1
|
Song N, Zheng W, Song B, Zheng J. Allosteric Regulation and Inhibition of Coronavirus 3CLpro Revealed by HDX-MS. Chembiochem 2024; 25:e202400001. [PMID: 38720172 DOI: 10.1002/cbic.202400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/03/2024] [Indexed: 07/03/2024]
Abstract
Coronavirus (CoV) infections have caused contagious and fatal respiratory diseases in humans worldwide. CoV 3-chymotrypsin-like proteases (3CLpro or Mpro) play an important role in viral maturation, and maintenance of their dimeric conformation is crucial for viral activity. Therefore, allosterically regulated dimerization of 3CLpro can be employed as a drug development target. Here, we investigated the allosteric regulatory mechanism of 3CLpro dimerization by using hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) technology. We found that the FLAG tag directly coupled to the N-finger of 3CLpro significantly increased HDX kinetics at the dimer interface, and 3CLpro transformed from a dimer to a monomer. The 3CLpro mutants of SARS-CoV-2, which are monomeric, also exhibited increased deuterium exchange. Binding of the allosteric inhibitor Gastrodenol to most betacoronavirus 3CLpros led to increased allosteric deuterium exchange, resulting in the monomeric conformation of the CoV 3CLpro upon binding. Molecular dynamics (MD) simulation analysis further indicated the molecular mechanism of action of Gastrodenol on CoV 3CLpro: binding of Gastrodenol to SARS-CoV-2 3CLpro destroyed the hydrogen bond in the dimer interface. These results suggest that Gastrodenol may be a potential broad-spectrum anti-betacoronavirus drug.
Collapse
Affiliation(s)
- Ning Song
- Immunological Disease Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, 201203, Shanghai, PR China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, 101408, Beijing, PR China
| | - Wen Zheng
- CADD computer-aided protein Design Simulator, Hubei Yuanda Biotechnology Co., Ltd., Building B6, Optics Valley Biological City, Hongshan District, 430000, Wuhan, Hubei, PR China
| | - Bin Song
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, 200025, Shanghai, PR China
| | - Jie Zheng
- Immunological Disease Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, 201203, Shanghai, PR China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, 101408, Beijing, PR China
| |
Collapse
|
2
|
Wang R, Guo J, Lu J, Du P, Zhang J, Yu Y, Chen L, Xiong Z, Xiang Y, Ni X, Xu J, Yang Z. A potential broad-spectrum neutralizing antibody against Betacoronavirus. J Med Virol 2023; 95:e29252. [PMID: 38078658 DOI: 10.1002/jmv.29252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Three pandemics caused by human Betacoronavirus had broken out in the past two decades. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was one of the novel epidemic strains which caused the third pandemic, coronavirus disease 2019 (COVID-19), a global public health crisis. So far, more than millions of people have been infected. Considering the public health and economic impact of Betacoronavirus pandemic, drugs with broad-spectrum activity against these coronaviruses are urgently needed. In this study, two monoclonal antibodies targeting SARS-CoV-2 spike protein receptor-binding domain (RBD) with good neutralizing activity were used to construct a novel immunoglobulin-like bispecific antibody BI31. The neutralizing effect of BI31 against the pseudovirus and the authentic virus is better than that of its parent antibodies alone and in combination. What surprised us most was that the newly constructed bispecific antibody also had the neutralizing activity against SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) that the parent antibodies did not have. These suggested that the BI31 can not only be developed as a therapeutic drug against COVID-19 but it could also become a broad-spectrum therapeutic antibody against Betacoronavirus.
Collapse
Affiliation(s)
- Rong Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Jiazheng Guo
- Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - YunZhou Yu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lei Chen
- Beijing Institute of Biotechnology, Beijing, China
| | | | | | - Xiaodan Ni
- Shuimu BioSciences Co., Ltd, Beijing, China
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
3
|
Li Q, Shah T, Wang B, Qu L, Wang R, Hou Y, Baloch Z, Xia X. Cross-species transmission, evolution and zoonotic potential of coronaviruses. Front Cell Infect Microbiol 2023; 12:1081370. [PMID: 36683695 PMCID: PMC9853062 DOI: 10.3389/fcimb.2022.1081370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Coronaviruses (CoVs) continuously evolve, crossing species barriers and spreading across host ranges. Over the last two decades, several CoVs (HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2) have emerged in animals and mammals, causing significant economic and human life losses. Due to CoV cross-species transmission and the evolution of novel viruses, it is critical to identify their natural reservoiurs and the circumstances under which their transmission occurs. In this review, we use genetic and ecological data to disentangle the evolution of various CoVs in wildlife, humans, and domestic mammals. We thoroughly investigate several host species and outline the epidemiology of CoVs toward specific hosts. We also discuss the cross-species transmission of CoVs at the interface of wildlife, animals, and humans. Clarifying the epidemiology and diversity of species reservoirs will significantly impact our ability to respond to the future emergence of CoVs in humans and domestic animals.
Collapse
Affiliation(s)
- Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China,The First Affiliated Hospital & Clinical Medical College, Dali University, Dali, Yunnan, China
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Linyu Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Rui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China,*Correspondence: Xueshan Xia,
| |
Collapse
|
4
|
Babaeimarzangou SS, Zaker H, Soleimannezhadbari E, Gamchi NS, Kazeminia M, Tarighi S, Seyedian H, Tsatsakis A, Spandidos DA, Margina D. Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the Coronaviridae and Togaviridae families (Review). Exp Ther Med 2022; 25:42. [PMID: 36569444 PMCID: PMC9768462 DOI: 10.3892/etm.2022.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of zoonotic viral diseases pose a severe threat to public health and economies worldwide, with this currently being more prominent than it previously was human history. These emergency zoonotic diseases that originated and transmitted from vertebrates to humans have been estimated to account for approximately one billion cases of illness and have caused millions of deaths worldwide annually. The recent emergence of severe acute respiratory syndrome coronavirus-2 (coronavirus disease 2019) is an excellent example of the unpredictable public health threat causing a pandemic. The present review summarizes the literature data regarding the main vaccine developments in human clinical phase I, II and III trials against the zoonotic positive-sense single-stranded RNA viruses belonging to the Coronavirus and Alphavirus genera, including severe acute respiratory syndrome, Middle east respiratory syndrome, Venezuelan equine encephalitis virus, Semliki Forest virus, Ross River virus, Chikungunya virus and O'nyong-nyong virus. That there are neither vaccines nor effective antiviral drugs available against most of these viruses is undeniable. Therefore, new explosive outbreaks of these zoonotic viruses may surely be expected. The present comprehensive review provides an update on the status of vaccine development in different clinical trials against these viruses, as well as an overview of the present results of these trials.
Collapse
Affiliation(s)
- Seyed Sajjad Babaeimarzangou
- Division of Poultry Health and Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Himasadat Zaker
- Histology and Microscopic Analysis Division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia 5756115322, Iran
| | | | - Naeimeh Shamsi Gamchi
- Histology and Microscopic Analysis Division, RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia 5756115322, Iran
| | - Masoud Kazeminia
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Shima Tarighi
- Veterinary Office of West Azerbaijan Province, Urmia 5717617695, Iran
| | - Homayon Seyedian
- Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Department of Medicine, University of Crete, 71307 Heraklion, Greece,Correspondence to: Professor Denisa Margina, Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Denisa Margina
- Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 020956 Bucharest, Romania,Correspondence to: Professor Denisa Margina, Department of Biochemistry, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
5
|
Yavuz Baskiran D, Bayir B, Pehlivan E. Determination of COVID-19 Phobia Level in Health Care Workers. SOCIAL WORK IN PUBLIC HEALTH 2022; 37:719-728. [PMID: 35702763 DOI: 10.1080/19371918.2022.2085836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of this study is to determine the COVID-19 phobia level in healthcare workers. The socio-demographic characteristics form and the Coronavirus 19 Phobia (CP19-S) Scale were used as data collection tools. The surveys were shared online on social media. 467 healthcare workers who agreed to participate in the study were reached. Employees who got 55.30 ± 14.64 points from the scale total scores and university graduates were found to have an average of 55.51 ± 14.11, and their families averaged 57.84 ± 15.05. As a result, it was determined that the COVID-19 phobia levels of healthcare workers were affected by situations such as gender, education level and elderly family members. In this case, the importance of determining the working areas of healthcare professionals according to their phobia levels is emphasized, as it will affect the quality of care given to patients during the pandemic process.
Collapse
Affiliation(s)
| | - Berna Bayir
- Department of Nursing, KTO Karatay University, Konya, Turkey
| | | |
Collapse
|
6
|
Sun Y, Zou Y, Wang H, Cui G, Yu Z, Ren Z. Immune response induced by novel coronavirus infection. Front Cell Infect Microbiol 2022; 12:988604. [PMID: 36389144 PMCID: PMC9641212 DOI: 10.3389/fcimb.2022.988604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has been prominent around the world since it was first discovered, affecting more than 100 million people. Although the symptoms of most infected patients are not serious, there is still a considerable proportion of patients who need hospitalization and even develop fatal symptoms such as cytokine storms, acute respiratory distress syndrome and so on. Cytokine storm is usually described as a collection of clinical manifestations caused by overactivation of the immune system, which plays an important role in tissue injury and multiorgan failure. The immune system of healthy individuals is composed of two interrelated parts, the innate immune system and the adaptive immune system. Innate immunity is the body's first line of defense against viruses; it can quickly perceive viruses through pattern recognition receptors and activate related inflammatory pathways to clear pathogens. The adaptive immune system is activated by specific antigens and is mainly composed of CD4+ T cells, CD8+ T cells and B cells, which play different roles in viral infection. Here, we discuss the immune response after SARS-CoV-2 infection. In-depth study of the recognition of and response of innate immunity and adaptive immunity to SARS-CoV-2 will help to prevent the development of critical cases and aid the exploration of more targeted treatments.
Collapse
Affiliation(s)
- Ying Sun
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Bedada FB, Gorfu G, Teng S, Neita ME. Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:917201. [PMID: 39157715 PMCID: PMC11328875 DOI: 10.3389/fmmed.2022.917201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/13/2022] [Indexed: 08/20/2024]
Abstract
SARS-CoV-2 is a novel zoonotic positive-sense RNA virus (ssRNA+) belonging to the genus beta coronaviruses (CoVs) in the Coronaviridae family. It is the causative agent for the outbreak of the disease, COVID-19. It is the third CoV causing pneumonia around the world in the past 2 decades. To date, it has caused significant deaths worldwide. Notably, the emergence of new genetic variants conferring efficient transmission and immune evasion remained a challenge, despite the reduction in the number of death cases, owing to effective vaccination regimen (boosting) and safety protocols. Thus, information harnessed from SARS-CoV-2 genomic organization is indispensable for seeking laboratory diagnosis and treatment options. Here in, we review previously circulating variants of SARS-CoV-2 designated variant of concern (VOC) including the Alpha (United Kingdom), Beta (South Africa), Gamma (Brazil), Delta (India), and recently circulating VOC, Omicron (South Africa) and its divergent subvariants (BA.1, BA.2, BA.3, BA.2.12.1, BA.4 and BA.5) with BA.5 currently becoming dominant and prolonging the COVID pandemic. In addition, we address the role of computational models for mutagenesis analysis which can predict important residues that contribute to transmissibility, virulence, immune evasion, and molecular detections of SARS-CoV-2. Concomitantly, the importance of harnessing the immunobiology of SARS-CoV-2 and host interaction for therapeutic purpose; and use of an in slilico based biocomputational approaches to achieve this purpose via predicting novel therapeutic agents targeting PRR such as toll like receptor, design of universal vaccine and chimeric antibodies tailored to the emergent variant have been highlighted.
Collapse
Affiliation(s)
- Fikru B. Bedada
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Gezahegn Gorfu
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
- Department of Pathology, College of Medicine, Howard University, Washington, DC, United States
| | - Shaolei Teng
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC, United States
| | - Marguerite E. Neita
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| |
Collapse
|
8
|
The Mechanisms of Zinc Action as a Potent Anti-Viral Agent: The Clinical Therapeutic Implication in COVID-19. Antioxidants (Basel) 2022; 11:antiox11101862. [PMID: 36290585 PMCID: PMC9598180 DOI: 10.3390/antiox11101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
The pandemic of COVID-19 was caused by a novel coronavirus termed as SARS-CoV2 and is still ongoing with high morbidity and mortality rates in the whole world. The pathogenesis of COVID-19 is highly linked with over-active immune and inflammatory responses, leading to activated cytokine storm, which contribute to ARDS with worsen outcome. Currently, there is no effective therapeutic drug for the treatment of COVID-19. Zinc is known to act as an immune modulator, which plays an important role in immune defense system. Recently, zinc has been widely considered as an anti-inflammatory and anti-oxidant agent. Accumulating numbers of studies have revealed that zinc plays an important role in antiviral immunity in several viral infections. Several early clinical trials clearly indicate that zinc treatment remarkably decreased the severity of the upper respiratory infection of rhinovirus in humans. Currently, zinc has been used for the therapeutic intervention of COVID-19 in many different clinical trials. Several clinical studies reveal that zinc treatment using a combination of HCQ and zinc pronouncedly reduced symptom score and the rates of hospital admission and mortality in COVID-19 patients. These data support that zinc might act as an anti-viral agent in the addition to its anti-inflammatory and anti-oxidant properties for the adjuvant therapeutic intervention of COVID-19.
Collapse
|
9
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022; 13:791267. [PMID: 35529872 PMCID: PMC9069556 DOI: 10.3389/fimmu.2022.791267] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.
Collapse
Affiliation(s)
- Jun Dai
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi City, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| |
Collapse
|
10
|
Ebubeogu AF, Ozigbu CE, Maswadi K, Seixas A, Ofem P, Conserve DF. Predicting the number of COVID-19 infections and deaths in USA. Global Health 2022; 18:37. [PMID: 35346262 PMCID: PMC8959784 DOI: 10.1186/s12992-022-00827-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Uncertainties surrounding the 2019 novel coronavirus (COVID-19) remain a major global health challenge and requires attention. Researchers and medical experts have made remarkable efforts to reduce the number of cases and prevent future outbreaks through vaccines and other measures. However, there is little evidence on how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection entropy can be applied in predicting the possible number of infections and deaths. In addition, more studies on how the COVID-19 infection density contributes to the rise in infections are needed. This study demonstrates how the SARS-COV-2 daily infection entropy can be applied in predicting the number of infections within a given period. In addition, the infection density within a given population attributes to an increase in the number of COVID-19 cases and, consequently, the new variants. RESULTS Using the COVID-19 initial data reported by Johns Hopkins University, World Health Organization (WHO) and Global Initiative on Sharing All Influenza Data (GISAID), the result shows that the original SAR-COV-2 strain has R0<1 with an initial infection growth rate entropy of 9.11 bits for the United States (U.S.). At close proximity, the average infection time for an infected individual to infect others within a susceptible population is approximately 7 minutes. Assuming no vaccines were available, in the U.S., the number of infections could range between 41,220,199 and 82,440,398 in late March 2022 with approximately, 1,211,036 deaths. However, with the available vaccines, nearly 48 Million COVID-19 cases and 706, 437 deaths have been prevented. CONCLUSION The proposed technique will contribute to the ongoing investigation of the COVID-19 pandemic and a blueprint to address the uncertainties surrounding the pandemic.
Collapse
Affiliation(s)
| | - Chamberline Ekene Ozigbu
- Department of Health Services Policy and Management, Arnold School of Public, Health, Columbia, 29208, SC, United States
| | - Kholoud Maswadi
- Department of Management Information Systems, Jazan University, Jazan, 45142, Saudi Arabia
| | - Azizi Seixas
- Department of Psychiatry and Behavioral Sciences, The University of Miami Miller School of Medicine, Miami, 33136, FL, United States
| | - Paulinus Ofem
- Department of Software Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Donaldson F Conserve
- Department of Prevention and Community Health, Milken Institute School of Public Health, The George Washington University, Washington, 20052, United States
| |
Collapse
|
11
|
Tabarej MS, Minz S. Spatio-temporal changes pattern in the hotspot's footprint: a case study of confirmed, recovered and deceased cases of Covid-19 in India. SPATIAL INFORMATION RESEARCH 2022; 30:527-538. [PMCID: PMC9107016 DOI: 10.1007/s41324-022-00443-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 10/18/2023]
Abstract
Hotspot detection and the analysis for the hotspot's footprint recently gained more attention due to the pandemic caused by the coronavirus. Different countries face the effect of the virus differently. In India, very little research has been done to find the virus transmission. The paper's main objective is to find changing pattern of the footprint of the hotspot. The confirmed, recovered, and deceased cases of the Covid-19 from April 2020 to Jan 2021 is chosen for the analysis. The study found a sudden change in the hotspot district and a similar change in the footprint from August. Change pattern of the hotspot's footprint will show that October is the most dangerous month for the first wave of the Corona. This type of study is helpful for the health department to understand the behavior of the virus during the pandemic. To find the presence of the clustering pattern in the dataset, we use Global Moran’s I. A value of Global Moran’s I greater than zero shows the clustering in the data set. Dataset is temporal, and for each type of case, the value Global Moran’s I > 0, shows the presence of clustering. Local Moran’s I find the location of cluster i.e., the hotspot. The dataset is granulated at the district level. A district with a high Local Moran’s I surrounded by a high Local Moran’s I value is considered the hotspot. Monte Carlo simulation with 999 simulations is taken to find the statistical significance. So, for the 99% significance level, the p-value is taken as 0.001. A hotspot that satisfies the p-value threshold is considered the statistically significant hotspot. The footprint of the hotspot is found from the coverage of the hotspot. Finally, a change vector is defined that finds the pattern of change in the time series of the hotspot’s footprint.
Collapse
Affiliation(s)
- Mohd Shamsh Tabarej
- School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sonajharia Minz
- School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
12
|
Bosaeed M, Balkhy HH, Almaziad S, Aljami HA, Alhatmi H, Alanazi H, Alahmadi M, Jawhary A, Alenazi MW, Almasoud A, Alanazi R, Bittaye M, Aboagye J, Albaalharith N, Batawi S, Folegatti P, Ramos Lopez F, Ewer K, Almoaikel K, Aljeraisy M, Alothman A, Gilbert SC, Khalaf Alharbi N. Safety and immunogenicity of ChAdOx1 MERS vaccine candidate in healthy Middle Eastern adults (MERS002): an open-label, non-randomised, dose-escalation, phase 1b trial. THE LANCET. MICROBE 2022; 3:e11-e20. [PMID: 34751259 PMCID: PMC8565931 DOI: 10.1016/s2666-5247(21)00193-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND ChAdOx1-vectored vaccine candidates against several pathogens have been developed and tested in clinical trials and ChAdOx1 nCoV-19 has now been licensed for emergency use for COVID-19. We assessed the safety and immunogenicity of the ChAdOx1 MERS vaccine in a phase 1b trial in healthy Middle Eastern adults. METHOD MERS002 is an open-label, non-randomised, dose-escalation, phase 1b trial. Healthy Middle Eastern adults aged 18-50 years were included in the study. ChAdOx1 MERS was administered as a single intramuscular injection into the deltoid muscle of the non-dominant arm at three different dose groups: 5·0 × 109 viral particles in a low-dose group, 2·5 × 1010 viral particles in an intermediate-dose group, and 5·0 × 1010 viral particles in a high-dose group. The primary objective was to assess the safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited and unsolicited adverse events after vaccination for up to 28 days and occurrence of serious adverse events up to 6 months. The study is registered with ClinicalTrials.gov, NCT04170829. FINDINGS Between Dec 17, 2019, and June 1, 2020, 24 participants were enrolled (six to the low-dose, nine to the intermediate-dose, and nine to the high-dose group) and received a dose; 23 were available for follow-up at 6 months. The one dose of ChAdOx1 MERS vaccine was well tolerated with no serious adverse event reported during the 6 months of follow-up. Most adverse events were mild (67, 74%) and moderate (17, 19%). Six (7%) severe adverse events were reported by two participants in the intermediate-dose group (two feverish, two headache, one joint pain, and one muscle pain). Pain at the injection site was the most common local and overall adverse event, reported by 15 (63%) of the 24 participants. The most common systemic adverse event was headache, reported by 14 (58%), followed by muscle pain reported by 13 (54%). The vaccine induced both antibody and T cell immune responses in all volunteers; antibodies peaked at day 28 and T cell responses peaked at day 14; and continued until the end of follow-up at 6 months. INTERPRETATION The acceptable safety and immunogenicity data from this phase 1b trial of ChAdOx1 MERS vaccine candidate in Healthy Middle Eastern adults, combined with previous safety and immunogenicity data from a trial in the UK, support selecting the ChAdOx1 MERS vaccine for advancement into phase 2 clinical evaluation. FUNDING UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research; and King Abdullah International Medical Research Center.
Collapse
Affiliation(s)
- Mohammad Bosaeed
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City in Riyadh, Riyadh, Saudi Arabia
| | | | - Sultan Almaziad
- Department of Medicine, King Abdulaziz Medical City in Riyadh, Riyadh, Saudi Arabia
| | - Haya A Aljami
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hind Alhatmi
- Department of Medicine, King Abdulaziz Medical City in Riyadh, Riyadh, Saudi Arabia
| | - Hala Alanazi
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mashael Alahmadi
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ayah Jawhary
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed W Alenazi
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulrahman Almasoud
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Rawan Alanazi
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mustapha Bittaye
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jeremy Aboagye
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nahla Albaalharith
- Department of Nursing, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah Batawi
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pedro Folegatti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fernando Ramos Lopez
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Ewer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Khalid Almoaikel
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Majed Aljeraisy
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Adel Alothman
- Clinical Trial Services, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City in Riyadh, Riyadh, Saudi Arabia
| | - Sarah C Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Naif Khalaf Alharbi
- Vaccine Development Unit, Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Menberu T, Mekonnen R, Manaye Y, Kebede M, Solomon Y, Sema A, Yazie B, Ayalew AF. Preparedness toward COVID-19 pandemics and associated factors among health care workers in Dire Dawa Hospitals, Eastern Ethiopia: A facility-based cross-sectional study. SAGE Open Med 2021; 9:20503121211054970. [PMID: 34777805 PMCID: PMC8573487 DOI: 10.1177/20503121211054970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Health care workers are at the frontline of the response against the COVID-19 outbreak. Poor preparedness and infection prevention practices among health care workers compound the hazard and occurrence of COVID-19 hospital transmission. Thus, the study aimed to assess preparedness toward COVID-19 pandemics and associated factors among health care workers in Hospitals of Eastern Ethiopia. Methods: Facility-based cross-sectional study was conducted from 20 June to July 10 2020. A simple random sampling technique was used to select 423 health care workers. Data were collected using a structured self-administered questionnaire and analyzed using SPSS Version 23. Bivariate and multivariable logistic regression was conducted to identify factors associated with the outcome variable, and statistical significance was declared at a p-value less than 0.05. Results: This study revealed that the proportion of health care workers’ preparedness toward the COVID-19 pandemic was 40.9% (95% CI: 36.2–45.9). Working in a public hospital (AOR = 2.7, 95% CI: 1.6–4.3), being unafraid of transmitting COVID-19 to patients (Adjusted odds ratio/AOR = 4.6, 95% CI: 2.2–10.0), feeling safe at the workplace (AOR = 3.3, 95% CI: 1.7–6.4)), satisfied with the infection control policy (AOR = 6.0, 95% CI: 2.3–15.0), and not feeling anxious about the likelihood of COVID-19 spread (AOR = 2.1, 95% CI: 1.3–3.4) were significantly associated with COVID-19 preparedness. Conclusion: The majority of the health care workers were not prepared for COVID-19 pandemics. Feeling safe at the workplace scared of transmitting COVID-19 to patients, satisfied with the infection control policy, and feeling anxious concerning the likelihood of COVID-19 were factors associated with health care workers’ preparedness to COVID-19. The current awareness creation training, including motivational and psychological preparation for all health care workers, is mandatory, regardless of their profession or working place.
Collapse
Affiliation(s)
- Tameru Menberu
- Department of Medical Laboratory, College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Robel Mekonnen
- Department of Medical Laboratory, College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Yibekal Manaye
- Department of Public Health, College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Mesfin Kebede
- Department of Public Health, College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Yonatan Solomon
- Department of Nursing, College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Alekaw Sema
- Department of Midwifery, College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Bekele Yazie
- School of Medicine, College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Agumas Fentahun Ayalew
- Department of Public Health, Health Sciences College, Salale University, Salale, Ethiopia
| |
Collapse
|
14
|
Murtuja S, Shilkar D, Sarkar B, Sinha BN, Jayaprakash V. A short survey of dengue protease inhibitor development in the past 6 years (2015-2020) with an emphasis on similarities between DENV and SARS-CoV-2 proteases. Bioorg Med Chem 2021; 49:116415. [PMID: 34601454 PMCID: PMC8450225 DOI: 10.1016/j.bmc.2021.116415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
Dengue remains a disease of significant concern, responsible for nearly half of all arthropod-borne disease cases across the globe. Due to the lack of potent and targeted therapeutics, palliative treatment and the adoption of preventive measures remain the only available options. Compounding the problem further, the failure of the only dengue vaccine, Dengvaxia®, also delivered a significant blow to any hopes for the treatment of dengue fever. However, the success of Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV) protease inhibitors in the past have continued to encourage researchers to investigate other viral protease targets. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing and also for being the most conserved domain in the viral genome. During the early days of the COVID-19 pandemic, a few cases of Dengue-COVID 19 co-infection were reported. In this review, we compared the substrate-peptide residue preferences and the residues lining the sub-pockets of the proteases of these two viruses and analyzed the significance of this similarity. Also, we attempted to abridge the developments in anti-dengue drug discovery in the last six years (2015-2020), focusing on critical discoveries that influenced the research.
Collapse
Affiliation(s)
- Sheikh Murtuja
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India.
| |
Collapse
|
15
|
Strohbehn IA, Zhao S, Seethapathy H, Lee M, Rusibamayila N, Allegretti AS, Parada XV, Sise ME. Acute Kidney Injury Incidence, Recovery, and Long-term Kidney Outcomes Among Hospitalized Patients With COVID-19 and Influenza. Kidney Int Rep 2021; 6:2565-2574. [PMID: 34307971 PMCID: PMC8280679 DOI: 10.1016/j.ekir.2021.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a common complication in patients with severe COVID-19. We sought to compare the AKI incidence and outcomes among patients hospitalized with COVID-19 and with influenza. METHODS This was a retrospective cohort study of patients with COVID-19 hospitalized between March and May 2020 and historical controls hospitalized with influenza A or B between January 2017 and December 2019 within a large health care system. Cox proportional hazards models were used to compare the risk of AKI during hospitalization. Secondary outcomes included AKI recovery, mortality, new-onset chronic kidney disease (CKD), and ≥25% estimated glomerular filtration rate (eGFR) decline. RESULTS A total of 2425 patients were included; 1091 (45%) had COVID-19, and 1334 (55%) had influenza. The overall AKI rate was 23% and 13% in patients with COVID-19 and influenza, respectively. Compared with influenza, hospitalized patients with COVID-19 had an increased risk of developing AKI (adjusted hazard ratio [aHR] = 1.58; 95% confidence interval [CI], 1.29-1.94). Patients with AKI were more likely to die in the hospital when infected with COVID-19 versus influenza (aHR = 3.55; 95% CI, 2.11-5.97). Among patients surviving to hospital discharge, the rate of AKI recovery was lower in patients with COVID-19 (aHR = 0.47; 95% CI, 0.36-0.62); however, among patients followed for ≥90 days, new-onset CKD (aHR = 1.24; 95% CI, 0.86-1.78) and ≥25% eGFR decline at the last follow-up (aHR = 1.36, 95% CI, 0.97-1.90) were not significantly different between the cohorts. CONCLUSION AKI and mortality rates are significantly higher in patients with COVID-19 than influenza; however, kidney recovery among long-term survivors appears to be similar.
Collapse
Affiliation(s)
- Ian A. Strohbehn
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sophia Zhao
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harish Seethapathy
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Meghan Lee
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nifasha Rusibamayila
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew S. Allegretti
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xavier Vela Parada
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Meghan E. Sise
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Gao H, Zhang Y, Jiang H, Hu X, Zhang Y, Zhou X, Zhong F, Lin C, Li J, Luo J, Zhang J. Crystal structures of human coronavirus NL63 main protease at different pH values. Acta Crystallogr F Struct Biol Commun 2021; 77:348-355. [PMID: 34605439 PMCID: PMC8488857 DOI: 10.1107/s2053230x21009523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Human coronavirus NL63 (HCoV-NL63), which belongs to the genus Alphacoronavirus, mainly infects children and the immunocompromized and is responsible for a series of clinical manifestations, including cough, fever, rhinorrhoea, bronchiolitis and croup. HCoV-NL63, which was first isolated from a seven-month-old child in 2004, has led to infections worldwide and accounts for 10% of all respiratory illnesses caused by etiological agents. However, effective antivirals against HCoV-NL63 infection are currently unavailable. The HCoV-NL63 main protease (Mpro), also called 3C-like protease (3CLpro), plays a vital role in mediating viral replication and transcription by catalyzing the cleavage of replicase polyproteins (pp1a and pp1ab) into functional subunits. Moreover, Mpro is highly conserved among all coronaviruses, thus making it a prominent drug target for antiviral therapy. Here, four crystal structures of HCoV-NL63 Mpro in the apo form at different pH values are reported at resolutions of up to 1.78 Å. Comparison with Mpro from other human betacoronaviruses such as SARS-CoV-2 and SARS-CoV reveals common and distinct structural features in different genera and extends knowledge of the diversity, function and evolution of coronaviruses.
Collapse
Affiliation(s)
- Hongxia Gao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Yuting Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Haihai Jiang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Yuting Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Xuelan Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Fanglin Zhong
- Shenzhen Crystalo Biopharmaceutical Co. Ltd, Shenzhen, Guangdong 518118, People’s Republic of China
- Jiangxi Jmerry Biopharmaceutical Co. Ltd, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Cheng Lin
- Shenzhen Crystalo Biopharmaceutical Co. Ltd, Shenzhen, Guangdong 518118, People’s Republic of China
- Jiangxi Jmerry Biopharmaceutical Co. Ltd, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| |
Collapse
|
17
|
Bhavaniramya S, Ramar V, Vishnupriya S, Palaniappan R, Sibiya A, Baskaralingam V. Comprehensive analysis of SARS-COV-2 drug targets and pharmacological aspects in treating the COVID-19. Curr Mol Pharmacol 2021; 15:393-417. [PMID: 34382513 DOI: 10.2174/1874467214666210811120635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
Corona viruses are enveloped, single-stranded RNA (Ribonucleic acid) viruses and they cause pandemic diseases having a devastating effect on both human healthcare and the global economy. To date, six corona viruses have been identified as pathogenic organisms which are significantly responsible for the infection and also cause severe respiratory diseases. Among them, the novel SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) caused a major outbreak of corona virus diseases 2019 (COVID-19). Coronaviridae family members can affects both humans and animals. In human, corona viruses cause severe acute respiratory syndrome with mild to severe outcomes. Several structural and genomics have been investigated, and the genome encodes about 28 proteins most of them with unknown function though it shares remarkable sequence identity with other proteins. There is no potent and licensed vaccine against SARS-CoV-2 and several trials are underway to investigate the possible therapeutic agents against viral infection. However, some of the antiviral drugs that have been investigated against SARS-CoV-2 are under clinical trials. In the current review we comparatively emphasize the emergence and pathogenicity of the SARS-CoV-2 and their infection and discuss the various putative drug targets of both viral and host receptors for developing effective vaccines and therapeutic combinations to overcome the viral outbreak.
Collapse
Affiliation(s)
- Sundaresan Bhavaniramya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vanajothi Ramar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024. India
| | - Selvaraju Vishnupriya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600052. India
| | - Ramasamy Palaniappan
- Research and Development Wing, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education (BIHER), Chennai-600044, Tamilnadu. India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vaseeharan Baskaralingam
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| |
Collapse
|
18
|
Ferreira JC, Fadl S, Ilter M, Pekel H, Rezgui R, Sensoy O, Rabeh WM. Dimethyl sulfoxide reduces the stability but enhances catalytic activity of the main SARS-CoV-2 protease 3CLpro. FASEB J 2021; 35:e21774. [PMID: 34324734 PMCID: PMC8441638 DOI: 10.1096/fj.202100994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for coronavirus disease 2019 (COVID‐19), one of the most challenging global pandemics of the modern era. Potential treatment strategies against COVID‐19 are yet to be devised. It is crucial that antivirals that interfere with the SARS‐CoV‐2 life cycle be identified and developed. 3‐Chymotrypsin‐like protease (3CLpro) is an attractive antiviral drug target against SARS‐CoV‐2, and coronaviruses in general, because of its role in the processing of viral polyproteins. Inhibitors of 3CLpro activity are screened in enzyme assays before further development of the most promising leads. Dimethyl sulfoxide (DMSO) is a common additive used in such assays and enhances the solubility of assay components. However, it may also potentially affect the stability and efficiency of 3CLpro but, to date, this effect had not been analyzed in detail. Here, we investigated the effect of DMSO on 3CLpro‐catalyzed reaction. While DMSO (5%‐20%) decreased the optimum temperature of catalysis and thermodynamic stability of 3CLpro, it only marginally affected the kinetic stability of the enzyme. Increasing the DMSO concentration up to 20% improved the catalytic efficiency and peptide‐binding affinity of 3CLpro. At such high DMSO concentration, the solubility and stability of peptide substrate were improved because of reduced aggregation. In conclusion, we recommend 20% DMSO as the minimum concentration to be used in screens of 3CLpro inhibitors as lead compounds for the development of antiviral drugs against COVID‐19.
Collapse
Affiliation(s)
- Juliana C Ferreira
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Metehan Ilter
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Hanife Pekel
- Department of Pharmacy Services, Vocational School of Health Services, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Rachid Rezgui
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ozge Sensoy
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Computer Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Wael M Rabeh
- Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
19
|
Motavalli R, Abdelbasset WK, Rahman HS, Achmad MH, Sergeevna NK, Zekiy AO, Adili A, Khiavi FM, Marofi F, Yousefi M, Ghoreishizadeh S, Shomali N, Etemadi J, Jarahian M. The lethal internal face of the coronaviruses: Kidney tropism of the SARS, MERS, and COVID19 viruses. IUBMB Life 2021; 73:1005-1015. [PMID: 34118117 PMCID: PMC8426673 DOI: 10.1002/iub.2516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023]
Abstract
The kidney is one of the main targets attacked by viruses in patients with a coronavirus infection. Until now, SARS-CoV-2 has been identified as the seventh member of the coronavirus family capable of infecting humans. In the past two decades, humankind has experienced outbreaks triggered by two other extremely infective members of the coronavirus family; the MERS-CoV and the SARS-CoV. According to several investigations, SARS-CoV causes proteinuria and renal impairment or failure. The SARS-CoV was identified in the distal convoluted tubules of the kidney of infected patients. Also, renal dysfunction was observed in numerous cases of MERS-CoV infection. And recently, during the 2019-nCoV pandemic, it was found that the novel coronavirus not only induces acute respiratory distress syndrome (ARDS) but also can induce damages in various organs including the liver, heart, and kidney. The kidney tissue and its cells are targeted massively by the coronaviruses due to the abundant presence of ACE2 and Dpp4 receptors on kidney cells. These receptors are characterized as the main route of coronavirus entry to the victim cells. Renal failure due to massive viral invasion can lead to undesirable complications and enhanced mortality rate, thus more attention should be paid to the pathology of coronaviruses in the kidney. Here, we have provided the most recent knowledge on the coronaviruses (SARS, MERS, and COVID19) pathology and the mechanisms of their impact on the kidney tissue and functions.
Collapse
Affiliation(s)
- Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical SciencesTabrizIran
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation SciencesCollege of Applied Medical Sciences, Prince Sattam bin Abdulaziz UniversityAl KharjSaudi Arabia
- Department of Physical TherapyKasr Al‐Aini Hospital, Cairo UniversityGizaEgypt
| | | | - Muhammad Harun Achmad
- Department of Pediatric DentistryFaculty of Dentistry, Hasanuddin UniversityMakassarIndonesia
| | | | | | - Ali Adili
- Department of oncologyTabriz University of Medical SciencesTabrizIran
| | | | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | | | - Navid Shomali
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Immunology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical SciencesTabrizIran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
20
|
Jemal B, Aweke Z, Mola S, Hailu S, Abiy S, Dendir G, Tilahun A, Tesfaye B, Asichale A, Neme D, Regasa T, Mulugeta H, Moges K, Bedru M, Ahmed S, Teshome D. Knowledge, attitude, and practice of healthcare workers toward COVID-19 and its prevention in Ethiopia: A multicenter study. SAGE Open Med 2021; 9:20503121211034389. [PMID: 34377469 PMCID: PMC8327227 DOI: 10.1177/20503121211034389] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023] Open
Abstract
Background: An emerging respiratory disease abbreviated as coronavirus disease 2019 was first reported in December 2019 in Wuhan city of China. The virus is zoonotic and tends to be transmitted between animals to humans and humans to humans. The major route of transmission of coronavirus disease 2019 is droplet and close contact. The Ethiopian Ministry of Health has initiated training for health care workers at a different level. Thus, the main objective of this study is to assess the knowledge, attitudes, and practices of health workers in Ethiopia toward coronavirus disease 2019 and its prevention techniques. Method: An institution-based multicenter cross-sectional study was conducted in each of eight teaching and referral hospitals. A total of 422 Ethiopian healthcare workers were selected for the assessment of knowledge, attitude, and practice toward coronavirus disease 2019. Data were collected using a structured questionnaire. A logistic regression model was used to identify factors associated with the attitude and knowledge of healthcare workers toward coronavirus disease 2019 at a significance level of p < 0.05. Result: Three hundred ninety-seven healthcare workers participated in the study, with a response rate of 94%. Among these, 88.2% and 94.7% of respondents had good knowledge and positive attitudes, respectively. A respondent with a history of chronic medical illness (odds ratio: 0.193, 95% confidence interval: 0.063–0.593), social media, telecommunication, and television/radio as a source of information were significantly associated with knowledge (odds ratio: 3.4, 95% confidence interval: 1.5–7.4, OR: 4.3, 95% confidence interval: 1.3–14.3 and odds ratio: 3.2, 95% confidence interval: 1.4–7.2). In addition, respondents with a history of chronic medical illness were significantly associated with a negative attitude toward coronavirus disease 2019. Conclusion: The knowledge and attitude were good while; the practice was relatively low. Sources of information such as social media, telecommunication, and television/radio were positively associated with healthcare workers' knowledge about coronavirus disease 2019.
Collapse
Affiliation(s)
- Bedru Jemal
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Zemedu Aweke
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Simeneh Mola
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Sileshi Hailu
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Sileshi Abiy
- Department of Anesthesiology, College of Health Sciences and Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getahun Dendir
- Department of Anesthesiology, College of Health Sciences and Medicine, Wolaita Sodo University, Woliyita Sodo, Ethiopia
| | - Abere Tilahun
- Department of Anesthesiology, College of Health Sciences and Medicine, Adegirat University, Adegirat, Ethiopia
| | - Biruk Tesfaye
- Department of Anesthesiology, College of Health Sciences and Medicine, Mekele University, Mekele, Ethiopia
| | - Agmuas Asichale
- Department of Anesthesiology, College of Health Sciences and Medicine, Debre Berhan University, Debreberhan, Ethiopia
| | - Derartu Neme
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Teshome Regasa
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Hailemariam Mulugeta
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Kassaw Moges
- Department of Anesthesiology, College of Health Sciences and Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mohamedrabi Bedru
- Department of Anesthesiology, Institute of Health Sciences and Medicine, Jimma University, Jimma, Ethiopia
| | - Siraj Ahmed
- Department of Anesthesiology, College of Health Sciences and Medicine, Dilla University, Dilla, Ethiopia
| | - Diriba Teshome
- Department of Anesthesiology, College of Health Sciences and Medicine, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
21
|
Kundu S, Sarkar D. Synthetic Attempts Towards Eminent Anti-Viral Candidates of SARS-CoV. Mini Rev Med Chem 2021; 22:232-247. [PMID: 34254915 DOI: 10.2174/1389557521666210712205655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/14/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) aka SARS-CoV spread over southern China for the first time in 2002-2003 and history repeated again since last year and take away more than two million people so far. On March 11, 2020 COVID-19 outbreak was officially declared as pandemic by World Health Organization (WHO). Entire world united to fight back against this ultimate destruction. Around 90 vaccines are featured against SARS-CoV-2 and more than 300 active clinical trials are underway by several groups and individuals. So far, no drugs are currently approved that completely eliminates the deadly corona virus. The promising SARS-CoV-2 anti-viral drugs are favipiravir, remdesivir, lopinavir, ribavirin and avifavir. In this review, we have discussed the synthetic approaches elaborately made so far by different groups and chemical companies all around the world towards top three convincing anti-viral drugs against SARS-CoV-2 which are favipiravir, remdesivir and lopinavir.
Collapse
Affiliation(s)
- Subhradip Kundu
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| |
Collapse
|
22
|
MİSHRA A, MİSHRA P, DAS R. Drug Discovery and Treatment of an Emerging Pandemic Infection Covid-19. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.897044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
23
|
Alnuqaydan AM, Almutary AG, Sukamaran A, Yang BTW, Lee XT, Lim WX, Ng YM, Ibrahim R, Darmarajan T, Nanjappan S, Chellian J, Candasamy M, Madheswaran T, Sharma A, Dureja H, Prasher P, Verma N, Kumar D, Palaniveloo K, Bisht D, Gupta G, Madan JR, Singh SK, Jha NK, Dua K, Chellappan DK. Middle East Respiratory Syndrome (MERS) Virus-Pathophysiological Axis and the Current Treatment Strategies. AAPS PharmSciTech 2021; 22:173. [PMID: 34105037 PMCID: PMC8186825 DOI: 10.1208/s12249-021-02062-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Middle East respiratory syndrome (MERS) is a lethal respiratory disease with its first case reported back in 2012 (Jeddah, Saudi Arabia). It is a novel, single-stranded, positive-sense RNA beta coronavirus (MERS-CoV) that was isolated from a patient who died from a severe respiratory illness. Later, it was found that this patient was infected with MERS. MERS is endemic to countries in the Middle East regions, such as Saudi Arabia, Jordan, Qatar, Oman, Kuwait and the United Arab Emirates. It has been reported that the MERS virus originated from bats and dromedary camels, the natural hosts of MERS-CoV. The transmission of the virus to humans has been thought to be either direct or indirect. Few camel-to-human transmissions were reported earlier. However, the mode of transmission of how the virus affects humans remains unanswered. Moreover, outbreaks in either family-based or hospital-based settings were observed with high mortality rates, especially in individuals who did not receive proper management or those with underlying comorbidities, such as diabetes and renal failure. Since then, there have been numerous reports hypothesising complications in fatal cases of MERS. Over the years, various diagnostic methods, treatment strategies and preventive measures have been strategised in containing the MERS infection. Evidence from multiple sources implicated that no treatment options and vaccines have been developed in specific, for the direct management of MERS-CoV infection. Nevertheless, there are supportive measures outlined in response to symptom-related management. Health authorities should stress more on infection and prevention control measures, to ensure that MERS remains as a low-level threat to public health.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arulmalar Sukamaran
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Brian Tay Wei Yang
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Xiao Ting Lee
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Wei Xuan Lim
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Yee Min Ng
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rania Ibrahim
- School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiviya Darmarajan
- School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Satheeshkumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education & Research (NIPER-Kolkata), Chunilal Bhawan, Maniktala, Kolkata, West Bengal, 700054, India
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Knowledge Park, Uttar Pradesh, 201310, India
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Nitin Verma
- Chitkara University School of Pharmacy, Chitkara University, Atal Shiksha Kunj, Atal Nagar, Himachal Pradesh, 174103, India
| | - Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dheeraj Bisht
- Department of Pharmaceutical Sciences Bhimtal, Kumaun University Nainital, Uttarakhand, 263136, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Jyotsana R Madan
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Shamsi A, Mohammad T, Anwar S, Amani S, Khan MS, Husain FM, Rehman MT, Islam A, Hassan MI. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int J Biol Macromol 2021; 177:1-9. [PMID: 33577820 PMCID: PMC7871800 DOI: 10.1016/j.ijbiomac.2021.02.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 01/18/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from China has become a global threat due to the continuous rise in cases of Coronavirus disease 2019 (COVID-19). The problem with COVID-19 therapeutics is due to complexity of the mechanism of the pathogenesis of this virus. In this review, an extensive analysis of genome architecture and mode of pathogenesis of SARS-CoV-2 with an emphasis on therapeutic approaches is performed. SARS-CoV-2 genome consists of a single, ~29.9 kb long RNA having significant sequence similarity to BAT-CoV, SARS-CoV and MERS-CoV genome. Two-third part of SARS-Cov-2 genome comprises of ORF (ORF1ab) resulting in the formation of 2 polyproteins, pp1a and pp1ab, later processed into 16 smaller non-structural proteins (NSPs). The four major structural proteins of SARS-CoV-2 are the spike surface glycoprotein (S), a small envelope (E), membrane (M), and nucleocapsid (N) proteins. S protein helps in receptor binding and membrane fusion and hence plays the most important role in the transmission of CoVs. Priming of S protein is done by serine 2 transmembrane protease and thus plays a key role in virus and host cell fusion. This review highlights the possible mechanism of action of SARS-CoV-2 to search for possible therapeutic options.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Samreen Amani
- Department of Biochemistry, F/O Life Science, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
25
|
Guo Q, Xu W, Wang PF, Ji HY, Zhang XL, Wang K, Li J. Facing coronavirus disease 2019: What do we know so far? (Review). Exp Ther Med 2021; 21:658. [PMID: 33968188 PMCID: PMC8097225 DOI: 10.3892/etm.2021.10090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 03/22/2021] [Indexed: 01/08/2023] Open
Abstract
Although the World Health Organization declared the outbreak of coronavirus disease 2019 (COVID-19), which originated in China, as a public health emergency of international concern as early as January 30, 2020, the current COVID-19 epidemic is spreading rapidly. As of April 19, 2020, total of 2,392,165 confirmed cases had been reported in 211 countries and regions, with 614,421 (25.68%) cured cases and 164,391 (6.87%) deaths. Scientists and clinicians have made great efforts to learn much about COVID-19 so that it can be controlled as soon as possible. Herein, this review will discuss the epidemiology, pathology, clinical features, diagnosis and treatment of COVID-19 based on the current evidence.
Collapse
Affiliation(s)
- Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wen Xu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Pan-Feng Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hong-Yan Ji
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiao-Lei Zhang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Kai Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
26
|
Singh R, Gautam A, Chandel S, Sharma V, Ghosh A, Dey D, Roy S, Ravichandiran V, Ghosh D. Computational screening of FDA approved drugs of fungal origin that may interfere with SARS-CoV-2 spike protein activation, viral RNA replication, and post-translational modification: a multiple target approach. In Silico Pharmacol 2021; 9:27. [PMID: 33842191 PMCID: PMC8019482 DOI: 10.1007/s40203-021-00089-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Coronavirus spread is an emergency reported globally, and a specific treatment strategy for this significant health issue is not yet identified. COVID-19 is a highly contagious disease and needs to be controlled promptly as millions of deaths have been reported. Due to the absence of proficient restorative alternatives and preliminary clinical restrictions, FDA-approved medications can be a decent alternative to deal with the coronavirus malady (COVID-19). The present study aims to meet the imperative necessity of effective COVID-19 drug treatment with a computational multi-target drug repurposing approach. This study focused on screening the FDA-approved drugs derived from the fungal source and its derivatives against the SARS-CoV-2 targets. All the selected drugs showed good binding affinity towards these targets, and out of them, bromocriptine was found to be the best candidate after the screening on the COVID-19 targets. Further, bromocriptine is analyzed by molecular simulation and MM-PBSA study. These studies suggested that bromocriptine can be the best candidate for TMPRSS2, Main protease, and RdRp protein. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00089-8.
Collapse
Affiliation(s)
- Rajveer Singh
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Plank Institute for Development Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Shivani Chandel
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| | - Vipul Sharma
- Indo Soviet Friendship College of Pharmacy, G.T. Road (NH-95), Ghal Kalan, Moga, Punjab 142001 India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata, 700009 India
| | - Dhritiman Dey
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata, 700054 India
| |
Collapse
|
27
|
Wu YH, Yeh IJ, Phan NN, Yen MC, Hung JH, Chiao CC, Chen CF, Sun Z, Hsu HP, Wang CY, Lai MD. Gene signatures and potential therapeutic targets of Middle East respiratory syndrome coronavirus (MERS-CoV)-infected human lung adenocarcinoma epithelial cells. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:845-857. [PMID: 34176764 PMCID: PMC7997684 DOI: 10.1016/j.jmii.2021.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 12/23/2022]
Abstract
Background Pathogenic coronaviruses include Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. These viruses have induced outbreaks worldwide, and there are currently no effective medications against them. Therefore, there is an urgent need to develop potential drugs against coronaviruses. Methods High-throughput technology is widely used to explore differences in messenger (m)RNA and micro (mi)RNA expression profiles, especially to investigate protein–protein interactions and search for new therapeutic compounds. We integrated miRNA and mRNA expression profiles in MERS-CoV-infected cells and compared them to mock-infected controls from public databases. Results Through the bioinformatics analysis, there were 251 upregulated genes and eight highly differentiated miRNAs that overlapped in the two datasets. External validation verified that these genes had high expression in MERS-CoV-infected cells, including RC3H1, NF-κB, CD69, TNFAIP3, LEAP-2, DUSP10, CREB5, CXCL2, etc. We revealed that immune, olfactory or sensory system-related, and signal-transduction networks were discovered from upregulated mRNAs in MERS-CoV-infected cells. In total, 115 genes were predicted to be related to miRNAs, with the intersection of upregulated mRNAs and miRNA-targeting prediction genes such as TCF4, NR3C1, and POU2F2. Through the Connectivity Map (CMap) platform, we suggested potential compounds to use against MERS-CoV infection, including diethylcarbamazine, harpagoside, bumetanide, enalapril, and valproic acid. Conclusions The present study illustrates the crucial roles of miRNA-mRNA interacting networks in MERS-CoV-infected cells. The genes we identified are potential targets for treating MERS-CoV infection; however, these could possibly be extended to other coronavirus infections.
Collapse
Affiliation(s)
- Yen-Hung Wu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chien-Fu Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, 1725 Eastshore Hwy, Berkeley, CA 94710, USA
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232, USA.
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
28
|
Rahimi G, Rahimi B, Panahi M, Abkhiz S, Saraygord-Afshari N, Milani M, Alizadeh E. An overview of Betacoronaviruses-associated severe respiratory syndromes, focusing on sex-type-specific immune responses. Int Immunopharmacol 2021; 92:107365. [PMID: 33440306 PMCID: PMC7797024 DOI: 10.1016/j.intimp.2021.107365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023]
Abstract
Emerging beta-coronaviruses (β-CoVs), including Severe Acute Respiratory Syndrome CoV-1 (SARS-CoV-1), Middle East Respiratory Syndrome-CoV (MERS-CoV), and Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2, the cause of COVID19) are responsible for acute respiratory illnesses in human. The epidemiological features of the SARS, MERS, and new COVID-19 have revealed sex-dependent variations in the infection, frequency, treatment, and fatality rates of these syndromes. Females are likely less susceptible to viral infections, perhaps due to their steroid hormone levels, the impact of X-linked genes, and the sex-based immune responses. Although mostly inactive, the X chromosome makes the female's immune system more robust. The extra immune-regulatory genes of the X chromosome are associated with lower levels of viral load and decreased infection rate. Moreover, a higher titer of the antibodies and their longer blood circulation half-life are involved in a more durable immune protection in females. The activation rate of the immune cells and the production of TLR7 and IFN are more prominent in females. Although the bi-allelic expression of the immune regulatory genes can sometimes lead to autoimmune reactions, the higher titer of TLR7 in females is further associated with a stronger anti-viral immune response. Considering these sex-related differences and the similarities between the SARS, MERS, and COVID-19, we will discuss them in immune responses against the β-CoVs-associated syndromes. We aim to provide information on sex-based disease susceptibility and response. A better understanding of the evasion strategies of pathogens and the host immune responses can provide worthful insights into immunotherapy, and vaccine development approaches.
Collapse
Affiliation(s)
- Golbarg Rahimi
- Department of Cellular and Molecular Biology, University of Esfahan, Esfahan, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Panahi
- Student Research Committee, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences and Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Yaren O, McCarter J, Phadke N, Bradley KM, Overton B, Yang Z, Ranade S, Patil K, Bangale R, Benner SA. Ultra-rapid detection of SARS-CoV-2 in public workspace environments. PLoS One 2021; 16:e0240524. [PMID: 33626039 PMCID: PMC7904170 DOI: 10.1371/journal.pone.0240524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Managing the pandemic caused by SARS-CoV-2 requires new capabilities in testing, including the possibility of identifying, in minutes, infected individuals as they enter spaces where they must congregate in a functioning society, including workspaces, schools, points of entry, and commercial business establishments. Here, the only useful tests (a) require no sample transport, (b) require minimal sample manipulation, (c) can be performed by unlicensed individuals, (d) return results on the spot in much less than one hour, and (e) cost no more than a few dollars. The sensitivity need not be as high as normally required by the FDA for screening asymptomatic carriers (as few as 10 virions per sample), as these viral loads are almost certainly not high enough for an individual to present a risk for forward infection. This allows tests specifically useful for this pandemic to trade-off unneeded sensitivity for necessary speed, simplicity, and frugality. In some studies, it was shown that viral load that creates forward-infection risk may exceed 105 virions per milliliter, easily within the sensitivity of an RNA amplification architecture, but unattainable by antibody-based architectures that simply target viral antigens. Here, we describe such a test based on a displaceable probe loop amplification architecture.
Collapse
Affiliation(s)
- Ozlem Yaren
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Jacquelyn McCarter
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Nikhil Phadke
- GenePath Diagnostics Inc., Ann Arbor, Michigan, United States of America
- GenePath Diagnostics India Pvt. Ltd., Pune, Maharashtra, India
| | - Kevin M. Bradley
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Benjamin Overton
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
- Firebird Biomolecular Sciences LLC, Alachua, Florida, United States of America
| | | | - Kunal Patil
- GenePath Diagnostics India Pvt. Ltd., Pune, Maharashtra, India
| | | | - Steven A. Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, United States of America
- Firebird Biomolecular Sciences LLC, Alachua, Florida, United States of America
| |
Collapse
|
30
|
Exploration of Association Between Respiratory Vaccinations With Infection and Mortality Rates of COVID-19. Disaster Med Public Health Prep 2021; 17:e14. [PMID: 33588980 PMCID: PMC8129690 DOI: 10.1017/dmp.2021.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Respiratory disease vaccines may affect coronavirus disease 2019 (COVID-19) - associated infection and mortality rates due to vaccine nonspecific effects against viral infections. We compared the infection and mortality rates in relation to COVID-19 between countries with and without universal respiratory disease vaccine policies. METHODS In this ecological study, 186 countries with COVID-19 statistics from the World Health Organization (WHO) were included. RESULTS The study found that countries with universal BCG (bacillus Calmette Guérin) vaccine had significantly lower total infection and mortality rates, 0.2979 and 0.0077 versus 3.7445, and 0.0957/1000 people and confirmed cases (P < 0.001). The countries with universal pneumococcal vaccine (PCV), including PCV1, PCV2, and PCV3 vaccines, had significantly higher total mortality, 0.0111 versus 0.0080, respectively (P = 0.032). Higher income was associated with increasing total infection and mortality rates. Whereas, BCG vaccination was associated with a lower total mortality rate only (P = 0.030). The high-income countries were more likely to not receive universal BCG and receive second dose of meningococcal conjugate vaccine (MCV2) and third dose of PCV3 vaccination coverage. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates increased with increasing years of the second dose of measles-containing vaccine (P = 0.026) and pneumococcal conjugate third dose (PCV3). CONCLUSIONS This study suggests that BCG vaccination could reduce the infection caused by COVID-19, and MCV2 vaccine years increases the total infection rate. This study identified high economic characteristics and not having universal BCG coverage as the independent risk factors of mortality by multivariate analysis.
Collapse
|
31
|
Mulabbi EN, Tweyongyere R, Byarugaba DK. The history of the emergence and transmission of human coronaviruses. Onderstepoort J Vet Res 2021; 88:e1-e8. [PMID: 33567843 PMCID: PMC7876959 DOI: 10.4102/ojvr.v88i1.1872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Human coronaviruses are known respiratory pathogens associated with a range of respiratory illnesses, and there are considerable morbidity and hospitalisation amongst immune-compromised individuals of all age groups. The emergence of a highly pathogenic human coronavirus in China in 2019 has confirmed the long-held opinion that these viruses are important emerging and re-emerging pathogens. In this review article, we trace the discovery and emergence of coronaviruses (CoVs) over time since they were first reported. The review article will enrich our understanding on the host range, diversity and evolution, transmission of human CoVs and the threat posed by these viruses circulating in animal populations but overtime have spilled over to humans because of the increased proximity between humans and animals.
Collapse
Affiliation(s)
- Elijah N Mulabbi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala.
| | | | | |
Collapse
|
32
|
Rahman MM, Mosaddik A, Alam AK. Traditional foods with their constituent's antiviral and immune system modulating properties. Heliyon 2021; 7:e05957. [PMID: 33462562 PMCID: PMC7806454 DOI: 10.1016/j.heliyon.2021.e05957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Background Viruses are responsible for several diseases, including severe acute respiratory syndrome, a condition caused by today's pandemic coronavirus disease (COVID-19). A negotiated immune system is a common risk factor for all viral infections, including COVID-19. To date, no specific therapies or vaccines have been approved for coronavirus. In these circumstances, antiviral and immune boosting foods may ensure protection against viral infections, especially SARS-CoV-2 by reducing risk and ensuring fast healing of SARS-CoV-2 illness. Scope and approach In this review, we have conducted an online search using several search engines (Google Scholar, PubMed, Web of Science and Science Direct) to find out some traditional foods (plant, animal and fungi species), which have antiviral and immune-boosting properties against numerous viral infections, particularly coronaviruses (CoVs) and others RNA-virus infections. Our review indicated some foods to be considered as potential immune enhancers, which may help individuals to overcome viral infections like COVID-19 by modulating immune systems and reducing respiratory problems. Furthermore, this review will provide information regarding biological properties of conventional foods and their ingredients to uphold general health. Key Findings and Conclusions We observed some foods with antiviral and immune-boosting properties, which possess bioactive compounds that showed significant antiviral properties against different viruses, particularly RNA viruses such as CoVs. Interestingly, some antiviral and immune-boosting mechanisms were very much similar to the antiviral drug of COVID-19 homologous SARS (Severe Acute Respiratory Syndrome Coronavirus) and MERS (Middle East Respiratory Syndrome Coronavirus). The transient nature and the devastating spreading capability of COVID-19 lead to ineffectiveness of many curative therapies. Therefore, body shielding and immune-modulating foods, which have previous scientific recognition, have been discussed in this review to discern the efficacy of these foods against viral infections, especially SARS-CoV-2.
Collapse
Affiliation(s)
| | - Ashik Mosaddik
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ahm Khurshid Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
33
|
Zhu Y, Li J, Pang Z. Recent insights for the emerging COVID-19: Drug discovery, therapeutic options and vaccine development. Asian J Pharm Sci 2021; 16:4-23. [PMID: 32837565 PMCID: PMC7335243 DOI: 10.1016/j.ajps.2020.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 has been marked as a highly pathogenic coronavirus of COVID-19 disease into the human population, causing over 5.5 million confirmed cases worldwide. As COVID-19 has posed a global threat with significant human casualties and severe economic losses, there is a pressing demand to further understand the current situation and develop rational strategies to contain the drastic spread of the virus. Although there are no specific antiviral therapies that have proven effective in randomized clinical trials, currently, the rapid detection technology along with several promising therapeutics for COVID-19 have mitigated its drastic transmission. Besides, global institutions and corporations have commenced to parse out effective vaccines for the prevention of COVID-19. Herein, the present review will give exhaustive details of extensive researches concerning the drug discovery and therapeutic options for COVID-19 as well as some insightful discussions of the status of COVID-19.
Collapse
Affiliation(s)
- Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York 10027, USA
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jia Li
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney NSW 2109, Australia
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
34
|
Mulabbi EN, Tweyongyere R, Byarugaba DK. The history of the emergence and transmission of human coronaviruses. Onderstepoort J Vet Res 2020. [DOI: 10.4102/ojvr.v87i1.1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
Shoieb SM, El-Ghiaty MA, El-Kadi AOS. Targeting arachidonic acid-related metabolites in COVID-19 patients: potential use of drug-loaded nanoparticles. EMERGENT MATERIALS 2020; 4:265-277. [PMID: 33225219 PMCID: PMC7670111 DOI: 10.1007/s42247-020-00136-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 05/02/2023]
Abstract
In March 2020, The World Health Organization (WHO) has declared that the coronavirus disease 2019 (COVID-19) is characterized as a global pandemic. As of September 2020, infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to 213 countries and territories around the world, affected more than 31.5 million people, and caused more than 970,000 deaths worldwide. Although COVID-19 is a respiratory illness that mainly targets the lungs, it is currently well established that it is a multifactorial disease that affects other extra-pulmonary systems and strongly associated with a detrimental inflammatory response. Evidence has shown that SARS-CoV-2 causes perturbation in the arachidonic acid (AA) metabolic pathways; this disruption could lead to an imbalance between the pro-inflammatory metabolites of AA including mid-chain HETEs and terminal HETE (20-HETE) and the anti-inflammatory metabolites such as EETs and subterminal HETEs. Therefore, we propose novel therapeutic strategies to modulate the level of endogenous anti-inflammatory metabolites of AA and induce the patient's endogenous resolution mechanisms that will ameliorate the virus-associated systemic inflammation and enhance the primary outcomes in COVID-19 patients. Also, we propose that using nanoencapsulation of AA and its associated metabolites will contribute to the development of safer and more efficacious treatments for the management of COVID-19.
Collapse
Affiliation(s)
- Sherif M. Shoieb
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Mahmoud A. El-Ghiaty
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| |
Collapse
|
36
|
Sarkar B, Ullah MA, Araf Y, Rahman MS. Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. INFORMATICS IN MEDICINE UNLOCKED 2020; 21:100478. [PMID: 33200088 PMCID: PMC7656168 DOI: 10.1016/j.imu.2020.100478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
As the number of infections and deaths caused by the recent COVID-19 pandemic is increasing dramatically day-by-day, scientists are rushing towards developing possible countermeasures to fight the deadly virus, SARS-CoV-2. Although many efforts have already been put forward for developing potential vaccines; however, most of them are proved to possess negative consequences. Therefore, in this study, immunoinformatics methods were exploited to design a novel epitope-based subunit vaccine against the SARS-CoV-2, targeting four essential proteins of the virus i.e., spike glycoprotein, nucleocapsid phosphoprotein, membrane glycoprotein, and envelope protein. The highly antigenic, non-allergenic, non-toxic, non-human homolog, and 100% conserved (across other isolates from different regions of the world) epitopes were used for constructing the vaccine. In total, fourteen CTL epitopes and eighteen HTL epitopes were used to construct the vaccine. Thereafter, several in silico validations i.e., the molecular docking, molecular dynamics simulation (including the RMSF and RMSD studies), and immune simulation studies were also performed which predicted that the designed vaccine should be quite safe, effective, and stable within the biological environment. Finally, in silico cloning and codon adaptation studies were also conducted to design an effective mass production strategy of the vaccine. However, more in vitro and in vivo studies are required on the predicted vaccine to finally validate its safety and efficacy.
Collapse
Affiliation(s)
- Bishajit Sarkar
- COVID Research Cell (CRC), Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Asad Ullah
- COVID Research Cell (CRC), Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- COVID Research Cell (CRC), Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka, Bangladesh
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Shahedur Rahman
- COVID Research Cell (CRC), Wazed Miah Science Research Centre (WMSRC), Jahangirnagar University, Savar, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
37
|
Rauf A, Abu-Izneid T, Olatunde A, Ahmed Khalil A, Alhumaydhi FA, Tufail T, Shariati MA, Rebezov M, Almarhoon ZM, Mabkhot YN, Alsayari A, Rengasamy KRR. COVID-19 Pandemic: Epidemiology, Etiology, Conventional and Non-Conventional Therapies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8155. [PMID: 33158234 PMCID: PMC7662254 DOI: 10.3390/ijerph17218155] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which reported in an outbreak in 2019 in Wuhan, Hubei province, China, is caused by the SARS-CoV-2 virus. The virus belongs to the beta-coronavirus class, along with the Middle East Respiratory Syndrome coronavirus and Severe Acute Respiratory Syndrome coronavirus. Interestingly, the virus binds with angiotensin-converting enzyme-2 found in host cells, through the spike (S) protein that exists on its surface. This binding causes the entry of the virus into cells of the host organism. The actual mechanism used by the COVID-19 virus to induce disease is still speculative. A total of 44,322,504 cases, a 1,173,189 death toll and 32,486,703 recovery cases have been reported in 217 countries globally as of 28 October 2020. Symptoms from the infection of the virus include chest pain, fever, fatigue, nausea, and others. Acute respiratory stress syndrome, arrhythmia, and shock are some of the chronic manifestations recorded in severe COVID-19. Transmission is majorly by individual-to-individual through coughing, sneezing, etc. The lack of knowledge regarding the mechanism of and immune response to the virus has posed a challenge in the development of a novel drug and vaccine. Currently, treatment of the disease involves the use of anti-viral medications such as lopinavir, remdesivir, and other drugs. These drugs show some efficacy in the management of COVID-19. Studies are still on-going for the development of an ideal and novel drug for treatment. In terms of natural product intervention, Traditional Chinese Medicines (TCM) have been employed to alleviate the clinical manifestation and severity of the disease and have shown some efficacy. This review presents an updated detailed overview of COVID-19 and the virus, concerning its structure, epidemiology, symptoms and transmission, immune responses, and current interventions, and highlights the potential of TCM. It is anticipated that this review will further add to the understanding of COVID-19 and the virus, hence opening new research perspectives.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar 23430, Khyber Pakhtunkhwa, Pakistan;
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus 64141, UAE;
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauch 740272, Nigeria;
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan; (A.A.K.); (T.T.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Tabussam Tufail
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan; (A.A.K.); (T.T.)
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russian;
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russian;
- Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russian
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Yahia N. Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa
| |
Collapse
|
38
|
Lee JY, Shin YS, Lee J, Kwon S, Jin YH, Jang MS, Kim S, Song JH, Kim HR, Park CM. Identification of 4-anilino-6-aminoquinazoline derivatives as potential MERS-CoV inhibitors. Bioorg Med Chem Lett 2020; 30:127472. [PMID: 32781216 PMCID: PMC7414322 DOI: 10.1016/j.bmcl.2020.127472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 10/26/2022]
Abstract
New therapies for treating coronaviruses are urgently needed. A series of 4-anilino-6-aminoquinazoline derivatives were synthesized and evaluated to show high anti-MERS-CoV activities. N4-(3-Chloro-4-fluorophenyl)-N6-(3-methoxybenzyl)quinazoline-4,6-diamine (1) has been identified in a random screen as a hit compound for inhibiting MERS-CoV infection. Throughout optimization process, compound 20 was found to exhibit high inhibitory effect (IC50 = 0.157 μM, SI = 25) with no cytotoxicity and moderate in vivo PK properties.
Collapse
Affiliation(s)
- Jun Young Lee
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Young Sup Shin
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Jihye Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea
| | - Sunoh Kwon
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea; Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Young-Hee Jin
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea; KM Application Center, Korea Institute of Oriental Medicine, Dong-gu, Daegu 41062, South Korea
| | - Min Seong Jang
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea; Department of Non-Clinical Studies, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, South Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea
| | - Jong Hwan Song
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea.
| |
Collapse
|
39
|
Ullah MA, Araf Y, Sarkar B, Moin AT, Reshad RAI, Rahman MDH. Pathogenesis, Diagnosis and Possible Therapeutic Options for COVID-19. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2020. [DOI: 10.29333/jcei/8564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
40
|
Abstract
Coronavirus disease 2019 (COVID-19) instigated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more`` than 20 million people, with more than more than 700000 deaths globally; and has been declared a pandemic. SARS-CoV-2 is recognized as the seventh coronavirus affecting Homo sapiens. The symptoms of COVID-19 consist of an elevated temperature, cough, diarrhea, and vomiting amongst others, whereas the transmission of SARS-CoV-2 is believed to arise via release of respiratory secretions; through sneezing and coughing. COVID-19 is identified via X-ray or computed tomography scans and further corroborated with molecular diagnostics techniques, including polymerase chain reaction. At present there are no successful therapeutics against SARS-CoV-2; existing antiviral therapies have been utilized to hinder manifestation of respiratory difficulties by diminishing viral load. Herein, we depict an extensive update on the clinical aspects of COVID-19, including strategies for the regulation of the transmission, diagnosis, treatment, and pathogenesis of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Mohammad Ridwane Mungroo
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City , Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City , Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City , Sharjah, United Arab Emirates
| |
Collapse
|
41
|
Barbieri A, Robinson N, Palma G, Maurea N, Desiderio V, Botti G. Can Beta-2-Adrenergic Pathway Be a New Target to Combat SARS-CoV-2 Hyperinflammatory Syndrome?-Lessons Learned From Cancer. Front Immunol 2020; 11:588724. [PMID: 33117402 PMCID: PMC7561388 DOI: 10.3389/fimmu.2020.588724] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 infection is a new threat to global public health in the 21st century (2020), which has now rapidly spread around the globe causing severe pneumonia often linked to Acute Respiratory Distress Syndrome (ARDS) and hyperinflammatory syndrome. SARS-CoV-2 is highly contagious through saliva droplets. The structural analysis suggests that the virus enters human cells through the ligation of the spike protein to angiotensin-converting enzyme 2 (ACE2). The progression of Covid-19 has been divided into three main stages: stage I—viral response, stage II—pulmonary phase, and stage III—hyperinflammation phase. Once the patients enter stage III, it will likely need ventilation and it becomes difficult to manage. Thus, it will be of paramount importance to find therapies to prevent or slow down the progression of the disease toward stage III. The key event leading to hyperinflammation seems to be the activation of Th-17 immunity response and Cytokine storm. B2-adrenergic receptors (B2ARs) are expressed on airways and on all the immune cells such as macrophages, dendritic cells, B and T lymphocytes. Blocking (B2AR) has been proven, also in clinical settings, to reduce Th-17 response and negatively modulate inflammatory cytokines including IL-6 while increasing IFNγ. Non-selective beta-blockers are currently used to treat several diseases and have been proven to reduce stress-induced inflammation and reduce anxiety. For these reasons, we speculate that targeting B2AR in the early phase of Covid-19 might be beneficial to prevent hyperinflammation.
Collapse
Affiliation(s)
- Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico "Fondazione G. Pascale", Naples, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Giuseppe Palma
- Animal Facility, Istituto Nazionale Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico "Fondazione G. Pascale", Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) "Fondazione G. Pascale", Naples, Italy
| | - Vincenzo Desiderio
- Section of Histology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale", Naples, Italy
| |
Collapse
|
42
|
Li S, Li S, Disoma C, Zheng R, Zhou M, Razzaq A, Liu P, Zhou Y, Dong Z, Du A, Peng J, Hu L, Huang J, Feng P, Jiang T, Xia Z. SARS‐CoV‐2: Mechanism of infection and emerging technologies for future prospects. Rev Med Virol 2020; 31:e2168. [DOI: 10.1002/rmv.2168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/23/2020] [Accepted: 08/30/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Shiqin Li
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Sijia Li
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Cyrollah Disoma
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Rong Zheng
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Mei Zhou
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Aroona Razzaq
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Pinjia Liu
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Yuzheng Zhou
- Department of Cell Biology School of Life Sciences Central South University Changsha China
- Section of Infection and Immunity Herman Ostrow School of Dentistry University of Southern California Los Angeles California USA
| | - Zijun Dong
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Ashuai Du
- Department of Cell Biology School of Life Sciences Central South University Changsha China
| | - Jian Peng
- Department of General Surgery Xiangya Hospital Central South University Changsha China
| | - Liqiang Hu
- The First Hospital of Changsha University of South China Changsha China
| | - Jufang Huang
- Department of Anatomy and Neurobiology School of Basic Medical Sciences Central South University Changsha China
- School of Life Sciences Central South University Changsha China
| | - Pinghui Feng
- Section of Infection and Immunity Herman Ostrow School of Dentistry University of Southern California Los Angeles California USA
| | - Taijiao Jiang
- Center for Systems Medicine Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- Suzhou Institute of Systems Medicine Suzhou Jiangsu China
| | - Zanxian Xia
- Department of Cell Biology School of Life Sciences Central South University Changsha China
- Hunan Key Laboratory of Medical Genetics & Center for Medical Genetics School of Life Sciences Hunan Key Laboratory of Animal Models for Human Diseases Central South University Changsha China
| |
Collapse
|
43
|
Zhang N, Shang J, Li C, Zhou K, Du L. An overview of Middle East respiratory syndrome coronavirus vaccines in preclinical studies. Expert Rev Vaccines 2020; 19:817-829. [PMID: 32842811 DOI: 10.1080/14760584.2020.1813574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Middle East respiratory syndrome coronavirus (MERS-CoV) causes high mortality in humans. No vaccines are approved for use in humans; therefore, a consistent effort to develop safe and effective MERS vaccines is needed. AREAS COVERED This review describes the structure of MERS-CoV and the function of its proteins, summarizes MERS vaccine candidates under preclinical study (based on spike and non-spike structural proteins, inactivated virus, and live-attenuated virus), and highlights potential problems that could prevent these vaccines entering clinical trials. It provides guidance for the development of safe and effective MERS-CoV vaccines. EXPERT OPINION Although many MERS-CoV vaccines have been developed, most remain at the preclinical stage. Some vaccines demonstrate immunogenicity and efficacy in animal models, while others have potential adverse effects or low efficacy against high-dose or divergent virus strains. Novel strategies are needed to design safe and effective MERS vaccines to induce broad-spectrum immune responses and improve protective efficacy against multiple strains of MERS-CoV and MERS-like coronaviruses with pandemic potential. More funds should be invested to move vaccine candidates into human clinical trials.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College , Hangzhou, China
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota , Saint Paul, MN, USA
| | - Chaoqun Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College , Hangzhou, China
| | - Kehui Zhou
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College , Hangzhou, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center , New York, NY, USA
| |
Collapse
|
44
|
Asemahagn MA. Factors determining the knowledge and prevention practice of healthcare workers towards COVID-19 in Amhara region, Ethiopia: a cross-sectional survey. Trop Med Health 2020; 48:72. [PMID: 32839649 PMCID: PMC7438679 DOI: 10.1186/s41182-020-00254-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Healthcare workers (HWs) are at the highest risk of getting CIVID-19. This study aimed to assess factors determining the knowledge and prevention of HWs towards COVID-19 in the Amhara Region, Ethiopia. METHODS A cross-sectional online survey was conducted among 442 HWs using email and telegram addresses. The knowledge and practice of HWs were estimated using 16 knowledge and 11 practice questions. A multivariable logistic regression analysis was used on SPSS version 25 to identify factors related to the knowledge and prevention practice of HWs on COVID-19. Significance was determined at a p value of < 0.05 and association was described by using odds ratio at 95% CI. RESULTS Of 442 HWs, 398 (90% response rate) responded to the online interview questionnaire. From 398 HWs, 231(58%), 225(56%), 207(53%), and 191(48%) were males, from rural area, aged ≥ 34 years and nurses, respectively. About 279(70%) HWs had good knowledge of COVID-19 followed by 247(62%) good prevention practices. Age < 34 years (AOR = 2.14, 95% CI = 1.25-3.62), rural residence (AOR = 0.44, 95% CI = 0.26-0.70), access to infection prevention (IP) training (AOR = 2.4, 95% CI = 1.36-4.21), presence of IP guideline (AOR = 2.82, 95% CI = 1.64-4.62), and using social media (AOR = 2.51, 95% CI = 1.42-4.53) were factors of knowledge about COVID-19. Whereas, rural residence (AOR = 0.45, 95% CI = 0.31-0.75), facility type (AOR = 0.40, 95% CI = 0.28-0.89), access to IP training (AOR = 2.32, 95% CI = 1.35-4.16), presence of IP guidelines (AOR = 2.10, 95% CI = 1.21-3.45), knowledge about COVID-19 (AOR = 2.98, 95% CI = 2.15-5.27), having chronic illnesses (AOR = 2.0, 95% CI = 1.15-3.75), lack of protective equipment (PPE) (AOR = 0.42, 95% CI = 0.32-0.74), and high workload (AOR = 0.40, 95% CI = 0.36-0.87) were factors of COVID-19 prevention. CONCLUSION In this study, most of the HWs had good knowledge but had lower prevention practice of COVID-19. Socio-demographic and access to information sources were factors of knowledge on COVID-19. Similarly, residence, shortage of PPE, high workload, comorbidities, knowledge, and access to IP training and guideline were factors limiting prevention practices. Thus, a consistent supply of PPE and improving health workers' knowledge, making IP guidelines and information sources available, and managing chronic illnesses are crucial to prevent COVID-19 among HWs.
Collapse
Affiliation(s)
- Mulusew Andualem Asemahagn
- School of Public Health, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
45
|
Mohanty SK, Satapathy A, Naidu MM, Mukhopadhyay S, Sharma S, Barton LM, Stroberg E, Duval EJ, Pradhan D, Tzankov A, Parwani AV. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19) - anatomic pathology perspective on current knowledge. Diagn Pathol 2020; 15:103. [PMID: 32799894 PMCID: PMC7427697 DOI: 10.1186/s13000-020-01017-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The world is currently witnessing a major devastating pandemic of Coronavirus disease-2019 (COVID-19). This disease is caused by a novel coronavirus named Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). It primarily affects the respiratory tract and particularly the lungs. The virus enters the cell by attaching its spike-like surface projections to the angiotensin-converting enzyme-2 (ACE-2) expressed in various tissues. Though the majority of symptomatic patients have mild flu-like symptoms, a significant minority develop severe lung injury with acute respiratory distress syndrome (ARDS), leading to considerable morbidity and mortality. Elderly patients with previous cardiovascular comorbidities are particularly susceptible to severe clinical manifestations. BODY: Currently, our limited knowledge of the pathologic findings is based on post-mortem biopsies, a few limited autopsies, and very few complete autopsies. From these reports, we know that the virus can be found in various organs but the most striking tissue damage involves the lungs resulting almost always in diffuse alveolar damage with interstitial edema, capillary congestion, and occasional interstitial lymphocytosis, causing hypoxia, multiorgan failure, and death. A few pathology studies have also reported intravascular microthrombi and pulmonary thrombembolism. Although the clinical presentation of this disease is fairly well characterized, knowledge of the pathologic aspects remains comparatively limited. CONCLUSION In this review, we discuss clinical, pathologic, and genomic features of COVID-19, review current hypotheses regarding the pathogenesis, and briefly discuss the clinical characteristics. We also compare the salient features of COVID-19 with other coronavirus-related illnesses that have posed significant public health issues in the past, including SARS and the Middle East Respiratory Syndrome (MERS).
Collapse
Affiliation(s)
- Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute and Prolife Diagnostics, Bhubaneswar, India
| | - Abhishek Satapathy
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute and Prolife Diagnostics, Bhubaneswar, India
| | - Machita M Naidu
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute and Prolife Diagnostics, Bhubaneswar, India
| | | | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Lisa M Barton
- Office of the Chief Medical Examiner, Oklahoma City, OK, USA
| | - Edana Stroberg
- Office of the Chief Medical Examiner, Oklahoma City, OK, USA
| | - Eric J Duval
- Office of the Chief Medical Examiner, Oklahoma City, OK, USA
| | | | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Baseland, Liestal, Switzerland
| | - Anil V Parwani
- Department of Pathology, The Ohio State University, E409 Doan Hall, 410 West 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
46
|
Hozhabri H, Piceci Sparascio F, Sohrabi H, Mousavifar L, Roy R, Scribano D, De Luca A, Ambrosi C, Sarshar M. The Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and Forecasting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5648. [PMID: 32764417 PMCID: PMC7459861 DOI: 10.3390/ijerph17165648] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Over the past two decades, there have been two major outbreaks where the crossover of animal Betacoronaviruses to humans has resulted in severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). In December 2019, a global public health concern started with the emergence of a new strain of coronavirus (SARS-CoV-2 or 2019 novel coronavirus, 2019-nCoV) which has rapidly spread all over the world from its origin in Wuhan, China. SARS-CoV-2 belongs to the Betacoronavirus genus, which includes human SARS-CoV, MERS and two other human coronaviruses (HCoVs), HCoV-OC43 and HCoV-HKU1. The fatality rate of SARS-CoV-2 is lower than the two previous coronavirus epidemics, but it is faster spreading and the large number of infected people with severe viral pneumonia and respiratory illness, showed SARS-CoV-2 to be highly contagious. Based on the current published evidence, herein we summarize the origin, genetics, epidemiology, clinical manifestations, preventions, diagnosis and up to date treatments of SARS-CoV-2 infections in comparison with those caused by SARS-CoV and MERS-CoV. Moreover, the possible impact of weather conditions on the transmission of SARS-CoV-2 is also discussed. Therefore, the aim of the present review is to reconsider the two previous pandemics and provide a reference for future studies as well as therapeutic approaches.
Collapse
Affiliation(s)
- Hossein Hozhabri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (H.H.); (F.P.S.)
| | - Francesca Piceci Sparascio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (H.H.); (F.P.S.)
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Hamidreza Sohrabi
- Department of Veterinary Science, University of Turin, 10095 Grugliasco, Italy;
| | - Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (L.M.); (R.R.)
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (L.M.); (R.R.)
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Cecilia Ambrosi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Microbiology Research Center (MRC), Pasteur Institute of Iran, 1316943551 Tehran, Iran
| |
Collapse
|
47
|
de Lima Menezes G, da Silva RA. Identification of potential drugs against SARS-CoV-2 non-structural protein 1 (nsp1). J Biomol Struct Dyn 2020; 39:5657-5667. [PMID: 32657643 PMCID: PMC7443570 DOI: 10.1080/07391102.2020.1792992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-structural protein 1 (nsp1) is found in all Betacoronavirus genus, an important viral group that causes severe respiratory
human diseases. This protein has significant role in pathogenesis and it is considered a
probably major virulence factor. As it is absent in humans, it becomes an interesting
target of study, especially when it comes to the rational search for drugs, since it
increases the specificity of the target and reduces possible adverse effects that may be
caused to the patient. Using approaches in silico we seek to
study the behavior of nsp1 in solution to obtain its most stable conformation and find
possible drugs with affinity to all of them. For this purpose, complete model of nsp1 of
SARS-CoV-2 were predicted and its stability analyzed by molecular dynamics simulations in
five different replicas. After main pocket validation using two control drugs and the main
conformations of nsp1, molecular docking based on virtual screening were performed to
identify novel potential inhibitors from DrugBank database. It has been found 16 molecules
in common to all five nsp1 replica conformations. Three of them was ranked as the best
compounds among them and showed better energy score than control molecules that have
in vitro activity against nsp1 from SARS-CoV-2. The
results pointed out here suggest new potential drugs for therapy to aid the rational drug
search against COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
|
48
|
Ahsan W, Alhazmi HA, Patel KS, Mangla B, Al Bratty M, Javed S, Najmi A, Sultan MH, Makeen HA, Khalid A, Mohan S, Taha MME, Sultana S. Recent Advancements in the Diagnosis, Prevention, and Prospective Drug Therapy of COVID-19. Front Public Health 2020; 8:384. [PMID: 32754570 PMCID: PMC7381292 DOI: 10.3389/fpubh.2020.00384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (CoV)-2 (SARS-CoV-2), previously called 2019 novel CoV, emerged from China in late December 2019. This virus causes CoV disease-19 (COVID-19), which has been proven a global pandemic leading to a major outbreak. As of June 19, 2020, the data from the World Health Organization (WHO) showed more than 8.7 million confirmed cases in over 200 countries/regions. The WHO has declared COVID-19 as the sixth public health emergency of international concern on January 30, 2020. CoVs cause illnesses that range in severity from the common cold to severe respiratory illnesses and death. Nevertheless, with technological advances and imperative lessons gained from prior outbreaks, humankind is better outfitted to deal with the latest emerging group of CoVs. Studies on the development of in vitro diagnostic tests, vaccines, and drug re-purposing are being carried out in this field. Currently, no approved treatment is available for SARS-CoV-2 given the lack of evidence. The results from preliminary clinical trials have been mixed as far as improvement in the clinical condition and reduction in the duration of treatment are concerned. A number of new clinical trials are currently in progress to test the efficacy and safety of various approved drugs. This review focuses on recent advancements in the field of development of diagnostic tests, vaccines, and treatment approaches for COVID-19.
Collapse
Affiliation(s)
- Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Kuldeep Singh Patel
- Department of Pharmacy, NRI Institute of Research & Technology, Bhopal, India
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Manal M. E. Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
49
|
Kabir MT, Uddin MS, Hossain MF, Abdulhakim JA, Alam MA, Ashraf GM, Bungau SG, Bin-Jumah MN, Abdel-Daim MM, Aleya L. nCOVID-19 Pandemic: From Molecular Pathogenesis to Potential Investigational Therapeutics. Front Cell Dev Biol 2020; 8:616. [PMID: 32754599 PMCID: PMC7365855 DOI: 10.3389/fcell.2020.00616] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
In December 2019, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related epidemic was first observed in Wuhan, China. In 2020, owing to the highly infectious and deadly nature of the virus, this widespread novel coronavirus disease 2019 (nCOVID-19) became a worldwide pandemic. Studies have revealed that various environmental factors including temperature, humidity, and air pollution may also affect the transmission pattern of COVID-19. Unfortunately, still, there is no specific drug that has been validated in large-scale studies to treat patients with confirmed nCOVID-19. However, remdesivir, an inhibitor of RNA-dependent RNA polymerase (RdRp), has appeared as an auspicious antiviral drug. Currently, a large-scale study on remdesivir (i.e., 200 mg on first day, then 100 mg once/day) is ongoing to evaluate its clinical efficacy to treat nCOVID-19. Good antiviral activity against SARS-CoV-2 was not observed with the use of lopinavir/ritonavir (LPV/r). Nonetheless, the combination of umifenovir and LPV/r was found to have better antiviral activity. Furthermore, a combination of hydroxychloroquine (i.e., 200 mg 3 times/day) and azithromycin (i.e., 500 mg on first day, then 250 mg/day from day 2-5) also exhibited good activity. Currently, there are also ongoing studies to evaluate the efficacy of teicoplanin and monoclonal and polyclonal antibodies against SARS-CoV-2. Thus, in this article, we have analyzed the genetic diversity and molecular pathogenesis of nCOVID-19. We also present possible therapeutic options for nCOVID-19 patients.
Collapse
Affiliation(s)
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Farhad Hossain
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
- Department of Physical Therapy, Graduate School of Inje University, Gimhae, South Korea
| | - Jawaher A. Abdulhakim
- Department of Medical Laboratory, Faculty of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Md. Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Simona G. Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
50
|
Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Biosci Rep 2020; 40:224927. [PMID: 32441299 PMCID: PMC7268261 DOI: 10.1042/bsr20201256] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
Due to the lack of efficient therapeutic options and clinical trial limitations, the FDA-approved drugs can be a good choice to handle Coronavirus disease (COVID-19). Many reports have enough evidence for the use of FDA-approved drugs which have inhibitory potential against target proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we utilized a structure-based drug design approach to find possible drug candidates from the existing pool of FDA-approved drugs and checked their effectiveness against the SARS-CoV-2. We performed virtual screening of the FDA-approved drugs against the main protease (Mpro) of SARS-CoV-2, an essential enzyme, and a potential drug target. Using well-defined computational methods, we identified Glecaprevir and Maraviroc (MVC) as the best inhibitors of SARS-CoV-2 Mpro. Both drugs bind to the substrate-binding pocket of SARS-CoV-2 Mpro and form a significant number of non-covalent interactions. Glecaprevir and MVC bind to the conserved residues of substrate-binding pocket of SARS-CoV-2 Mpro. This work provides sufficient evidence for the use of Glecaprevir and MVC for the therapeutic management of COVID-19 after experimental validation and clinical manifestations.
Collapse
|