1
|
Queirós V, Leite C, Azeiteiro UM, Belloso MC, Soares AMVM, Santos JL, Alonso E, Barata C, Freitas R. Salinity influence on Mytilus galloprovincialis exposed to antineoplastic agents: a transcriptomic, biochemical, and histopathological approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125135. [PMID: 39426480 DOI: 10.1016/j.envpol.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Nowadays, aquatic species face a variety of environmental risks associated with pharmaceutical consumption. More specifically, the increased number of cancer patients has been accompanied by an increased consumption of antineoplastic drugs, such as ifosfamide (IF) and cyclophosphamide (CP). These drugs have been found in aquatic ecosystems, raising concerns about their impact, especially on estuarine species, as marine waters are the final recipients of continental effluents. Simultaneously, predicted climatic changes, such as salinity shifts, may threaten organisms. Considering this, the present research aims to investigate the combined effects of IF and CP, and salinity shifts. For this, a transcriptomic, biochemical, and histopathological assessment was made using the bivalve species Mytilus galloprovincialis exposed for 28 days to IF and CP (500 ng/L), individually, at different salinity levels (20, 30, and 40). IF and CP up-regulated metabolism-related gene cyp3a1, with CP also affecting abcc gene, showing minimal salinity impact and highlighting the importance of these metabolic routes in mussels. Salinity shifts affected the transcription of genes related to apoptosis and cell cycle growth, such as p53, as well as the aerobic metabolism, the antioxidant and biotransformation mechanisms. These findings indicate mussels' high metabolic adaptability to osmotic stress. Under CP exposure and low salinity, mussels exhibited increased cellular damage and histopathological effects in digestive gland tubules, revealing detrimental effects towards M. galloprovincialis, and suggesting that a metabolic slowdown and activation of antioxidant mechanisms helped prevent oxidative damage at the control and high salinities. Overall, results reinforce the need for antineoplastics ecotoxicological risk assessment, especially under foreseen climate change scenarios.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carla Leite
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Casado Belloso
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Brand JA, Bertram MG, Cerveny D, McCallum ES, Hellström G, Michelangeli M, Palm D, Brodin T. Psychoactive pollutant alters movement dynamics of fish in a natural lake system. Proc Biol Sci 2024; 291:20241760. [PMID: 39657799 PMCID: PMC11631415 DOI: 10.1098/rspb.2024.1760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Pharmaceutical pollution poses an increasing threat to global wildlife populations. Psychoactive pharmaceutical pollutants (e.g. antidepressants, anxiolytics) are a distinctive concern owing to their ability to act on neural pathways that mediate fitness-related behavioural traits. However, despite increasing research efforts, very little is known about how these drugs might influence the behaviour and survival of species in the wild. Here, we capitalize on the development of novel slow-release pharmaceutical implants and acoustic telemetry tracking tools to reveal that exposure to environmentally relevant concentrations of the benzodiazepine pollutant temazepam alters movement dynamics and decreases the migration success of brown trout (Salmo trutta) smolts in a natural lake system. This effect was potentially owing to temazepam-exposed fish suffering increased predation compared with unexposed conspecifics, particularly at the river-lake confluence. These findings underscore the ability of pharmaceutical pollution to alter key fitness-related behavioural traits under natural conditions, with likely negative impacts on the health and persistence of wildlife populations.
Collapse
Affiliation(s)
- Jack A. Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
- Institute of Zoology, Zoological Society of London, LondonNW1 4RY, UK
| | - Michael G. Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
- Department of Zoology, Stockholm University, Stockholm114 18, Sweden
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic
| | - Erin S. McCallum
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
| | - Gustav Hellström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
- Australian Rivers Institute, Griffith University, Nathan, Queensland4111, Australia
| | - Daniel Palm
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
| |
Collapse
|
3
|
Castillo NA, Santos RO, James WR, Rezek R, Cerveny D, Boucek RE, Adams AJ, Fick J, Brodin T, Rehage JS. Widespread pharmaceutical exposure at concentrations of concern for a subtropical coastal fishery: Bonefish (Albula vulpes). MARINE POLLUTION BULLETIN 2024; 209:117143. [PMID: 39461181 DOI: 10.1016/j.marpolbul.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Pharmaceuticals have been acknowledged as an important contaminant of emerging concern with the potential to cause adverse effects in exposed fauna. Most research has focused on temperate freshwater systems; therefore, there is a pressing need to quantify pharmaceutical exposure in subtropical coastal marine systems. This study investigated the prevalence of pharmaceutical exposure to bonefish (Albula vulpes) in subtropical South Florida, USA, and evaluated the relative risk of detected concentrations to elicit pharmacological effects. The influence of sampling region, season (within or outside spawning season), and bonefish length on pharmaceutical assemblage, detection frequency, and risk was assessed. Both spatial (multiple regions) and temporal (spawning season) components were considered in order to incorporate bonefish biology biological in our exploration of pharmaceutical exposure and potential risk of effect. To quantify risk of pharmacological effects, concentrations were compared to a 1/3 threshold of the human therapeutic plasma concentration (HTPC). In total, 53 different pharmaceuticals were detected with an average of 7.1 pharmaceuticals per bonefish and 52.3 % had at least one pharmaceutical exceeding the 1/3 HTPC threshold. The presence of pharmaceutical cocktails at concentrations capable of eliciting pharmacological effects is of particular concern considering the potential for unknown interactions. For exposure and risk of pharmacological effect, region and season were significant, while bonefish length was not. Pharmaceutical exposure and risk were highest in the most remote sampling region. Results establish pharmaceuticals' widespread prevalence in subtropical coastal marine ecosystems, exposure and risk to biota, and the necessity to examine marine systems.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Florida International University, Miami, FL, USA.
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - W R James
- Earth and Environment Department, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Florida International University, Miami, FL, USA
| |
Collapse
|
4
|
Zapata-Morales AL, Hernández-Morales A, Alfaro-De la Torre MC, Leyva-Ramos S, Vázquez-Martínez J, Soria-Guerra RE. Cultivable bacteria contribute to the removal of diclofenac and naproxen mix in a constructed wetland with Typha latifolia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:524. [PMID: 39570487 DOI: 10.1007/s10653-024-02306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Constructed wetlands are used to remove diclofenac and naproxen from wastewater. However, the role of plants and their root-associated bacteria in removing these pharmaceuticals is still unknown. In this work, bacteria were isolated from the roots of Typha latifolia cultivated in a constructed wetland to treat a diclofenac and naproxen mix. 16S rDNA sequencing indicated that bacterial isolates belong to the Pseudomonas, Serratia, and Rahnella genera. All bacterial isolates showed tolerance to high concentrations of diclofenac and naproxen and had differential laccase activity, phosphate-solubilizing activity, and indole acetic acid production.Bacteria were grouped into three consortia A (0-30 cm), B (50-80 cm), and C (100-130 cm), according to the site from which they were isolated in the wetland. Plant-bacteria interaction assays were conducted to determine the removal capacity of diclofenac and naproxen mix by the bacterial consortia or their interaction with T. latifolia. The results showed that all bacterial consortia removed over 50% of diclofenac and naproxen, while in their interaction with T. latifolia the removal capacity increased to over 70%. Consortium B was the most efficient in removing diclofenac and naproxen, with removal rates of 63.85 ± 0.45% and 74.93 ± 0.75%, respectively. Meanwhile, in the interaction of consortium B with T. latifolia, the removal of diclofenac and naproxen increased to 82.27 ± 0.30% and 88.12 ± 1.23%, respectively. Overall, the results indicated that T. latifolia and its root-associated bacteria removed the diclofenac and naproxen mix in the constructed wetland, contributing to understanding the role of the plant and bacteria in removing emerging contaminants. Therefore, the interaction of T. latifolia and its root-associated bacteria could potentially be used in strategies to remove emerging contaminants from wastewater.
Collapse
Affiliation(s)
- Ana Laura Zapata-Morales
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, C.P. 78210, San Luis Potosí, México
| | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, C.P. 79060, Ciudad Valles, San Luis Potosí, México.
| | - Ma Catalina Alfaro-De la Torre
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, C.P. 78210, San Luis Potosí, México
| | - Socorro Leyva-Ramos
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, C.P. 78210, San Luis Potosí, México
| | - Juan Vázquez-Martínez
- Departamento de Ingeniería Química, TecNM/ITS Irapuato, Silao-Irapuato Km 12.5, C.P. 36821, Irapuato, Guanajuato, México
| | - Ruth Elena Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, C.P. 78210, San Luis Potosí, México
| |
Collapse
|
5
|
Sørensen L, Hovsbakken IA, Wielogorska E, Creese M, Sarno A, Caban M, Sokolowski A, Øverjordet IB. Impact of seawater temperature and physical-chemical properties on sorption of pharmaceuticals, stimulants, and biocides to marine particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124838. [PMID: 39214444 DOI: 10.1016/j.envpol.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Pharmaceuticals, stimulants, and biocides enter the environment via wastewater from urban, domestic, and industrial areas, in addition to sewage, aquaculture and agriculture runoff. While some of these compounds are easily degradable in environmental conditions, others are more persistent, meaning they are less easily degraded and can stay in the environment for long periods of time. By exploring the adsorptive properties of a wide range of pharmaceuticals, stimulants, and biocides onto particles relevant for marine conditions, we can better understand their environmental behaviour and transport potential. Here, the sorption of 27 such compounds to inorganic (kaolin) and biotic (the microalgae Cryptomonas baltica) marine particles was investigated. Only two compounds sorbed to microalgae, while 23 sorbed to kaolin. The sorption mechanisms between select pharmaceuticals and stimulants and kaolin was assessed through exploring adsorption kinetics (caffeine, ciprofloxacin, citalopram, fluoxetine, and oxolinic acid) and isotherms (ciprofloxacin, citalopram, and fluoxetine). Temperature was shown to have a significant impact on partitioning, and the impact was more pronounced closer to maximum sorption capacity for the individual compounds.
Collapse
Affiliation(s)
- Lisbet Sørensen
- SINTEF Ocean AS, Department of Climate and Environment, Trondheim, Norway.
| | - Ingrid Alver Hovsbakken
- SINTEF Ocean AS, Department of Climate and Environment, Trondheim, Norway; Norwegian University of Science and Technology (NTNU), Department of Chemistry, Trondheim, Norway
| | - Ewa Wielogorska
- SINTEF Ocean AS, Department of Climate and Environment, Trondheim, Norway
| | - Mari Creese
- SINTEF Ocean AS, Department of Climate and Environment, Trondheim, Norway
| | - Antonio Sarno
- SINTEF Ocean AS, Department of Climate and Environment, Trondheim, Norway
| | - Magda Caban
- University of Gdansk, Department of Environmental Analysis, Faculty of Chemistry, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Adam Sokolowski
- University of Gdansk, Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, Al. Marszałka J. Piłsudskiego, 81-378, Gdynia, Poland
| | | |
Collapse
|
6
|
Becerra-Rueda OF, Rodríguez-Figueroa GM, Marmolejo-Rodríguez AJ, Aguíñiga-García S, Durán-Álvarez JC. Pharmaceutical Residues in Sediments of a Coastal Lagoon in Northwest Mexico-Occurrence and Environmental Risk Assessment. J Xenobiot 2024; 14:1757-1770. [PMID: 39584958 PMCID: PMC11587066 DOI: 10.3390/jox14040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Contamination of marine ecosystems by pharmaceutically active compounds (PhACs) deserves more research since their environmental fate differs from that observed in freshwater systems. However, knowledge remains scarce, especially in semi-arid coastal regions of the Global South. This study investigates the occurrence and distribution of caffeine, carbamazepine, ciprofloxacin, and sulfamethoxazole in sediments from the La Paz lagoon, a coastal system in a semi-arid region of Mexico with inverse estuarine conditions. Samples of superficial sediments (0-5 cm depth) were collected from 18 sampling points distributed through the lagoon, encompassing sites heavily polluted by discharges of municipal sewage and 3 potentially pristine sites far from the urban and peri-urban zones. Also, a 25 cm length sediment core was taken and divided into 1 cm sub-samples to determine the deposition of target PhACs in the sediment bed through time. The extraction of the target PhACs was performed through the accelerated solvent extraction (ASE) technique and quantification was achieved using a validated HPLC-MS/MS analytical method. The concentration of caffeine, carbamazepine, ciprofloxacin, and sulfamethoxazole in superficial sediment oscillated in the range of 1 to 45 ng g-1 (dry weight). The highest mass fraction of target PhACs was detected in sites impacted by wastewater discharges. The caffeine-to-carbamazepine ratio was determined for the first time in marine sediments impacted by wastewater discharges, resulting in values from 4.2 to 9.12. Analysis of the 25 cm length sediment core revealed a high dispersion of caffeine, which was attributed to high water solubility, while antibiotics were predominantly detected in the upper 20 cm of the core. Risk quotients were calculated, observing low risk for caffeine, carbamazepine, and ciprofloxacin, while sulfamethoxazole presented high risk in all the sampling points. PhACs are retained in superficial sediments from a lagoon impacted by wastewater discharges, and the level of impact depends on the properties of the compounds and the TOC content in sediments. Risk assessments should be performed in the future considering the combination of pharmaceuticals and byproducts in marine sediments. This research emphasizes the importance of sewage management in preserving marine ecosystems in semi-arid regions in the Global South.
Collapse
Affiliation(s)
- Oscar Fernando Becerra-Rueda
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional (CICIMAR-IPN), Av. IPN s/n Col. Playa Palo de Santa Rita, La Paz 23096, Mexico; (O.F.B.-R.); (G.M.R.-F.); (A.J.M.-R.); (S.A.-G.)
| | - Griselda Margarita Rodríguez-Figueroa
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional (CICIMAR-IPN), Av. IPN s/n Col. Playa Palo de Santa Rita, La Paz 23096, Mexico; (O.F.B.-R.); (G.M.R.-F.); (A.J.M.-R.); (S.A.-G.)
| | - Ana Judith Marmolejo-Rodríguez
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional (CICIMAR-IPN), Av. IPN s/n Col. Playa Palo de Santa Rita, La Paz 23096, Mexico; (O.F.B.-R.); (G.M.R.-F.); (A.J.M.-R.); (S.A.-G.)
| | - Sergio Aguíñiga-García
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional (CICIMAR-IPN), Av. IPN s/n Col. Playa Palo de Santa Rita, La Paz 23096, Mexico; (O.F.B.-R.); (G.M.R.-F.); (A.J.M.-R.); (S.A.-G.)
| | - Juan Carlos Durán-Álvarez
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México (ICAT-UNAM), Circuito Exterior S/N, Ciudad de México 04510, Mexico
| |
Collapse
|
7
|
Guo X, Zhao W, Yin D, Mei Z, Wang F, Tiedje J, Ling S, Hu S, Xu T. Aspirin altered antibiotic resistance genes response to sulfonamide in the gut microbiome of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124566. [PMID: 39025292 DOI: 10.1016/j.envpol.2024.124566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Pharmaceuticals are widespread in aquatic environments and might contribute to the prevalence of antibiotic resistance. However, the co-effect of antibiotics and non-antibiotic pharmaceuticals on the gut microbiome of fish is poorly understood. In this study, we characterized the variation of the zebrafish gut microbiome and resistome after exposure to sulfamethoxazole (SMX) and aspirin under different treatments. SMX contributed to the significant increase in the antibiotic resistance genes (ARGs) richness and abundance with 46 unique ARGs and five mobile genetic elements (MGEs) detected. Combined exposure to SMX and aspirin enriched total ARGs abundance and rearranged microbiota under short-term exposure. Exposure time was more responsible for resistome and the gut microbiome than exposure concentrations. Perturbation of the gut microbiome contributed to the functional variation related to RNA processing and modification, cell motility, signal transduction mechanisms, and defense mechanisms. A strong significant positive correlation (R = 0.8955, p < 0.001) was observed between total ARGs and MGEs regardless of different treatments revealing the key role of MGEs in ARGs transmission. Network analysis indicated most of the potential ARGs host bacteria belonged to Proteobacteria. Our study suggested that co-occurrence of non-antibiotics and antibiotics could accelerate the spread of ARGs in gut microbial communities and MGEs played a key role.
Collapse
Affiliation(s)
- Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wanting Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhi Mei
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, 48824, USA
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
8
|
Castillo NA, Santos RO, James WR, Rezek R, Cerveny D, Boucek RE, Adams AJ, Fick J, Brodin T, Rehage JS. Differential tissue distribution of pharmaceuticals in a wild subtropical marine fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107064. [PMID: 39208620 DOI: 10.1016/j.aquatox.2024.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
To date, the presence of pharmaceuticals has been extensively documented across a wide range of aquatic systems and biota. Further, substantial progress has been made in transitioning from laboratory assessments of pharmaceutical fate and effects in fish to in situ assessments of exposure and effects; however, certain research areas remain understudied. Among these is investigation of differential accumulation across multiple internal tissues in wild marine fish beyond the species commonly sampled in laboratory and freshwater field settings. This study examined the presence of pharmaceuticals across four tissues (plasma, muscle, brain, and liver) in a wild marine fish, bonefish (Albula vulpes), throughout coastal South Florida, USA. Differential accumulation across tissues was assessed for the number and concentration, identity, and composition of accumulated pharmaceuticals by sampling 25 bonefish and analyzing them for 91 pharmaceuticals. The concentration of pharmaceuticals was highest in plasma > liver > brain > muscle, while the number of pharmaceuticals was highest in liver > brain > plasma > muscle. The identity of detected pharmaceuticals was tissue specific, and there was an inverse relationship between the number of detections for each pharmaceutical and its log Kow. The composition of pharmaceuticals was tissue specific for both pharmaceutical presence/absence and concentration. Across all tissues, the greatest similarity was between brain and liver, which were more similar to plasma than to muscle, and muscle was the most distinct tissue. For tissue compositional variability, muscle was the most diverse in accumulated pharmaceuticals, while plasma, brain, and liver were similarly variable. With the highest concentrations in plasma and highest number in liver, and documented variability in accumulated pharmaceuticals across tissues, our results highlight the importance of tissue selection when surveying exposure in wild fish, suggesting that multi-tissue analysis would allow for a more comprehensive assessment of exposure diversity and risk of adverse effects.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Florida International University, Miami, FL, USA.
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - W R James
- Earth and Environment Department, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Florida International University, Miami, FL, USA
| |
Collapse
|
9
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Trabelsi S, Distrubell A, Sandquist M, Fick J, Brodin T, Rehage JS. Identifying pathways of pharmaceutical exposure in a mesoconsumer marine fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135382. [PMID: 39088947 DOI: 10.1016/j.jhazmat.2024.135382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Pharmaceutical uptake involves processes that vary across aquatic systems and biota. However, single studies examining multiple environmental compartments, microhabitats, biota, and exposure pathways in mesoconsumer fish are sparse. We investigated the pharmaceutical burden in bonefish (Albula vulpes), pathways of exposure, and estimated exposure to a human daily dose. To evaluate exposure pathways, the number and composition of pharmaceuticals across compartments and the bioconcentration in prey and bonefish were assessed. To evaluate bioaccumulation, we proposed the use of a field-derived bioaccumulation factor (fBAF), due to variability inherent to natural systems. Exposure to a human daily dose was based on bonefish daily energetic requirements and consumption rates using pharmaceutical concentrations in prey. Pharmaceutical number and concentration were highest in prey, followed by bonefish, water and sediment. Fifteen pharmaceuticals were detected in common among bonefish, prey, and water; all of which bioconcentrated in prey and bonefish, and four bioaccumulated in bonefish. The composition of detected pharmaceuticals was compartment specific, and prey were most similar to bonefish. Bonefish were exposed to a maximum of 1.2 % of a human daily dose via prey consumption. Results highlight the need for multicompartment assessments of exposure and consideration of prey along with water as a pathway of exposure.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - S Trabelsi
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - A Distrubell
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - M Sandquist
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
10
|
Michelangeli M, Martin JM, Robson S, Cerveny D, Walsh R, Richmond EK, Grace MR, Brand JA, Bertram MG, Ho SSY, Brodin T, Wong BBM. Pharmaceutical Pollution Alters the Structure of Freshwater Communities and Hinders Their Recovery from a Fish Predator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13904-13917. [PMID: 39049184 PMCID: PMC11308527 DOI: 10.1021/acs.est.4c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Freshwater ecosystems are under threat from rising pharmaceutical pollution. While such pollutants are known to elicit biological effects on organisms, we have limited knowledge on how these effects might cascade through food-webs, disrupt ecological processes, and shape freshwater communities. In this study, we used a mesocosm experiment to explore how the community impacts of a top-order predator, the eastern mosquitofish (Gambusia holbrooki), are mediated by exposure to environmentally relevant low (measured concentration: ∼10 ng/L) and high concentrations (∼110 ng/L) of the pervasive pharmaceutical pollutant fluoxetine. We found no evidence that exposure to fluoxetine altered the consumptive effects of mosquitofish on zooplankton. However, once mosquitofish were removed from the mesocosms, zooplankton abundance recovered to a greater extent in control mesocosms compared to both low and high fluoxetine-exposed mesocosms. By the end of the experiment, this resulted in fundamental differences in community structure between the control and fluoxetine-treated mesocosms. Specifically, the control mesocosms were characterized by higher zooplankton abundances and lower algal biomass, whereas mesocosms exposed to either low or high concentrations of fluoxetine had lower zooplankton abundances and higher algal biomass. Our results suggest that fluoxetine, even at very low concentrations, can alter aquatic communities and hinder their recovery from disturbances.
Collapse
Affiliation(s)
- Marcus Michelangeli
- School
of Environment and Science, Griffith University, Nathan 4111, Australia
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Jake M. Martin
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
| | - Stephanie Robson
- Water
Studies Centre, School of Chemistry, Monash
University, Melbourne 3800, Australia
| | - Daniel Cerveny
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- University
of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection
of Waters, South Bohemian Research Center
of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Robert Walsh
- Australian
Waterlife, 55 Vaughan
Chase, Wyndham Vale, Victoria 3024, Australia
| | - Erinn K. Richmond
- Environmental
Protection Authority Victoria, EPA Science, Macleod, Victoria 3085, Australia
| | - Michael R. Grace
- Water
Studies Centre, School of Chemistry, Monash
University, Melbourne 3800, Australia
| | - Jack A. Brand
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- Institute
of Zoology, Zoological Society of London, London NW1 4RY, U.K.
| | - Michael G. Bertram
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
- Department
of Zoology, Stockholm University, Stockholm 114 18, Sweden
| | - Susie S. Y. Ho
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Tomas Brodin
- Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Bob B. M. Wong
- School
of Biological Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
11
|
Cruz Muñoz E, Termopoli V, Orlandi M, Gosetti F. Non-targeted identification of tianeptine photodegradation products in water samples by UHPLC-QTOF MS/MS. CHEMOSPHERE 2024; 361:142534. [PMID: 38849097 DOI: 10.1016/j.chemosphere.2024.142534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
This study aims the characterization of several tianeptine transformation products in ultrapure water by simulated sunlight irradiation. Tianeptine was completely degraded after 106 h of exposition following pseudo-first-order kinetics (half-life time = 12.0 ± 2.4 h). Furthermore, an ultra-high-performance liquid chromatography coupled with a high-resolution quadrupole time-of-flight-mass spectrometry method was developed and fully validated taking into account different method performance parameters for the quantification of tianeptine in river water up to a concentration of 400 pg L-1. Following a non-targeted approach based on mass data-independent acquisition, eight different transformation products not previously reported in the literature were identified and accordingly elucidated, proposing a photodegradation mechanism based on the accurate tandem mass spectrometry information acquired. Irradiation experiments were replicated for a tianeptine solution prepared in a blank river water sample, resulting in the formation of the same transformation products and similar degradation kinetics. In addition, a toxicity assessment of the photoproducts was performed by in silico method, being generally all TPs of comparable toxicity to the precursor except for TP1, and showing a similar persistence in the environment except for TP2 and TP6, while TP4 was the only TP predicted as mutagenic. The developed method was applied for the analysis of four river water samples.
Collapse
Affiliation(s)
- Enmanuel Cruz Muñoz
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Veronica Termopoli
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Orlandi
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; POLARIS Research Center, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Fabio Gosetti
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; POLARIS Research Center, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy.
| |
Collapse
|
12
|
Menicagli V, Ruffini Castiglione M, Cioni E, Spanò C, Balestri E, De Leo M, Bottega S, Sorce C, Lardicci C. Stress responses of the seagrass Cymodocea nodosa to environmentally relevant concentrations of pharmaceutical ibuprofen: Ecological implications. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135188. [PMID: 39024758 DOI: 10.1016/j.jhazmat.2024.135188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Pharmaceuticals like ibuprofen (IBU) entering marine environments are of great concern due to their increasing consumption and impact on wildlife. No information on IBU toxicity to seagrasses is yet available. Seagrasses form key habitats and are threatened worldwide by multiple stressors. Here, the responses of the seagrass Cymodocea nodosa to a short-term exposure (12 days) to environmentally realistic IBU concentrations (0.25-2.5-25 µg L-1), both at organism (plant growth) and sub-organism level (oxidative status, photosynthetic efficiency, and specialized metabolites production), were assessed in mesocosm. Chemical analyses to detect the presence of IBU and its metabolites in seawater and plants were also performed. IBU did not affect plant growth but caused physiological alterations which varied in severity depending on its concentration. Concentrations of 0.25 and 2.5 µg L-1 resulted in oxidative stress, but an increased antioxidant enzyme activity enabled plants to tolerate stress. A concentration of 25 µg L-1 caused greater oxidative stress, reduced antioxidant enzyme activity and specialized metabolites production, and impaired photosynthetic machinery functioning (particularly PSII). IBU was detected in seawater but not in plants suggesting no bioaccumulation. These findings indicate that C. nodosa could not withstand high IBU stress, and this could reduce its resilience to additional environmental stressors.
Collapse
Affiliation(s)
- Virginia Menicagli
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Emily Cioni
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Elena Balestri
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy.
| | - Marinella De Leo
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Lardicci
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; Department of Earth Sciences, University of Pisa, via S. Maria 53, 56126 Pisa, Italy
| |
Collapse
|
13
|
Efthymiou C, Boti V, Konstantinou I, Albanis T. Aqueous fate of furaltadone: Kinetics, high-resolution mass spectrometry - based elucidation and toxicity assessment of photoproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170848. [PMID: 38340835 DOI: 10.1016/j.scitotenv.2024.170848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Furaltadone (FTD) is an antibiotic belonging to the nitrofurans group. It has been broadly used in livestock and aquaculture for therapeutic purposes, as well as for stimulating promotion. Although the European Union has imposed restrictions on the use of FTD since 1995 due to concerns regarding its toxicity, in many cases FTD has been excessively and/or illegally applied in productive animals in developing countries, because of its high efficacy and low-cost. Unlike other nitrofuran compounds, the hydrolytic and photolytic behavior of FTD in natural aquatic systems has not been thoroughly investigated. To this end, hydrolysis in different pH values and photolysis in aquatic environment, including lake, river and sea water have been both examined. Hydrolysis was found to have an insignificant impact on degradation of FTD in the aquatic environment relevant pH values, whereas indirect photolysis proved to be the main route of its elimination. The identification of tentative photoproducts (PPs) was performed using ultra high performance liquid chromatography coupled to hybrid LTQ/Orbitrap high resolution mass spectrometry. A possible pathway for photolytic transformation of FTD was proposed. Additionally, in silico simulations were used to evaluate the toxicity such as the mutagenicity of FTD and PPs. Complementary to the low-cost and time-limited simulations, an in vitro method (Vibrio Fischeri bioluminescence) was also used to assess ecotoxicity.
Collapse
Affiliation(s)
| | - Vasiliki Boti
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece; Unit of Environmental, Organic and Biochemical high-resolution analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina 45110, Greece.
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece; Unit of Environmental, Organic and Biochemical high-resolution analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina 45110, Greece
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece; Unit of Environmental, Organic and Biochemical high-resolution analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
14
|
Ma N, Zhang H, Yuan L, Li Y, Yang W, Huang Y. Characterization and removal mechanism of fluoroquinolone-bioremediation by fungus Cladosporium cladosporioides 11 isolated from aquacultural sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29525-29535. [PMID: 38575819 DOI: 10.1007/s11356-024-33142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Antibiotics have been widely detected in aquatic environments, and fungal biotransformation receives considerable attention for antibiotic bioremediation. Here, a fungus designated Cladosporium cladosporioides 11 (CC11) with effective capacity to biotransform fluoroquinolones was isolated from aquaculture pond sediments. Enrofloxacin (ENR), ciprofloxacin (CIP) and ofloxacin (OFL) were considerably abated by CC11, and the antibacterial activities of the fluoroquinolones reduced significantly after CC11 treatment. Transcriptome analysis showed the removal of ENR, CIP and OFL by CC11 is a process of enzymatic degradation and biosorption which consists well with ligninolytic enzyme activities and sorption experiments under the same conditions. Additionally, CC11 significantly removed ENR in zebrafish culture water and reduced the residue of ENR in zebrafish. All these results evidenced the potential of CC11 as a novel environmentally friendly process for the removal of fluoroquinolones from aqueous systems and reduce fluoroquinolone residues in aquatic organisms.
Collapse
Affiliation(s)
- Ning Ma
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Wenbo Yang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, No.150 of Qingta, Fengtai District, Beijing, 100141, People's Republic of China.
| |
Collapse
|
15
|
Wu R, Sin YY, Cai L, Wang Y, Hu M, Liu X, Xu W, Kwan KY, Gonçalves D, Chan BKK, Zhang K, Chui APY, Chua SL, Fang JKH, Leung KMY. Pharmaceutical Residues in Edible Oysters along the Coasts of the East and South China Seas and Associated Health Risks to Humans and Wildlife. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5512-5523. [PMID: 38478581 PMCID: PMC10976893 DOI: 10.1021/acs.est.3c10588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
The investigation of pharmaceuticals as emerging contaminants in marine biota has been insufficient. In this study, we examined the presence of 51 pharmaceuticals in edible oysters along the coasts of the East and South China Seas. Only nine pharmaceuticals were detected. The mean concentrations of all measured pharmaceuticals in oysters per site ranged from 0.804 to 15.1 ng g-1 of dry weight, with antihistamines being the most common. Brompheniramine and promethazine were identified in biota samples for the first time. Although no significant health risks to humans were identified through consumption of oysters, 100-1000 times higher health risks were observed for wildlife like water birds, seasnails, and starfishes. Specifically, sea snails that primarily feed on oysters were found to be at risk of exposure to ciprofloxacin, brompheniramine, and promethazine. These high risks could be attributed to the monotonous diet habits and relatively limited food sources of these organisms. Furthermore, taking chirality into consideration, chlorpheniramine in the oysters was enriched by the S-enantiomer, with a relative potency 1.1-1.3 times higher when chlorpheniramine was considered as a racemate. Overall, this study highlights the prevalence of antihistamines in seafood and underscores the importance of studying enantioselectivities of pharmaceuticals in health risk assessments.
Collapse
Affiliation(s)
- Rongben Wu
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hung
Hom, Hong Kong SAR 999077, China
| | - Yan Yin Sin
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
| | - Lin Cai
- Shenzhen
Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Youji Wang
- International
Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Menghong Hu
- International
Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Xiaoshou Liu
- College
of Marine Life Sciences and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wenzhe Xu
- College of
Marine and Environmental Sciences, Tianjin
University of Science and Technology, Tianjin 300457, China
| | - Kit Yue Kwan
- College of
Marine Science, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity
Conservation, Beibu Gulf University, Qinzhou City, Guangxi Zhuang
Autonomous Region 535011, China
| | - David Gonçalves
- Institute
of Science and Environment, University of
Saint Joseph, Nossa
Senhora de Fátima, Macao SAR 999078, China
| | | | - Kai Zhang
- National
Observation and Research Station of Coastal Ecological Environments
in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Apple Pui-Yi Chui
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Simon F.S.
Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Song Lin Chua
- Department
of Applied Biology and Chemical Technology, State Key Laboratory of
Chemical Biology and Drug Discovery, and Research Center for Deep
Space Explorations, The Hong Kong Polytechnic
University, Hung Hom, Hong Kong SAR 999077, China
| | - James Kar-Hei Fang
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hung
Hom, Hong Kong SAR 999077, China
- Research
Institute for Future Food, and Research Institute for Land and Space, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Kenneth Mei-Yee Leung
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Department
of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
SAR 999077, China
- Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
16
|
Mikula P, Hollerova A, Hodkovicova N, Doubkova V, Marsalek P, Franc A, Sedlackova L, Hesova R, Modra H, Svobodova Z, Blahova J. Long-term dietary exposure to the non-steroidal anti-inflammatory drugs diclofenac and ibuprofen can affect the physiology of common carp (Cyprinus carpio) on multiple levels, even at "environmentally relevant" concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170296. [PMID: 38301789 DOI: 10.1016/j.scitotenv.2024.170296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
The aim of the study was to evaluate the effects of emerging environmental contaminants, the non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac (DCF) and ibuprofen (IBP), on physiological functions in juvenile common carp (Cyprinus carpio). Fish were exposed for 6 weeks, and for the first time, NSAIDs were administered through diet. Either substance was tested at two concentrations, 20 or 2000 μg/kg, resulting in four different treatments (DCF 20, DCF 2000, IBP 20, IBP 2000). The effects on haematological and biochemical profiles, the biomarkers of oxidative stress, and endocrine disruption were studied, and changes in RNA transcription were also monitored to obtain a comprehensive picture of toxicity. Fish exposure to high concentrations of NSAIDs (DCF 2000, IBP 2000) elicited numerous statistically significant changes (p < 0.05) in the endpoints investigated, with DCF being almost always more efficient than IBP. Compared to control fish, a decrease in total leukocyte count attributed to relative lymphopenia was observed. Plasma concentrations of total proteins, ammonia, and thyroxine, and enzyme activities of alanine aminotransferase (ALT), aspartate aminotransferase, and alkaline phosphatase (ALP) were significantly elevated in either group, as were the activities of certain hepatic antioxidant enzymes (superoxide dismutase, glutathione-S-transferase) in the DCF 2000 group. The transcriptomic profile of selected genes in the tissues of exposed fish was affected as well. Significant changes in plasma total proteins, ammonia, ALT, and ALP, as well as in the transcription of genes related to thyroid function and the antioxidant defense of the organism, were found even in fish exposed to the lower DCF concentration (DCF 20). As it was chosen to match DCF concentrations commonly detected in aquatic invertebrates (i.e., the potential feed source of fish), it can be considered "environmentally relevant". Future research is necessary to shed more light on the dietary NSAID toxicity to fish.
Collapse
Affiliation(s)
- Premysl Mikula
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Aneta Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Ales Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Lucie Sedlackova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Renata Hesova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Helena Modra
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic; Department of Environmentalistics and Natural Resources, Faculty of Regional Development and International Studies, Mendel University in Brno, tr. Generala Piky 7, 613 00 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, Czech Republic.
| |
Collapse
|
17
|
Castaño-Ortiz JM, Gago-Ferrero P, Barceló D, Rodríguez-Mozaz S, Gil-Solsona R. HRMS-based suspect screening of pharmaceuticals and their transformation products in multiple environmental compartments: An alternative to target analysis? JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132974. [PMID: 38218030 DOI: 10.1016/j.jhazmat.2023.132974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
The comprehensive monitoring of pharmaceutically active compounds (PhACs) in the environment is challenging given the myriad of substances continuously discharged, the increasing number of new compounds being produced (and released), or the variety of the associated human metabolites and transformation products (TPs). Approaches such as high-resolution mass spectrometry (HRMS)-based suspect analysis have emerged to overcome the drawbacks of classical target analytical methods, e.g., restricted chemical coverage. In this study, we assess the readiness of HRMS-based suspect screening to replace or rather complement target methodologies by comparing the performance of both approaches in terms of i) detection of PhACs in various environmental samples (water, sediments, biofilm, fish plasma, muscle and liver) in a field study; ii) PhACs (semi)quantification and iii) prediction of their environmental risks. Our findings revealed that target strategies alone significantly underestimate the variety of PhACs potentially impacting the environment. However, relying solely on suspect strategies can misjudge the presence and risk of low-level but potentially risky PhACs. Additionally, semiquantitative approaches, despite slightly overestimating concentrations, can provide a realistic overview of PhACs concentrations. Hence, it is recommended to adopt a combined strategy that first evaluates suspected threats and subsequently includes the relevant ones in the established target methodologies.
Collapse
Affiliation(s)
- Jose M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
18
|
Magnuson JT, Sydnes MO, Ræder EM, Schlenk D, Pampanin DM. Transcriptomic profiles of brains in juvenile Atlantic cod (Gadus morhua) exposed to pharmaceuticals and personal care products from a wastewater treatment plant discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169110. [PMID: 38065506 DOI: 10.1016/j.scitotenv.2023.169110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) are frequently detected in marine environments, posing a threat to aquatic organisms. Our previous research demonstrated the occurrence of neuroactive compounds in effluent and sediments from a wastewater treatment plant (WWTP) in a fjord North of Stavanger, the fourth-largest city in Norway. To better understand the influence of PPCP mixtures on fish, Atlantic cod (Gadus morhua) were caged for one month in 3 locations: site 1 (reference), site 2 (WWTP discharge), and site 3 (6.7 km west of discharge). Transcriptomic profiling was conducted in the brains of exposed fish and detection of PPCPs in WWTP effluent and muscle fillets were determined. Caffeine (47.8 ng/L), benzotriazole (10.9 ng/L), N,N-diethyl-meta-toluamide (DEET) (5.6 ng/L), methyl-1H-benzotriazole (5.5 ng/L), trimethoprim (3.4 ng/L), carbamazepine (2.1 ng/L), and nortriptyline (0.4 ng/L) were detected in the WWTP effluent. Octocrylene concentrations were observed in muscle tissue at all sites and ranged from 53 to 193 ng/g. Nervous system function and endocrine system disorders were the top enriched disease and function pathways predicted in male and female fish at site 2, with the top shared canonical pathways involved with estrogen receptor and Sirtuin signaling. At the discharge site, predicted disease and functional responses in female brains were involved in cellular assembly, organization, and function, tissue development, and nervous system development, whereas male brains were involved in connective tissue development, function, and disorders, nervous system development and function, and neurological disease. The top shared canonical pathways in females and males were involved in fatty acid activation and tight junction signaling. This study suggests that pseudopersistent, chronic exposure of native juvenile Atlantic cod from this ecosystem to PPCPs may alter neuroendocrine and neuron development.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway; U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA.
| | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Erik Magnus Ræder
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås 1433, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| |
Collapse
|
19
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Goldberg T, Campbell L, Perez AU, Schmitter-Soto JJ, Lewis JP, Fick J, Brodin T, Rehage JS. Understanding pharmaceutical exposure and the potential for effects in marine biota: A survey of bonefish (Albula vulpes) across the Caribbean Basin. CHEMOSPHERE 2024; 349:140949. [PMID: 38096990 DOI: 10.1016/j.chemosphere.2023.140949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Most research on pharmaceutical presence in the environment to date has focused on smaller scale assessments of freshwater and riverine systems, relying mainly on assays of water samples, while studies in marine ecosystems and of exposed biota are sparse. This study investigated the pharmaceutical burden in bonefish (Albula vulpes), an important recreational and artisanal fishery, to quantify pharmaceutical exposure throughout the Caribbean Basin. We sampled 74 bonefish from five regions, and analyzed them for 102 pharmaceuticals. We assessed the influence of sampling region on the number of pharmaceuticals, pharmaceutical assemblage, and risk of pharmacological effects. To evaluate the risk of pharmacological effects at the scale of the individual, we proposed a metric based on the human therapeutic plasma concentration (HTPC), comparing measured concentrations to a threshold of 1/3 the HTPC for each pharmaceutical. Every bonefish had at least one pharmaceutical, with an average of 4.9 and a maximum of 16 pharmaceuticals in one individual. At least one pharmaceutical was detected in exceedance of the 1/3 HTPC threshold in 39% of bonefish, with an average of 0.6 and a maximum of 11 pharmaceuticals exceeding in a Key West individual. The number of pharmaceuticals (49 detected in total) differed across regions, but the risk of pharmacological effects did not (23 pharmaceuticals exceeded the 1/3 HTPC threshold). The most common pharmaceuticals were venlafaxine (43 bonefish), atenolol (36), naloxone (27), codeine (27), and trimethoprim (24). Findings suggest that pharmaceutical detections and concentration may be independent, emphasizing the need to monitor risk to biota regardless of exposure diversity, and to focus on risk quantified at the individual level. This study supports the widespread presence of pharmaceuticals in marine systems and shows the utility of applying the HTPC to assess the potential for pharmacological effects, and thus quantify impact of exposure at large spatial scales.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Institute of Environment, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Institute of Environment, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - T Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - L Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - A U Perez
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - J J Schmitter-Soto
- Departmento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Chetumal, Mexico
| | - J P Lewis
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
20
|
Aguilar-Aguilar A, de León-Martínez LD, Forgionny A, Acelas Soto NY, Mendoza SR, Zárate-Guzmán AI. A systematic review on the current situation of emerging pollutants in Mexico: A perspective on policies, regulation, detection, and elimination in water and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167426. [PMID: 37774864 DOI: 10.1016/j.scitotenv.2023.167426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Emerging pollutants (EPs) emerged as a group of new compounds whose presence in the environment has been widely detected in Mexico. In this country, different concentrations of pharmaceutical compounds, pesticides, dyes, and microplastics have been reported, which vary depending on the region and the analyzed matrix (i.e., wastewater, surface water, groundwater). The evidence of the EPs' presence focuses on the detection of them, but there is a gap in information regarding is biomonitoring and their effects in health in Mexico. The presence of these pollutants in the country associated with lack of proper regulations in the discharge and disposal of EPs. Therefore, this review aims to provide a comprehensive view of the current environmental status, policies, and frameworks regarding Mexico's situation. The review also highlights the lack of information about biomonitoring since EPs are present in water even after their treatment, leading to a critical situation, which is high exposure to humans and animals. Although, technologies to efficiently eliminate EPs are available, their application has been reported only at a laboratory scale thus far. Here, an overview of health and environmental impacts and a summary of the research works reported in Mexico from 2014 to 2023 were presented. This review concludes with a concrete point of view and perspective on the status of the EPs' research in Mexico as an alert for government entities about the necessity of measures to control the EPs disposal and treatment.
Collapse
Affiliation(s)
- Angélica Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Angélica Forgionny
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Nancy Y Acelas Soto
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín 55450, Colombia
| | - Sergio Rosales Mendoza
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 201, San Luis Potosí 78210, Mexico
| | - Ana I Zárate-Guzmán
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico.
| |
Collapse
|
21
|
Manjarrés-López DP, Vitale D, Callejas-Martos S, Usuriaga M, Picó Y, Pérez S, Montemurro N. An effective method for the simultaneous extraction of 173 contaminants of emerging concern in freshwater invasive species and its application. Anal Bioanal Chem 2023; 415:7085-7101. [PMID: 37776351 PMCID: PMC10684701 DOI: 10.1007/s00216-023-04974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
A robust and efficient extraction method was developed to detect a broad range of pollutants of emerging interest in three freshwater invasive species: American red crab (Prokambarus clarkii), Asian clam (Corbicula fluminea), and pumpkinseed fish (Lepomis gibbosus). One native species, "petxinot" clam (Anodonta cygnea), was also evaluated. Invasive species are often more resistant to contamination and could be used in biomonitoring studies to assess the effect of contaminants of emerging concern on aquatic ecosystems while preserving potentially threatened native species. So far, most extraction methods developed for this purpose have focused on analyzing fish and generally focus on a limited number of compounds, especially analyzing compounds from the same family. In this sense, we set out to optimize a method that would allow the simultaneous extraction of 87 PhACs, 11 flame retardants, 21 per- and poly-fluoroalkyl substances, and 54 pesticides. The optimized method is based on ultrasound-assisted solvent extraction. Two tests were performed during method development, one to choose the extraction solvent with the best recovery efficiencies and one to select the best clean-up. The analysis was performed by high-performance liquid chromatography coupled to high-resolution mass spectrometry. The method obtained recoveries between 40 and 120% and relative standard deviations of less than 25% for 85% of the analytes in the four validated matrices. Limits of quantification between 0.01 ng g-1 and 22 ng g-1 were obtained. Application of the method on real samples from the Albufera Natural Park of Valencia (Spain) confirmed the presence of contaminants of emerging concern in all samples, such as acetaminophen, hydrochlorothiazide, tramadol, PFOS, carbendazim, and fenthion. PFAS were the group of compounds with the highest mean concentrations. C. fluminea was the species with the highest detection frequency, and P. clarkii had the highest average concentrations, so its use is prioritized for biomonitoring studies.
Collapse
Affiliation(s)
- Diana P Manjarrés-López
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Dyana Vitale
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Callejas-Martos
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Martí Usuriaga
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Yolanda Picó
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Pérez
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Nicola Montemurro
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
22
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
23
|
Kropidłowska K, Caban M. Effect of salinity on the toxicity of diclofenac, ibuprofen and naproxen toward cyanobacterium Synechocystis salina. CHEMOSPHERE 2023; 338:139521. [PMID: 37482319 DOI: 10.1016/j.chemosphere.2023.139521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Aquatic species are continuously exposed to pharmaceuticals and changeable water conditions simultaneously, which can induce changes in the toxicity of pollutants. Cyanobacterium are an organism for which less ecotoxicological tests have been performed compared to green algae. In this study, we decided to check how selected non-steroidal anti-inflammatory drugs (NSAID) affect the grow of Synechocystis salina, picocyanobacterium isolated from the Baltic Sea, with salinity as potential modulator of toxicity. S. salina was exposed to diclofenac (DCF), ibuprofen (IBF) and naproxen (NPX) (nominal 100 mg L-1) in BG11 medium and sea salt supplemented BG11 medium (38 PSU) over 96 h in continuous light at 23 °C. No acute toxicity was found in both tested salinity levels. The comparable grow rate in exposed culture compared to control culture over 4 days indicate lack of stress for several generations which need to be overcome with substantial energy consumption. S. salina was found to be halotolerant and can be species for ecotoxicology test where salinity in an additional stressor. Furthermore, resistant of S. salina to target NSAIDs provide a competitive advantage over other phytoplankton species.
Collapse
Affiliation(s)
- Klaudia Kropidłowska
- University of Gdansk, Department of Environmental Analysis, Faculty of Chemistry, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Magda Caban
- University of Gdansk, Department of Environmental Analysis, Faculty of Chemistry, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
24
|
Salgado Costa C, Bahl F, Natale GS, Mac Loughlin TM, Marino DJG, Venturino A, Rodriguez-Mozaz S, Santos LHMLM. First evidence of environmental bioaccumulation of pharmaceuticals on adult native anurans (Rhinella arenarum) from Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122231. [PMID: 37481029 DOI: 10.1016/j.envpol.2023.122231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The presence of pharmaceutically active compounds (PhACs) in surface water is well known, whereas their natural occurrence in biota is much less explored. The aim of this work was to evaluate the bioaccumulation of PhACs in adult toads of the neotropical species Rhinella arenarum. Three sites were selected in Buenos Aires (Argentina): a reference site (Site 1), a site with direct discharge from a secondary wastewater treatment plant (WWTP) (Site 2) and a site 300 m downstream of the WWTP discharge (Site 3). Surface water samples, as well as muscle, liver and fat bodies of toads were collected, extracted and analyzed by LC-MS/MS. Highly significant differences in total PhACs concentration in surface water (p < 0.005) were detected between Site 2 and the other sites. These concentrations ranged from 0.37 to 52.46 ng/L at Site 1, 0.71-6950.37 ng/L at Site 2, and 0.12-75.45 ng/L at Site 3. In general, bioaccumulation of PhACs in toad tissues was similar between sites and tissues of each site. The highest concentrations were detected in the muscle of toads from Site 3 (1.06-87.24 ng/g dw), followed by liver (1.77-38.10 ng/g dw) and fat bodies (0.68-20.59 ng/g dw) from Site 1. Ibuprofen (6950 ng/L), acetaminophen (3277 ng/L) and valsartan (2504 ng/L) were the compounds with the highest concentrations in surface water from Site 2, whereas acetaminophen (87.2 ng/g dw, muscle from Site 3), desloratadine (38.1 ng/g dw, liver from Site 1), and phenazone (25.9 ng/g dw, liver from Site 1) were the ones that showed the highest concentrations in biota. This is the first time a field study has examined the environmental bioaccumulation of PhACs in anurans, demonstrating their potential for monitoring the status of natural ecosystems.
Collapse
Affiliation(s)
- C Salgado Costa
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - F Bahl
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - G S Natale
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - T M Mac Loughlin
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - D J G Marino
- Centro de Investigaciones Del Medio Ambiente (CIM), CONICET-UNLP, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 Nº 1489, 1900, La Plata, Buenos Aires, Argentina
| | - A Venturino
- CITAAC, CONICET, IBAC, Facultad de Ciencias Agrarias, Universidad Nacional Del Comahue, Cinco Saltos, Río Negro, Argentina
| | - S Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain.
| |
Collapse
|
25
|
Tyumina E, Subbotina M, Polygalov M, Tyan S, Ivshina I. Ketoprofen as an emerging contaminant: occurrence, ecotoxicity and (bio)removal. Front Microbiol 2023; 14:1200108. [PMID: 37608946 PMCID: PMC10441242 DOI: 10.3389/fmicb.2023.1200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.
Collapse
Affiliation(s)
- Elena Tyumina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maria Subbotina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Maxim Polygalov
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Semyon Tyan
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| | - Irina Ivshina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State University, Perm, Russia
| |
Collapse
|
26
|
Kock A, Glanville HC, Law AC, Stanton T, Carter LJ, Taylor JC. Emerging challenges of the impacts of pharmaceuticals on aquatic ecosystems: A diatom perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162939. [PMID: 36934940 DOI: 10.1016/j.scitotenv.2023.162939] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023]
Abstract
Pharmaceuticals are a ubiquitous group of emerging pollutants of considerable importance due to their biological potency and potential to elicit effects in wildlife and humans. Pharmaceuticals have been quantified in terrestrial, marine, fresh, and transitional waters, as well as the fauna and macro-flora that inhabit them. Pharmaceuticals can enter water ways through different human and veterinary pathways with traditional wastewater treatment, unable to completely remove pharmaceuticals, discharging often unknown quantities to aquatic ecosystems. However, there is a paucity of available information regarding the effects of pharmaceuticals on species at the base of aquatic food webs, especially on phytoplankton, with research typically focussing on fish and aquatic invertebrates. Diatoms are one of the main classes of phytoplankton and are some of the most abundant and important organisms in aquatic systems. As primary producers, diatoms generate ∼40 % of the world's oxygen and are a vital food source for primary consumers. Diatoms can also be used for bioremediation of polluted water bodies but perhaps are best known as bio-indicators for water quality studies. However, this keystone, non-target group is often ignored during ecotoxicological studies to assess the effects of pollutants of concern. Observed effects of pharmaceuticals on diatoms have the potential to be used as an indicator of pharmaceutical-induced impacts on higher trophic level organisms and wider ecosystem effects. The aim of this review is to present a synthesis of research on pharmaceutical exposure to diatoms, considering ecotoxicity, bioremediation and the role of diatoms as bio-indicators. We highlight significant omissions and knowledge gaps which need addressing to realise the potential role of diatoms in future risk assessment approaches and help evaluate the impacts of pharmaceuticals in the aquatic environment at local and global scales.
Collapse
Affiliation(s)
- A Kock
- Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom 2520, South Africa
| | - H C Glanville
- Geography and Environment, Loughborough University, Loughborough LE11 3TU, UK.
| | - A C Law
- School of Geography, Geology and the Environment, Keele University, Staffordshire ST5 5BG, UK
| | - T Stanton
- Geography and Environment, Loughborough University, Loughborough LE11 3TU, UK
| | - L J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - J C Taylor
- Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom 2520, South Africa; South African Institute for Aquatic Biodiversity (SAIAB), Private Bag 1015, Grahamstown 6140, South Africa
| |
Collapse
|
27
|
Sun S, Meng F, Qi H. Simultaneous determination of fourteen pharmaceuticals in sewage sludge using online solid-phase extraction-liquid chromatography-tandem mass spectrometry combined with accelerated solvent extraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62522-62531. [PMID: 36943570 DOI: 10.1007/s11356-023-26072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/18/2023] [Indexed: 05/10/2023]
Abstract
An online solid-phase extraction (SPE) liquid chromatography tandem mass spectrometry method (HPLC-MS/MS) combined with accelerated solvent extraction (ASE) was developed for simultaneous determination of 14 pharmaceuticals in sludge. In the online SPE procedures, ultrapure water with no additives was used as the loading solvent. In addition, low molecular weight targets such as atenolol were difficult to retain on SPE column after acetone was added to the washing solvent. The response signal of analytes can be greatly improved by adding 0.2% formic acid to the mobile phase. Under the optimized conditions, the recoveries of all the analytes ranged between 75.1 and 112%. Moreover, the limit of detections ranged from 1.8 to 7.9 ug/kg. The precision of analytical data was determined with relative standard deviation (RSD) ≤ 4.87%. This method was successfully applied to determine the concentration of pharmaceuticals in sludge.
Collapse
Affiliation(s)
- Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan, 056038, China
| | - Fan Meng
- Key Laboratory of Urban Water Resource and Environment, & School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong Qi
- Key Laboratory of Urban Water Resource and Environment, & School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
28
|
Voinea IC, Alistar CF, Banciu A, Popescu RG, Voicu SN, Nita-Lazar M, Vasile GG, Gheorghe S, Croitoru AM, Dolete G, Mihaiescu DE, Ficai A, Popa M, Marutescu L, Pircalabioru GG, Craciun N, Avramescu S, Marinescu GC, Chifiriuc MC, Stan MS, Dinischiotu A. Snapshot of the pollution-driven metabolic and microbiota changes in Carassius gibelio from Bucharest leisure lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163810. [PMID: 37127150 DOI: 10.1016/j.scitotenv.2023.163810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
In the last decades, increased intakes of contaminants and the habitats' destruction have produced drastic changes in the aquatic ecosystems. The environmental contaminants can accumulate in aquatic organisms, leading to the disturbance of the antioxidant/prooxidant balance in fish. In this context, we evaluated the level of organic, inorganic and microbiological pollutants in four leisure lakes (Chitila, Floreasca, Tei and Vacaresti) from Bucharest, the largest city of Romania, in order to compare their effects on hepatopancreas and gills metabolism and antioxidant defense mechanisms in Carassius gibelio, the most known and widespread freshwater fish in this country. The lowest level of oxidative stress was recorded in the case of fish collected from the Vacaresti lake, a protected wetland area where aquatic organisms live in wild environmental conditions. In contrast, significant oxidative changes were observed in the hepatopancreas and gills of fish from the Chitila, Floreasca and Tei lakes, such as reduced glutathione S-transferase activity and glutathione level, and increased degree of lipid peroxidation, being correlated with elevated levels of pesticides (such as 2,4'-methoxychlor) and Escherichia coli load in these organs. Although different patterns of pollutants' accumulation were observed, no important interindividual variations in cytosine methylation degree were determined. In conclusion, the presence and concentrations of metals, pesticides and antibiotics varied with the analyzed tissue and sampling site, and were correlated with changes in the cellular redox homeostasis, but without significantly affecting the epigenetic mechanisms.
Collapse
Affiliation(s)
- Ionela C Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Cristina F Alistar
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Alina Banciu
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania
| | - Roua G Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Sorina N Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Mihai Nita-Lazar
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania
| | - Gabriela Geanina Vasile
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania
| | - Stefania Gheorghe
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest, Romania; Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Luminita Marutescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania; Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania; Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Nicolae Craciun
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Sorin Avramescu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Soseaua Panduri, 050663 Bucharest, Romania; Research Center for Environmental Protection and Waste Management, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - George Catalin Marinescu
- Asociația Independent Research, 58 Timisului, 012416 Bucharest, Romania; Blue Screen SRL, 58 Timisului, 012416 Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania; Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| |
Collapse
|
29
|
Yan Z, Chen Y, Zhang X, Lu G. The metabolites could not be ignored: A comparative study of the metabolite norfluoxetine with its parent fluoxetine on zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106467. [PMID: 36870174 DOI: 10.1016/j.aquatox.2023.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The ubiquitous pharmaceuticals in aquatic environments have attracted huge attention due to their significant risks to humans and ecosystems. However, even though the knowledge of the negative effects induced by the parent pharmaceuticals is quite extensive, little is known about their metabolites for a long time. This study provides systematical knowledge about the potential toxicity of metabolite norfluoxetine and its parent fluoxetine on zebrafish (Danio rerio) at the early life stage. The results showed that the metabolite norfluoxetine had similar acute toxicity in fish with the parent fluoxetine. For the altered fish development, there was no significant difference in most cases between the two pharmaceuticals. Compared to the control, the metabolite markedly inhibited the locomotor behavior under light-to-dark transitions, which was comparable to the parent. Norfluoxetine could easily accumulate but hardly eliminate from fish, relative to fluoxetine. In addition, the accumulated fluoxetine in zebrafish may rapidly metabolize to norfluoxetine and then be eliminated through different metabolic pathways. The functional genes related to serotonergic process (5-ht1aa, 5-ht2c, slc6a4b, and vmat), early growth (egr4), and circadian rhythm (per2) were downregulated by both the norfluoxetine and fluoxetine, indicative of the same mode-of-action of norfluoxetine with its parent in these functions. Meanwhile, the alterations caused by norfluoxetine were more pronounced than that of fluoxetine in the genes of 5-ht2c, slc6a4b, vmat, and per2. The molecular docking also confirmed that norfluoxetine could bind with serotonin transporter protein in the same as fluoxetine with a lower binding free energy. Overall, the metabolite norfluoxetine could induce similar and even more toxic effects on zebrafish with the same mode of action. The different and binding energy of the metabolite norfluoxetine and its parent fluoxetine on zebrafish may be responsible for the differentiated effects. It highlights the risks of the metabolite norfluoxetine in the aquatic environment could not be ignored.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiadong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
30
|
Aguinaga Martínez MV, Domini CE, Acebal CC. Preparation of a single and reusable biopolymer-based film for the extraction and preconcentration of anti-inflammatory drugs from environmental water samples. RSC Adv 2023; 13:9055-9064. [PMID: 36950076 PMCID: PMC10025811 DOI: 10.1039/d3ra00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
One of the main goals of green chemistry is to reduce the use of toxic materials and the generation of hazardous waste, both during method development and in the synthesis of the materials used. Thus, a biodegradable, single and reusable material composed of agarose and multi-walled carbon nanotubes was proposed. The film preparation was carefully optimized in order to obtain a one-piece sorbent, with high extraction efficiency and the possibility of reuse. The film was tested in the simultaneous extraction and preconcentration of three non-steroidal anti-inflammatory drugs (ketorolac, ketoprofen and piroxicam) from environmental water samples. The optimal extraction parameters were as follows: isopropyl alcohol as the activation solvent, a sample pH value of 3.0, extraction time of 30 min, 2.00 mL of acetonitrile as the eluent, an elution time of 5 minutes, and a sample volume of 250.00 mL. Under these conditions, the film was reusable 50 times without losing its extraction capacity significantly. HPLC with a photodiode array detector was used for the separation and determination. The method presented a linear range between 0.10 and 1.2 μg L-1, good sensitivity with limits of detection between 0.0075 and 0.0089 μg L-1, and quantification between 0.025 and 0.030 μg L-1. In addition, low RSD values (0.46-3.13%) were obtained demonstrating satisfactory precision. Stream water samples were analyzed, and recoveries between 82.0 and 109.0% were obtained.
Collapse
Affiliation(s)
- Maite V Aguinaga Martínez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET Av. Alem 1253 Bahía Blanca 8000 Argentina
| | - Claudia E Domini
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET Av. Alem 1253 Bahía Blanca 8000 Argentina
| | - Carolina C Acebal
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET Av. Alem 1253 Bahía Blanca 8000 Argentina
| |
Collapse
|
31
|
Blanco G, Gómez-Ramírez P, Espín S, Sánchez-Virosta P, Frías Ó, García-Fernández AJ. Domestic Waste and Wastewaters as Potential Sources of Pharmaceuticals in Nestling White Storks (Ciconia ciconia). Antibiotics (Basel) 2023; 12:antibiotics12030520. [PMID: 36978387 PMCID: PMC10044248 DOI: 10.3390/antibiotics12030520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Information on the exposure of wild birds to pharmaceuticals from wastewater and urban refuse is scarce despite the enormous amount of drugs consumed and discarded by human populations. We tested for the presence of a battery of antibiotics, NSAIDs, and analgesics in the blood of white stork (Ciconia ciconia) nestlings in the vicinity of urban waste dumps and contaminated rivers in Madrid, central Spain. We also carried out a literature review on the occurrence and concentration of the tested compounds in other wild bird species to further evaluate possible shared exposure routes with white storks. The presence of two pharmaceutical drugs (the analgesic acetaminophen and the antibiotic marbofloxacin) out of fourteen analysed in the blood of nestlings was confirmed in 15% of individuals (n = 20) and in 30% of the nests (n = 10). The apparently low occurrence and concentration (acetaminophen: 9.45 ng mL−1; marbofloxacin: 7.21 ng mL−1) in nestlings from different nests suggests the uptake through food acquired in rubbish dumps rather than through contaminated flowing water provided by parents to offspring. As with other synthetic materials, different administration forms (tablets, capsules, and gels) of acetaminophen discarded in household waste could be accidentally ingested when parent storks forage on rubbish to provide meat scraps to their nestlings. The presence of the fluoroquinolone marbofloxacin, exclusively used in veterinary medicine, suggests exposure via consumption of meat residues of treated animals for human consumption found in rubbish dumps, as documented previously at higher concentrations in vultures consuming entire carcasses of large livestock. Control measures and ecopharmacovigilance frameworks are needed to minimize the release of pharmaceutical compounds from the human population into the environment.
Collapse
Affiliation(s)
- Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Correspondence:
| | - Pilar Gómez-Ramírez
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Silvia Espín
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
- Area of Toxicology, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Pablo Sánchez-Virosta
- Area of Toxicology, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Óscar Frías
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera, km. 1, 41013 Sevilla, Spain
| | - Antonio J. García-Fernández
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
- Area of Toxicology, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
32
|
Gómez-Regalado MDC, Martín J, Santos JL, Aparicio I, Alonso E, Zafra-Gómez A. Bioaccumulation/bioconcentration of pharmaceutical active compounds in aquatic organisms: Assessment and factors database. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160638. [PMID: 36473663 DOI: 10.1016/j.scitotenv.2022.160638] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
There is increasing evidence that the presence of certain pharmaceuticals in the environment leads to biota exposure and constitute a potential risk for ecosystems. Bioaccumulation is an essential focus of risk assessment to evaluate at what degree emerging contaminants are a hazard both to the environment and the individuals that inhabit it. The main goals of the present review are 1) to summarize and describe the research and factors that should be taken into account in the evaluation of bioaccumulation of pharmaceuticals in aquatic organisms; and 2) to provide a database and a critical review of the bioaccumulation/bioconcentration factors (BAF or BCF) of these compounds in organisms of different trophic levels. Most studies fall into one of two categories: laboratory-scale absorption and purification tests or field studies and, to a lesser extent, large-scale, semi-natural system tests. Although in the last 5 years there has been considerable progress in this field, especially in species of fish and molluscs, research is still limited on other aquatic species like crustaceans or algae. This revision includes >230 bioconcentration factors (BCF) and >530 bioaccumulation factors (BAF), determined for 113 pharmaceuticals. The most commonly studied is the antidepressant group, followed by diclofenac and carbamazepine. There is currently no reported accumulation data on certain compounds, such as anti-cancer drugs. BCFs are highly influenced by experimental factors (notably the exposure level, time or temperature). Field BAFs are superior to laboratory BCFs, highlighting the importance of field studies for reliable assessments and in true environmental conditions. BAF data appears to be organ, species and compound-specific. The potential impact on food web transfer is also considered. Among different aquatic species, lower trophic levels and benthic organisms exhibit relatively higher uptake of these compounds.
Collapse
Affiliation(s)
| | - Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain.
| | - Juan Luis Santos
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, University of Granada, Sciences Faculty, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, E-18016 Granada, Spain.
| |
Collapse
|
33
|
Sims N, Holton E, Archer E, Botes M, Wolfaardt G, Kasprzyk-Hordern B. In-situ multi-mode extraction (iMME) sampler for a wide-scope analysis of chemical and biological targets in water in urbanized and remote (off-the-grid) locations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160034. [PMID: 36356746 DOI: 10.1016/j.scitotenv.2022.160034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Chemical pollution (including chemicals of emerging concern - CECs) continues to gain increasing attention as a global threat to human health and the environment, with numerous reports on the adverse and sometimes devastating effects upon ecosystems the presence of these chemicals can have. Whilst many studies have investigated presence of CECs in aquatic environments, these studies have been often focused on higher income countries, leaving significant knowledge gaps for many low-middle income countries. This study proposes a new integrated powerless, in-situ multi-mode extraction (iMME) sampler for the analysis of chemicals (105 CECs) and biological (5 genes) markers in water in contrasting settings: an urbanized Avon River in the UK and remote Olifants River in Kruger National Park in South Africa. The overarching goal was to develop a sampling device that maintains integrity of a diverse range of analytes via analyte immobilization using polymeric and glass fibre materials, without access to power supply or cold chain (continuous chilled storage) for sample transportation. Chemical analysis was achieved using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Several mobile CECs showed low stability in river water, at room temperature and typical 24 h sampling/transport time. It is therefore recommended that, in the absence of cooling, environmental water samples are spiked with internal standards on site, immediately after collection and analyte immobilization option is considered, in order to allow fully quantitative analysis. iMME has proven effective in immobilization, concentration and increased stability of CECs at room temperature (and at least 7 days storage) allowing for sample collection at remote locations. The results from the River Avon and Olifants River sampling indicate that the pristine environment of Olifants catchment is largely unaffected by CECs common in the urbanized River Avon in the UK with a few exceptions: lifestyle chemicals (e.g., caffeine, nicotine and their metabolites), paracetamol and UV filters due to tourism and carbamazepine due to its persistent nature. iMME equipped with an additional gene extraction capability provides an exciting new opportunity of comprehensive biochemical profiling of aqueous samples with one powerless in-situ device. Further work is required to provide full integration of the device and comprehensive assessment of performance in both chemical and biological targets.
Collapse
Affiliation(s)
- Natalie Sims
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK
| | - Elizabeth Holton
- Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK
| | - Edward Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marelize Botes
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
34
|
Duarte IA, Reis-Santos P, Fick J, Cabral HN, Duarte B, Fonseca VF. Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120531. [PMID: 36397612 DOI: 10.1016/j.envpol.2022.120531] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Contamination of surface waters by pharmaceuticals is an emerging problem globally. This is because the increased access and use of pharmaceuticals by a growing world population lead to environmental contamination, threatening non-target species in their natural environment. Of particular concern are neuroactive pharmaceuticals, which are known to bioaccumulate in fish and impact a variety of individual processes such as fish reproduction or behaviour, which can have ecological impacts and compromise fish populations. In this work, we investigate the occurrence and bioaccumulation of 33 neuroactive pharmaceuticals in brain, muscle and liver tissues of multiple fish species collected in four different estuaries (Douro, Tejo, Sado and Mira). In total, 28 neuroactive pharmaceuticals were detected in water and 13 in fish tissues, with individual pharmaceuticals reaching maximum concentrations of 1590 ng/L and 207 ng/g ww, respectively. The neuroactive pharmaceuticals with the highest levels and highest frequency of detection in the water samples were psychostimulants, antidepressants, opioids and anxiolytics, whereas in fish tissues, antiepileptics, psychostimulants, anxiolytics and antidepressants showed highest concentrations. Bioaccumulation was ubiquitous, occurring in all seven estuarine and marine fish species. Notably, neuroactive compounds were detected in every water and fish brain samples, and in 95% of fish liver and muscle tissues. Despite variations in pharmaceutical occurrence among estuaries, bioaccumulation patterns were consistent among estuarine systems, with generally higher bioaccumulation in fish brain followed by liver and muscle. Moreover, no link between bioaccumulation and compounds' lipophilicity, species habitat use patterns or trophic levels was observed. Overall, this work highlights the occurrence of a highly diverse suite of neuroactive pharmaceuticals and their pervasiveness in waters and fish from estuarine systems with contrasting hydromorphology and urban development and emphasizes the urgent need for toxicity assessment of these compounds in natural ecosystems, linked to internalized body concentration in non-target species.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Patrick Reis-Santos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
35
|
Huang L, Zhang W, Han Y, Tang Y, Zhou W, Liu G, Shi W. Anti-Depressant Fluoxetine Hampers Olfaction of Goldfish by Interfering with the Initiation, Transmission, and Processing of Olfactory Signals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15848-15859. [PMID: 36260920 DOI: 10.1021/acs.est.2c02987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of fluoxetine (FLX) in aquatic environments poses great threat to fish species. However, little is known about its deleterious impacts on fish olfaction. In this study, the olfactory toxicity of FLX at environmentally realistic levels was assessed by monitoring the behavioral and electroolfactogram (EOG) responses to olfactory stimuli with goldfish (Carassius auratus), and the toxification mechanisms underlying the observed olfaction dysfunction were also investigated. Our results showed that the behavioral and EOG responses of goldfish to olfactory stimuli were significantly weakened by FLX, indicating an evident toxicity of FLX to olfaction. Moreover, FLX exposure led to significant alterations in olfactory initiation-related genes, suppression of ion pumps (Ca2+-ATPase and Na+/K+-ATPase), tissue lesions, and fewer olfactory sensory neurons in olfactory epithelium. In addition to altering the expression of olfactory transmission-related genes, comparative metabolomic analysis found that olfaction-related neurotransmitters (i.e., l-glutamate and acetylcholine) and the olfactory transduction pathway were significantly affected by FLX. Furthermore, evident tissue lesions, aggravated lipid peroxidation and apoptosis, and less neuropeptide Y were observed in the olfactory bulbs of FLX-exposed goldfish. Our findings indicate that FLX may hamper goldfish olfaction by interfering with the initiation, transmission, and processing of olfactory signals.
Collapse
Affiliation(s)
- Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
36
|
An Overview of Analytical Methods to Determine Pharmaceutical Active Compounds in Aquatic Organisms. Molecules 2022; 27:molecules27217569. [DOI: 10.3390/molecules27217569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
There is increasing scientific evidence that some pharmaceuticals are present in the marine ecosystems at concentrations that may cause adverse effects on the organisms that inhabit them. At present, there is still very little scientific literature on the (bio)accumulation of these compounds in different species, let alone on the relationship between the presence of these compounds and the adverse effects they produce. However, attempts have been made to optimize and validate analytical methods for the determination of residues of pharmaceuticals in marine biota by studying the stages of sample treatment, sample clean-up and subsequent analysis. The proposed bibliographic review includes a summary of the most commonly techniques, and its analytical features, proposed to determine pharmaceutical compounds in aquatic organisms at different levels of the trophic chain in the last 10 years.
Collapse
|
37
|
Fang Y, Chang H, Li J, Li Z, Zhang D. Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis. Crit Rev Anal Chem 2022; 54:1680-1706. [PMID: 36201181 DOI: 10.1080/10408347.2022.2128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Rising rates of drug abuse and pharmaceutical pollution throughout the world as a consequence of increased drug production and utilization pose a serious risk to public health and to environmental integrity. It is thus critical that reliable analytical approaches to detecting drugs and their metabolites in a range of sample matrices be developed. Recent advances in the design of nanomaterial-based electrochemical sensors and biosensors have enabled promising new approaches to pharmaceutical analysis. In particular, the development of a range of novel metal nanocomposites with enhanced catalytic properties has provided a wealth of opportunities for the design of rapid and reliable platforms for the detection of specific pharmaceutical compounds. The present review provides a comprehensive overview of representative metal nanocomposites with synergistic properties and their recent (2017-2022) application in the context of electrochemical sensing as a means of detecting specific antibiotic, tuberculostatic, analgesic, antineoplastic, antipsychotic, and antihypertensive drugs. In discussing these applications, we further explore a variety of testing-related principles, fabrication approaches, characterization techniques, and parameters associated with the sensitivity and selectivity of these sensor platforms before surveying the future outlook regarding the fabrication of next-generation (bio)sensor platforms for use in pharmaceutical analysis.
Collapse
Affiliation(s)
- Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| |
Collapse
|
38
|
Zhao J, Wu F, He Q, Feng Y. Enhanced degradation of amiloride over Bi 2FeNbO 7/bisulfite process: Key factors and mechanism. CHEMOSPHERE 2022; 300:134573. [PMID: 35436455 DOI: 10.1016/j.chemosphere.2022.134573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/13/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Construction of Bi2FeNbO7/bisulfite system for abatement of pharmaceutical residue was achieved. An attempt to synthesize Bi2FeNbO7 through hydrothermal technique was confirmed by X-ray diffraction. The magnetic field experiment revealed that Bi2FeNbO7 possessed a saturation magnetization of 6.99 emu/g, indicating magnetic attributes of Bi2FeNbO7. Scanning electron microscopy images showed that Bi2FeNbO7 exhibited regular octahedra in the size of 200-300 nm. In a self-made device, the activation of sodium bisulfite using Bi2FeNbO7 for the disposal of amiloride has been carefully explored. The effects of solution pH, sodium bisulfite concentration, Bi2FeNbO7 dosage, amiloride concentration, coexisting ions, and water matrix on the performance of Bi2FeNbO7/bisulfite system was investigated. The catalytic performance of Bi2FeNbO7/bisulfite to degrade amiloride was considerably higher than that of traditional iron oxides. The maximum removal efficiency of amiloride was 97.9% in Bi2FeNbO7/bisulfite process. The involvement of Fe might be crucial for activating bisulfite to create active species. The dominating radical in Bi2FeNbO7/bisulfite process was identified as SO3•‒. With the help of UHPLC/MS/MS, three new degradation products of amiloride were found. Dehalogenation and deamination of amiloride might account for the formation of these transformation products. This work provides a highly efficient Bi2FeNbO7/bisulfite process for the disposal of pharmaceutical pollutants in water treatment.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi, 710048, PR China.
| | - Fei Wu
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi, 710048, PR China
| | - Qiang He
- Technical Center, Xi'an Customs District, Shaanxi, 710068, PR China
| | - Yawei Feng
- Department of Applied Chemistry, Xi'an University of Technology, 5 Jinhua South Road, Xi'an, Shaanxi, 710048, PR China
| |
Collapse
|
39
|
Świacka K, Maculewicz J, Smolarz K, Caban M. Long-term stability of diclofenac and 4-hydroxydiclofenac in the seawater and sediment microenvironments: Evaluation of biotic and abiotic factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119243. [PMID: 35381302 DOI: 10.1016/j.envpol.2022.119243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Studies in recent years have shown that significant amounts of diclofenac (DCF) and its metabolites are present in marine coastal waters. Their continuous flow into the environment may be associated with numerous negative effects on both fauna and flora. Although more and more is known about the effects of pharmaceuticals on marine ecosystems, there are still many issues that have not received enough attention, but are essential for risk assessment, such as long term stability. Furthermore, interaction of pharmaceuticals with sediments, which are inhabited by rich microbial, meiofaunal and macrobenthic communities need investigation. Therefore, we undertook an analysis of the stability of DCF and its metabolite, 4-hydroxy diclofenac, in seawater and sediment collected from the brackish environment of Puck Bay. Our 29-day experiment was designed to gain a better understanding of the fate of these compounds under experimental conditions same as near the seafloor. Diclofenac concentration decreased by 31.5% and 20.4% in the tanks with sediment and autoclaved sediment, respectively during 29-day long experiment. In contrast, the concentration of 4-OH diclofenac decreased by 76.5% and 90.2% in sediment and autoclaved sediment, respectively. The concentration decrease of both compounds in the sediment tanks resulted from their sorption in the sediment and biodegradation. Obtained results show that marine sediments favour DCF and 4-OH DCF removal from the water column.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
40
|
Ruas G, López-Serna R, Scarcelli PG, Serejo ML, Boncz MÁ, Muñoz R. Influence of the hydraulic retention time on the removal of emerging contaminants in an anoxic-aerobic algal-bacterial photobioreactor coupled with anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154262. [PMID: 35271930 DOI: 10.1016/j.scitotenv.2022.154262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
This work evaluated, for the first time, the performance of an integral microalgae-based domestic wastewater treatment system composed of an anoxic reactor and an aerobic photobioreactor, coupled with an anaerobic digester for converting the produced algal-bacterial biomass into biogas, with regards to the removal of 16 contaminants of emerging concern (CECs): penicillin G, tetracycline, enrofloxacin, ciprofloxacin, sulfamethoxazole, tylosin, trimethoprim, dexamethasone, ibuprofen, naproxen, acetaminophen, diclofenac, progesterone, carbamazepine, triclosan and propylparaben. The influence of the hydraulic retention time (HRT) in the anoxic-aerobic bioreactors (4 and 2.5 days) and in the anaerobic digester (30 and 10 days) on the fate of these CECs was investigated. The most biodegradable contaminants (removal efficiency >80% regardless of HRT) were tetracycline, ciprofloxacin, sulfamethoxazole, tylosin, trimethoprim, dexamethasone, ibuprofen, naproxen, acetaminophen and propylparaben (degraded predominantly in the anoxic-aerobic bioreactors), and tetracycline, sulfamethoxazole, tylosin, trimethoprim and naproxen (degraded predominantly in the anaerobic reactor). The anoxic-aerobic bioreactors provided removal of at least 48% for all CECs tested. The most recalcitrant contaminants in the anaerobic reactor, which were not removed at any of the HRT tested, were enrofloxacin, ciprofloxacin, progesterone and propylparaben.
Collapse
Affiliation(s)
- Graziele Ruas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Federal University of Mato Grosso do Sul, Faculty of Engineering, Architecture and Urbanism and Geography, Post-graduate Programme of Environmental Technology, 79070-900 Campo Grande, MS, Brazil; Federal Institute of Education, Science and Technology of Mato Grosso do Sul (IFMS), Campus Jardim, 79240-000 Jardim, MS, Brazil
| | - Rebeca López-Serna
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Priscila Guenka Scarcelli
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Federal University of Mato Grosso do Sul, Faculty of Engineering, Architecture and Urbanism and Geography, Post-graduate Programme of Environmental Technology, 79070-900 Campo Grande, MS, Brazil
| | - Mayara Leite Serejo
- Federal Institute of Education, Science and Technology of Mato Grosso do Sul (IFMS), Campus Aquidauana, 79200-000 Aquidauana, MS, Brazil
| | - Marc Árpàd Boncz
- Federal University of Mato Grosso do Sul, Faculty of Engineering, Architecture and Urbanism and Geography, Post-graduate Programme of Environmental Technology, 79070-900 Campo Grande, MS, Brazil
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
41
|
Alistar CF, Nica IC, Nita-Lazar M, Vasile GG, Gheorghe S, Croitoru AM, Dolete G, Mihaiescu DE, Ficai A, Craciun N, Gradisteanu Pircalabioru G, Chifiriuc MC, Stan MS, Dinischiotu A. Antioxidative Defense and Gut Microbial Changes under Pollution Stress in Carassius gibelio from Bucharest Lakes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7510. [PMID: 35742758 PMCID: PMC9224152 DOI: 10.3390/ijerph19127510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Fish are able to accumulate by ingestion various contaminants of aquatic environment, with negative consequences on their intestine, being continuously threatened worldwide by heavy metals, pesticides and antibiotics resulted from the human activities. Consequently, the health of other species can be affected by eating the contaminated fish meat. In this context, our study aimed to perform a comparison between the changes in intestine samples of Carassius gibelio individuals collected from different artificial lakes in Bucharest (Romania), used by people for leisure and fishing. The presence of various metals, pesticides and antibiotics in the gut of fish was assessed in order to correlate their accumulation with changes of antioxidative enzymes activities and microbiome. Our results showed that fish from Bucharest lakes designed for leisure (Chitila, Floreasca and Tei lakes) have an increased level of oxidative stress in intestine tissue, revealed by affected antioxidant enzymes activities and GSH levels, as well as the high degree of lipid peroxidation, compared to the fish from protected environment (Vacaresti Lake). Some heavy metals (Fe, Ni and Pb) and pesticides (aldrin and dieldrin) were in high amount in the gut of fish with modified antioxidative status. In conclusion, our study could improve the knowledge regarding the current state of urban aquatic pollution in order to impose several environmental health measures.
Collapse
Affiliation(s)
- Cristina F. Alistar
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
| | - Ionela C. Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
| | - Mihai Nita-Lazar
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (M.N.-L.); (G.G.V.); (S.G.)
| | - Gabriela Geanina Vasile
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (M.N.-L.); (G.G.V.); (S.G.)
| | - Stefania Gheorghe
- National Research and Development Institute for Industrial Ecology (ECOIND), 57-73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (M.N.-L.); (G.G.V.); (S.G.)
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.-M.C.); (G.D.); (D.E.M.); (A.F.)
- National Centre for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Nicolai Craciun
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050095 Bucharest, Romania; (G.G.P.); (M.C.C.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (C.F.A.); (I.C.N.); (N.C.); (A.D.)
| |
Collapse
|
42
|
Malvar JL, Santos JL, Martín J, Aparicio I, Fonseca TG, Bebianno MJ, Alonso E. Ultrasound-assisted extraction as an easy-to-perform analytical methodology for monitoring ibuprofen and its main metabolites in mussels. Anal Bioanal Chem 2022; 414:5877-5886. [PMID: 35661234 PMCID: PMC9166212 DOI: 10.1007/s00216-022-04153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have been reported to be the main pharmaceutical class accumulated in seafood. Among them, ibuprofen (IBU) is of special concern as it is used worldwide to treat common pain, does not require a medical prescription, it is often taken in a high daily dose, and has been reported to cause potential adverse effects on aquatic organisms. IBU is highly transformed into hydroxy- and carboxy-metabolites and/or degradation products generated not only after its administration but also during wastewater treatment or in the environment. These compounds can be present in the environment at higher concentrations than IBU and present higher toxicity. In this work, a low-cost and affordable routine analytical method was developed and validated for the first-time determination of IBU and its main metabolites in mussels. The method is based on ultrasound-assisted extraction (UAE), clean-up by dispersive solid-phase extraction (d-SPE) and analytical determination by liquid chromatography-tandem mass spectrometry. Box-Behnken experimental design was used for method optimisation to better evaluate the influence and interactions of UAE and d-SPE variables. Extraction recoveries were in the range from 81 to 115%. Precision, expressed as relative standard deviation, was lower than 7%. Method detection limits were in the range from 0.1 to 1.9 ng g−1 dry weight. The method was successfully applied to wild mussels.
Collapse
Affiliation(s)
- José Luis Malvar
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Tainá Garcia Fonseca
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Maria João Bebianno
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain.
| |
Collapse
|
43
|
Xie W, Zhao J, Zhu X, Chen S, Yang X. Pyrethroid bioaccumulation in wild fish linked to geographic distribution and feeding habit. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128470. [PMID: 35180516 DOI: 10.1016/j.jhazmat.2022.128470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of pyrethroid insecticides in aquatic food webs has attracted increased research attention. Fish are key species in aquatic food webs, directly connecting invertebrates and human consumption. However, little is known about the bioaccumulation of pyrethroids in wild fish species. In this study, 19 species of wild fish were collected from 11 sites in the Pearl River, China, and the levels of seven pyrethroids in the fish were determined. Linear mixed-effects models were applied to estimate the means of pyrethroid concentrations, in which sample site and fish species were set as random effects. The concentrations of Σ7 pyrethroids in fish ranged from 4.99 to 50.82 ng/g. Permethrin and bifenthrin were present at the highest concentration (8.89 ± 1.47 ng/g) and frequency (100%) in fish muscle, respectively. The composition patterns of pyrethroids varied in fish organs. Fish species contributed a higher proportion of the variance than geographic distribution (28.6% vs. 26.4%). The pyrethroids in carnivorous fish (23.5 ± 2.9 ng/g) were significantly higher than in omnivorous (14.6 ± 1.9 ng/g) and phytophagous fish (16.0 ± 4.7 ng/g). To our knowledge, this is the first report examining the effect of feeding habits on pyrethroid bioaccumulation in wild fish. The results can provide evidence for the risk of pyrethroid pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Wenping Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Laboratory of Seafood Quality and Security Evaluation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jiangang Zhao
- Research Center of Hydrobiology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Laboratory of Seafood Quality and Security Evaluation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xunan Yang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
44
|
Distefano GG, Zangrando R, Basso M, Panzarin L, Gambaro A, Volpi Ghirardini A, Picone M. Assessing the exposure to human and veterinary pharmaceuticals in waterbirds: The use of feathers for monitoring antidepressants and nonsteroidal anti-inflammatory drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153473. [PMID: 35093362 DOI: 10.1016/j.scitotenv.2022.153473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Exposure to active pharmaceutical ingredients (APIs) from both human and veterinary sources is an increasing threat to wildlife welfare and conservation. Notwithstanding, tracking the exposure to pharmaceuticals in non-target and sensitive vertebrates, including birds, is seldom performed and relies almost exclusively on analysing internal organs retrieved from carcasses or from experimentally exposed and sacrificed birds. Clearly, this excludes the possibility of performing large-scale monitoring. Analysing feathers collected from healthy birds may permit this, by detecting APIs in wild birds, including protected and declining species of waterbirds, without affecting their welfare. To this end, we set up a non-destructive method for analysing the presence of non-steroidal anti-inflammatory drugs (NSAIDs), selective serotonin reuptake inhibitors (SSRIs) and noradrenaline reuptake inhibitors (SNRIs) in the feathers of fledglings of both the Mediterranean gull (Ichtyaetus melanocephalus) and the Sandwich tern (Thalasseus sandvicensis). The presence of several NSAIDs and SSRIs above the method quantification limits have confirmed that feathers might be a suitable means of evaluating the exposure of birds to APIs. Moreover, the concentrations indicated that waterbirds are exposed to NSAIDs, such as diclofenac, ibuprofen and naproxen, and SSRIs, such as citalopram, desmethylcitalopram, fluvoxamine and sertraline, possibly due to their widespread use and incomplete removal in wastewater treatment plants (WWTPs). The active ingredient diclofenac raises a the primary concern for the ecosystem and the welfare of the waterbirds, due to its high prevalence (100% and 83.3% in Mediterranean gull and Sandwich tern, respectively), its concentrations detected in feathers (11.9 ng g-1 and 6.7 ng g-1 in Mediterranean gull and Sandwich tern, respectively), and its documented toxicity toward certain birds.
Collapse
Affiliation(s)
- Gabriele Giuseppe Distefano
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Roberta Zangrando
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy; Istituto di Scienze Polari, Consiglio Nazionale delle Ricerche, Via Torino 155, I-30170 Mestre, Venezia, Italy
| | | | - Lucio Panzarin
- Associazione Naturalistica Sandonatese, c/o Centro Didattico Naturalistico il Pendolino, via Romanziol 130, 30020 Noventa di Piave, Venezia, Italy
| | - Andrea Gambaro
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Annamaria Volpi Ghirardini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy
| | - Marco Picone
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico via Torino 155, I-30170 Mestre, Venezia, Italy.
| |
Collapse
|
45
|
Domingo-Echaburu S, Lopez de Torre-Querejazu A, Valcárcel Y, Orive G, Lertxundi U. Hazardous drugs (NIOSH's list-group 1) in healthcare settings: Also a hazard for the environment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152954. [PMID: 35007598 DOI: 10.1016/j.scitotenv.2022.152954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Healthcare workers can be exposed to dangerous drugs during their daily practice. The National Institute for Occupational Safety and Health (NIOSH) considers "hazardous drugs" as those that had shown one or more of the following characteristic in studies with animals, humans or in vitro systems: carcinogenicity, teratogenicity or other toxicity for development, reproductive toxicity, organ toxicity at low doses, or genotoxicity. In the actual list (draft list 2020), drugs classified in group 1 are those with carcinogenic effects. Moreover, the global human and veterinary cancer is expected to grow, so antineoplastic drug consumption may consequently grow, leading to an increase of anticancer pharmaceuticals in the environment. Not all drugs pertaining to group 1 can be classified as "antineoplastic" or "cytostatic". Since most of the research on environment presence and ecotoxicological effects of pharmaceuticals has been focused on this therapeutic class, other carcinogenic drugs belonging to different therapeutic groups may have been omitted in previous studies. In this study we aim to review the presence in the environment of the hazardous drugs (NIOSH group 1) and their possible environmental impact. Of the 90 drugs considered, there is evidence of presence in the environment for 19. Drugs with more studies reporting positive detections are: the antibiotic chloramphenicol (55), the alkylating agents cyclophosphamide (39) and ifosfamide (30), and the estrogen receptor modulator tamoxifen (18). Although the original purpose of the NIOSH list and related documents is to provide guidance to healthcare professionals in order to adequately protect them from the hazards posed by these drugs in healthcare settings, we believe they can be useful for environmentalists too. Absence of data regarding the potential of environmental risk of certain hazardous drugs might tell us which drugs ought to be prioritized in the future.
Collapse
Affiliation(s)
- S Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Nafarroa Hiribidea 16, 20500 Arrasate, Gipuzkoa, Spain
| | - A Lopez de Torre-Querejazu
- Pharmacy Service, Araba Integrated Health Care Organization, Vitoria-Gasteiz, Alava, Spain; Bioaraba, Clinical Pharmacy Research Group, Vitoria-Gasteiz, Spain
| | - Y Valcárcel
- Health and Environment Risk Assessment Group, (RiSAMA), University Rey Juan Carlos, Avda Tulipán sn, Móstoles, Madrid, Spain; Department of Medical Specialties and Public Health, Faculty of Health Sciences, Rey Juan Carlos University, Avda. Atenas s/n, 28922 Alcorcón, Madrid, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - U Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain.
| |
Collapse
|
46
|
Development and validation of a highly effective analytical method for the evaluation of the exposure of migratory birds to antibiotics and their metabolites by faeces analysis. Anal Bioanal Chem 2022; 414:3373-3386. [PMID: 35165780 PMCID: PMC9018661 DOI: 10.1007/s00216-022-03953-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
The widespread occurrence of antibiotics in the environment may exert a negative impact on wild organisms. In addition, they can become environmental reservoirs, through the ingestion of food or contaminated water, and vectors for antibiotic-resistant bacteria. This fact is even more important in migratory birds that can promote their dissemination across continents. In this work, a multiresidue analytical method suitable for the determination of five families of antibiotics and their main metabolites in waterbird faeces has been developed and validated. The target compounds include environmentally significant sulfonamides, macrolides, fluoroquinolones, tetracyclines and antifolates. Sample treatment involves ultrasound-assisted extraction with methanol and dispersive solid-phase extraction clean-up with C18. Analytical determination was carried out by liquid chromatography-tandem mass spectrometry. The most significant parameters affecting sample extraction and extract clean-up were optimised by means of experimental designs. Good linearity (R2 > 0.994), accuracy (from 41 to 127%), precision (relative standard deviation lower than 24%) and limits of quantification (lower than 2 ng g-1 (dry weight, dw)) were obtained for most of the compounds. The method was applied to the determination of the selected compounds in 27 faeces samples from three common migratory waterbird species. Nine antibiotics and three of their metabolites were detected in the analysed samples. Fluoroquinolones and macrolides were the antibiotics most frequently detected. The highest concentrations corresponded to norfloxacin (up to 199 ng g-1 dw).
Collapse
|
47
|
Canesi L, Miglioli A, Balbi T, Fabbri E. Physiological Roles of Serotonin in Bivalves: Possible Interference by Environmental Chemicals Resulting in Neuroendocrine Disruption. Front Endocrinol (Lausanne) 2022; 13:792589. [PMID: 35282445 PMCID: PMC8913902 DOI: 10.3389/fendo.2022.792589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Contaminants of Emerging Concerns (CECs) are defined as chemicals not commonly monitored in aquatic ecosystems, but with the potential to cause adverse effects on biota. CECs include Endocrine Disrupting Chemicals (EDCs) and Neuro-Endocrine disruptors (NEDs) of vertebrates. However, most invertebrates only rely on neuroendocrine systems to maintain homeostatic processes. Although conserved neuroendocrine components have been characterized in ecologically relevant groups, limited knowledge on invertebrate neuroendocrinology makes it difficult to define EDCs and NEDs in most species. The monoamine serotonin (5-hydroxytryptamine, 5-HT) acts both as a neurotransmitter and as a peripheral hormone in mammals. In molluscs, 5-HT is involved in multiple physiological roles and molecular components of the serotonergic system have been identified. This review is focused on the effects of CECs on the serotonergic system of bivalve molluscs. Bivalves are widespread in all aquatic environments, estuarine and coastal areas in particular, where they are exposed to a variety of chemicals. In bivalves, 5-HT is involved in gametogenesis and spawning, oocyte maturation and sperm motility, regulates heart function, gill ciliary beating, mantle/siphon function, the ''catch'' state of smooth muscle and immune responses. Components of 5-HT transduction (receptors and signaling pathways) are being identified in several bivalve species. Different CECs have been shown to affect bivalve serotonergic system. This particularly applies to antidepressants, among the most commonly detected human pharmaceuticals in the aquatic environment. In particular, selective serotonin reuptake inhibitors (SSRIs) are frequently detected in seawater and in bivalve tissues. Information available on the effects and mechanisms of action of SSRIs on the serotonergic system of adult bivalves is summarized. Data are also reported on the effects of CECs on development of neuroendocrine pathways of early larval stages, in particular on the effects of model EDCs in the marine mussel Mytilus galloprovincialis. Overall, available data point at the serotonergic system as a sensitive target for neuroendocrine disruption in bivalves. The results contribute drawing Adverse Outcome Pathways (AOPs) for model EDCs and SSRIs in larvae and adults. However, basic research on neuroendocrine signaling is still needed to evaluate the potential impact of neuroendocrine disruptors in key invertebrate groups of aquatic ecosystems.
Collapse
Affiliation(s)
- Laura Canesi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- *Correspondence: Laura Canesi,
| | - Angelica Miglioli
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Teresa Balbi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Elena Fabbri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Ravenna, Italy
| |
Collapse
|
48
|
Han J. Barcoding drug information to recycle unwanted household pharmaceuticals: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2989-3003. [PMID: 35496467 PMCID: PMC9043091 DOI: 10.1007/s10311-022-01420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 05/02/2023]
Abstract
Huge quantities of unwanted pharmaceuticals are left in households, notably as a consequence of the rising drug demand caused by improved healthcare and the aging population. Unwanted pharmaceuticals may thus easily end up polluting ecosystems upon disposal. This pharmaceutical waste issue has been aggravated during the coronavirus disease pandemic (COVID-19) by excess prescription and panic buying. Unwanted household pharmaceuticals are normally collected by owners and volunteers, then incinerated in centralized facilities, yet with low efficiency during the COVID-19 lockdowns. Most pharmaceuticals could be recycled because they are rather stable, however there is actually no sustainable strategy to manage unwanted pharmaceuticals in a pandemic. Here I review the management of unwanted pharmaceuticals in households during the pandemic, with emphasis on drug take-back programs, waste minimization and recycling efforts. Reducing pharamaceutical waste could be done by informing people on what to do with unwanted pharmaceutical products; using machine-readable codes for automatic sorting; and applying existing techniques for recovery of active pharmaceutical ingredients for reuse. I propose a new strategy where owners sort their unwanted pharmaceuticals and submit information online. This will generate coded mailing labels that allow the owner to separate pharmaceuticals into categories such as opened, unused, expired, and non-expired. Once collected by recycling facilities and manufacturers, active ingredients will be extracted to create new pharmaceuticals which will be recycled to other patients.
Collapse
Affiliation(s)
- Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| |
Collapse
|