada K, Tamura T, Konishi K, Kawachi T, Tsuji M, Nakamura K. Choline and Betaine Intakes Are Not Associated with Cardiovascular Disease Mortality Risk in Japanese Men and Women. J Nutr 2015; 145:1787-92. [PMID: 26063062 DOI: 10.3945/jn.114.209296] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/21/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Dietary intakes of betaine and choline may reduce the risk of cardiovascular disease; however, epidemiologic evidence is limited. Seafood is a rich source of betaine and is a popular traditional food in Japan. OBJECTIVE We examined the associations of betaine and choline intakes with cardiovascular disease mortality in a population-based cohort study in Japan. METHODS Study subjects were 13,355 male and 15,724 female residents of Takayama City, Japan, who were aged ≥35 y and enrolled in 1992. Their diets were assessed by a validated food frequency questionnaire. Deaths from coronary heart disease and stroke were identified from death certificates over 16 y. Multivariable-adjusted HRs were computed by using Cox regression models. RESULTS During follow-up, we documented 308 deaths from coronary heart disease and 676 deaths from stroke (393 from ischemic and 153 from hemorrhagic strokes). Compared with the lowest quartile, the second, third, and highest quartiles of betaine intake were significantly associated with a decreased risk of mortality from coronary heart disease in men after controlling for covariates. The HRs were 0.58 (95% CI: 0.36, 0.93), 0.62 (95% CI: 0.39, 0.998), and 0.60 (95% CI: 0.37, 0.97), respectively. The trend was not statistically significant (P = 0.08). There was no significant association between betaine intake and the risk of mortality from ischemic stroke. In women, betaine intake was unrelated risk of mortality from coronary heart disease and stroke (P = 0.32 and 0.73, respectively, for interaction by sex). There was no significant association between choline intake and cardiovascular disease mortality risk in men or women. CONCLUSION Overall, we found no clear evidence of significant associations between choline and betaine intakes and cardiovascular disease mortality risk in Japanese men and women.
Collapse
Affiliation(s)
- Chisato Nagata
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan;
| | - Keiko Wada
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Tamura
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kie Konishi
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiaki Kawachi
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Michiko Tsuji
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Food Science and Nutrition, Nagoya Women's University, Nagoya, Japan; and
| | - Kozue Nakamura
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Food and Nutrition, Gifu City Women's College, Gifu, Japan
| |
Collapse
|