1
|
Yang G, Xu Y, Wang J. Antibiotic fermentation residue for biohydrogen production: Inhibitory mechanisms of the inherent antibiotic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173986. [PMID: 38876344 DOI: 10.1016/j.scitotenv.2024.173986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Antibiotic fermentation residue, which is generated from the microbial antibiotic production process, has been a troublesome waste faced by the pharmaceutical industry. Dark fermentation is a potential technology to treat antibiotic fermentation residue in terms of renewable H2 generation and waste management. However, the inherent antibiotic in antibiotic fermentation residue may inhibit its dark fermentation performance, and current understanding on this topic is limited. This investigation examined the impact of the inherent antibiotic on the dark H2 fermentation of Cephalosporin C (CEPC) fermentation residue, and explored the mechanisms from the perspectives of bacterial communities and functional genes. It was found that CEP-C in the antibiotic fermentation residue significantly inhibited the H2 production, with the H2 yield decreasing from 17.2 mL/g-VSadded to 12.5 and 9.6 mL/g-VSadded at CEP-C concentrations of 100 and 200 mg/L, respectively. CEP-C also prolonged the H2-producing lag period. Microbiological analysis indicated that CEP-C remarkably decreased the abundances of high-yielding H2-producing bacteria, as well as downregulated the genes involved in hydrogen generation from the"pyruvate pathway" and"NADH pathway", essentially leading to the decline of H2 productivity. The present work gains insights into how cephalosporin antibiotics influence the dark H2 fermentation, and provide guidance for mitigating the inhibitory effects.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Youtong Xu
- China National Chemical Engineering International Corporation Ltd., Beijing 100020, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Liu H, Zhang Z, Li X, Zhou T, Wang Z, Li J, Li Y, Wang Q. Temperature-phased anaerobic sludge digestion effectively removes antibiotic resistance genes in a full-scale wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171555. [PMID: 38485028 DOI: 10.1016/j.scitotenv.2024.171555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Sludge is a major by-product and the final reservoir of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). Temperature-phased anaerobic digestion (TPAD), consisting of thermophilic anaerobic digestion (AD) (55 °C) and mesophilic AD processes (37 °C), has been implemented in WWTPs for sludge reduction while improving the biomethane production. However, the impact of TPAD on the ARGs' fate is still undiscovered in lab-scale experiments and full-scale WWTPs. This study, for the first time, investigated the fate of ARGs during the TPAD process across three seasons in a full-size WWTP. Ten typical ARGs and one integrase gene of class 1 integron (intI1) involving ARGs horizontal gene transfer were examined in sludge before and after each step of the TPAD process. TPAD reduced aac(6')-Ib-cr, blaTEM, drfA1, sul1, sul2, ermb, mefA, tetA, tetB and tetX by 87.3-100.0 %. TPAD reduced the overall average absolute abundance of targeted ARGs and intI1 by 92.39 % and 92.50 %, respectively. The abundance of targeted ARGs in sludge was higher in winter than in summer and autumn before and after TPAD. During the TPAD processes, thermophilic AD played a major role in the removal of ARGs, contributing to >60 % removal of ARGs, while the subsequent mesophilic AD contributed to a further 31 % removal of ARGs. The microbial community analysis revealed that thermophilic AD reduced the absolute abundance of ARGs hosts, antibiotic resistant bacteria. In addition, thermophilic AD reduced the abundance of the intI1, while the intI1 did not reproduce during the mesophilic AD, also contributing to a decline in the absolute abundance of ARGs in TPAD. This study demonstrates that TPAD can effectively reduce the abundance of ARGs in sludge, which will suppress the transmission of ARGs from sludge into the natural environment and deliver environmental and health benefits to our society.
Collapse
Affiliation(s)
- Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Yi Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
3
|
Chen Z, Ding Q, Ning X, Song Z, Gu J, Wang X, Sun W, Qian X, Hu T, Wei S, Xu L, Li Y, Zhou Z, Wei Y. Fe-Mn binary oxides improve the methanogenic performance and reduce the environmental health risks associated with antibiotic resistance genes during anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133921. [PMID: 38452670 DOI: 10.1016/j.jhazmat.2024.133921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Increasing evidence indicates that metal oxides can improve the methanogenic performance during anaerobic digestion (AD) of piggery wastewater. However, the impacts of composite metal oxides on the methanogenic performance and risk of antibiotic resistance gene (ARG) transmission during AD are not fully understood. In this study, different concentrations of Fe-Mn binary oxides (FMBO at 0, 250, 500, and 1000 mg/L) were added to AD to explore the effects of FMBO on the process. The methane yield was 7825.1 mL under FMBO at 250 mg/L, 35.2% higher than that with FMBO at 0 mg/L. PICRUSt2 functional predictions showed that FMBO promoted the oxidation of acetate and propionate, and the production of methane from the substrate, as well as increasing the abundances of most methanogens and genes encoding related enzymes. Furthermore, under FMBO at 250 mg/L, the relative abundances of 14 ARGs (excluding tetC and sul2) and four mobile gene elements (MGEs) decreased by 24.7% and 55.8%, respectively. Most of the changes in the abundances of ARGs were explained by microorganisms, especially Bacteroidetes (51.20%), followed by MGEs (11.98%). Thus, the methanogenic performance of AD improved and the risk of horizontal ARG transfer decreased with FMBO, especially at 250 mg/L.
Collapse
Affiliation(s)
- Zhihui Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Ning
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shumei Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexuan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhipeng Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Zhang MQ, Zhang XY, Zhang HC, Qiu HB, Li ZH, Xie DH, Yuan L, Sheng GP. Gamma-ray irradiation as an effective method for mitigating antibiotic resistant bacteria and antibiotic resistance genes in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133791. [PMID: 38367438 DOI: 10.1016/j.jhazmat.2024.133791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/26/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in municipal wastewater treatment plants (MWTPs) has emerged as a significant environmental concern. Despite advanced treatment processes, high levels of ARGs persist in the secondary effluent from MWTPs, posing ongoing environmental risks. This study explores the potential of gamma-ray irradiation as a novel approach for sterilizing antibiotic-resistant bacteria (ARB) and reducing ARGs in MWTP secondary effluent. Our findings reveal that gamma-ray irradiation at an absorbed dose of 1.6 kGy effectively deactivates all culturable bacteria, with no subsequent revival observed after exposure to 6.4 kGy and a 96-h incubation in darkness at room temperature. The removal efficiencies for a range of ARGs, including tetO, tetA, blaTEM-1, sulI, sulII, and tetW, were up to 90.5% with a 25.6 kGy absorbed dose. No resurgence of ARGs was detected after irradiation. Additionally, this study demonstrates a considerable reduction in the abundances of extracellular ARGs, with the transformation efficiencies of extracellular tetracycline and sulfadiazine resistance genes decreasing by 56.3-81.8% after 25.6 kGy irradiation. These results highlight the effectiveness of gamma-ray irradiation as an advanced and promising method for ARB sterilization and ARG reduction in the secondary effluent of MWTPs, offering a potential pathway to mitigate environmental risks associated with antibiotic resistance.
Collapse
Affiliation(s)
- Ming-Qi Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission of the Ministry of Water Resources, Zhengzhou 450003, China
| | - Xiao-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Chao Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Bin Qiu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Hua Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Shi Y, Pang B, Jia Y, Quan H, Zhang N, Deng Q, Yan Y, Ji F, Sun L, Lu H. Improving antibiotic removal and anaerobic digestion performance of discarded cefradine pellets through thermo-alkaline pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133394. [PMID: 38211522 DOI: 10.1016/j.jhazmat.2023.133394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Discarded cefradine pellets (DCP) as the hazardous wastes contain lots of bioavailable sucrose. Anaerobic digestion (AD) may be a promising technology for treating DCP, achieving dual goals of waste treatment and resource recovery. However, high concentration of cefradine will inhibit the AD process. This study applied thermo-alkaline pretreatment (TAP) to remove cefradine and improve the AD performance of DCP. Around 95% cefradine could be degraded to different intermediate degradation products (TPs) in TAP at optimal condition, and hydrolysis and hydrogenation were the main degradation pathways. Quantitative structure-activity relationship analysis indicated that the main TPs exhibited lower toxicity than cefradine, and DCP residues after TAP were almost not toxic to E. coli K12 and B. subtilis growth by antibacterial activity analysis. Therefore, TAP promoted the biomethane yield in AD of DCP residues (274.74 mL/g COD), which was 1.91 times that of control group. Besides, compared to control group, final cefradine concentrations in liquids and sludge were significantly decreased in AD system with TAP, lowering environmental risk and indicating stronger prospect for process application. Microbiological analysis revealed that acidogens (Macellibacteroides, Bacteroides), syntrophs (Syntrophobacter, Syntrophorhabdus), and acetoclastic Methanosaeta were enriched in AD system with TAP, which contributed to improving AD performance of DCP.
Collapse
Affiliation(s)
- Yongsen Shi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Boyuan Pang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Guangzhou 518000, China
| | - Haoting Quan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Ning Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Qiujin Deng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Yujian Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Fahui Ji
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
6
|
Wang J, Jiao M, Zhan X, Hu C, Zhang Z. Humification and fungal community succession during pig manure composting: Membrane covering and mature compost addition. BIORESOURCE TECHNOLOGY 2024; 393:130030. [PMID: 37977497 DOI: 10.1016/j.biortech.2023.130030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The objective of this study was to elucidate the combined effect of a semi-permeable membrane (M) and mature compost (MC) on humification and fungal community succession in pig manure composting. Compared with the control, the concentrations of humic substances (HSs) increased by 44.54 % (M + 15 % MC) and 43.90 % (M). During the thermophilic phase, Aspergillus (67.26 %) was the dominant genus in the M + 15 % MC treatment. Membrane covering increased the relative abundance (RA) of other phyla (except for Ascomycetes and Basidiomycetes) on the 14th day and Basidiomycetes on the 80th day in M treatment. Humic acid, HSs were positively correlated with the RA of genera Myceliophthora, Kernia, and Mycothermus. Myceliophthora was the key genus in the M + 15 % MC treatment on the 80th day. The results showed that 15 % MC addition under membrane covering optimizes the quality of composting products.
Collapse
Affiliation(s)
- Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
7
|
Molina-Menor E, Carlotto N, Vidal-Verdú À, Pérez-Ferriols A, Pérez-Pastor G, Porcar M. Ecology and resistance to UV light and antibiotics of microbial communities on UV cabins in the dermatology service of a Spanish hospital. Sci Rep 2023; 13:14547. [PMID: 37666842 PMCID: PMC10477284 DOI: 10.1038/s41598-023-40996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023] Open
Abstract
Microorganisms colonize all possible ecological habitats, including those subjected to harsh stressors such as UV radiation. Hospitals, in particular the UV cabins used in phototherapy units, constitute an environment in which microbes are intermittently subjected to UV irradiation. This selective pressure, in addition to the frequent use of antibiotics by patients, may represent a threat in the context of the increasing problem of antimicrobial resistance. In this work, a collection of microorganisms has been established in order to study the microbiota associated to the inner and outer surfaces of UV cabins and to assess their resistance to UV light and the antibiotics frequently used in the Dermatology Service of a Spanish hospital. Our results show that UV cabins harbor a relatively diverse biocenosis dominated by typically UV-resistant microorganisms commonly found in sun-irradiated environments, such as Kocuria, Micrococcus or Deinococcus spp., but also clinically relevant taxa, such as Staphylococcus or Pseudomonas spp. The UV-radiation assays revealed that, although some isolates displayed some resistance, UV is not a major factor shaping the biocenosis living on the cabins, since a similar pool of resistant microorganisms was identified on the external surface of the cabins. Interestingly, some Staphylococcus spp. displayed resistance to one or more antibiotics, although the hospital reported no cases of antibiotic-resistance infections of the patients using the cabins. Finally, no association between UV and antibiotic resistances was found.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | - Nicolás Carlotto
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | - Àngela Vidal-Verdú
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | | | - Gemma Pérez-Pastor
- Servicio de Dermatología, Consorcio Hospital General de Valencia, Valencia, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain.
- Darwin Bioprospecting Excellence SL (Parc Científic Universitat de València, C/ Catedràtic Agustín Escardino Benlloch 9, Paterna, Spain.
| |
Collapse
|
8
|
Yin Y, Lou T, Song W, Wang C, Wang J. Production of medium chain fatty acids from fermentation of antibiotic residuals: Fate of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023; 379:129056. [PMID: 37059340 DOI: 10.1016/j.biortech.2023.129056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The potential of antibiotic resistance genes (ARGs) amplification restricts the biological recovery of antibiotic fermentation residues (AFRs) through two-stage anaerobic fermentation. This study explored the fate of ARGs during the fermentation of AFRs that comprising of acidification and chain elongation (CE). Results showed that with the alteration of fermentation process from acidification to CE, microbial richness was significantly increased, total abundance of ARGs was slightly decreased by 1.84%, and the significant negative correlations between ARGs and microbes were increased, implied the inhibitory effect of CE microbes to ARGs amplification. However, the total abundance of mobile genetic elements (MGEs) was increased by 24.5%, indicating that the potential of gene horizontal transfer of ARGs increased. This work suggested that two-stage anaerobic fermentation could effectively restrict the ARGs amplification, but more concerns are needed for the long-term dissemination of ARGs.
Collapse
Affiliation(s)
- Yanan Yin
- Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Tianru Lou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Weize Song
- Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, PR China
| | - Cheng Wang
- Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
9
|
Jia W, Song J, Wang J, Li J, Li X, Wang Q, Chen X, Liu G, Yan Q, Zhou C, Xin S, Xin Y. Fenton oxidation treatment of oxytetracycline fermentation residues: Harmless performance and bioresource properties. CHEMOSPHERE 2023:139201. [PMID: 37348618 DOI: 10.1016/j.chemosphere.2023.139201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
The pharmaceutical factories of oxytetracycline (OTC) massively produce OTC fermentation residues (OFRs). The high content of residual OTC and antibiotic resistance genes in OFRs must to be considered and controlled at an acceptable level. This study therefore investigated the applicability of Fenton oxidation in OTC degradation and resistant gene inactivation of OFRs. The results revealed that Fe2+ as catalyzer could very rapidly activate H2O2 to produce HO•, leading to instantaneous degradation of OTC. The optimum conditions for OTC removal were 60 mM H2O2 and 140 mg/L Fe2+ under pH 7. After Fenton oxidation treatment, the release of water-soluble polysaccharides, NO3-N, and PO4-P was enhanced, whereas for proteins and NH3-N were reduced. Three soluble fluorescence components (humic, tryptophan-like, and humic acid-like substances) were identified through fluorescence spectra with parallel factor analysis, and their reduction exceeded 50% after Fenton oxidation. There were twelve intermediates and three degradation pathways of OTC in OFRs during Fenton process. According to toxicity prediction, the comprehensive toxicity of OTC in OFRs was alleviated via Fenton oxidation treatment. In addition, Fenton oxidation showed the ability to reduce antibiotic resistance genes and mobile genetic elements, and even tetO, tetG, intI1, and intI2 were eliminated completely. These results suggested that Fenton oxidation treatment could be an efficient strategy for removing OTC and resistance genes in OFRs.
Collapse
Affiliation(s)
- Wenqiang Jia
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiaying Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jian Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinying Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianwen Wang
- Instrumental Analysis Center of Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiang Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
10
|
Zhang A, Jiang X, Ding Y, Jiang N, Ping Q, Wang L, Liu Y. Simultaneous removal of antibiotics and antibiotic resistance genes in wastewater by a novel nonthermal plasma/peracetic acid combination system: Synergistic performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131357. [PMID: 37027926 DOI: 10.1016/j.jhazmat.2023.131357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
In this study, a novel and green method combining plasma with peracetic acid (plasma/PAA) was developed to simultaneously remove antibiotics and antibiotic resistance genes (ARGs) in wastewater, which achieves significant synergistic effects in the removal efficiencies and energy yield. At a plasma current of 2.6 A and PAA dosage of 10 mg/L, the removal efficiencies of most detected antibiotics in real wastewater exceeded 90 % in 2 min, with the ARG removal efficiencies ranging from 6.3 % to 75.2 %. The synergistic effects of plasma and PAA could be associated with the motivated production of reactive species (including •OH, •CH3, 1O2, ONOO-, •O2- and NO•), which decomposed antibiotics, killed host bacteria, and inhibited ARG conjugative transfer. In addition, plasma/PAA also changed the contributions and abundances of ARG host bacteria and downregulated the corresponding genes of two-component regulatory systems, thus reducing ARG propagation. Moreover, the weak correlations between the removal of antibiotics and ARGs highlights the commendable performance of plasma/PAA in the simultaneous removal of antibiotics and ARGs. Therefore, this study affords an innovative and effective avenue to remove antibiotics and ARGs, which relies on the synergistic mechanisms of plasma and PAA and the simultaneous removal mechanisms of antibiotics and ARGs in wastewater.
Collapse
Affiliation(s)
- Ai Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China
| | - Xinyuan Jiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongqiang Ding
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nan Jiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Ping
- Shanghai institute of pollution control and ecological security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Kay Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lin Wang
- Shanghai institute of pollution control and ecological security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Kay Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China
| |
Collapse
|
11
|
Yin Y, Lou T, Song W, Wang C, Wang J. Production of medium chain fatty acids from antibiotic fermentation residuals pretreated by ionizing radiation: Elimination of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023; 382:129180. [PMID: 37210032 DOI: 10.1016/j.biortech.2023.129180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
The propagation of antibiotic resistance genes (ARGs) restricts the application of antibiotic fermentation residues (AFRs). This study investigated medium chain fatty acids (MCFA) production from AFRs, focusing on the effect of ionizing radiation pretreatment on the fates of ARGs. The results indicated that ionizing radiation pretreatment not only stimulated the MCFA production, but also inhibited the proliferation of ARGs. Radiation at 10-50 kGy decreased ARGs abundances by 0.6-21.1% at the end of fermentation process. Mobile genetic elements (MGEs) exhibited higher resistance to ionizing radiation, radiation over 30 kGy was required to suppress the proliferation of MGEs. Radiation at 50 kGy achieved an adequate inhibition to MGEs, and the degradation efficiency was 17.8-74.5% for different kinds of MGEs. This work suggested that ionizing radiation pretreatment could be a good option to ensure the safer application of AFRs by eliminating the ARGs and preventing the horizontal gene transfer of ARGs.
Collapse
Affiliation(s)
- Yanan Yin
- Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Tianru Lou
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Weize Song
- Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, PR China
| | - Cheng Wang
- Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
12
|
Niu Y, Gao P, Ju S, Li F, Wang S, Xu Z, Lin J, Yang J, Peng H. Hydrogen Peroxide/Phosphoric Acid Modification of Hydrochars for Sulfamethoxazole and Carbamazepine Adsorption: The Role of Oxygen-Containing Functional Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5679-5688. [PMID: 37040602 DOI: 10.1021/acs.langmuir.2c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Emerging pollutants, such as sulfonamide antibiotics and pharmaceuticals, have been widely detected in water and soils, posing serious environmental and human health concerns. Thus, it is urgent and necessary to develop a technology for removing them. In this work, a hydrothermal carbonization method was used to prepare the hydrochars (HCs) by pine sawdust with different temperatures. To improve the physicochemical properties of HCs, phosphoric acid (H3PO4) and hydrogen peroxide (H2O2) were used to modify these HCs, and they were referred to as PHCs and HHCs, respectively. The adsorption of sulfamethoxazole (SMX) and carbamazepine (CBZ) by pristine and modified HCs was investigated systematically. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicated that the H2O2/H3PO4 modification led to the formation of a disordered carbon structure and abundant pores. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy results suggested that carboxyl (-COOH) and hydroxyl (-OH) functional groups of HCs increased after modification, which is the main reason for the higher sorption of SMX and CBZ on H3PO4/H2O2-modified HCs when compared with pristine HCs. In addition, the positive correlation between -COOH/C=O and logKd of these two chemicals also suggested that oxygen-containing functional groups played a crucial role in the sorption of SMX and CBZ. The strong hydrophobic interaction and π-π interaction between CBZ and pristine/modified HCs resulted in its higher adsorption when compared with SMX. The results of this study provide a novel perspective on the investigation of adsorption mechanisms and environmental behaviors for organic contaminants by pristine and modified HCs.
Collapse
Affiliation(s)
- Yifan Niu
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Peng Gao
- City College, Kunming University of Science & Technology, Kunming, Yunnan 650051, China
| | - Shaohua Ju
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Fangfang Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Siyao Wang
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Zhimin Xu
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Junjian Lin
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Jun Yang
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Hongbo Peng
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
13
|
Liu C, Chen J, Shan X, Yang Y, Song L, Teng Y, Chen H. Meta-analysis addressing the characterization and risk identification of antibiotics and antibiotic resistance genes in global groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160513. [PMID: 36442629 DOI: 10.1016/j.scitotenv.2022.160513] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial resistance (AMR) is one of the significant global issues to public health. Compared to other aquatic environments, research on AMR in groundwater is scarce. In the study, a meta-analysis was conducted to explore the characteristics and risks of antibiotics and antibiotic resistance genes (ARGs) in global groundwater, using a data set of antibiotic concentrations collected from publications during 2000-2021 and a large-scale metagenomes of groundwater samples (n = 330). The ecotoxicological risks of antibiotics in the global groundwater were evaluated using mixture risk quotient with concentration addition model to consider the synergistic effects of multiple antibiotics. Bioinformatic annotations identified 1413 ARGs belonging to 37 ARG types in the global groundwater, dominated by rifamycin, polyketide, and quinolone resistance genes and including some emerging ARGs such as mcr-family and carbapenem genes. Relatively, the level of ARGs in the groundwater from spring was significantly higher (ANOVA, p < 0.01) than those from the riparian zone, sand and deep aquifer. Similarly, metal resistance genes (MRGs) were prevalent in the global groundwater, and network analysis suggested the MRGs presented non-random co-occurrence with the ARGs in such environments. Taxonomic annotations showed Proteobacteria, Actinobacteria, Eukaryota, Acidobacteria and Thaumarchaeota were the dominant phylum in the groundwater, and the microbial community largely shaped profile of ARGs in the environment. Notably, the ARGs presented co-occurrence with mobile genetic elements, virulence factors and human bacterial pathogens, indicating potential dissemination risk of ARGs in the groundwater. Furthermore, an omics-based approach was used for health risk assessment of antibiotic resistome and screened out 152 risk ARGs in the global groundwater. Comparatively, spring and cold creek presented higher risk index, which deserves more attention to ensure the safety of water supply.
Collapse
Affiliation(s)
- Chang Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jinping Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xin Shan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Liuting Song
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
14
|
Liu X, Wang X, Wang R, Guo S, Ahmad S, Song Y, Gao P, Chen J, Liu C, Ding N. Effects comparison between the secondary nanoplastics released from biodegradable and conventional plastics on the transfer of antibiotic resistance genes between bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120680. [PMID: 36414161 DOI: 10.1016/j.envpol.2022.120680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) have caused widespread concern because of their potential harm to environmental safety and human health. As substitutes for conventional plastics, the toxic effects of short-term degradation products of biodegradable plastics (polylactic acid (PLA) and polyhydroxyalkanoates (PHA)) on bacteria and their impact on ARGs transfer were the focus of this study. After 60 days of degradation, more secondary nanoplastics were released from the biodegradable plastics PLA and PHA than that from the conventional plastics polystyrene (PS). All kinds of nanoplastics, no matter released from biodegradable plastics or conventional plastics, had no significant toxicity to bacteria. Nanoplastic particles from biodegradable plastics could significantly increase the transfer efficiency of ARGs. Although the amount of secondary nanoplastics produced by PHA microplastics was much higher than that of PLA, the transfer frequency after exposure to PLA was much higher, which may be due to the agglomeration of PHA nanoplastics caused by plastic instability in solution. After exposure to the 60 d PLA nanoplastics, the transfer frequency was the highest, which was approximately 28 times higher than that of control. The biodegradable nanoplastics significantly enhanced the expression of the outer membrane pore protein genes ompA and ompC, which could increase cell membrane permeability. The expression levels of trfAp and trbBp were increased by repressed major global regulatory genes korA, korB, and trbA, which eventually led to an increase in conjugative transfer frequency. This study provides important insights into the evaluation of the environmental and health risks caused by secondary nanoplastics released from biodegradable plastics.
Collapse
Affiliation(s)
- Xiaomei Liu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China.
| | - Xiaolong Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - RenJun Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Saisai Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shakeel Ahmad
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuhao Song
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Peike Gao
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Chunchen Liu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Ning Ding
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| |
Collapse
|
15
|
Jiao M, Ren X, He Y, Wang J, Hu C, Zhang Z. Humification improvement by optimizing particle size of bulking agent and relevant mechanisms during swine manure composting. BIORESOURCE TECHNOLOGY 2023; 367:128191. [PMID: 36374714 DOI: 10.1016/j.biortech.2022.128191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
For purpose of clarifying the impact on particle size of bulking agents on humification and relevant mechanisms, different length (<2 cm, 2 cm, 5 cm, 10 cm) of branch and straw were blended with swine manure individually for 100 days aerobic composting. Results demonstrated that, 2 cm and 5 cm of branch and straw promoted the highest degradation of DOC by 41.49 % and 58.42 %, and increased the humic substances by 23.81 % and 55.82 % in maturity stage, respectively, compared with other treatments. As shown in microbial consequence, the maximum relative abundance of humus funguses increased by 99.55 % and 99.92 % at phylum, and 98.95 % and 99.24 % at genus in 2 cm and 5 cm of branch and straw treatment, thus verifying the result in variation of humus content. In a word, particle size could result in obvious impact on humification, and the optimized size were about 2 cm and 5 cm of branch and straw.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yifeng He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
16
|
Yang G, Xie S, Yang M, Tang S, Zhou L, Jiang W, Zhou B, Li Y, Si B. A critical review on retaining antibiotics in liquid digestate: Potential risk and removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158550. [PMID: 36075409 DOI: 10.1016/j.scitotenv.2022.158550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Substantial levels of antibiotics remain in liquid digestate, posing a significant threat to human safety and the environment. A comprehensive assessment of residual antibiotics in liquid digestate and related removal technologies is required. To this end, this review first evaluates the potential risks of the residual antibiotics in liquid digestate by describing various anaerobic digestion processes and their half-lives in the environment. Next, emerging technologies for removing antibiotics in liquid digestate are summarized and discussed, including membrane separation, adsorption, and advanced oxidation processes. Finally, this study comprehensively and critically discusses these emerging technologies' prospects and challenges, including techno-economic feasibility and environmental impacts.
Collapse
Affiliation(s)
- Gaixiu Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shihao Xie
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Min Yang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Shuai Tang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Zhou
- Center for Professional Training and Service, China Association for Science and Technology, Beijing 100081, China
| | - Weizhong Jiang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Buchun Si
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
17
|
Xiang W, Zhang X, Luo J, Li Y, Guo T, Gao B. Performance of lignin impregnated biochar on tetracycline hydrochloride adsorption: Governing factors and mechanisms. ENVIRONMENTAL RESEARCH 2022; 215:114339. [PMID: 36115417 DOI: 10.1016/j.envres.2022.114339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 05/27/2023]
Abstract
Corn stalk-based and wheat straw-based biochar were modified by lignin impregnation and applied to adsorb tetracycline hydrochloride (TCH) in wastewater. Porous properties of lignin impregnated biochar were improved and showed better adsorption performance for TCH. Lignin impregnated wheat straw biochar (WS-L) had the maximum adsorption capacity of 31.48 mg/g, which was 1.89 times compared to corresponding pristine biochar, because excellent pore structure developed via the lignin impregnation and carbonization. The adsorption behavior of TCH molecules on biochar could be interpreted well by two-step process, and it postulated to be a physical adsorption process based on pore filling, hydrogen bonding, π-π interaction, and electrostatic interactions. And cations including Na+, K+, Mg2+ and Al3+ could compete with TCH for adsorption, while Ca2+ could promote TCH adsorption by forming tetracycline-Ca2+ complexes. Maximum TCH adsorption occurred at pH of 7. The best performing lignin impregnated biochar was WS-L that demonstrated the biochar modulated by lignin had the potential to remove antibiotics from aqueous solutions.
Collapse
Affiliation(s)
- Wei Xiang
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Xueyang Zhang
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Junpeng Luo
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ying Li
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Tingting Guo
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
18
|
Wang Z, Wang Y, Ge Z, Tian Y, Ai M, Cao S, Wang M, Wang S, Ma J. Color-phase readout radiochromic photonic crystal dosimeter. MATTER 2022; 5:4060-4075. [DOI: 10.1016/j.matt.2022.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
|
19
|
Yin Y, Wang J. Enhanced medium-chain fatty acids production from Cephalosporin C antibiotic fermentation residues by ionizing radiation pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129714. [PMID: 35944433 DOI: 10.1016/j.jhazmat.2022.129714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic fermentation residues (AFRs) have been classified as hazardous waste in China. Anaerobic fermentation may be a good approach for AFRs treatment, through which value-added chemicals could be obtained simultaneously. This study firstly explored medium-chain fatty acids (MCFAs) production from AFRs through two-stage anaerobic fermentation, and gamma radiation was adopted for AFRs pretreatment. The results showed that both antibiotics removal and MCFAs production from AFRs were significantly promoted by gamma radiation pretreatment. No residual Cephalosporin C (CEP-C) was detected in gamma radiation treated groups after fermentation. Highest MCFAs concentration of 90.55 mmol C/L was obtained in 50 kGy treated group, which was 2.22 times of the control group. Genera that were positively correlated with MCFAs production were enriched in gamma radiation treated groups, like genus Paraclostridium, Terrisporobacter, Caproiciproducens and Sporanaerobacter, while genera that were negatively correlated with MCFAs production were diminished during the chain elongation process, like genus Bacteroides and NK4A214_group. Enzymes analysis suggested that the promoted MCFAs production was induced by the enrichment of functional enzymes involved in Acetyl-CoA formation and RBO pathway. This work suggested that gamma radiation pretreatment and two-stage anaerobic fermentation could achieve the dual benefits of AFRs treatment and value-added chemicals recovery.
Collapse
Affiliation(s)
- Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
20
|
Yin Y, Wang J. Production of medium-chain fatty acids by co-fermentation of antibiotic fermentation residue with fallen Ginkgo leaves. BIORESOURCE TECHNOLOGY 2022; 360:127607. [PMID: 35835417 DOI: 10.1016/j.biortech.2022.127607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The co-fermentation of antibiotic fermentation residues (AFRs) and fallen Ginkgo leaves at C/N ratios of 10-60 was conducted for medium-chain fatty acids (MCFA) production. It was found that a proper C/N ratio could largely promote the MCFA accumulation. Group with C/N ratio of 50 exhibited highest MCFA production of 133.14 mmol C/L, which was 42 %-121 % higher than the other groups. Through the co-fermentation, substrate condition was optimized with rich micro-nutrients in AFRs and abundant polysaccharides in Ginkgo leaves, the hydrolysis of leaves was promoted by the active microbes in AFRs, and the predominance of CE microbes was also stimulated with the dilution of AFRs. The increased C/N ratio significantly affected the SCFA producers like genus Escherichia Shigella and Proteiniphilum, and enriched CE microbes like genus Romboutsia, Eubacterium and Clostridium_sensu_stricto_12. Functional enzymes analysis showed that both reverse β oxidation and fatty acid biosynthesis pathways were strengthened with the increased C/N ratio.
Collapse
Affiliation(s)
- Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
21
|
Zuo X, Chen S, Wang T, Zhang S, Li T. Leaching risks of antibiotic resistance genes in urban underlying surface sediments during the simulated stormwater runoff and its controls. WATER RESEARCH 2022; 221:118735. [PMID: 35714468 DOI: 10.1016/j.watres.2022.118735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Recently, increasing attention has been paid to antibiotic resistance genes (ARGs) in urban stormwater runoff. However, no available literature could be found on ARGs leaching from urban underlying surface sediments during stormwater runoff. In this study, surface sediments from commercial public squares around Nanjing (China) was selected for the investigation of target ARGs leaching kinetics, showing that absolute abundances of target ARGs desorption reached at the equilibrium during leaching time of 120-240min with all of the desorption efficiencies about 30%, indicating that there would be low proportion of leaching ARGs in the total ARGs migrating with runoff during rainfall events. Five target ARGs leaching including intI1 (clinic), strA, strB, tetM and tetX can be better described by the pseudo-second-order equation, while qacEdelta1 leaching can be better described by the pseudo-first-order equation, and the leaching for both sul1 and sul2 can be well described by the pseudo-first-order and pseudo-second-order equations. The effects of environmental factors including S/L ratios, pH values and water temperatures indicated that leaching efficiencies of target ARGs enhanced significantly with the increase of S/L ratios and water temperatures, but decreased with the increase of pH values. The transmission experiments after the simulated solar irradiation and heat implied that both large solar UV irradiation (30W/m2) and high temperature (40℃) were conducive to conjugation and transformation frequencies of ARGs. Furthermore, both high Cao and medium PAM levels could be effective for blocking ARGs transmission in the leachate from underlying surface sediments.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China.
| | - ShaoJie Chen
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| | - Tao Wang
- School of Environment Engineering, Wuxi University, Wuxi 214105, China
| | - SongHu Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| | - Ting Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing, 210044, China
| |
Collapse
|
22
|
Alegbeleye O, Daramola OB, Adetunji AT, Ore OT, Ayantunji YJ, Omole RK, Ajagbe D, Adekoya SO. Efficient removal of antibiotics from water resources is a public health priority: a critical assessment of the efficacy of some remediation strategies for antibiotics in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56948-57020. [PMID: 35716301 DOI: 10.1007/s11356-022-21252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
This review discusses the fundamental principles and mechanism of antibiotic removal from water of some commonly applied treatment techniques including chlorination, ozonation, UV-irradiation, Fenton processes, photocatalysis, electrochemical-oxidation, plasma, biochar, anaerobicdigestion, activated carbon and nanomaterials. Some experimental shortfalls identified by researchers such as certain characteristics of degradation agent applied and the strategies explored to override the identified limitations are briefly discussed. Depending on interactions of a range of factors including the type of antibiotic compound, operational parameters applied such as pH, temperature and treatment time, among other factors, all reviewed techniques can eliminate or reduce the levels of antibiotic compounds in water to varying extents. Some of the reviewed techniques such as anaerobic digestion generally require longer treatment times (up to 360, 193 and 170 days, according to some studies), while others such as photocatalysis achieved degradation within short contact time (within a minimum of 30, but up to 60, 240, 300 and 1880 minutes, in some cases). For some treatment techniques such as ozonation and Fenton, it is apparent that subjecting compounds to longer treatment times may improve elimination efficiency, whereas for some other techniques such as nanotechnology, application of longer treatment time generally meant comparatively minimal elimination efficiency. Based on the findings of experimental studies summarized, it is apparent that operational parameters such as pH and treatment time, while critical, do not exert sole or primary influence on the elimination percentage(s) achieved. Elimination efficiency achieved rather seems to be due more to the force of a combination of several factors.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | | | - Adewole Tomiwa Adetunji
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington, Western Cape, 7654, South Africa
| | - Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, P.M.B. 022, Nigeria
| | - Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria
| | - Damilare Ajagbe
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Oklahoma, USA
| | | |
Collapse
|
23
|
Meropoulis S, Giannoulia S, Skandalis S, Rassias G, Aggelopoulos C. Key-Study on Plasma-Induced Degradation of Cephalosporins in Water: Process Optimization, Assessment of Degradation Mechanisms and Residual Toxicity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Manoharan RK, Ishaque F, Ahn YH. Fate of antibiotic resistant genes in wastewater environments and treatment strategies - A review. CHEMOSPHERE 2022; 298:134671. [PMID: 35460672 DOI: 10.1016/j.chemosphere.2022.134671] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have emerged in aquatic environments through the discharge of large amounts of antibiotics into wastewater. Well-designed wastewater treatment plants (WWTPs) with effective treatment processes are essential to prevent the release of ARGs directly into the environment. Although some systematic sequential treatment methods are used to remove ARGs, considerable gaps in removal mechanisms will be discussed. Therefore, deep analysis and discussion of various treatment methods are required to understand the ARGs removal mechanisms. In this manuscript, the role of antibiotics and the resistance mechanism of ARB are discussed in depth. In addition, the fate of ARGs in an aquatic environment and detection methods are compared comprehensively and discussed. In particular, the advantages and disadvantages of various methods are summarized and reviewed critically. Finally, combined technologies, such as advanced oxidation process (AOP) with biochemical systems, membrane separation with electrochemical AOP, ultrafiltration (UF) membrane coupled with photocatalytic treatment, and UF membrane separation coupled with sonication, are introduced. Overall, low-energy anaerobic treatment reactors with any of the above combined treatments might reduce the discharge of large quantities of ARGs into the environment. Finally, this review provides valuable insights for better ARG removal technologies by introducing combined effective treatment strategies used in real WWTPs.
Collapse
Affiliation(s)
| | - Fahmida Ishaque
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
25
|
Zhou S, Xiong C, Su Y, Wang Y, Gao Y, Tang Z, Liu B, Wu Y, Duan Y. Antibiotic-resistant bacteria and antibiotic resistance genes in uranium mine: Distribution and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119158. [PMID: 35304179 DOI: 10.1016/j.envpol.2022.119158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Both heavy metals and radiation could affect the proliferation and dissemination of emerging antibiotic resistance pollutants. As an environmental medium rich in radioactive metals, the profile of antibiotic resistance in uranium mine remains largely unknown. A uranium mine in Guangdong province, China was selected to investigate the distribution and influencing factors of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) including intracellular ARGs (iARGs), adsorbed-extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs). The result indicated that sulfonamide and tetracycline ARB could be generally detected in mining area with the absolute concentrations of 7.70 × 102-5.18 × 105 colony forming unit/g. The abundances of aeARGs in mine soil were significantly higher than those of iARGs (p < 0.05), highlighting the critical contribution of aeARGs to ARGs spread. The feARGs in mine drainage and its receiving river were abundant (3.38 × 104-1.86 × 107 copies/mL). ARB, aeARGs, and iARGs may correlate with nitrogen species and heavy metals (e.g., U and Mn), and feARGs presented a significant correlation with chemical oxygen demand (p < 0.05). These findings demonstrate the occurrence of ARB and ARGs in uranium mine for the first time, thereby contributing to the assessment and control of the ecological risk of antibiotic resistance in radioactive environments.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; School of Civil Engineering, University of South China, Hengyang, 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Cong Xiong
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Boyang Liu
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; School of Civil Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
26
|
Gao T, Shi W, Zhao M, Huang Z, Liu X, Ruan W. Preparation of spiramycin fermentation residue derived biochar for effective adsorption of spiramycin from wastewater. CHEMOSPHERE 2022; 296:133902. [PMID: 35143862 DOI: 10.1016/j.chemosphere.2022.133902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Spiramycin (SPI) fermentation residue (SFR) is classified as hazardous waste in China because of the residual antibiotics in it. SFR disposal in the traditional way is costly and wasteful of resources. In this study, pyrolysis method was adopted to covert SFR to biochar for SPI removal from wastewater, and the SPI adsorption performance was investigated. The results showed that the optimal pyrolysis temperature was 700 °C as the prepared biochar BC700 exhibited the highest SPI removal efficiency. The specific surface area of BC700 was 451.68 m2/g, and the maximum adsorption capacity was 147.28 mg/g. The adsorption mechanism involved electrostatic interaction, pore filling, π-π interaction, hydrogen bonding, and the participation of C-C and O-CO functional groups in the adsorption. No residual SPI was detected in BC700 indicating the detoxification of SFR was achieved. Moreover, after recycling for 5 times, the SPI removal efficiency was still higher than 80.0%. Therefore, this study could provide a promising method for SFR disposal.
Collapse
Affiliation(s)
- Tong Gao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoling Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
27
|
Hu X, Wu C, Shi H, Xu W, Hu B, Lou L. Potential threat of antibiotics resistance genes in bioleaching of heavy metals from sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152750. [PMID: 34979232 DOI: 10.1016/j.scitotenv.2021.152750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Bioleaching is considered a promising technology for remediating heavy metals pollution in sediments. During bioleaching, the pressure from the metals bioleached is more likely to cause the spread of antibiotic resistance genes (ARGs). The changes in abundance of ARGs in two typical heavy metal bioleaching treatments using indigenous bacteria or functional bacteria agent were compared in this study. Results showed that both treatments successfully bioleached heavy metals, with a higher removal ratio of Cu with functional bacteria agent. The absolute abundances of most ARGs decreased by one log unit after bioleaching, particularly tetR (p = 0.02) and tetX (p = 0.04), and intI1 decreased from 106 to 104 copies/g. As for the relative abundance, ARGs in the non-agent treatment increased from 3.90 × 10-4 to 1.67 × 10-3 copies/16S rRNA gene copies (p = 0.01), and in the treatment with agent, it reached 6.65 × 10-2 copies/16S rRNA gene copies, and intI1 relative abundance was maintained at 10-3 copies/16S rRNA gene copies. The relative abundance of ARGs associated with efflux pump mechanism and ribosomal protection mechanism increased the most. The co-occurrence network indicated that Cu bioleached was the environmental factor determining the distribution of ARGs, Firmicutes might be the potential hosts of ARGs. Compared to bioleaching with indigenous bacteria, the addition of functional bacteria agent engendered a decrease in microbial alpha diversity and an increase in the amount of Cu bioleached, resulting in a higher relative abundance of ARGs. Heavy metal pollution can be effectively removed from sediments using the two bioleaching treatments, however, the risk of ARGs propagation posed by those procedures should be considered, especially the treatment with functional bacteria agents. In the future, an economical and efficient green technology that simultaneously reduces both the absolute abundance and relative abundance of ARGs should be developed.
Collapse
Affiliation(s)
- Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Chuncheng Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Hongyu Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China.
| |
Collapse
|
28
|
Foroughi M, Khiadani M, Kakhki S, Kholghi V, Naderi K, Yektay S. Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: a systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151404. [PMID: 34767893 DOI: 10.1016/j.scitotenv.2021.151404] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/03/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is considered a universal health threat of the 21st century which its distribution and even development are mainly mediated by water-based media. Disinfection processes with the conventional methods are still the most promising options to combat such crises in aqueous matrices especially wastewater. Knowing that the extent of effectiveness and quality of disinfection is of great importance, this paper aimed to systematically review and discuss ozonation (as one of the main disinfectants with large scale application) effect on removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from aqueous solutions, for which no study has been reported. For this, a comprehensive literature survey was performed within the international databases using appropriate keywords which yielded several studies involving different aspects and the effectiveness extent of ozonation on ARB & ARGs. The results showed that no definite conclusion could be drawn about the superiority of ozone alone or in a hybrid form. Mechanism of action was carefully evaluated and discussed although it is still poorly understood. Evaluation of the studies from denaturation and repairment perspectives showed that regrowth cannot be avoided after ozonation, especially for some ARB & ARGs variants. In addition, the comparison of the effectiveness on ARB & ARGs showed that ozonation is more effective for resistant bacteria than their respective genes. The degradation efficiency was found to be mainly influenced by operational parameters of CT (i.e. ozone dose & contact time), solids, alkalinity, pH, and type of pathogens and genes. Moreover, the correlation between ARB & ARGs removal and stressors (such as antibiotic residuals, heavy metals, aromatic matters, microcystins, opportunistic pathogens, etc.) has been reviewed to give the optimal references for further in-depth studies. The future perspectives have also been reported.
Collapse
Affiliation(s)
- Maryam Foroughi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mehdi Khiadani
- Associate Dean (Research), School of Engineering, Edith Cowan University, Joondalup, Perth WA, Australia
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Vahid Kholghi
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Sama Yektay
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
29
|
Yin Z, Zhou X, Kang J, Pei F, Du R, Ye Z, Ding H, Ping W, Ge J. Intraspecific and interspecific quorum sensing of bacterial community affects the fate of antibiotic resistance genes during chicken manure composting under penicillin G stress. BIORESOURCE TECHNOLOGY 2022; 347:126372. [PMID: 34801721 DOI: 10.1016/j.biortech.2021.126372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of penicillin G (PENG) on the fate of bacterial communities and β-lactamase antibiotic resistance genes (ARGs) during chicken manure composting were assessed, to illustrate the roles of PENG in ARGs behavior. The results showed that the total absolute abundances of 9 ARGs and 4 mobile genetic elements (MGEs) was significantly increased by PENG (P < 0.05). Dozens of potential hosts for ARGs were predominantly affiliated with Firmicutes, Proteobacteria, and Actinobacteria. Meanwhile, the higher concentration of PENG significantly increased the abundance of luxI and luxS in quorum sensing (QS) (P < 0.05), which enhanced the frequency of inter/intraspecific gene "communication." Redundancy analysis and structural equation modeling further revealed that QS had a strong regulatory role in horizontal gene transfer of ARGs mediated via MGEs. These results provide new insight into the mechanism of ARGs propagation in aerobic composting modified by PENG.
Collapse
Affiliation(s)
- Ziliang Yin
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Xiaohang Zhou
- College of Basic Medicine, Mudanjiang Medical University, Mudanjiang 157000, China
| | - Jie Kang
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Fangyi Pei
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Renpeng Du
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Zeming Ye
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Hao Ding
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Wenxiang Ping
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Jingping Ge
- Key Laboratory of Microbiology, College of Life Sciences, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China.
| |
Collapse
|
30
|
Yang G, Wang J. Enhanced antibiotic degradation and hydrogen production of deacetoxycephalosporin C fermentation residue by gamma radiation coupled with nano zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127439. [PMID: 34638079 DOI: 10.1016/j.jhazmat.2021.127439] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic fermentation residue (AFR) has been categorized as hazardous waste in China. Anaerobic biohydrogen fermentation may be a promising technology for handling AFR, which could achieve dual goals of waste treatment and clean energy production at the same time. However, the low hydrogen yield and low removal efficiency of residual antibiotics are two major factors limiting the AFR biohydrogen fermentation process. This work firstly applied gamma radiation (50 kGy) to remove the residual antibiotic in AFR and improve the bioavailability of organic matters, then adding nano zero-valent iron (nZVI) (100-1000 mg/L) to further enhance the AFR biohydrogen fermentation performance. Results showed that residual deacetoxycephalosporin C in AFR was removed with a high efficiency of 98.6%, and hydrogen yield achieved 20.45 mL/g-VSadded with the combined approach of gamma radiation pretreatment and 500 mg/L nZVI addition, which was 139.2% higher compared to the control experimental result. The combined approach also promoted the biohydrogen production rate, decreased the lag phase of hydrogen production, and increased the organics utilization. Microbiological analysis revealed that highly efficient hydrogen-producing genera Clostridium sensu stricto were enriched in much higher abundance with the combined approach, which might be the fundamental mechanism for the enhanced AFR fermentation performance.
Collapse
Affiliation(s)
- Guang Yang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
31
|
Vijayakumar E, Govinda Raj M, Narendran MG, Preetha R, Mohankumar R, Neppolian B, John Bosco A. Promoting Spatial Charge Transfer of ZrO 2 Nanoparticles: Embedded on Layered MoS 2/g-C 3N 4 Nanocomposites for Visible-Light-Induced Photocatalytic Removal of Tetracycline. ACS OMEGA 2022; 7:5079-5095. [PMID: 35187324 PMCID: PMC8851622 DOI: 10.1021/acsomega.1c06089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/18/2022] [Indexed: 05/25/2023]
Abstract
Photocatalytic degradation is a sustainable technique for reducing the environmental hazards created by the overuse of antibiotics in the food and pharmaceutical industries. Herein, a layer of MoS2/g-C3N4 nanocomposite is introduced to zirconium oxide (ZrO2) nanoparticles to form a "particle-embedded-layered" structure. Thus, a narrow band gap (2.8 eV) starts developing, deliberated as a core photodegradation component. Under optimization, a high photocatalytic activity of 20 mg/L TC at pH 3 with ZrO2@MoS2/g-C3N4 nanocomposite was achieved with 94.8% photocatalytic degradation in 90 min. A photocatalytic degradation rate constant of 0.0230 min-1 is determined, which is 2.3 times greater than the rate constant for bare ZrO2 NPs. The superior photocatalytic activity of ZrO2@MoS2/g-C3N4 is due to the dual charge-transfer channel between the MoS2/g-C3N4 and ZrO2 nanoparticles, which promotes the formation of photogenerated e-/h+ pairs. Charge recombination produces many free electron-hole pairs, which aid photocatalyst reactions by producing superoxide and hydroxyl radicals via electron-hole pair generation. The possible mechanistic routes for TC were investigated in-depth, as pointed out by the liquid chromatography-mass spectrometry (LC-MS) investigation. Overall, this work shows that photocatalysis is a feasible sorbent approach for environmental antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Elayaperumal Vijayakumar
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Muniyandi Govinda Raj
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur 603203, Tamil Nadu, India
| | | | - Rajaraman Preetha
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ramasamy Mohankumar
- Interdisciplinary
Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Bernaurdshaw Neppolian
- Energy
and Environmental Remediation Laboratory, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Aruljothy John Bosco
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
32
|
He H, Wang S, Wang J. Degradation of 3-methylindole by ionizing radiation: Performance and pathway. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Chen X, Wang J. Degradation of antibiotic Cephalosporin C in different water matrices by ionizing radiation: Degradation kinetics, pathways, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148253. [PMID: 34118661 DOI: 10.1016/j.scitotenv.2021.148253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Cephalosporin antibiotics are ubiquitous emerging pollutants in various aquatic environments due to their extensive production and application. Herein, the radiolytic degradation of antibiotic Cephalosporin C (CEP-C) in different water matrices was comprehensively investigated using gamma radiation at various experimental conditions. The results revealed that CEP-C oxidation obeyed pseudo first-order kinetics, and 100%, 94.9%, 67.0%, 44.6% and 34.5% removal of CEP-C with 10-200 mg/L was achieved at 0.4 kGy, respectively. The degradation was faster at higher absorbed dose and acidic conditions (pH = 3.5). The inorganic anions, including SO42-, NO3-, and HCO3-, had negative influence on the degradation of CEP-C, the corresponding rate constant decreased from 4.603 to 3.667, 1.677 and 2.509 kGy-1 respectively in the presence of SO42-, NO3-, and HCO3-. The analysis of intermediate products indicated that CEP-C was oxidized to generate about 10 intermediate products. Besides, it was inferred that the thioether sulfur oxidation, β-lactam ring opening, acetyl dissociation from dihydrothiazine ring and D-α-aminohexylamide group abscission were the major reaction mechanisms of CEP-C degradation by gamma radiation. Importantly, the antibacterial activity of CEP-C could be completely vanished by gamma radiation alone, while more toxic intermediate products might be formed. Addition of hydrogen peroxide and peroxymonosulfate could significantly improve the CEP-C degradation, and reduce the toxicity of intermediates of CEP-C degradation. Similar degradation behavior was observed in the groundwater and wastewater, implying that ionizing radiation can be used for degradation of Cephalosporin in water and wastewater.
Collapse
Affiliation(s)
- Xiaoying Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
34
|
Chen J, Li H, Li J, Chen F, Lan J, Hou H. Efficient removal of tetracycline from water by tannic acid-modified rice straw-derived biochar:Kinetics and mechanisms. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Zheng D, Yin G, Liu M, Chen C, Jiang Y, Hou L, Zheng Y. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146009. [PMID: 33676219 DOI: 10.1016/j.scitotenv.2021.146009] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 05/26/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) are prevalent in estuarine and coastal environments due to substantial terrestrial input, aquaculture effluent, and sewage discharge. In this article, based on peer-reviewed papers, the sources, spatial patterns, driving factors, and environmental implications of antibiotics and ARGs in global estuarine and coastal environments are discussed. Riverine runoff, WWTPs, sewage discharge, and aquaculture, are responsible for the prevalence of antibiotics and ARGs. Geographically, pollution due to antibiotics in low- and middle-income countries is higher than that in high-income countries, and ARGs show remarkable latitudinal variations. The distribution of antibiotics is driven by antibiotic usage and environmental variables (heavy metals, nutrients, organic pollutants, etc.), while ARGs are affected by antibiotics residues, environmental variables, microbial communities, and mobile genetic elements (MGEs). Antibiotics and ARGs alter microbial communities and biogeochemical cycles, as well as pose threats to marine organisms and human health. Our results provide comprehensive insights into the transport and environmental behaviors of antibiotics and ARGs in global estuarine and coastal environments.
Collapse
Affiliation(s)
- Dongsheng Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yinghui Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
36
|
Sun Y, Ren X, Rene ER, Wang Z, Zhou L, Zhang Z, Wang Q. The degradation performance of different microplastics and their effect on microbial community during composting process. BIORESOURCE TECHNOLOGY 2021; 332:125133. [PMID: 33857867 DOI: 10.1016/j.biortech.2021.125133] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The objectives of this study were to investigate the degradation characteristics of different microplastics (polyethylene (PE), polyvinyl chloride (PVC), polyhydroxyalkanoates (PHA)) and their effect on the bacterial community during composting. In this study, 0.5% PE, 0.5% PVC and 0.5% PHA microplastics were individually added to the mixture of cow manure and sawdust and then composted for 60 days. The treatment without microplastics was regarded as control. Results indicated that the abundance and smaller size (0-800 μm) of microplastics in all treatments obviously decreased after composting, except PVC treatment. The surface morphology of all microplastics occurred obvious erosions and cracks and the carbon content of PE, PVC and PHA microplastics were reduced by 30, 17 and 30%, respectively. After composting, all microplastics were significantly oxidized and the functional groups O-H, C=O and C-O increased. Furthermore, all microplastics exposure reduced the richness and diversity of bacteria community at thermophilic phase, especially PVC microplastics.
Collapse
Affiliation(s)
- Yue Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, 2601 DA Delft, The Netherlands
| | - Zhen Wang
- College of Ecology and Environment, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Lina Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
37
|
Serrano MJ, García-Gonzalo D, Abilleira E, Elorduy J, Mitjana O, Falceto MV, Laborda A, Bonastre C, Mata L, Condón S, Pagán R. Antibacterial Residue Excretion via Urine as an Indicator for Therapeutical Treatment Choice and Farm Waste Treatment. Antibiotics (Basel) 2021; 10:antibiotics10070762. [PMID: 34201627 PMCID: PMC8300810 DOI: 10.3390/antibiotics10070762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Many of the infectious diseases that affect livestock have bacteria as etiological agents. Thus, therapy is based on antimicrobials that leave the animal's tissues mainly via urine, reaching the environment through slurry and waste water. Once there, antimicrobial residues may lead to antibacterial resistance as well as toxicity for plants, animals, or humans. Hence, the objective was to describe the rate of antimicrobial excretion in urine in order to select the most appropriate molecule while reducing harmful effects. Thus, 62 pigs were treated with sulfamethoxypyridazine, oxytetracycline, and enrofloxacin. Urine was collected through the withdrawal period and analysed via LC-MS/MS. Oxytetracycline had the slowest rate of degradation (a half-life time of 4.18 days) and the most extended elimination period in urine (over 2 months), followed by enrofloxacin (a half-life time of 1.48 days, total urine elimination in ca. 3 weeks) and sulfamethoxypyridazine (a half-life time of 0.49 days, total urine elimination in ca. 1 week). Bacterial sensitivity and recommendations for responsible use are limiting when selecting the treatment. Nevertheless, with similar effectiveness, sulfamethoxypyridazine would be the choice, as waste treatment would only need to be implemented for 1 week after treatment. Thus, more in-depth knowledge regarding antibacterial elimination would improve resource management, while protecting animals and consumers' health.
Collapse
Affiliation(s)
- María Jesús Serrano
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (O.M.); (M.V.F.); (A.L.); (C.B.); (S.C.)
| | - Diego García-Gonzalo
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (O.M.); (M.V.F.); (A.L.); (C.B.); (S.C.)
| | - Eunate Abilleira
- Public Health Laboratory, Office of Public Health and Addictions, Ministry of Health of the Basque Government, 48160 Derio, Spain; (E.A.); (J.E.)
| | - Janire Elorduy
- Public Health Laboratory, Office of Public Health and Addictions, Ministry of Health of the Basque Government, 48160 Derio, Spain; (E.A.); (J.E.)
| | - Olga Mitjana
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (O.M.); (M.V.F.); (A.L.); (C.B.); (S.C.)
| | - María Victoria Falceto
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (O.M.); (M.V.F.); (A.L.); (C.B.); (S.C.)
| | - Alicia Laborda
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (O.M.); (M.V.F.); (A.L.); (C.B.); (S.C.)
| | - Cristina Bonastre
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (O.M.); (M.V.F.); (A.L.); (C.B.); (S.C.)
| | - Luis Mata
- Department of R&D, ZEULAB S.L., 50197 Zaragoza, Spain;
| | - Santiago Condón
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (O.M.); (M.V.F.); (A.L.); (C.B.); (S.C.)
| | - Rafael Pagán
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.J.S.); (D.G.-G.); (O.M.); (M.V.F.); (A.L.); (C.B.); (S.C.)
- Correspondence: ; Tel.: +34-9-7676-2675
| |
Collapse
|
38
|
Li S, Zhang C, Li F, Hua T, Zhou Q, Ho SH. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125148. [PMID: 33486226 DOI: 10.1016/j.jhazmat.2021.125148] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/13/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance genes (ARGs) have been recognized as emerging pollutants that are widely distributed and accumulated in most of aquatic environment. Although many ARGs-removal technologies are employed, a corresponding discussion of merits and limitations of known technologies is still currently lacking. More importantly, the removal mechanisms of ARGs remain unclear, hindering their ecological feasibility. Thus, further in-depth studies are highly required. In this review, the occurrence and risk of ARGs in aquatic environment are introduced, and the main routes and potential impacts of ARGs dissemination are enumerated. In addition, several novel ARGs detection methods are critically reviewed. Notably, to ensure greater applicability of these technologies, systematic information on how recent technologies impact the ARGs removal and control are comprehensively compared and summarized. Finally, future research directions to alleviate the risk of ARGs in aquatic environment are briefly introduced. Taken together, this review provides useful information to facilitate the development of innovative and feasible ARGs removal technologies and increase their economic viability and ecological sustainability.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Tao Hua
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Qixing Zhou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
39
|
Giacometti F, Shirzad-Aski H, Ferreira S. Antimicrobials and Food-Related Stresses as Selective Factors for Antibiotic Resistance along the Farm to Fork Continuum. Antibiotics (Basel) 2021; 10:671. [PMID: 34199740 PMCID: PMC8230312 DOI: 10.3390/antibiotics10060671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global problem and there has been growing concern associated with its widespread along the animal-human-environment interface. The farm-to-fork continuum was highlighted as a possible reservoir of AMR, and a hotspot for the emergence and spread of AMR. However, the extent of the role of non-antibiotic antimicrobials and other food-related stresses as selective factors is still in need of clarification. This review addresses the use of non-antibiotic stressors, such as antimicrobials, food-processing treatments, or even novel approaches to ensure food safety, as potential drivers for resistance to clinically relevant antibiotics. The co-selection and cross-adaptation events are covered, which may induce a decreased susceptibility of foodborne bacteria to antibiotics. Although the available studies address the complexity involved in these phenomena, further studies are needed to help better understand the real risk of using food-chain-related stressors, and possibly to allow the establishment of early warnings of potential resistance mechanisms.
Collapse
Affiliation(s)
- Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy;
| | - Hesamaddin Shirzad-Aski
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan 49178-67439, Iran;
| | - Susana Ferreira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
40
|
da Silva JJ, da Silva BF, Stradiotto NR, Petrović M, Gros M, Gago-Ferrero P. Identification of organic contaminants in vinasse and in soil and groundwater from fertigated sugarcane crop areas using target and suspect screening strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143237. [PMID: 33183804 DOI: 10.1016/j.scitotenv.2020.143237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 05/21/2023]
Abstract
This work evaluated for the first time the sustainability of vinasse reuse as a fertilizer in sugarcane crops by assessing the occurrence of organic contaminants and their potential for dissemination to soils and groundwater in fertigated areas. A comprehensive screening of organic contaminants was performed in vinasse, soil and groundwater using target analysis, to investigate the occurrence of multiple-class antibiotics, in combination with suspect screening using NORMAN Digital Sample Freezing Platform. Even though antibiotics are used in the ethanol production process and were expected to be ubiquitous contaminants, they were not detected in any of the samples. Nevertheless, the HRMS-based wide-scope suspect screening (including >7800 substances such as pharmaceuticals, agrochemicals, preservatives and industrial chemicals) allowed the tentative identification of 56 compounds, mostly pesticides, food additives, industrial and naturally occurring substances. Results showed no overlap between the compounds detected in vinasse and environmental samples, suggesting that the pollutants found in soil and groundwater might come from alternative sources other than vinasse reuse.
Collapse
Affiliation(s)
- Josiel José da Silva
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | | | - Nelson Ramos Stradiotto
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil; São Paulo State University (Unesp), Bioenergy Research Institute (IPBEN), Araraquara, São Paulo, Brazil
| | - Mira Petrović
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| | - Pablo Gago-Ferrero
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| |
Collapse
|
41
|
Chen X, Zhuan R, Wang J. Assessment of degradation characteristic and mineralization efficiency of norfloxacin by ionizing radiation combined with Fenton-like oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124172. [PMID: 33049634 DOI: 10.1016/j.jhazmat.2020.124172] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
In this study, the degradation of norfloxacin was investigated by ionizing radiation combined with Fenton-like oxidation in order to enhance the degradation and mineralization of norfloxacin. The result showed that the removal efficiency of norfloxacin was 100%, 81.8%, 64.5%, 51.9%, and 45.6% at 0.4 kGy radiation when its concentration was 5, 10, 20, 30, and 40 mg/L. Norfloxacin could be completely degraded over pH range of 3.06-10.96 at 2 kGy radiation. The presence of inorganic anions had obvious influence on the degradation of norfloxacin, which decreased from 89.4% to 59.0%, 76.9%, 86.9%, 88.7% and 83.9% in the presence of 10 mmol/L CO32-, HCO3-, NO3-, SO42-, Cl-, HPO42-. The removal efficiency of norfloxacin decreased from 100% to 11.8%, 27.6% and 89.3% in the presence of peptone, glucose, and humic acid. The addition of Fenton-like catalysts, such as magnetite and goethite, could improve the mineralization ratio of norfloxacin because they could decompose hydrogen peroxide generated during the radiation process, to form hydroxyl radicals, leading to the enhancement of removal efficiency of norfloxacin. Finally, the intermediate products of norfloxacin degradation were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF), and the degradation pathway was proposed.
Collapse
Affiliation(s)
- Xiaoying Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Run Zhuan
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
42
|
Zhao W, Gu J, Wang X, Hu T, Wang J, Yu J, Dai X, Lei L. Effects of shrimp shell powder on antibiotic resistance genes and the bacterial community during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142162. [PMID: 33207525 DOI: 10.1016/j.scitotenv.2020.142162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/16/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The present study compared the effects of adding shrimp shell powder (SSP) at four levels comprising 0% (CK), 5% (L), 10% (M), and 15% (H) on the abundance of antibiotic resistance genes (ARGs) and the bacterial community succession during swine manure composting. The relative abundances of 5/11 ARGs were reduced in CK, and 7/11 in H. Moreover, the removal rate was enhanced by adding SSP. Thus, H decreased the total abundance of ARGs by 32.68%, whereas CK increased it by 6.31%. Redundancy analysis indicated that mobile genetic elements (MGEs) (46.6%) and the bacterial community (31.1%) mainly explained the changes in ARGs. H enhanced the removal of MGEs, prolonged the thermophilic phase, stabilized copper and zinc, and retained nitrogen. LEfSe analysis and non-metric multidimensional scaling indicated that the bacterial community changed in the composting process, and it was optimized by H. The abundances of the potential bacterial co-hosts (such as Lactobacillus, Corynebacterium_1, and Ornithinicoccus) of ARGs and MGEs were lower and the decomposition of organic matter was higher in H compared with CK. Thus, composting with 15% SSP can reduce the risk of ARGs and improve the practical value for agronomic application.
Collapse
Affiliation(s)
- Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
43
|
Chaturvedi P, Giri BS, Shukla P, Gupta P. Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: Challenges and perspective. BIORESOURCE TECHNOLOGY 2021; 319:124161. [PMID: 33007697 DOI: 10.1016/j.biortech.2020.124161] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Continuous discharge and persistence of antibiotics in aquatic ecosystem is identified as emerging environment health hazard. Partial degradation and inappropriate disposal induce appearance of diverse antibiotic resistant genes (ARGs) and bacteria, hence their execution is imperative. Conventional methods including waste water treatment plants (WWTPs) are found ineffective for the removal of recalcitrant antibiotics. Therefore, constructive removal of antibiotics from environmental matrices and other alternatives have been discussed. This review summarizes present scenario and removal of micro-pollutants, antibiotics from environment. Various strategies including physicochemical, bioremediation, use of bioreactor, and biocatalysts are recognized as potent antibiotic removal strategies. Microbial Fuel Cells (MFCs) and biochar have emerged as promising biodegradation processes due to low cost, energy efficient and environmental benignity. With higher removal rate (20-50%) combined/ hybrid processes seems to be more efficient for permanent and sustainable elimination of reluctant antibiotics.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| | - Balendu Shekher Giri
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Parul Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
44
|
Zhang X, Cai W, Zhao S, Li X, Jia F, Ma F, Yao H. Discarded antibiotic mycelial residues derived nitrogen-doped porous carbon for electrochemical energy storage and simultaneous reduction of antibiotic resistance genes(ARGs). ENVIRONMENTAL RESEARCH 2021; 192:110261. [PMID: 32997967 DOI: 10.1016/j.envres.2020.110261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The question of how to reasonably dispose and recycle antibiotic mycelial residues (AMRs), a hazardous waste, is a critical issue. The AMRs containing nitrogen-rich organic matters shows a promising alternative feedstock of nitrogen-doped porous carbons (NPCs). Here, the NPCs with the ultrahigh surface area (2574.9 m2 g-1) were prepared by using the discarded oxytetracycline mycelial residues (OMRs) and further used as an electrode for supercapacitor. A series of experiments including scanning/transmission electron microscope, Brunauer-Emmett-Teller measurement, and electrochemical impedance spectrum revealed that the NPC-2-900 exhibited a high N content, large surface area, and high electrical conductivity. The electrochemical performance of the NPC was tested by cyclic voltammetry, galvanostatic charge/discharge cycling, and rate capability test. The optimized NPC-2-900 displayed distinguish specific capacitance (307 F g-1), cycling stability (over 95% capacitance retention after 2000 cycles even at a high current density of 20 A g-1) and superior rate performance. Of particular interest, the qPCR test indicates the ARGs were reduced in the conversion process from OMRs to NPCs.
Collapse
Affiliation(s)
- Xu Zhang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing, 100044, PR China
| | - Weiwei Cai
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing, 100044, PR China
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xinyang Li
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing, 100044, PR China
| | - Fangxu Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing, 100044, PR China
| | - Fujun Ma
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing, 100044, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing, 100044, PR China.
| |
Collapse
|
45
|
Phoon BL, Ong CC, Mohamed Saheed MS, Show PL, Chang JS, Ling TC, Lam SS, Juan JC. Conventional and emerging technologies for removal of antibiotics from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:122961. [PMID: 32947727 DOI: 10.1016/j.jhazmat.2020.122961] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 05/27/2023]
Abstract
Antibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely. Besides, municipal and livestock wastewater also contain unmetabolized antibiotics released by human and animal, respectively. The antibiotic found in wastewater leads to antibiotic resistance challenges, also emergence of superbugs. Currently, numerous technological approaches have been developed to remove antibiotics from the wastewater. Therefore, it was imperative to critically review the weakness and strength of these current advanced technological approaches in use. Besides, the conventional methods for removal of antibiotics such as Klavaroti et al., Homem and Santos also discussed. Although, membrane treatment is discovered as the ultimate choice of approach, to completely remove the antibiotics, while the filtered antibiotics are still retained on the membrane. This study found, hybrid processes to be the best solution antibiotics removal from wastewater. Nevertheless, real-time monitoring system is also recommended to ascertain that, wastewater is cleared of antibiotics.
Collapse
Affiliation(s)
- Bao Lee Phoon
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3 Block A, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chong Cheen Ong
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3 Block A, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Science, Monash University, Sunway Campus, Jalan Lagoon Selatan, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
46
|
Comparison of the efficiency of gamma irradiation and pyrolysis on the reduction of antibiotic and cephalosporin resistance gene from cephalosporin fermentation residues. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Xiang W, Wan Y, Zhang X, Tan Z, Xia T, Zheng Y, Gao B. Adsorption of tetracycline hydrochloride onto ball-milled biochar: Governing factors and mechanisms. CHEMOSPHERE 2020; 255:127057. [PMID: 32417521 PMCID: PMC8826517 DOI: 10.1016/j.chemosphere.2020.127057] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 05/19/2023]
Abstract
Pristine and ball milled wheat stalk biochars pyrolysed at 300 °C, 450 °C, 600 °C were studied for tetracycline hydrochloride (TCH) adsorption from aqueous solution. Surface characteristics of ball milled biochar (BM-biochar) were significantly enhanced over their pristine counterparts. TCH adsorption occurred largely on external surface and by filling pores of biochars as evidenced by strong positive correlation between adsorption and external specific surface area (SSA), total pore volume, or mesoporous volume. A two-stage intra-particle diffusion model, limited by the TCH diffusion through the boundary liquid layer, well described TCH adsorption. Maximum TCH adsorption occurred at about pH = 6-8. While solution cations including Na+, K+ and Mg2+ subdued TCH adsorption as they competed for adsorption sites, Ca2+ promoted TCH adsorption due to formation of tetracycline-Ca2+ complexes. The best performing BM-biochar was the one pyrolysed at 600 °C with TCH adsorption amount of 84.54 mg/g. Therefore, this BM-biochar has the potential for TCH removal from aqueous solutions. And the research shed light on the management of organic contaminants in real wastewater by BM-biochar.
Collapse
Affiliation(s)
- Wei Xiang
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Yongshan Wan
- Center for Environmental Measurement and Modeling, US EPA, Gulf Breeze, FL, 32561, USA
| | - Xueyang Zhang
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Zhenzhen Tan
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Tongtong Xia
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yulin Zheng
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
48
|
Checcucci A, Trevisi P, Luise D, Modesto M, Blasioli S, Braschi I, Mattarelli P. Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure. Front Microbiol 2020; 11:1416. [PMID: 32793126 PMCID: PMC7387501 DOI: 10.3389/fmicb.2020.01416] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance is a public health problem of growing concern. Animal manure application to soil is considered to be a main cause of the propagation and dissemination of antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the soil-water system. In recent decades, studies on the impact of antibiotic-contaminated manure on soil microbiomes have increased exponentially, in particular for taxonomical diversity and ARGs’ diffusion. Antibiotic resistance genes are often located on mobile genetic elements (MGEs). Horizontal transfer of MGEs toward a broad range of bacteria (pathogens and human commensals included) has been identified as the main cause for their persistence and dissemination. Chemical and bio-sanitizing treatments reduce the antibiotic load and ARB. Nevertheless, effects of these treatments on the persistence of resistance genes must be carefully considered. This review analyzed the most recent research on antibiotic and ARG environmental dissemination conveyed by livestock waste. Strategies to control ARG dissemination and antibiotic persistence were reviewed with the aim to identify methods for monitoring DNA transferability and environmental conditions promoting such diffusion.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Sonia Blasioli
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Ilaria Braschi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| |
Collapse
|