1
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Suay G, Garcia-Cañaveras JC, Aparisi F, Garcia J, Juan-Vidal O, Lahoz A. Immune checkpoint inhibitors as first-line treatment for brain metastases in stage IV NSCLC patients without driver mutations. Cancer Lett 2024; 606:217317. [PMID: 39489211 DOI: 10.1016/j.canlet.2024.217317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Immune checkpoint inhibitors (ICI) therapy with or without chemotherapy has been established as the first-line treatment for patients with non-oncogene addicted advanced Non-Small Cell Lung Cancer (NSCLC). Yet some clinical settings, such as the treatment sequence in patients with brain metastases, have barely been evidenced. Although ICIs cannot directly cross the blood-brain barrier (BBB), evidence suggests that BBB damage could allow ICIs into the central nervous system, or that they can have an indirect effect on the tumor immune microenvironment (TIME) and cause an anti-tumor response. Pivotal phase III trials have included a highly selected population but offer few data on these patients. Here we first review how ICIs can indirectly shape the brain metastases microenvironment through different mechanisms, and some possible causes of ICIs resistance. We also analyze the evidence reported in pivotal phase III trials and phase II trials focused on NSCLC brain metastases for first-line treatment, and the evidence for upfront or delayed local brain therapy. Finally, we discuss the best evidence-based approach to treat NSCLC patients with brain metastases and propose future research.
Collapse
Affiliation(s)
- Guillermo Suay
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | | | - Francisco Aparisi
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | - José Garcia
- Medical Oncology Service, Hospital Arnau Vilanova, Valencia, Spain
| | - Oscar Juan-Vidal
- Medical Oncology Department - La Fe Hospital, Valencia, Spain; Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain
| | - Agustín Lahoz
- Biomarker and Precision Medicine Unit - Health Research Institute La Fe Hospital, Valencia, Spain.
| |
Collapse
|
3
|
Ligocki AP, Vinson AV, Yachnis AT, Dunn WA, Smith DE, Scott EA, Alvarez-Castanon JV, Baez Montalvo DE, Frisone OG, Brown GAJ, Pessa JE, Scott EW. Cerebrospinal fluid flow extends to peripheral nerves further unifying the nervous system. SCIENCE ADVANCES 2024; 10:eadn3259. [PMID: 39231237 PMCID: PMC11373606 DOI: 10.1126/sciadv.adn3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Cerebrospinal fluid (CSF) is responsible for maintaining brain homeostasis through nutrient delivery and waste removal for the central nervous system (CNS). Here, we demonstrate extensive CSF flow throughout the peripheral nervous system (PNS) by tracing distribution of multimodal 1.9-nanometer gold nanoparticles, roughly the size of CSF circulating proteins, infused within the lateral cerebral ventricle (a primary site of CSF production). CSF-infused 1.9-nanometer gold transitions from CNS to PNS at root attachment/transition zones and distributes through the perineurium and endoneurium, with ultimate delivery to axoplasm of distal peripheral nerves. Larger 15-nanometer gold fails to transit from CNS to PNS and instead forms "dye-cuffs," as predicted by current dogma of CSF restriction within CNS, identifying size limitations in central to peripheral flow. Intravenous 1.9-nanometer gold is unable to cross the blood-brain/nerve barrier. Our findings suggest that CSF plays a consistent role in maintaining homeostasis throughout the nervous system with implications for CNS and PNS therapy and neural drug delivery.
Collapse
Affiliation(s)
- Alexander P Ligocki
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Augustine V Vinson
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Anthony T Yachnis
- Program in Stem Cell Biology and Regenerative Medicine, Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - William A Dunn
- Program in Stem Cell Biology and Regenerative Medicine, Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Smith
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth A Scott
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jimena V Alvarez-Castanon
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Daniel E Baez Montalvo
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Olivia G Frisone
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Gary A J Brown
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Joel E Pessa
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Edward W Scott
- Program in Stem Cell Biology and Regenerative Medicine, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Mulay AR, Hwang J, Kim DH. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development. Adv Healthc Mater 2024; 13:e2303180. [PMID: 38430211 PMCID: PMC11338747 DOI: 10.1002/adhm.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The blood-brain barrier (BBB) is a highly controlled microenvironment that regulates the interactions between cerebral blood and brain tissue. Due to its selectivity, many therapeutics targeting various neurological disorders are not able to penetrate into brain tissue. Pre-clinical studies using animals and other in vitro platforms have not shown the ability to fully replicate the human BBB leading to the failure of a majority of therapeutics in clinical trials. However, recent innovations in vitro and ex vivo modeling called organs-on-chips have shown the potential to create more accurate disease models for improved drug development. These microfluidic platforms induce physiological stressors on cultured cells and are able to generate more physiologically accurate BBBs compared to previous in vitro models. In this review, different approaches to create BBBs-on-chips are explored alongside their application in modeling various neurological disorders and potential therapeutic efficacy. Additionally, organs-on-chips use in BBB drug delivery studies is discussed, and advances in linking brain organs-on-chips onto multiorgan platforms to mimic organ crosstalk are reviewed.
Collapse
Affiliation(s)
- Atharva R. Mulay
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Jihyun Hwang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Center for Microphysiological Systems, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218
| |
Collapse
|
5
|
Ye D, Chukwu C, Yang Y, Hu Z, Chen H. Adeno-associated virus vector delivery to the brain: Technology advancements and clinical applications. Adv Drug Deliv Rev 2024; 211:115363. [PMID: 38906479 DOI: 10.1016/j.addr.2024.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Adeno-associated virus (AAV) vectors have emerged as a promising tool in the development of gene therapies for various neurological diseases, including Alzheimer's disease and Parkinson's disease. However, the blood-brain barrier (BBB) poses a significant challenge to successfully delivering AAV vectors to the brain. Strategies that can overcome the BBB to improve the AAV delivery efficiency to the brain are essential to successful brain-targeted gene therapy. This review provides an overview of existing strategies employed for AAV delivery to the brain, including direct intraparenchymal injection, intra-cerebral spinal fluid injection, intranasal delivery, and intravenous injection of BBB-permeable AAVs. Focused ultrasound has emerged as a promising technology for the noninvasive and spatially targeted delivery of AAV administered by intravenous injection. This review also summarizes each strategy's current preclinical and clinical applications in treating neurological diseases. Moreover, this review includes a detailed discussion of the recent advances in the emerging focused ultrasound-mediated AAV delivery. Understanding the state-of-the-art of these gene delivery approaches is critical for future technology development to fulfill the great promise of AAV in neurological disease treatment.
Collapse
Affiliation(s)
- Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO 63110 USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
6
|
Lai G, Wu H, Yang K, Hu K, Zhou Y, Chen X, Fu F, Li J, Xie G, Wang HF, Lv Z, Wu X. Progress of nanoparticle drug delivery system for the treatment of glioma. Front Bioeng Biotechnol 2024; 12:1403511. [PMID: 38919382 PMCID: PMC11196769 DOI: 10.3389/fbioe.2024.1403511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Gliomas are typical malignant brain tumours affecting a wide population worldwide. Operation, as the common treatment for gliomas, is always accompanied by postoperative drug chemotherapy, but cannot cure patients. The main challenges are chemotherapeutic drugs have low blood-brain barrier passage rate and a lot of serious adverse effects, meanwhile, they have difficulty targeting glioma issues. Nowadays, the emergence of nanoparticles (NPs) drug delivery systems (NDDS) has provided a new promising approach for the treatment of gliomas owing to their excellent biodegradability, high stability, good biocompatibility, low toxicity, and minimal adverse effects. Herein, we reviewed the types and delivery mechanisms of NPs currently used in gliomas, including passive and active brain targeting drug delivery. In particular, we primarily focused on various hopeful types of NPs (such as liposome, chitosan, ferritin, graphene oxide, silica nanoparticle, nanogel, neutrophil, and adeno-associated virus), and discussed their advantages, disadvantages, and progress in preclinical trials. Moreover, we outlined the clinical trials of NPs applied in gliomas. According to this review, we provide an outlook of the prospects of NDDS for treating gliomas and summarise some methods that can enhance the targeting specificity and safety of NPs, like surface modification and conjugating ligands and peptides. Although there are still some limitations of these NPs, NDDS will offer the potential for curing glioma patients.
Collapse
Affiliation(s)
- Guogang Lai
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hao Wu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaikai Hu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yan Zhou
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hai-Feng Wang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Liu L, Ma Z, Han Q, Meng W, Wang H, Guan X, Shi Q. Myricetin Oligomer Triggers Multi-Receptor Mediated Penetration and Autophagic Restoration of Blood-Brain Barrier for Ischemic Stroke Treatment. ACS NANO 2024; 18:9895-9916. [PMID: 38533773 DOI: 10.1021/acsnano.3c09532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Restoration of blood-brain barrier (BBB) dysfunction, which drives worse outcomes of ischemic stroke, is a potential target for therapeutic opportunities, whereas a sealed BBB blocks the therapeutics entrance into the brain, making the BBB protection strategy paradoxical. Post ischemic stroke, hypoxia/hypoglycemia provokes the up-regulation of transmembrane glucose transporters and iron transporters due to multiple metabolic disorders, especially in brain endothelial cells. Herein, we develop a myricetin oligomer-derived nanostructure doped with Ce to bypass the BBB which is cointermediated by glucose transporters and iron transporters such as glucose transporters 1 (GLUT1), sodium/glucose cotransporters 1 (SGLT1), and transferrin(Tf) reporter (TfR). Moreover, it exhibits BBB restoration capacity by regulating the expression of tight junctions (TJs) through the activation of protective autophagy. The myricetin oligomers scaffold not only acts as targeting moiety but is the prominent active entity that inherits all diverse pharmacological activities of myricetin. The suppression of oxidative damage, M1 microglia activation, and inflammatory factors makes it a multitasking nanoagent with a single component as the scaffold, targeting domain and curative components.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
8
|
Drouyer M, Merjane J, Nazareth D, Knight M, Scott S, Liao SHY, Ginn SL, Zhu E, Alexander IE, Lisowski L. Development of CNS tropic AAV1-like variants with reduced liver-targeting following systemic administration in mice. Mol Ther 2024; 32:818-836. [PMID: 38297833 PMCID: PMC10928139 DOI: 10.1016/j.ymthe.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Directed evolution of natural AAV9 using peptide display libraries have been widely used in the search for an optimal recombinant AAV (rAAV) for transgene delivery across the blood-brain barrier (BBB) to the CNS following intravenous ( IV) injection. In this study, we used a different approach by creating a shuffled rAAV capsid library based on parental AAV serotypes 1 through 12. Following selection in mice, 3 novel variants closely related to AAV1, AAV-BBB6, AAV-BBB28, and AAV-BBB31, emerged as top candidates. In direct comparisons with AAV9, our novel variants demonstrated an over 270-fold improvement in CNS transduction and exhibited a clear bias toward neuronal cells. Intriguingly, our AAV-BBB variants relied on the LY6A cellular receptor for CNS entry, similar to AAV9 peptide variants AAV-PHP.eB and AAV.CAP-B10, despite the different bioengineering methods used and parental backgrounds. The variants also showed reduced transduction of both mouse liver and human primary hepatocytes in vivo. To increase clinical translatability, we enhanced the immune escape properties of our new variants by introducing additional modifications based on rational design. Overall, our study highlights the potential of AAV1-like vectors for efficient CNS transduction with reduced liver tropism, offering promising prospects for CNS gene therapies.
Collapse
Affiliation(s)
- Matthieu Drouyer
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jessica Merjane
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Deborah Nazareth
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Maddison Knight
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Sophia H Y Liao
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW, Australia; Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland.
| |
Collapse
|
9
|
Bettegazzi B, Cattaneo S, Simonato M, Zucchini S, Soukupova M. Viral Vector-Based Gene Therapy for Epilepsy: What Does the Future Hold? Mol Diagn Ther 2024; 28:5-13. [PMID: 38103141 PMCID: PMC10786988 DOI: 10.1007/s40291-023-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
In recent years, many pre-clinical studies have tested gene therapy approaches as possible treatments for epilepsy, following the idea that they may provide an alternative to conventional pharmacological and surgical options. Multiple gene therapy approaches have been developed, including those based on anti-sense oligonucleotides, RNA interference, and viral vectors. In this opinion article, we focus on translational issues related to viral vector-mediated gene therapy for epilepsy. Research has advanced dramatically in addressing issues like viral vector optimization, target identification, strategies of gene expression, editing or regulation, and safety. Some of these pre-clinically validated potential gene therapies are now being tested in clinical trials, in patients with genetic or focal forms of drug-resistant epilepsy. Here, we discuss the ongoing translational research and the advancements that are needed and expected in the near future. We then describe the clinical trials in the pipeline and the further challenges that will need to be addressed at the clinical and economic levels. Our optimistic view is that all these issues and challenges can be overcome, and that gene therapy approaches for epilepsy will soon become a clinical reality.
Collapse
Affiliation(s)
| | - Stefano Cattaneo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Michele Simonato
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy.
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy.
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy
| |
Collapse
|
10
|
Ligocki AP, Vinson AV, Yachnis AT, Dunn WA, Smith DE, Scott EA, Alvarez-Castanon JV, Montalvo DEB, Frisone OG, Brown GAJ, Pessa JE, Scott EW. Cerebrospinal Fluid Flow Extends to Peripheral Nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567884. [PMID: 38045235 PMCID: PMC10690169 DOI: 10.1101/2023.11.20.567884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cerebrospinal fluid (CSF) is an aqueous solution responsible for nutrient delivery and waste removal for the central nervous system (CNS). The three-layer meningeal coverings of the CNS support CSF flow. Peripheral nerves have an analogous three-layer covering consisting of the epineurium, perineurium, and endoneurium. Peripheral axons, located in the inner endoneurium, are bathed in "endoneurial fluid" similar to CSF but of undefined origin. CSF flow in the peripheral nervous system has not been demonstrated. Here we show CSF flow extends beyond the CNS to peripheral nerves in a contiguous flowing system. Utilizing gold nanoparticles, we identified that CSF is continuous with the endoneurial fluid and reveal the endoneurial space as the likely site of CSF flow in the periphery. Nanogold distribution along entire peripheral nerves and within their axoplasm suggests CSF plays a role in nutrient delivery and waste clearance, fundamental aspects of peripheral nerve health and disease. One Sentence Summary Cerebrospinal fluid unites the nervous system by extending beyond the central nervous system into peripheral nerves.
Collapse
|
11
|
Yetişsin F, Korkmaz A, Kaya E. In Silico and in Vitro Biological Evaluation of Novel Serial Sulfonate Derivatives on Pancreatic Lipase Activity. Chem Biodivers 2023; 20:e202301210. [PMID: 37743258 DOI: 10.1002/cbdv.202301210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
The novel benzothiazole sulfonate hybrid derivatives containing azomethine group were synthesized and characterized using 1 H-NMR, 13 C-NMR, and HR-MS analysis. The potential enzyme inhibition activities against pancreatic lipase of the novel benzothiazole sulfonate hybrid derivatives containing azomethine group were screened with in vitro and in silico methods. IC50 values of compounds 5 b (23.89 μM), 5 i (28.87 μM), and 5 f (30.13±4.32) were found to be more effective pancreatic lipase inhibitors than orlistat (57.75 μM) in vitro studies. Also, the binding affinities of compounds 5 b (-8.7 kcal/mol), 5 i (-8.6 kcal/mol), and 5 f (-8.9 kcal/mol) were found potential inhibitors for pancreatic lipase in silico studies. In addition, the absorption distribution, metabolism, and excretion properties (ADME), molecular properties, toxicity estimation, and bioactivity scores of the synthesized compounds were scanned. It was found to have the ability to cross the brain-blood barrier for compounds 5 a, 5 b, 5 c, and 5 d. All compounds were calculated to be taken orally as drugs, suitable for absorption in the intestinal tract and not carcinogenic, as well as very strongly bound to plasma proteins. Finally, compound 5 f was observed to be the best inhibitor for pancreatic lipase according to in vitro and in silico studies.
Collapse
Affiliation(s)
- Fuat Yetişsin
- Muş Alparslan University, Technical Sciences Vocational School, 49250, Muş, Turkey
| | - Adem Korkmaz
- Faculty of Health Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Esin Kaya
- Faculty of Education, Muş Alparslan University, Muş, 49250, Turkey
| |
Collapse
|
12
|
Jiang S, Chai H, Tang Q, Shi Z, Zhou L. Clinical advances in oncolytic virus therapy for malignant glioma: a systematic review. Discov Oncol 2023; 14:183. [PMID: 37845388 PMCID: PMC10579210 DOI: 10.1007/s12672-023-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/11/2023] [Indexed: 10/18/2023] Open
Abstract
PURPOSE In the past decade, there has been little progress in the treatment of malignant glioma. Recently, oncolytic virus has made great progress in glioma treatment, and a number of clinical trials have shown their potential of prolonging the survival time of glioma patients. Our objective is to evaluate effectiveness and safety of oncolytic virus (OV) in malignant glioma treatment. METHODOLOGY Based upon PRISMA, we collected relevant published clinical trials by searching medical databases up to January 16, 2023, applying the language restrictions in English and Chinese. We cross-searched the terms: 'glioma', 'glioblastoma', 'oncolytic viruses', 'oncolytic virotherapy' with filter 'clinical trial'. Two researchers independently extracted the data regarding case definitions, published years, trial phase, characteristics of patients, administration of drug, overall survival (OS), and adverse events. RESULTS 19 published clinical trials in OV treatment of malignant glioma were included in the further systematic review analysis. None of them induced irresistible adverse effects attributing to OV treatment, median overall survival varied from 3.25 to 20.2 months after treatments. According to trials providing patient's detailed molecular diagnosis, we find that the effectiveness of OV treatment has no significant difference in patients with different IDH or MGMT status. CONCLUSIONS Current clinical trials have initially shown the potential of oncolytic virotherapy as a new treatment for malignant glioma. Besides development of virus types, the strategy of OV use is an urgent problem to be solved in future clinical application, such as repeated administrations, innovative drug delivery systems, and biomarkers.
Collapse
Affiliation(s)
- Shan Jiang
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Huihui Chai
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Qisheng Tang
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhifeng Shi
- National Center for Neurological Disorders, Shanghai, China.
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Neurosurgery, Fudan University, Shanghai, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.
| | - Liangfu Zhou
- National Center for Neurological Disorders, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
13
|
Wang Q, Xin X, Dai Q, Sun M, Chen J, Mostafavi E, Shen Y, Li X. Medulloblastoma targeted therapy: From signaling pathways heterogeneity and current treatment dilemma to the recent advances in development of therapeutic strategies. Pharmacol Ther 2023; 250:108527. [PMID: 37703952 DOI: 10.1016/j.pharmthera.2023.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qihao Dai
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Mengjuan Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhua Chen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
14
|
Korkmaz A, Kurtay G, Kaya E, Bursal E. Design, synthesis, spectroscopic characterizations, in vitro pancreatic lipase as well as tyrosinase inhibition evaluations and in silico analysis of novel aryl sulfonate-naphthalene hybrids. J Biomol Struct Dyn 2023; 41:7128-7143. [PMID: 36069113 DOI: 10.1080/07391102.2022.2116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
One of the primary purposes of this study is to synthesize new aryl sulfonate-naphthalene hybrid structures possessing divergent electron-withdrawing and electron-releasing functional groups. Following the improved reaction conditions, we successfully gathered ten distinct sulfonate derivatives (3a-j) with good yields. The synthesized naphthalene-based sulfonate derivatives were then characterized using appropriate analytical methods (FT-IR, 1H-NMR, 13C-NMR, HRMS, and elemental analysis). Additionally, in vitro and in silico enzyme inhibitory properties of the prepared aryl sulfonate-naphthalene hybrid structures were evaluated against pancreatic lipase and tyrosinase enzymes. Corresponding in vitro enzyme activity investigations revealed that the produced compounds inhibit pancreatic lipase and tyrosinase enzymes significantly. According to the lowest IC50 values, 3h (95.3 ± 4.0 µM) demonstrated the most effective inhibition against pancreatic lipase, whereas 3a (40.8 ± 3.3 µM) was found as the most effective inhibition against the tyrosinase. According to in silico studies, 3a exhibited the highest affinity value (-9.9 kcal/mol) against pancreatic lipase, whereas 3f demonstrated the best affinity value (-8.7 kcal/mol) against tyrosinase.Furthermore, we investigated various structural and physicochemical properties of the target molecules, namely frontier orbital' (HOMO, LUMO, and bandgap) energies (including their corresponding contour plots), global reactivity descriptors (ionization energy and electron affinity), and electronegativity values gathered from ground-state (GS) density functional theory (DFT) calculations. These investigations demonstrated that the observed electrostatic interactions effectively contributed to the studied molecules' experimentally demonstrated enzyme inhibition potential. Also, ADMET studies were evaluated to enlighten the molecular interactions of the compounds with the enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adem Korkmaz
- Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Gülbin Kurtay
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Turkey
| | - Esin Kaya
- Faculty of Education, Muş Alparslan University, Muş, Turkey
| | - Ercan Bursal
- Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| |
Collapse
|
15
|
Forgham H, Liu L, Zhu J, Javed I, Cai W, Qiao R, Davis TP. Vector enabled CRISPR gene editing - A revolutionary strategy for targeting the diversity of brain pathologies. Coord Chem Rev 2023; 487:215172. [PMID: 37305445 PMCID: PMC10249757 DOI: 10.1016/j.ccr.2023.215172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain pathologies are considered one of the greatest contributors of death and disability worldwide. Neurodegenerative Alzheimer's disease is the second leading cause of death in adults, whilst brain cancers including glioblastoma multiforme in adults, and pediatric-type high-grade gliomas in children remain largely untreatable. A further compounding issue for patients with brain pathologies is that of long-term neuropsychiatric sequela - as a symptom or arising from high dose therapeutic intervention. The major challenge to effective, low dose treatment is finding therapeutics that successfully cross the blood-brain barrier and target aberrant cellular processes, while having minimum effect on essential cellular processes, and healthy bystander cells. Following over 30 years of research, CRISPR technology has emerged as a biomedical tour de force with the potential to revolutionise the treatment of both neurological and cancer related brain pathologies. The aim of this review is to take stock of the progress made in CRISPR technology in relation to treating brain pathologies. Specifically, we will describe studies which look beyond design, synthesis, and theoretical application; and focus instead on in vivo studies with translation potential. Along with discussing the latest breakthrough techniques being applied within the CRISPR field, we aim to provide a prospective on the knowledge gaps that exist and challenges that still lay ahead for CRISPR technology prior to successful application in the brain disease treatment field.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
16
|
Nowak I, Madej M, Secemska J, Sarna R, Strzalka-Mrozik B. Virus-Based Biological Systems as Next-Generation Carriers for the Therapy of Central Nervous System Diseases. Pharmaceutics 2023; 15:1931. [PMID: 37514117 PMCID: PMC10384784 DOI: 10.3390/pharmaceutics15071931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Central nervous system (CNS) diseases are currently a major challenge in medicine. One reason is the presence of the blood-brain barrier, which is a significant limitation for currently used medicinal substances that are characterized by a high molecular weight and a short half-life. Despite the application of nanotechnology, there is still the problem of targeting and the occurrence of systemic toxicity. Viral vectors and virus-like particles (VLPs) may provide a promising solution to these challenges. Their small size, biocompatibility, ability to carry medicinal substances, and specific targeting of neural cells make them useful in research when formulating a new generation of biological carriers. Additionally, the possibility of genetic modification has the potential for gene therapy. Among the most promising viral vectors are adeno-associated viruses, adenoviruses, and retroviruses. This is due to their natural tropism to neural cells, as well as the possibility of genetic and surface modification. Moreover, VLPs that are devoid of infectious genetic material in favor of increasing capacity are also leading the way for research on new drug delivery systems. The aim of this study is to review the most recent reports on the use of viral vectors and VLPs in the treatment of selected CNS diseases.
Collapse
Affiliation(s)
- Ilona Nowak
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Julia Secemska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Robert Sarna
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
17
|
Bao Y, Lu W. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1681-1698. [PMID: 36945117 DOI: 10.1080/17425247.2023.2193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cerebral diseases have been threatening public physical and psychological health in the recent years. With the existence of the blood-brain barrier (BBB), it is particularly hard for therapeutic proteins like peptides, enzymes, antibodies, etc. to enter the central nervous system (CNS) and function in diagnosis and treatment in cerebral diseases. Fortunately, the past decade has witnessed some emerging strategies of delivering macromolecular therapeutic proteins across the BBB. AREAS COVERED Based on the structure, functions, and substances transport mechanisms, various enhanced delivery strategies of therapeutic proteins were reviewed, categorized by molecule-mediated delivery strategies, carrier-mediated delivery strategies, and other delivery strategies. EXPERT OPINION As for molecule-mediated delivery strategies, development of genetic engineering technology, optimization of protein expression and purification techniques, and mature of quality control systems all help to realize large-scale production of recombinant antibodies, making it possible to apply to the clinical practice. In terms of carrier-mediated delivery strategies and others, although nano-carriers/adeno-associated virus (AAV) are also promising candidates for delivering therapeutic proteins or genes across the BBB, some issues still remain to be further investigated, including safety concerns related to applied materials, large-scale production costs, quality control standards, combination therapies with auxiliary delivery strategies like focused ultrasound, etc.
Collapse
Affiliation(s)
- Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
- Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd. Lingang of Shanghai, China
| |
Collapse
|
18
|
Zhang W, Chen J, Gu J, Bartoli M, Domena JB, Zhou Y, C L B Ferreira B, Kirbas Cilingir E, McGee CM, Sampson R, Arduino C, Tagliaferro A, Leblanc RM. Nano-carrier for gene delivery and bioimaging based on pentaetheylenehexamine modified carbon dots. J Colloid Interface Sci 2023; 639:180-192. [PMID: 36805743 DOI: 10.1016/j.jcis.2023.02.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Carbon dots (CDs) have attracted much attention due to their excellent properties and applications, especially the use for gene delivery. Considering the risks and concerns involved in the use of viral vectors for gene delivery in vivo, non-viral vectors such as CDs have gradually become an ideal alternative due to their biocompatibility and low toxicity. Therefore, in this study, the potential to apply CDs as a non-viral vector for gene delivery was investigated. The CDs were prepared using citric acid and pentaethylenehexamine (PEHA) as precursors via a one-step microwave-mediated approach. The optical, structural, and morphological properties of PEHA-derived CDs (PCDs) were characterized by ultra-violet spectroscopy (UV-vis), photoluminescence (PL), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), zeta potential, circular dichroism spectrometry, atomic force (AFM) and transmission electron microscopies (TEM). The analysis demonstrated that the as-prepared PCDs were rich in amine groups and were positively charged. Subsequently, gel retardation assay showed that PCDs could non-covalently bind with DNA at a mass ratio of 2:1 (PCDs: DNA). Additionally, PCDs possessed a tremendously lower cytotoxicity compared with polyethylenimine (PEI), a popular precursor/dopant for many CDs preparations, and their plasmid composite showed a high transfection efficiency. Meanwhile, PCDs were also observed to cross the blood-brain barrier (BBB) by using a zebrafish model. In conclusion, these results significantly indicate that PCDs are a potential non-viral nucleic acid/gene vector to gene therapy. Also, PCDs can be utilized in drug delivery for treating brain diseases, such as Alzheimer's disease and brain tumors.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Jun Gu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; C-Dots, LLC, Miami, FL 33136, USA
| | | | | | - Caitlin M McGee
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Chiara Arduino
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; C-Dots, LLC, Miami, FL 33136, USA
| | | | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
19
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
20
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
21
|
Sánchez-Dengra B, González-Álvarez I, Bermejo M, González-Álvarez M. Access to the CNS: Strategies to overcome the BBB. Int J Pharm 2023; 636:122759. [PMID: 36801479 DOI: 10.1016/j.ijpharm.2023.122759] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
The blood-brain barrier (BBB) limits the access of substances to the central nervous system (CNS) which hinders the treatment of pathologies affecting the brain and the spinal cord. Nowadays, research is focus on new strategies to overcome the BBB and can treat the pathologies affecting the CNS are needed. In this review, the different strategies that allow and increase the access of substances to the CNS are analysed and extended commented, not only invasive strategies but also non-invasive ones. The invasive techniques include the direct injection into the brain parenchyma or the CSF and the therapeutic opening of the BBB, while the non-invasive techniques include the use of alternative routes of administration (nose-to-brain route), the inhibition of efflux transporters (as it is important to prevent the drug efflux from the brain and enhance the therapeutic efficiency), the chemical modification of the molecules (prodrugs and chemical drug delivery systems (CDDS)) and the use of nanocarriers. In the future, knowledge about nanocarriers to treat CNS diseases will continue to increase, but the use of other strategies such as drug repurposing or drug reprofiling, which are cheaper and less time consuming, may limit its transfer to society. The main conclusion is that the combination of different strategies may be the most interesting approach to increase the access of substances to the CNS.
Collapse
Affiliation(s)
- Bárbara Sánchez-Dengra
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| | - Isabel González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain.
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| | - Marta González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| |
Collapse
|
22
|
Kumagai S, Nakajima T, Shimazaki K, Kakiuchi T, Harada N, Ohba H, Onuki Y, Takino N, Ito M, Sato M, Nakamura S, Osaka H, Yamagata T, Kawai K, Muramatsu SI. Early distribution of 18 F-labeled AAV9 vectors in the cerebrospinal fluid after intracerebroventricular or intracisternal magna infusion in non-human primates. J Gene Med 2023; 25:e3457. [PMID: 36278965 DOI: 10.1002/jgm.3457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 10/15/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The delivery of adeno-associated virus (AAV) vectors via the cerebrospinal fluid (CSF) has emerged as a valuable method for widespread transduction in the central nervous system. Although infusion into the cerebral ventricles is a common protocol in preclinical studies of small animals, the cisterna magna has been recognized as an alternative target for clinical studies because it can be reached in a less invasive manner using an intrathecal catheter via the subarachnoid space from a lumbar puncture. METHODS We evaluated the early distribution of fluorine-18-labeled AAV9 vectors infused into the lateral ventricle or cisterna magna of four non-human primates using positron emission tomography. The expression of the green fluorescent protein was immunohistochemically determined. RESULTS In both approaches, the labeled vectors diffused into the broad arachnoid space around the brain stem and cervical spinal cord within 30 min. Both infusion routes efficiently transduced neurons in the cervical spinal cord. CONCLUSIONS For gene therapy that primarily targets the cervical spinal cord and brainstem, such as amyotrophic lateral sclerosis, cisterna magna infusion would be a feasible and effective administration method.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kuniko Shimazaki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka, Japan
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka, Japan
| | - Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Naomi Takino
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| | - Mika Ito
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| | - Makoto Sato
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Sachie Nakamura
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | | | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan.,Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Khan SU, Khan MI, Khan MU, Khan NM, Bungau S, Hassan SSU. Applications of Extracellular Vesicles in Nervous System Disorders: An Overview of Recent Advances. Bioengineering (Basel) 2022; 10:51. [PMID: 36671622 PMCID: PMC9854809 DOI: 10.3390/bioengineering10010051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Diseases affecting the brain and spinal cord fall under the umbrella term "central nervous system disease". Most medications used to treat or prevent chronic diseases of the central nervous system cannot cross the blood-brain barrier (BBB) and hence cannot reach their intended target. Exosomes facilitate cellular material movement and signal transmission. Exosomes can pass the blood-brain barrier because of their tiny size, high delivery efficiency, minimal immunogenicity, and good biocompatibility. They enter brain endothelial cells via normal endocytosis and reverse endocytosis. Exosome bioengineering may be a method to produce consistent and repeatable isolation for clinical usage. Because of their tiny size, stable composition, non-immunogenicity, non-toxicity, and capacity to carry a wide range of substances, exosomes are indispensable transporters for targeted drug administration. Bioengineering has the potential to improve these aspects of exosomes significantly. Future research into exosome vectors must focus on redesigning the membrane to produce vesicles with targeting abilities to increase exosome targeting. To better understand exosomes and their potential as therapeutic vectors for central nervous system diseases, this article explores their basic biological properties, engineering modifications, and promising applications.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Tetra-substituted pyrazole analogues: synthesis, molecular docking, ADMET prediction, antioxidant and pancreatic lipase inhibitory activities. Med Chem Res 2022. [DOI: 10.1007/s00044-022-03005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Qiu Z, Yu Z, Xu T, Wang L, Meng N, Jin H, Xu B. Novel Nano-Drug Delivery System for Brain Tumor Treatment. Cells 2022; 11:cells11233761. [PMID: 36497021 PMCID: PMC9737081 DOI: 10.3390/cells11233761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
As the most dangerous tumors, brain tumors are usually treated with surgical removal, radiation therapy, and chemotherapy. However, due to the aggressive growth of gliomas and their resistance to conventional chemoradiotherapy, it is difficult to cure brain tumors by conventional means. In addition, the higher dose requirement of chemotherapeutic drugs caused by the blood-brain barrier (BBB) and the untargeted nature of the drug inevitably leads to low efficacy and systemic toxicity of chemotherapy. In recent years, nanodrug carriers have attracted extensive attention because of their superior drug transport capacity and easy-to-control properties. This review systematically summarizes the major strategies of novel nano-drug delivery systems for the treatment of brain tumors in recent years that cross the BBB and enhance brain targeting, and compares the advantages and disadvantages of several strategies.
Collapse
Affiliation(s)
- Ziyi Qiu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenhua Yu
- Sun Yat-Sen University First Affiliated Hospital, Guangzhou 510060, China
| | - Ting Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liuyou Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Nanxin Meng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huawei Jin
- Sun Yat-Sen University First Affiliated Hospital, Guangzhou 510060, China
- Correspondence: (H.J.); (B.X.)
| | - Bingzhe Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (H.J.); (B.X.)
| |
Collapse
|
26
|
Liu D, Zhu M, Lin Y, Li M, Huang R, Yang L, Song Y, Diao Y, Yang C. LY6E protein facilitates adeno-associated virus crossing in a biomimetic chip model of the human blood-brain barrier. LAB ON A CHIP 2022; 22:4180-4190. [PMID: 36165190 DOI: 10.1039/d2lc00698g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The blood-brain barrier (BBB) controls chemical access to the brain and maintains fluid homeostasis, but in vitro models accurately simulating the physiological characteristics of the BBB are lacking. Here, we describe a simple and reproducible biomimetic chip-based model of the human BBB. In this bilayer co-culture, astrocytes and brain microvascular endothelial cells (BMECs) are respectively seeded in upper and lower chambers separated by a semi-permeable membrane, with fluid shear force provided by a precision tilt shaker. Evaluation of barrier crossing by fluorescein sodium, 40 kDa or 70 kDa FITC-dextran, or adeno-associated virus (AAV) particles demonstrates that this bilayer model provides similar or greater barrier function than Transwell assays. Comparison of AAV serotypes indicated that AAV-PHP.eB can cross the human BBB in vitro, and at higher efficiency than AAV9. Additionally, RNAi knockdown and virus capsid protein binding assays show that AAV-PHP.eB delivery is facilitated by receptor protein lymphocyte antigen-6E (LY6E) in humans. This in vitro model system uses a miniaturized chip to enable high-throughput investigations of AAV crossing efficiency in the BBB, and provides strong initial evidence that human LY6E mediates AAV-PHP.eB crossing the BBB.
Collapse
Affiliation(s)
- Dan Liu
- School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Mingyang Zhu
- School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Yi Lin
- School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Mengmeng Li
- School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Ruolan Huang
- School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Liu Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yong Diao
- School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
27
|
Sun K, Zheng X, Jin H, Yu F, Zhao W. Exosomes as CNS Drug Delivery Tools and Their Applications. Pharmaceutics 2022; 14:pharmaceutics14102252. [PMID: 36297688 PMCID: PMC9609403 DOI: 10.3390/pharmaceutics14102252] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Central nervous system (CNS) diseases threaten the health of people all over the world. However, due to the structural and functional particularities of the brain and spinal cord, CNS-targeted drug development is rather challenging. Exosomes are small cellular vesicles with lipid bilayers that can be secreted by almost all cells and play important roles in intercellular communication. The advantages of low immunogenicity, the ability to cross the blood-brain barrier, and the flexibility of drug encapsulation make them stand out among CNS drug delivery tools. Herein, we reviewed the research on exosomes in CNS drug delivery over the past decade and outlined the impact of the drug loading mode, administration route, and engineered modification on CNS targeting. Finally, we highlighted the problems and prospects of exosomes as CNS drug delivery tools.
Collapse
Affiliation(s)
- Ke Sun
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Xue Zheng
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongzhen Jin
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- Correspondence: (H.J.); (F.Y.)
| | - Fan Yu
- College of Life Sciences, Nankai University, Weijin Road, Nankai District, Tianjin 300350, China
- Correspondence: (H.J.); (F.Y.)
| | - Wei Zhao
- College of Pharmacy, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| |
Collapse
|
28
|
van den Broek SL, Shalgunov V, Herth MM. Transport of nanomedicines across the blood-brain barrier: Challenges and opportunities for imaging and therapy. BIOMATERIALS ADVANCES 2022; 141:213125. [PMID: 36182833 DOI: 10.1016/j.bioadv.2022.213125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The blood-brain barrier (BBB) is a protective and semipermeable border of endothelial cells that prevents toxins and foreign bodies to enter and damage the brain. Unfortunately, the BBB also hampers the development of pharmaceuticals targeting receptors, enzymes, or other proteins that lie beyond this barrier. Especially large molecules, such as monoclonal antibodies (mAbs) or nanoparticles, are prevented to enter the brain. The limited passage of these molecules partly explains why nanomedicines - targeting brain diseases - have not made it into the clinic to a great extent. As nanomedicines can target a wide range of targets including protein isoforms and oligomers or potentially deliver cytotoxic drugs safely to their targets, a pathway to smuggle nanomedicines into the brain would allow to treat brain diseases that are currently considered 'undruggable'. In this review, strategies to transport nanomedicines over the BBB will be discussed. Their challenges and opportunities will be highlighted with respect to their use for molecular imaging or therapies. Several strategies have been explored for this thus far. For example, carrier-mediated and receptor-mediated transcytosis (RMT), techniques to disrupt the BBB, nasal drug delivery or administering nanomedicines directly into the brain have been explored. RMT has been the most widely and successfully explored strategy. Recent work on the use of focused ultrasound based BBB opening has shown great promise. For example, successful delivery of mAbs into the brain has been achieved, even in a clinical setting. As nanomedicines bear the potential to treat incurable brain diseases, drug delivery technologies that can deliver nanomedicines into the brain will play an essential role for future treatment options.
Collapse
Affiliation(s)
- Sara Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
29
|
Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells Int 2022; 2022:2150680. [PMID: 36061149 PMCID: PMC9436613 DOI: 10.1155/2022/2150680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical trials serve as the fundamental prerequisite for clinical therapy of human disease, which is primarily based on biomedical studies in animal models. Undoubtedly, animal models have made a significant contribution to gaining insight into the developmental and pathophysiological understanding of human diseases. However, none of the existing animal models could efficiently simulate the development of human organs and systems due to a lack of spatial information; the discrepancy in genetic, anatomic, and physiological basis between animals and humans limits detailed investigation. Therefore, the translational efficiency of the research outcomes in clinical applications was significantly weakened, especially for some complex, chronic, and intractable diseases. For example, the clinical trials for human fragile X syndrome (FXS) solely based on animal models have failed such as mGluR5 antagonists. To mimic the development of human organs more faithfully and efficiently translate in vitro biomedical studies to clinical trials, extensive attention to organoids derived from stem cells contributes to a deeper understanding of this research. The organoids are a miniaturized version of an organ generated in vitro, partially recapitulating key features of human organ development. As such, the organoids open a novel avenue for in vitro models of human disease, advantageous over the existing animal models. The invention of organoids has brought an innovative breakthrough in regeneration medicine. The organoid-derived human tissues or organs could potentially function as invaluable platforms for biomedical studies, pathological investigation of human diseases, and drug screening. Importantly, the study of regeneration medicine and the development of therapeutic strategies for human diseases could be conducted in a dish, facilitating in vitro analysis and experimentation. Thus far, the pilot breakthrough has been made in the generation of numerous types of organoids representing different human organs. Most of these human organoids have been employed for in vitro biomedical study and drug screening. However, the efficiency and quality of the organoids in recapitulating the development of human organs have been hindered by engineering and conceptual challenges. The efficiency and quality of the organoids are essential for downstream applications. In this article, we highlight the application in the modeling of human neurodegenerative diseases (NDDs) such as FXS, Alzheimer's disease (AD), Parkinson's disease (PD), and autistic spectrum disorders (ASD), and organoid-based drug screening. Additionally, challenges and weaknesses especially for limits of the brain organoid models in modeling late onset NDDs such as AD and PD., and future perspectives regarding human brain organoids are addressed.
Collapse
|
30
|
Chen X, Ravindra Kumar S, Adams CD, Yang D, Wang T, Wolfe DA, Arokiaraj CM, Ngo V, Campos LJ, Griffiths JA, Ichiki T, Mazmanian SK, Osborne PB, Keast JR, Miller CT, Fox AS, Chiu IM, Gradinaru V. Engineered AAVs for non-invasive gene delivery to rodent and non-human primate nervous systems. Neuron 2022; 110:2242-2257.e6. [PMID: 35643078 PMCID: PMC9308721 DOI: 10.1016/j.neuron.2022.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022]
Abstract
Gene therapy offers great promise in addressing neuropathologies associated with the central and peripheral nervous systems (CNS and PNS). However, genetic access remains difficult, reflecting the critical need for the development of effective and non-invasive gene delivery vectors across species. To that end, we evolved adeno-associated virus serotype 9 (AAV9) capsid in mice and validated two capsids, AAV-MaCPNS1 and AAV-MaCPNS2, across rodent species (mice and rats) and non-human primate (NHP) species (marmosets and rhesus macaques). Intravenous administration of either AAV efficiently transduced the PNS in rodents and both the PNS and CNS in NHPs. Furthermore, we used AAV-MaCPNS1 in mice to systemically deliver the following: (1) the neuronal sensor jGCaMP8s to record calcium signal dynamics in nodose ganglia and (2) the neuronal actuator DREADD to dorsal root ganglia to mediate pain. This conclusively demonstrates the translatability of these two systemic AAVs across four species and their functional utility through proof-of-concept studies in mice.
Collapse
Affiliation(s)
- Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cameron D Adams
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Daping Yang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Damien A Wolfe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cynthia M Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria Ngo
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA
| | - Lillian J Campos
- Department of Psychology and California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jessica A Griffiths
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Takako Ichiki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peregrine B Osborne
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Janet R Keast
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA
| | - Andrew S Fox
- Department of Psychology and California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
31
|
Rawal SU, Patel BM, Patel MM. New Drug Delivery Systems Developed for Brain Targeting. Drugs 2022; 82:749-792. [PMID: 35596879 DOI: 10.1007/s40265-022-01717-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSF) are two of the most complex and sophisticated concierges that defend the central nervous system (CNS) by numerous mechanisms. While they maintain the neuro-ecological homeostasis through the regulated entry of essential biomolecules, their conservative nature challenges the entry of most of the drugs intended for CNS delivery. Targeted delivery challenges for a diverse spectrum of therapeutic agents/drugs (non-small molecules, small molecules, gene-based therapeutics, protein and peptides, antibodies) are diverse and demand specialized delivery and disease-targeting strategies. This review aims to capture the trends that have shaped the current brain targeting research scenario. This review discusses the physiological, neuropharmacological, and etiological factors that participate in the transportation of various drug delivery cargoes across the BBB/BCSF and influence their therapeutic intracranial concentrations. Recent research works spanning various invasive, minimally invasive, and non-invasive brain- targeting approaches are discussed. While the pre-clinical outcomes from many of these approaches seem promising, further research is warranted to overcome the translational glitches that prevent their clinical use. Non-invasive approaches like intranasal administration, P-glycoprotein (P-gp) inhibition, pro-drugs, and carrier/targeted nanocarrier-aided delivery systems (alone or often in combination) hold positive clinical prospects for brain targeting if explored further in the right direction.
Collapse
Affiliation(s)
- Shruti U Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, Sarkhej-Sanand Circle Off. S.G. Road, Ahmedabad, Gujarat, 382210, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
32
|
Singh G, Sushma, Priyanka, Diksha, Mohit, Gupta S, Angeles Esteban M, Espinosa-Ruíz C, González-Silvera D. Designing of thiosemicarbazone-triazole linked organotriethoxysilane as UV-Visible and fluorescence sensor for the selective detection of Hg2+ ions and their cytotoxic evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
34
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
35
|
Park H, Otte A, Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J Control Release 2022; 342:53-65. [PMID: 34971694 PMCID: PMC8840987 DOI: 10.1016/j.jconrel.2021.12.030] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
Modern drug delivery technology began in 1952 with the advent of the Spansule® sustained-release capsule technology, which can deliver a drug for 12 h after oral administration through an initial immediate dose followed by the remaining released gradually. Until the 1980s, oral and transdermal formulations providing therapeutic durations up to 24 h for small molecules dominated the drug delivery field and the market. The introduction of Lupron Depot® in 1989 opened the door for long-acting injectables and implantables, extending the drug delivery duration from days to months and occasionally years. Notably, the new technologies allowed long-term delivery of peptide and protein drugs, although limited to parenteral administration. The introduction of the first PEGylated protein, Adagen®, in 1990 marked the new era of PEGylation, resulting in Doxil® (doxorubicin in PEGylated liposome) in 1995, Movantik® (PEGylated naloxone - naloxegol) in 2014, and Onpattro® (Patisiran - siRNA in PEGylated lipid nanoparticle) in 2018. Drug-polymer complexes were introduced, e.g., InFed® (iron-dextran complex injection) in 1974 and Abraxane® (paclitaxel-albumin complex) in 2005. In 2000, both Mylotarg™ (antibody-drug conjugate - gemtuzumab ozogamicin) and Rapamune® (sirolimus nanocrystal formulation) were introduced. The year 2000 also marked the launching of the National Nanotechnology Initiative by the U.S. government, which was soon followed by the rest of the world. Extensive work on nanomedicine, particularly formulations designed to escape from endosomes after being taken by tumor cells, along with PEGylation technology, ultimately resulted in the timely development of lipid nanoparticle formulations for COVID-19 vaccine delivery in 2020. While the advances in drug delivery technologies for the last seven decades are breathtaking, they are only the tip of an iceberg of technologies that have yet to be utilized in an approved formulation or even to be discovered. As life expectancy continues to increase, more people require long-term care for various diseases. Filling the current and future unmet needs requires innovative drug delivery technologies to overcome age-old familiar hurdles, e.g., improving water-solubility of poorly soluble drugs, overcoming biological barriers, and developing more efficient long-acting depot formulations. The lessons learned from the past are essential assets for developing future drug delivery technologies implemented into products. As the development of COVID-19 vaccines demonstrated, meeting the unforeseen crisis of the uncertain future requires continuous cumulation of failures (as learning experiences), knowledge, and technologies. Conscious efforts of supporting diversified research topics in the drug delivery field are urgently needed more than ever.
Collapse
Affiliation(s)
- Haesun Park
- Akina, Inc., West Lafayette, IN 47906, United States of America
| | - Andrew Otte
- Purdue University, Departments of Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, United States of America
| | - Kinam Park
- Akina, Inc., West Lafayette, IN 47906, United States of America; Purdue University, Departments of Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
36
|
Saeb S, Assche JV, Loustau T, Rohr O, Wallet C, Schwartz C. Suicide gene therapy in cancer and HIV-1 infection: An alternative to conventional treatments. Biochem Pharmacol 2021; 197:114893. [PMID: 34968484 DOI: 10.1016/j.bcp.2021.114893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Suicide Gene Therapy (SGT) aims to introduce a gene encoding either a toxin or an enzyme making the targeted cell more sensitive to chemotherapy. SGT represents an alternative approach to combat pathologies where conventional treatments fail such as pancreatic cancer or the high-grade glioblastoma which are still desperately lethal. We review the possibility to use SGT to treat these cancers which have shown promising results in vitro and in preclinical trials. However, SGT has so far failed in phase III clinical trials thus further improvements are awaited. We can now take advantages of the many advances made in SGT for treating cancer to combat other pathologies such as HIV-1 infection. In the review we also discuss the feasibility to add SGT to the therapeutic arsenal used to cure HIV-1-infected patients. Indeed, preliminary results suggest that both productive and latently infected cells are targeted by the SGT. In the last section, we address the limitations of this approach and how we might improve it.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|
37
|
Usman NY, Rebrikov DV. Recombinant adeno-associated viruses as a gene delivery vehicle for the use in molecular medicine. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral mechanisms for the delivery of genetic material are widely used in molecular medicine. Recombinant adeno-associated viruses (rAAV) represent a promising tool for in vivo gene delivery. The review considers nosological spectrum, molecular mechanisms, the choice of drug administration route depending on target structures, the choice of serotype, and the methods of active ingredient manufacturing for rAAV-mediated gene therapy.
Collapse
Affiliation(s)
- NYu Usman
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - DV Rebrikov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
38
|
Luo WK, Zhang LL, Yang ZY, Guo XH, Wu Y, Zhang W, Luo JK, Tang T, Wang Y. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology 2021; 19:320. [PMID: 34645456 PMCID: PMC8513293 DOI: 10.1186/s12951-021-01072-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023] Open
Abstract
Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects. ![]()
Collapse
Affiliation(s)
- Wei-Kang Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Liang-Lin Zhang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Yu Yang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiao-Hang Guo
- Hunan University of Chinese Medicine, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|