1
|
Borrelli S, Leclercq S, Pasi M, Maggi P. Cerebral small vessel disease and glymphatic system dysfunction in multiple sclerosis: A narrative review. Mult Scler Relat Disord 2024; 91:105878. [PMID: 39276600 DOI: 10.1016/j.msard.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
As the multiple sclerosis (MS) population ages, the prevalence of vascular comorbidities increases, potentially accelerating disease progression and brain atrophy. Recent studies highlight the prevalence of cerebral small vessel disease (CSVD) in MS, suggesting a potential link between vascular comorbidities and accelerated disability. CSVD affects the brain's small vessels, often leading to identifiable markers on MRI such as enlarged perivascular spaces (EPVS). EPVS are increasingly recognized also in MS and have been associated with vascular comorbidities, lower percentage of MS-specific perivenular lesions, brain atrophy and aging. The exact sequence of event leading to MRI visible EPVS is yet to be determined, but an impaired perivascular brain fluid drainage appears a possible physiopathological explanation for EPVS in both CSVD and MS. In this context, a dysfunction of the brain fluid clearance system - also known as "glymphatic system" - appears associated in MS to aging, neuroinflammation, and vascular dysfunction. Advanced imaging techniques show an impaired glymphatic function in both MS and CSVD. Additionally, lifestyle factors such as physical exercise, diet, and sleep quality appear to influence glymphatic function, potentially revealing novel therapeutic strategies to mitigate microangiopathy and neuroinflammation in MS. This review underscores the potential role of glymphatic dysfunction in the complex and not-yet elucidated interplay between neuroinflammation and CSVD in MS.
Collapse
Affiliation(s)
- Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium.
| | - Sophie Leclercq
- Laboratory of Nutritional Psychiatry, Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Marco Pasi
- Stroke Unit, Department of Neurology, CIC-IT 1415, CHRU de Tours, INSERM 1253 iBrain, Tours, France
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Av. Hippocrate 10, Brussels 1200, Belgium.
| |
Collapse
|
2
|
Heffernan ÁB, Steinruecke M, Dempsey G, Chandran S, Selvaraj BT, Jiwaji Z, Stavrou M. Role of glia in delirium: proposed mechanisms and translational implications. Mol Psychiatry 2024:10.1038/s41380-024-02801-4. [PMID: 39463449 DOI: 10.1038/s41380-024-02801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Delirium is a common acute onset neurological syndrome characterised by transient fluctuations in cognition. It affects over 20% of medical inpatients and 50% of those critically ill. Delirium is associated with morbidity and mortality, causes distress to patients and carers, and has significant socioeconomic costs in ageing populations. Despite its clinical significance, the pathophysiology of delirium is understudied, and many underlying cellular mechanisms remain unknown. There are currently no effective pharmacological treatments which directly target underlying disease processes. Although many studies focus on neuronal dysfunction in delirium, glial cells, primarily astrocytes, microglia, and oligodendrocytes, and their associated systems, are increasingly implicated in delirium pathophysiology. In this review, we discuss current evidence which implicates glial cells in delirium, including biomarker studies, post-mortem tissue analyses and pre-clinical models. In particular, we focus on how astrocyte pathology, including aberrant brain energy metabolism and glymphatic dysfunction, reactive microglia, blood-brain barrier impairment, and white matter changes may contribute to the pathogenesis of delirium. We also outline limitations in this body of work and the unique challenges faced in identifying causative mechanisms in delirium. Finally, we discuss how established neuroimaging and single-cell techniques may provide further mechanistic insight at pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Áine Bríd Heffernan
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Georgia Dempsey
- School of Medicine, University of St Andrews, St Andrews, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK
| | - Zoeb Jiwaji
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Maria Stavrou
- UK Dementia Research Institute at The University of Edinburgh, The University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Fotiadis P, McKinstry-Wu AR, Weinstein SM, Cook PA, Elliott M, Cieslak M, Duda JT, Satterthwaite TD, Shinohara RT, Proekt A, Kelz MB, Detre JA, Bassett DS. Changes in brain connectivity and neurovascular dynamics during dexmedetomidine-induced loss of consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616650. [PMID: 39416182 PMCID: PMC11482825 DOI: 10.1101/2024.10.04.616650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Understanding the neurophysiological changes that occur during loss and recovery of consciousness is a fundamental aim in neuroscience and has marked clinical relevance. Here, we utilize multimodal magnetic resonance neuroimaging to investigate changes in regional network connectivity and neurovascular dynamics as the brain transitions from wakefulness to dexmedetomidine-induced unconsciousness, and finally into early-stage recovery of consciousness. We observed widespread decreases in functional connectivity strength across the whole brain, and targeted increases in structure-function coupling (SFC) across select networks-especially the cerebellum-as individuals transitioned from wakefulness to hypnosis. We also observed robust decreases in cerebral blood flow (CBF) across the whole brain-especially within the brainstem, thalamus, and cerebellum. Moreover, hypnosis was characterized by significant increases in the amplitude of low-frequency fluctuations (ALFF) of the resting-state blood oxygen level-dependent signal, localized within visual and somatomotor regions. Critically, when transitioning from hypnosis to the early stages of recovery, functional connectivity strength and SFC-but not CBF-started reverting towards their awake levels, even before behavioral arousal. By further testing for a relationship between connectivity and neurovascular alterations, we observed that during wakefulness, brain regions with higher ALFF displayed lower functional connectivity with the rest of the brain. During hypnosis, brain regions with higher ALFF displayed weaker coupling between structural and functional connectivity. Correspondingly, brain regions with stronger functional connectivity strength during wakefulness showed greater reductions in CBF with the onset of hypnosis. Earlier recovery of consciousness was associated with higher baseline (awake) levels of functional connectivity strength, CBF, and ALFF, as well as female sex. Across our findings, we also highlight the role of the cerebellum as a recurrent marker of connectivity and neurovascular changes between states of consciousness. Collectively, these results demonstrate that induction of, and emergence from dexmedetomidine-induced unconsciousness are characterized by widespread changes in connectivity and neurovascular dynamics.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew R. McKinstry-Wu
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M. Weinstein
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Philip A. Cook
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey T. Duda
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D. Satterthwaite
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Proekt
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B. Kelz
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Detre
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
4
|
Lian J, Yang L, Tan H, Su S, Serrano Lopes L, Cheng F, Yan J, Fu Y, Fu W, Xie Z, Sun J, Zhang J, Tong Z, Gao Y, Han H. A novel neuroprotective method against ischemic stroke by accelerating the drainage of brain interstitial fluid. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2213-2223. [PMID: 39115728 DOI: 10.1007/s11427-024-2592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/12/2024] [Indexed: 10/15/2024]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Inflammatory response after stroke determines the outcome of ischemic injury. A recent study has reported an efficient method, epidural arterial implantation (EAI), for accelerating interstitial fluid (ISF) drainage, which provides a promising strategy to clear pro-inflammatory cytokines in the brain extracellular space (ECS). In this study, the method of EAI was modified (m-EAI) to control its function of accelerating the ISF drainage at different time points following ischemic attack. The neuroprotective effect of m-EAI on ischemic stroke was evaluated with the transient middle cerebral artery occlusion (tMCAO) rat model. The results demonstrated the accumulation of IL-1β, IL-6, and TNF-α was significantly decreased by activating m-EAI at 7 d before and immediately after ischemic attack in tMCAO rats, accompanied with decreased infarct volume and improved neurological function. This study consolidates the hypothesis of exacerbated ischemic damage by inflammatory response and provides a new perspective to treat encephalopathy via brain ECS. Further research is essential to investigate whether m-EAI combined with neuroprotective drugs could enhance the therapeutic effect on ischemic stroke.
Collapse
Affiliation(s)
- Jingge Lian
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Liu Yang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Hanbo Tan
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Shaoyi Su
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Leonor Serrano Lopes
- Department of Informatics, Technical University of Munich, Garching, 80539, Germany
| | - Fangxiao Cheng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
| | - Wanyi Fu
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhaoheng Xie
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
- NMPA Key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, 100191, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
5
|
Xie Z, He Z, Yuan Z, Wang M, Zhou F. The Regulation of Cerebral Lymphatic Drainage in the Transverse Sinus Region of the Mouse Brain. JOURNAL OF BIOPHOTONICS 2024:e202400250. [PMID: 39289863 DOI: 10.1002/jbio.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Cerebral lymphatic drainage is an important pathway for metabolic waste clearance in the brain, which plays a crucial role in the progression of central nervous system diseases. Recent studies have shown that norepinephrine (NE) is involved in the regulation of cerebral lymphatic drainage function, but the modulation mechanism remains unknown. In this study, we confirmed that NE rapidly reduced glymphatic influx and enhanced meningeal lymphatic clearance. Moreover, the transverse sinus (TS) was the vital region of cerebral lymphatic drainage regulation by NE. Further analysis revealed that NE inhibition could simultaneously enhance glymphatic drainage and dorsal meningeal lymphatic drainage, mainly acting on the TS region. This study demonstrated that the cerebral lymphatic drainage system can be regulated by NE, with the TS region serving as the primary modulating site. The findings provide a potential regulatory target for the amelioration of neurological diseases associated with cerebral lymphatic drainage function.
Collapse
Affiliation(s)
- Zengjun Xie
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Zhihui He
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Zhen Yuan
- Faculty of Health Sciences, Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Miao Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Feifan Zhou
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| |
Collapse
|
6
|
Dong R, Liu W, Han Y, Wang Z, Jiang L, Wang L, Gu X. Influencing factors of glymphatic system during perioperative period. Front Neurosci 2024; 18:1428085. [PMID: 39328423 PMCID: PMC11424614 DOI: 10.3389/fnins.2024.1428085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
The glymphatic system is a functional cerebrospinal fluid circulatory system that uses peri-arterial space for inflow of cerebrospinal fluid and peri-venous space for efflux of cerebrospinal fluid from brain parenchyma. This brain-wide fluid transport pathway facilitates the exchange between cerebrospinal fluid and interstitial fluid and clears metabolic waste from the metabolically active brain. Multiple lines of work show that the glymphatic system is crucial to normal brain functions, and the dysfunction of the glymphatic system is closely associated with various neurological disorders, including aging, neurodegeneration, and acute brain injury. Currently, it is common to explore the functional and molecular mechanisms of the glymphatic system based on animal models. The function of glymphatic system during perioperative period is affected by many factors such as physiological, pathological, anesthetic and operative methods. To provide a reference for the interpretation of the results of glymphatic system studies during perioperative period, this article comprehensively reviews the physiological and pathological factors that interfere with the function of the glymphatic system during perioperative period, investigates the effects of anesthetic drugs on glymphatic system function and the potential underlying mechanisms, describes operative methods that interfere with the function of the glymphatic system, and potential intervention strategies based on the glymphatic system. Future, these variables should be taken into account as critical covariates in the design of functional studies on the glymphatic system.
Collapse
Affiliation(s)
- Rui Dong
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Liu
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, China
| | - Yuqiang Han
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zimo Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Linhao Jiang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liwei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
7
|
Lin L, Huang L, Huang S, Chen W, Huang H, Chi L, Su F, Liu X, Yuan K, Jiang Q, Li C, Smith WW, Fu Q, Pei Z. MSC-Derived Extracellular Vesicles Alleviate NLRP3/GSDMD-Mediated Neuroinflammation in Mouse Model of Sporadic Alzheimer's Disease. Mol Neurobiol 2024; 61:5494-5509. [PMID: 38200351 DOI: 10.1007/s12035-024-03914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with sporadic form being the predominant type. Neuroinflammation plays a critical role in accelerating pathogenic processes in AD. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) regulate inflammatory responses and show great promise for treating AD. Induced pluripotent stem cell (iPSC)-derived MSCs are similar to MSCs and exhibit low immunogenicity and heterogeneity, making them promising cell sources for clinical applications. This study examined the anti-inflammatory effects of MSC-sEVs in a streptozotocin-induced sporadic mouse model of AD (sAD). The intracisternal administration of iPSC-MSC-sEVs alleviated NLRP3/GSDMD-mediated neuroinflammation, decreased amyloid deposition and neuronal apoptosis, and mitigated cognitive dysfunction. Furthermore, it explored the role of miR-223-3p in the iPSC-MSC-sEVs-mediated anti-inflammatory effects in vitro. miR-223-3p directly targeted NLRP3, whereas inhibiting miR-223-3p almost completely reversed the suppression of NLRP3 by MSC-sEVs, suggesting that miR-223-3p may, at least partially, account for MSC-sEVs-mediated anti-inflammation. Results obtained suggest that intracisternal administration of iPSC-MSC-sEVs can reduce cognitive impairment by inhibiting NLRP3/GSDMD neuroinflammation in a sAD mouse model. Therefore, the present study provides a proof-of-principle for applying iPSC-MSC-sEVs to target neuroinflammation in sAD.
Collapse
Affiliation(s)
- Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Longxin Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Sen Huang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Heng Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Li Chi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fengjuan Su
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoqing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kang Yuan
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiuhong Jiang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Changu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wanli W Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Jung LB, Wiegand TLT, Tuz-Zahra F, Tripodis Y, Iliff JJ, Piantino J, Arciniega H, Kim CL, Pankatz L, Bouix S, Lin AP, Alosco ML, Daneshvar DH, Mez J, Sepehrband F, Rathi Y, Pasternak O, Coleman MJ, Adler CH, Bernick C, Balcer L, Cummings JL, Reiman EM, Stern RA, Shenton ME, Koerte IK. Repetitive Head Impacts and Perivascular Space Volume in Former American Football Players. JAMA Netw Open 2024; 7:e2428687. [PMID: 39186275 DOI: 10.1001/jamanetworkopen.2024.28687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Importance Exposure to repetitive head impacts (RHI) is associated with increased risk for neurodegeneration. Accumulation of toxic proteins due to impaired brain clearance is suspected to play a role. Objective To investigate whether perivascular space (PVS) volume is associated with lifetime exposure to RHI in individuals at risk for RHI-associated neurodegeneration. Design, Setting, and Participants This cross-sectional study was part of the Diagnostics, Imaging, and Genetics Network for the Objective Study and Evaluation of Chronic Traumatic Encephalopathy (DIAGNOSE CTE) Research Project, a 7-year multicenter study consisting of 4 US study sites. Data were collected from September 2016 to February 2020 and analyses were performed between May 2021 and October 2023. After controlling for magnetic resonance image (MRI) and processing quality, former American football players and unexposed asymptomatic control participants were included in analyses. Exposure Prior exposure to RHI while participating in American football was estimated using the 3 cumulative head impact indices (CHII-G, linear acceleration; CHII-R, rotational acceleration; and CHII, number of head impacts). Main Outcomes and Measures Individual PVS volume was calculated in the white matter of structural MRI. Cognitive impairment was based on neuropsychological assessment. Linear regression models were used to assess associations of PVS volume with neuropsychological assessments in former American football players. All analyses were adjusted for confounders associated with PVS volume. Results Analyses included 224 participants (median [IQR] age, 57 [51-65] years), with 170 male former football players (114 former professional athletes, 56 former collegiate athletes) and 54 male unexposed control participants. Former football players had larger PVS volume compared with the unexposed group (mean difference, 0.28 [95% CI, 0.00-0.56]; P = .05). Within the football group, PVS volume was associated with higher CHII-R (β = 2.71 × 10-8 [95% CI, 0.50 × 10-8 to 4.93 × 10-8]; P = .03) and CHII-G (β = 2.24 × 10-6 [95% CI, 0.35 × 10-6 to 4.13 × 10-6]; P = .03). Larger PVS volume was also associated with worse performance on cognitive functioning in former American football players (β = -0.74 [95% CI, -1.35 to -0.13]; P = .04). Conclusions and Relevance These findings suggest that impaired perivascular brain clearance, as indicated by larger PVS volume, may contribute to the association observed between RHI exposure and neurodegeneration.
Collapse
Affiliation(s)
- Leonard B Jung
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim L T Wiegand
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fatima Tuz-Zahra
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University School of Medicine, Boston, Massachusetts
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle
- Department of Neurology, University of Washington School of Medicine, Seattle
- VISN 20 Northwest Network Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Juan Piantino
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland
| | - Hector Arciniega
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, New York
| | - Cara L Kim
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lara Pankatz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Département de génie logiciel et TI, École de technologie supérieure, Université du Québec, Montreal, Canada
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - Farshid Sepehrband
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona Scottsdale, Arizona
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Laura Balcer
- Department of Neurology, NYU Grossman School of Medicine, New York, New York
- Department of Population Health, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Neurosurgery, Boston University School of Medicine, Boston, Massachusetts
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
9
|
Persson NDÅ, Lohela TJ, Mortensen KN, Rosenholm M, Li Q, Weikop P, Nedergaard M, Lilius TO. Anesthesia Blunts Carbon Dioxide Effects on Glymphatic Cerebrospinal Fluid Dynamics in Mechanically Ventilated Rats. Anesthesiology 2024; 141:338-352. [PMID: 38787687 DOI: 10.1097/aln.0000000000005039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
BACKGROUND Impaired glymphatic clearance of cerebral metabolic products and fluids contribute to traumatic and ischemic brain edema and neurodegeneration in preclinical models. Glymphatic perivascular cerebrospinal fluid flow varies between anesthetics possibly due to changes in vasomotor tone and thereby in the dynamics of the periarterial cerebrospinal fluid (CSF)-containing space. To better understand the influence of anesthetics and carbon dioxide levels on CSF dynamics, this study examined the effect of periarterial size modulation on CSF distribution by changing blood carbon dioxide levels and anesthetic regimens with opposing vasomotor influences: vasoconstrictive ketamine-dexmedetomidine (K/DEX) and vasodilatory isoflurane. METHODS End-tidal carbon dioxide (ETco2) was modulated with either supplemental inhaled carbon dioxide to reach hypercapnia (Etco2, 80 mmHg) or hyperventilation (Etco2, 20 mmHg) in tracheostomized and anesthetized female rats. Distribution of intracisternally infused radiolabeled CSF tracer 111In-diethylamine pentaacetate was assessed for 86 min in (1) normoventilated (Etco2, 40 mmHg) K/DEX; (2) normoventilated isoflurane; (3) hypercapnic K/DEX; and (4) hyperventilated isoflurane groups using dynamic whole-body single-photon emission tomography. CSF volume changes were assessed with magnetic resonance imaging. RESULTS Under normoventilation, cortical CSF tracer perfusion, perivascular space size around middle cerebral arteries, and intracranial CSF volume were higher under K/DEX compared with isoflurane (cortical maximum percentage of injected dose ratio, 2.33 [95% CI, 1.35 to 4.04]; perivascular size ratio 2.20 [95% CI, 1.09 to 4.45]; and intracranial CSF volume ratio, 1.90 [95% CI, 1.33 to 2.71]). Under isoflurane, tracer was directed to systemic circulation. Under K/DEX, the intracranial tracer distribution and CSF volume were uninfluenced by hypercapnia compared with normoventilation. Intracranial CSF tracer distribution was unaffected by hyperventilation under isoflurane despite a 28% increase in CSF volume around middle cerebral arteries. CONCLUSIONS K/DEX and isoflurane overrode carbon dioxide as a regulator of CSF flow. K/DEX could be used to preserve CSF space and dynamics in hypercapnia, whereas hyperventilation was insufficient to increase cerebral CSF perfusion under isoflurane. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Niklas Daniel Åke Persson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Terhi J Lohela
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Anaesthesiology, Intensive Care and Pain Medicine, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kristian Nygaard Mortensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marko Rosenholm
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianliang Li
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Tuomas O Lilius
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Emergency Medicine and Services, HUS Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Wang S, Yu X, Cheng L, Ren W, Wen G, Wu X, Lou H, Ren X, Lu L, Hermenean A, Yao J, Li B, Lu Y, Wu X. Dexmedetomidine improves the circulatory dysfunction of the glymphatic system induced by sevoflurane through the PI3K/AKT/ΔFosB/AQP4 pathway in young mice. Cell Death Dis 2024; 15:448. [PMID: 38918408 PMCID: PMC11199640 DOI: 10.1038/s41419-024-06845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Multiple sevoflurane exposures may damage the developing brain. The neuroprotective function of dexmedetomidine has been widely confirmed in animal experiments and human studies. However, the effect of dexmedetomidine on the glymphatic system has not been clearly studied. We hypothesized that dexmedetomidine could alleviate sevoflurane-induced circulatory dysfunction of the glymphatic system in young mice. Six-day-old C57BL/6 mice were exposed to 3% sevoflurane for 2 h daily, continuously for 3 days. Intraperitoneal injection of either normal saline or dexmedetomidine was administered before every anaesthesia. Meanwhile the circulatory function of glymphatic system was detected by tracer injection at P8 and P32. On P30-P32, behavior tests including open field test, novel object recognition test, and Y-maze test were conducted. Primary astrocyte cultures were established and treated with the PI3K activator 740Y-P, dexmedetomidine, and small interfering RNA (siRNA) to silence ΔFosB. We propose for the first time that multiple exposure to sevoflurane induces circulatory dysfunction of the glymphatic system in young mice. Dexmedetomidine improves the circulatory capacity of the glymphatic system in young mice following repeated exposure to sevoflurane through the PI3K/AKT/ΔFosB/AQP4 signaling pathway, and enhances their long-term learning and working memory abilities.
Collapse
Affiliation(s)
- Shuying Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
- Department of Anaesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaojin Yu
- School of Forensic Medicine, China Medical University, Shenyang, China
- Department of Anaesthesiology, Affiliated Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Cheng
- School of Forensic Medicine, China Medical University, Shenyang, China
- Department of Anaesthesiology, Affiliated Shengjing Hospital of China Medical University, Shenyang, China
| | - Weishu Ren
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Haoyang Lou
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinghua Ren
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Lei Lu
- Department of pediatrics Neonatology, University of Chicago, Chicago, IL, 60615, USA
| | - Anca Hermenean
- Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Baoman Li
- School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Center of Forensic Investigation, Shenyang, China.
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, Affiliated Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xu Wu
- School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Center of Forensic Investigation, Shenyang, China.
| |
Collapse
|
11
|
Miao A, Luo T, Hsieh B, Edge CJ, Gridley M, Wong RTC, Constandinou TG, Wisden W, Franks NP. Brain clearance is reduced during sleep and anesthesia. Nat Neurosci 2024; 27:1046-1050. [PMID: 38741022 PMCID: PMC11156584 DOI: 10.1038/s41593-024-01638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
It has been suggested that the function of sleep is to actively clear metabolites and toxins from the brain. Enhanced clearance is also said to occur during anesthesia. Here, we measure clearance and movement of fluorescent molecules in the brains of male mice and show that movement is, in fact, independent of sleep and wake or anesthesia. Moreover, we show that brain clearance is markedly reduced, not increased, during sleep and anesthesia.
Collapse
Affiliation(s)
- Andawei Miao
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Tianyuan Luo
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Bryan Hsieh
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
- Centre for Doctoral Training and Centre for Neurotechnology, Imperial College London, London, UK
| | - Christopher J Edge
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Morgan Gridley
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Ryan Tak Chun Wong
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Timothy G Constandinou
- Department of Electrical and Electronic Engineering and UK Dementia Research Institute, Care Research & Technology, Imperial College London, London, UK
| | - William Wisden
- Department of Life Sciences, Imperial College London, South Kensington, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Centre for Doctoral Training and Centre for Neurotechnology, Imperial College London, London, UK.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, South Kensington, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Centre for Doctoral Training and Centre for Neurotechnology, Imperial College London, London, UK.
| |
Collapse
|
12
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
13
|
Tan LY, Cunliffe G, Hogan MP, Yeo XY, Oh C, Jin B, Kang J, Park J, Kwon MS, Kim M, Jung S. Emergence of the brain-border immune niches and their contribution to the development of neurodegenerative diseases. Front Immunol 2024; 15:1380063. [PMID: 38863704 PMCID: PMC11165048 DOI: 10.3389/fimmu.2024.1380063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.
Collapse
Affiliation(s)
- Li Yang Tan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Cunliffe
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Patrick Hogan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chansik Oh
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Bohwan Jin
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junmo Kang
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junho Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
14
|
Sun B, Fang D, Li W, Li M, Zhu S. NIR-II nanoprobes for investigating the glymphatic system function under anesthesia and stroke injury. J Nanobiotechnology 2024; 22:200. [PMID: 38654299 DOI: 10.1186/s12951-024-02481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The glymphatic system plays an important role in the transportation of cerebrospinal fluid (CSF) and the clearance of metabolite waste in brain. However, current imaging modalities for studying the glymphatic system are limited. Herein, we apply NIR-II nanoprobes with non-invasive and high-contrast advantages to comprehensively explore the function of glymphatic system in mice under anesthesia and cerebral ischemia-reperfusion injury conditions. Our results show that the supplement drug dexmedetomidine (Dex) enhances CSF influx in the brain, decreases its outflow to mandibular lymph nodes, and leads to significant differences in CSF accumulation pattern in the spine compared to isoflurane (ISO) alone, while both ISO and Dex do not affect the clearance of tracer-filled CSF into blood circulation. Notably, we confirm the compromised glymphatic function after cerebral ischemia-reperfusion injury, leading to impaired glymphatic influx and reduced glymphatic efflux. This technique has great potential to elucidate the underlying mechanisms between the glymphatic system and central nervous system diseases.
Collapse
Affiliation(s)
- Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Danlan Fang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenzhong Li
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, China
| | - Mengfei Li
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, China.
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
15
|
Campbell E, Figueiro MG. Postoperative cognitive dysfunction: spotlight on light, circadian rhythms, and sleep. Front Neurosci 2024; 18:1390216. [PMID: 38699675 PMCID: PMC11064652 DOI: 10.3389/fnins.2024.1390216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a neurological disorder characterized by the emergence of cognitive impairment after surgery. A growing body of literature suggests that the onset of POCD is closely tied to circadian rhythm disruption (CRD). Circadian rhythms are patterns of behavioral and physiological change that repeat themselves at approximately, but not exactly, every 24 h. They are entrained to the 24 h day by the daily light-dark cycle. Postoperative CRD affects cognitive function likely by disrupting sleep architecture, which in turn provokes a host of pathological processes including neuroinflammation, blood-brain barrier disturbances, and glymphatic pathway dysfunction. Therefore, to address the pathogenesis of POCD it is first necessary to correct the dysregulated circadian rhythms that often occur in surgical patients. This narrative review summarizes the evidence for CRD as a key contributor to POCD and concludes with a brief discussion of how circadian-effective hospital lighting can be employed to re-entrain stable and robust circadian rhythms in surgical patients.
Collapse
Affiliation(s)
| | - Mariana G. Figueiro
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
16
|
Das N, Dhamija R, Sarkar S. The role of astrocytes in the glymphatic network: a narrative review. Metab Brain Dis 2024; 39:453-465. [PMID: 38008886 DOI: 10.1007/s11011-023-01327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
To date, treatment of Central Nervous System (CNS) pathology has largely focused on neuronal structure and function. Yet, revived attention towards fluid circulation within the CNS has exposed the need to further explore the role of glial cells in maintaining homeostasis within neural networks. In the past decade, discovery of the neural glymphatic network has revolutionized traditional understanding of fluid dynamics within the CNS. Advancements in neuroimaging have revealed alternative pathways of cerebrospinal fluid (CSF) generation and efflux. Here, we discuss emerging perspectives on the role of astrocytes in CSF hydrodynamics, with particular focus on the contribution of aquaporin-4 channels to the glymphatic network. Astrocytic structural features and expression patterns are detailed in relation to their function in maintaining integrity of the Blood Brain Barrier (BBB) as part of the neurovascular unit (NVU). This narrative also highlights the potential role of glial dysfunction in pathogenesis of neurodegenerative disease, hydrocephalus, intracranial hemorrhage, ischemic stroke, and traumatic brain injury. The purpose of this literature summary is to provide an update on the changing landscape of scientific theory surrounding production, flow, and absorption of cerebrospinal fluid. The overarching aim of this narrative review is to advance the conception of basic, translational, and clinical research endeavors investigating glia as therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Nikita Das
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ravi Dhamija
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, HFT-132, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
17
|
Yu Q, Liu S, Guo R, Chen K, Li Y, Jiang D, Gong S, Yin L, Liu K. Complete Restoration of Hearing Loss and Cochlear Synaptopathy via Minimally Invasive, Single-Dose, and Controllable Middle Ear Delivery of Brain-Derived Neurotrophic Factor-Poly(dl-lactic acid- co-glycolic acid)-Loaded Hydrogel. ACS NANO 2024; 18:6298-6313. [PMID: 38345574 DOI: 10.1021/acsnano.3c11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.
Collapse
Affiliation(s)
- Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengnan Liu
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Yang Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dan Jiang
- Hearing Implant Centre, Guy's and St. Thomas NHS Foundation Trust, London SE1 7EH, United Kingdom
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| | - Lan Yin
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| |
Collapse
|
18
|
Jukkola J, Kaakinen M, Singh A, Moradi S, Ferdinando H, Myllylä T, Kiviniemi V, Eklund L. Blood pressure lowering enhances cerebrospinal fluid efflux to the systemic circulation primarily via the lymphatic vasculature. Fluids Barriers CNS 2024; 21:12. [PMID: 38279178 PMCID: PMC10821255 DOI: 10.1186/s12987-024-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Inside the incompressible cranium, the volume of cerebrospinal fluid is directly linked to blood volume: a change in either will induce a compensatory change in the other. Vasodilatory lowering of blood pressure has been shown to result in an increase of intracranial pressure, which, in normal circumstances should return to equilibrium by increased fluid efflux. In this study, we investigated the effect of blood pressure lowering on fluorescent cerebrospinal fluid tracer absorption into the systemic blood circulation. METHODS Blood pressure lowering was performed by an i.v. administration of nitric oxide donor (sodium nitroprusside, 5 µg kg-1 min-1) or the Ca2+-channel blocker (nicardipine hydrochloride, 0.5 µg kg-1 min-1) for 10, and 15 to 40 min, respectively. The effect of blood pressure lowering on cerebrospinal fluid clearance was investigated by measuring the efflux of fluorescent tracers (40 kDa FITC-dextran, 45 kDa Texas Red-conjugated ovalbumin) into blood and deep cervical lymph nodes. The effect of nicardipine on cerebral hemodynamics was investigated by near-infrared spectroscopy. The distribution of cerebrospinal fluid tracers (40 kDa horse radish peroxidase,160 kDa nanogold-conjugated IgG) in exit pathways was also analyzed at an ultrastructural level using electron microscopy. RESULTS Nicardipine and sodium nitroprusside reduced blood pressure by 32.0 ± 19.6% and 24.0 ± 13.3%, while temporarily elevating intracranial pressure by 14.0 ± 7.0% and 18.2 ± 15.0%, respectively. Blood pressure lowering significantly increased tracer accumulation into dorsal dura, deep cervical lymph nodes and systemic circulation, but reduced perivascular inflow along penetrating arteries in the brain. The enhanced tracer efflux by blood pressure lowering into the systemic circulation was markedly reduced (- 66.7%) by ligation of lymphatic vessels draining into deep cervical lymph nodes. CONCLUSIONS This is the first study showing that cerebrospinal fluid clearance can be improved with acute hypotensive treatment and that the effect of the treatment is reduced by ligation of a lymphatic drainage pathway. Enhanced cerebrospinal fluid clearance by blood pressure lowering may have therapeutic potential in diseases with dysregulated cerebrospinal fluid flow.
Collapse
Affiliation(s)
- Jari Jukkola
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Abhishek Singh
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sadegh Moradi
- Opto-Electronics and Measurement Technique Research Unit, Infotech Oulu, University of Oulu, Oulu, Finland
| | - Hany Ferdinando
- Research Unit of Health Science and Technology, University of Oulu, Oulu, Finland
| | - Teemu Myllylä
- Opto-Electronics and Measurement Technique Research Unit, Infotech Oulu, University of Oulu, Oulu, Finland
- Research Unit of Health Science and Technology, University of Oulu, Oulu, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Diagnostic Imaging, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
19
|
Rogers KE, Nag OK, Stewart MH, Susumu K, Oh E, Delehanty JB. Multivalent Display of Erythropoietin on Quantum Dots Enhances Aquaporin-4 Expression and Water Transport in Human Astrocytes In Vitro. Bioconjug Chem 2023; 34:2205-2214. [PMID: 38032892 DOI: 10.1021/acs.bioconjchem.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In mammalian cells, growth factor-induced intracellular signaling and protein synthesis play a critical role in cellular physiology and homeostasis. In the brain's glymphatic system (GS), the water-conducting activity of aquaporin-4 (AQPN-4) membrane channels (expressed in polarized fashion on astrocyte end-feet) mediates the clearance of wastes through the convective transport of fluid and solutes through the perivascular space. The glycoprotein erythropoietin (EPO) has been shown to induce the astrocyte expression of AQPN-4 via signaling through the EPO receptor and the JAK/STAT signaling pathway. Here, we self-assemble EPO in a multivalent fashion onto the surface of semiconductor quantum dots (QDs) (driven by polyhistidine-based self-assembly) to drive the interaction of the bioconjugates with EPOR on human astrocytes (HA). This results in a 2-fold augmentation of JAK/STAT signaling activity and a 1.8-fold enhancement in the expression of AQPN-4 in cultured primary HA compared to free EPO. This translates into a 2-fold increase in the water transport rate in HA cells as measured by the calcein AM water transport assay. Importantly, EPO-QD-induced augmented AQPN-4 expression does not elicit any deleterious effect on the astrocyte viability. We discuss our results in the context of the implications of EPO-nanoparticle (NP) bioconjugates for use as research tools to understand the GS and their potential as therapeutics for the modulation of GS function. More generally, our results illustrate the utility of NP bioconjugates for the controlled modulation of growth factor-induced intracellular signaling.
Collapse
Affiliation(s)
- Katherine E Rogers
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Michael H Stewart
- Optical Sciences Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Eunkeu Oh
- Optical Sciences Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| |
Collapse
|
20
|
Melin E, Pripp AH, Eide PK, Ringstad G. In vivo distribution of cerebrospinal fluid tracer in human upper spinal cord and brain stem. JCI Insight 2023; 8:e173276. [PMID: 38063195 PMCID: PMC10795833 DOI: 10.1172/jci.insight.173276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUNDIntrathecal injection is an attractive route through which drugs can be administered and directed to the spinal cord, restricted by the blood-spinal cord barrier. However, in vivo data on the distribution of cerebrospinal fluid (CSF) substances in the human spinal cord are lacking. We conducted this study to assess the enrichment of a CSF tracer in the upper cervical spinal cord and the brain stem.METHODSAfter lumbar intrathecal injection of a magnetic resonance imaging (MRI) contrast agent, gadobutrol, repeated blood samples and MRI of the upper cervical spinal cord, brain stem, and adjacent subarachnoid spaces (SAS) were obtained through 48 hours. The MRI scans were then analyzed for tracer distribution in the different regions and correlated to age, disease, and amounts of tracer in the blood to determine CSF-to-blood clearance.RESULTSThe study included 26 reference individuals and 35 patients with the dementia subtype idiopathic normal pressure hydrocephalus (iNPH). The tracer enriched all analyzed regions. Moreover, tracer enrichment in parenchyma was associated with tracer enrichment in the adjacent SAS and with CSF-to-blood clearance. Clearance from the CSF was delayed in patients with iNPH compared with younger reference patients.CONCLUSIONA CSF tracer substance administered to the lumbar thecal sac can access the parenchyma of the upper cervical spinal cord and brain stem. Since CSF-to-blood clearance is highly individual and is associated with tracer level in CSF, clearance assessment may be used to tailor intrathecal treatment regimes.FUNDINGSouth-Eastern Norway Regional Health and Østfold Hospital Trust supported the research and publication of this work.
Collapse
Affiliation(s)
- Erik Melin
- Department of Radiology, Østfold Hospital Trust, Grålum, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo, Norway
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery and
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
21
|
Vu PD, Bansal V, Chitneni A, Robinson CL, Viswanath O, Urits I, Kaye AD, Nguyen A, Govindaraj R, Chen GH, Hasoon J. Buprenorphine for Chronic Pain Management: a Narrative Review. Curr Pain Headache Rep 2023; 27:811-820. [PMID: 37897592 DOI: 10.1007/s11916-023-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to educate healthcare professionals regarding buprenorphine for the use of opioid use disorder (OUD) as well as for chronic pain management. This review provides physicians and practitioners with updated information regarding the distinct characteristics and intricacies of prescribing buprenorphine. RECENT FINDINGS Buprenorphine is approved by the US Food and Drug Administration (FDA) for acute pain, chronic pain, opioid use disorder (OUD), and opioid dependence. When compared to most other opioids, buprenorphine offers superior patient tolerability, an excellent half-life, and minimal respiratory depression. Buprenorphine does have notable side effects as well as pharmacokinetic properties that require special attention, especially if patients require future surgical interventions. Many physicians are not trained to initiate or manage patients on buprenorphine. However, buprenorphine offers a potentially safer alternative for medication management for patients who require chronic opioid therapy for pain or have OUD. This review provides updated information on buprenorphine for both chronic pain and OUD.
Collapse
Affiliation(s)
- Peter D Vu
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Vishal Bansal
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Ahish Chitneni
- Department of Rehabilitation and Regenerative Medicine, New York-Presbyterian Hospital - Columbia and Cornell, New York, NY, USA
| | - Christopher L Robinson
- Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Ivan Urits
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Anvinh Nguyen
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Ranganathan Govindaraj
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Grant H Chen
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jamal Hasoon
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
22
|
Dredla BK, Del Brutto OH, Castillo PR. Sleep and Perivascular Spaces. Curr Neurol Neurosci Rep 2023; 23:607-615. [PMID: 37572227 DOI: 10.1007/s11910-023-01293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE OF REVIEW The glymphatic system is hypothesized to act as the brain's filtration system to remove toxic solutes that accumulate throughout the day. Perivascular spaces (PVSs) play a fundamental role in the ability of the glymphatic system to function, and sleep influences the effectiveness of this system. This article reviews the complexity of the interplay between sleep, the glymphatic system, and PVS. RECENT FINDINGS New imaging techniques have illuminated the structure of PVS and their associations with differing disease states. Research has shown that sleep may play a key role in the function of PVS and the influence of adenosine, astrocyte, and aquaporin-4 channel in the function of the glymphatic system. Emerging data suggest that differing pathological states such as neuroinflammatory conditions, neurodegenerative diseases, and cognitive dysfunction may be associated with underlying glymphatic system dysfunction, and sleep disorders could be a potential intervention target.
Collapse
Affiliation(s)
- Brynn K Dredla
- Sleep Disorders Center, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Oscar H Del Brutto
- School of Medicine and Research Center, Universidad Espíritu Santo-Ecuador, Samborondón, Ecuador.
| | - Pablo R Castillo
- Sleep Disorders Center, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
23
|
Gędek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Front Neurol 2023; 14:1232304. [PMID: 37767530 PMCID: PMC10520725 DOI: 10.3389/fneur.2023.1232304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The glymphatic system is a highly specialized fluid transport system in the central nervous system. It enables the exchange of the intercellular fluid of the brain, regulation of the movement of this fluid, clearance of unnecessary metabolic products, and, potentially, brain immunity. In this review, based on the latest scientific reports, we present the mechanism of action and function of the glymphatic system and look at the role of factors influencing its activity. Sleep habits, eating patterns, coexisting stress or hypertension, and physical activity can significantly affect glymphatic activity. Modifying them can help to change lives for the better. In the next section of the review, we discuss the connection between the glymphatic system and neurological disorders. Its association with many disease entities suggests that it plays a major role in the physiology of the whole brain, linking many pathophysiological pathways of individual diseases.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Praski Hospital, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Thakkar RN, Kioutchoukova IP, Griffin I, Foster DT, Sharma P, Valero EM, Lucke-Wold B. Mapping the Glymphatic Pathway Using Imaging Advances. J 2023; 6:477-491. [PMID: 37601813 PMCID: PMC10439810 DOI: 10.3390/j6030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
The glymphatic system is a newly discovered waste-clearing system that is analogous to the lymphatic system in our central nervous system. Furthermore, disruption in the glymphatic system has also been associated with many neurodegenerative disorders (e.g., Alzheimer's disease), traumatic brain injury, and subarachnoid hemorrhage. Thus, understanding the function and structure of this system can play a key role in researching the progression and prognoses of these diseases. In this review article, we discuss the current ways to map the glymphatic system and address the advances being made in preclinical mapping. As mentioned, the concept of the glymphatic system is relatively new, and thus, more research needs to be conducted in order to therapeutically intervene via this system.
Collapse
Affiliation(s)
- Rajvi N. Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Ian Griffin
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Devon T. Foster
- College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Wang Z, Song Z, Zhou C, Fang Y, Gu L, Yang W, Gao T, Si X, Liu Y, Chen Y, Guan X, Guo T, Wu J, Bai X, Zhang M, Zhang B, Pu J. Reduced coupling of global brain function and cerebrospinal fluid dynamics in Parkinson's disease. J Cereb Blood Flow Metab 2023; 43:1328-1339. [PMID: 36927139 PMCID: PMC10369155 DOI: 10.1177/0271678x231164337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 03/18/2023]
Abstract
Dysfunction of the glymphatic system, an intracranial clearance pathway that drains misfolded proteins, has been implicated in the onset of Parkinson's disease (PD). Recently, the coupling strength of global blood-oxygen-level-dependent (gBOLD) signals and cerebrospinal fluid (CSF) inflow dynamics have been suggested to be an indicator of glymphatic function. Using resting-state functional magnetic resonance imaging (MRI), we quantified gBOLD-CSF coupling strength as the cross-correlation between baseline gBOLD and CSF inflow signals to evaluate glymphatic function and its association with the clinical manifestations of PD. We found that gBOLD-CSF coupling in drug-naïve PD patients was significantly weaker than that in normal controls, but significantly stronger in patients less affected by sleep disturbances than in those more affected by sleep disturbances, based on the PD sleep scale. Furthermore, we collected longitudinal data from patients and found that baseline gBOLD-CSF coupling negatively correlated with the rate of change over time, but positively correlated with the rate of change in UPDRS-III scores. In conclusion, severe gBOLD-CSF decoupling in PD patients may reflect longitudinal motor impairment, thereby providing a potential marker of glymphatic dysfunction in PD.
Collapse
Affiliation(s)
- Zhiyun Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Zhe Song
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Cheng Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Luyan Gu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Wenyi Yang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Ting Gao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Xiaoli Si
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Yi Liu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Ying Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Tao Guo
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Jingjing Wu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Xueqing Bai
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| |
Collapse
|
26
|
Sigurdsson B, Hauglund NL, Lilius TO, Mogensen FLH, Mortensen KN, Beschorner N, Klinger L, Bærentzen SL, Rosenholm MP, Shalgunov V, Herth M, Mori Y, Nedergaard M. A SPECT-based method for dynamic imaging of the glymphatic system in rats. J Cereb Blood Flow Metab 2023; 43:1153-1165. [PMID: 36809165 PMCID: PMC10291457 DOI: 10.1177/0271678x231156982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 02/23/2023]
Abstract
The glymphatic system is a brain-wide waste drainage system that promotes cerebrospinal fluid circulation through the brain to remove waste metabolites. Currently, the most common methods for assessing glymphatic function are ex vivo fluorescence microscopy of brain slices, macroscopic cortical imaging, and MRI. While all these methods have been crucial for expanding our understanding of the glymphatic system, new techniques are required to overcome their specific drawbacks. Here, we evaluate SPECT/CT imaging as a tool to assess glymphatic function in different anesthesia-induced brain states using two radiolabeled tracers, [111In]-DTPA and [99mTc]-NanoScan. Using SPECT, we confirmed the existence of brain state-dependent differences in glymphatic flow and we show brain state-dependent differences of CSF flow kinetics and CSF egress to the lymph nodes. We compare SPECT and MRI for imaging glymphatic flow and find that the two imaging modalities show the same overall pattern of CSF flow, but that SPECT was specific across a greater range of tracer concentrations than MRI. Overall, we find that SPECT imaging is a promising tool for imaging the glymphatic system, and that qualities such as high sensitivity and the variety of available tracers make SPECT imaging a good alternative for glymphatic research.
Collapse
Affiliation(s)
- Björn Sigurdsson
- Center for Translational Neuromedicine, University of Copenhagen, Denmark
| | - Natalie L Hauglund
- Center for Translational Neuromedicine, University of Copenhagen, Denmark
| | - Tuomas O Lilius
- Center for Translational Neuromedicine, University of Copenhagen, Denmark
- INDIVIDRUG Research Program, University of Helsinki, Finland
- Department of Pharmacology, University of Helsinki, Finland
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Finland
| | - Frida L-H Mogensen
- Center for Translational Neuromedicine, University of Copenhagen, Denmark
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Natalie Beschorner
- Center for Translational Neuromedicine, University of Copenhagen, Denmark
| | - Laura Klinger
- Center for Translational Neuromedicine, University of Copenhagen, Denmark
| | - Simone L Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Marko P Rosenholm
- Center for Translational Neuromedicine, University of Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Matthias Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
- Department of Clinical Physiology, Copenhagen University Hospital, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, USA
| |
Collapse
|
27
|
Mathiesen BK, Miyakoshi LM, Cederroth CR, Tserga E, Versteegh C, Bork PAR, Hauglund NL, Gomolka RS, Mori Y, Edvall NK, Rouse S, Møllgård K, Holt JR, Nedergaard M, Canlon B. Delivery of gene therapy through a cerebrospinal fluid conduit to rescue hearing in adult mice. Sci Transl Med 2023; 15:eabq3916. [PMID: 37379370 DOI: 10.1126/scitranslmed.abq3916] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
Inner ear gene therapy has recently effectively restored hearing in neonatal mice, but it is complicated in adulthood by the structural inaccessibility of the cochlea, which is embedded within the temporal bone. Alternative delivery routes may advance auditory research and also prove useful when translated to humans with progressive genetic-mediated hearing loss. Cerebrospinal fluid flow via the glymphatic system is emerging as a new approach for brain-wide drug delivery in rodents as well as humans. The cerebrospinal fluid and the fluid of the inner ear are connected via a bony channel called the cochlear aqueduct, but previous studies have not explored the possibility of delivering gene therapy via the cerebrospinal fluid to restore hearing in adult deaf mice. Here, we showed that the cochlear aqueduct in mice exhibits lymphatic-like characteristics. In vivo time-lapse magnetic resonance imaging, computed tomography, and optical fluorescence microscopy showed that large-particle tracers injected into the cerebrospinal fluid reached the inner ear by dispersive transport via the cochlear aqueduct in adult mice. A single intracisternal injection of adeno-associated virus carrying solute carrier family 17, member 8 (Slc17A8), which encodes vesicular glutamate transporter-3 (VGLUT3), rescued hearing in adult deaf Slc17A8-/- mice by restoring VGLUT3 protein expression in inner hair cells, with minimal ectopic expression in the brain and none in the liver. Our findings demonstrate that cerebrospinal fluid transport comprises an accessible route for gene delivery to the adult inner ear and may represent an important step toward using gene therapy to restore hearing in humans.
Collapse
Affiliation(s)
- Barbara K Mathiesen
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Denmark
| | - Leo M Miyakoshi
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Denmark
| | - Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, Biomedicum, 171 65 Stockholm, Sweden
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Evangelia Tserga
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, Biomedicum, 171 65 Stockholm, Sweden
| | - Corstiaen Versteegh
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, Biomedicum, 171 65 Stockholm, Sweden
| | - Peter A R Bork
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Denmark
| | - Natalie L Hauglund
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Denmark
| | - Ryszard Stefan Gomolka
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Denmark
| | - Niklas K Edvall
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, Biomedicum, 171 65 Stockholm, Sweden
| | - Stephanie Rouse
- Department of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, 2200, Denmark
| | - Jeffrey R Holt
- Department of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Denmark
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, Biomedicum, 171 65 Stockholm, Sweden
| |
Collapse
|
28
|
Segeroth M, Wachsmuth L, Gagel M, Albers F, Hess A, Faber C. Disentangling the impact of cerebrospinal fluid formation and neuronal activity on solute clearance from the brain. Fluids Barriers CNS 2023; 20:43. [PMID: 37316849 DOI: 10.1186/s12987-023-00443-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Despite recent attention, pathways and mechanisms of fluid transposition in the brain are still a matter of intense discussion and driving forces underlying waste clearance in the brain remain elusive. Consensus exists that net solute transport is a prerequisite for efficient clearance. The individual impact of neuronal activity and cerebrospinal fluid (CSF) formation, which both vary with brain state and anesthesia, remain unclear. METHODS To separate conditions with high and low neuronal activity and high and low CSF formation, different anesthetic regimens in naive rat were established, using Isoflurane (ISO), Medetomidine (MED), acetazolamide or combinations thereof. With dynamic contrast-enhanced MRI, after application of low molecular weight contrast agent (CA) Gadobutrol to cisterna magna, tracer distribution was monitored as surrogate for solute clearance. Simultaneous fiber-based Ca2+-recordings informed about the state of neuronal activity under different anesthetic regimen. T2-weighted MRI and diffusion-weighted MRI (DWI) provided size of subarachnoidal space and aqueductal flow as surrogates for CSF formation. Finally, a pathway and mechanism-independent two-compartment model was introduced to provide a measure of efficiency for solute clearance from the brain. RESULTS Anatomical imaging, DWI and Ca2+-recordings confirmed that conditions with distinct levels of neuronal activity and CSF formation were achieved. A sleep-resembling condition, with reduced neuronal activity and enhanced CSF formation was achieved using ISO+MED and an awake-like condition with high neuronal activity using MED alone. CA distribution in the brain correlated with the rate of CSF formation. The cortical brain state had major influence on tracer diffusion. Under conditions with low neuronal activity, higher diffusivity suggested enlargement of extracellular space, facilitating a deeper permeation of solutes into brain parenchyma. Under conditions with high neuronal activity, diffusion of solutes into parenchyma was hindered and clearance along paravascular pathways facilitated. Exclusively based on the measured time signal curves, the two-compartment model provided net exchange ratios, which were significantly larger for the sleep-resembling condition than for the awake-like condition. CONCLUSIONS Efficiency of solute clearance in brain changes with alterations in both state of neuronal activity and CSF formation. Our clearance pathway and mechanism agnostic kinetic model informs about net solute transport, solely based on the measured time signal curves. This rather simplifying approach largely accords with preclinical and clinical findings.
Collapse
Affiliation(s)
- Martin Segeroth
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A16, 48149, Münster, Germany
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Lydia Wachsmuth
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A16, 48149, Münster, Germany
| | - Mathias Gagel
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A16, 48149, Münster, Germany
| | - Franziska Albers
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A16, 48149, Münster, Germany
| | - Andreas Hess
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- FAU NeW, Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Albert-Schweitzer-Campus 1, Gebäude A16, 48149, Münster, Germany.
| |
Collapse
|
29
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
30
|
The Relationships Among Metal Homeostasis, Mitochondria, and Locus Coeruleus in Psychiatric and Neurodegenerative Disorders: Potential Pathogenetic Mechanism and Therapeutic Implications. Cell Mol Neurobiol 2023; 43:963-989. [PMID: 35635600 DOI: 10.1007/s10571-022-01234-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022]
Abstract
While alterations in the locus coeruleus-noradrenergic system are present during early stages of neuropsychiatric disorders, it is unclear what causes these changes and how they contribute to other pathologies in these conditions. Data suggest that the onset of major depressive disorder and schizophrenia is associated with metal dyshomeostasis that causes glial cell mitochondrial dysfunction and hyperactivation in the locus coeruleus. The effect of the overactive locus coeruleus on the hippocampus, amygdala, thalamus, and prefrontal cortex can be responsible for some of the psychiatric symptoms. Although locus coeruleus overactivation may diminish over time, neuroinflammation-induced alterations are presumably ongoing due to continued metal dyshomeostasis and mitochondrial dysfunction. In early Alzheimer's and Parkinson's diseases, metal dyshomeostasis and mitochondrial dysfunction likely induce locus coeruleus hyperactivation, pathological tau or α-synuclein formation, and neurodegeneration, while reduction of glymphatic and cerebrospinal fluid flow might be responsible for β-amyloid aggregation in the olfactory regions before the onset of dementia. It is possible that the overactive noradrenergic system stimulates the apoptosis signaling pathway and pathogenic protein formation, leading to further pathological changes which can occur in the presence or absence of locus coeruleus hypoactivation. Data are presented in this review indicating that although locus coeruleus hyperactivation is involved in pathological changes at prodromal and early stages of these neuropsychiatric disorders, metal dyshomeostasis and mitochondrial dysfunction are critical factors in maintaining ongoing neuropathology throughout the course of these conditions. The proposed mechanistic model includes multiple pharmacological sites that may be targeted for the treatment of neuropsychiatric disorders commonly.
Collapse
|
31
|
Lilius TO, Mortensen KN, Deville C, Lohela TJ, Stæger FF, Sigurdsson B, Fiordaliso EM, Rosenholm M, Kamphuis C, Beekman FJ, Jensen AI, Nedergaard M. Glymphatic-assisted perivascular brain delivery of intrathecal small gold nanoparticles. J Control Release 2023; 355:135-148. [PMID: 36731802 DOI: 10.1016/j.jconrel.2023.01.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/05/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Nanoparticles are ultrafine particulate matter having considerable potential for treatment of central nervous system (CNS) disorders. Despite their tiny size, the blood-brain barrier (BBB) restricts their access to the CNS. Their direct cerebrospinal fluid (CSF) administration bypasses the BBB endothelium, but still fails to give adequate brain uptake. We present a novel approach for efficient CNS delivery of 111In-radiolabelled gold nanoparticles (AuNPs; 10-15 nm) via intra-cisterna magna administration, with tracking by SPECT imaging. To accelerate CSF brain influx, we administered AuNPs intracisternally in conjunction with systemic hypertonic saline, which dramatically increased the parenchymal AuNP uptake, especially in deep brain regions. AuNPs entered the CNS along periarterial spaces as visualized by MRI of gadolinium-labelled AuNPs and were cleared from brain within 24 h and excreted through the kidneys. Thus, the glymphatic-assisted perivascular network augment by systemic hypertonic saline is a pathway for highly efficient brain-wide distribution of small AuNPs.
Collapse
Affiliation(s)
- Tuomas O Lilius
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Emergency Medicine and Services, University of Helsinki and Helsinki University Hospital, Finland
| | - Kristian Nygaard Mortensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claire Deville
- The Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Terhi J Lohela
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Anaesthesiology, Intensive Care Medicine, and Pain Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Frederik Filip Stæger
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Björn Sigurdsson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisabetta M Fiordaliso
- DTU Nanolab - National Center for Nano Fabrication and Characterization, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marko Rosenholm
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Chris Kamphuis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands; MILabs B.V., Utrecht, the Netherlands
| | - Freek J Beekman
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands; MILabs B.V., Utrecht, the Netherlands; Department of Radiation Science and Technology, Delft University of Technology, Delft, the Netherlands
| | - Andreas I Jensen
- The Hevesy Laboratory, Department of Health Technology, Technical University of Denmark, Roskilde, Denmark.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
32
|
Muschol N, Koehn A, von Cossel K, Okur I, Ezgu F, Harmatz P, de Castro Lopez MJ, Couce ML, Lin SP, Batzios S, Cleary M, Solano M, Nestrasil I, Kaufman B, Shaywitz AJ, Maricich SM, Kuca B, Kovalchin J, Zanelli E. A phase I/II study on intracerebroventricular tralesinidase alfa in patients with Sanfilippo syndrome type B. J Clin Invest 2023; 133:165076. [PMID: 36413418 PMCID: PMC9843052 DOI: 10.1172/jci165076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
BackgroundSanfilippo type B is a mucopolysaccharidosis (MPS) with a major neuronopathic component characterized by heparan sulfate (HS) accumulation due to mutations in the NAGLU gene encoding alfa-N-acetyl-glucosaminidase. Enzyme replacement therapy for neuronopathic MPS requires efficient enzyme delivery throughout the brain in order to normalize HS levels, prevent brain atrophy, and potentially delay cognitive decline.MethodsIn this phase I/II open-label study, patients with MPS type IIIB (n = 22) were treated with tralesinidase alfa administered i.c.v. The patients were monitored for drug exposure; total HS and HS nonreducing end (HS-NRE) levels in both cerebrospinal fluid (CSF) and plasma; anti-drug antibody response; brain, spleen, and liver volumes as measured by MRI; and cognitive development as measured by age-equivalent (AEq) scores.ResultsIn the Part 1 dose escalation (30, 100, and 300 mg) phase, a 300 mg dose of tralesinidase alfa was necessary to achieve normalization of HS and HS-NRE levels in the CSF and plasma. In Part 2, 300 mg tralesinidase alfa sustained HS and HS-NRE normalization in the CSF and stabilized cortical gray matter volume (CGMV) over 48 weeks of treatment. Resolution of hepatomegaly and a reduction in spleen volume were observed in most patients. Significant correlations were also established between the change in cognitive AEq score and plasma drug exposure, plasma HS-NRE levels, and CGMV.ConclusionAdministration of tralesinidase alfa i.c.v. effectively normalized HS and HS-NRE levels as a prerequisite for clinical efficacy. Peripheral drug exposure data suggest a role for the glymphatic system in altering tralesinidase alfa efficacy.Trial registrationClinicaltrials.gov NCT02754076.FUNDINGBioMarin Pharmaceutical Inc. and Allievex Corporation.
Collapse
Affiliation(s)
- Nicole Muschol
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Anja Koehn
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Katharina von Cossel
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Ilyas Okur
- Gazi University Faculty of Medicine, Departments of Pediatric Metabolism and Genetics, Ankara, Turkey
| | - Fatih Ezgu
- Gazi University Faculty of Medicine, Departments of Pediatric Metabolism and Genetics, Ankara, Turkey
| | - Paul Harmatz
- UCSF Benioff Children’s Hospital Oakland, Oakland, California, USA
| | - Maria J. de Castro Lopez
- Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, A Coruña, Spain
| | - Maria Luz Couce
- Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, A Coruña, Spain
| | | | | | | | | | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, and Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Kaufman
- CLB Consulting, Falls of Neuse, Raleigh, North Carolina, USA
| | | | | | - Bernice Kuca
- Allievex Corporation, Marblehead, Massachusetts, USA
| | | | - Eric Zanelli
- Allievex Corporation, Marblehead, Massachusetts, USA
| |
Collapse
|
33
|
Carbohydrates: Binding Sites and Potential Drug Targets for Neural-Affecting Pathogens. ADVANCES IN NEUROBIOLOGY 2023; 29:449-477. [DOI: 10.1007/978-3-031-12390-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Khatri DK, Preeti K, Tonape S, Bhattacharjee S, Patel M, Shah S, Singh PK, Srivastava S, Gugulothu D, Vora L, Singh SB. Nanotechnological Advances for Nose to Brain Delivery of Therapeutics to Improve the Parkinson Therapy. Curr Neuropharmacol 2023; 21:493-516. [PMID: 35524671 PMCID: PMC10207920 DOI: 10.2174/1570159x20666220507022701] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
Blood-Brain Barrier (BBB) acts as a highly impermeable barrier, presenting an impediment to the crossing of most classical drugs targeted for neurodegenerative diseases including Parkinson's disease (PD). About the nature of drugs and other potential molecules, they impose unavoidable doserestricted limitations eventually leading to the failure of therapy. However, many advancements in formulation technology and modification of delivery approaches have been successful in delivering the drug to the brain in the therapeutic window. The nose to the brain (N2B) drug delivery employing the nanoformulation, is one such emerging delivery approach, overcoming both classical drug formulation and delivery-associated limitations. This latter approach offers increased bioavailability, greater patient acceptance, lesser metabolic degradation of drugs, circumvention of BBB, ample drug loading along with the controlled release of the drugs. In N2B delivery, the intranasal (IN) route carries therapeutics firstly into the nasal cavity followed by the brain through olfactory and trigeminal nerve connections linked with nasal mucosa. The N2B delivery approach is being explored for delivering other biologicals like neuropeptides and mitochondria. Meanwhile, this N2B delivery system is associated with critical challenges consisting of mucociliary clearance, degradation by enzymes, and drug translocations by efflux mechanisms. These challenges finally culminated in the development of suitable surfacemodified nano-carriers and Focused- Ultrasound-Assisted IN as FUS-IN technique which has expanded the horizons of N2B drug delivery. Hence, nanotechnology, in collaboration with advances in the IN route of drug administration, has a diversified approach for treating PD. The present review discusses the physiology and limitation of IN delivery along with current advances in nanocarrier and technical development assisting N2B drug delivery.
Collapse
Affiliation(s)
- Dharmendra K. Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Kumari Preeti
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Shivraj Tonape
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Sheoshree Bhattacharjee
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Monica Patel
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Pankaj K. Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi-110017, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast-BT9 7BL, UK
| | - Shashi B. Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| |
Collapse
|
35
|
Could dexmedetomidine be repurposed as a glymphatic enhancer? Trends Pharmacol Sci 2022; 43:1030-1040. [PMID: 36280451 DOI: 10.1016/j.tips.2022.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Cerebrospinal fluid (CSF) flows through the central nervous system (CNS) via the glymphatic pathway to clear the interstitium of metabolic waste. In preclinical studies, glymphatic fluid flow rate increases with low central noradrenergic tone and slow-wave activity during natural sleep and general anesthesia. By contrast, sleep deprivation reduces glymphatic clearance and leads to intracerebral accumulation of metabolic waste, suggesting an underlying mechanism linking sleep disturbances with neurodegenerative diseases. The selective α2-adrenergic agonist dexmedetomidine is a sedative drug that induces slow waves in the electroencephalogram, suppresses central noradrenergic tone, and preserves glymphatic outflow. As recently developed dexmedetomidine formulations enable self-administration, we suggest that dexmedetomidine could serve as a sedative-hypnotic drug to enhance clearance of harmful waste from the brain of those vulnerable to neurodegeneration.
Collapse
|
36
|
Verghese JP, Terry A, de Natale ER, Politis M. Research Evidence of the Role of the Glymphatic System and Its Potential Pharmacological Modulation in Neurodegenerative Diseases. J Clin Med 2022; 11:jcm11236964. [PMID: 36498538 PMCID: PMC9735716 DOI: 10.3390/jcm11236964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The glymphatic system is a unique pathway that utilises end-feet Aquaporin 4 (AQP4) channels within perivascular astrocytes, which is believed to cause cerebrospinal fluid (CSF) inflow into perivascular space (PVS), providing nutrients and waste disposal of the brain parenchyma. It is theorised that the bulk flow of CSF within the PVS removes waste products, soluble proteins, and products of metabolic activity, such as amyloid-β (Aβ). In the experimental model, the glymphatic system is selectively active during slow-wave sleep, and its activity is affected by both sleep dysfunction and deprivation. Dysfunction of the glymphatic system has been proposed as a potential key driver of neurodegeneration. This hypothesis is indirectly supported by the close relationship between neurodegenerative diseases and sleep alterations, frequently occurring years before the clinical diagnosis. Therefore, a detailed characterisation of the function of the glymphatic system in human physiology and disease would shed light on its early stage pathophysiology. The study of the glymphatic system is also critical to identifying means for its pharmacological modulation, which may have the potential for disease modification. This review will critically outline the primary evidence from literature about the dysfunction of the glymphatic system in neurodegeneration and discuss the rationale and current knowledge about pharmacological modulation of the glymphatic system in the animal model and its potential clinical applications in human clinical trials.
Collapse
|
37
|
Lilius TO, Rosenholm M, Klinger L, Mortensen KN, Sigurdsson B, Mogensen FLH, Hauglund NL, Nielsen MSN, Rantamäki T, Nedergaard M. SPECT/CT imaging reveals CNS-wide modulation of glymphatic cerebrospinal fluid flow by systemic hypertonic saline. iScience 2022; 25:105250. [PMID: 36274948 PMCID: PMC9579504 DOI: 10.1016/j.isci.2022.105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/04/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Intrathecal administration enables central nervous system delivery of drugs that do not bypass the blood-brain barrier. Systemic administration of hypertonic saline (HTS) enhances delivery of intrathecal therapeutics into the neuropil, but its effect on solute clearance from the brain remains unknown. Here, we developed a dynamic in vivo single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging platform to study the effects of HTS on whole-body distribution of the radiolabeled tracer 99mTc-diethylenetriaminepentaacetic acid (DTPA) administered through intracisternal, intrastriatal, or intravenous route in anesthetized rats. Co-administration of systemic HTS increased intracranial exposure to intracisternal 99mTc-DTPA by ∼80% during imaging. In contrast, HTS had minimal effects on brain clearance of intrastriatal 99mTc-DTPA. In sum, SPECT/CT imaging presents a valuable approach to study glymphatic drug delivery. Using this methodology, we show that systemic HTS increases intracranial availability of cerebrospinal fluid-administered tracer, but has marginal effects on brain clearance, thus substantiating a simple, yet effective strategy for enhancing intrathecal drug delivery to the brain.
Collapse
Affiliation(s)
- Tuomas O. Lilius
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Marko Rosenholm
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Klinger
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Nygaard Mortensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Björn Sigurdsson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frida Lind-Holm Mogensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Neuro-immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Doctoral School of Science and Technology, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Natalie L. Hauglund
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Doctoral Program in Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, USA
| |
Collapse
|
38
|
Bohr T, Hjorth PG, Holst SC, Hrabětová S, Kiviniemi V, Lilius T, Lundgaard I, Mardal KA, Martens EA, Mori Y, Nägerl UV, Nicholson C, Tannenbaum A, Thomas JH, Tithof J, Benveniste H, Iliff JJ, Kelley DH, Nedergaard M. The glymphatic system: Current understanding and modeling. iScience 2022; 25:104987. [PMID: 36093063 PMCID: PMC9460186 DOI: 10.1016/j.isci.2022.104987] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We review theoretical and numerical models of the glymphatic system, which circulates cerebrospinal fluid and interstitial fluid around the brain, facilitating solute transport. Models enable hypothesis development and predictions of transport, with clinical applications including drug delivery, stroke, cardiac arrest, and neurodegenerative disorders like Alzheimer's disease. We sort existing models into broad categories by anatomical function: Perivascular flow, transport in brain parenchyma, interfaces to perivascular spaces, efflux routes, and links to neuronal activity. Needs and opportunities for future work are highlighted wherever possible; new models, expanded models, and novel experiments to inform models could all have tremendous value for advancing the field.
Collapse
Affiliation(s)
- Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Poul G. Hjorth
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, 2800 Kgs. Lyngby, Denmark
| | - Sebastian C. Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sabina Hrabětová
- Department of Cell Biology and The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging, Department of Diagnostic Radiology, MRC, Oulu University Hospital, Oulu, Finland
- Medical Imaging, Physics and Technology, the Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tuomas Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Kent-Andre Mardal
- Department of Mathematics, University of Oslo, Oslo, Norway
- Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Oslo, Norway
| | | | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - U. Valentin Nägerl
- Instítut Interdisciplinaire de Neurosciences, Université de Bordeaux / CNRS UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex France
| | - Charles Nicholson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Allen Tannenbaum
- Departments of Computer Science/ Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey J. Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, 14642 NY, USA
| |
Collapse
|
39
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
40
|
Li G, Cao Y, Tang X, Huang J, Cai L, Zhou L. The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. J Cereb Blood Flow Metab 2022; 42:1364-1382. [PMID: 35484910 PMCID: PMC9274866 DOI: 10.1177/0271678x221098145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023]
Abstract
The recent discovery of the meningeal lymphatic vessels (mLVs) and glymphatic pathways has challenged the long-lasting dogma that the central nervous system (CNS) lacks a lymphatic system and therefore does not interact with peripheral immunity. This discovery has reshaped our understanding of mechanisms underlying CNS drainage. Under normal conditions, a close connection between mLVs and the glymphatic system enables metabolic waste removal, immune cell trafficking, and CNS immune surveillance. Dysfunction of the glymphatic-mLV system can lead to toxic protein accumulation in the brain, and it contributes to the development of a series of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. The identification of precise cerebral transport routes is based mainly on indirect, invasive imaging of animals, and the results cannot always be applied to humans. Here we review the functions of the glymphatic-mLV system and evidence for its involvement in some CNS diseases. We focus on emerging noninvasive imaging techniques to evaluate the human glymphatic-mLV system and their potential for preclinical diagnosis and prevention of neurodegenerative diseases. Potential strategies that target the glymphatic-mLV system in order to treat and prevent neurological disorders are also discussed.
Collapse
Affiliation(s)
- Gaowei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Cao
- Department of Neurosurgery, Chengdu Second People's hospital, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhan Huang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Linjun Cai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Mestre H, Verma N, Greene TD, Lin LA, Ladron-de-Guevara A, Sweeney AM, Liu G, Thomas VK, Galloway CA, de Mesy Bentley KL, Nedergaard M, Mehta RI. Periarteriolar spaces modulate cerebrospinal fluid transport into brain and demonstrate altered morphology in aging and Alzheimer's disease. Nat Commun 2022; 13:3897. [PMID: 35794106 PMCID: PMC9259669 DOI: 10.1038/s41467-022-31257-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 06/03/2022] [Indexed: 12/13/2022] Open
Abstract
Perivascular spaces (PVS) drain brain waste metabolites, but their specific flow paths are debated. Meningeal pia mater reportedly forms the outermost boundary that confines flow around blood vessels. Yet, we show that pia is perforated and permissive to PVS fluid flow. Furthermore, we demonstrate that pia is comprised of vascular and cerebral layers that coalesce in variable patterns along leptomeningeal arteries, often merging around penetrating arterioles. Heterogeneous pial architectures form variable sieve-like structures that differentially influence cerebrospinal fluid (CSF) transport along PVS. The degree of pial coverage correlates with macrophage density and phagocytosis of CSF tracer. In vivo imaging confirms transpial influx of CSF tracer, suggesting a role of pia in CSF filtration, but not flow restriction. Additionally, pial layers atrophy with age. Old mice also exhibit areas of pial denudation that are not observed in young animals, but pia is unexpectedly hypertrophied in a mouse model of Alzheimer's disease. Moreover, pial thickness correlates with improved CSF flow and reduced β-amyloid deposits in PVS of old mice. We show that PVS morphology in mice is variable and that the structure and function of pia suggests a previously unrecognized role in regulating CSF transport and amyloid clearance in aging and disease.
Collapse
Affiliation(s)
- Humberto Mestre
- grid.412750.50000 0004 1936 9166Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA ,grid.412750.50000 0004 1936 9166Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642 USA ,grid.25879.310000 0004 1936 8972Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Natasha Verma
- grid.412750.50000 0004 1936 9166Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Thom D. Greene
- grid.412750.50000 0004 1936 9166Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - LiJing A. Lin
- grid.412750.50000 0004 1936 9166Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Antonio Ladron-de-Guevara
- grid.412750.50000 0004 1936 9166Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Amanda M. Sweeney
- grid.412750.50000 0004 1936 9166Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Guojun Liu
- grid.412750.50000 0004 1936 9166Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - V. Kaye Thomas
- grid.412750.50000 0004 1936 9166Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Chad A. Galloway
- grid.412750.50000 0004 1936 9166Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Karen L. de Mesy Bentley
- grid.412750.50000 0004 1936 9166Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Maiken Nedergaard
- grid.412750.50000 0004 1936 9166Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA ,grid.5254.60000 0001 0674 042XCenter for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rupal I. Mehta
- grid.412750.50000 0004 1936 9166Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642 USA ,grid.240684.c0000 0001 0705 3621Department of Pathology, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
42
|
Quintin S, Barpujari A, Mehkri Y, Hernandez J, Lucke-Wold B. The glymphatic system and subarachnoid hemorrhage: disruption and recovery. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 2:118-130. [PMID: 35756328 PMCID: PMC9221287 DOI: 10.37349/ent.2022.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023]
Abstract
The glymphatic system, or glial-lymphatic system, is a waste clearance system composed of perivascular channels formed by astrocytes that mediate the clearance of proteins and metabolites from the brain. These channels facilitate the movement of cerebrospinal fluid throughout brain parenchyma and are critical for homeostasis. Disruption of the glymphatic system leads to an accumulation of these waste products as well as increased interstitial fluid in the brain. These phenomena are also seen during and after subarachnoid hemorrhages (SAH), contributing to the brain damage seen after rupture of a major blood vessel. Herein this review provides an overview of the glymphatic system, its disruption during SAH, and its function in recovery following SAH. The review also outlines drugs which target the glymphatic system and may have therapeutic applications following SAH.
Collapse
Affiliation(s)
- Stephan Quintin
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Arnav Barpujari
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
43
|
Piirainen P, Kokki H, Kokki M. Epidural Oxycodone for Acute Pain. Pharmaceuticals (Basel) 2022; 15:643. [PMID: 35631469 PMCID: PMC9144954 DOI: 10.3390/ph15050643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Epidural analgesia is commonly used in labour analgesia and in postoperative pain after major surgery. It is highly effective in severe acute pain, has minimal effects on foetus and newborn, may reduce postoperative complications, and enhance patient satisfaction. In epidural analgesia, low concentrations of local anaesthetics are combined with opioids. Two opioids, morphine and sufentanil, have been approved for epidural use, but there is an interest in evaluating other opioids as well. Oxycodone is one of the most commonly used opioids in acute pain management. However, data on its use in epidural analgesia are sparse. In this narrative review, we describe the preclinical and clinical data on epidural oxycodone. Early data from the 1990s suggested that the epidural administration of oxycodone may not offer any meaningful benefits over intravenous administration, but more recent clinical data show that oxycodone has advantageous pharmacokinetics after epidural administration and that epidural administration is more efficacious than intravenous administration. Further studies are needed on the safety and efficacy of continuous epidural oxycodone administration and its use in epidural admixture.
Collapse
Affiliation(s)
- Panu Piirainen
- Department of Anesthesiology, Surgery and Intensive Care, Oulu University Hospital, 90220 Oulu, Finland;
| | - Hannu Kokki
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, Kuopio Campus, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Merja Kokki
- Department of Anaesthesiology and Intensive Care, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
44
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
45
|
Perivascular pumping in the mouse brain: Improved boundary conditions reconcile theory, simulation, and experiment. J Theor Biol 2022; 542:111103. [PMID: 35339513 DOI: 10.1016/j.jtbi.2022.111103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 01/24/2023]
Abstract
Cerebrospinal fluid (CSF) flows through the perivascular spaces (PVSs) surrounding cerebral arteries. Revealing the mechanisms driving that flow could bring improved understanding of brain waste transport and insights for disorders including Alzheimer's disease and stroke. In vivo velocity measurements of CSF in surface PVSs in mice have been used to argue that flow is driven primarily by the pulsatile motion of artery walls - perivascular pumping. However, fluid dynamics theory and simulation have predicted that perivascular pumping produces flows differing from in vivo observations starkly, particularly in the phase and relative amplitude of flow oscillation. We show that coupling theoretical and simulated flows to more realistic end boundary conditions, using resistance and compliance values measured in mice instead of using periodic boundaries, results in velocities that match observations more closely in phase and relative amplitude of oscillation, while preserving the existing agreement in mean flow speed. This quantitative agreement among theory, simulation, and in vivo measurement further supports the idea that perivascular pumping is an important CSF driver in physiological conditions.
Collapse
|
46
|
Blomqvist KJ, Skogster MOB, Kurkela MJ, Rosenholm MP, Ahlström FHG, Airavaara MT, Backman JT, Rauhala PV, Kalso EA, Lilius TO. Systemic hypertonic saline enhances glymphatic spinal cord delivery of lumbar intrathecal morphine. J Control Release 2022; 344:214-224. [PMID: 35301056 DOI: 10.1016/j.jconrel.2022.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier significantly limits effective drug delivery to central nervous system (CNS) targets. The recently characterized glymphatic system offers a perivascular highway for intrathecally (i.t.) administered drugs to reach deep brain structures. Although periarterial cerebrospinal fluid (CSF) influx and concomitant brain drug delivery can be enhanced by pharmacological or hyperosmotic interventions, their effects on drug delivery to the spinal cord, an important target for many drugs, have not been addressed. Hence, we studied in rats whether enhancement of periarterial flow by systemic hypertonic solution might be utilized to enhance spinal delivery and efficacy of i.t. morphine. We also studied whether the hyperosmolar intervention affects brain or cerebrospinal fluid drug concentrations after systemic administration. Periarterial CSF influx was enhanced by intraperitoneal injection of hypertonic saline (HTS, 5.8%, 20 ml/kg, 40 mOsm/kg). The antinociceptive effects of morphine were characterized, using tail flick, hot plate and paw pressure tests. Drug concentrations in serum, tissue and microdialysis samples were determined by liquid chromatography-tandem mass spectrometry. Compared with isotonic solution, HTS increased concentrations of spinal i.t. administered morphine by 240% at the administration level (T13-L1) at 60 min and increased the antinociceptive effect of morphine in tail flick, hot plate, and paw pressure tests. HTS also independently increased hot plate and paw pressure latencies but had no effect in the tail flick test. HTS transiently increased the penetration of intravenous morphine into the lateral ventricle, but not into the hippocampus. In conclusion, acute systemic hyperosmolality is a promising intervention for enhanced spinal delivery of i.t. administered morphine. The relevance of this intervention should be expanded to other i.t. drugs and brought to clinical trials.
Collapse
Affiliation(s)
- Kim J Blomqvist
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Moritz O B Skogster
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mika J Kurkela
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marko P Rosenholm
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik H G Ahlström
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko T Airavaara
- Faculty of Pharmacy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Janne T Backman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pekka V Rauhala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eija A Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Finland; SleepWell Research Programme, Faculty of Medicine, University of Helsinki, Finland
| | - Tuomas O Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
47
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
48
|
Asghar A, Naaz S. Does modulation of glymphatic system reduce delirium via waste clearance? J Anaesthesiol Clin Pharmacol 2022; 38:164-165. [PMID: 35706625 PMCID: PMC9191798 DOI: 10.4103/joacp.joacp_337_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/24/2020] [Indexed: 11/23/2022] Open
|
49
|
Kylkilahti TM, Berends E, Ramos M, Shanbhag NC, Töger J, Markenroth Bloch K, Lundgaard I. Achieving brain clearance and preventing neurodegenerative diseases-A glymphatic perspective. J Cereb Blood Flow Metab 2021; 41:2137-2149. [PMID: 33461408 PMCID: PMC8392766 DOI: 10.1177/0271678x20982388] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-β from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle's control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.
Collapse
Affiliation(s)
- Tekla Maria Kylkilahti
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eline Berends
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Marta Ramos
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Johannes Töger
- Diagnostic Radiology, Department of Clinical Sciences, Lund University and Skane University Hospital Lund, Lund, Sweden
| | | | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
50
|
Zhou X, Li Y, Lenahan C, Ou Y, Wang M, He Y. Glymphatic System in the Central Nervous System, a Novel Therapeutic Direction Against Brain Edema After Stroke. Front Aging Neurosci 2021; 13:698036. [PMID: 34421575 PMCID: PMC8372556 DOI: 10.3389/fnagi.2021.698036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is the destruction of brain function and structure, and is caused by either cerebrovascular obstruction or rupture. It is a disease associated with high mortality and disability worldwide. Brain edema after stroke is an important factor affecting neurologic function recovery. The glymphatic system is a recently discovered cerebrospinal fluid (CSF) transport system. Through the perivascular space and aquaporin 4 (AQP4) on astrocytes, it promotes the exchange of CSF and interstitial fluid (ISF), clears brain metabolic waste, and maintains the stability of the internal environment within the brain. Excessive accumulation of fluid in the brain tissue causes cerebral edema, but the glymphatic system plays an important role in the process of both intake and removal of fluid within the brain. The changes in the glymphatic system after stroke may be an important contributor to brain edema. Understanding and targeting the molecular mechanisms and the role of the glymphatic system in the formation and regression of brain edema after stroke could promote the exclusion of fluids in the brain tissue and promote the recovery of neurological function in stroke patients. In this review, we will discuss the physiology of the glymphatic system, as well as the related mechanisms and therapeutic targets involved in the formation of brain edema after stroke, which could provide a new direction for research against brain edema after stroke.
Collapse
Affiliation(s)
- Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|