1
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Yin R, Dao PU, Zhao J, Wang K, Lu S, Shang C, Ren H. Reactive Nitrogen Species Generated from Far-UVC Photolysis of Nitrate Contribute to Pesticide Degradation and Nitrogenous Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20676-20686. [PMID: 39504477 DOI: 10.1021/acs.est.4c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Climate change has resulted in increased use of pesticides and fertilizers in agriculture, leading to elevated pesticide and nitrate levels in aquatic ecosystems that receive agricultural runoff. In this study, we demonstrate that far-UVC (UV222) photolysis of nitrate rapidly degrades four pesticides in surface water, with a degradation rate constant 37.1-144.75 times higher than that achieved by UV254 photolysis of nitrate. The improved pesticide degradation is due not only to the enhanced direct photolysis by UV222 compared to UV254 but also to the increased generation of hydroxyl radicals (HO•) and reactive nitrogen species (e.g., NO2• and ONOO-) in the UV222/nitrate process. We determined the innate quantum yields of nitrate photolysis at 222 nm and incorporated these values into a kinetic model, allowing for the accurate prediction of nitrate photodecay and reactive species generation. While reactive nitrogen species predominantly contribute to pesticide degradation in the UV222/nitrate process, they also lead to the formation of nitration byproducts. Using stable isotope-labeled nitrate (15NO3-) combined with mass spectrometry, we confirmed that the nitration byproducts are formed from the reactive nitrogen species generated from nitrate photolysis. Additionally, we demonstrate that the UV222/nitrate process increases the formation potential of highly toxic nitrogenous chlorinated products (e.g., trichloronitromethane) during postchlorination in real surface water.
Collapse
Affiliation(s)
- Ran Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Phuong Uyen Dao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Kun Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| |
Collapse
|
3
|
Nathanael RJ, Adyanis LN, Oginawati K. The last decade epidemiologic concern of drinking water contaminants of emerging concern (CECs) in Asian Countries: A scoping review. Heliyon 2024; 10:e39236. [PMID: 39640600 PMCID: PMC11620247 DOI: 10.1016/j.heliyon.2024.e39236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
With the rapid industrialization and urbanization in Asian countries, the challenge of rising emerging contaminants in the environment, including the water cycle, has become more pronounced. Consequently, the presence of CECs in drinking water systems is inevitable due to their ubiquitous nature in aquatic environments. This scoping review aims to identify epidemiological concerns regarding drinking water CECs in Asian countries over the past decade by describing the types of assessed CECs, their associated health effects, and identifying gaps and future research prospects through a summary of relevant studies. Searches were conducted on PubMed and Scopus up to February 29, 2024. Included were epidemiological studies from the past 10 years (since January 2014) in Asian countries that assessed emerging contaminants in drinking water through direct measurement or analysis as factors. From an initial pool of 3198 results, 15 relevant studies were selected. These studies assessed various types of CECs, including disinfection byproducts (n = 10), endocrine disruptors (n = 2), pesticides (n = 2), and a protozoan pathogen (n = 1). The meticulous assessment of CECs and associated health outcomes in Asian epidemiological studies over the past decade has been deemed inadequate to address the wide range of ubiquitous CECs in drinking water and their potential health effects that have not yet been addressed. While not the sole objective, the primary aim of epidemiological studies is to inform policy decisions and increase awareness among the public and policymakers. Therefore, researchers in Asian countries, particularly in environmental and public health fields, should prioritize the development of research in this area by exploring more CECs type and associated health outcomes.
Collapse
Affiliation(s)
- Rinaldy Jose Nathanael
- Environmental Engineering Program, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Latonia Nur Adyanis
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan, 320314
| | - Katharina Oginawati
- Environmental Management Technology Research Group, Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Bandung, 40132, Indonesia
| |
Collapse
|
4
|
Zhong Y, Yang J, Wu W, Chen H, Li S, Zhang Z, Rong S, Wang H. Dual colorimetric platforms for direct detection of glyphosate based on Os-Rh nanozyme with peroxidase-like activity. Anal Chim Acta 2024; 1326:343150. [PMID: 39260918 DOI: 10.1016/j.aca.2024.343150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND To minimize the impact of pesticide residues in food on human health, it is necessary to enhance their detection. Recently, many nanozyme-based colorimetric methods for pesticides detection have been developed, however, they often required the assistance of natural enzymes, which made the process and result of methods susceptible to the stability and activity of natural enzymes. To overcome these drawbacks, methods for direct detection of pesticides using nanozymes have been developed, and there are few studies in this field currently. Thus, it is of great research and practical significance to develop more nanozymes-based colorimetric methods for direct detection of pesticides. RESULTS Dual colorimetric platforms based on Os-Rh nanozyme with excellent peroxidase-like activity were constructed for directly detection of glyphosate in this work. Results showed that glyphosate was able to sensitively and selectively inhibit the peroxidase-like activity of Os-Rh nanozyme through hindering the decomposition of H2O2 by Os-Rh nanozyme to produce HO∙. Based on this, the dual colorimetric platforms achieved highly sensitive detection for glyphosate over a wide linear concentration range (50-1000 μg L-1 in solution platform and 200-1000 μg L-1 in paper platform), with the detection limits of 28.37 μg L-1 in solution platform and 400 μg L-1 (naked-eye detection limit)/123.25 μg L-1 (gray scale detection limit) in paper platform, respectively. Moreover, the dual colorimetric platforms possessed satisfactory reliability and accuracy for practical applications, and has been successfully applied to the detection of real samples with the spiked recoveries of 92.78-102.75 % and RSD of 1.17-3.88 %. SIGNIFICANCE The dual colorimetric platforms for glyphosate direct detection based on Os-Rh nanozyme developed in this work not only owned considerable practical application potential, but also could provide more inspirations and ideas for the rational design and development of colorimetric sensing methods for the rapid detection of pesticides based on nanozymes.
Collapse
Affiliation(s)
- Yingying Zhong
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Junsong Yang
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China
| | - Wanying Wu
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Haoyang Chen
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Shuwei Li
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Ziying Zhang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Shicheng Rong
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China
| | - Hongwu Wang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, Zhaoqing, 526061, PR China; Guangdong Engineering Technology Research Center of Food & Agricultural Product Safety Analysis and Testing, Zhaoqing, 526061, PR China.
| |
Collapse
|
5
|
Schierling TE, Vogt W, Voegele RT, El-Hasan A. Efficacy of Trichoderma spp. and Kosakonia sp. Both Independently and Combined with Fungicides against Botrytis cinerea on Strawberries. Antibiotics (Basel) 2024; 13:912. [PMID: 39335085 PMCID: PMC11428533 DOI: 10.3390/antibiotics13090912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The ascomycete Botrytis cinerea is a major pathogen of strawberry, often causing grey mold and significant yield losses. Its management has largely relied on chemical fungicides, which, while effective, can lead to resistant pathogens and harm to non-target organisms and pose health risks. Objectives: This study explored a strategy for minimizing chemical usage by combining biocontrol agents (BCAs) with half-strength fungicide input. Results: In vitro results of fungicide-amended culture plates indicated that the presence of 625 µg mL-1 Azoxystrobin exhibited no growth inhibition of T. atroviride T19 and T. harzianum T16 but increased conidial density of T16 by 90%. Copper (750 µg mL-1) did not suppress the growth of T. virens TVSC or T16 but rather promoted it by 9.5% and 6%, respectively. Additionally, copper increased T16 sporulation by 1.4-fold. Greenhouse trials demonstrated that combining T23 with half-strength Azoxystrobin was as effective as the full dosage in suppressing flower rot. Among the antagonists assessed, Kosakonia sp. exhibited the lowest incidence of fruit rot, whereas T23 resulted in a moderate incidence. Moreover, the combination of T16 or Kosakonia sp. with half-strength copper was almost as effective as the full dosage in reducing fruit rot. Conclusions: Our findings suggest integrating these BCAs in the sustainable management of grey mold in strawberries.
Collapse
Affiliation(s)
- Tom E Schierling
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, D-70599 Stuttgart, Germany
| | - Wolfgang Vogt
- Agrobiota, Vor dem Kreuzberg 17, D-72070 Tuebingen, Germany
| | - Ralf T Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, D-70599 Stuttgart, Germany
| | - Abbas El-Hasan
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, D-70599 Stuttgart, Germany
| |
Collapse
|
6
|
Wang M, Guo X, Liao Z, Sun S, Farag MA, Ren Q, Li P, Li N, Sun J, Liu C. Monitoring the fluctuation of hydrogen peroxide with a near-infrared fluorescent probe for the diagnosis and management of kidney injury. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134949. [PMID: 38901256 DOI: 10.1016/j.jhazmat.2024.134949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Kidney injury has become an increasing concern for patients because of environmental hazards and physiological factors. However, the early diagnosis of kidney injury remains challenging. Studies have shown that oxidative stress was closely related to the occurrence and development of kidney injury, in which abnormal hydrogen peroxide (H2O2) production was a common characteristic. Consequently, monitoring H2O2 level changes is essential for the diagnosis and management of kidney injury. Herein, based on fluorescence imaging advantages, a near-infrared fluorescent probe DHX-1 was designed to detect H2O2. DHX-1 showed high sensitivity and selectivity toward H2O2, with a fast response time and excellent imaging capacity for H2O2 in living cells and zebrafish. DHX-1 could detect H2O2 in pesticide-induced HK-2 cells, revealing the main cause of kidney injury caused by pesticides. Moreover, we performed fluorescence imaging, which confirmed H2O2 fluctuation in kidney injury caused by uric acid. In addition, DHX-1 achieved rapid screening of active compounds to ameliorate pesticide-induced kidney injury. This study presents a tool and strategy for monitoring H2O2 levels that could be employed for the early diagnosis and effective management of kidney injury.
Collapse
Affiliation(s)
- Muxuan Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China; Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Zhixin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Shutao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Qidong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China
| | - Ningyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| |
Collapse
|
7
|
Mello LC, Costa AB, de Moraes ASB, Lima ADF, Santos RP, Silva VAD, Abessa DMS, Cavalcante RM. Assessment of cancer and dietary risks in commercially valuable marine organisms in coast of a region of future exploration (Equatorial South Atlantic). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121991. [PMID: 39094409 DOI: 10.1016/j.jenvman.2024.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
The Equatorial South Atlantic region, spanning over 1700 km, is currently undergoing extensive exploitation through various activities such as oil extraction, desalination plants, marine mineral explorations, and wind power for green hydrogen production. This undoubtedly also contributes to the exacerbation of pre-existing chronic environmental impacts. This study aims to investigate the concentrations of 60 substances, categorized as Persistent Organic Pollutants (POPs) and Contaminants of Emerging Concern (CECs) from various classes including: polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), as well as Pyrethroids (PPs), Triazines (TPs) and Organophosphates (OPPs) pesticides in consumable fish, shellfish, and crabs. The bivalve (Mytella charruana), crab (Ucides cordatus), and catfish (Sciades herzbergii) samples were collected in areas of ecological, environmental and economic importance. This data was used to estimate concentrations in the organisms, and to calculate cancer and human health risk. The most prevalent pollutant classes in the organisms were OCPs, followed by TPs and PPs. Shellfish and fish samples had more compounds indicating health risks, when compared to crabs. The substances causing cancer risks varied across organisms and study areas. The heightened cancer risks linked to specific compounds in various species highlight the urgent need to address persistent pollutants to prevent long-term health impacts on both humans and wildlife. Compounds such as PPs, TPs, and OPPs pose significant risks of neurotoxicity and endocrine disruption. This study underscores the interconnectedness of environmental and human health in coastal ecosystems, calling for continuous monitoring and adaptive management strategies to protect these fragile environments and the communities that rely on them.
Collapse
Affiliation(s)
- Luiza C Mello
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil; UNESP, Universidade Estadual Júlio de Mesquita Filho, IB-CLP, São Vicente, Praça Infante Dom Henrique, s/n - Parque Bitaru, 11330-900, São Paulo, Brazil
| | - Ana B Costa
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Chemical Program, Chemistry Department -Federal University of Ceará UFC (PPGQ/DQ/UFC), Brazil
| | - Alessandra S B de Moraes
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Chemical Program, Chemistry Department -Federal University of Ceará UFC (PPGQ/DQ/UFC), Brazil
| | - Antonia D F Lima
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil
| | - Rafael P Santos
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil
| | - Viviane A da Silva
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; National Institute of Science and Technology in Tropical Marine Environments (INCT-AmbTropic, Phase II - Oil Spill), Brazil
| | - Denis M S Abessa
- Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil; UNESP, Universidade Estadual Júlio de Mesquita Filho, IB-CLP, São Vicente, Praça Infante Dom Henrique, s/n - Parque Bitaru, 11330-900, São Paulo, Brazil
| | - Rivelino M Cavalcante
- Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences-Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Brazil; Tropical Marine Sciences Program, Institute of Marine Sciences-Federal University of Ceará (PPGCMT/LABOMAR/UFC), Brazil; National Institute of Science and Technology in Tropical Marine Environments (INCT-AmbTropic, Phase II - Oil Spill), Brazil; Chemical Program, Chemistry Department -Federal University of Ceará UFC (PPGQ/DQ/UFC), Brazil.
| |
Collapse
|
8
|
Xiao X, Liu S, Li L, Li R, Zhao X, Yin N, She X, Peijnenburg W, Cui X, Luo Y. Seaweeds as a major source of dietary microplastics exposure in East Asia. Food Chem 2024; 450:139317. [PMID: 38636378 DOI: 10.1016/j.foodchem.2024.139317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Microplastics (MPs) occurrence in marine ecosystems is well known, but their accumulation in seaweeds and subsequent human exposure remain understudied. This research quantifies MPs presence in two commonly consumed seaweeds, kelp (Saccharina japonica) and nori (Pyropia yezoensis), in East Asia, revealing widespread contamination dominated by microfibers (<500 μm). Based on dietary patterns, human uptake through seaweed consumption was estimated and quantified. Notably, Chinese people consume an estimated 17,034 MPs/person/year through seaweed consumption, representing 13.1% of their total annual MPs intake. This seaweeds-derived exposure surpasses all other dietary sources, contributing up to 45.5% of overall MPs intake. The highest intake was in South Korea, followed by North Korea, China, and Japan. This research identifies seaweeds as a major, previously overlooked route of dietary MPs exposure. These findings are crucial for comprehensive risk assessments of seaweed consumption and the development of mitigation strategies, particularly for populations in East Asian countries.
Collapse
Affiliation(s)
- Xiangyang Xiao
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shaochong Liu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Lianzhen Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Ruijie Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyu Zhao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Na Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xilin She
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, RA Leiden 2300, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Xiumin Cui
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China.
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
9
|
Almenhali AZ, Eissa S. Aptamer-based biosensors for the detection of neonicotinoid insecticides in environmental samples: A systematic review. Talanta 2024; 275:126190. [PMID: 38703483 DOI: 10.1016/j.talanta.2024.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.
Collapse
Affiliation(s)
- Asma Zaid Almenhali
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
10
|
Raymundo LB, Gomes DF, Miguel M, Moreira RA, Rocha O. Effects of acute toxicity of the pesticide Chlorpyrifos and the metal Cadmium, both individually and in mixtures, on two species of native neotropical cladocerans. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:642-652. [PMID: 38776006 DOI: 10.1007/s10646-024-02761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 07/17/2024]
Abstract
The excessive use of pesticides in agriculture and the widespread use of metals in industrial activities and or technological applications has significantly increased the concentrations of these pollutants in both aquatic and terrestrial ecosystems worldwide, making aquatic biota increasingly vulnerable and putting many species at risk of extinction. Most aquatic habitats receive pollutants from various anthropogenic actions, leading to interactions between compounds that make them even more toxic. The aim of this study was to assess the effects of the compounds Chlorpyrifos (insecticide) and Cadmium (metal), both individually and in mixtures, on the cladocerans Ceriodaphnia rigaudi and Ceriodaphnia silvestrii. Acute toxicity tests were conducted for the compounds individually and in mixture, and an ecological risk assessment (ERA) was performed for both compounds. Acute toxicity tests with Cadmium resulted in EC50-48 h of 0.020 mg L-1 for C. rigaudi and 0.026 mg L-1 for C. silvestrii, while tests with Chlorpyrifos resulted in EC50-48 h of 0.047 μg L-1 and 0.062 μg L-1, respectively. The mixture test for C. rigaudi showed the occurrence of additive effects, while for C. silvestrii, antagonistic effects occurred depending on the dose level. The species sensitivity distribution curve for crustaceans, rotifers, amphibians, and fishes resulted in an HC5 of 3.13 and an HC50 of 124.7 mg L-1 for Cadmium; an HC5 of 9.96 and an HC50 of 5.71 μg L-1 for Chlorpyrifos. Regarding the ERA values, Cadmium represented a high risk, while Chlorpyrifos represented an insignificant to a high risk.
Collapse
Affiliation(s)
- Larissa Broggio Raymundo
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos, São Paulo, 13565-905, Brazil.
| | - Diego Ferreira Gomes
- NEEA/SHS, Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Mariana Miguel
- NEEA/SHS, Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Raquel Aparecida Moreira
- Department of Basic Sciences (ZAB), College of Animal Science and Food Engineering (FZEA) at the University of São Paulo (USP), Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
11
|
Zhu S, Zhou Y, Chao M, Zhang Y, Cheng W, Xu H, Zhang L, Tao Q, Da Q. Association between organophosphorus insecticides exposure and osteoarthritis in patients with arteriosclerotic cardiovascular disease. BMC Public Health 2024; 24:1873. [PMID: 39004719 PMCID: PMC11247838 DOI: 10.1186/s12889-024-19414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Organic phosphorus insecticides (OPPs) are a class of environmental pollutants widely used worldwide with potential human health risks. We aimed to assess the association between exposure to OPPs and osteoarthritis (OA) particularly in participants with atherosclerotic cardiovascular disease (ASCVD). METHODS Participants' information was obtained from data in the National Health and Nutrition Examination (NHANES). Weighted logistic regression models were utilized to detect associations between OPPs metabolites and OA. Restricted cubic spline plots (RCS) were drawn to visualize the dose-response relationship between each metabolite and OA prevalence. Weighted quantile sum (WQS) regression and Bayesian kernel-machine regression (BKMR), were applied to investigate the joint effect of mixtures of OPPs on OA. RESULTS A total of 6871 samples were included in our study, no significant associations between OPPs exposure and OA incidence were found in whole population. However, in a subset of 475 individuals with ASCVD, significant associations between DMP (odds ratio [OR] as a continuous variable = 1.22, 95% confidence interval [CI]: 1.07,1.28), DEP ((odds ratio [OR] of the highest tertile compared to the lowest = 2.43, 95% confidence interval [CI]: 1.21,4.86), and OA were observed. DMP and DEP showed an increasing dose-response relationship to the prevalence of OA, while DMTP, DETP, DMDTP and DEDTP showed a nonlinear relationship. Multi-contamination modeling revealed a 1.34-fold (95% confidence intervals:0.80, 2.26) higher prevalence of OA in participants with high co-exposure to OPPs compared to those with low co-exposure, with a preponderant weighting (0.87) for the dimethyl dialkyl phosphate metabolites (DMAPs). The BKMR also showed that co-exposure of mixed OPPs was associated with an increased prevalence of OA, with DMP showing a significant dose-response relationship. CONCLUSION High levels of urine dialkyl phosphate metabolites (DAP) of multiple OPPs are associated with an increased prevalence of OA in patients with ASCVD, suggesting the need to prevent exposure to OPPs in ASCVD patients to avoid triggering OA and further avoid the occurrence of cardiovascular events caused by OA.
Collapse
Affiliation(s)
- Shenhao Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing, 210029, China
| | - Yang Zhou
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Menglin Chao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing, 210029, China
| | - Yuqing Zhang
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China
| | - Weili Cheng
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China
| | - Hongyao Xu
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Lai Zhang
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
| | - Qin Tao
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
| | - Qiang Da
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
12
|
Ferreira P, Gerbelli BB, Castro-Kochi ACH, Cortez B, Castro FL, Cantero J, Iribarne F, Hamley IW, Alves WA. Exploring the Use of a Lipopeptide in Dipalmitoylphosphatidylcholine Monolayers for Enhanced Detection of Glyphosate in Aqueous Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13583-13595. [PMID: 38907731 PMCID: PMC11223468 DOI: 10.1021/acs.langmuir.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The growing reliance on pesticides for pest management in agriculture highlights the need for new analytical methods to detect these substances in food and water. Our research introduces a SPRWG-(C18H37) lipopeptide (LP) as a functional analog of acetylcholinesterase (AChE) for glyphosate detection in environmental samples using phosphatidylcholine (PC) monolayers. This LP, containing hydrophilic amino acids linked to an 18-carbon aliphatic chain, alters lipid assembly properties, leading to a more flexible system. Changes included reduced molecular area and peak pressure in Langmuir adsorption isotherms. Small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) analyses provided insights into the LP's structural organization within the membrane and its interaction with glyphosate (PNG). Structural and geometric parameters, as derived from in silico molecular dynamics simulations (MD), substantiated the impact of LP on the monolayer structure and the interaction with PNG. Notably, the presence of the LP and glyphosate increased charge transfer resistance, indicating strong adherence of the monolayer to the indium tin oxide (ITO) surface and effective pesticide interaction. A calibration curve for glyphosate concentration adjustment revealed a detection limit (LOD) of 24 nmol L-1, showcasing the high sensitivity of this electrochemical biosensor. This LOD is significantly lower than that of a similar colorimetric biosensor in aqueous media with a detection limit of approximately 0.3 μmol L-1. Such an improvement in sensitivity likely stems from adding a polar residue to the amino acid chain of the LP.
Collapse
Affiliation(s)
- Priscila
S. Ferreira
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| | - Barbara B. Gerbelli
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| | - Ana C. H. Castro-Kochi
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| | - Bruna Cortez
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| | - Fabiola L. Castro
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| | - Jorge Cantero
- Theoretical
Chemical Physics and Biology Group, Mathematics-DETEMA Department, Faculty of Chemistry, UdelaR, General Flores 2124, Montevideo 11800, Uruguay
| | - Federico Iribarne
- Theoretical
Chemical Physics and Biology Group, Mathematics-DETEMA Department, Faculty of Chemistry, UdelaR, General Flores 2124, Montevideo 11800, Uruguay
| | - Ian W. Hamley
- Department
of Chemistry, University of Reading, Reading RG6 6AD, U.K.
| | - Wendel A. Alves
- Center
for Natural and Human Sciences, Federal
University of ABC, Santo
André 09210-580, Brazil
| |
Collapse
|
13
|
Cezarette GN, Souza MCO, Rocha BA, González N, Nadal M, Domingo JL, Barbosa F. Levels and health risk assessment of twenty-one current-use pesticides in urban and riverside waters of the Brazilian Amazon Basin. ENVIRONMENTAL RESEARCH 2024; 252:119027. [PMID: 38697597 DOI: 10.1016/j.envres.2024.119027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
In Brazil, the favorable weather conditions and abundant land contribute to the thriving agricultural production. Brazilian crops extensively employ pesticides due to their high efficacy, cost-effectiveness, and permissive regulatory framework. However, pesticide use also endangers water resources, animal organisms, and human health. Due to the lack of data on pesticide use in the Amazonas forest-based Brazil, the present study aimed to assess the levels of twenty-one current-use pesticides (CUPs) from five different classes in river waters collected from urban and riverside areas in this region. Moreover, the non-carcinogenic risks associated with water consumption were also characterized. Thirteen CUPs were detected in concentrations above the limit of detection (LOD) in at least one of the water samples, and most pesticides were detected in riverside areas. In contrast, only 18% of the analyzed samples were considered "clean," with only one compound detected. Fenitrothion showed the highest concentration, with a mean value of 4.86 ng/mL (0.30-14.3 ng/mL). Up to 33% of the samples showed levels of fipronil above the LOD, an issue of environmental and human health concern, mainly because of the adverse effects observed in honeybees. Despite this, the human health risk assessment showed a target hazard quotient below one (HQ < 1) in adults for all substances, suggesting that pesticide exposure through water consumption should not mean risk for the riverside populations. Taking into account the large extension of Brazil, as well as its different agricultural practices throughout the country, it would be of great importance to conduct extensive research in other areas. It would help to gain knowledge in this field and to promote eco-friendly alternatives to mitigate pesticide use and, consequently, to reduce their potential adverse effects on human health and the ecosystems.
Collapse
Affiliation(s)
- Gabriel Neves Cezarette
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Bruno Alves Rocha
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil; Institute of Chemistry, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Neus González
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain
| | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain
| | - Jose L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences. Analytical and System Toxicology Laboratory, Avenida do Cafe s/nº, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
14
|
Fernández Nion C, Díaz Isasa I. Spatial distribution of pesticide use based on crop rotation data in La Plata River basin: a case study from an agricultural region of Uruguay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:633. [PMID: 38900342 DOI: 10.1007/s10661-024-12759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/25/2024] [Indexed: 06/21/2024]
Abstract
The intensive global use of pesticides presents an escalating threat to human health, ecosystems, and water quality. To develop national and local environmental management strategies for mitigating pollution caused by pesticides, it is essential to understand the quantities, timing, and location of their application. This study aims to estimate the spatial distribution of pesticide use in an agricultural region of La Plata River basin in Uruguay. Estimates of pesticide use were made by surveying doses applied to each crop. This information was spatialized through identifying agricultural rotations using remote sensing techniques. The study identified the 60 major agricultural rotations in the region and mapped the use and application amount of the nine most significant active ingredients (glyphosate, 2,4-dichlorophenoxyacetic acid, flumioxazin, S-metolachlor, clethodim, flumetsulam, triflumuron, chlorantraniliprole, and fipronil). The results reveal that glyphosate is the most extensively used pesticide (53.5% of the area) and highest amount of use (> 1.44 kg/ha). Moreover, in 19% of the area, at least seven active ingredients are applied in crop rotations. This study marks the initial step in identifying rotations and estimating pesticide applications with high spatial resolution at a regional scale in agricultural regions of La Plata River basin. The results improve the understanding of pesticide spatial distribution based on data obtained from agronomists, technicians, and producers and provide a replicable methodological approach for other geographic and productive contexts. Generating baseline information is key to environmental management and decision making, towards the design of more robust monitoring systems and human exposure assessment.
Collapse
Affiliation(s)
- Camila Fernández Nion
- Geografía, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| | - Ismael Díaz Isasa
- Geografía, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| |
Collapse
|
15
|
Otranto D, Mendoza-Roldan JA, Beugnet F, Baneth G, Dantas-Torres F. New paradigms in the prevention of canine vector-borne diseases. Trends Parasitol 2024; 40:500-510. [PMID: 38744542 DOI: 10.1016/j.pt.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
The prevention of canine vector-borne diseases (CVBDs) is pivotal for the health and welfare of dogs as well as for reducing their zoonotic risk to humans. Scientific knowledge gained in recent years contributed to the development of new strategies for the control of these diseases in different social and cultural contexts. Here, we discuss recent advances in the prevention of vector-borne pathogens (VBPs) affecting dogs with a focus on those of zoonotic relevance.
Collapse
Affiliation(s)
- Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy; Department of Veterinary Clinical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| | | | | | - Gad Baneth
- Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel
| | | |
Collapse
|
16
|
Navarro I, de la Torre A, Sanz P, Abrantes N, Campos I, Alaoui A, Christ F, Alcon F, Contreras J, Glavan M, Pasković I, Pasković MP, Nørgaard T, Mandrioli D, Sgargi D, Hofman J, Aparicio V, Baldi I, Bureau M, Vested A, Harkes P, Huerta-Lwanga E, Mol H, Geissen V, Silva V, Martínez MÁ. Assessing pesticide residues occurrence and risks in water systems: A Pan-European and Argentina perspective. WATER RESEARCH 2024; 254:121419. [PMID: 38484551 DOI: 10.1016/j.watres.2024.121419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Freshwater ecosystems face a particularly high risk of biodiversity loss compared to marine and terrestrial systems. The use of pesticides in agricultural fields is recognized as a relevant stressor for freshwater environments, exerting a negative impact worldwide on the overall status and health of the freshwater communities. In the present work, part of the Horizon 2020 funded SPRINT project, the occurrence of 193 pesticide residues was investigated in 64 small water bodies of distinct typology (creeks, streams, channels, ditches, rivers, lakes, ponds and reservoirs), located in regions with high agricultural activity in 10 European countries and in Argentina. Mixtures of pesticide residues were detected in all water bodies (20, median; 8-40 min-max). Total pesticide levels found ranged between 6.89 and 5860 ng/L, highlighting herbicides as the dominant type of pesticides. Glyphosate was the compound with the highest median concentration followed by 2,4-D and MCPA, and in a lower degree by dimethomorph, fluopicolide, prothioconazole and metolachlor(-S). Argentina was the site with the highest total pesticide concentration in water bodies followed by The Netherlands, Portugal and France. One or more pesticides exceeded the threshold values established in the European Water Framework Directive for surface water in 9 out of 11 case study sites (CSS), and the total pesticide concentration surpassed the reference value of 500 ng/L in 8 CSS. Although only 5 % (bifenthrin, dieldrin, fipronil sulfone, permethrin, and terbutryn) of the individual pesticides denoted high risk (RQ > 1), the ratios estimated for pesticide mixtures suggested potential environmental risk in the aquatic compartment studied.
Collapse
Affiliation(s)
- Irene Navarro
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain.
| | - Adrián de la Torre
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Paloma Sanz
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| | - Nelson Abrantes
- CESAM and Department of Biology, University of Aveiro, Portugal
| | - Isabel Campos
- CESAM and Department of Environment and Planning, University of Aveiro, Portugal
| | - Abdallah Alaoui
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Florian Christ
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Francisco Alcon
- Department of Business Economics, Universidad Politécnica de Cartagena, Spain
| | - Josefina Contreras
- Department Agricultural Engineering, Universidad Politécnica de Cartagena, Spain
| | - Matjaž Glavan
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Porec, Croatia
| | - Trine Nørgaard
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Centre, Ramazzini Institute, Bologna, Italy
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Centre, Ramazzini Institute, Bologna, Italy
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Brno, the Czech Republic
| | - Virginia Aparicio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Isabelle Baldi
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | - Mathilde Bureau
- University of Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | - Anne Vested
- Department of Public Health - Unit for Environment, Occupation, and Health, Danish Ramazzini Centre, Aarhus University, Denmark
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Esperanza Huerta-Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Hans Mol
- Wageningen Food Safety Research - Part of Wageningen University & Research, Wageningen, Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Vera Silva
- Soil Physics and Land Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - María Ángeles Martínez
- Unit of POPs and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Madrid, Spain
| |
Collapse
|
17
|
Anandhi G, Iyapparaja M. Systematic approaches to machine learning models for predicting pesticide toxicity. Heliyon 2024; 10:e28752. [PMID: 38576573 PMCID: PMC10990867 DOI: 10.1016/j.heliyon.2024.e28752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024] Open
Abstract
Pesticides play an important role in modern agriculture by protecting crops from pests and diseases. However, the negative consequences of pesticides, such as environmental contamination and adverse effects on human and ecological health, underscore the importance of accurate toxicity predictions. To address this issue, artificial intelligence models have emerged as valuable methods for predicting the toxicity of organic compounds. In this review article, we explore the application of machine learning (ML) for pesticide toxicity prediction. This review provides a detailed summary of recent developments, prediction models, and datasets used for pesticide toxicity prediction. In this analysis, we compared the results of several algorithms that predict the harmfulness of various classes of pesticides. Furthermore, this review article identified emerging trends and areas for future direction, showcasing the transformative potential of machine learning in promoting safer pesticide usage and sustainable agriculture.
Collapse
Affiliation(s)
- Ganesan Anandhi
- Department of Smart Computing, School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - M. Iyapparaja
- Department of Smart Computing, School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
18
|
Harabi S, Guiza S, Álvarez-Montero A, Gómez-Avilés A, Belver C, Rodríguez JJ, Bedia J. Adsorption of 2,4-dichlorophenoxyacetic acid on activated carbons from macadamia nut shells. ENVIRONMENTAL RESEARCH 2024; 247:118281. [PMID: 38266891 DOI: 10.1016/j.envres.2024.118281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
This study reports on the application of activated carbons from macadamia nut shells as adsorbents for the removal of 2,4-dichlorophenoxyacetic acid, a commonly used pesticide, from water. Different activating agents (FeCl3, ZnCl2, KOH and H3PO4) were used to obtain adsorbents within a wide range of porous texture and surface properties. The characterization of the resulting activated carbons was performed by N2 adsorption-desorption, elemental analysis, TG and pHPZC. The adsorption experiments were conducted in batch at 25, 45 and 65 °C. The adsorption kinetics on activated carbons obtained with FeCl3 H3PO4 or KOH was well described by the pseudo-second order model, whereas for the resulting from ZnCl2 activation the experimental data fit better the pseudo-first order model. The equilibrium studies were performed with the KOH- and ZnCl2-activated carbons, the two showing higher surface area values. In both cases, high adsorption capacities were obtained (c.a. 600 mg g-1) and the experimental data were better described by the Langmuir and Toth models. The thermodynamic study allows concluding the spontaneous and endothermic character of the adsorption process, as well as an increase of randomness at the solid/liquid interface. Breakthrough curves were also obtained and fitted to the logistic model.
Collapse
Affiliation(s)
- S Harabi
- University of Gabes, National Engineering School of Gabes, Laboratory of Applied Thermodynamic, LR18ES33, 6029, Gabes, Tunisia
| | - S Guiza
- University of Gabes, National Engineering School of Gabes, Laboratory of Applied Thermodynamic, LR18ES33, 6029, Gabes, Tunisia
| | - A Álvarez-Montero
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain
| | - A Gómez-Avilés
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain
| | - C Belver
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain
| | - J J Rodríguez
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain.
| | - J Bedia
- Chemical Engineering Department, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049, Madrid, Spain.
| |
Collapse
|
19
|
Wu M, Miao J, Zhang W, Wang Q, Sun C, Wang L, Pan L. Occurrence, distribution, and health risk assessment of pyrethroid and neonicotinoid insecticides in aquatic products of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170880. [PMID: 38364586 DOI: 10.1016/j.scitotenv.2024.170880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Synthetic pyrethroid insecticides (SPIs) and neonicotinoid insecticides (NEOs), now dominant in the insecticide market, are increasingly found in aquatic environments. This study focused on six SPIs and five NEOs in aquatic products from four Chinese provinces (Shandong, Hubei, Shanxi and Zhejiang) and the risk assessment of the safety for the residents was conducted. It revealed significantly higher residues of Σ6SPIs (6.27-117.19 μg/kg) compared to Σ5NEOs (0.30-14.05 μg/kg), with SPIs more prevalent in fish and NEOs in shellfish. Carnivorous fish showed higher pesticide levels. Residues of these two types of pesticides were higher in carnivorous fish than in fish with other feeding habits. In the four regions investigated, the hazard quotient and hazard index of SPIs and NEOs were all <1, indicating no immediate health risk to human from single and compound contamination of the two types of pesticides in aquatic products. The present study provides valuable information for aquaculture management, pollution control and safeguarding human health.
Collapse
Affiliation(s)
- Manni Wu
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jingjing Miao
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China.
| | | | - Qiaoqiao Wang
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Ce Sun
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Lu Wang
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Luqing Pan
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| |
Collapse
|
20
|
Fujimura K, Shima A. Water properties and quality of the largest rice production region in Japan and their influence on the reproduction of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21857-21868. [PMID: 38400980 DOI: 10.1007/s11356-024-32597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The health of freshwater aquarium fish and their breeding success depend critically on the quality of tap water. In general, tap water in Japan is potable, although the properties of tap water vary among regions in Japan. The city of Niigata is located in the largest rice production region of Japan. We have faced challenges concerning the reproduction of freshwater aquarium fish in Niigata. To determine whether water properties and quality affect the reproduction of aquarium fish in Niigata, we investigated the chemical properties of water and raised zebrafish in water from three different sources, namely tap water of Niigata in May, artificial freshwater (i.e., prepared via reverse osmosis), and natural spring water of Gosen, to document any effects on their sexual maturation and reproduction. We found that the tap water of Niigata was not stable throughout a year (median electrical conductivity = 147.1 μS/cm; SD = 25.6), with springtime lower than the first quartile. We also found that low concentrations of four pesticides in the tap water have been detected in May (max. concentration in 2020, bromobutide 2,000 ng/L, butachlor 600 ng/L, pyraclonil 200 ng/L, ipfencarbazone 20 ng/L). Moreover, rearing zebrafish in tap water negatively influenced both fish growth and reproduction: The sex ratio of adults was male biased (proportion of F0 male 70.8%); the average total length (30.5 mm) and weight (182 mg) of F0 males was decreased; the GSI of F0 females (9.7%) was decreased; the fecundity (the mating success 58.7%; the number of F1 eggs 63.1) of adults was reduced. Rearing in artificial freshwater could improve these outcomes (the sex ratio 55.7%; the total length of F0 males 31.8 mm; the weight of F0 males 211 mg; the GSI of F0 females 11.7%; the mating success 72.6%; the number of F1 eggs 99.0), whereas rearing in natural spring water from Gosen could improve the sex ratio (56.3%) and the weight of F0 males (200 mg), but not the others. Therefore, artificial freshwater made via reverse osmosis should be used for breeding freshwater aquarium fish in rice production region like Niigata. Finally, our results demonstrate that the reproduction of freshwater aquarium fish can serve as a bioindicator of low levels of organic pollutants in tap water and thus provide a basis for evaluating the safety of tap water for human consumption.
Collapse
Affiliation(s)
- Koji Fujimura
- Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan.
| | - Ayane Shima
- Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
21
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
22
|
Zhang T, Yuan J, Guo Y, Wang X, Li QX, Zhang J, Xie J, Miao W, Fan Y. Combined toxicity of trifloxystrobin and fluopyram to zebrafish embryos and the effect on bone development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106834. [PMID: 38281391 DOI: 10.1016/j.aquatox.2024.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Trifloxystrobin (TRI) is a methacrylate fungicide, and fluopyram (FLU) is a new pyridylethylbenzamide fungicide and nematicide. Both are often detected in water bodies and may be highly toxic to many aquatic organisms. Unfortunately, the aquatic biological risks of single FLU or a mixture of trifloxystrobin and fluopyram have not been reported. In this study, zebrafish was selected as the test organism to investigate the combined toxicity of trifloxystrobin and fluopyram to zebrafish. After zebrafish embryos exposed to three pesticide solutions, Alcian-blue staining, Alizarin-red staining and quantitative PCR (qPCR) were performed. The results indicated that 96h-LC50 of TRI was 0.159 mg·L-1 to zebrafish embryo, which was highly toxic. The 96h-LC50 of FLU to zebrafish embryos was 4.375 mg·L-1, being moderately toxic. The joint toxicity to zebrafish embryos(FLU at 96h-LC50 and TRI at 96h-LC50 in a 1:1 weight ratio to form a series of concentration treatment groups) was antagonistic. Both trifloxystrobin and fluopyram also inhibited the skeletal development of zebrafish and showed to be antagonistic. The results of qPCR indicated upregulations of different genes upon three different treatments. TRI mainly induced Smads up-expression, which may affect the BMP-smads pathway. FLU mainly induced an up-expression of extracellular BMP ligands and type I receptor (Bmpr-1a), which may affect the BMP ligand receptor pathway. The 1:1 mixture (weight ratio) of trifloxystrobin and fluopyram induced a reduction of the genes of extracellular BMP ligand (Smads) and type I receptor (Bmpr1ba), which may down-regulate BMP signaling and thus attenuating cartilage hyperproliferation, hypertrophy and mineralization. The results warren an interest in further studying the effect of the two fungicides in a mixture on zebrafish.
Collapse
Affiliation(s)
- Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Jie Yuan
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Qing X Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Jia Xie
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China, Haikou 570228, China.
| |
Collapse
|
23
|
Banerjee D, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Chatterjee S, Ganguly A, Nanda S, Rajak P. Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation. ENVIRONMENTAL RESEARCH 2024; 241:117601. [PMID: 37977271 DOI: 10.1016/j.envres.2023.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Pesticides are extensively used agrochemicals across the world to control pest populations. However, irrational application of pesticides leads to contamination of various components of the environment, like air, soil, water, and vegetation, all of which build up significant levels of pesticide residues. Further, these environmental contaminants fuel objectionable human toxicity and impose a greater risk to the ecosystem. Therefore, search of methodologies having potential to detect and degrade pesticides in different environmental media is currently receiving profound global attention. Beyond the conventional approaches, Artificial Intelligence (AI) coupled with machine learning and artificial neural networks are rapidly growing branches of science that enable quick data analysis and precise detection of pesticides in various environmental components. Interestingly, nanoparticle (NP)-mediated detection and degradation of pesticides could be linked to AI algorithms to achieve superior performance. NP-based sensors stand out for their operational simplicity as well as their high sensitivity and low detection limits when compared to conventional, time-consuming spectrophotometric assays. NPs coated with fluorophores or conjugated with antibody or enzyme-anchored sensors can be used through Surface-Enhanced Raman Spectrometry, fluorescence, or chemiluminescence methodologies for selective and more precise detection of pesticides. Moreover, NPs assist in the photocatalytic breakdown of various organic and inorganic pesticides. Here, AI models are ideal means to identify, classify, characterize, and even predict the data of pesticides obtained through NP sensors. The present study aims to discuss the environmental contamination and negative impacts of pesticides on the ecosystem. The article also elaborates the AI and NP-assisted approaches for detecting and degrading a wide range of pesticide residues in various environmental and agrecultural sources including fruits and vegetables. Finally, the prevailing limitations and future goals of AI-NP-assisted techniques have also been dissected.
Collapse
Affiliation(s)
- Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India.
| | | | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
24
|
Eddy NO, Garg R, Garg R, Ukpe RA, Abugu H. Adsorption and photodegradation of organic contaminants by silver nanoparticles: isotherms, kinetics, and computational analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:65. [PMID: 38112987 DOI: 10.1007/s10661-023-12194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
In view of the widespread and distribution of several classes and types of organic contaminants, increased efforts are needed to reduce their spread and subsequent environmental contamination. Although several remediation approaches are available, adsorption and photodegradation technologies are presented in this review as one of the best options because of their environmental friendliness, cost-effectiveness, accessibility, less selectivity, and wider scope of applications among others. The bandgap, particle size, surface area, electrical properties, thermal stability, reusability, chemical stability, and other properties of silver nanoparticles (AgNPS) are highlighted to account for their suitability in adsorption and photocatalytic applications, concerning organic contaminants. Literatures have been reviewed on the application of various AgNPS as adsorbent and photocatalyst in the remediation of several classes of organic contaminants. Theories of adsorption have also been outlined while photocatalysis is seen to have adsorption as the initial mechanism. Challenges facing the application of silver nanoparticles have also been highlighted and possible solutions have been presented. However, current information is dominated by applications on dyes and the view of the authors supports the need to strengthen the usefulness of AgNPS in adsorption and photodegradation of more classes of organic contaminants, especially emerging contaminants. We also encourage the simultaneous applications of adsorption and photodegradation to completely convert toxic wastes to harmless forms.
Collapse
Affiliation(s)
- Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Rajni Garg
- Department of Applied Science and Humanities, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | | | - Hillary Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
25
|
Peng FJ, Palazzi P, Mezzache S, Adelin E, Bourokba N, Bastien P, Appenzeller BMR. Association between Environmental Exposure to Multiclass Organic Pollutants and Sex Steroid Hormone Levels in Women of Reproductive Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19383-19394. [PMID: 37934613 DOI: 10.1021/acs.est.3c06095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Organic pollutant exposure may alter sex steroid hormone levels in both animals and humans, but studies on mixture effects have been lacking and mainly limited to persistent organic pollutants, with few hormones being investigated. Moreover, measurements from a single blood or urine sample may not be able to reflect long-term status. Using hair analysis, here, we evaluated the relationship between multiclass organic pollutants and sex steroid hormones in 196 healthy Chinese women aged 25-45 years. Associations with nine sex steroid hormones, including progesterone, androstenedione (AD), testosterone (T), estrone (E1), and 17β-estradiol (E2), and eight related hormone ratios were explored on 54 pollutants from polychlorinated biphenyl (PCB), pesticide, and bisphenol families using stability-based Lasso regression analysis. Our results showed that each hormone was associated with a mixture of at least 10 examined pollutants. In particular, hair E2 concentration was associated with 19 pollutants, including γ-hexachlorocyclohexane, propoxur, permethrin, fipronil, mecoprop, prochloraz, and carbendazim. There were also associations between pollutants and hormone ratios, with pentachlorophenol, dimethylthiophosphate, 3-phenoxybenzoic acid, and flusilazole being related to both E1/AD and E2/T ratios. Our results suggest that exposure to background levels of pesticides PCB180 and bisphenol S may affect sex steroid hormone homeostasis among women of reproductive age.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Emilie Adelin
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Nasrine Bourokba
- L'Oréal Research and Innovation, Biopolis Drive, Synapse, Singapore 138623, Singapore
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 avenue Eugène Schueller BP22, 93601 Aulnay sous Bois, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
26
|
Giarikos DG, White L, Daniels AM, Santos RG, Baldauf PE, Hirons AC. Assessing the ecological risk of heavy metal sediment contamination from Port Everglades Florida USA. PeerJ 2023; 11:e16152. [PMID: 38025702 PMCID: PMC10655720 DOI: 10.7717/peerj.16152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
Port sediments are often contaminated with metals and organic compounds from anthropogenic sources. Remobilization of sediment during a planned expansion of Port Everglades near Fort Lauderdale, Florida (USA) has the potential to harm adjacent benthic communities, including coral reefs. Twelve sediment cores were collected from four Port Everglades sites and a control site; surface sediment was collected at two nearby coral reef sites. Sediment cores, sampled every 5 cm, were analyzed for 14 heavy metals using inductively coupled plasma-mass spectrometry. Results for all three locations yielded concentration ranges (µg/g): As (0.607-223), Cd (n/d-0.916), Cr (0.155-56.8), Co (0.0238-7.40), Cu (0.004-215), Pb (0.0169-73.8), Mn (1.61-204), Hg (n/d-0.736), Mn (1.61-204), Ni (0.232-29.3), Se (n/d-4.79), Sn (n/d-140), V (0.160-176), and Zn (0.112-603), where n/d = non-detected. The geo-accumulation index shows moderate-to-strong contamination of As and Mo in port sediments, and potential ecological risk indicates moderate-to-significantly high overall metal contamination. All four port sites have sediment core subsamples with As concentrations above both threshold effect level (TEL, 7.24 µg/g) and probable effect level (PEL, 41.6 µg/g), while Mo geometric mean concentrations exceed the background continental crust level (1.5 µg/g) threshold. Control site sediments exceed TEL for As, while the reef sites has low to no overall heavy metal contamination. Results of this study indicate there is a moderate to high overall ecological risk from remobilized sediment due to metal contamination. Due to an imminent dredging at Port Everglades, this could have the potential to harm the threatened adjacent coral communities and surrounding protected habitats.
Collapse
Affiliation(s)
- Dimitrios G. Giarikos
- Chemistry and Physics, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- SECLER: Study of Environmental Conservation through Leading-Edge Research, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Laura White
- Department of Marine and Environmental Sciences, Nova Southeastern Univeristy, Fort Lauderdale, FL, United States of America
| | - Andre M. Daniels
- Wetland and Aquatic Research Center, U.S. Geological Survey, Davie, FL, United States of America
| | - Radleigh G. Santos
- SECLER: Study of Environmental Conservation through Leading-Edge Research, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- Department of Mathematics, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Paul E. Baldauf
- SECLER: Study of Environmental Conservation through Leading-Edge Research, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- Department of Marine and Environmental Sciences, Nova Southeastern Univeristy, Fort Lauderdale, FL, United States of America
| | - Amy C. Hirons
- SECLER: Study of Environmental Conservation through Leading-Edge Research, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- Department of Marine and Environmental Sciences, Nova Southeastern Univeristy, Fort Lauderdale, FL, United States of America
| |
Collapse
|
27
|
Hou Y, Bai Y, Lu C, Wang Q, Wang Z, Gao J, Xu H. Applying molecular docking to pesticides. PEST MANAGEMENT SCIENCE 2023; 79:4140-4152. [PMID: 37547967 DOI: 10.1002/ps.7700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/08/2023]
Abstract
Pesticide creation is related to the development of sustainable agricultural and ecological safety, and molecular docking technology can effectively help in pesticide innovation. This paper introduces the basic theory behind molecular docking, pesticide databases, and docking software. It also summarizes the application of molecular docking in the pesticide field, including the virtual screening of lead compounds, detection of pesticides and their metabolites in the environment, reverse screening of pesticide targets, and the study of resistance mechanisms. Finally, problems with the use of molecular docking technology in pesticide creation are discussed, and prospects for the future use of molecular docking technology in new pesticide development are discussed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Hou
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuqian Bai
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Chang Lu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Qiuchan Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Jinsheng Gao
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
28
|
Šulc L, Figueiredo D, Huss A, Kalina J, Gregor P, Janoš T, Šenk P, Dalecká A, Andrýsková L, Kodeš V, Čupr P. Current-use pesticide exposure pathways in Czech adults and children from the CELSPAC-SPECIMEn cohort. ENVIRONMENT INTERNATIONAL 2023; 181:108297. [PMID: 37939438 DOI: 10.1016/j.envint.2023.108297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION In this study, we aimed to characterise exposure to pyrethroids, organophosphates, and tebuconazole through multiple pathways in 110 parent-child pairs participating in the CELSPAC-SPECIMEn study. METHODS First, we estimated the daily intake (EDI) of pesticides based on measured urinary metabolites. Second, we compared EDI with estimated pesticide intake from food. We used multiple linear regression to identify the main predictors of urinary pesticide concentrations. We also assessed the relationship between urinary pesticide concentrations and organic and non-organic food consumption while controlling for a range of factors. Finally, we employed a model to estimate inhalation and dermal exposure due to spray drift and volatilization after assuming pesticide application in crop fields. RESULTS EDI was often higher in children in comparison to adults, especially in the winter season. A comparison of food intake estimates and EDI suggested diet as a critical pathway of tebuconazole exposure, less so in the case of organophosphates. Regression models showed that consumption per g of peaches/apricots was associated with an increase of 0.37% CI [0.23% to 0.51%] in urinary tebuconazole metabolite concentrations. Consumption of white bread was associated with an increase of 0.21% CI [0.08% to 0.35%], and consumption of organic strawberries was inversely associated (-61.52% CI [-79.34% to -28.32%]), with urinary pyrethroid metabolite concentrations. Inhalation and dermal exposure seemed to represent a relatively small contribution to pesticide exposure as compared to dietary intake. CONCLUSION In our study population, findings indicate diet plays a significant role in exposure to the analysed pesticides. We found an influence of potential exposure due to spray drift and volatilization among the subpopulation residing near presumably sprayed crop fields to be minimal in comparison. However, the lack of data indicating actual spraying occurred during the critical 24-hour period prior to urine sample collection could be a significant contributing factor.
Collapse
Affiliation(s)
- Libor Šulc
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Daniel Figueiredo
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jiří Kalina
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Petr Gregor
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Andrea Dalecká
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Vít Kodeš
- Czech Hydrometeorological Institute, Prague, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
29
|
Jiang C, Zhong H, Zou J, Zhu G, Huang Y. CuCeTA nanoflowers as an efficient peroxidase candidate for direct colorimetric detection of glyphosate. J Mater Chem B 2023; 11:9630-9638. [PMID: 37750214 DOI: 10.1039/d3tb01455j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Conventional nanozyme-based pesticide detection often requires the assistance of acetylcholinesterase. In this work, a CuCeTA nanozyme was successfully designed for the direct colorimetric detection of glyphosate. Direct detection can effectively avoid the problems caused by cascading with natural enzymes such as acetylcholinesterase. By assembling tannic acid, copper sulfate pentahydrate and cerium(III) nitrate hexahydrate, CuCeTA nanoflowers were prepared. The obtained CuCeTA possessed excellent peroxidase-like activity that could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB in the presence of hydrogen peroxide. Glyphosate could effectively inhibit the peroxidase-like activity of CuCeTA while other pesticides (fenthion, chlorpyrifos, profenofos, phosmet, bromoxynil and dichlorophen) did not show significant inhibitory effects on the catalytic activity of CuCeTA. In this way, CuCeTA could be used for the colorimetric detection of glyphosate with a low detection limit of 0.025 ppm. Combined with a smartphone and imageJ software, a glyphosate test paper was designed with a detection limit of 3.09 ppm. Fourier transform infrared spectroscopy demonstrated that glyphosate and CuCeTA might be bound by coordination, which could affect the catalytic activity of CuCeTA. Our CuCeTA-based nanozyme system exhibited unique selectivity and sensitivity for glyphosate detection and this work may provide a new strategy for rapid and convenient detection of pesticides.
Collapse
Affiliation(s)
- Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiahui Zou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Guancheng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
30
|
Zhao LX, Chen KY, He XL, Zou YL, Gao S, Fu Y, Ye F. Design, Synthesis, and Biological Activity Determination of Novel Phenylpyrazole Protoporphyrinogen Oxidase Inhibitor Herbicides Containing Five-Membered Heterocycles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14164-14178. [PMID: 37732717 DOI: 10.1021/acs.jafc.3c03108] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitor herbicides have attracted widespread attention in recent years as ideal herbicides due to their high efficiency, low toxicity, and low pollution. In this article, 30 phenylpyrazole derivatives containing five-membered heterocycles were designed and synthesized according to the principle of bioelectronic isoarrangement and active substructure splicing. A series of structural characterizations were performed on the synthesized compounds. The herbicide activity in greenhouse was evaluated to determine their growth inhibition effect on weeds, their IC50 value through in vitro PPO enzyme activity measurement was calculated, and target compounds 2i and 3j that have herbicide effects comparable to pyraflufen-ethyl were selected. Crop safety experiments have shown that when the spraying concentration is 300 g of ai/ha, gramineous crops such as wheat, corn, and rice are more tolerant to compound 2i, with wheat exhibiting high tolerance, which is equivalent to the crop safety of pyraflufen-ethyl. Compound 2i can be used as a candidate herbicide for wheat, corn, and paddy fields, and the results are consistent with the cumulative concentration experiment. Molecular docking results showed that compound 2i interacted with the amino acid residue ARG-98 by forming two hydrogen bonds and interacted with the amino acid residue PHE-392 by forming two π-π stacking interactions, indicating that compound 2i has more excellent herbicidal activity than pyraflufen-ethyl and is expected to become a potential lead compound of phenylpyrazole PPO inhibitor herbicides.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Kun-Yu Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiao-Li He
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
31
|
Li Y, Guo R, Liang X, Yao B, Yan S, Guo Y, Han Y, Cui J. Pollution characteristics, ecological and health risks of herbicides in a drinking water source and its inflowing rivers in North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122130. [PMID: 37394054 DOI: 10.1016/j.envpol.2023.122130] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
This study measured the pollution characteristics and ecological and health risks of 19 herbicides found in drinking water sources and their inflowing rivers. The targeted herbicides were prevalent in the study area, but most concentrations were well below 10 ng L-1. Acetochlor and atrazine were the dominant herbicides, although their levels were much lower than previously reported. Total herbicide residual levels were greater in April than in December and increased from upstream to downstream, resulting in the highest pollution levels found in the reservoirs, likely due to herbicides delivered from upstream and dense agricultural planting in the surrounding areas. Only atrazine and ametryn presented moderate ecological risks, while the summed risk quotients (ΣRQs) of each sample were >0.1, indicated that the total herbicide levels represented a moderate risk in all samples. For the human health risks, the risk quotients (RQ) of all target herbicides, the total RQs of each sample, and estimated life-stage RQs were far smaller than the 0.2 threshold, indicating the absence of human health risks when the water was consumed at any stage of life. However, early life stages exhibited 3-6 times higher RQ values than adulthood and should not be overlooked. And crucially, the synergistic or antagonistic effects of mixed herbicides are not well understood, and further research is needed to understand the impact of these herbicides on the ecosystem and human health, particularly possible affects in early life stages, such as infants and children.
Collapse
Affiliation(s)
- Yilin Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Ruiyao Guo
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xiaoge Liang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Bo Yao
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Yanan Guo
- Department of Cardiology, Hebei Province Hospital of Traditional Chinese Medicine, Shijiazhuang, 050011, China
| | - Yonghui Han
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jiansheng Cui
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
32
|
Sun C, Ye L, Wang L, Hu Z, Ding J. Surface-enhanced Raman scattering of a gold core-silver shell-sponge substrate for detection of thiram and diquat. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4645-4655. [PMID: 37665316 DOI: 10.1039/d3ay00922j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Aiming at the difficulty of traditional pesticide sampling, a low-cost and convenient flexible surface enhanced Raman scattering (SERS) gold core-silver shell-sponge (Au-Ag-sponge) substrate was synthesized by chemical reduction. The SERS substrate consisted of Au-AgNPs and a melamine sponge. The sponge had a rich open pore structure, which could well "capture" Au-AgNPs, generating a large number of "hot spots". The SERS enhancement activity of the flexible substrate was characterized with rhodamine 6G (R6G) Raman probe molecules. The substrate showed good activity to 10-12 M rhodamine 6G with an enhancement factor (EF) of 7.72 × 106. Applying this substrate to the qualitative and quantitative detection of pesticide residues, the results showed that the Raman intensity was well related to the concentration of pesticide solution with the range of 0.1-10 mg L-1 of thiram and 1-10 mg L-1 of diquat. Furthermore, the substrate was analyzed by finite difference time domain (FDTD) simulation and the results were in good agreement with the experimental results. The reason for the difference in Raman signals of pesticide molecules on the same substrate was the different binding modes of Au-AgNPs on the sponge. Finally, we pointed out the advantages of flexible substrates in the field of pesticide residues, as well as future opportunities and challenges.
Collapse
Affiliation(s)
- Chao Sun
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Li Ye
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Lizheng Wang
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Zhiming Hu
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| | - Jianjun Ding
- College of Intelligent Manufacturing, Jianghan University, Hubei, Wuhan, China.
| |
Collapse
|
33
|
Wang R, Yang X, Wang T, Kou R, Liu P, Huang Y, Chen C. Synergistic effects on oxidative stress, apoptosis and necrosis resulting from combined toxicity of three commonly used pesticides on HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115237. [PMID: 37451096 DOI: 10.1016/j.ecoenv.2023.115237] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The widespread use of pesticides performs a vital role in safeguarding crop yields and quality, providing the opportunity for multiple pesticides to co-exist, which poses a significant potential risk to human health. To assess the toxic effects caused by exposures to individual pesticides (chlorpyrifos, carbofuran and acetamiprid), binary combinations and ternary combinations, individual and combined exposure models were developed using HepG2 cells and the types of combined effects of pesticide mixtures were assessed using concentration addition (CA), independent action (IA) and combination index (CI) models, respectively, and the expression of biomarkers related to oxidative stress, apoptosis and cell necrosis was further examined. Our results showed that both individual pesticides and mixtures exerted toxic effects on HepG2 cells. The CI model indicated that the toxic effects of pesticide mixtures exhibited synergistic effects. The results of the lactate dehydrogenase (LDH) release and apoptosis assay revealed that the pesticide mixture increased the release of LDH and apoptosis levels. Moreover, our results also showed that individual pesticides and mixtures disrupted redox homeostasis and that pesticide mixtures produced more intense oxidative stress effects. In conclusion, we have illustrated the enhanced combined toxicity of pesticide mixtures by in-vitro experiments, which provides a theoretical basis and scientific basis for further toxicological studies.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xi Yang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Ruirui Kou
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Panpan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yueqing Huang
- Department of General Medicine, The Affliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou 215026, China.
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
34
|
Alkhatib F, Ibarhiam SF, Alrefaei AF, Alrefaee SH, Pashameah R, Habeebullah TM, Al-Qahtani SD, El-Metwaly NM. Efficient Removal of Deltamethrin from Aqueous Solutions Using a Novel Lanthanum Metal-Organic Framework: Adsorption Models and Optimization via Box-Behnken Design. ACS OMEGA 2023; 8:32130-32145. [PMID: 37692223 PMCID: PMC10483662 DOI: 10.1021/acsomega.3c04481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
Eliminating pesticides is essential for lowering the dangers to our environment. To do this effectively, it is crucial to find adsorbents with remarkable adsorption capacities, easy retrieval, and separation. Metal-organic frameworks (MOFs) have been extensively recognized for their exceptional ability to absorb pollutants. Therefore, we used novel lanthanum metal-organic frameworks (La-MOFs) to eliminate deltamethrin (DEL) from aqueous solutions. We proved through experimentation that the La-MOF is an efficient adsorbent for DEL from water. A study of the material revealed that the adsorbent had a surface area of 952.96 m2 per gram and a pore volume of 1.038 cm3/g. These outcomes show how this substance can absorb particles. Utilizing kinetic models and conforming to the pseudo-second-order model, a thorough analysis of the efficiency of DEL adsorption onto La-MOF was conducted. To create a perfectly tailored approach, we utilized many parameters. The synthetic La-MOF adsorbent may undergo up to five steps of adsorption-desorption and has exceptional cyclability and reusability. To confirm purifying wastewater samples in the laboratory, the presentation of the established adsorbent was evaluated. For the management of industrial effluent and water filtration, the La-MOF adsorbent offered a simple and effective solution. Our investigation suggests that the method we describe for removing DEL from wastewater samples using the La-MOF adsorbent is unique.
Collapse
Affiliation(s)
- Fatmah Alkhatib
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Saham F. Ibarhiam
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Abdulmajeed F. Alrefaei
- Department
of Biology/Genetic and Molecular Biology Central Laboratory (GMCL), Jamoum University College, Umm Al-Qura University, Makkah 2203, Saudi Arabia
| | - Salhah H. Alrefaee
- Department
of Chemistry, Faculty of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Rami Pashameah
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Turki M. Habeebullah
- Department
of Environment and Health Research, Custodian of Two Holy Mosques
Institute for Hajj and Umrah Research, Umm
Al Qura University, Makkah 21955, Saudi Arabia
| | - Salhah D. Al-Qahtani
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
35
|
Wang H, Xu W, Li L. Tefluthrin induced toxicities in zebrafish: Focusing on enantioselectivity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105572. [PMID: 37666624 DOI: 10.1016/j.pestbp.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
Tefluthrin is one of widely used chiral pyrethroid pesticides. The potential enantioselective risk posed by tefluthrin to the aquatic ecosystem is still unclear. In this study, the toxicity differences and corresponding mechanism of tefluthrin on zebrafish were investigated at the enantiomeric level. The results indicated that two tefluthrin enantiomers showed different acute toxicity, developmental toxicity and oxidative stress to zebrafish. The acute toxicity of (1R,3R)-tefluthrin was 130-176 fold as that of (1S,3S)-tefluthrin on zebrafish embryos, larvae and adults. (1R,3R)-Tefluthrin presented approximately 10, 3 and 2 times inhibition effect on the deformity rate, hatching rate and spontaneous movements on embryos as that of (1S,3S)-tefluthrin. Meanwhile, (1R,3R)-tefluthrin caused stronger oxidative stress on zebrafish embryo than (1S,3S)-tefluthrin. The molecular docking results revealed that there were stereospecific binding affinities between tefluthrin enantimers and sodium channel protein (Nav1.6), which may lead to acute toxicity differences. Transcriptome analysis showed that the two tefluthrin enantiomers markedly disturbed differential embryonic genes expression, thereby potentially causing the chronic enantioselective toxicity. The findings of the study reveal the toxicity differences and potential mechanism of tefluthrin enantiomers on zebrafish. These results also provides a foundation for a systematic evaluation of tefluthrin at enantiomer level.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Life Science, Hebei University, Baoding 071002, China
| | - Weiye Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Lianshan Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China.
| |
Collapse
|
36
|
Bang HY, Kim YK, Kim H, Baek EJ, Na T, Sim KS, Kim HJ. Ultra-High-Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry for Simultaneous Pesticide Analysis and Method Validation in Sweet Pepper. Molecules 2023; 28:5589. [PMID: 37513461 PMCID: PMC10383869 DOI: 10.3390/molecules28145589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Pesticides effectively reduce the population of various pests that harm crops and increase productivity, but leave residues that adversely affect health and the environment. Here, a simultaneous multicomponent analysis method based on ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) pretreated by the QuEChERS method was developed to control the maximum residual levels. Among the 140 pesticides with high frequency of detection in agricultural products in Gyeongnam region in Korea for 5 years, 12 pesticides with high detection frequency in sweet pepper were selected. The analytical method is validated, linearities are r2 > 0.999, limit of detection (LOD) ranges from 1.4 to 3.2 µg/kg, and limit of quantification (LOQ) ranges from 4.1 to 9.7 µg/kg, and the recovery rate was 81.7-99.7%. In addition, it was confirmed that a meaningful value of these parameters can be achieved by determining the measurement uncertainty. The results proved that parameters such as recovery rate and relative standard deviation of the analysis method were within international standards. Using the developed method, better and safer sweet peppers will be provided to consumers, and effective pesticide residue management will be possible by expanding to other agricultural products.
Collapse
Affiliation(s)
- Han Yeol Bang
- Gyeongnam Provincial Office, National Agricultural Products Quality Management Service, Busan 47537, Republic of Korea
| | - Yong-Kyoung Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon-si 39660, Republic of Korea
| | - Hyoyoung Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon-si 39660, Republic of Korea
| | - Eun Joo Baek
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon-si 39660, Republic of Korea
| | - Taewoong Na
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon-si 39660, Republic of Korea
| | - Kyu Sang Sim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon-si 39660, Republic of Korea
| | - Ho Jin Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
37
|
Mehmood N, Saeed M, Zafarullah S, Hyder S, Rizvi ZF, Gondal AS, Jamil N, Iqbal R, Ali B, Ercisli S, Kupe M. Multifaceted Impacts of Plant-Beneficial Pseudomonas spp. in Managing Various Plant Diseases and Crop Yield Improvement. ACS OMEGA 2023; 8:22296-22315. [PMID: 37396244 PMCID: PMC10308577 DOI: 10.1021/acsomega.3c00870] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Abstract
The modern agricultural system has issues with the reduction of agricultural productivity due to a wide range of abiotic and biotic stresses. It is also expected that in the future the entire world population may rapidly increase and will surely demand more food. Farmers now utilize a massive quantity of synthetic fertilizers and pesticides for disease management and to increase food production. These synthetic fertilizers badly affect the environment, the texture of the soil, plant productivity, and human health. However, agricultural safety and sustainability depend on an ecofriendly and inexpensive biological application. In contrast to synthetic fertilizers, soil inoculation with plant-growth-promoting rhizobacteria (PGPR) is one of the excellent alternative options. In this regard, we focused on the best PGPR genera, Pseudomonas, which exists in the rhizosphere as well as inside the plant's body and plays a role in sustainable agriculture. Many Pseudomonas spp. control plant pathogens and play an effective role in disease management through direct and indirect mechanisms. Pseudomonas spp. fix the amount of atmospheric nitrogen, solubilize phosphorus and potassium, and also produce phytohormones, lytic enzymes, volatile organic compounds, antibiotics, and secondary metabolites during stress conditions. These compounds stimulate plant growth by inducing systemic resistance and by inhibiting the growth of pathogens. Furthermore, pseudomonads also protect plants during different stress conditions like heavy metal pollution, osmosis, temperature, oxidative stress, etc. Now, several Pseudomonas-based commercial biological control products have been promoted and marketed, but there are a few limitations that hinder the development of this technology for extensive usage in agricultural systems. The variability among the members of Pseudomonas spp. draws attention to the huge research interest in this genus. There is a need to explore the potential of native Pseudomonas spp. as biocontrol agents and to use them in biopesticide development to support sustainable agriculture.
Collapse
Affiliation(s)
- Najaf Mehmood
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Mahnoor Saeed
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Sana Zafarullah
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Sajjad Hyder
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Zarrin Fatima Rizvi
- Department
of Botany, Government College Women University
Sialkot, Sialkot 51310, Pakistan
| | - Amjad Shahzad Gondal
- Department
of Plant Pathology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Nuzhat Jamil
- Department
of Botany, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur 63100, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
- HGF
Agro, Ata Teknokent, Erzurum TR-25240, Türkiye
| | - Muhammed Kupe
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
38
|
Wang J, Li S, Yang Y, Fan L, Qin W, Su L, Zhao Y, Li C. Photochemical behavior and photo-induced toxicity of chiral pesticides and their chiral monomers in aqueous environment. ENVIRONMENT INTERNATIONAL 2023; 177:107996. [PMID: 37276764 DOI: 10.1016/j.envint.2023.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
The photochemical behaviors of chiral pollutants in aqueous solutions are rarely studied using chiral monomers, which may hamper their precise risk assessment and lead to suspicious conclusions. In this study, we systematically investigated the phototransformation behavior and toxicity evolution of two widely used chiral pesticides (triadimefon (TF) and triadimenol (TN)) at enantiomer and diastereomer levels, and proposed a calculation method of total photolysis rate constants of chiral mixture. Results show that TF and TN could be photodegraded faster in pure water than in natural waters, and the observed photolysis rate constants (kobs) of TN with two chiral centers exhibit enantioselectivity, i.e., kobs(TN-RS) = kobs(TN-SR) > kobs(TN-RR) = kobs(TN-SS). The photolysis of TF and TN mainly occurs through their excited singlet and triplet states, respectively. Their photodegradation pathways mainly include dechlorination and elimination of triazole ring. TF could also undergo ether bond cleavage. It is also found that, both TF and TN exhibit photo-induced toxicity to V. fischeri, due to the generation of more toxic products than parent compounds. Furthermore, TN exhibits enantioselective photo-induced toxicity after 240-min irradiation, which could be ascribed to the formation of chiral products. These results could benefit the understanding of enantioselective environmental behavior of chiral pollutants.
Collapse
Affiliation(s)
- Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Shaochen Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Yandong Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Lingyun Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Weichao Qin
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Limin Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.
| |
Collapse
|
39
|
Payami H, Cohen G, Murchison CF, Sampson TR, Standaert DG, Wallen ZD. Population fraction of Parkinson's disease attributable to preventable risk factors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.19.23290231. [PMID: 37292848 PMCID: PMC10246145 DOI: 10.1101/2023.05.19.23290231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Parkinson's disease is the fastest growing neurologic disease with seemingly no means for prevention. Intrinsic risk factors (age, sex, genetics) are inescapable, but environmental factors are not. We studied population attributable fraction and estimated fraction of PD that could be reduced if modifiable risk factors were eliminated. Assessing several known risk factors simultaneously in one study, we demonstrate that all were operative and independent, underscoring etiological heterogeneity within a single population. We investigated repeated blows to head in sports or combat as a potential new risk factor, and found it was associated with two-fold increased risk of PD. Considering modifiable risk factors, 23% of PD cases in females were attributable to pesticides/herbicides exposure, and 30% of PD cases in males was attributable to pesticides/herbicides, Agent Orange/chemical warfare, and repeated blows to the head. Thus, one-in-three cases of PD in males, and one-in-four cases in females could have potentially been prevented.
Collapse
Affiliation(s)
- Haydeh Payami
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Gwendolyn Cohen
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Charles F Murchison
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Timothy R Sampson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30329, USA
| | - David G Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zachary D Wallen
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| |
Collapse
|
40
|
Wang Y, Chen Y, Gesang Y, Yang Z, Wang Y, Zhao K, Han M, Li C, Ouzhu L, Wang J, Wang H, Jiang Q. Exposure of Tibetan pregnant women to antibiotics in China: A biomonitoring-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121439. [PMID: 36921657 DOI: 10.1016/j.envpol.2023.121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Tibetan people are one Chinese ethnic minority living in Qinghai-Tibet Plateau with an average altitude of more than 4500 m. High altitude could cause a different antibiotic exposure, but relevant information is limited in Tibetan people. We investigated 476 Tibetan pregnant women in Lhasa, Tibet in 2021 and measured 30 antibiotics from five categories in urine, including 13 veterinary antibiotics (VAs), five human antibiotics (HAs), and 12 human/veterinary antibiotics (H/VAs). Food consumption was investigated by a brief food frequency questionnaire. Health risk was assessed by hazard quotient (HQ) and hazard index (HI) based on acceptable daily intakes (ADIs). All antibiotics were overall detected in 34.7% of urine samples with the 75th percentile concentration of 0.19 ng/mL (0.35 μg/g creatinine). HAs, VAs, and H/VAs were respectively detected in 5.3%, 13.0%, and 25.0% of urine samples, with the 95th percentiles of 0.01 ng/mL (0.01 μg/g creatinine), 0.50 ng/mL (0.99 μg/g creatinine), and 3.58 ng/mL (5.02 μg/g creatinine), respectively. Maternal age, smoking of family members, and housework time were associated with detection frequencies of HAs, VAs, or sum of all antibiotics. Pregnant women with a more frequent consumption of fresh milk, egg, yoghourt, poultry meat, and fish had a higher detection frequency of VAs or H/VAs. Only ciprofloxacin and tetracycline had a HQ of larger than one based on microbiological effect in 1.26% and 0.21% of pregnant women, respectively and a HI of larger than one was found in 1.47% of pregnant women. The findings suggested that there was an evident antibiotic exposure from various sources in Tibetan pregnant women with some basic characteristics of pregnant women as potential predictors and several animal-derived food items were important sources of exposure to antibiotic with a fraction of pregnant women in the health risk related to microbiological disruption of gut microbiota.
Collapse
Affiliation(s)
- Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1G5Z3, Canada
| | - Yangzong Gesang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ke Zhao
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Minghui Han
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Chunxia Li
- Obstetrics and Gynecology Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Luobu Ouzhu
- Administrative Department, Fukang Hospital, Affiliated Hospital of Tibet University, Lhasa, Tibet, 850000, China
| | - Jiwei Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
41
|
Ruman UE, Zubair M, Zeeshan MH. Analytical assessment of modulated electric flux triggered degradation of chlorfenapyr and deltamethrin pesticides in guava fruits. Anal Biochem 2023; 670:115148. [PMID: 37019252 DOI: 10.1016/j.ab.2023.115148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
The purpose of this study was to explore the new effective method and investigate the dissipation of chlorfenapyr and deltamethrin (DM) pesticides used in the treatment of guava fruit from tropical and sub-tropical areas of Pakistan. Five different solutions of varying concentrations of pesticides were prepared. This study involved the in-vitro and in-vivo analysis of modulated electric flux-triggered degradation as an efficient method for the safer degradation of selected pesticides. The Taser gun was used as a tool for providing different numbers of electrical shocks of million voltages to the pesticides present in guava fruit at different temperatures. The degraded pesticides were extracted and analyzed by High-performance liquid chromatography (HPLC). The HPLC chromatograms verified that significant dissipation of pesticides took place when these were exposed to 9 shocks at 37 °C, which proved the efficiency of this degradation method. More than 50% of the total spray of both pesticides was dissipated. Thus, modulated electrical flux-triggered degradation is one of the effective methods for pesticide degradation.
Collapse
|
42
|
Prissel CM, Grossardt BR, Klinger GS, St. Sauver JL, Rocca WA. Integrating Environmental Data with Medical Data in a Records-Linkage System to Explore Groundwater Nitrogen Levels and Child Health Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5116. [PMID: 36982025 PMCID: PMC10049688 DOI: 10.3390/ijerph20065116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Background: The Rochester Epidemiology Project (REP) medical records-linkage system offers a unique opportunity to integrate medical and residency data with existing environmental data, to estimate individual-level exposures. Our primary aim was to provide an archetype of this integration. Our secondary aim was to explore the association between groundwater inorganic nitrogen concentration and adverse child and adolescent health outcomes. Methods: We conducted a nested case-control study in children, aged seven to eighteen, from six counties of southeastern Minnesota. Groundwater inorganic nitrogen concentration data were interpolated, to estimate exposure across our study region. Residency data were then overlaid, to estimate individual-level exposure for our entire study population (n = 29,270). Clinical classification software sets of diagnostic codes were used to determine the presence of 21 clinical conditions. Regression models were adjusted for age, sex, race, and rurality. Results: The analyses support further investigation of associations between nitrogen concentration and chronic obstructive pulmonary disease and bronchiectasis (OR: 2.38, CI: 1.64-3.46) among boys and girls, thyroid disorders (OR: 1.44, CI: 1.05-1.99) and suicide and intentional self-inflicted injury (OR: 1.37, CI: >1.00-1.87) among girls, and attention deficit conduct and disruptive behavior disorders (OR: 1.34, CI: 1.24-1.46) among boys. Conclusions: Investigators with environmental health research questions should leverage the well-enumerated population and residency data in the REP.
Collapse
Affiliation(s)
- Christine M. Prissel
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon R. Grossardt
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory S. Klinger
- Water Resources Center, University of Minnesota Extension, Minneapolis, MN 55455, USA
| | - Jennifer L. St. Sauver
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- The Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 55905, USA
| | - Walter A. Rocca
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Women’s Health Research Center, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
43
|
Penke YK, Kar KK. A review on multi-synergistic transition metal oxide systems towards arsenic treatment: Near molecular analysis of surface-complexation (synchrotron studies/modeling tools). Adv Colloid Interface Sci 2023; 314:102859. [PMID: 36934514 DOI: 10.1016/j.cis.2023.102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/25/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
The science and interface chemistry between the arsenic (As) anions and the different adsorbent systems have been gaining interest in recent years in environmental remediation applications. Metal-oxides and the corresponding hybrid systems have shown promising performance as novel adsorbents in various treatment technologies. The abundance, surface chemistry, high surface area (active-centres), various synthesis and functionalization methodologies, and good recyclability make these metal oxide-based nanomaterials as potential remediating agents for As oxyanions. This work critically reviews eight different platforms focused on the arsenic contamination issue, where the first classification describes the origin of arsenic contamination and presents geographical and demo-graphical considerations. The following section briefs the state-of-the-art remediation techniques for arsenic treatment with a comparative evaluation. An emphasized discussion has been provided regarding the adsorption and classification of various metal oxide adsorbents. In the next classification, various multi-synergism abilities like Redox activity, Surface functional groups, Surface area/morphology, Heterogeneous catalysis, Reactive oxygen species, Photo-catalytic/electro-catalytic reactions, and Electrosorption are detailed. The classification of various characterization tools for accessing the arsenic remediation qualitatively and quantitatively are given in the fifth chapter. The first-of-its-kind dedicated analysis has been given on the surface complexation aspects of the arsenic speciation onto various metal adsorbent systems using synchrotron results, surface-complexation modeling, and molecular simulation (e.g., DFT) in the sixth chapter. The current sensing applications of these novel nano-material systems for arsenic determination using colorimetric and electrochemical-based analytical tools and a note about the economic parameters, i.e., regeneration aspects of various adsorbent systems/the sustainable applications of the treated sludge materials, are provided in the final sections. This work makes a critical analysis of 'Environmental Nanotechnology' towards 'Arsenic Treatment'.
Collapse
Affiliation(s)
- Yaswanth K Penke
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| |
Collapse
|
44
|
Health Risk Assessment of Pesticide Residues in Drinking Water of Upper Jhelum Region in Kashmir Valley-India by GC-MS/MS. Int J Anal Chem 2023; 2023:6802782. [PMID: 36741419 PMCID: PMC9897932 DOI: 10.1155/2023/6802782] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Globally growing demand for agricultural and farm foods has more or less become dependent on chemical pesticides to maintain the supply chain, which undoubtedly boosts agricultural production. However, pesticides not only impact the target pests but cause hazard to human health. Pesticides are ubiquitous and can be found in almost every component of the environment. They can therefore impair human and biota health when present over the threshold level. The present study assessed the concentration of commonly used pesticides for agricultural purposes but get mixed in different sources of water, as such fifteen sampling sites along the upper Jhelum basin of Kashmir valley were chosen. For the analysis, 60 water samples were obtained from different water sources. Gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) was used to determine pesticide residues in water samples. Pesticide residues from 10 of the 26 commonly used pesticides were detected in water samples. Difenoconazole had the highest concentration among the pesticides detected, with a mean concentration of 0.412 ± 0.424 μg/L ranging from 0.0 μg/L to 0.8196 μg/L. The target hazards quotient (THQ) was used to quantify the possible noncarcinogenic health risks associated with drinking pesticide-contaminated water. Only chlorpyrifos and quinalphos were detected >1 in RWS3 (1.6571), RWS4 (1.0285), RWS14 (1.2571), and RWS15 (1.2000) sample sites, implying that the drinking water poses a health risk to humans. Hence, pesticide hazards should be mitigated and rigorous monitoring is needed to reduce pesticide residues in drinking water.
Collapse
|
45
|
Carberry CK, Rager JE. The impact of environmental contaminants on extracellular vesicles and their key molecular regulators: A literature and database-driven review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:50-66. [PMID: 36502378 PMCID: PMC10798145 DOI: 10.1002/em.22522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Exposure to environmental chemicals is now well recognized as a significant factor contributing to the global burden of disease; however, there remain critical gaps in understanding the types of biological mechanisms that link environmental chemicals to adverse health outcomes. One type of mechanism that remains understudied involves extracellular vesicles (EVs), representing small cell-derived particles capable of carrying molecular signals such as RNAs, miRNAs, proteins, lipids, and chemicals through biological fluids and imparting beneficial, neutral, or negative effects on target cells. In fact, evidence is just now starting to grow that supports the role of EVs in various disease etiologies. This review aims to (1) Provide a landscape of the current understanding of the functional relationship between EVs and environmental chemicals; (2) Summarize current knowledge of EV regulatory processes including production, packaging, and release; and (3) Conduct a database-driven analysis of known chemical-gene interactions to predict and prioritize environmentally relevant chemicals that may impact EV regulatory genes and thus EV regulatory processes. This approach to predicting environmentally relevant chemicals that may alter EVs provides a novel method for evidence-based hypothesis generation for future studies evaluating the link between environmental exposures and EVs.
Collapse
Affiliation(s)
- Celeste K. Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julia E. Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Nie D, Li J, Xie Q, Ai L, Zhu C, Wu Y, Gui Q, Zhang L, Tan W. Nanoparticles: A Potential and Effective Method to Control Insect-Borne Diseases. Bioinorg Chem Appl 2023; 2023:5898160. [PMID: 37213220 PMCID: PMC10195175 DOI: 10.1155/2023/5898160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Insects act as vectors to carry a wide range of bacteria and viruses that can cause multiple vector-borne diseases in humans. Diseases such as dengue fever, epidemic encephalitis B, and epidemic typhus, which pose serious risks to humans, can be transmitted by insects. Due to the absence of effective vaccines for most arbovirus, insect control was the main strategy for vector-borne diseases control. However, the rise of drug resistance in the vectors brings a great challenge to the prevention and control of vector-borne diseases. Therefore, finding an eco-friendly method for vector control is essential to combat vector-borne diseases. Nanomaterials with the ability to resist insects and deliver drugs offer new opportunities to increase agent efficacy compared with traditional agents, and the application of nanoagents has expanded the field of vector-borne disease control. Up to now, the reviews of nanomaterials mainly focus on biomedicines, and the control of insect-borne diseases has always been a neglected field. In this study, we analyzed 425 works of the literature about different nanoparticles applied on vectors in PubMed around keywords, such as"nanoparticles against insect," "NPs against insect," and "metal nanoparticles against insect." Through these articles, we focus on the application and development of nanoparticles (NPs) for vector control, discussing the lethal mechanism of NPs to vectors, which can explore the prospect of applying nanotechnology in the prevention and control of vectors.
Collapse
Affiliation(s)
- Danyue Nie
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Jiaqiao Li
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinghua Xie
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Ai
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Yifan Wu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Qiyuan Gui
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Lingling Zhang
- Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| |
Collapse
|
47
|
Li Q, Wang J, Wu J, Zhai Q. The dual impacts of specialized agricultural services on pesticide application intensity: Evidence from China. PEST MANAGEMENT SCIENCE 2023; 79:76-87. [PMID: 36087290 DOI: 10.1002/ps.7174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/21/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Specialized agricultural services are a new trend in agricultural production around the world, especially in developing countries. However, the growing impacts of specialized agricultural services on pesticide application intensity are unclear. In regions facing pesticide overuse, do specialized agricultural services exacerbate or mitigate the problem? RESULTS Based on province-level panel data from China from 2004 to 2018, this study examines the impact of specialized agricultural services on pesticide application intensity, considering both direct and indirect (i.e. spatial spillover) effects. The dual impacts of specialized agricultural services on pesticide application intensity in China are identified. First, specialized agricultural services directly increase pesticide application intensity, likely due to increased cultivation and specialized management of land that was previously abandoned or marginally managed. Second, there is a negative indirect or spatial spillover effect of specialized agricultural services on pesticide application intensity, likely due to technology and efficiency diffusion enabled by the cross-regional provision of specialized agricultural services. The net impact of specialized agricultural services on pesticide application intensity is negative. CONCLUSION Crop protection services are regarded as the core force to promote the reduction of pesticide application intensity. Steps should be taken to promote the research and development, demonstration, and promotion of new technologies and equipment for crop protection services, particularly the development of crop protection by drones. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian Li
- College of Economics, Beijing Technology and Business University, Beijing, China
| | - Jingjing Wang
- Department of Economics, University of New Mexico, Albuquerque, NM, USA
| | - Junqian Wu
- Chinese Western Economic Research Center, Southwestern University of Finance and Economics, Chengdu, China
| | - Qianqian Zhai
- College of Economics and Management, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
48
|
Mahmoud LA, dos Reis RA, Chen X, Ting VP, Nayak S. Metal-Organic Frameworks as Potential Agents for Extraction and Delivery of Pesticides and Agrochemicals. ACS OMEGA 2022; 7:45910-45934. [PMID: 36570238 PMCID: PMC9773949 DOI: 10.1021/acsomega.2c05978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Pesticide contamination is a global issue, affecting nearly 44% of the global farming population, and disproportionately affecting farmers and agricultural workers in developing countries. Despite this, global pesticide usage is on the rise, with the growing demand of global food production with increasing population. Different types of porous materials, such as carbon and zeolites, have been explored for the remediation of pesticides from the environment. However, there are some limitations with these materials, especially due to lack of functional groups and relatively modest surface areas. In this regard, metal-organic frameworks (MOFs) provide us with a better alternative to conventionally used porous materials due to their versatile and highly porous structure. Recently, a number of MOFs have been studied for the extraction of pesticides from the environment as well as for targeted and controlled release of agrochemicals. Different types of pesticides and conditions have been investigated, and MOFs have proved their potential in agricultural applications. In this review, the latest studies on delivery and extraction of pesticides using MOFs are systematically reviewed, along with some recent studies on greener ways of pest control through the slow release of chemical compounds from MOF composites. Finally, we present our insights into the key issues concerning the development and translational applications of using MOFs for targeted delivery and pesticide control.
Collapse
Affiliation(s)
- Lila A.
M. Mahmoud
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, United Kingdom
- School
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | - Roberta A. dos Reis
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, United Kingdom
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo André, SP 09210, Brazil
| | - Xianfeng Chen
- School
of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Valeska P. Ting
- Bristol
Composites Institute, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom
| | - Sanjit Nayak
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, United Kingdom
| |
Collapse
|
49
|
Passos JDC, Felisbino K, Laureano HA, Guiloski IC. Occupational exposure to pesticides and its association with telomere length - A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157715. [PMID: 35914599 DOI: 10.1016/j.scitotenv.2022.157715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Telomere length is a common biomarker for the cumulative effect of environmental factors on aging-related diseases, therefore an association has been hypothesized between occupational exposure to pesticides and shorter telomere length. OBJECTIVE This study is a systematic review and meta-analysis aiming to examine the association between telomere length and occupational exposure to pesticides. METHODS We systematically searched in SciELO, PubMed, Scopus, Embase, Cochrane, Lilacs, Science Direct, and Web of Science databases for all observational studies containing measurements of telomere length on groups occupationally exposed to pesticides. Data were synthesized through qualitative synthesis and meta-analysis. We estimated the associations between exposed and non-exposed groups by using the natural log of the response ratio (lnRR). Heterogeneity was quantified using the Cochran Q test and I2 statistics. RESULTS Six studies were included in the qualitative synthesis and meta-analysis, with a total of 480 participants exposed to pesticides. The time of exposure evaluated 391 participants that had a range of 5 to >30 years of occupational exposure. Most studies presented shorter telomere length in the occupationally exposed group. From the six studies included in the meta-analysis, three presented telomere length measurement as a single copy gene (T/S), and three presented telomere length measurement as base pairs (bp). The statistical analysis pooled estimates (log ratio of means) of the telomere length in both measurements (T/S and bp) showed a shortening of telomere length in the exposed group when compared with the non-exposed (control) group. Two of six studies reported longer telomere length in the group exposed to pesticides. DISCUSSION Our findings suggest an association between occupational exposure to pesticides and shorter telomere length. However, we found a small number of studies to include in our meta-analysis, being required more high-quality studies to strengthen our findings and conclusions.
Collapse
Affiliation(s)
- Jaqueline Dal Curtivo Passos
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
| | - Karoline Felisbino
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | - Izonete Cristina Guiloski
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| |
Collapse
|
50
|
Goh PS, Ahmad NA, Wong TW, Yogarathinam LT, Ismail AF. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward. CHEMOSPHERE 2022; 307:136018. [PMID: 35973494 DOI: 10.1016/j.chemosphere.2022.136018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The noxious side effects of pesticides on human health and environment have prompted the search of effective and reliable treatment techniques for pesticide removal. The removal of pesticides can be accomplished through physical, chemical and biologicals. Physical approaches such as filtration and adsorption are prevailing pesticide removal strategies on account of their effectiveness and ease of operation. Membrane-based filtration technology has been recognized as a promising water and wastewater treatment approach that can be used for a wide range of organic micropollutants including pesticides. Nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) have been increasingly explored for pesticide removal from aquatic environment owing to their versatility and high treatment efficiencies. This review looks into the remedial strategies of pesticides from aqueous environment using membrane-based processes. The potentials and applications of three prevailing membrane processes, namely NF, RO and FO for the treatment of pesticide-containing wastewater are discussed in terms of the development of advanced membranes, separation mechanisms and system design. The challenges in regards to the practical implementation of membrane-based processes for pesticide remediation are identified. The corresponding research directions and way forward are highlighted. An in depth understanding of the pesticide nature, water chemistry and the pesticide-membrane interactions is the key to achieving high pesticide removal efficiency. The integration of membrane technology and conventional removal technologies represents a new dimension and the future direction for the treatment of wastewater containing recalcitrant pesticides.
Collapse
Affiliation(s)
- P S Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - N A Ahmad
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - T W Wong
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - L T Yogarathinam
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| |
Collapse
|