1
|
Gao K, Chen Y, Wang P, Chang W, Cao B, Luo L. GATA4: Regulation of expression and functions in goat granulosa cells. Domest Anim Endocrinol 2024; 89:106859. [PMID: 38810369 DOI: 10.1016/j.domaniend.2024.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
GATA4 plays a pivotal role in the reproductive processes of mammals. However, the research on GATA4 in goat ovary is limited. This study aimed to study the expression and function of GATA4 in goat ovary. Utilizing real-time PCR and western blot analysis, we studied the expression and regulatory mechanisms of GATA4 in goat ovary and granulosa cells (GCs). We found that GATA4 was expressed in all follicle types in the goat ovary, with significantly higher levels in GCs of larger follicles (>3 mm) compared to those in smaller follicles (<3 mm). Additionally, we demonstrated that human chorionic gonadotrophin (hCG) induced GATA4 mRNA expression via the activation of PKA, MEK, p38 MAPK, PKC, and PI3K pathways in vitro. Our study also showed that hCG suppressed the levels of miR-200b and miR-429, which in turn directly target GATA4, thereby modulating the basal and hCG-induced expression of GATA4. Functionally, we examined the effect of siRNA-mediated GATA4 knockdown on cell proliferation and hormone secretion in goat GCs. Our results revealed that knockdown of GATA4, miR-200b, and miR-429 suppressed cell proliferation. Moreover, knockdown of GATA4 decreased estradiol and progesterone production by inhibiting the promoter activities of CYP11A1, CYP19A1, HSD3B, and StAR. Collectively, our findings suggest a critical involvement of GATA4 in regulating goat GC survival and steroidogenesis.
Collapse
Affiliation(s)
- Kexin Gao
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Yeda Chen
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wenlin Chang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liqiong Luo
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China.
| |
Collapse
|
2
|
Yang X, Ye T, Rong L, Peng H, Tong J, Xiao X, Wan X, Guo J. GATA4 Forms a Positive Feedback Loop with CDX2 to Transactivate MUC2 in Bile Acids-Induced Gastric Intestinal Metaplasia. Gut Liver 2024; 18:414-425. [PMID: 36860162 PMCID: PMC11096910 DOI: 10.5009/gnl220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 03/03/2023] Open
Abstract
Background/Aims Gastric intestinal metaplasia (GIM), a common precancerous lesion of gastric cancer, can be caused by bile acid reflux. GATA binding protein 4 (GATA4) is an intestinal transcription factor involved in the progression of gastric cancer. However, the expression and regulation of GATA4 in GIM has not been clarified. Methods The expression of GATA4 in bile acid-induced cell models and human specimens was examined. The transcriptional regulation of GATA4 was investigated by chromatin immunoprecipitation and luciferase reporter gene analysis. An animal model of duodenogastric reflux was used to confirm the regulation of GATA4 and its target genes by bile acids. Results GATA4 expression was elevated in bile acid-induced GIM and human specimens. GATA4 bound to the promoter of mucin 2 (MUC2) and stimulate its transcription. GATA4 and MUC2 expression was positively correlated in GIM tissues. Nuclear transcription factor-κB activation was required for the upregulation of GATA4 and MUC2 in bile acid-induced GIM cell models. GATA4 and caudal-related homeobox 2 (CDX2) reciprocally transactivated each other to drive the transcription of MUC2. In chenodeoxycholic acid-treated mice, MUC2, CDX2, GATA4, p50, and p65 expression levels were increased in the gastric mucosa. Conclusions GATA4 is upregulated and can form a positive feedback loop with CDX2 to transactivate MUC2 in GIM. NF-κB signaling is involved in the upregulation of GATA4 by chenodeoxycholic acid.
Collapse
Affiliation(s)
- Xiaofang Yang
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Ting Ye
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Tong
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Xiao Xiao
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Xiaoqiang Wan
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
- Department of Gastroenterology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Pope HF, Pilmane M, Junga A, Pētersons A. The Assessment of CDX1, IHH, SHH, GATA4, FOXA2, FOXF1 in Congenital Intra-Abdominal Adhesions. Acta Med Litu 2024; 31:109-121. [PMID: 38978864 PMCID: PMC11227690 DOI: 10.15388/amed.2024.31.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 07/10/2024] Open
Abstract
Congenital abdominal adhesions are a rare condition that can result in a small bowel obstruction at any age, more frequently in pediatric populations. The cause remains unknown, and the importance of aberrant congenital bands is related to the difficulty of diagnosis, and cases of death with late detection have been documented. This research examines the expression of Caudal Type Homeobox 1 (CDX1), Indian Hedgehog (IHH), Sonic Hedgehog (SHH), GATA Binding Protein 4 (GATA4), Forkhead Box A2 (FOXA2) and Forkhead Box F1 (FOXF1) gene expression in human abdominal congenital adhesion fibroblast and endothelium cells by chromogenic in situ hybridization, with the aim of elucidating their potential association with the etiology of congenital intra-abdominal adhesion band development. The potential genes' signals were examined using a semi-quantitative approach. Significant correlations were observed between the expression of CDX1 (p <.001) and SHH (p=0.032) genes in fibroblasts from congenital intra-abdominal adhesions compared to fibroblasts from control peritoneal tissue. Statistically significant very strong correlations were found between the CDX1 and IHH comparing endothelium and fibroblast cells in congenital abdominal adhesion bands. There was no statistically significant difference found in the distribution of IHH, FOXA2, GATA4, and FOXF1 between the fibroblasts and endothelium of the patients compared to the control group. The presence of notable distinctions and diverse associations suggests the potential involvement of numerous morpho-pathogenetic processes in the development of intraabdominal adhesions.
Collapse
Affiliation(s)
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga, Latvia
| | - Anna Junga
- Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga, Latvia
| | - Aigars Pētersons
- Children’s Clinical University Hospital, Riga Stradiņš University, Riga, Latvia
| |
Collapse
|
4
|
Wang JY, Zhang FL, Li XX, Zhu KX, Zuo N, Wang JJ, Shen W, Li L. Cyanidin-3- O-glucoside Mitigates the Ovarian Defect Induced by Zearalenone via p53-GADD45a Signaling during Primordial Follicle Assembly. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16715-16726. [PMID: 37889105 DOI: 10.1021/acs.jafc.3c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Zearalenone (ZEN) is well known as a kind of endocrine disruptor whose exposure is capable of causing reproductive toxicity in animals. Cyanidin-3-O-glucoside (C3G) is a derivative of cyanidin and owns multiple biofunctions, and prior efforts have suggested that C3G has therapeutic actions for reproductive diseases. In this article, a ZEN exposure model during primordial follicle assembly was constructed using the in vitro culture platform of neonatal mouse ovaries. We investigated the protective effect of C3G on ZEN-induced ovarian toxicity during primordial follicle assembly in mice, as well as its potential mechanism. Interestingly, we observed that C3G could effectively protect the ovary from ZEN damage, mainly by restoring primordial follicle assembly, which upregulated the expression of LHX8 and SOHLH1 proteins and relieved ZEN-induced DNA damage. Next, to explore the mechanism by which C3G rescued ZEN-induced injury, we performed RNA sequencing (RNA-seq). The bioinformatic analysis illustrated that the rescue pathway of C3G was associated with p53-Gadd45a signaling and cell cycle. Then, western blotting and flow cytometry results revealed that C3G restored the expression levels of cyclin-dependent kinase 6 (CDK6) and cyclin D2 (CCND2) and regulated the ovarian cell cycle to normal. In conclusion, our findings manifested that C3G could alleviate ZEN-induced primordial follicle assembly impairment by restoring the cell cycle involved in p53-GADD45a signaling.
Collapse
Affiliation(s)
- Jing-Ya Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xiu-Xiu Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ke-Xin Zhu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Zhang Z, Shayani G, Xu Y, Kim A, Hong Y, Feng H, Zhu H. Induction of Senescence by Loss of Gata4 in Cardiac Fibroblasts. Cells 2023; 12:1652. [PMID: 37371122 PMCID: PMC10297635 DOI: 10.3390/cells12121652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts are a major source of cardiac fibrosis during heart repair processes in various heart diseases. Although it has been shown that cardiac fibroblasts become senescent in response to heart injury, it is unknown how the senescence of cardiac fibroblasts is regulated in vivo. Gata4, a cardiogenic transcription factor essential for heart development, is also expressed in cardiac fibroblasts. However, it remains elusive about the role of Gata4 in cardiac fibroblasts. To define the role of Gata4 in cardiac fibroblasts, we generated cardiac fibroblast-specific Gata4 knockout mice by cross-breeding Tcf21-MerCreMer mice with Gata4fl/fl mice. Using this mouse model, we could genetically ablate Gata4 in Tcf21 positive cardiac fibroblasts in an inducible manner upon tamoxifen administration. We found that cardiac fibroblast-specific deletion of Gata4 spontaneously induces senescence in cardiac fibroblasts in vivo and in vitro. We also found that Gata4 expression in both cardiomyocytes and non-myocytes significantly decreases in the aged heart. Interestingly, when αMHC-MerCreMer mice were bred with Gata4fl/fl mice to generate cardiomyocyte-specific Gata4 knockout mice, no senescent cells were detected in the hearts. Taken together, our results demonstrate that Gata4 deficiency in cardiac fibroblasts activates a program of cellular senescence, suggesting a novel molecular mechanism of cardiac fibroblast senescence.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Gabriella Shayani
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yanping Xu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Ashley Kim
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yurim Hong
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Haiyue Feng
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
6
|
Zhao R, Cao L, Gu WJ, Li L, Chen ZZ, Xiang J, Zhou ZY, Xu B, Zang WD, Zhou XY, Cao J, Sun K, Zhao JY. Gestational palmitic acid suppresses embryonic GATA-binding protein 4 signaling and causes congenital heart disease. Cell Rep Med 2023; 4:100953. [PMID: 36809766 PMCID: PMC10040382 DOI: 10.1016/j.xcrm.2023.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023]
Abstract
Dysregulated maternal fatty acid metabolism increases the risk of congenital heart disease (CHD) in offspring with an unknown mechanism, and the effect of folic acid fortification in preventing CHD is controversial. Using gas chromatography coupled to either a flame ionization detector or mass spectrometer (GC-FID/MS) analysis, we find that the palmitic acid (PA) concentration increases significantly in serum samples of pregnant women bearing children with CHD. Feeding pregnant mice with PA increased CHD risk in offspring and cannot be rescued by folic acid supplementation. We further find that PA promotes methionyl-tRNA synthetase (MARS) expression and protein lysine homocysteinylation (K-Hcy) of GATA4 and results in GATA4 inhibition and abnormal heart development. Targeting K-Hcy modification by either genetic ablation of Mars or using N-acetyl-L-cysteine (NAC) decreases CHD onset in high-PA-diet-fed mice. In summary, our work links maternal malnutrition and MARS/K-Hcy with the onset of CHD and provides a potential strategy in preventing CHD by targeting K-Hcy other than folic acid supplementation.
Collapse
Affiliation(s)
- Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Li Cao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, and Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Wen-Jun Gu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, and Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Lei Li
- Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong-Zhong Chen
- Urogenital Development Research Center, Department of Urology, Shanghai Children's Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Jie Xiang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, and Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Ze-Yu Zhou
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, and Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Bo Xu
- Department of Anesthesiology, General Hospital of Southern Theatre Command of People's Liberation Army, Guangzhou 510030, China
| | - Wei-Dong Zang
- Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang-Yu Zhou
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences, and Department of Materials Science, Fudan University, Shanghai 200438, China.
| | - Jing Cao
- Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Kun Sun
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; International Human Phenome Institutes (Shanghai), Shanghai 200433, China.
| |
Collapse
|
7
|
Jiang Q, Palombo V, Sherlock DN, Vailati-Riboni M, D’Andrea M, Yoon I, Loor JJ. Alterations in ileal transcriptomics during an intestinal barrier challenge in lactating Holstein cows fed a Saccharomyces cerevisiae fermentation product identify potential regulatory processes. J Anim Sci 2023; 101:skad277. [PMID: 37616596 PMCID: PMC10576520 DOI: 10.1093/jas/skad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Stressors such as lack of access to feed, hot temperatures, transportation, and pen changes can cause impairment of ruminal and intestinal barrier function, also known as "leaky gut". Despite the known benefits of some nutritional approaches during periods of stress, little is understood regarding the underlying mechanisms, especially in dairy cows. We evaluated the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) on the ileal transcriptome in response to feed restriction (FR), an established model to induce intestinal barrier dysfunction. Multiparous cows [97.1 ± 7.6 days in milk (DIM); n = 5/group] fed a control diet or control plus 19 g/d SCFP for 9 wk were subjected to an FR challenge for 5 d during which they were fed 40% of their ad libitum intake from the 7 d before FR. All cows were slaughtered at the end of FR, and ileal scrapping RNA was used for RNAseq (NovaSeq 6000, 100 bp read length). Statistical analysis was performed in R and bioinformatics using the KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO databases. One thousand six hundred and ninety-six differentially expressed genes (DEG; FDR-adjusted P ≤ 0.10) were detected in SCFP vs. control, with 451 upregulated and 1,245 downregulated. "Mucin type O-glycan biosynthesis" was the top downregulated KEGG pathway due to downregulation of genes catalyzing glycosylation of mucins (GCNT3, GALNT5, B3GNT3, GALNT18, and GALNT14). An overall downregulation of cell and tissue structure genes (e.g., extracellular matrix proteins) associated with collagen (COL6A1, COL1A1, COL4A1, COL1A2, and COL6A2), laminin (LAMB2), and integrins (ITGA8, ITGA2, and ITGA5) also were detected with SCFP. A subset of DEG enriched in the GO term "extracellular exosome" and "extracellular space". Chemokines within "Cytokine-cytokine receptor interaction pathways" such as CCL16, CCL21, CCL14, CXCL12, and CXCL14 were downregulated by SCFP. The "Glutathione metabolism" pathway was upregulated by SCFP, including GSTA1 and RRM2B among the top upregulated genes, and GSTM1 and GPX8 as top downregulated genes. There were 9 homeobox transcription factors among the top 50 predicted transcription factors using the RNAseq DEG dataset, underscoring the importance of cell differentiation as a potential target of dietary SCFP. Taken together, SCFP downregulated immune-, ECM-, and mucin synthesis-related genes during FR. Homeobox transcription factors appear important for the transcriptional response of SCFP.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | - Danielle N Sherlock
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | | | | | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| |
Collapse
|
8
|
Boschiero C, Gao Y, Baldwin RL, Ma L, Li CJ, Liu GE. Butyrate Induces Modifications of the CTCF-Binding Landscape in Cattle Cells. Biomolecules 2022; 12:biom12091177. [PMID: 36139015 PMCID: PMC9496099 DOI: 10.3390/biom12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Butyrate is produced in the rumen from microbial fermentation and is related to several functions, including cell differentiation and proliferation. Butyrate supplementation in calves can accelerate rumen development. DNA-protein interactions, such as the CCCTC-binding factor (CTCF), play essential roles in chromatin organization and gene expression regulation. Although CTCF-binding sites have been identified recently in cattle, a deeper characterization, including differentially CTCF-binding sites (DCBS), is vital for a better understanding of butyrate’s role in the chromatin landscape. This study aimed to identify CTCF-binding regions and DCBS under a butyrate-induced condition using ChIP-seq in bovine cells; 61,915 CTCF peaks were identified in the butyrate and 51,347 in the control. From these regions, 2265 DCBS were obtained for the butyrate vs. control comparison, comprising ~90% of induced sites. Most of the butyrate DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment showed crucial terms for the induced DCBS, mainly related to cellular proliferation, cell adhesion, and growth regulation. Interestingly, the ECM-receptor interaction pathway was observed for the induced DCBS. Motif enrichment analysis further identified transcription factors, including CTCF, BORIS, TGIF2, and ZIC3. When DCBS was integrated with RNA-seq data, putative genes were identified for the repressed DCBS, including GATA4. Our study revealed promising candidate genes in bovine cells by a butyrate-induced condition that might be related to the regulation of rumen development, such as integrins, keratins, and collagens. These results provide a better understanding of the function of butyrate in cattle rumen development and chromatin landscape regulation.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| |
Collapse
|
9
|
Retinoic Acid Promotes the In Vitro Growth, Patterning and Improves the Cellular Composition of Human Pluripotent Stem-Cell-Derived Intestinal Organoids. Int J Mol Sci 2022; 23:ijms23158624. [PMID: 35955755 PMCID: PMC9368900 DOI: 10.3390/ijms23158624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Human intestinal organoids (HIOs) generated from human pluripotent stem cells hold great promise for modeling human development and as a possible source of tissue for transplantation. HIOs generate all of the main epithelial and mesenchymal cell types found in the developing human intestine and mature into intestinal tissue with crypts and villi following transplantation into immunocompromised mice. However, incomplete in vitro patterning and the presence of contaminating neurons could hinder their use for regenerative medicine in humans. Based on studies in model organisms, we hypothesized that the treatment of HIOs with all trans retinoic acid (ATRA) would improve their in vitro growth and patterning. We found that ATRA not only improved the patterning of HIOs, ATRA also increased organoid forming efficiency, improved epithelial growth, enriched intestinal subepithelial myofibroblasts (ISEMFs) and reduced neuronal contamination in HIOs. Taken together, our studies demonstrate how the manipulation of a single developmental signaling pathway can be used to improve the survival, patterning and cellular composition of HIOs.
Collapse
|
10
|
Scheurlen KM, Chariker JH, Kanaan Z, Littlefield AB, George JB, Seraphine C, Rochet A, Rouchka EC, Galandiuk S. The NOTCH4-GATA4-IRG1 axis as a novel target in early-onset colorectal cancer. Cytokine Growth Factor Rev 2022; 67:25-34. [PMID: 35941043 DOI: 10.1016/j.cytogfr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
|
11
|
Koide T, Koyanagi-Aoi M, Uehara K, Kakeji Y, Aoi T. CDX2-induced intestinal metaplasia in human gastric organoids derived from induced pluripotent stem cells. iScience 2022; 25:104314. [PMID: 35602937 PMCID: PMC9118752 DOI: 10.1016/j.isci.2022.104314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022] Open
Abstract
Intestinal metaplasia is related to gastric carcinogenesis. Previous studies have suggested the important role of CDX2 in intestinal metaplasia, and several reports have shown that the overexpression of CDX2 in mouse gastric mucosa caused intestinal metaplasia. However, no study has examined the induction of intestinal metaplasia using human gastric mucosa. In the present study, to produce an intestinal metaplasia model in human gastric mucosa in vitro, we differentiated human-induced pluripotent stem cells (hiPSC) to gastric organoids, followed by the overexpression of CDX2 using a tet-on system. The overexpression of CDX2 induced, although not completely, intestinal phenotypes and the enhanced expression of many, but not all, intestinal genes and previously reported intestinal metaplasia-related genes in the gastric organoids. This model can help clarify the mechanisms underlying intestinal metaplasia and carcinogenesis in human gastric mucosa and develop therapies to restitute precursor conditions of gastric cancer to normal mucosa.
Collapse
Affiliation(s)
- Takahiro Koide
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan.,Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan.,Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| | - Keiichiro Uehara
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan.,Department of Diagnostic Pathology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Takashi Aoi
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Department of iPS Cell Applications, Graduate School of Medicine, Kobe University, Kobe, Japan.,Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
12
|
Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, Sigal M, Stewart AF, Heuberger J. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance 2022; 5:5/4/e202101187. [PMID: 35064075 PMCID: PMC8807877 DOI: 10.26508/lsa.202101187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
The histone methyltransferase Mll1 controls intestinal secretory cell fate by promoting Wnt-driven Paneth and restricting Mapk-dependent goblet cell differentiation through regulation of Gata4/6 transcription factors Differentiation and lineage specification are controlled by cooperation of growth factor signalling. The involvement of epigenetic regulators in lineage specification remains largely elusive. Here, we show that the histone methyltransferase Mll1 prevents intestinal progenitor cells from differentiation, whereas it is also involved in secretory lineage specification of Paneth and goblet cells. Using conditional mutagenesis in mice and intestinal organoids, we demonstrate that loss of Mll1 renders intestinal progenitor cells permissive for Wnt-driven secretory differentiation. However, Mll1-deficient crypt cells fail to segregate Paneth and goblet cell fates. Mll1 deficiency causes Paneth cell-determined crypt progenitors to exhibit goblet cell features by unleashing Mapk signalling, resulting in increased numbers of mixed Paneth/goblet cells. We show that loss of Mll1 abolishes the pro-proliferative effect of Mapk signalling in intestinal progenitor cells and promotes Mapk-induced goblet cell differentiation. Our data uncover Mll1 and its downstream targets Gata4/6 as a regulatory hub of Wnt and Mapk signalling in the control of lineage specification of intestinal secretory Paneth and goblet cells.
Collapse
Affiliation(s)
- Johanna Grinat
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Frauke Kosel
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Neha Goveas
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Dimitra Alexopoulou
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Klaus Rajewsky
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julian Heuberger
- Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany .,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
13
|
Zhang C, Zhao H, Song X, Wang J, Zhao S, Deng H, He L, Zhou X, Yin X, Zhang K, Zhang Y, Wu Z, Chen Q, Du J, Yu D, Zhang S, Deng W. Transcription factor GATA4 drives RNA polymerase III-directed transcription and transformed cell proliferation through a filamin A/GATA4/SP1 pathway. J Biol Chem 2022; 298:101581. [PMID: 35038452 PMCID: PMC8857480 DOI: 10.1016/j.jbc.2022.101581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Houliang Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Liu He
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiangyu Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaomei Yin
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kewei Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yue Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shihua Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Zeve D, Stas E, de Sousa Casal J, Mannam P, Qi W, Yin X, Dubois S, Shah MS, Syverson EP, Hafner S, Karp JM, Carlone DL, Ordovas-Montanes J, Breault DT. Robust differentiation of human enteroendocrine cells from intestinal stem cells. Nat Commun 2022; 13:261. [PMID: 35017529 PMCID: PMC8752608 DOI: 10.1038/s41467-021-27901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2021] [Indexed: 02/02/2023] Open
Abstract
Enteroendocrine (EE) cells are the most abundant hormone-producing cells in humans and are critical regulators of energy homeostasis and gastrointestinal function. Challenges in converting human intestinal stem cells (ISCs) into functional EE cells, ex vivo, have limited progress in elucidating their role in disease pathogenesis and in harnessing their therapeutic potential. To address this, we employed small molecule targeting of the endocannabinoid receptor signaling pathway, JNK, and FOXO1, known to mediate endodermal development and/or hormone production, together with directed differentiation of human ISCs from the duodenum and rectum. We observed marked induction of EE cell differentiation and gut-derived expression and secretion of SST, 5HT, GIP, CCK, GLP-1 and PYY upon treatment with various combinations of three small molecules: rimonabant, SP600125 and AS1842856. Robust differentiation strategies capable of driving human EE cell differentiation is a critical step towards understanding these essential cells and the development of cell-based therapeutics.
Collapse
Affiliation(s)
- Daniel Zeve
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Eric Stas
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Joshua de Sousa Casal
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Prabhath Mannam
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Wanshu Qi
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Xiaolei Yin
- grid.116068.80000 0001 2341 2786David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.24516.340000000123704535Present Address: Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sarah Dubois
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.416498.60000 0001 0021 3995School of Arts and Sciences, MCPHS University, Boston, MA 02115 USA
| | - Manasvi S. Shah
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Erin P. Syverson
- grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Sophie Hafner
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Jeffrey M. Karp
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XCenter for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Diana L. Carlone
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - Jose Ordovas-Montanes
- grid.2515.30000 0004 0378 8438Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XProgram in Immunology, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| | - David T. Breault
- grid.2515.30000 0004 0378 8438Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138 USA
| |
Collapse
|
15
|
Loss of GATA4 C-Terminus by p.S335X Mutation Modulates Coronary Artery Vascular Smooth Muscle Cell Phenotype. Mediators Inflamm 2021; 2021:3698386. [PMID: 34545275 PMCID: PMC8449727 DOI: 10.1155/2021/3698386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Coronary artery disease (CAD) has been the leading cause of morbidity and mortality worldwide, and its pathogenesis is closely related with the proliferation and migration of vascular smooth muscle cell (VSMC). We previously reported a truncated GATA4 protein lacking C-terminus induced by p.S335X mutation in cardiomyocyte from ventricular septal defect (VSD) patients. However, it is still unclear whether GATA4 p.S335X mutation could influence the development of CAD. GATA4 wild-type (WT) and p.S335X mutant (MU) overexpression plasmids were constructed and transfected transiently into rat coronary artery smooth muscle cell (RCSMC) to observe the proliferative and migratory abilities by MTS and wound healing assay, respectively. PCR array was used to preliminarily detect the expression of phenotypic modulation-related genes, and QRT-PCR was then carried out to verify the screened differentially expressed genes (DEGs). The results showed that, when stimulated by fetal bovine serum (10%) for 24 h or tumor necrosis factor-α (10 or 30 ng/ml) for 10 or 24 h, deletion of GATA4 C-terminus by p.S335X mutation in GATA4 enhanced the proliferation of RCSMC, without alteration of the migration capability. Twelve DEGs, including Fas, Hbegf, Itga5, Aimp1, Cxcl1, Il15, Il2rg, Il7, Tnfsf10, Il1r1, Irak1, and Tlr3, were screened and identified as phenotypic modulation-related genes. Our data might be beneficial for further exploration regarding the mechanisms of GATA4 p.S335X mutation on the phenotypic modulation of coronary VSMC.
Collapse
|
16
|
DeLaForest A, Kohlnhofer BM, Franklin OD, Stavniichuk R, Thompson CA, Pulakanti K, Rao S, Battle MA. GATA4 Controls Epithelial Morphogenesis in the Developing Stomach to Promote Establishment of Glandular Columnar Epithelium. Cell Mol Gastroenterol Hepatol 2021; 12:1391-1413. [PMID: 34111600 PMCID: PMC8479485 DOI: 10.1016/j.jcmgh.2021.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS The transcription factor GATA4 is broadly expressed in nascent foregut endoderm. As development progresses, GATA4 is lost in the domain giving rise to the stratified squamous epithelium of the esophagus and forestomach (FS), while it is maintained in the domain giving rise to the simple columnar epithelium of the hindstomach (HS). Differential GATA4 expression within these domains coincides with the onset of distinct tissue morphogenetic events, suggesting a role for GATA4 in diversifying foregut endoderm into discrete esophageal/FS and HS epithelial tissues. The goal of this study was to determine how GATA4 regulates differential morphogenesis of the mouse gastric epithelium. METHODS We used a Gata4 conditional knockout mouse line to eliminate GATA4 in the developing HS and a Gata4 conditional knock-in mouse line to express GATA4 in the developing FS. RESULTS We found that GATA4-deficient HS epithelium adopted a FS-like fate, and conversely, that GATA4-expressing FS epithelium adopted a HS-like fate. Underlying structural changes in these epithelia were broad changes in gene expression networks attributable to GATA4 directly activating or repressing expression of HS or FS defining transcripts. Our study implicates GATA4 as having a primary role in suppressing an esophageal/FS transcription factor network during HS development to promote columnar epithelium. Moreover, GATA4-dependent phenotypes in developmental mutants reflected changes in gene expression associated with Barrett's esophagus. CONCLUSIONS This study demonstrates that GATA4 is necessary and sufficient to activate the development of simple columnar epithelium, rather than stratified squamous epithelium, in the embryonic stomach. Moreover, similarities between mutants and Barrett's esophagus suggest that developmental biology can provide insight into human disease mechanisms.
Collapse
Affiliation(s)
- Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bridget M Kohlnhofer
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Olivia D Franklin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Roman Stavniichuk
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin; Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
17
|
Stavniichuk R, DeLaForest A, Thompson CA, Miller J, Souza RF, Battle MA. GATA4 blocks squamous epithelial cell gene expression in human esophageal squamous cells. Sci Rep 2021; 11:3206. [PMID: 33547361 PMCID: PMC7864948 DOI: 10.1038/s41598-021-82557-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
GATA4 promotes columnar epithelial cell fate during gastric development. When ectopically expressed in the developing mouse forestomach, the tissue emerges as columnar-like rather than stratified squamous with gene expression changes that parallel those observed in the pre-malignant squamous to columnar metaplasia known as Barrett's esophagus (BE). GATA4 mRNA up-regulation and gene amplification occur in BE and its associated cancer, esophageal adenocarcinoma (EAC), and GATA4 gene amplification correlates with poor patient outcomes. Here, we explored the effect of ectopic expression of GATA4 in mature human esophageal squamous epithelial cells. We found that GATA4 expression in esophageal squamous epithelial cells compromised squamous cell marker gene expression and up-regulated expression of the canonical columnar cell cytokeratin KRT8. We observed GATA4 occupancy in the p63, KRT5, and KRT15 promoters, suggesting that GATA4 directly represses expression of squamous epithelial cell marker genes. Finally, we verified GATA4 protein expression in BE and EAC and found that exposure of esophageal squamous epithelial cells to acid and bile, known BE risk factors, induced GATA4 mRNA expression. We conclude that GATA4 suppresses expression of genes marking the stratified squamous epithelial cell lineage and that this repressive action by GATA4 may have implications in BE and EAC.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James Miller
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rhonda F Souza
- Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
18
|
Fawkner-Corbett D, Antanaviciute A, Parikh K, Jagielowicz M, Gerós AS, Gupta T, Ashley N, Khamis D, Fowler D, Morrissey E, Cunningham C, Johnson PRV, Koohy H, Simmons A. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 2021; 184:810-826.e23. [PMID: 33406409 PMCID: PMC7864098 DOI: 10.1016/j.cell.2020.12.016] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/10/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer’s patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work. Multimodal atlas of human intestinal development maps 101 cell types onto tissue Charts developmental origins of diverse cellular compartments and their progenitors Functional diversity of fibroblasts in stem cell, vasculature, and GALT formation Resource applied to interrogate pathology of in utero intestinal diseases
Collapse
Affiliation(s)
- David Fawkner-Corbett
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK; Academic Paediatric Surgery Unit (APSU), Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Kaushal Parikh
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Marta Jagielowicz
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ana Sousa Gerós
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Tarun Gupta
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Neil Ashley
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Doran Khamis
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Darren Fowler
- Paediatric Pathology, Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Edward Morrissey
- MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Chris Cunningham
- Colorectal Surgery Department, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Paul R V Johnson
- Academic Paediatric Surgery Unit (APSU), Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hashem Koohy
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; MRC WIMM Centre For Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
19
|
Grinat J, Heuberger J, Vidal RO, Goveas N, Kosel F, Berenguer-Llergo A, Kranz A, Wulf-Goldenberg A, Behrens D, Melcher B, Sauer S, Vieth M, Batlle E, Stewart AF, Birchmeier W. The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness. Nat Commun 2020; 11:6422. [PMID: 33349639 PMCID: PMC7752919 DOI: 10.1038/s41467-020-20222-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Wnt/β-catenin signaling is crucial for intestinal carcinogenesis and the maintenance of intestinal cancer stem cells. Here we identify the histone methyltransferase Mll1 as a regulator of Wnt-driven intestinal cancer. Mll1 is highly expressed in Lgr5+ stem cells and human colon carcinomas with increased nuclear β-catenin. High levels of MLL1 are associated with poor survival of colon cancer patients. The genetic ablation of Mll1 in mice prevents Wnt/β-catenin-driven adenoma formation from Lgr5+ intestinal stem cells. Ablation of Mll1 decreases the self-renewal of human colon cancer spheres and halts tumor growth of xenografts. Mll1 controls the expression of stem cell genes including the Wnt/β-catenin target gene Lgr5. Upon the loss of Mll1, histone methylation at the stem cell promoters switches from activating H3K4 tri-methylation to repressive H3K27 tri-methylation, indicating that Mll1 sustains stem cell gene expression by antagonizing gene silencing through polycomb repressive complex 2 (PRC2)-mediated H3K27 tri-methylation. Transcriptome profiling of Wnt-mutated intestinal tumor-initiating cells reveals that Mll1 regulates Gata4/6 transcription factors, known to sustain cancer stemness and to control goblet cell differentiation. Our results demonstrate that Mll1 is an essential epigenetic regulator of Wnt/β-catenin-induced intestinal tumorigenesis and cancer stemness. Intestinal cancer stem cells (CSC) are associated with colon cancer. Here, the authors show that Wnt/beta-catenin signalling in CSC requires the epigenetic regulator Mll1 to promote stemness and tumourigenesis in murine and human colon cancer models.
Collapse
Affiliation(s)
- Johanna Grinat
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany
| | - Julian Heuberger
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany. .,Division of Gastroenterology and Hepatology, Medical Department, Charité University Medicine, 13353, Berlin, Germany.
| | - Ramon Oliveira Vidal
- Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, Scientific Genomics Platforms, Max Delbrück Center for Molecular Medicine (BIMSB/BIH), 13092, Berlin, Germany
| | - Neha Goveas
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Frauke Kosel
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany
| | - Antoni Berenguer-Llergo
- Biostatistics and Bioinformatics Unit, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Kranz
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | | | - Diana Behrens
- Experimental Pharmacology & Oncology (EPO), 13125, Berlin, Germany
| | - Bálint Melcher
- Institute for Pathology, Klinikum Bayreuth, 95445, Bayreuth, Germany
| | - Sascha Sauer
- Laboratory of Functional Genomics, Nutrigenomics and Systems Biology, Scientific Genomics Platforms, Max Delbrück Center for Molecular Medicine (BIMSB/BIH), 13092, Berlin, Germany
| | - Michael Vieth
- Institute for Pathology, Klinikum Bayreuth, 95445, Bayreuth, Germany
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - A Francis Stewart
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany.
| |
Collapse
|
20
|
Gao X, Ge J, Li W, Zhou WC, Xu L, Geng DQ. Over-expression of miR-411-5p and miR-434-3p promotes the osteoblast differentiation by targeting GATA4. Mol Cell Endocrinol 2020; 506:110759. [PMID: 32061766 DOI: 10.1016/j.mce.2020.110759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate the role of miR-411-5p and miR-434-3p in osteoblast differentiation in particulate-induced osteolysis. METHODS A mouse model of osteolysis and an in vitro osteolysis model were constructed. The expressions of molecules were detected using qRT-PCR and western blot. Alkaline phosphatase (ALP) activity was measured using the ALP Assay Kit, and the bone mineralization was measured using alizarin red staining. RESULTS The expression of miR-411-5p and miR-434-3p was decreased in osteolysis mice and UHMWPE-induced mMSCs, while GATA4 protein expression was increased. Over-expression of miR-411-5p and miR-434-3p up-regulated the expressions of osteoblast gene markers, enhanced the ALP activity, promoted the bone mineralization of mesenchymal stem cells. In addition, miR-411-5p and miR-434-3p could target GATA4, and miR-411-5p/434-3p affected the expressions of osteoblast gene markers through GATA4 in vitro and in vivo. CONCLUSION Overexpression of miR-411-5p and miR-434-3p promoted the osteoblast differentiation by inhibiting GATA4 expression.
Collapse
Affiliation(s)
- Xuren Gao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Jian Ge
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Weiyi Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Wang-Chen Zhou
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Lei Xu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - De-Qin Geng
- Department of Clinical Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| |
Collapse
|
21
|
DeLaForest A, Quryshi AF, Frolkis TS, Franklin OD, Battle MA. GATA4 Is Required for Budding Morphogenesis of Posterior Foregut Endoderm in a Model of Human Stomach Development. Front Med (Lausanne) 2020; 7:44. [PMID: 32140468 PMCID: PMC7042400 DOI: 10.3389/fmed.2020.00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/29/2020] [Indexed: 01/16/2023] Open
Abstract
Three-dimensional gastrointestinal organoid culture systems provide innovative and tractable models to investigate fundamental developmental biology questions using human cells. The goal of this study was to explore the role of the zinc-finger containing transcription factor GATA4 in gastric development using an organoid-based model of human stomach development. Given GATA4′s vital role in the developing mouse gastrointestinal tract, we hypothesized that GATA4 plays an essential role in human stomach development. We generated a human induced pluripotent stem cell (hiPSC) line stably expressing an shRNA targeted against GATA4 (G4KD-hiPSCs) and used an established protocol for the directed differentiation of hiPSCs into stomach organoids. This in vitro model system, informed by studies in multiple non-human model systems, recapitulates the fundamental processes of stomach development, including foregut endoderm patterning, specification, and subsequent tissue morphogenesis and growth, to produce three-dimensional fundic or antral organoids containing functional gastric epithelial cell types. We confirmed that GATA4 depletion did not disrupt hiPSC differentiation to definitive endoderm (DE). However, when G4KD-hiPSC-derived DE cells were directed to differentiate toward budding SOX2+, HNF1B+ posterior foregut spheroids, we observed a striking decrease in the emergence of cell aggregates, with little to no spheroid formation and budding by GATA4-depleted hiPSCs. In contrast, control hiPSC-derived DE cells, expressing GATA4, formed aggregates and budded into spheroids as expected. These data support an essential role for GATA4 during the earliest stages of human stomach development.
Collapse
Affiliation(s)
- Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Afiya F Quryshi
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Talia S Frolkis
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Olivia D Franklin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
22
|
Zhou Z, Zhang J, Zhang X, Mo S, Tan X, Wang L, Li J, Li Y, Ding X, Liu X, Ma X, Yang H, Yin Y. The production of short chain fatty acid and colonic development in weaning piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:1530-1537. [PMID: 31350808 DOI: 10.1111/jpn.13164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023]
Abstract
Weaning process widely affects the small intestinal structure and function in piglets, while the responses of large intestine to weaning stress are still obscure. The purpose of this study was to determine the developmental changes (i.e., short chain fatty acids (SCFAs) concentrations, growth parameters, crypt-related indices and antioxidant capacity) in colon of piglet during weaning. Forty piglets were weaned at day 21 and euthanized to collect colonic tissues and digesta samples on day 0, 1, 3, 7 and 14 post-weaning (n = 8). Piglet growth performance was improved (p < .001) on day 7 and 14 post-weaning. The concentrations of acetate, propionate, butyrate, valerate, isobutyrate, isovalerate and total SCFAs were higher (p < .001) during the late post-weaning period. The mRNA abundances of SCFAs transporters were greater (p < .001) on day 7 and 14. The absolute and relative weights, absolute length and perimeter of colon were greater (p < .001) on day 7 and 14. Similarly, post-weaning increases (p < .001) in colonic crypt depth and Ki67 positive cells numbers per crypt were observed during the same period. Colonic crypt fission indices decreased (p < .01), while total crypt numbers increased (p < .001) on day 14 after weaning. Moreover, total SCFAs concentration was significantly associated with colonic growth parameters and Ki67 cells/crypt (p < .001). In addition, catalase content was decreased on day 3, 7, and 14, whereas, the concentrations of total superoxide dismutase (T-SOD) and manganese-containing superoxide dismutase (MnSOD) were higher (p < .05) on day 1 and 3 post-weaning. These results showed that weaning process has a significant effect on colonic growth and development, which might be associated with the change of SCFAs concentrations in colon.
Collapse
Affiliation(s)
- Zirui Zhou
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jie Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xianlian Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shilan Mo
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xian Tan
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lixia Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xueqin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xianyong Liu
- Weifang Dayi Biotechnology Co. Ltd., Weifang, China
| | - Xingqun Ma
- Sunwin Biotech Shandong Co., Ltd., Weifang, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
23
|
Greicius G, Virshup DM. Stromal control of intestinal development and the stem cell niche. Differentiation 2019; 108:8-16. [DOI: 10.1016/j.diff.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
24
|
Rodiño-Janeiro BK, Pardo-Camacho C, Santos J, Martínez C. Mucosal RNA and protein expression as the next frontier in IBS: abnormal function despite morphologically intact small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2019; 316:G701-G719. [PMID: 30767681 DOI: 10.1152/ajpgi.00186.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the commonest gastrointestinal disorders. Although long-time considered a pure functional disorder, intense research in past years has rendered a very complex and varied array of observations indicating the presence of structural and molecular abnormalities underlying characteristic motor and sensitive changes and clinical manifestations. Analysis of gene and protein expression in the intestinal mucosa has shed light on the molecular mechanisms implicated in IBS physiopathology. This analysis uncovers constitutive and inductive genetic and epigenetic marks in the small and large intestine that highlight the role of epithelial barrier, immune activation, and mucosal processing of foods and toxins and several new molecular pathways in the origin of IBS. The incorporation of innovative high-throughput techniques into IBS research is beginning to provide new insights into highly structured and interconnected molecular mechanisms modulating gene and protein expression at tissue level. Integration and correlation of these molecular mechanisms with clinical and environmental data applying systems biology/medicine and data mining tools emerge as crucial steps that will allow us to get meaningful and more definitive comprehension of IBS-detailed development and show the real mechanisms and causality of the disease and the way to identify more specific diagnostic biomarkers and effective treatments.
Collapse
Affiliation(s)
- Bruno Kotska Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Madrid , Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca , Barcelona , Spain.,Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina) , Barcelona , Spain
| |
Collapse
|
25
|
Jung JH, Choi JW, Lee MK, Choi YH, Nam TJ. Effect of Cyclophilin from Pyropia Yezoensis on the Proliferation of Intestinal Epithelial Cells by Epidermal Growth Factor Receptor/Ras Signaling Pathway. Mar Drugs 2019; 17:md17050297. [PMID: 31109065 PMCID: PMC6562528 DOI: 10.3390/md17050297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclophilin (Cyp) is peptidyl–prolyl isomerase (PPIase), and it has many biological functions, including immune response regulation, antioxidants, etc. Cyp from red algae is known for its antioxidant and antifungal activity. However, the other biological effects of Cyp from Pyropia yezoensis are unclear. In this study, we synthesized Cyp from P. yezoensis (pyCyp) and examined its biological activity on IEC-6 cells. First, the MTS assay showed that pyCyp increased cell proliferation in a dose-dependent manner. pyCyp activated the EGFR signaling pathway that regulates cell growth, proliferation, and survival. It induced intracellular signaling pathways, including the Ras signaling pathway. In addition, we observed cell cycle-related proteins. pyCyp increased the expression of cyclin A, cyclin E, and Cdk2, and decreased the expression of p27 and p21 proteins. These results indicate that pyCyp stimulates cell proliferation via the EGFR signaling pathway and promotes cell cycle progression in intestinal epithelial cells. Therefore, we suggest pyCyp as a potential material to promote the proliferation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Jae-Hun Jung
- Department of Food Science and Nutrition, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Korea.
| | - Jeong-Wook Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| | - Min-Kyeong Lee
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
- Department of Marine Bio-material & Aquaculture, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Korea.
| | - Taek-Jeong Nam
- Department of Food Science and Nutrition, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Korea.
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| |
Collapse
|
26
|
Goupille O, Kadri Z, Langelé A, Luccantoni S, Badoual C, Leboulch P, Chrétien S. The integrity of the FOG-2 LXCXE pRb-binding motif is required for small intestine homeostasis. Exp Physiol 2019; 104:1074-1089. [PMID: 31012180 DOI: 10.1113/ep087369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/16/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do Fog2Rb- / Rb- mice present a defect of small intestine homeostasis? What is the main finding and its importance? The importance of interactions between FOG-2 and pRb in adipose tissue physiology has previously been demonstrated. Here it is shown that this interaction is also intrinsic to small intestine homeostasis and exerts extrinsic control over mouse metabolism. Thus, this association is involved in maintaining small intestine morphology, and regulating crypt proliferation and lineage differentiation. It therefore affects mouse growth and adaptation to a high-fat diet. ABSTRACT GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. We have shown that GATA-1 and FOG-2 contain an LXCXE pRb-binding motif. Interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation, whereas the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Fog2-knock-in mice have defective pRb binding and are resistant to obesity, due to efficient white-into-brown fat conversion. Our aim was to investigate the pathophysiological impact of FOG-2-pRb interaction on the small intestine and mouse growth. Histological analysis of the small intestine revealed architectural changes in Fog2Rb- / Rb- mice, including villus shortening, with crypt expansion and a change in muscularis propria thickness. These differences were more marked in the proximo-distal part of the small intestine and were associated with an increase in crypt cell proliferation and disruption of the goblet and Paneth cell lineage. The small intestine of the mutants was unable to adapt to a high-fat diet, and had significantly lower plasma lipid levels on such a diet. Fog2Rb- / Rb- mice displayed higher levels of glucose-dependent insulinotropic peptide release, and lower levels of insulin-like growth factor I release on a regular diet. Their intestinal lipid absorption was impaired, resulting in restricted weight gain. In addition to the intrinsic effects of the mutation on adipose tissue, we show here an extrinsic relationship between the intestine and the effect of FOG-2 mutation on mouse metabolism. In conclusion, the interaction of FOG-2 with pRb coordinates the crypt-villus axis and controls small intestine homeostasis.
Collapse
Affiliation(s)
- Olivier Goupille
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Amandine Langelé
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Sophie Luccantoni
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, Institute of Biology François Jacob, CEA - Université Paris Sud 11 - INSERM U1184, Fontenay-aux-Roses, France
| | - Cécile Badoual
- Department of Pathology, G. Pompidou European Hospital APHP - Université Paris, Descartes, Paris, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Stany Chrétien
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,INSERM, Paris, France
| |
Collapse
|
27
|
Zhou JY, Huang DG, Qin YC, Li XG, Gao CQ, Yan HC, Wang XQ. mTORC1 signaling activation increases intestinal stem cell activity and promotes epithelial cell proliferation. J Cell Physiol 2019; 234:19028-19038. [PMID: 30937902 DOI: 10.1002/jcp.28542] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022]
Abstract
The crypt-villus axis of the intestine undergoes a continuous renewal process that is driven by intestinal stem cells (ISCs). However, the homeostasis is disturbed under constant exposure to high ambient temperatures, and the precise mechanism is unclear. We found that both EdU+ and Ki67+ cell ratios were significantly reduced after exposure to 41°C, as well as the protein synthesis rate of IPEC-J2 cells, and the expression of ubiquitin and heat shock protein 60, 70, and 90 were significantly increased. Additionally, heat exposure decreased enteroid expansion and budding efficiency, as well as induced apoptosis after 48 hr; however, no significant difference was observed in the apoptosis ratio after 24 hr. In the process of heat exposure, the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway was significantly inhibited in both IPEC-J2 cells and enteroids. Correspondingly, treatment of IPEC-J2 and enteroids with the mTORC1 agonist MHY1485 at 41°C significantly attenuated the inhibition of proliferation and protein synthesis, increased the ISC activity, and promoted expansion and budding of enteroid. In summary, we conclude that the mTORC1 signaling pathway regulates intestinal epithelial cell and stem cell activity during heat exposure-induced injury.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Deng-Gui Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ying-Chao Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Chun-Qi Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui-Chao Yan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Abstract
The adult gastrointestinal tract (GI) is a series of connected organs (esophagus, stomach, small intestine, colon) that develop via progressive regional specification of a continuous tubular embryonic organ anlage. This chapter focuses on organogenesis of the small intestine. The intestine arises by folding of a flat sheet of endodermal cells into a tube of highly proliferative pseudostratified cells. Dramatic elongation of this tube is driven by rapid epithelial proliferation. Then, epithelial-mesenchymal crosstalk and physical forces drive a stepwise cascade that results in convolution of the tubular surface into finger-like projections called villi. Concomitant with villus formation, a sharp epithelial transcriptional boundary is defined between stomach and intestine. Finally, flask-like depressions called crypts are established to house the intestinal stem cells needed throughout life for epithelial renewal. New insights into these events are being provided by in vitro organoid systems, which hold promise for future regenerative engineering of the small intestine.
Collapse
Affiliation(s)
- Sha Wang
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States
| | - Katherine D Walton
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States.
| | - Deborah L Gumucio
- University of Michigan, Cell and Developmental Biology Department, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
30
|
Sinagoga KL, McCauley HA, Múnera JO, Reynolds NA, Enriquez JR, Watson C, Yang HC, Helmrath MA, Wells JM. Deriving functional human enteroendocrine cells from pluripotent stem cells. Development 2018; 145:dev.165795. [PMID: 30143540 DOI: 10.1242/dev.165795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Enteroendocrine cells (EECs) are a minor cell population in the intestine yet they play a major role in digestion, satiety and nutrient homeostasis. Recently developed human intestinal organoid models include EECs, but their rarity makes it difficult to study their formation and function. Here, we used the EEC-inducing property of the transcription factor NEUROG3 in human pluripotent stem cell-derived human intestinal organoids and colonic organoids to promote EEC development in vitro An 8-h pulse of NEUROG3 expression induced expression of known target transcription factors and after 7 days organoids contained up to 25% EECs in the epithelium. EECs expressed a broad array of human hormones at the mRNA and/or protein level, including motilin, somatostatin, neurotensin, secretin, substance P, serotonin, vasoactive intestinal peptide, oxyntomodulin, GLP-1 and INSL5. EECs secreted several hormones including gastric inhibitory polypeptide (GIP), ghrelin, GLP-1 and oxyntomodulin. Injection of glucose into the lumen of organoids caused an increase in both GIP secretion and K-cell number. Lastly, we observed formation of all known small intestinal EEC subtypes following transplantation and growth of human intestinal organoids in mice.
Collapse
Affiliation(s)
- Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Jorge O Múnera
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Nichole A Reynolds
- Endocrine/Cardiovascular Division, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Carey Watson
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Hsiu-Chiung Yang
- Endocrine/Cardiovascular Division, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA.,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA .,Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| |
Collapse
|
31
|
Wang S, Cebrian C, Schnell S, Gumucio DL. Radial WNT5A-Guided Post-mitotic Filopodial Pathfinding Is Critical for Midgut Tube Elongation. Dev Cell 2018; 46:173-188.e3. [PMID: 30016620 DOI: 10.1016/j.devcel.2018.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023]
Abstract
The early midgut undergoes intensive elongation, but the underlying cellular and molecular mechanisms are unknown. The early midgut epithelium is pseudostratified, and its nuclei travel between apical and basal surfaces in concert with cell cycle. Using 3D confocal imaging and 2D live imaging, we profiled behaviors of individual dividing cells. As nuclei migrate apically for mitosis, cells maintain a basal process (BP), which splits but is inherited by only one daughter. After mitosis, some daughters directly use the inherited BP as a "conduit" to transport the nucleus basally, while >50% of daughters generate a new basal filopodium and use it as a path to return the nucleus. Post-mitotic filopodial "pathfinding" is guided by mesenchymal WNT5A. Without WNT5A, some cells fail to tether basally and undergo apoptosis, leading to a shortened midgut. Thus, these studies reveal previously unrecognized strategies for efficient post-mitotic nuclear trafficking, which is critical for early midgut elongation.
Collapse
Affiliation(s)
- Sha Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| | - Cristina Cebrian
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
32
|
Thompson CA, DeLaForest A, Battle MA. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev Biol 2018; 435:97-108. [PMID: 29339095 PMCID: PMC6615902 DOI: 10.1016/j.ydbio.2018.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract, in simplest terms, can be described as an epithelial-lined muscular tube extending along the cephalocaudal axis from the oral cavity to the anus. Although the general architecture of the GI tract organs is conserved from end to end, the presence of different epithelial tissue structures and unique epithelial cell types within each organ enables each to perform the distinct digestive functions required for efficient nutrient assimilation. Spatiotemporal regulation of signaling pathways and downstream transcription factors controls GI epithelial morphogenesis during development to confer essential regional-specific epithelial structures and functions. Here, we discuss the fundamental functions of each GI tract organ and summarize the diversity of epithelial structures present along the cephalocaudal axis of the GI tract. Next, we discuss findings, primarily from genetic mouse models, that have defined the roles of key transcription factors during epithelial morphogenesis, including p63, SOX2, SOX15, GATA4, GATA6, HNF4A, and HNF4G. Additionally, we examine how the Hedgehog, WNT, and BMP signaling pathways contribute to defining unique epithelial features along the cephalocaudal axis of the GI tract. Lastly, we examine the molecular mechanisms controlling regionalized cytodifferentiation of organ-specific epithelial cell types within the GI tract, concentrating on the stomach and small intestine. The delineation of GI epithelial patterning mechanisms in mice has provided fundamental knowledge to guide the development and refinement of three-dimensional GI organotypic culture models such as those derived from directed differentiation of human pluripotent stem cells and those derived directly from human tissue samples. Continued examination of these pathways will undoubtedly provide vital insights into the mechanisms of GI development and disease and may afford new avenues for innovative tissue engineering and personalized medicine approaches to treating GI diseases.
Collapse
Affiliation(s)
- Cayla A Thompson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ann DeLaForest
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
33
|
Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029314. [PMID: 28507021 DOI: 10.1101/cshperspect.a029314] [Citation(s) in RCA: 440] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mucosal surfaces are lined by epithelial cells. In the intestine, the epithelium establishes a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing intrusion by luminal materials. Intestinal epithelia therefore play a central role in regulating interactions between the mucosal immune system and luminal contents, which include dietary antigens, a diverse intestinal microbiome, and pathogens. The paracellular space is sealed by the tight junction, which is maintained by a complex network of protein interactions. Tight junction dysfunction has been linked to a variety of local and systemic diseases. Two molecularly and biophysically distinct pathways across the intestinal tight junction are selectively and differentially regulated by inflammatory stimuli. This review discusses the mechanisms underlying these events, their impact on disease, and the potential of using these as paradigms for development of tight junction-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Aaron Buckley
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Jerrold R Turner
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
34
|
Shashikanth N, Yeruva S, Ong MLDM, Odenwald MA, Pavlyuk R, Turner JR. Epithelial Organization: The Gut and Beyond. Compr Physiol 2017; 7:1497-1518. [DOI: 10.1002/cphy.c170003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C, Mahe M, Vallance JE, Shroyer NF, Sinagoga KL, Zarzoso-Lacoste A, Hudson JR, Howell JC, Chatuvedi P, Spence JR, Shannon JM, Zorn AM, Helmrath MA, Wells JM. Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling. Cell Stem Cell 2017; 21:51-64.e6. [PMID: 28648364 PMCID: PMC5531599 DOI: 10.1016/j.stem.2017.05.020] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Abstract
Gastric and small intestinal organoids differentiated from human pluripotent stem cells (hPSCs) have revolutionized the study of gastrointestinal development and disease. Distal gut tissues such as cecum and colon, however, have proved considerably more challenging to derive in vitro. Here we report the differentiation of human colonic organoids (HCOs) from hPSCs. We found that BMP signaling is required to establish a posterior SATB2+ domain in developing and postnatal intestinal epithelium. Brief activation of BMP signaling is sufficient to activate a posterior HOX code and direct hPSC-derived gut tube cultures into HCOs. In vitro, HCOs express colonic markers and contained colon-specific cell populations. Following transplantation into mice, HCOs undergo morphogenesis and maturation to form tissue that exhibits molecular, cellular, and morphologic properties of human colon. Together these data show BMP-dependent patterning of human hindgut into HCOs, which will be valuable for studying diseases including colitis and colon cancer.
Collapse
Affiliation(s)
- Jorge O Múnera
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - David Hill
- University of Michigan, Ann Arbor, MI 48109, USA
| | - Carey Watson
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Maxime Mahe
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jefferson E Vallance
- Division of Gastroenterology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Noah F Shroyer
- Division of Gastroenterology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Adrian Zarzoso-Lacoste
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jonathan R Hudson
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Jonathan C Howell
- Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Praneet Chatuvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | - John M Shannon
- Division of Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|
36
|
Thompson CA, Wojta K, Pulakanti K, Rao S, Dawson P, Battle MA. GATA4 Is Sufficient to Establish Jejunal Versus Ileal Identity in the Small Intestine. Cell Mol Gastroenterol Hepatol 2017; 3:422-446. [PMID: 28462382 PMCID: PMC5404030 DOI: 10.1016/j.jcmgh.2016.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Patterning of the small intestinal epithelium along its cephalocaudal axis establishes three functionally distinct regions: duodenum, jejunum, and ileum. Efficient nutrient assimilation and growth depend on the proper spatial patterning of specialized digestive and absorptive functions performed by duodenal, jejunal, and ileal enterocytes. When enterocyte function is disrupted by disease or injury, intestinal failure can occur. One approach to alleviate intestinal failure would be to restore lost enterocyte functions. The molecular mechanisms determining regionally defined enterocyte functions, however, are poorly delineated. We previously showed that GATA binding protein 4 (GATA4) is essential to define jejunal enterocytes. The goal of this study was to test the hypothesis that GATA4 is sufficient to confer jejunal identity within the intestinal epithelium. METHODS To test this hypothesis, we generated a novel Gata4 conditional knock-in mouse line and expressed GATA4 in the ileum, where it is absent. RESULTS We found that GATA4-expressing ileum lost ileal identity. The global gene expression profile of GATA4-expressing ileal epithelium aligned more closely with jejunum and duodenum rather than ileum. Focusing on jejunal vs ileal identity, we defined sets of jejunal and ileal genes likely to be regulated directly by GATA4 to suppress ileal identity and promote jejunal identity. Furthermore, our study implicates GATA4 as a transcriptional repressor of fibroblast growth factor 15 (Fgf15), which encodes an enterokine that has been implicated in an increasing number of human diseases. CONCLUSIONS Overall, this study refines our understanding of an important GATA4-dependent molecular mechanism to pattern the intestinal epithelium along its cephalocaudal axis by elaborating on GATA4's function as a crucial dominant molecular determinant of jejunal enterocyte identity. Microarray data from this study have been deposited into NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO series accession number GSE75870.
Collapse
Key Words
- Cyp7a1, cytochrome P450 family 7 subfamily A member 1
- E, embryonic day
- EMSA, electrophoretic mobility shift assay
- Enterohepatic Signaling
- FXR
- FXR, farnesoid X receptor
- Fabp6, fatty acid binding protein 6
- Fgf, fibroblast growth factor
- Fgf15
- Jejunal Identity
- OSTα/β, organic solute transporter α/β
- PCR, polymerase chain reaction
- SBS, short-bowel syndrome
- Slc, solute carrier
- TSS, transcription start site
- Transcriptional Regulation
- bio-ChIP-seq, biotin-mediated chromatin immunoprecipitation with high-throughput sequencing
- bp, base pair
- cDNA, complementary DNA
- cKI, conditional knock-in
- cKO, conditional knockout
- dATP, deoxyadenosine triphosphate
- lnl, loxP-flanked PGK-Neo-3xSV40 polyadenylation sequence
- mRNA, messenger RNA
- pA, polyadenylation
- qRT, quantitative reverse-transcription
- xiFABP, Xenopus I-FABP
Collapse
Affiliation(s)
- Cayla A. Thompson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin Wojta
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kirthi Pulakanti
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Paul Dawson
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Michele A. Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
37
|
Chin AM, Hill DR, Aurora M, Spence JR. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin Cell Dev Biol 2017; 66:81-93. [PMID: 28161556 DOI: 10.1016/j.semcdb.2017.01.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
The intestine is a vital organ responsible for nutrient absorption, bile and waste excretion, and a major site of host immunity. In order to keep up with daily demands, the intestine has evolved a mechanism to expand the absorptive surface area by undergoing a morphogenetic process to generate finger-like units called villi. These villi house specialized cell types critical for both absorbing nutrients from food, and for protecting the host from commensal and pathogenic microbes present in the adult gut. In this review, we will discuss mechanisms that coordinate intestinal development, growth, and maturation of the small intestine, starting from the formation of the early gut tube, through villus morphogenesis and into early postnatal life when the intestine must adapt to the acquisition of nutrients through food intake, and to interactions with microbes.
Collapse
Affiliation(s)
- Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Megan Aurora
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
38
|
Oh E, Jeremian R, Oh G, Groot D, Susic M, Lee K, Foy K, Laird PW, Petronis A, Labrie V. Transcriptional heterogeneity in the lactase gene within cell-type is linked to the epigenome. Sci Rep 2017; 7:41843. [PMID: 28139744 PMCID: PMC5282553 DOI: 10.1038/srep41843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/04/2017] [Indexed: 12/16/2022] Open
Abstract
Transcriptional variation in histologically- and genetically- identical cells is a widespread phenomenon in tissues, yet the processes conferring this heterogeneity are not well understood. To identify contributing factors, we analyzed epigenetic profiles associated with the in vivo transcriptional gradient of the mouse lactase gene (Lct), which occurs in enterocytes along the proximal-to-distal axis of the small intestine. We found that epigenetic signatures at enhancer and promoter elements aligns with transcriptional variation of Lct in enterocytes. Age and phenotype-specific environmental cues (lactose exposure after weaning) induced changes to epigenetic modifications and CTCF binding at select regulatory elements, which corresponded to the alterations in the intestinal Lct mRNA gradient. Thus, epigenetic modifications in combination with CTCF binding at regulatory elements account for the transcriptional gradient in Lct in cells of the same type. Epigenetic divergence within enterocytes may contribute to the functional specialization of intestinal subregions.
Collapse
Affiliation(s)
- Edward Oh
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Richie Jeremian
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gabriel Oh
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel Groot
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Miki Susic
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - KwangHo Lee
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Kelly Foy
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Peter W. Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Arturas Petronis
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Viviane Labrie
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
39
|
Nigmatullina L, Norkin M, Dzama MM, Messner B, Sayols S, Soshnikova N. Id2 controls specification of Lgr5 + intestinal stem cell progenitors during gut development. EMBO J 2017; 36:869-885. [PMID: 28077488 DOI: 10.15252/embj.201694959] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 11/09/2022] Open
Abstract
The adult intestinal stem cells (ISCs), their hierarchies, mechanisms of maintenance and differentiation have been extensively studied. However, when and how ISCs are established during embryogenesis remains unknown. We show here that the transcription regulator Id2 controls the specification of embryonic Lgr5+ progenitors in the developing murine small intestine. Cell fate mapping analysis revealed that Lgr5+ progenitors emerge at E13.5 in wild-type embryos and differ from the rest on the intestinal epithelium by a characteristic ISC signature. In the absence of Id2, the intestinal epithelium differentiates into Lgr5+ cells already at E9.5. Furthermore, the size of the Lgr5+ cell pool is significantly increased. We show that Id2 restricts the activity of the Wnt signalling pathway at early stages and prevents precocious differentiation of the embryonic intestinal epithelium. Id2-deficient embryonic epithelial cells cultured ex vivo strongly activate Wnt target genes as well as markers of neoplastic transformation and form fast growing undifferentiated spheroids. Furthermore, adult ISCs from Id2-deficient mice display a distinct transcriptional signature, supporting an essential role for Id2 in the correct specification of ISCs.
Collapse
|
40
|
Chin AM, Tsai YH, Finkbeiner SR, Nagy MS, Walker EM, Ethen NJ, Williams BO, Battle MA, Spence JR. A Dynamic WNT/β-CATENIN Signaling Environment Leads to WNT-Independent and WNT-Dependent Proliferation of Embryonic Intestinal Progenitor Cells. Stem Cell Reports 2016; 7:826-839. [PMID: 27720905 PMCID: PMC5106483 DOI: 10.1016/j.stemcr.2016.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023] Open
Abstract
Much of our understanding about how intestinal stem and progenitor cells are regulated comes from studying the late fetal stages of development and the adult intestine. In this light, little is known about intestine development prior to the formation of stereotypical villus structures with columnar epithelium, a stage when the epithelium is pseudostratified and appears to be a relatively uniform population of progenitor cells with high proliferative capacity. Here, we investigated a role for WNT/β-CATENIN signaling during the pseudostratified stages of development (E13.5, E14.5) and following villus formation (E15.5) in mice. In contrast to the well-described role for WNT/β-CATENIN signaling as a regulator of stem/progenitor cells in the late fetal and adult gut, conditional epithelial deletion of β-catenin or the Frizzled co-receptors Lrp5 and Lrp6 had no effect on epithelial progenitor cell proliferation in the pseudostratified epithelium. Mutant embryos displayed obvious developmental defects, including loss of proliferation and disruptions in villus formation starting only at E15.5. Mechanistically, our data suggest that WNT signaling-mediated proliferation at the time of villus formation is driven by mesenchymal, but not epithelial, WNT ligand secretion. WNT/β-CATENIN signaling is not required for proliferation during pseudostratified growth Deleting epithelial β-catenin causes loss of proliferation during villus morphogenesis Loss of WNT/β-CATENIN signaling leads to perturbations in villus formation Mesenchymal, not epithelial, WNT ligands are required for epithelial proliferation
Collapse
Affiliation(s)
- Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stacy R Finkbeiner
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melinda S Nagy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Walker
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nicole J Ethen
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|