1
|
Dixit R, Kumar S, Pandey G. Biological approaches for E-waste management: A green-go to boost circular economy. CHEMOSPHERE 2023:139177. [PMID: 37307925 DOI: 10.1016/j.chemosphere.2023.139177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
E-waste is a pressing situation on human due to its complex composition. Although E-waste on one hand has some toxic components but at the same time, it would be a promising business sector. Recycling of E-waste to mine-out valuable metals and other components has opened a chance of business and hence a way towards transformation of linear economy to circular one. Chemical, physical and traditional technologies are holding the position in E-waste recycling sector but sustainability with respect to cost and environmental issues is a major concern associated with these technologies. In order to overcome these gaps, lucrative, environment friendly and sustainable technologies need to be implied. Biological approaches could be a green and clean approach to handle E-waste through sustainable and cost-effective means by considering socio-economic and environmental aspects. This review elaborates biological approaches for E-waste management and advancements in expanse. The novelty covers the environmental and socio-economic impacts of E-waste, solution and further scope of biological approaches, further research and development need in this contour to come up with sustainable recycling process.
Collapse
Affiliation(s)
- Rashmi Dixit
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagp, 440 020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India; CSIR- TMD, 3rd Floor, 14, NISCAIR Building, Satsang Vihar Marg, Block A, Qutab Institutional Area, New Delhi, Delhi, 110 016, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagp, 440 020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Govind Pandey
- Madan Mohan Malaviya University of Technology, Gorakhpur, 273 010, India
| |
Collapse
|
2
|
Rai PK, Sonne C, Kim KH. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162327. [PMID: 36813200 DOI: 10.1016/j.scitotenv.2023.162327] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The spread of heavy metal(loid)s at soil-food crop interfaces has become a threat to sustainable agricultural productivity, food security, and human health. The eco-toxic effects of heavy metals on food crops can be manifested through reactive oxygen species that have the potential to disturb seed germination, normal growth, photosynthesis, cellular metabolism, and homeostasis. This review provides a critical overview of stress tolerance mechanisms in food crops/hyperaccumulator plants against heavy metals and arsenic (HM-As). The HM-As antioxidative stress tolerance in food crops is associated with changes in metabolomics (physico-biochemical/lipidomics) and genomics (molecular level). Furthermore, HM-As stress tolerance can occur through plant-microbe, phytohormone, antioxidant, and signal molecule interactions. Information regarding the avoidance, tolerance, and stress resilience of HM-As should help pave the way to minimize food chain contamination, eco-toxicity, and health risks. Advanced biotechnological approaches (e.g., genome modification with CRISPR-Cas9 gene editing) in concert with traditional sustainable biological methods are useful options to develop 'pollution safe designer cultivars' with increased climate change resilience and public health risks mitigation. Further, the usage of HM-As tolerant hyperaccumulator biomass in biorefineries (e.g., environmental remediation, value added chemicals, and bioenergy) is advocated to realize the synergy between biotechnological research and socio-economic policy frameworks, which are inextricably linked with environmental sustainability. The biotechnological innovations, if directed toward 'cleaner climate smart phytotechnologies' and 'HM-As stress resilient food crops', should help open the new path to achieve sustainable development goals (SDGs) and a circular bioeconomy.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Zhao S, Zhang Q, Xiao W, Chen D, Hu J, Gao N, Huang M, Ye X. Comparative transcriptomic analysis reveals the important process in two rice cultivars with differences in cadmium accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114629. [PMID: 36764070 DOI: 10.1016/j.ecoenv.2023.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
To date, Cd remains a major contaminant in rice production. An in-depth exploration of the mechanism that causes genotypic differences in Cd enrichment in rice is necessary to develop strategies to regulate Cd enrichment in rice. Here, two rice cultivars (low grain Cd, ZZ143; and high grain Cd, YX409) displayed different transcriptomic profile patterns when subjected to 100μmol/L Cd stress. In fact, 18,721(9833 upregulated and 8888 downregulated) and 16,403 (8366 upregulated and 8037 downregulated) differentially expressed genes (DEGs) were found in ZZ143 and YX409, respectively. Gene ontology (GO) classification revealed 28 and 26 terms enriched in ZZ143 and YX409, respectively. ZZ143 had more enriched DEGs than YX409, primarily in cellular processes, metabolic processes, binding terms, catalytic activity, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 21 and 24 pathways were significantly enriched in ZZ143 and YX409, respectively. Based on the DEGs, ZZ143 had a stronger ability for sulfur assimilation and Cys synthesis, whereas YX409 had a stronger ability to maintain cell wall stability. A series of DEGs involved in metabolic pathways, biosynthesis of secondary metabolites, plant hormone signal transduction pathways, and mitogen-activated protein kinase signaling pathways were identified, which maybe closely related to Cd resistance and the different Cd concentrations between cultivars. The above pathways and the greater number of identified DEGs in more than half of the GO terms and KEGG pathways suggest a higher absorption and stronger tolerance of the roots of ZZ143 than YX409 to Cd.
Collapse
Affiliation(s)
- Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
Helaoui S, Boughattas I, El Kribi-Boukhris S, Mkhinini M, Alphonse V, Livet A, Bousserrhine N, Banni M. Assessing the effects of nickel on, e.g., Medicago sativa L. nodules using multidisciplinary approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77386-77400. [PMID: 35672641 DOI: 10.1007/s11356-022-21311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Industrial wastes and fertilizers can introduce excessive levels of nickel (Ni) into the environment, potentially causing threats to plants, animals, as well as human beings. However, the number of studies on the effects of Ni toxicity on nodules is fairly limited. To address this issue, the effects of increasing Ni concentration on alfalfa nodules were assessed at chemical, biochemical, and transcriptomic levels. For this purpose, plants were grown in soils supplied with Ni (control, 0 mg/kg; C1, 50 mg/kg; C2, 150 mg/kg; C3, 250 mg/kg; and C4, 500 mg/kg) for 90 days. Ni loads in leaves, roots, and nodules were monitored after the exposure period. A set of biochemical biomarkers of oxidative stress was determined in nodules including antioxidants and metal homeostasis as well as lipid peroxidation. Gene expression levels of the main targets involved in oxidative stress and metal homeostasis were assessed. Our data indicated a high concentration of Ni in leaves, roots, and nodules where values reached 25.64 ± 3.04 mg/kg, 83.23 ± 5.16 mg/kg, and 125.71 ± 4.53 mg/kg in dry weight, respectively. Moreover, a significant increase in nodule biomass was observed in plants exposed to C4 in comparison to control treatment and percentage increased by 63%. Then, lipid peroxidation increased with a rate of 95% in nodules exposed to C4. Enzymatic activities were enhanced remarkably, suggesting the occurrence of oxidative stress, with increased superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX). Our results showed also a significant upregulation of SOD, GR and APX genes in nodules. Nodule homoglutathione (HGSH) levels increased with the different Ni concentrations, with a remarkable decrease of glutathione S-transferase (GST) activity and glutathione (GSH) content for the highest Ni concentration with 43% and 52% reduction, respectively. The phytochelatin (PC) and metallothionein (MT) concentrations increased in nodules, which implied the triggering of a cellular protection mechanism for coping with Ni toxicity. The results suggested that Ni promotes a drastic oxidative stress in alfalfa nodules, yet the expression of MT and PC to reduce Ni toxicity could be used as Ni stress bioindicators. Our findings provide new insights into the central role of alfalfa nodules in limiting the harmful effects of soil pollution. Therefore, nodules co-expressing antioxidant enzymes may have high phytoremediation potential.
Collapse
Affiliation(s)
- Sondes Helaoui
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Iteb Boughattas
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia.
| | - Sameh El Kribi-Boukhris
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Vanessa Alphonse
- Laboratory Water, Environment and Urban Systems, Faculty of Science and Technology, University Paris-Est Créteil, Créteil Cedex, France
| | - Alexandre Livet
- Laboratory Water, Environment and Urban Systems, Faculty of Science and Technology, University Paris-Est Créteil, Créteil Cedex, France
| | - Noureddine Bousserrhine
- Laboratory Water, Environment and Urban Systems, Faculty of Science and Technology, University Paris-Est Créteil, Créteil Cedex, France
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
- Higher Institute of Biotechnologie of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
5
|
Chen J, Li K, Hu A, Fu Q, He H, Wang D, Shi J, Zhang W. The molecular characteristics of DOMs derived from bio-stabilized wastewater activated sludge and its effect on alleviating Cd-stress in rice seedlings (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157157. [PMID: 35803417 DOI: 10.1016/j.scitotenv.2022.157157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
To recycle fertilizing contents in wastewater activated sludge (WAS) is attracting increasing interest. Dissolved organic matters (DOMs) in WAS with high content are biologically active. In this work, the molecular composition of DOMs derived from two typical bio-stabilized WAS (DOMBWS), aerobic composting (DOMACS) and anaerobic digestion (DOMADS), were analyzed. The mitigative effect and molecular mechanisms of DOMBWS on rice seedlings (Oryza sativa L.) under Cd-stress were investigated. Our study indicated that DOMBWS significantly alleviated Cd-stress and facilitated growth recovery of rice seedlings with distinct absorption mechanisms. DOMACS, primarily composed of CHO class with low molecular weight rich in carboxyl groups, forming labile Cd-DOM complexes, which promoted Cd-absorption of rice seedlings. While DOMADS comprised large molecular weight of CHON class interacted with Cd to produce stable macromolecular complexes in the form of microaggregates, consequently reducing Cd-absorption. At transcriptional level, DOMBWS restored auxin signal transduction and phenylpropanoid biosynthesis pathways in root cells, and got the expression of glutathione S-transferase well. Besides, DOMACS significantly promoted the metabolism of amino acids to alleviate phytotoxicity, while DOMADS improved the DNA repair function of rice seedlings. These findings provided novel insights into land-use of bio-stabilized WAS for remediation of heavy metals contaminated soils and food security.
Collapse
Affiliation(s)
- Jun Chen
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Kewei Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Aibin Hu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Qinglong Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Dongsheng Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbo Shi
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China.
| |
Collapse
|
6
|
Utilization of Legume-Nodule Bacterial Symbiosis in Phytoremediation of Heavy Metal-Contaminated Soils. BIOLOGY 2022; 11:biology11050676. [PMID: 35625404 PMCID: PMC9138774 DOI: 10.3390/biology11050676] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The legume–rhizobium symbiosis is one of the most beneficial interactions with high importance in agriculture, as it delivers nitrogen to plants and soil, thereby enhancing plant growth. Currently, this symbiosis is increasingly being exploited in phytoremediation of metal contaminated soil to improve soil fertility and simultaneously metal extraction or stabilization. Rhizobia increase phytoremediation directly by nitrogen fixation, protection of plants from pathogens, and production of plant growth-promoting factors and phytohormones. Abstract With the increasing industrial activity of the growing human population, the accumulation of various contaminants in soil, including heavy metals, has increased rapidly. Heavy metals as non-biodegradable elements persist in the soil environment and may pollute crop plants, further accumulating in the human body causing serious conditions. Hence, phytoremediation of land contamination as an environmental restoration technology is desirable for both human health and broad-sense ecology. Legumes (Fabaceae), which play a special role in nitrogen cycling, are dominant plants in contaminated areas. Therefore, the use of legumes and associated nitrogen-fixing rhizobia to reduce the concentrations or toxic effects of contaminants in the soil is environmentally friendly and becomes a promising strategy for phytoremediation and phytostabilization. Rhizobia, which have such plant growth-promoting (PGP) features as phosphorus solubilization, phytohormone synthesis, siderophore release, production of beneficial compounds for plants, and most of all nitrogen fixation, may promote legume growth while diminishing metal toxicity. The aim of the present review is to provide a comprehensive description of the main effects of metal contaminants in nitrogen-fixing leguminous plants and the benefits of using the legume–rhizobium symbiosis with both wild-type and genetically modified plants and bacteria to enhance an efficient recovery of contaminated lands.
Collapse
|
7
|
Detoxification of phenanthrene in Arabidopsis thaliana involves a Dioxygenase For Auxin Oxidation 1 (AtDAO1). J Biotechnol 2021; 342:36-44. [PMID: 34610365 DOI: 10.1016/j.jbiotec.2021.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022]
Abstract
Polycyclic aromatic hydrocarbon (PAH) contamination has a negative impact on ecosystems. PAHs are a large group of toxins with two or more benzene rings that are persistent in the environment. Some PAHs can be cytotoxic, teratogenic, and/or carcinogenic. In the bacterium Pseudomonas, PAHs can be modified by dioxygenases, which increase the reactivity of PAHs. We hypothesize that some plant dioxygenases are capable of PAH biodegradation. Herein, we investigate the involvement of Arabidopsis thaliana At1g14130 in the degradation of phenanthrene, our model PAH. The At1g14130 gene encodes Dioxygenase For Auxin Oxidation 1 (AtDAO1), an enzyme involved in the oxidative inactivation of the hormone auxin. Expression analysis using a β-glucuronidase (GUS) reporter revealed that At1g14130 is prominently expressed in new leaves of plants exposed to media with phenanthrene. Analysis of the oxidative state of gain-of-function mutants showed elevated levels of H2O2 after phenanthrene treatments, probably due to an increase in the oxidation of phenanthrene by AtDAO1. Biochemical assays with purified AtDAO1 and phenanthrene suggest an enzymatic activity towards the PAH. Thus, data presented in this study support the hypothesis that an auxin dioxygenase, AtDAO1, from Arabidopsis thaliana contributes to the degradation of phenanthrene and that there is possible toxic metabolite accumulation after PAH exposure.
Collapse
|
8
|
Wang K, Yu H, Zhang X, Ye D, Huang H, Wang Y, Zheng Z, Li T. A transcriptomic view of cadmium retention in roots of cadmium-safe rice line (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126379. [PMID: 34329031 DOI: 10.1016/j.jhazmat.2021.126379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
A better understanding of the mechanisms controlling cadmium (Cd) accumulation in rice will benefit the development of strategies to minimize Cd accumulation in grains. A Cd-safe rice line designated D62B accumulated less than 0.2 mg Cd kg-1 in brown rice due to its strong capacity for Cd retention in roots. Here transcriptomic was used to clarify the underlying mechanisms of Cd response in roots of D62B compared with a high Cd-accumulating line (Wujin4B). There were 777, 1058 differentially expressed genes (DEGs) in D62B and Wujin4B, respectively, when exposed to Cd. The functions of DEGs were clearly line-specific. Cell wall biosynthesis responded more intensively to Cd stress in D62B, facilitating Cd restriction. Meanwhile, more glutathione (GSH) and phytochelatins synthesized in D62B with the upregulation of sulphur and GSH metabolism. Besides, membrane proteins played critical roles in Cd response in D62B, whereas 18 terms involved in regulation were enriched in Wujin4B. Exogenous GSH further induced the expression of genes related to GSH metabolism and cell wall biosynthesis, leading to the retention of more Cd. Great responsiveness of cell wall biosynthesis and GSH metabolism could be considered the most important specific mechanisms for Cd retention in the roots of Cd-safe rice line.
Collapse
Affiliation(s)
- Keji Wang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Haiying Yu
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Xizhou Zhang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Daihua Ye
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Huagang Huang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Yongdong Wang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Zicheng Zheng
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Tingxuan Li
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| |
Collapse
|
9
|
Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:260-278. [PMID: 34020167 DOI: 10.1016/j.plaphy.2021.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
Heavy metal (HM) accumulation in the agricultural soil and its toxicity is a major threat for plant growth and development. HMs disrupt functional integrity of the plants, induces altered phenological and physiological responses and slashes down qualitative crop yield. Chemical messengers such as phytohormones, plant growth regulators and gasotransmitters play a crucial role in regulating plant growth and development under metal toxicity in plants. Understanding the intricate network of these chemical messengers as well as interactions of genes/metabolites/proteins associated with HM toxicity in plants is necessary for deciphering insights into the regulatory circuit involved in HM tolerance. The present review describes (a) the role of chemical messengers in HM-induced toxicity mitigation, (b) possible crosstalk between phytohormones and other signaling cascades involved in plants HM tolerance and (c) the recent advancements in biotechnological interventions including genetic engineering, genome editing and omics approaches to provide a step ahead in making of improved plant against HM toxicities.
Collapse
Affiliation(s)
| | | | | | | | - Sofi Javed Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
10
|
Wang K, Yu H, Ye D, Wang Y, Zhang X, Huang H, Zheng Z, Li T. The critical role of the shoot base in inhibiting cadmium transport from root to shoot in a cadmium-safe rice line (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142710. [PMID: 33069470 DOI: 10.1016/j.scitotenv.2020.142710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is harmful to rice and human, thus screening and understanding the mechanism of Cd-safe rice lines, which accumulate little Cd in brown rice, is necessary. D62B was screened as a Cd-safe rice line with low Cd translocation from roots to shoots, and there must be a switch restricting Cd transport from roots to shoots. Here we found that shoot base played the role as switch. Cd concentration in the shoot base of D62B was 1.57 times higher compared with a high Cd-accumulating rice line (Wujin4B) and lower Cd translocation under Cd stress. Glutathione (GSH) and phytochelatins (PCs) were important in this process. GSH and PCs concentrations in the shoot bases of D62B were 1.01- 1.83 times higher than Wujin4B as well as the glutathione S-transferase (GST) and phytochelatin synthase (PCS) concentrations, keeping in consistent with up-regulation of the genes OsGST and OsPCS1. PCs synthesis was further promoted by exogenous GSH. Our results prove the role of shoot bases as switch for restricting Cd transport in D62B due to its great potential for GSH and PCs biosynthesis, and thereby Cd chelation. This could be considered a key mechanism for low Cd accumulation in brown rice of the Cd-safe rice line.
Collapse
Affiliation(s)
- Keji Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| |
Collapse
|
11
|
Khan AHA, Kiyani A, Mirza CR, Butt TA, Barros R, Ali B, Iqbal M, Yousaf S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. ENVIRONMENTAL RESEARCH 2021; 195:110780. [PMID: 33539835 DOI: 10.1016/j.envres.2021.110780] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 05/22/2023]
Abstract
Environmental matrices are polluted with the plethora of contaminants, and among these, the concerns related to heavy metals (HMs) are also included. Due to the low cost in a long-term application and environmental friendliness, the use of biological remediation has gained significant attention in recent decades. The use of ornamental plants (OPs) in the field of phytoremediation is scarcely reported, and the impacts of HMs on OPs have also not been investigated in great depth. The OPs mediated HMs remediation can simultaneously remove contaminants and bring improvement in aesthetics of the site. The biomass of OPs produced after such activities can be used and sold as pot plants, cut flowers, essential oils, perfumes, air fresheners production, metal phytomining, and feedstock in silk production. The OPs also present a lower risk of HMs bioaccumulation compared to crop plants. This review focuses on the current knowledge of HMs toxicity to OPs, their applicability advantages, methods to improve the tolerance of OPs with incremented HMs uptake, challenges in the field, and future application perspectives. The case studies realted to practical application of OPs, from China, Iran, India, Oman, Pakistan, and Turkey, were also discussed. This work fetches the inter-disciplinary features and understanding for the sustainable treatment of HMs in a new novel way, to which no previous review has focused.
Collapse
Affiliation(s)
- Aqib Hassan Ali Khan
- Department of Earth & Environmental Sciences, Bahria University (Karachi Campus), Karachi, 75260, Pakistan; Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Amna Kiyani
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan; Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Cyrus Raza Mirza
- Department of Civil Engineering, College of Engineering, University of Hail, Hail, Saudi Arabia
| | - Tayyab Ashfaq Butt
- Department of Civil Engineering, College of Engineering, University of Hail, Hail, Saudi Arabia
| | - Rocío Barros
- International Research Center in Critical Raw Materials and Advanced Industrial Technologies, Universidad de Burgos, Burgos, 09001, Spain
| | - Basit Ali
- Department of Economics, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
12
|
Gao JJ, Zhang L, Peng RH, Wang B, Feng HJ, Li ZJ, Yao QH. Recombinant expression of Thermosynechococcus elongatus BP-1 glutathione S-transferase in Arabidopsis thaliana: an efficient tool for phytoremediation of thiocyanate. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1779127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Jian-Jie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Ling Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
- Department of Pomology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Hui-Juan Feng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Zhen-Jun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Quan-Hong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
- Department of Pomology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
13
|
Wang S, You M, Wang C, Zhang Y, Fan C, Yan S. Heat shock pretreatment induced cadmium resistance in the nematode Caenorhabditis elegans is depend on transcription factors DAF-16 and HSF-1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114081. [PMID: 32062098 DOI: 10.1016/j.envpol.2020.114081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) exposure poses a serious environmental problem due to the metal's bioaccumulation and difficult to eliminate from body. Understanding the mechanisms of Cd detoxification and resistance can provide insights into methods to protect against the damaging effects of the heavy metal. In the present study, we found that heat shock (HS) pretreatment increased Cd resistance of the nematode Caenorhabditis elegans by reducing the bagging phenotype and protecting the integrity of the intestinal barrier. HS pretreatment increased the expression of heat shock protein-16.2 (HSP-16.2) prior to Cd exposure, and HS-induced Cd resistance was absent in worms with hsp-16.2 loss-of-function mutation. Worm strain with daf-2(e1370) mutation presented enhanced HS-induced Cd resistance, which was eliminated in worm strains of daf-16(mu86) and hsf-1(sy441). HS pretreatment increased DAF-16 nuclear localization and HSF-1 granule formation prior to Cd exposure. DAF-16 and HSF-1 was essential in reducing bagging formation and protecting the integrity of intestinal barrier after HS pretreatment. In conclusion, the present study demonstrated that HS-induced Cd resistance in C. elegans is regulated by the DAF-16/FOXO and HSF-1 pathways through regulation of HSP-16.2 expression.
Collapse
Affiliation(s)
- Shunchang Wang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China.
| | - Mu You
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Chengrun Wang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Yuecheng Zhang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China
| | - Caiqi Fan
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China
| | - Shoubao Yan
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|
14
|
Rai PK, Kim KH, Lee SS, Lee JH. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135858. [PMID: 31846820 DOI: 10.1016/j.scitotenv.2019.135858] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Concerns about emerging environmental contaminants have been growing along with industrialization and urbanization around the globe. Among various options for remediating these contaminants, phytotechnology is suggested as a feasible option to maintain the environmental sustainability. The recent advances in phytoremediation, genetic/molecular/omics/metabolic engineering, and nanotechnology are opening new paths for efficient treatment of emerging organic/inorganic contaminants. In this respect, elucidation of molecular mechanisms and genetic engineering of hyperaccumulator plants is expected to enhance remediation of environmental contaminants. This review was organized to offer valuable insights into the molecular mechanisms of phytoremediation and the prospects of transgenic hyperaccumulators with enhanced stress tolerance to diverse contaminants such as heavy metals and metalloids, xenobiotics, explosives, poly aromatic hydrocarbons (PAHs), petroleum hydrocarbons, pesticides, and nanoparticles. The roles of genoremediation and nanoparticles in augmenting the phytoremediation technology are also described in an interrelated framework with biotechnological prospects (e.g., plant molecular nano-farming). Finally, political debate on the preferential use of crops versus non-crop hyperaccumulators in genoremediation, limitations of transgenics in phytotechnologies, and their public acceptance issues are discussed in the policy framework.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26494, Republic of Korea.
| | - Jin-Hong Lee
- Department of Environmental Engineering, Chungnam National University, Daejeon 34148, Republic of Korea
| |
Collapse
|
15
|
Azab E, Kebeish R, Hegazy AK. Expression of the human gene CYP1A2 enhances tolerance and detoxification of the phenylurea herbicide linuron in Arabidopsis thaliana plants and Escherichia coli. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:281-290. [PMID: 29573710 DOI: 10.1016/j.envpol.2018.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 05/20/2023]
Abstract
The phenylurea herbicide, linuron (LIN), is used to control various types of weeds. Despite its efficient role in controlling weeds, it presents a persistent problem to the environment. In the current study, phytoremediation properties of transgenic CYP1A2 Arabidopsis thaliana plants to LIN were assessed. CYP1A2 gene was firstly cloned and expressed in bacteria before proceeding to plants. In presence of LIN, The growth of CYP1A2 expressing bacteria was superior compared to control bacteria transformed with the empty bacterial expression vector pET22b(+). No clear morphological changes were detected on CYP1A2 transgenic plants. However, significant resistance to LIN herbicide application either via spraying the foliar parts of the plant or via supplementation of the herbicide in the growth medium was observed for CYP1A2 transformants. Plant growth assays under LIN stress provide strong evidence for the enhanced capacity of transgenic lines to grow and to tolerate high concentrations of LIN compared to control plants. HPLC analyses showed that detoxification of LIN by bacterial extracts and/or transgenic plant leaves is improved as compared to the corresponding controls. Our data indicate that over expression of the human CYP1A2 gene increases the phytoremediation capacity and tolerance of Arabidopsis thaliana plants to the phenylurea herbicide linuron.
Collapse
Affiliation(s)
- Ehab Azab
- Taif University, Faculty of Science, Biotechnology Department, Taif, Saudi Arabia; Zagazig University, Faculty of Science, Botany and Microbiology Department, Plant Biotechnology Laboratory (PBL), El-Gamaa Street 1, 44519, Zagazig, Sharkia, Egypt.
| | - Rashad Kebeish
- Taibah University, Faculty of Science Yanbu, Biology Department, King Khalid Rd, Al amoedi, 46423, Yanbu El-Bahr, Saudi Arabia; Zagazig University, Faculty of Science, Botany and Microbiology Department, Plant Biotechnology Laboratory (PBL), El-Gamaa Street 1, 44519, Zagazig, Sharkia, Egypt.
| | - A K Hegazy
- Cairo University, Faculty of Science, Department of Botany and Microbiology, Giza, Egypt
| |
Collapse
|
16
|
Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E. Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. PLANT BIOTECHNOLOGY REPORTS 2018; 12:1-14. [PMID: 29503668 PMCID: PMC5829118 DOI: 10.1007/s11816-017-0467-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/18/2017] [Indexed: 05/18/2023]
Abstract
Avoidance and reduction of soil contamination with heavy metals is one of the most serious global challenges. Nowadays, science offers us new opportunities of utilizing plants to extract toxic elements from the soil by means of phytoremediation. Plant abilities to uptake, translocate, and transform heavy metals, as well as to limit their toxicity, may be significantly enhanced via genetic engineering. This paper provides a comprehensive review of recent strategies aimed at the improvement of plant phytoremediation potential using plant transformation and employing current achievements in nuclear and cytoplasmic genome transformation. Strategies for obtaining plants suitable for effective soil clean-up and tolerant to excessive concentrations of heavy metals are critically assessed. Promising directions in genetic manipulations, such as gene silencing and cis- and intragenesis, are also discussed. Moreover, the ways of overcoming disadvantages of phytoremediation using genetic transformation approachare proposed. The knowledge gathered here could be useful for designing new research aimed at biotechnological improvement of phytoremediation efficiency.
Collapse
Affiliation(s)
- Aleksandra Koźmińska
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Alina Wiszniewska
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Ewa Hanus-Fajerska
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Ewa Muszyńska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland
| |
Collapse
|
17
|
Legault EK, James CA, Stewart K, Muiznieks I, Doty SL, Strand SE. A Field Trial of TCE Phytoremediation by Genetically Modified Poplars Expressing Cytochrome P450 2E1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6090-6099. [PMID: 28463483 DOI: 10.1021/acs.est.5b04758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A controlled field study was performed to evaluate the effectiveness of transgenic poplars for phytoremediation. Three hydraulically contained test beds were planted with 12 transgenic poplars, 12 wild type (WT) poplars, or left unplanted, and dosed with equivalent concentrations of trichloroethylene (TCE). Removal of TCE was enhanced in the transgenic tree bed, but not to the extent of the enhanced removal observed in laboratory studies. Total chlorinated ethene removal was 87% in the CYP2E1 bed, 85% in the WT bed, and 34% in the unplanted bed in 2012. Evapotranspiration of TCE from transgenic leaves was reduced by 80% and diffusion of TCE from transgenic stems was reduced by 90% compared to WT. Cis-dichloroethene and vinyl chloride levels were reduced in the transgenic tree bed. Chloride ion accumulated in the planted beds corresponding to the TCE loss, suggesting that contaminant dehalogenation was the primary loss fate.
Collapse
Affiliation(s)
- Emily K Legault
- Department of Civil and Environmental Engineering, UW Box 355014, University of Washington , Seattle, Washington, United States
| | - C Andrew James
- Center for Urban Waters, University of Washington Tacoma , Tacoma, Washington, United States
| | - Keith Stewart
- Department of Civil and Environmental Engineering, UW Box 355014, University of Washington , Seattle, Washington, United States
| | - Indulis Muiznieks
- College of the Environment, School of Environmental and Forest Sciences, UW Box 352100, University of Washington , Seattle, Washington, United States
| | - Sharon L Doty
- College of the Environment, School of Environmental and Forest Sciences, UW Box 352100, University of Washington , Seattle, Washington, United States
| | - Stuart E Strand
- Department of Civil and Environmental Engineering, UW Box 355014, University of Washington , Seattle, Washington, United States
| |
Collapse
|
18
|
Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. PLANT CELL REPORTS 2017; 36:791-805. [PMID: 28391528 DOI: 10.1007/s00299-017-2139-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
Plant glutathione transferases (EC 2.5.1.18, GSTs) are an ancient, multimember and diverse enzyme class. Plant GSTs have diverse roles in plant development, endogenous metabolism, stress tolerance, and xenobiotic detoxification. Their study embodies both fundamental aspects and agricultural interest, because of their ability to confer tolerance against biotic and abiotic stresses and to detoxify herbicides. Here we review the biotechnological applications of GSTs towards developing plants that are resistant to biotic and abiotic stresses. We integrate recent discoveries, highlight, and critically discuss the underlying biochemical and molecular pathways involved. We elaborate that the functions of GSTs in abiotic and biotic stress adaptation are potentially a result of both catalytic and non-catalytic functions. These include conjugation of reactive electrophile species with glutathione and the modulation of cellular redox status, biosynthesis, binding, and transport of secondary metabolites and hormones. Their major universal functions under stress underline the potential in developing climate-resilient cultivars through a combination of molecular and conventional breeding programs. We propose that future GST engineering efforts through rational and combinatorial approaches, would lead to the design of improved isoenzymes with purpose-designed catalytic activities and novel functional properties. Concurrent GST-GSH metabolic engineering can incrementally increase the effectiveness of GST biotechnological deployment.
Collapse
Affiliation(s)
- Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece.
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, 57001, Thessaloniki, Greece
| | - Christos Kissoudis
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Georgia Voulgari
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
| | - Evangelia Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Athanasios Tsaftaris
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, 57001, Thessaloniki, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| |
Collapse
|
19
|
Ibañez S, Talano M, Ontañon O, Suman J, Medina MI, Macek T, Agostini E. Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. N Biotechnol 2016; 33:625-635. [DOI: 10.1016/j.nbt.2015.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023]
|
20
|
Rylott EL, Johnston EJ, Bruce NC. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6519-33. [PMID: 26283045 DOI: 10.1093/jxb/erv384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Emily J Johnston
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
21
|
Qiu CH, Li H, Li J, Qin RY, Xu RF, Yang YC, Ma H, Song FS, Li L, Wei PC, Yang JB. Isolation and characterization of three cadmium-inducible promoters from Oryza sativa. J Biotechnol 2015; 216:11-9. [PMID: 26435218 DOI: 10.1016/j.jbiotec.2015.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/20/2015] [Accepted: 09/28/2015] [Indexed: 10/23/2022]
Abstract
Cadmium (Cd) is an important soil pollutant. Developing genetically engineered crops might be a feasible strategy for Cd decontamination and damage prevention. Both genes and promoters are critical for the effective construction of genetically modified plants. Although many functional genes for Cd tolerance and accumulation have been identified, few reports have focused on plant Cd-inducible promoters. Here, we identified three Cd-inducible genes in the rice genome: two tau class glutathione S-transferase (GSTU) genes, OsGSTU5 and OsGSTU37, and an HSP20/alpha crystallin family protein gene, OsHSP18.6. The promoter sequences were isolated and tested in transgenic rice lines using a GUSplus reporter gene. All of the promoters exhibited low background expression under normal conditions and could be strongly induced by Cd stress. Although their strength was comparable to that of the constitutive OsACTIN promoter under Cd stress, their time-dependent expression patterns under both short- and long-term Cd exposure were markedly different. The responses of the three promoters to other heavy metals were also examined. Furthermore, heavy metal-responsive cis elements in the promoters were computationally analyzed, and regions determining the Cd stress response were analyzed using a series of truncations. Our results indicate that the three Cd-inducible rice promoters described herein could potentially be used in applications aimed at improving heavy metal tolerance in crops or for the bio-monitoring of environmental contamination.
Collapse
Affiliation(s)
- Chun-Hong Qiu
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hao Li
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Juan Li
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Rui-Ying Qin
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Rong-Fang Xu
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ya-Chun Yang
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hui Ma
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Feng-Shun Song
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Li Li
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Peng-Cheng Wei
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Jian-Bo Yang
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
22
|
Wang Y, Ren H, Pan H, Liu J, Zhang L. Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:269-275. [PMID: 25590820 DOI: 10.1016/j.jhazmat.2014.12.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/14/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) and 2,4-dichlorophenol (2,4-DCP) generally led to mixed contamination of soils as a result of commercial and agricultural activities. Their accumulation in the environment poses great risks to human and animal health. Therefore, the effective strategies for disposal of these pollutants are urgently needed. In this study, genetic engineering to enhance PCBs/2,4-DCP phytoremediation is a focus. We cloned the 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC.B) from a soil metagenomic library, which is the key enzyme of aerobic catabolism of a variety of aromatic compounds, and then it was expressed in alfalfa driven by CaMV 35S promoter using Agrobacterium-mediated transformation. Transgenic line BB11 was selected out through PCR, Western blot analysis and enzyme activity assays. Its disposal and tolerance to both PCBs and 2,4-DCP were examined. The tolerance capability of transgenic line BB11 towards complex contaminants of PCBs/2,4-DCP significantly increased compared with non-transgenic plants. Strong dissipation of PCBs and high removal efficiency of 2,4-DCP were exhibited in a short time. It was confirmed expressing BphC.B would be a feasible strategy to help achieving phytoremediation in mixed contaminated soils with PCBs and 2,4-DCP.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Groud Water Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, Jilin 130021, People's Republic of China; College of Plant Sciences, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Hejun Ren
- Key Laboratory of Groud Water Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, Jilin 130021, People's Republic of China.
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, 5333 Xi'an Road, Changchun, Jilin 130062, People's Republic of China
| | - Lanying Zhang
- Key Laboratory of Groud Water Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
23
|
Gaur N, Flora G, Yadav M, Tiwari A. A review with recent advancements on bioremediation-based abolition of heavy metals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:180-93. [PMID: 24362580 DOI: 10.1039/c3em00491k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
There has been a significant rise in the levels of heavy metals (Pb, As, Hg and Cd) due to their increased industrial usage causing a severe concern to public health. The accumulation of heavy metals generates oxidative stress in the body causing fatal effects to important biological processes leading to cell death. Therefore, there is an imperative need to explore efficient and effective methods for the eradication of these heavy metals as against the conventionally used uneconomical and time consuming strategies that have numerous environmental hazards. One such eco-friendly, low cost and efficient alternative to target heavy metals is bioremediation technology that utilizes various microorganisms, green plants or enzymes for the abolition of heavy metals from polluted sites. This review comprehensively discusses toxicological manifestations of heavy metals along with the detailed description of bioremediation technologies employed such as phytoremediation and biosorption for the potential removal of these metals. It also updates readers about recent advances in bioremediation technologies like the use of nanoparticles, non-living biomass and transgenic crops.
Collapse
Affiliation(s)
- Nisha Gaur
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, M.P., India.
| | | | | | | |
Collapse
|
24
|
Kebeish R, Azab E, Peterhaensel C, El-Basheer R. Engineering the metabolism of the phenylurea herbicide chlortoluron in genetically modified Arabidopsis thaliana plants expressing the mammalian cytochrome P450 enzyme CYP1A2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8224-32. [PMID: 24920432 DOI: 10.1007/s11356-014-2710-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/27/2014] [Indexed: 05/20/2023]
Abstract
Transgenic Arabidopsis thaliana plants were generated by introduction of the human P450 CYP1A2 gene, which metabolizes a number of herbicides, insecticides and industrial chemicals. Transgenic A. thaliana plants expressing CYP1A2 gene showed remarkable resistance to the phenylurea herbicide chlortoluron (CTU) supplemented either in plant growth medium or sprayed on foliar parts of the plants. HPLC analyses showed a strong reduction in CTU accumulation in planta supporting the tolerance of transgenic lines to high concentrations of CTU. Besides increased herbicide tolerance, expression of CYP1A2 resulted in no other visible phenotype in transgenic plants. Our data indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. Moreover, these transgenic plants appear to be useful for herbicide resistance as well as phytoremediation of environmental contaminants.
Collapse
Affiliation(s)
- Rashad Kebeish
- Plant Biotechnology Laboratory (PBL), Botany Department, Faculty of Science, Zagazig University, El-Gamaa Street, 44519, Zagazig, Egypt,
| | | | | | | |
Collapse
|
25
|
Del Bubba M, Ancillotti C, Checchini L, Ciofi L, Fibbi D, Gonnelli C, Mosti S. Chromium accumulation and changes in plant growth, selected phenolics and sugars of wild type and genetically modified Nicotiana langsdorffii. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:394-403. [PMID: 24061217 DOI: 10.1016/j.jhazmat.2013.08.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/02/2013] [Accepted: 08/29/2013] [Indexed: 05/27/2023]
Abstract
Chromium accumulation, dry weight (DW) biomass yield, water content and concentrations of some selected phenolic compounds and carbohydrates were determined in root and shoot of Nicotiana langsdorffii, either wild type (WT) or genetically modified by the insertion of GR and rolC genes, in response to the presence of Cr(VI) in the growth medium. A biomass decrease was observed for WT plants, but not for GR and rolC transformations, in response to Cr(VI) in the growth medium, highlighting a stress situation only in WT line. Shoot chromium concentrations were in all cases about 300 mg kg(-1) DW. In root higher concentrations were found in rolC than in GR and WT (3843, 2600 and 2751 mg kg(-1) DW, respectively). Based on the DW biomass, GR and WT accumulated higher chromium quantities than rolC, both in root (330 and 424 versus 85 μg Cr per plant) and shoot (282 and 275 versus 121 μg Cr per plant). Therefore, GR should be preferred to WT as a promising candidate for chromium phytoremediation. Metabolic shifts of sugars and phenolics were generally observed in response to either gene insertions or exposure to Cr(VI), being the latter more related to the resistance to Cr(VI) than the former.
Collapse
Affiliation(s)
- Massimo Del Bubba
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Matos RC, Bessa M, Oliveira H, Gonçalves F, de Lourdes Pereira M, Nunes B. Mechanisms of kidney toxicity for chromium- and arsenic-based preservatives: potential involvement of a pro-oxidative pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:929-936. [PMID: 24025636 DOI: 10.1016/j.etap.2013.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Metals have been extensively used for the preservation of wood. Among metallic conservatives, mixtures of chromated copper arsenate (CCA) were thoroughly used. However, the release and consequent mobilization of such compounds by biota, may culminate in the exertion of toxic chemical effects. The present study intended to show the toxicological effects caused by arsenic (7.2 mg/kg body weight), chromium (10.2 mg/kg Cr body weight) and the commercial mixture CCA (7.2 mg/kg As body weight and 10.2 mg/kg Cr body weight) in mice, namely the oxidative stress response (catalase - CAT, glutathione peroxidase - GPx, and glutathione-S-transferases - GSTs), in kidney tissues. The determination of the tested parameters was performed after exposure; organisms were exposed, and then sacrificed at two distinct periods, namely 14 and 96 h after the administration of toxicants. Exposure to chromium and arsenic induced significant modifications in the redox state of the test organisms, evidenced by significant alterations in GSTs and GPx activities. No alterations were found concerning the activity of catalase. These findings showed that the chemical mixture used as household product may exert significant toxicological outcomes in exposed animals, such as rodents, conditioning their redox homeostasis and antioxidant response.
Collapse
Affiliation(s)
- Rita Cerejeira Matos
- Department of Biology, University of Aveiro, Campus Santiago, 3810-193 Aveiro, Portugal; CICECO, University of Aveiro, Campus Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Zhang W, Yin K, Li B, Chen L. A glutathione S-transferase from Proteus mirabilis involved in heavy metal resistance and its potential application in removal of Hg²⁺. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:646-652. [PMID: 23995561 DOI: 10.1016/j.jhazmat.2013.08.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/27/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Glutathione S-transferases (GSTs) are a family of multifunctional proteins playing important roles in detoxification of harmful physiological and xenobiotic compounds in organisms. In our study, a gene encoding a GST from Proteus mirabilis strain V7, gstPm-4, was cloned and conditionally expressed in Escherichia coli strain BL21(DE3). The purified GstPm-4 protein, with an estimated molecular mass of approximately 23kDa, was able to conjugate 1-chloro-2,4-dinitrobenzene and bind to the GSH-affinity matrix. Real-time reverse transcriptase PCR suggested that mRNA level of gstPm-4 was increased in the presence of CdCl2, CuCl2, HgCl2 and PbCl2, respectively. Correspondingly, overexpression of gstPm-4 in the genetically engineered bacterium Top10/pLacpGst exhibited higher heavy metal resistance compared to the control Top10/pLacP3. Another genetically engineered bacterium Top10/pBATGst, in which the DNA encoding GstPm-4 protein was fused with the DNA encoding Pfa1-based auto surface display system, was built. Top10/pBATGst could constitutively express the chimeric GstPm-4 and anchor it onto the cell surface subsequently. Almost 100% of the Hg(2+) within the range of 0.1-100 nM was adsorbed by Top10/pBATGst, and 80% of the bounded Hg(2+) could be desorbed from bacterial cells when pH was adjusted to 6.0. Thus, Top10/pBATGst can be potentially used for efficient treatment of Hg(2+)-contaminated aquatic environment.
Collapse
Affiliation(s)
- Weiwei Zhang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China
| | | | | | | |
Collapse
|
28
|
Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:1100-1107. [PMID: 23933506 DOI: 10.1016/j.jhazmat.2013.06.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/22/2013] [Accepted: 06/25/2013] [Indexed: 06/02/2023]
Abstract
Soil contamination is a global environmental problem and many efforts have been made to find efficient remediation methods over the last decade. Moreover, remediation of mixed contaminated soils are more difficult. In the present study, transgenic alfalfa plants pKHCG co-expressing glutathione S-transferase (GST) and human P450 2E1 (CYP2E1) genes were used for phytoremediation of mixed mercury (Hg)-trichloroethylene (TCE) contaminants. Simultaneous expression of GST and CYP2E1 may produce a significant synergistic effect, and leads to improved resistance and accumulation to heavy metal-organic complex contaminants. Based on the tolerance and accumulation assays, pKHCG transgenic plants were more resistant to Hg/TCE complex pollutants and many folds higher in Hg/TCE-accumulation than the non-transgenic control plants in mixed contaminated soil. It is confirmed that GST and CYP2E1 co-expression may be a useful strategy to help achieve mixed heavy metal-organic pollutants phytoremediation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, PO Box 70, Qingdao 266042, China
| | | | | | | | | | | |
Collapse
|
29
|
A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 2013; 14:7405-32. [PMID: 23549272 PMCID: PMC3645693 DOI: 10.3390/ijms14047405] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 01/05/2023] Open
Abstract
Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.
Collapse
|
30
|
Skladanka J, Adam V, Zitka O, Krystofova O, Beklova M, Kizek R, Havlicek Z, Slama P, Nawrath A. Investigation into the effect of molds in grasses on their content of low molecular mass thiols. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012. [PMID: 23202817 PMCID: PMC3524598 DOI: 10.3390/ijerph9113789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to investigate the effect of molds on levels of low molecular mass thiols in grasses. For this purpose, the three grass species Lolium perenne, Festulolium pabulare and Festulolium braunii were cultivated and sampled during four months, from June to September. The same species were also grown under controlled conditions. High-performance liquid chromatography with electrochemical detection was used for quantification of cysteine, reduced (GSH) and oxidized (GSSG) glutathione, and phytochelatins (PC2, PC3, PC4 and PC5). Data were statistically processed and analyzed. Thiols were present in all examined grass species. The effect of fungicide treatments applied under field conditions on the content of the evaluated thiols was shown to be insignificant. Species influenced (p < 0.05) PC3 and GSSG content. F. pabulare, an intergeneric hybrid of drought- and fungi-resistant Festuca arundinacea, was comparable in PC3 content with L. perenne and F. braunii under field conditions. Under controlled conditions, however, F. pabulare had higher (p < 0.05) PC3 content than did L. perenne and F. braunii. Under field conditions, differences between the evaluated species were recorded only in GSSG content, but only sampling in June was significant. F. pabulare had higher (p < 0.05) GSSG content in June than did L. perenne and F. braunii.
Collapse
Affiliation(s)
- Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic;
- Author to whom correspondence should be addressed; ; Tel.: +420-5-4513-3079; Fax: +420-5-4521-2044
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic; (M.B.)
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
| | - Miroslava Beklova
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic; (M.B.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Zdenek Havlicek
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.H.); (P.S.)
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.H.); (P.S.)
| | - Adam Nawrath
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic;
| |
Collapse
|
31
|
Azevedo RA, Gratão PL, Monteiro CC, Carvalho RF. What is new in the research on cadmium‐induced stress in plants? Food Energy Secur 2012. [DOI: 10.1002/fes3.10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ricardo A. Azevedo
- Departamento de Genética Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo (USP) Piracicaba São Paulo Brazil
| | - Priscila L. Gratão
- Departamento de Biologia Aplicada à Agropecuária Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Jaboticabal São Paulo Brazil
| | - Carolina C. Monteiro
- Departamento de Biologia Aplicada à Agropecuária Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Jaboticabal São Paulo Brazil
| | - Rogério F. Carvalho
- Departamento de Biologia Aplicada à Agropecuária Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP) Jaboticabal São Paulo Brazil
| |
Collapse
|
32
|
Ahammed GJ, Gao CJ, Ogweno JO, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ. Brassinosteroids induce plant tolerance against phenanthrene by enhancing degradation and detoxification in Solanum lycopersicum L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 80:28-36. [PMID: 22364830 DOI: 10.1016/j.ecoenv.2012.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 02/05/2012] [Accepted: 02/07/2012] [Indexed: 05/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic to both plants and animals. The enhancement of plant tolerance and detoxification capacity is important for the plant-based remediation of PAHs. Therefore, we investigated the effects of 24-epibrassinolide (EBR) on the metabolism of a three-ringed PAH (phenanthrene-PHE) and subsequent stress tolerance in tomato (Solanum lycopersicum L.) plants. Exposure to PHE (300 μM) for 21 d significantly decreased biomass and net CO(2) assimilation (P(n)) but induced photoinhibition, malondialdehyde (MDA), H(2)O(2) and antioxidant enzymes. Obvious ultrastructural alterations were observed in the PHE-treated root tip cells. Importantly, the foliar application of EBR (0.1 μM) significantly increased biomass, P(n) and antioxidant enzyme activities but decreased MDA and H(2)O(2) compared with PHE alone and saved the root cells from severe damage. The expression of detoxification genes (CYP90b3, GSH1, GST1), reduced glutathione (GSH) content and glutathione S-transferase activity in the EBR+PHE-treated plants were higher than those of PHE alone. Additionally, lower levels of PHE residues in the roots were observed as a result of EBR+PHE treatment. Taken together, our results strongly suggest an enhanced and coordinated detoxification and degradation of PHE by EBR.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Phongdara A, Nakkaew A, Nualkaew S. Isolation of the detoxification enzyme EgP450 from an oil palm EST library. PHARMACEUTICAL BIOLOGY 2012; 50:120-127. [PMID: 22196587 DOI: 10.3109/13880209.2011.631019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Sequencing of cDNA clones from plant tissue to generate expressed sequence tags (ESTs) is an effective tool for gene discovery. Together with powerful bioinformatics tools, EST sequences allow the prediction of functions of putative bioactive compounds that can later be confirmed. OBJECTIVE To isolate a detoxification enzyme from an EST library from the oil palm (Elaeis guineensis Jacq. Arecaceae). METHODS In total, 750 clones from an oil palm cDNA library were randomly sequenced and analyzed. A clone homologous to cytochrome P450 monooxygenases (P450) was selected from the list of highly expressed genes. The full-length cDNA of P450 from E. guineensis (EgP450) was generated and transformed into a bacterial host to produce recombinant protein. A 3D model of EgP450 was generated and used in a molecular docking analysis to screen for target herbicide substrates. Finally, the detoxification activity of EgP450 was confirmed by an herbicide tolerance test with rice seedlings. RESULTS AND DISCUSSION The full-length EgP450 has an open reading frame (ORF) of 1515 bp that encodes a protein of 505 amino acids. Docking analysis showed that EgP450 bound to phenylurea-like herbicides such as isoproturon, chlortoluron and fluometuron. The herbicide tolerance test demonstrated that the presence of EgP450 protected the rice seedlings from the killing action of the phytotoxic agent isoproturon. CONCLUSIONS The gene EgP450 was detected in the roots and stems of oil palm tissues, and its recombinant product was shown to protect rice seedlings from exogenous herbicides of the phenylurea family.
Collapse
Affiliation(s)
- Amornrat Phongdara
- Center for Genomics and Bioinformatics Research, Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand.
| | | | | |
Collapse
|
34
|
Kumar S, Jin M, Weemhoff JL. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes. ACTA ACUST UNITED AC 2012; 3. [PMID: 25298920 PMCID: PMC4186655 DOI: 10.4172/2157-7463.1000127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation.
Collapse
Affiliation(s)
| | - Mengyao Jin
- School of Pharmacy, University of Missouri, USA
| | | |
Collapse
|
35
|
Zitka O, Krystofova O, Sobrova P, Adam V, Zehnalek J, Beklova M, Kizek R. Phytochelatin synthase activity as a marker of metal pollution. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:794-800. [PMID: 21715087 DOI: 10.1016/j.jhazmat.2011.05.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/23/2011] [Accepted: 05/27/2011] [Indexed: 05/15/2023]
Abstract
The synthesis of phytochelatins is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO(3))(2) for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35°C for 30min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270fkat) in treated cells was more than seven times higher in comparison to control ones. K(m) for PCS was estimated as 2.3mM.
Collapse
Affiliation(s)
- Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|