1
|
Rudnik E. Innovative Approaches to Tin Recovery from Low-Grade Secondary Resources: A Focus on (Bio)hydrometallurgical and Solvometallurgical Methods. MATERIALS (BASEL, SWITZERLAND) 2025; 18:819. [PMID: 40004341 PMCID: PMC11857418 DOI: 10.3390/ma18040819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Tin, although not considered a critical material in all world regions, is a key material for modern technologies. The projected scarcity of tin in the coming decades emphasizes the need for efficient recycling methods to maintain uninterrupted supply chains. This review article focuses on the recovery of tin from low-grade secondary sources, specifically obsolete printed circuit boards (PCBs) and liquid crystal displays (LCDs). In both types of waste, tin occurs in various concentrations and in different chemical forms-a few percent as metal or alloy in PCBs and several hundred ppm as tin(IV) oxide in LCDs. This article presents pretreatment methods to preconcentrate tin and enhance subsequent leaching. It discusses not only conventional acid and alkaline leaching techniques but also the use of complexing agents and the challenges associated with bioleaching. Due to the dilution of the resulting leachates, advanced methods for tin ion separation and preconcentration before final product recovery are shown. Solvometallurgical methods employing deep eutectic solvents or ionic liquids, are also discussed; although promising, they still remain under development.
Collapse
Affiliation(s)
- Ewa Rudnik
- Faculty on Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
2
|
Lin M, Wang P, Qin B, Ruan J. A novel acid-free combined technology to achieve the full recovery of crystalline silicon photovoltaic waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:666-675. [PMID: 39499967 DOI: 10.1016/j.wasman.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/27/2024] [Accepted: 10/27/2024] [Indexed: 11/25/2024]
Abstract
To achieve the global carbon neutrality commitment, photovoltaics, a clean and renewable source of energy, is increasingly deployed. Photovoltaic panels are core components of photovoltaic systems. As these panels reach the end of their life, recovering the photovoltaic waste becomes crucial. Currently, strong acid reagents are commonly used in the recovery of silver from crystalline silicon photovoltaic waste, posing environmental risks and restricting the industrialization of their recycling. In this study, a novel acid-free technology to achieve the full recovery of crystalline silicon photovoltaic waste was proposed. A pyrolysis process was first conducted for decapsulation, with carbon dioxide being the main gas component at 60.64 %. Next, bioleaching technology was employed to leach silver from waste crystalline silicon photovoltaic cells. The silver leaching rate in a single leaching cycle reached 44.7 %. Meanwhile, the mechanism of silver leaching was further analyzed. Finally, high-velocity fluid frictional separation, a technique that uses high-speed fluid flow to separate material, was chosen to obtain silicon wafers. The reclaimed silicon samples had a total thickness variation of 6.64 µm to11.62 µm, with average carrier lifetimes exceeding 4.9 µs, higher than that obtained by wet etching. This study is expected to advance the industrialization of the recovery of photovoltaic waste, which is also beneficial for the sustainable development of the photovoltaic supply chain.
Collapse
Affiliation(s)
- Mi Lin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou 510275, PR China
| | - Pengcheng Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou 510275, PR China
| | - Baojia Qin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou 510275, PR China.
| | - Jujun Ruan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou 510275, PR China
| |
Collapse
|
3
|
Hu S, Wang H, Li X, He W, Ma J, Xu Y, Xu Y, Ming W. Recent advances in bioleaching and biosorption of metals from waste printed circuit boards: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123008. [PMID: 39488183 DOI: 10.1016/j.jenvman.2024.123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Electronic waste, commonly known as "e-waste", refers to electrical or electronic equipment that has been discarded. E-waste, especially waste-printed circuit boards (WPCBs), must be handled carefully; as they can cause serious environmental pollution and threaten the health of local residents. The most abundant metal in WPCBs is copper, in addition to gold, aluminum, nickel, and lead, with grades that are tens or even hundreds of times higher than those of natural deposits. Due to the superiority of biorecovery methods in terms of their environmental friendliness, low capital investment and low operating costs, this study focuses on recent advances in the bioleaching and biosorption of metals from WPCBs. First, the principles, methods, and efficiency of bioleaching are reviewed in detail, particularly acidolysis, redoxolysis, and complexolysis. Additionally, six major factors (microbes, pH, temperature, nutrients, aeration, and substrate) affecting bioleaching are analyzed. The principles, kinetics, and isotherms of biosorption are then reviewed, and the factors influencing biosorption, including temperature and pH, are elaborated on. Hybrid recovery with biorecovery is explored, as these integrated strategies are conducive to achieving selective and efficient metal recovery. Finally, we discuss the advantages and disadvantages of the bioleaching and biosorption processes for metal recovery from WPCBs, particularly in terms of recovery efficiency, recovery time, and cost. Furthermore, future developments in biorecovery are also examined, along with useful ideas on how to accomplish energy-efficient metal recovery from WPCBs in the future.
Collapse
Affiliation(s)
- Shunchang Hu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Hongyan Wang
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China; Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Guangdong HUST Industrial Technology Research Institute, Dongguan, 523808, China.
| | - Xiaoke Li
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Wenbin He
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Jun Ma
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Yingjie Xu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Yapeng Xu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Wuyi Ming
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Holmström A, Pudas T, Hyvönen J, Weber M, Mizohata K, Sillanpää T, Mäkinen J, Kuronen A, Kotiaho T, Hæggström E, Salmi A. Gold removal from e-waste using high-intensity focused ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 111:107109. [PMID: 39437616 PMCID: PMC11532776 DOI: 10.1016/j.ultsonch.2024.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The demand for rare and precious metals (RPMs), e.g. gold, is increasing, as these are used in the ever-increasing amount of electronics needed for technological development and digitalization. Due to their rarity, virgin mining of RPMs is becoming more difficult and expensive. At the same time, over 62Mt of e-waste is created globally each year. The high concentration of gold and other RPMs in e-waste makes it an excellent source for recycling. Unfortunately, current recycling methods need to separate the different metals and the current pyrometallurgical and hydrometallurgical processes also create toxic pollutants, large amounts of wastewater and require highly corrosive substances. Here we present a new method for gold removal for the purpose of recycling, using only water and high-intensity focused ultrasound to induce material erosion through cavitation. An 11.8MHz ultrasonic transducer is used to first image the sample to locate gold-coated pads on discarded printed circuit boards (PCBs) and subsequently to remove only the gold layer. We demonstrate that the gold removal can be controlled by the number of transmitted ultrasonic bursts and that the energy efficiency is optimal when only minute amounts of the nickel layer beneath are also removed. Removing solely the gold layer also decreases the need for further processing steps. This greener gold removal method for e-waste is therefore well aligned with, and contributing to, the United Nations Sustainable Development Goal 12: Ensure sustainable consumption and production patterns.
Collapse
Affiliation(s)
- Axi Holmström
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland.
| | - Topi Pudas
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| | - Jere Hyvönen
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| | - Martin Weber
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| | - Kenichiro Mizohata
- Accelerator Laboratory, Faculty of Science, University of Helsinki, P.O.B. 43, FIN-00014 University of Helsinki, Finland
| | - Tom Sillanpää
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland; Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O.B. 56, FIN-00014 University of Helsinki, Finland
| | - Joni Mäkinen
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| | - Antti Kuronen
- Accelerator Laboratory, Faculty of Science, University of Helsinki, P.O.B. 43, FIN-00014 University of Helsinki, Finland
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O.B. 56, FIN-00014 University of Helsinki, Finland; Department of Chemistry, Faculty of Science, University of Helsinki, P.O.B 55, FIN-00014 University of Helsinki, Finland
| | - Edward Hæggström
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| | - Ari Salmi
- Electronics Research Laboratory, Faculty of Science, University of Helsinki, P.O.B. 64, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
5
|
Crowther TW, Rappuoli R, Corinaldesi C, Danovaro R, Donohue TJ, Huisman J, Stein LY, Timmis JK, Timmis K, Anderson MZ, Bakken LR, Baylis M, Behrenfeld MJ, Boyd PW, Brettell I, Cavicchioli R, Delavaux CS, Foreman CM, Jansson JK, Koskella B, Milligan-McClellan K, North JA, Peterson D, Pizza M, Ramos JL, Reay D, Remais JV, Rich VI, Ripple WJ, Singh BK, Smith GR, Stewart FJ, Sullivan MB, van den Hoogen J, van Oppen MJH, Webster NS, Zohner CM, van Galen LG. Scientists' call to action: Microbes, planetary health, and the Sustainable Development Goals. Cell 2024; 187:5195-5216. [PMID: 39303686 DOI: 10.1016/j.cell.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/05/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs. More importantly, the ubiquitous and global role of microbes means that they present new opportunities for synergistically accelerating progress toward multiple sustainability goals. By effectively managing microbial health, we can achieve solutions that address multiple sustainability targets ranging from climate and human health to food and energy production. Emerging international policy frameworks should reflect the vital importance of microorganisms in achieving a sustainable future.
Collapse
Affiliation(s)
- Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Restor Eco AG, Zürich 8001, Switzerland.
| | - Rino Rappuoli
- Fondazione Biotecnopolo di Siena, Siena 53100, Italy.
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona 60131, Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Roberto Danovaro
- National Biodiversity Future Center, Palermo 90133, Italy; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Timothy J Donohue
- Wisconsin Energy Institute, Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 94240, the Netherlands
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - James Kenneth Timmis
- Institute of Political Science, University of Freiburg, Freiburg 79085, Germany; Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081, the Netherlands
| | - Kenneth Timmis
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Matthew Z Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas 1433, Norway
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Cheshire, Neston CH64 7TE, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| | - Ian Brettell
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Camille S Delavaux
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Christine M Foreman
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, MT 59718, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kat Milligan-McClellan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Devin Peterson
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Mariagrazia Pizza
- Department of Life Sciences, CBRB Center, Imperial College, London SW7 2AZ, UK
| | - Juan L Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada 18008, Spain
| | - David Reay
- School of GeoSciences, The University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Virginia I Rich
- Center of Microbiome Science, Byrd Polar and Climate Research, and Microbiology Department, The Ohio State University, Columbus, OH 43214, USA
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5704, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gabriel Reuben Smith
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Frank J Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Center of Microbiome Science, and EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Johan van den Hoogen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Constantin M Zohner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Laura G van Galen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Society for the Protection of Underground Networks (SPUN), Dover, DE 19901, USA.
| |
Collapse
|
6
|
Schwartz E, He H, Frost K, Nguyen BH, Ogunseitan OA, Schoenung JM. Comparative life cycle assessment of copper and gold recovery from waste printed circuit boards: Pyrometallurgy, chemical leaching and bioleaching. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134545. [PMID: 38761760 DOI: 10.1016/j.jhazmat.2024.134545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Printed circuit boards (PCBs) make up a substantial amount of electronic waste (e-waste) generated annually. Waste PCBs contain high quantities of copper and gold in comparison to natural ores. As such, "urban mining" of waste PCBs to recover these metals is of commercial interest. In this work, we used life cycle assessment to compare the environmental impact of four copper and gold recovery processes. We evaluated pyrometallurgy, chemical leaching, and bioleaching, as well as a hybrid leaching process that uses bioleaching to recover copper and chemical leaching to recover gold. Furthermore, we considered differences in environmental impact based on differences in electricity sources. If electricity comes from fossil fuels, the pyrometallurgical process results in the lowest environmental impact in all impact categories studied. If electricity comes from carbon-free sources, the pyrometallurgical process results in the lowest environmental impact in all categories studied except global warming, where the hybrid leaching process results in the lowest impact. In all cases, metal recovery from waste PCBs leads to lower environmental impact than primary metal production. Our goal is to guide e-waste recyclers towards more environmentally sustainable metal recovery processes and to provide knowledge gaps in the field to guide future research.
Collapse
Affiliation(s)
- Eric Schwartz
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
| | - Haoyang He
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
| | - Kali Frost
- Microsoft Research, Redmond, WA 98052, USA
| | | | - Oladele A Ogunseitan
- Department of Population Health and Disease Prevention, University of California, Irvine, CA 92697, USA; World Institute for Sustainable Development of Materials (WISDOM), University of California, Irvine, CA 92697, USA
| | - Julie M Schoenung
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA; World Institute for Sustainable Development of Materials (WISDOM), University of California, Irvine, CA 92697, USA; Department of Materials Science & Engineering and J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
7
|
Najar IN, Sharma P, Das R, Tamang S, Mondal K, Thakur N, Gandhi SG, Kumar V. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121136. [PMID: 38759555 DOI: 10.1016/j.jenvman.2024.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Waste of any origin is one of the most serious global and man-made concerns of our day. It causes climate change, environmental degradation, and human health problems. Proper waste management practices, including waste reduction, safe handling, and appropriate treatment, are essential to mitigate these consequences. It is thus essential to implement effective waste management strategies that reduce waste at the source, promote recycling and reuse, and safely dispose of waste. Transitioning to a circular economy with policies involving governments, industries, and individuals is essential for sustainable growth and waste management. The review focuses on diverse kinds of environmental waste sources around the world, such as residential, industrial, commercial, municipal services, electronic wastes, wastewater sewerage, and agricultural wastes, and their challenges in efficiently valorizing them into useful products. It highlights the need for rational waste management, circularity, and sustainable growth, and the potential of a circular economy to address these challenges. The article has explored the role of thermophilic microbes in the bioremediation of waste. Thermophiles known for their thermostability and thermostable enzymes, have emerged to have diverse applications in biotechnology and various industrial processes. Several approaches have been explored to unlock the potential of thermophiles in achieving the objective of establishing a zero-carbon sustainable bio-economy and minimizing waste generation. Various thermophiles have demonstrated substantial potential in addressing different waste challenges. The review findings affirm that thermophilic microbes have emerged as pivotal and indispensable candidates for harnessing and valorizing a range of environmental wastes into valuable products, thereby fostering the bio-circular economy.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Rohit Das
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India.
| |
Collapse
|
8
|
Gonzalez Baez A, Muñoz LP, Timmermans MJ, Garelick H, Purchase D. Molding the future: Optimization of bioleaching of rare earth elements from electronic waste by Penicillium expansum and insights into its mechanism. BIORESOURCE TECHNOLOGY 2024; 402:130750. [PMID: 38685515 DOI: 10.1016/j.biortech.2024.130750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The recovery of rare earth elements (REE) from electronic waste is crucial for ensuring future demand security, as there is a high supply risk for this group of elements, and mitigating the environmental impacts of conventional mining. This research focuses on extracting REE from waste printed circuit boards through bioleaching, addressing the limited attention given to this source. A strain of Penicillium expansum demonstrated efficient bioleaching under optimal conditions of 7.5 initial pH, 0.1 mM phosphate concentration, and excluding a buffering agent. The study achieved significant improvements in La and Tb extraction and enhancements in Pr, Nd, and Gd recovery, approaching 70 % within 24 h. Fungal mechanisms involved in REE extraction included fungal pH control, organic acid biosynthesis, phosphate bioavailability, and potential fungal proton pump involvement. This approach offers a promising solution for sustainable REE recovery from e-waste, contributing to resource security and circular economy.
Collapse
Affiliation(s)
- Alejandra Gonzalez Baez
- Middlesex University, Department of Natural Sciences, Faculty of Science and Technology, The Burroughs, NW4 4BT London, UK
| | - Leonardo Pantoja Muñoz
- Middlesex University, Department of Natural Sciences, Faculty of Science and Technology, The Burroughs, NW4 4BT London, UK
| | - Martijn Jtn Timmermans
- Middlesex University, Department of Natural Sciences, Faculty of Science and Technology, The Burroughs, NW4 4BT London, UK
| | - Hemda Garelick
- Middlesex University, Department of Natural Sciences, Faculty of Science and Technology, The Burroughs, NW4 4BT London, UK
| | - Diane Purchase
- Middlesex University, Department of Natural Sciences, Faculty of Science and Technology, The Burroughs, NW4 4BT London, UK.
| |
Collapse
|
9
|
Xie Z, Mahmood Q, Zhang S. Copper recovery from waste printed circuit boards using pyrite as the bioleaching substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34282-34294. [PMID: 38698096 DOI: 10.1007/s11356-024-33536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Waste printed circuit boards (WPCBs) can be bioleached for Cu recovery, but lack of substrate for the bioleaching culture. In this study, using pyrite as a bacterial substrate for bioleaching WPCBs and recovering Cu was explored. The results showed that the WPCBs bioleaching using pyrite as the bacterial substrate was feasible. Mechanical crushing was a suitable WPCBs pretreatment method. The optimal WPCBs and pyrite pulp densities were respectively found to be 1.25% (w/v) and 1.0% (w/v), and the suitable nitrogen source ratio ((NH4)2SO4: (NH4)2HPO4) was deemed as 2 g/L: 2 g/L, achieving a Cu2+ leaching efficiency of 95.60 ± 1.57% in 14 d. Copper in the bioleaching solution can be directly recovery via electrodeposition. The Cu recovery efficiency in 60 min was up to 92.19 ± 1.35% under the optimal condition that the initial Cu2+ concentration and pH were respectively set at 7.34 g/L and 2.75, and the current density was set at 200 A/m2. Copper was found as the dominant metal in the cathode deposits, existing in the form of Cu and Cu2O. This work provided a novel approach for bioleaching WPCBs and recovering Cu.
Collapse
Affiliation(s)
- Zexiang Xie
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
Wang R, Fan G, Zhang C. Process and systematic study of gold recovery from flexible printed circuit boards (FPCBs) using a choline chloride-ethylene glycol system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:351-361. [PMID: 38430749 DOI: 10.1016/j.wasman.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The traditional hydrometallurgy technology has been widely used to recover precious metals from electronic waste. However, such aqueous recycling systems often employ toxic/harsh chemicals, which may cause serious environmental problems. Herein, an efficient and environment-friendly method using a deep eutectic solvent (DES) mixed system of choline chloride-ethylene glycol-CuCl2·2H2O is developed for gold (Au) recovery from flexible printed circuit boards (FPCBs). The Au leaching and precipitation efficiency can reach approximately 100 % and 95.3 %, respectively, under optimized conditions. Kinetic results show that the Au leaching process follows a nucleation model, which is controlled by chemical surface reactions with an apparent activation energy of 80.29 kJ/mol. The present recycling system has a much higher selectivity for Au than for other base metals; the two-step recovery rate of Au can reach over 95 %, whereas those of copper and nickel are < 2 %. Hydrogen nuclear magnetic resonance spectroscopy (HNMR) and density functional theory (DFT) analyses confirm the formation of intermolecular hydrogen bonds in the DES mixed system, which increase the system melting and boiling points and facilitate the Au leaching process. The Au leaching system can be reused for several times, with the leaching efficiency remaining > 97 % after five cycles. Moreover, ethylene glycol (EG) and choline chloride (ChCl) act as aprotic solvents as well as coordinate with metals, decreasing the redox potential to shift the equilibrium to the leaching side. Overall, this research provides a theoretical and a practical basis for the recovery of metals from FPCBs.
Collapse
Affiliation(s)
- Ruixue Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China; Shanghai Collaborative Innovation Centre for Waste Electrical and Electronic Equipment Recycling, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China
| | - Guoliang Fan
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China; Shanghai Collaborative Innovation Centre for Waste Electrical and Electronic Equipment Recycling, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China
| | - Chenglong Zhang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China; Shanghai Collaborative Innovation Centre for Waste Electrical and Electronic Equipment Recycling, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209, People's Republic of China.
| |
Collapse
|
11
|
Castro L, Zhang R, Muñoz JA, Sand W. Editorial: Bioleaching and biorecovery of critical raw materials from secondary sources. Front Microbiol 2024; 15:1395820. [PMID: 38659988 PMCID: PMC11040074 DOI: 10.3389/fmicb.2024.1395820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Affiliation(s)
- Laura Castro
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Madrid, Spain
| | - Ruiyong Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning, China
| | - Jesús Angel Muñoz
- Department of Chemical and Materials Engineering, Complutense University of Madrid, Madrid, Spain
| | - Wolfgang Sand
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Aquatic Biotechnology, University of Duisburg-Essen, Essen, Germany
- Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg, Germany
| |
Collapse
|
12
|
Sieber A, Jelic LR, Kremser K, Guebitz GM. Spent brewer's yeast as a selective biosorbent for metal recovery from polymetallic waste streams. Front Bioeng Biotechnol 2024; 12:1345112. [PMID: 38532874 PMCID: PMC10963448 DOI: 10.3389/fbioe.2024.1345112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 03/28/2024] Open
Abstract
While the amount of electronic waste is increasing worldwide, the heterogeneity of electronic scrap makes the recycling very complicated. Hydrometallurgical methods are currently applied in e-waste recycling which tend to generate complex polymetallic solutions due to dissolution of all metal components. Although biosorption has previously been described as a viable option for metal recovery and removal from low-concentration or single-metal solutions, information about the application of selective metal biosorption from polymetallic solutions is missing. In this study, an environmentally friendly and selective biosorption approach, based on the pH-dependency of metal sorption processes is presented using spent brewer's yeast to efficiently recover metals like aluminum, copper, zinc and nickel out of polymetallic solutions. Therefore, a design of experiment (DoE) approach was used to identify the effects of pH, metal, and biomass concentration, and optimize the biosorption efficiency for each individual metal. After process optimization with single-metal solutions, biosorption experiments with lyophilized waste yeast biomass were performed with synthetic polymetallic solutions where over 50% of aluminum at pH 3.5, over 40% of copper at pH 5.0 and over 70% of zinc at pH 7.5 could be removed. Moreover, more than 50% of copper at pH 3.5 and over 90% of zinc at pH 7.5 were recovered from a real polymetallic waste stream after leaching of printed-circuit boards. The reusability of yeast biomass was confirmed in five consecutive biosorption steps with little loss in metal recovery abilities. This proves that spent brewer's yeast can be sustainably used to selectively recover metals from polymetallic waste streams different to previously reported studies.
Collapse
Affiliation(s)
| | - Leon Robert Jelic
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna BOKU, Tulln an der Donau, Austria
| | - Klemens Kremser
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna BOKU, Tulln an der Donau, Austria
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| | - Georg M Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna BOKU, Tulln an der Donau, Austria
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| |
Collapse
|
13
|
Maluleke MD, Kotsiopoulos A, Govender-Opitz E, Harrison STL. Microbial immobilisation and adaptation to Cu 2+ enhances microbial Fe 2+ oxidation for bioleaching of printed circuit boards in the presence of mixed metal ions. Res Microbiol 2024; 175:104148. [PMID: 37813270 DOI: 10.1016/j.resmic.2023.104148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
A circular economy requires effective re-use of finite resources, such as metals from waste electrical and electronic equipment (WEEE). Bioleaching for extraction and recovery of base metals from printed circuit boards (PCBs) before recovering precious metals has potential to increase metal circularity. However, inhibition by base metals released from the PCBs and accumulated in PCB leachates on microbial Fe2+ oxidation, a critical bioleaching sub-process for Fe3+ regeneration, can limit this approach. Here, we explore the potential of microbial immobilisation on polyurethane foam (PUF) and adaptation to cupric ions to minimise inhibition by mixed metals released from PCBs, particularly zinc, nickel, and tin, and enhancing Fe2+ oxidation rates in PCB bioleaching systems. A mixed mesophilic culture dominant in Leptospirillum ferriphilum, Acidiplasma cupricumulans and Acidithiobacillus caldus was immobilised on PUF and adapted to 6 g/L Cu2+. Tolerance of Cu-adapted immobilised cells to the inhibitory metal ions Zn2+, Ni2+, and Sn2+, as individual (0-10 g/L) and mixed metal ions at concentrations typically leached from PCBs at solids loadings of 0-20% (mass/volume) was compared to that of non-adapted immobilised cells. Further, the impact of solutes from PCB leachates was evaluated. Inhibition by individual metal ions decreased in the order Sn2+ > Ni2+ > Zn2+. Inhibition of ferrous iron oxidation by mixed metal ions was synergistic with respect to individual metal ions. PCB leachates were more inhibitory than both mixed and individual metal ions even where metal concentration was low. Cu-adapted immobilised cells exhibited higher tolerance to increasing concentrations of inhibitory metal ions than non-adapted cells. These results are promising for the application of Cu-adapted cells in the bioleaching of PCBs and multi-metal concentrates.
Collapse
Affiliation(s)
- Musa D Maluleke
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Athanasios Kotsiopoulos
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Elaine Govender-Opitz
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Susan T L Harrison
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| |
Collapse
|
14
|
Pineda-Vásquez T, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. From E-Waste to High-Value Materials: Sustainable Synthesis of Metal, Metal Oxide, and MOF Nanoparticles from Waste Printed Circuit Boards. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:69. [PMID: 38202524 PMCID: PMC10780742 DOI: 10.3390/nano14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The exponential growth of electronic waste (e-waste) has raised significant environmental concerns, with projections indicating a surge to 74.7 million metric tons of e-waste generated by 2030. Waste printed circuit boards (WPCBs), constituting approximately 10% of all e-waste, are particularly intriguing due to their high content of valuable metals and rare earth elements. However, the presence of hazardous elements necessitates sustainable recycling strategies. This review explores innovative approaches to sustainable metal nanoparticle synthesis from WPCBs. Efficient metal recovery from WPCBs begins with disassembly and the utilization of advanced equipment for optimal separation. Various pretreatment techniques, including selective leaching and magnetic separation, enhance metal recovery efficiency. Green recovery systems such as biohydrometallurgy offer eco-friendly alternatives, with high selectivity. Converting metal ions into nanoparticles involves concentration and transformation methods like chemical precipitation, electrowinning, and dialysis. These methods are vital for transforming recovered metal ions into valuable nanoparticles, promoting sustainable resource utilization and eco-friendly e-waste recycling. Sustainable green synthesis methods utilizing natural sources, including microorganisms and plants, are discussed, with a focus on their applications in producing well-defined nanoparticles. Nanoparticles derived from WPCBs find valuable applications in drug delivery, microelectronics, antimicrobial materials, environmental remediation, diagnostics, catalysis, agriculture, etc. They contribute to eco-friendly wastewater treatment, photocatalysis, protective coatings, and biomedicine. The important implications of this review lie in its identification of sustainable metal nanoparticle synthesis from WPCBs as a pivotal solution to e-waste environmental concerns, paving the way for eco-friendly recycling practices and the supply of valuable materials for diverse industrial applications.
Collapse
Affiliation(s)
- Tatiana Pineda-Vásquez
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia;
| | - Leidy Rendón-Castrillón
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Margarita Ramírez-Carmona
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Carlos Ocampo-López
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| |
Collapse
|
15
|
Dong Y, Mingtana N, Zan J, Lin H. Recovery of precious metals from waste printed circuit boards though bioleaching route: A review of the recent progress and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119354. [PMID: 37864939 DOI: 10.1016/j.jenvman.2023.119354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
The rapid proliferation of electronic waste (e-waste), including waste printed circuit boards (WPCBs), has exerted immense pressure on the environment. The recovery of precious metals from WPCBs not only serves as an effective means of alleviating this environmental burden but also generates economic value. This review focuses on bioleaching, an environmentally friendly method for extracting precious metals from WPCBs. Under various conditions, this method has achieved leaching rates of 30%-73% for Au and 33.8%-90% for Ag. However, there is a relative scarcity of studies on the bioleaching of precious metals from WPCBs. In this paper, we provide an overview of the current status of bioleaching for precious metals from WPCBs and describe the underlying mechanisms. We also briefly outline the influence of various process factors on leaching efficiency. While this review underscores the considerable potential of bioleaching in WPCBs applications, certain limitations hinder the engineering-scale application of the technology. Consequently, this paper describes the current enhanced processes for enhancing leaching efficiency. Overall, this review can serve as a valuable reference for future research endeavors, ultimately promoting the widespread utilization of bioleaching for the recovery of precious metals from WPCBs.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Nuo Mingtana
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinyu Zan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
16
|
Karimi F, Zare N, Jahanshahi R, Arabpoor Z, Ayati A, Krivoshapkin P, Darabi R, Dragoi EN, Raja GG, Fakhari F, Karimi-Maleh H. Natural waste-derived nano photocatalysts for azo dye degradation. ENVIRONMENTAL RESEARCH 2023; 238:117202. [PMID: 37769832 DOI: 10.1016/j.envres.2023.117202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Due to their widespread application in water purification, there is a significant interest in synthesising nanoscale photocatalysts. Nanophotocatalysts are primarily manufactured through chemical methods, which can lead to side effects like pollution, high-energy usage, and even health issues. To address these issues, "green synthesis" was developed, which involves using plant extracts as reductants or capping agents rather than industrial chemical agents. Green fabrication has the benefits of costs less, pollution reduction, environmental protection and human health safety, compared to the traditional methods. This article summarises recent advances in the environmentally friendly synthesis of various nanophotocatalysts employed in the degradation of azo dyes. This study compiles critical findings on natural and artificial methods to achieve the goal. Green synthesis is constrained by the time and place of production and issues with low purity and poor yield, reflecting the complexity of plants' geographical and seasonal distributions and their compositions. However, green photocatalyst synthesis provides additional growth opportunities and potential uses.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Resources and Environment, University of Electronic Science and Technology of China, China.
| | - Najmeh Zare
- School of Resources and Environment, University of Electronic Science and Technology of China, China
| | - Roya Jahanshahi
- Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran.
| | - Zahra Arabpoor
- Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran.
| | - Ali Ayati
- EnergyLab, ITMO University, 9 Lomonosova Street, Saint Petersburg, 191002, Russia
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, 9 Lomonosova Street, Saint Petersburg, 191002, Russia
| | - Rozhin Darabi
- School of Resources and Environment, University of Electronic Science and Technology of China, China
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld Mangeron No 73, Iasi, 700050, Romania.
| | - G Ganesh Raja
- Instituto de Alta Investigacion, Universidad de Tarapaca, Arica, 1000000, Chile
| | - Farbod Fakhari
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhu Medical University, Quzhou Peoplés Hospital, PR China; School of Engineering, Lebanese American University, Byblos, Lebanon; School of Resources and Environment, University of Electronic Science and Technology of China, China.
| |
Collapse
|
17
|
Li J, Zhang H, Wang H, Zhang B. Research progress on bioleaching recovery technology of spent lithium-ion batteries. ENVIRONMENTAL RESEARCH 2023; 238:117145. [PMID: 37716384 DOI: 10.1016/j.envres.2023.117145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Bioleaching of lithium-ion batteries is a microbially catalyzed process. Under the action of redox, acid leaching and complexation in the presence of microorganisms, the valuable metals in the cathode material enter the liquid phase as ions and are subsequently recovered from the succeeding process. This technique has the advantages of being inexpensive, environmentally friendly and having simple needs. However, it is still in development and has not yet commercialized. In this paper, the technology is fully discussed based on numerous excellent studies. The contents include commonly utilized microorganisms, bioleaching mechanism, microbial stress response and metabolic activation, enhancement strategies, leaching characteristics and interfacial phenomena, process evaluation, and a critical discussion of recent research breakthroughs. They give readers with comprehensive and in-depth understanding on the bioleaching of lithium-ion batteries and help to improve the technology's industrialization. Researchers can make new explorations from the potential research directions and methods presented in this work to make biotechnology better serve resource recovery and social development.
Collapse
Affiliation(s)
- Jiafeng Li
- School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Haijun Zhang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Haifeng Wang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Baojing Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
18
|
Liu X, Wu F, Qu G, Zhang T, He M. Recycling and reutilization of smelting dust as a secondary resource: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119228. [PMID: 37806275 DOI: 10.1016/j.jenvman.2023.119228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Smelting dust is a toxic waste produced in metal-mineral pyrometallurgical processes. To eliminate or reduce the adverse environmental impacts of smelting dust, valuable components need to be selectively separated from the toxic components present in the waste. This paper reviews the chemical composition, phase composition and particle size distribution characteristics of smelting dust, and the results show that smelting dust has excellent physicochemical characteristics for recovering valuable metals. The process flow, critical factors, development status, advantages and disadvantages of traditional technologies such as pyrometallurgy, hydrometallurgy and biometallurgy were discussed in depth. Conventional treatment methods typically prioritize separating and reclaiming specific elements with high concentrations. However, these methods face challenges such as excessive chemical usage and limited selectivity, which can hinder the sustainable utilization of smelting dust. With the increasing scarcity of resources and strict environmental requirements, a single treatment process can hardly fulfil the demand, and a physical field-enhanced technology for releasing and separating valuable metals is proposed. Through analysing the effect of electric field, microwave and ultrasound on recovering valuable metals from smelting dust, the enhancement mechanism of physical field on the extraction process was clarified. This paper aimed to provide reference for the resource utilization of smelting dust.
Collapse
Affiliation(s)
- Xinxin Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China.
| | - Ting Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Minjie He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| |
Collapse
|
19
|
Bharathi SD, Dilshani A, Rishivanthi S, Khaitan P, Vamsidhar A, Jacob S. Resource Recycling, Recovery, and Xenobiotic Remediation from E-wastes Through Biofilm Technology: A Review. Appl Biochem Biotechnol 2023; 195:5669-5692. [PMID: 35796946 DOI: 10.1007/s12010-022-04055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Around 50 million tonnes of electronic waste has been generated globally per year, causing an environmental hazard and negative effects on human health, such as infertility and thyroid disorders in adults, endocrine and neurological damage in both animals and humans, and impaired mental and physical development in children. Out of that, only 15% is recycled each year and the remaining is disposed of in a landfill, illegally traded or burned, and treated in a sub-standard way. The processes of recycling are challenged by the presence of brominated flame retardants. The different recycling technologies such as the chemical and mechanical methods have been well studied, while the most promising approach is the biological method. The process of utilizing microbes to decontaminate and degrade a wide range of pollutants into harmless products is known as bioremediation and it is an eco-friendly, cost-effective, and sustainable method. The bioremediation process is significantly aided by biofilm communities attached to electronic waste because they promote substrate bioavailability, metabolite transfer, and cell viability, all of which accelerate bioleaching and biodegradation. Microbes existing in biofilm mode relatable to free-floating planktonic cells are advantageous of bioremediation due to their tolerant ability to environmental stress and pollutants through diverse catabolic pathways. This article discusses the harmful effects of electronic waste and its management using biological strategies especially biofilm-forming communities for resource recovery.
Collapse
Affiliation(s)
- Sundaram Deepika Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Aswin Dilshani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Srinivasan Rishivanthi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Pratham Khaitan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Adhinarayan Vamsidhar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India.
| |
Collapse
|
20
|
Canellas ALB, Laport MS. The biotechnological potential of Aeromonas: a bird's eye view. Crit Rev Microbiol 2023; 49:543-555. [PMID: 35687715 DOI: 10.1080/1040841x.2022.2083940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
Abstract
The genus Aeromonas comprises Gram-negative bacilli widely distributed in aquatic habitats that can also be found in the terrestrial environment and in close association with humans and animals. Aeromonas spp. are particularly versatile bacteria, with high genomic plasticity and notable capacity to adapt to different environments and extreme conditions. On account of being mostly associated with their pathogenic potential, research on the biotechnological potentialities of Aeromonas spp. is considerably scarce when compared to other bacterial groups. Nonetheless, studies over the years have been hinting at several interesting hidden potentialities in this bacterial group, especially with the recent advances in whole-genome sequencing, unveiling Aeromonas spp. as interesting candidates for the discovery of novel industrial biocatalysts, bioremediation strategies, and biopolyester production. In this context, the present study aims to provide an overview of the main biotechnological applications reported in the genus Aeromonas and provide new insights into the further exploration of these frequently overlooked, yet fascinating, bacteria.
Collapse
Affiliation(s)
- Anna Luiza Bauer Canellas
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marinella Silva Laport
- Laboratório de Bacteriologia Molecular e Marinha, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Abdel Azim A, Vizzarro A, Bellini R, Bassani I, Baudino L, Pirri CF, Verga F, Lamberti A, Menin B. Perspective on the use of methanogens in lithium recovery from brines. Front Microbiol 2023; 14:1233221. [PMID: 37601371 PMCID: PMC10434214 DOI: 10.3389/fmicb.2023.1233221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Methanogenic archaea stand out as multipurpose biocatalysts for different applications in wide-ranging industrial sectors due to their crucial role in the methane (CH4) cycle and ubiquity in natural environments. The increasing demand for raw materials required by the manufacturing sector (i.e., metals-, concrete-, chemicals-, plastic- and lubricants-based industries) represents a milestone for the global economy and one of the main sources of CO2 emissions. Recovery of critical raw materials (CRMs) from byproducts generated along their supply chain, rather than massive mining operations for mineral extraction and metal smelting, represents a sustainable choice. Demand for lithium (Li), included among CRMs in 2023, grew by 17.1% in the last decades, mostly due to its application in rechargeable lithium-ion batteries. In addition to mineral deposits, the natural resources of Li comprise water, ranging from low Li concentrations (seawater and freshwater) to higher ones (salt lakes and artificial brines). Brines from water desalination can be high in Li content which can be recovered. However, biological brine treatment is not a popular methodology. The methanogenic community has already demonstrated its ability to recover several CRMs which are not essential to their metabolism. Here, we attempt to interconnect the well-established biomethanation process with Li recovery from brines, by analyzing the methanogenic species which may be suitable to grow in brine-like environments and the corresponding mechanism of recovery. Moreover, key factors which should be considered to establish the techno-economic feasibility of this process are here discussed.
Collapse
Affiliation(s)
- Annalisa Abdel Azim
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Arianna Vizzarro
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Ruggero Bellini
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Ilaria Bassani
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Luisa Baudino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Francesca Verga
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Lamberti
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Barbara Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Milan, Italy
| |
Collapse
|
22
|
Dixit R, Kumar S, Pandey G. Biological approaches for E-waste management: A green-go to boost circular economy. CHEMOSPHERE 2023:139177. [PMID: 37307925 DOI: 10.1016/j.chemosphere.2023.139177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
E-waste is a pressing situation on human due to its complex composition. Although E-waste on one hand has some toxic components but at the same time, it would be a promising business sector. Recycling of E-waste to mine-out valuable metals and other components has opened a chance of business and hence a way towards transformation of linear economy to circular one. Chemical, physical and traditional technologies are holding the position in E-waste recycling sector but sustainability with respect to cost and environmental issues is a major concern associated with these technologies. In order to overcome these gaps, lucrative, environment friendly and sustainable technologies need to be implied. Biological approaches could be a green and clean approach to handle E-waste through sustainable and cost-effective means by considering socio-economic and environmental aspects. This review elaborates biological approaches for E-waste management and advancements in expanse. The novelty covers the environmental and socio-economic impacts of E-waste, solution and further scope of biological approaches, further research and development need in this contour to come up with sustainable recycling process.
Collapse
Affiliation(s)
- Rashmi Dixit
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagp, 440 020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India; CSIR- TMD, 3rd Floor, 14, NISCAIR Building, Satsang Vihar Marg, Block A, Qutab Institutional Area, New Delhi, Delhi, 110 016, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagp, 440 020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Govind Pandey
- Madan Mohan Malaviya University of Technology, Gorakhpur, 273 010, India
| |
Collapse
|
23
|
Biswal BK, Balasubramanian R. Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review. Front Microbiol 2023; 14:1197081. [PMID: 37323903 PMCID: PMC10264615 DOI: 10.3389/fmicb.2023.1197081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Spent lithium-ion batteries (LIBs) are increasingly generated due to their widespread use for various energy-related applications. Spent LIBs contain several valuable metals including cobalt (Co) and lithium (Li) whose supply cannot be sustained in the long-term in view of their increased demand. To avoid environmental pollution and recover valuable metals, recycling of spent LIBs is widely explored using different methods. Bioleaching (biohydrometallurgy), an environmentally benign process, is receiving increased attention in recent years since it utilizes suitable microorganisms for selective leaching of Co and Li from spent LIBs and is cost-effective. A comprehensive and critical analysis of recent studies on the performance of various microbial agents for the extraction of Co and Li from the solid matrix of spent LIBs would help for development of novel and practical strategies for effective extraction of precious metals from spent LIBs. Specifically, this review focuses on the current advancements in the application of microbial agents namely bacteria (e.g., Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans) and fungi (e.g., Aspergillus niger) for the recovery of Co and Li from spent LIBs. Both bacterial and fungal leaching are effective for metal dissolution from spent LIBs. Among the two valuable metals, the dissolution rate of Li is higher than Co. The key metabolites which drive the bacterial leaching include sulfuric acid, while citric acid, gluconic acid and oxalic acid are the dominant metabolites in fungal leaching. The bioleaching performance depends on both biotic (microbial agents) and abiotic factors (pH, pulp density, dissolved oxygen level and temperature). The major biochemical mechanisms which contribute to metal dissolution include acidolysis, redoxolysis and complexolysis. In most cases, the shrinking core model is suitable to describe the bioleaching kinetics. Biological-based methods (e.g., bioprecipitation) can be applied for metal recovery from the bioleaching solution. There are several potential operational challenges and knowledge gaps which should be addressed in future studies to scale-up the bioleaching process. Overall, this review is of importance from the perspective of development of highly efficient and sustainable bioleaching processes for optimum resource recovery of Co and Li from spent LIBs, and conservation of natural resources to achieve circular economy.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Palanisamy K, Subburaj RG. Integration of electronic waste management: a review of current global generation, health impact, and technologies for value recovery and its pertinent management technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63347-63367. [PMID: 37058236 DOI: 10.1007/s11356-023-26719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/25/2023] [Indexed: 04/15/2023]
Abstract
The fast evolution of waste electrical and electronic equipment (WEEE) has developed into a prime environmental perturb in recent days. Today, electrical and electronic products merely become a needed part of people life's and professional lives. The whole process of e-waste contains an organized collection system, appropriate dismantling, and its treatment of recycling. The unparalleled hastening of e-waste and unceremonious discarding lead to an adverse impact on a country's development. Currently, challenges in e-waste have a lack of practical aid, poor structure, and insufficient economic support. Several legislations have been imposed which aim to enhance the handling of e-waste. Operative management of e-waste is now essential for the protective atmosphere and human beings as well. This article provides the systemic flow of the e-waste definition, global information, and generation of e-waste and composition of e-waste which were discussed. The study categorized the hazardous effect of e-waste on human beings, and the content analysis of e-waste in recent LCA applications was highlighted. Further different metal extraction and recovery techniques from e-waste have been reviewed. A few sets of current practices and some recommendations on a global scale level were provided. Finally, based on analysis, some approaches to e-waste was accomplished, and equitable environmental management was taken into account to identify the future outlook areas.
Collapse
Affiliation(s)
- Krithiga Palanisamy
- Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India.
| | | |
Collapse
|
25
|
Abbaspour A, Jafari A, Tarahomi DS, Mousavi SM, Kharrat R. Production and characterization of a polysaccharide/polyamide blend from Pseudomonas atacamensis M7D1 strain for enhanced oil recovery application. Int J Biol Macromol 2023; 240:124421. [PMID: 37060969 DOI: 10.1016/j.ijbiomac.2023.124421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Bio-based polymers have better salt and temperature tolerance than most synthetic polymers. The biopolymer solutions have high viscosity, which can lead to reducing the fingering effect and soaring the oil recovery rate. This work aims to produce and characterize a biopolymer from Pseudomonas Atacamensis M7D1 strain, modify the biopolymer yield using Printed Circuit Boards (PCBs) powder as an outer tension in the growth medium, and finally, evaluate the produced biopolymer function for Enhanced Oil Recovery (EOR) purposes. Using PCBs powder to trigger bacteria for higher production yield increases the biopolymer production rate eleven times higher than pure growth medium without additives. Different analyses were performed on the biopolymer to characterize its properties; Gel Permeation Chromatography (GPC) indicated that the produced biopolymer has an average molecular weight of 3.6 × 105 g/mol. This macromolecule has high thermal resistivity and can tolerate high temperatures. Thermal analysis (TGA/DSC) shows only 69.27 % mass lost from 25 °C to 500 °C. The viscosity of 0.5 wt% biopolymer solution equals 3cp, 3 times higher than water. The glass micromodel flooding result shows that biopolymer solution with 0.5 wt% concentration has a 38 % recovery rate which is 21 % higher than water flooding.
Collapse
Affiliation(s)
- Armin Abbaspour
- Petroleum Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Arezou Jafari
- Petroleum Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran.
| | - Delaram Sadat Tarahomi
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| | - Riyaz Kharrat
- Department Petroleum Engineering, Montanuniversität, Leoben, Austria
| |
Collapse
|
26
|
Minimol M, Vidya Shetty K, Saidutta MB. Bioleaching of zinc from e-waste by A. aquatilis in fluidised bed bioreactor. INDIAN CHEMICAL ENGINEER 2023. [DOI: 10.1080/00194506.2023.2196558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- M. Minimol
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| | - K. Vidya Shetty
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| | - M. B. Saidutta
- Department of Chemical Engineering, National Institute of Technology Karnataka, Mangalore, India
| |
Collapse
|
27
|
Zhang X, Shi H, Tan N, Zhu M, Tan W, Daramola D, Gu T. Advances in bioleaching of waste lithium batteries under metal ion stress. BIORESOUR BIOPROCESS 2023; 10:19. [PMID: 38647921 PMCID: PMC10992134 DOI: 10.1186/s40643-023-00636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023] Open
Abstract
In modern societies, the accumulation of vast amounts of waste Li-ion batteries (WLIBs) is a grave concern. Bioleaching has great potential for the economic recovery of valuable metals from various electronic wastes. It has been successfully applied in mining on commercial scales. Bioleaching of WLIBs can not only recover valuable metals but also prevent environmental pollution. Many acidophilic microorganisms (APM) have been used in bioleaching of natural ores and urban mines. However, the activities of the growth and metabolism of APM are seriously inhibited by the high concentrations of heavy metal ions released by the bio-solubilization process, which slows down bioleaching over time. Only when the response mechanism of APM to harsh conditions is well understood, effective strategies to address this critical operational hurdle can be obtained. In this review, a multi-scale approach is used to summarize studies on the characteristics of bioleaching processes under metal ion stress. The response mechanisms of bacteria, including the mRNA expression levels of intracellular genes related to heavy metal ion resistance, are also reviewed. Alleviation of metal ion stress via addition of chemicals, such as spermine and glutathione is discussed. Monitoring using electrochemical characteristics of APM biofilms under metal ion stress is explored. In conclusion, effective engineering strategies can be proposed based on a deep understanding of the response mechanisms of APM to metal ion stress, which have been used to improve bioleaching efficiency effectively in lab tests. It is very important to engineer new bioleaching strains with high resistance to metal ions using gene editing and synthetic biotechnology in the near future.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ningjie Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Damilola Daramola
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, Ohio, 45701, USA.
| |
Collapse
|
28
|
Abstract
Production of metals stands for 40% of all industrial greenhouse gas emissions, 10% of the global energy consumption, 3.2 billion tonnes of minerals mined, and several billion tonnes of by-products every year. Therefore, metals must become more sustainable. A circular economy model does not work, because market demand exceeds the available scrap currently by about two-thirds. Even under optimal conditions, at least one-third of the metals will also in the future come from primary production, creating huge emissions. Although the influence of metals on global warming has been discussed with respect to mitigation strategies and socio-economic factors, the fundamental materials science to make the metallurgical sector more sustainable has been less addressed. This may be attributed to the fact that the field of sustainable metals describes a global challenge, but not yet a homogeneous research field. However, the sheer magnitude of this challenge and its huge environmental effects, caused by more than 2 billion tonnes of metals produced every year, make its sustainability an essential research topic not only from a technological point of view but also from a basic materials research perspective. Therefore, this paper aims to identify and discuss the most pressing scientific bottleneck questions and key mechanisms, considering metal synthesis from primary (minerals), secondary (scrap), and tertiary (re-mined) sources as well as the energy-intensive downstream processing. Focus is placed on materials science aspects, particularly on those that help reduce CO2 emissions, and less on process engineering or economy. The paper does not describe the devastating influence of metal-related greenhouse gas emissions on climate, but scientific approaches how to solve this problem, through research that can render metallurgy fossil-free. The content is considering only direct measures to metallurgical sustainability (production) and not indirect measures that materials leverage through their properties (strength, weight, longevity, functionality).
Collapse
Affiliation(s)
- Dierk Raabe
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| |
Collapse
|
29
|
Dutta D, Rautela R, Gujjala LKS, Kundu D, Sharma P, Tembhare M, Kumar S. A review on recovery processes of metals from E-waste: A green perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160391. [PMID: 36423849 DOI: 10.1016/j.scitotenv.2022.160391] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
E-waste management has become a global concern because of the enormous rise in the rate of end-of-life electrical and electronic equipment's (EEEs). Disposal of waste EEE directly into the environment leads to adverse effects on the environment as well as on human health. For the management of E-waste, numerous studies have been carried out for extracting metals (base, precious, and rare earth) following pyrometallurgy, hydrometallurgy, and biometallurgy. Irrespective of the advantages of these processes, certain limitations still exist with each of these options in terms of their adoption as treatment techniques. Several journal publications regarding the different processes have been made which aids in future research in the field of E-waste management. This review provides a comprehensive summary of the various metal recovery processes (pyrometallurgy, hydrometallurgy, and biometallurgy) from E-waste, along with their advantages and limitations. A bibliometric study based on the published articles using different keywords in Scopus has been provided for a complete idea about E-waste with green technology perspective like bioleaching, biosorption, etc. The present study also focussed on the circular economic approach towards sustainable E-waste management along with its socio-economic aspects and the economic growth of the country. The present study would provide valuable knowledge in understanding E-waste and its different treatment processes to the students, researchers, industrialists, and policymakers of the country.
Collapse
Affiliation(s)
- Deblina Dutta
- Department of Environmental Science, SRM University- AP, Amaravati, Andhra Pradesh 522 240
| | - Rahul Rautela
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Lohit Kumar Srinivas Gujjala
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Debajyoti Kundu
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Mamta Tembhare
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India.
| |
Collapse
|
30
|
Brindhadevi K, Barceló D, Lan Chi NT, Rene ER. E-waste management, treatment options and the impact of heavy metal extraction from e-waste on human health: Scenario in Vietnam and other countries. ENVIRONMENTAL RESEARCH 2023; 217:114926. [PMID: 36435494 DOI: 10.1016/j.envres.2022.114926] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Ho Chi Minh (HCM) City is the most important urban region of Vietnam, Southeast Asia. In recent times, the quantity of electronic waste (e-waste) has been growing by several thousand tonnes every year. In this research, some of the existing and developing technologies being employed for the recycling of e-waste have been reviewed. Accordingly, the paper has been divided into three sections namely, e-waste treatment technologies in Ho Chi Minh City, the effect of heavy metals on human health and the extraction of metals from e-waste using pyrolysis, hydrometallurgy, bioleaching, mechanical, and air classifier methods, respectively. The extraction of precious metals and heavy metals such as Cd, Cr, Pb, Hg, Cu, Se, and Zn from e-waste can be hazardous to human health. For example, lead causes hazards to the central and peripheral nervous systems, blood system and kidneys; copper causes liver damage; chronic exposure to cadmium ends up causing lung cancer and kidney damage, and mercury can cause brain damage. Thus, this study examines the key findings of many research and review articles published in the field of e-waste management and the health impacts of metal pollution.
Collapse
Affiliation(s)
- Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands.
| |
Collapse
|
31
|
Sarkodie EK, Jiang L, Li K, Yang J, Guo Z, Shi J, Deng Y, Liu H, Jiang H, Liang Y, Yin H, Liu X. A review on the bioleaching of toxic metal(loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Front Microbiol 2022; 13:1049277. [PMID: 36569074 PMCID: PMC9767989 DOI: 10.3389/fmicb.2022.1049277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The anthropogenic activities in agriculture, industrialization, mining, and metallurgy combined with the natural weathering of rocks, have led to severe contamination of soils by toxic metal(loid)s. In an attempt to remediate these polluted sites, a plethora of conventional approaches such as Solidification/Stabilization (S/S), soil washing, electrokinetic remediation, and chemical oxidation/reduction have been used for the immobilization and removal of toxic metal(loid)s in the soil. However, these conventional methods are associated with certain limitations. These limitations include high operational costs, high energy demands, post-waste disposal difficulties, and secondary pollution. Bioleaching has proven to be a promising alternative to these conventional approaches in removing toxic metal(loid)s from contaminated soil as it is cost-effective, environmentally friendly, and esthetically pleasing. The bioleaching process is influenced by factors including pH, temperature, oxygen, and carbon dioxide supply, as well as nutrients in the medium. It is crucial to monitor these parameters before and throughout the reaction since a change in any, for instance, pH during the reaction, can alter the microbial activity and, therefore, the rate of metal leaching. However, research on these influencing factors and recent innovations has brought significant progress in bioleaching over the years. This critical review, therefore, presents the current approaches to bioleaching and the mechanisms involved in removing toxic metal(loid)s from contaminated soil. We further examined and discussed the fundamental principles of various influencing factors that necessitate optimization in the bioleaching process. Additionally, the future perspectives on adding omics for bioleaching as an emerging technology are discussed.
Collapse
Affiliation(s)
- Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
32
|
Aa I, Op A, Ujj I, Mt B. A critical review of oil spills in the Niger Delta aquatic environment: causes, impacts, and bioremediation assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:816. [PMID: 36131120 DOI: 10.1007/s10661-022-10424-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The Niger Delta region in South-South Nigeria, on Africa's West Coast, is densely populated. The region, which contains a substantial stock of crude oil and natural gas, has been nicknamed "the engine room" for Nigeria's economic development and progress. It is responsible for up to 90% of the country's economic growth (or gross domestic product/GDP). The region has multiple ecosystems, such as the aquatic environment, that are critical to the survival of the area's various habitats and living species. However, the same region has witnessed unjustifiable environmental pollution arising from oil activities over the years of exploration and production which has orchestrated negative consequences on the Niger Delta ecosystem. This has led to extended negative consequences on natural resources, which also have detrimental repercussions psychologically, ecologically, socially, economically, and physically which, in turn, impacts the overall health of the affected individuals. This write-up provides an overview of the major drivers of the oil leakage in Nigeria's Niger Delta ecosystem as well as the major impacts on the environment. It will also analyze numerous means of remediation in use and extend such for a more inclusive and productive option. Moreover, this review offers key measures that may help to maintain long-term policies for reducing adverse implications and increasing the living standard for the Niger Delta area's affected communities.
Collapse
Affiliation(s)
- Ikhumetse Aa
- Department of Microbiology, Federal University of Technology, Minna, Nigeria
| | - Abioye Op
- Department of Microbiology, Federal University of Technology, Minna, Nigeria.
| | - Ijah Ujj
- Department of Microbiology, Federal University of Technology, Minna, Nigeria
| | - Bankole Mt
- Department of Chemistry, Federal University of Technology, Minna, Nigeria
| |
Collapse
|
33
|
Khodadadmahmoudi G, Abdollahi H, Mohammadzadeh A, Saneie R, Mirmohammadi M, Rezaei A, Jozanikohan G, Naderi H. Green extraction of nickel and valuable metals from pyrrhotite samples with different crystallographic structures through acidophilic bioleaching. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115394. [PMID: 35751240 DOI: 10.1016/j.jenvman.2022.115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, due to the strategic status of nickel in the global market, utilizing its disregarded resources like low-grade nickel containing pyrrhotite is of significant importance. A comprehensive set of experiments and analyses were performed to determine the bioleaching capability and mechanism for nickel extraction from hexagonal and monoclinic pyrrhotite. Over 95% Ni extraction was achieved from the hexagonal pyrrhotite sample. Ni extraction from the monoclinic sample reached its maximum value of 67% and 90% at 3% pulp density, with mixed mesophilic and moderately thermophilic cultures, respectively. Characterization analyses indicated that jarosite and elemental sulfur formation in mixed mesophilic bioleaching reduced the samples' bio-oxidation rate and metal dissolution. The kinetics study revealed that the controlling step in thermophilic bioleaching is the chemical reaction; however, the mixed control model was best fitted on mesophilic data. Electrochemistry studies confirmed bioleaching results and indicated that monoclinic pyrrhotite's oxidation rate under the operating conditions is faster than hexagonal pyrrhotite, and the temperature positively correlates with the oxidation rate. Toxicity assessment analysis showed that the final residues of both bioleached samples could be considered environmentally safe.
Collapse
Affiliation(s)
| | - Hadi Abdollahi
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | | | - Roozbeh Saneie
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mirsaleh Mirmohammadi
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Rezaei
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Golnaz Jozanikohan
- School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hojat Naderi
- Department of Mining and Metallurgical Engineering, Yazd University, Iran
| |
Collapse
|
34
|
The advanced design of bioleaching process for metal recovery: A machine learning approach. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Roy JJ, Rarotra S, Krikstolaityte V, Zhuoran KW, Cindy YDI, Tan XY, Carboni M, Meyer D, Yan Q, Srinivasan M. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103346. [PMID: 34632652 DOI: 10.1002/adma.202103346] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/14/2021] [Indexed: 06/13/2023]
Abstract
E-waste generated from end-of-life spent lithium-ion batteries (LIBs) is increasing at a rapid rate owing to the increasing consumption of these batteries in portable electronics, electric vehicles, and renewable energy storage worldwide. On the one hand, landfilling and incinerating LIBs e-waste poses environmental and safety concerns owing to their constituent materials. On the other hand, scarcity of metal resources used in manufacturing LIBs and potential value creation through the recovery of these metal resources from spent LIBs has triggered increased interest in recycling spent LIBs from e-waste. State of the art recycling of spent LIBs involving pyrometallurgy and hydrometallurgy processes generates considerable unwanted environmental concerns. Hence, alternative innovative approaches toward the green recycling process of spent LIBs are essential to tackle large volumes of spent LIBs in an environmentally friendly way. Such evolving techniques for spent LIBs recycling based on green approaches, including bioleaching, waste for waste approach, and electrodeposition, are discussed here. Furthermore, the ways to regenerate strategic metals post leaching, efficiently reprocess extracted high-value materials, and reuse them in applications including electrode materials for new LIBs. The concept of "circular economy" is highlighted through closed-loop recycling of spent LIBs achieved through green-sustainable approaches.
Collapse
Affiliation(s)
- Joseph Jegan Roy
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
| | - Saptak Rarotra
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
| | - Vida Krikstolaityte
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
| | - Kenny Wu Zhuoran
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yang Dja-Ia Cindy
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
| | - Xian Yi Tan
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Michael Carboni
- Université de Montpellier, CEA, CNRS, ENSCM; UMR 5257 (ICSM) BP 17171, Bagnols-sur-Cèze Cedex, 30207, France
| | - Daniel Meyer
- Université de Montpellier, CEA, CNRS, ENSCM; UMR 5257 (ICSM) BP 17171, Bagnols-sur-Cèze Cedex, 30207, France
| | - Qingyu Yan
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Madhavi Srinivasan
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, Singapore, 637459, Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
36
|
Makwarimba CP, Tang M, Peng Y, Lu S, Zheng L, Zhao Z, Zhen AG. Assessment of recycling methods and processes for lithium-ion batteries. iScience 2022; 25:104321. [PMID: 35602951 PMCID: PMC9117887 DOI: 10.1016/j.isci.2022.104321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This review discusses physical, chemical, and direct lithium-ion battery recycling methods to have an outlook on future recovery routes. Physical and chemical processes are employed to treat cathode active materials which are the greatest cost contributor in the production of lithium batteries. Direct recycling processes maintain the original chemical structure and process value of battery materials by recovering and reusing them directly. Mechanical separation is essential to liberate cathode materials that are concentrated in the finer size region. However, currently, the cathode active materials are being concentrated at a cut point that is considerably greater than the actual size found in spent batteries. Effective physical methods reduce the cost of subsequent chemical treatment and thereafter re-lithiation successfully reintroduces lithium into spent cathodes. Some of the current challenges are the difficulty in controlling impurities in recovered products and ensuring that the entire recycling process is more sustainable.
Collapse
Affiliation(s)
- Chengetai Portia Makwarimba
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Minghui Tang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yaqi Peng
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Lingxia Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhefei Zhao
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ai-gang Zhen
- Zhejiang Tianneng New Materials Co., Ltd., Huzhou 313000, PR China
| |
Collapse
|
37
|
Yuan B, Huang L, Liu X, Bai L, Liu H, Jiang H, Zhu P, Xiao Y, Geng J, Liu Q, Hao X. Application of mixotrophic acidophiles for the bioremediation of cadmium-contaminated soils elevates cadmium removal, soil nutrient availability, and rice growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113499. [PMID: 35405525 DOI: 10.1016/j.ecoenv.2022.113499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
A major challenge in radically alleviating the threats posed by Cd-contaminated paddy fields to human health is to reduce the Cd levels in both soils and rice grains. In this study, the microbial extraction (ME) treatment using a mixotrophic acidophilic consortium was used for the bioremediation of Cd-contaminated soils. The results showed that the ME treatment enhanced the total Cd (40%) and diethylenetriamine pentaacetic acid-soluble Cd (DTPA-Cd, 64%) removal efficiencies in contaminated soils. In addition, ME treatment decreased the levels of Cd acid-soluble and reducible fractions and thereby reduced Cd uptake in rice tissues. Microbial community analysis indicated that the indigenous soil microbial diversity and composition were not changed after the ME treatment, but the relative abundance of functional microbes associated with Cd removal was improved. Notably, soil available nutrient levels were elevated upon inoculation with mixotrophic acidophiles, resulting in an increase in rice growth and grain weight. This study provides a scientific basis for the potential application and evaluation of ME treatment in the field for remediating Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Baoxing Yuan
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Lihua Huang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Lianyang Bai
- Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Huidan Jiang
- Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ping Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jibiao Geng
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Qianjin Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China
| | - Xiaodong Hao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
38
|
Response Surface Methodology Analysis of the Effect of the Addition of Silicone Oil on the Transfer of Carbon Dioxide during Bioleaching of Mining Tailings by Native Microorganisms. MINERALS 2022. [DOI: 10.3390/min12050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The bioleaching of manganese present in mining waste after metal extraction can be catalyzed by Leptospirillum (L.) ferriphilum by allowing atmospheric carbon dioxide to be used in this autotrophic process and generating the subsequent recovery of silver. Bioleaching of metals is widely performed in agitated tanks; therefore, it is important to assess the mass transfer capacity of gaseous substrates, such as carbon dioxide, during the microbial processes. The main objective of this research was to evaluate the effects of the presence and concentration of a transfer vector (silicone oil) added into a stirred-tank bioreactor during bioleaching of mining tailings catalyzed by L. ferriphilum, determined by the combined gas/oil mass transfer coefficient of carbon dioxide (kLaCO2) into the aqueous phase. The experiments were carried out following a Box–Behnken experimental design, evaluating the concentrations of mining waste (30%, 40%, and 50%), Fe2+, serving as electron donor (2, 8, and 14 g/L), and silicon oil (0%, 5%, and 10%). A significant increase in kLaCO2 was observed after the addition of the transfer vector by comparing the lowest kLaCO2 value of 1.68 h−1 (obtained at 50% pulp, 8 g/L Fe2+, and 0% silicone oil) and the highest kLaCO2 of 21.81 h−1 (obtained at 30% pulp, 2 g/L Fe2+, 5% silicone oil). The results showed statistically significant differences in the transfer of carbon dioxide during the bioleaching process with a transfer vector.
Collapse
|
39
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
40
|
Nili S, Arshadi M, Yaghmaei S. Fungal bioleaching of e-waste utilizing molasses as the carbon source in a bubble column bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114524. [PMID: 35085974 DOI: 10.1016/j.jenvman.2022.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Mobile phones are known as the most widely used electronic instruments, and an enormous number of discarded mobile phones are generated. The present work used a pure culture of Penicillium simplicissimum in a bubble column bioreactor to extract Cu and Ni from mobile phone printed circuit boards (MPPCBs) waste. Molasses was used as an efficient carbon source to enhance bioleaching efficiency and increase the cost benefits. The adaptation phase was done at Erlenmeyer flasks to reach 40 g/L of MPPCBs powder. The most significant parameters, including the mass of MPPCBs powder, aeration, molasses concentration, and their interaction, were optimized in order to leach the maximum possible Cu and Ni using central composite design in response surface methodology (RSM). The model p-values for Cu and Ni recovery were 0.0030 and 0.0348, respectively, emphasizing the model's accuracy. 96.94% of Cu was recovered under 8.8% (v/v) of molasses, aeration rate of 0.29 (l/min), and MPPCBs powder of 10 g/L. The optimized condition of Ni leaching was 1.9% (v/v) of molasses, aeration rate of 0.37 (l/min), and MPPCBs powder of 10 g/L, resulting in 71.51% recovery. The present article demonstrated the great potential of P. simplicissimum to improve metal recovery from e-waste utilizing molasses and bubble column bioreactors.
Collapse
Affiliation(s)
- Sheida Nili
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Mahdokht Arshadi
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Soheila Yaghmaei
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
41
|
Macías-Pérez LA, Levard C, Barakat M, Angeletti B, Borschneck D, Poizat L, Achouak W, Auffan M. Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127470. [PMID: 34687997 DOI: 10.1016/j.jhazmat.2021.127470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Bauxite residue is the alkaline byproduct generated during alumina extraction and is commonly landfilled in open-air deposits. The growth in global alumina production have raised environmental concerns about these deposits since no large-scale reuses exist to date. Microbial-driven techniques including bioremediation and critical metal bio-recovery are now considered sustainable and cost-effective methods to revalorize bauxite residues. However, the establishment of microbial communities and their active role in these strategies are still poorly understood. We thus determined the geochemical composition of different bauxite residues produced in southern France and explored the development of bacterial and fungal communities using Illumina high-throughput sequencing. Physicochemical parameters were influenced differently by the deposit age and the bauxite origin. Taxonomical analysis revealed an early-stage microbial community dominated by haloalkaliphilic microorganisms and strongly influenced by chemical gradients. Microbial richness, diversity and network complexity increased significantly with the deposit age, reaching an equilibrium community composition similar to typical soils after decades of natural weathering. Our results suggested that salinity, pH, and toxic metals affected the bacterial community structure, while fungal community composition showed no clear correlations with chemical variations.
Collapse
Affiliation(s)
- Luis Alberto Macías-Pérez
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France; Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Clément Levard
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Bernard Angeletti
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | - Daniel Borschneck
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | | | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Mélanie Auffan
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
42
|
Yaashikaa PR, Priyanka B, Senthil Kumar P, Karishma S, Jeevanantham S, Indraganti S. A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach. CHEMOSPHERE 2022; 287:132230. [PMID: 34826922 DOI: 10.1016/j.chemosphere.2021.132230] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 05/15/2023]
Abstract
This review is intent on the environmental pollution generated from printed circuit boards and the methods employed to retrieve valuable and hazardous metals present in the e-wastes. Printed circuit boards are the key components in the electronic devices and considered as huge e-pollutants in polluting our surroundings and the environment as a whole. Composing of toxic heavy metals, it causes serious health effects to the plants, animals and humans in the environment. A number of chemical, biological and physical approaches were carried out to recover the precious metals and to remove the hazardous metals from the environment. Chemical leaching is one of the conventional PCBs recycling methods which was carried out by using different organic solvents and chemicals. Need of high cost for execution, generation of secondary wastes in the conventional methods, forces to discover the advanced recycling methods such as hydrometallurgical, bio-metallurgical and bioleaching processes to retrieve the valuable metals generate through e-wastes. Among them, bioleaching process gain extra priority due to its higher efficiency of metal recovery from printed circuit boards. There are different classes of microorganisms have been utilized for precious metal recovery from the PCBs through bioleaching process such as chemolithoautotrophy, heterotrophy and different fungal species including Aspergillus sp. and Penicillium sp. The current status and scope for further studies in printed circuit boards recycling are discussed in this review.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - B Priyanka
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - Sravya Indraganti
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
43
|
Liu F, Chen W, Wan B, Chen H, Ling Z, Chen Z, Fu Z. Recovery of high-grade copper from metal-rich particles of waste printed circuit boards by ball milling and sieving. ENVIRONMENTAL TECHNOLOGY 2022; 43:514-523. [PMID: 32660381 DOI: 10.1080/09593330.2020.1795932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a method of ball milling and sieving is proposed for recovery of high-grade copper from waste printed circuit boards (WPCBs). The effects of the milling time on the metals grade and recovery of the Cu, Sn and Pb during mechanical treatment were investigated. The results showed that, after 3 cycles of ball milling and sieving, the content of Cu was enriched to 94.72 wt.% from the initial 74.22 wt.% with a high recovery rate of 86.78%. Moreover, the contents of Sn and Pb were enriched to 28.27 wt.% and 18.86 wt.% from 10.13 wt.% and 6.63 wt.% in the by-products, respectively. However, excessive grinding occurred when the milling time was longer than 3 h and led to a sharp decrease in Cu recovery. The X-ray diffraction (XRD) patterns indicated that the metal phases mainly comprised pure Cu, Sn, Pb in the WPCB particles, while a Cu-Sn alloy was formed during the milling process, and the Cu-Sn alloy was also enriched in the tailings. The results presented here establish that ball milling and sieving is an alternative approach to recovering high-grade copper from WPCBs.
Collapse
Affiliation(s)
- Fangfang Liu
- Guangdong Key laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, People's Republic of China
- Department of Electromechanical Engineering, Guangdong University of Science and Technology, Dongguan, People's Republic of China
| | - Weiping Chen
- Guangdong Key laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, People's Republic of China
| | - Bingbing Wan
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, People's Republic of China
| | - Huanda Chen
- Guangdong Key laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, People's Republic of China
| | - Zicheng Ling
- Guangdong Key laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, People's Republic of China
| | - Zhiping Chen
- Guangdong Key laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, People's Republic of China
| | - Zhiqiang Fu
- Guangdong Key laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
44
|
Udayakumar S, Razak MIBA, Ismail S. Recovering valuable metals from Waste Printed Circuit Boards (WPCB): A short review. MATERIALS TODAY: PROCEEDINGS 2022; 66:3062-3070. [DOI: 10.1016/j.matpr.2022.07.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
45
|
Roy JJ, Cao B, Madhavi S. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. CHEMOSPHERE 2021; 282:130944. [PMID: 34087562 DOI: 10.1016/j.chemosphere.2021.130944] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
This review discusses the latest trend in recovering valuable metals from spent lithium-ion batteries (LIBs) to meet the technological world's critical metal demands. Spent LIBs are a secondary source of valuable metals such as Li (5%-7%), Ni (5%-10%), Co (5%-25%), Mn (5-11%), and non-metal graphite. Recycling is essential for the battery industry to extract valuable critical metals from secondary sources to develop new and novel high-tech LIBs for various applications such as eco-friendly technologies, renewable energy, emission-free electric vehicles, and energy-saving lightings. LIB waste is currently undergoing high-temperature pyrometallurgical or hydrometallurgical processes to recover valuable metals, and these processes have proven to be successful and feasible. These methods, however, are not preferable due to the difficulties in controlling the process, secondary waste produced, high operational cost, and high risk of scaling up. Biotechnological approaches can be promising alternatives to pyrometallurgical and hydrometallurgical technologies in metal recovery from LIB waste. Microbiological metal dissolution or bioleaching has gained popularity for metal extraction from ores, concentrates, and recycled or residual materials in recent years. This technology is eco-friendly, safe to handle, and reduces operating costs and energy demands. The pre-treatment process (material preparation), microorganisms used in the bioleaching of LIBs, factors influencing the bioleaching process, methods of enhancing the leaching efficiency, regeneration of electrode materials, and future aspects have been discussed in detail.
Collapse
Affiliation(s)
- Joseph Jegan Roy
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, 637459, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637551, Singapore.
| | - Srinivasan Madhavi
- Energy Research Institute @ NTU (ERI@N), SCARCE Laboratory, Nanyang Technological University, 637459, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
46
|
Nguyen TH, Won S, Ha MG, Nguyen DD, Kang HY. Bioleaching for environmental remediation of toxic metals and metalloids: A review on soils, sediments, and mine tailings. CHEMOSPHERE 2021; 282:131108. [PMID: 34119723 DOI: 10.1016/j.chemosphere.2021.131108] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Owing to industrial evolution, a huge mass of toxic metals, including Co, Cu, Cr, Mn, Ni, Pb, and Zn, and metalloids, such as As and Sb, has inevitably been released into the natural environment and accumulated in soils or sediments. Along with modern industrialization, many mineral mines have been explored and exploited to provide materials for industries. Mining industries also generate a vast amount of waste, such as mine tailings, which contain a high concentration of toxic metals and metalloids. Due to the low economic status, a majority of mine tailings are simply disposed into the surrounding environments, without any treatment. The mobilization and migration of toxic metals and metalloids from soils, sediments, and mining wastes to water systems via natural weathering processes put both the ecological system and human health at high risk. Considering both economic and environmental aspects, bioleaching is a preferable option for removing the toxic metals and metalloids because of its low cost and environmental safety. This chapter reviews the recent approaches of bioleaching for removing toxic metals and metalloids from soils, sediments, and mining wastes. The comparison between bioleaching and chemical leaching of various waste sources is also discussed in terms of efficiency and environmental safety. Additionally, the advanced perspectives of bioleaching for environmental remediation with consideration of other influencing factors are reviewed for future studies and applications.
Collapse
Affiliation(s)
| | - Sangmin Won
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| | - Myung-Gyu Ha
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon 16227, South Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
47
|
Krishnamoorthy S, Ramakrishnan G, Dhandapani B. Recovery of valuable metals from waste printed circuit boards using organic acids synthesised by Aspergillus niveus. IET Nanobiotechnol 2021; 15:212-220. [PMID: 34694696 PMCID: PMC8675819 DOI: 10.1049/nbt2.12001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 11/20/2022] Open
Abstract
Organic acids such as citric acid, itaconic acid and oxalic acid synthesised by Aspergillus niveus were used for the bioleaching of metals from waste printed circuit boards. Bioleaching of valuable metals was performed in one‐step, two‐steps and spent medium approaches using A. niveus. In the absence of waste printed circuit boards (WPCBs), the dry cell weight of A. niveus was higher when compared with the presence of WPCBs. Variations in the dry cell weight were observed for the presence of different particle sizes. The increase in itaconic acid and oxalic acid synthesis was found at a reduced particle size (60–80 mesh) and reached the maximum titre of itaconic acid (22.35 ± 0.87 mM) and oxalic acid (12.75 ± 0.54 mM) in 12 days during the two‐step bioleaching. The maximum recovery of 75.66% Zn, 73.58% Ni and 80.25% Cu from WPCBs was achieved in 15 days in two‐step leaching with particle sizes of the mesh being 60–80.
Collapse
Affiliation(s)
- Santhosh Krishnamoorthy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Gnanasekaran Ramakrishnan
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| | - Balaji Dhandapani
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| |
Collapse
|
48
|
Cui J, Zhu N, Mao F, Wu P, Dang Z. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148151. [PMID: 34111782 DOI: 10.1016/j.scitotenv.2021.148151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Using Aspergillus niger (A. niger) to produce low-concentration organic acids is challenging for dissolving In3O2 from waste LCD (liquid crystal display) panels with high toxicity. In this study, three bioleaching approaches from the general and the optimized fermentation systems were investigated respectively to compare indium recovery effects and firstly clarified its bioleaching mechanism. The indium bioleaching efficiency can be improved from 12.3% to 100% by fermentation method optimization. Carboxy groups from organic acids and proteins were the critical substances to release H+ for leaching indium mainly competed with iron via reactions analysis. The effective components increased after optimizing, including the dissociative H+ concentration, the effective carboxyl groups for leaching metal oxides, and the output of oxalic acid. A. niger biomass prevented the contact between H+ and In3O2 and adsorbed In3+ adverse to indium recovery. The bioleaching effects of fermentation broth for indium can be further promoted by controlling bioleaching process parameters.
Collapse
Affiliation(s)
- Jiaying Cui
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment, Tsinghua University, Beijing 100083, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Fulin Mao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
49
|
Anaya-Garzon J, Hubau A, Joulian C, Guezennec AG. Bioleaching of E-Waste: Influence of Printed Circuit Boards on the Activity of Acidophilic Iron-Oxidizing Bacteria. Front Microbiol 2021; 12:669738. [PMID: 34489879 PMCID: PMC8416503 DOI: 10.3389/fmicb.2021.669738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Bioleaching is a promising strategy to recover valuable metals from spent printed circuit boards (PCBs). The performance of the process is catalyzed by microorganisms, which the toxic effect of PCBs can inhibit. This study aimed to investigate the capacity of an acidophilic iron-oxidizing culture, mainly composed of Leptospirillum ferriphilum, to oxidize iron in PCB-enriched environments. The culture pre-adapted to 1% (w/v) PCB content successfully thrived in leachates with the equivalent of 6% of PCBs, containing 8.5 g L–1 Cu, 8 g L–1 Fe, 1 g L–1 Zn, 92 mg L–1 Ni, 12.6 mg L–1 Pb, and 4.4 mg L–1 Co, among other metals. However, the inhibiting effect of PCBs limited the microbial activity by delaying the onset of the exponential iron oxidation. Successive subcultures boosted the activity of the culture by reducing this delay by up to 2.6 times under batch conditions. Subcultures also favored the rapid establishment of high microbial activity in continuous mode.
Collapse
Affiliation(s)
- Juan Anaya-Garzon
- Bureau de Recherches Géologiques et Minières, Orléans, France.,Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Agathe Hubau
- Bureau de Recherches Géologiques et Minières, Orléans, France
| | | | | |
Collapse
|
50
|
Rene ER, Sethurajan M, Kumar Ponnusamy V, Kumar G, Bao Dung TN, Brindhadevi K, Pugazhendhi A. Electronic waste generation, recycling and resource recovery: Technological perspectives and trends. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125664. [PMID: 33838506 DOI: 10.1016/j.jhazmat.2021.125664] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The growing population and increased disposal of end-of-life (EoL) electrical and electronic products have caused serious concerns to the environment and human health. Electronic waste (e-waste) is a growing problem because the quantity and the rate at which it is generated has increased exponentially in the last 5 years. The rapid changes or upgradation in technologies, IT requirements for working or learning from home during COVID-19, manufacturers releasing new electronic gadgets and devices that serves the consumers comfort and a declension in services has contributed to an increase in the e-waste or waste of electrical and electronic equipment (WEEE) generation rates. The current status of e-waste generation, handling procedures and regulatory directives in USA, EU, China, India, Vietnam and Gulf Cooperation Council (GCC) countries are presented in this review. The recent developments in e-waste recycling methods/recovery of base and precious metals, the advantages and limitations of hydrometallurgy, pyrometallurgy, biohydrometallurgy and pyrolysis are discussed. Considering the impediments in the present technologies, the extraction of valuable resources, i.e. precious metals, from e-waste using suitable biocatalysts shows promising applications. This review also stresses on the research needs to assess the economic effects of involving different unit operations/process industries for resource recovery, reuse and recycling.
Collapse
Affiliation(s)
- Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft 2601DA, The Netherlands
| | - Manivannan Sethurajan
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft 2601DA, The Netherlands
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, and Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Thi Ngoc Bao Dung
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|