1
|
Steindl A, Valiente M. Potential of ex vivo organotypic slice cultures in neuro-oncology. Neuro Oncol 2024:noae195. [PMID: 39504579 DOI: 10.1093/neuonc/noae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Over recent decades, in vitro and in vivo models have significantly advanced brain cancer research; however, each presents distinct challenges for accurately mimicking in situ conditions. In response, organotypic slice cultures have emerged as a promising model recapitulating precisely specific in vivo phenotypes through an ex vivo approach. Ex vivo organotypic brain slice models can integrate biological relevance and patient-specific variability early in drug discovery, thereby aiming for more precise treatment stratification. However, the challenges of obtaining representative fresh brain tissue, ensuring reproducibility, and maintaining essential central nervous system (CNS)-specific conditions reflecting the in situ situation over time have limited the direct application of ex vivo organotypic slice cultures in robust clinical trials. In this review, we explore the benefits and possible limitations of ex vivo organotypic brain slice cultures in neuro-oncological research. Additionally, we share insights from clinical experts in neuro-oncology on how to overcome these current limitations and improve the practical application of organotypic brain slice cultures beyond academic research.
Collapse
Affiliation(s)
- Ariane Steindl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
2
|
Nguyen TNH, Horowitz LF, Nguyen B, Lockhart E, Zhu S, Gujral TS, Folch A. Microfluidic Modulation of Microvasculature in Microdissected Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615278. [PMID: 39386436 PMCID: PMC11463410 DOI: 10.1101/2024.09.26.615278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The microvasculature within the tumor microenvironment (TME) plays an essential role in cancer signaling beyond nutrient delivery. However, it has been challenging to control the generation and/or maintenance of microvasculature in ex vivo systems, a critical step for establishing cancer models of high clinical biomimicry. There have been great successes in engineering tissues incorporating microvasculature de novo (e.g., organoids and organs-on-chip), but these reconstituted tissues are formed with non-native cellular and molecular components that can skew certain outcomes such as drug efficacy. Microdissected tumors, on the other hand, show promise in preserving the TME, which is key for creating cancer models that can bridge the gap between bench and bedside. However, microdissected tumors are challenging to perfuse. Here, we developed a microfluidic platform that allows for perfusing the microvasculature of microdissected tumors. We demonstrate that, compared to diffusive transport, microfluidically perfused tissues feature larger and longer microvascular structures, with a better expression of CD31, a marker for endothelial cells, as analyzed by 3D imaging. This study also explores the effects of nitric oxide pathway-related drugs on endothelial cells, which are sensitive to shear stress and can activate endothelial nitric oxide synthase, producing nitric oxide. Our findings highlight the critical role of controlled perfusion and biochemical modulation in preserving tumor microvasculature, offering valuable insights for developing more effective cancer treatments.
Collapse
Affiliation(s)
- Tran N. H. Nguyen
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Brandon Nguyen
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Ethan Lockhart
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| | - Songli Zhu
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, United States
| | - Taranjit S. Gujral
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, United States
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, 98105, United States
| |
Collapse
|
3
|
Basso V, Döbrössy MD, Thompson LH, Kirik D, Fuller HR, Gates MA. State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons. BIOLOGY 2024; 13:690. [PMID: 39336117 PMCID: PMC11428604 DOI: 10.3390/biology13090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Basso
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lachlan H Thompson
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Monte A Gates
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
4
|
Zhou G, Pang S, Li Y, Gao J. Progress in the generation of spinal cord organoids over the past decade and future perspectives. Neural Regen Res 2024; 19:1013-1019. [PMID: 37862203 PMCID: PMC10749595 DOI: 10.4103/1673-5374.385280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 10/22/2023] Open
Abstract
Spinal cord organoids are three-dimensional tissues derived from stem cells that recapitulate the primary morphological and functional characteristics of the spinal cord in vivo. As emerging bioengineering methods have led to the optimization of cell culture protocols, spinal cord organoids technology has made remarkable advancements in the past decade. Our literature search found that current spinal cord organoids do not only dynamically simulate neural tube formation but also exhibit diverse cytoarchitecture along the dorsal-ventral and rostral-caudal axes. Moreover, fused organoids that integrate motor neurons and other regionally specific organoids exhibit intricate neural circuits that allows for functional assessment. These qualities make spinal cord organoids valuable tools for disease modeling, drug screening, and tissue regeneration. By utilizing this emergent technology, researchers have made significant progress in investigating the pathogenesis and potential therapeutic targets of spinal cord diseases. However, at present, spinal cord organoid technology remains in its infancy and has not been widely applied in translational medicine. Establishment of the next generation of spinal cord organoids will depend on good manufacturing practice standards and needs to focus on diverse cell phenotypes and electrophysiological functionality evaluation.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siyuan Pang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Pereira I, Lopez-Martinez MJ, Samitier J. Advances in current in vitro models on neurodegenerative diseases. Front Bioeng Biotechnol 2023; 11:1260397. [PMID: 38026882 PMCID: PMC10658011 DOI: 10.3389/fbioe.2023.1260397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Steiner K, Humpel C. Long-term organotypic brain slices cultured on collagen-based microcontact prints: A perspective for a brain-on-a-chip. J Neurosci Methods 2023; 399:109979. [PMID: 37783349 DOI: 10.1016/j.jneumeth.2023.109979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Organotypic brain slices are three-dimensional 150 µm-thick sections of a postnatal day 10 mouse and can be cultured for several weeks in vitro. In such brain slices the complex cellular connections are preserved with a high viability. These brain slices can be connected to collagen-loaded microcontact prints to develop a simple brain-on-a-chip model. Using the microcontact printing technique, many peptides or proteins can be printed onto a semipermeable membrane and linked to brain slices. On these microcontact prints, brain-derived nerve fibers grow out, or microglia can get activated and migrate out, or also new brain vessels can be formed. Such a brain-on-a-chip model may allow to develop new drugs or a diagnostic method for neurodegenerative diseases.
Collapse
Affiliation(s)
- Katharina Steiner
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
7
|
沈 钧, 欧阳 智, 钟 健, 龙 怡, 孙 誉, 曾 烨. [Research progress on vascularization of organoids]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:625-631. [PMID: 37666751 PMCID: PMC10477383 DOI: 10.7507/1001-5515.202211011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/21/2023] [Indexed: 09/06/2023]
Abstract
Organoids are three-dimensional structures formed by self-organizing growth of cells in vitro, which own many structures and functions similar with those of corresponding in vivo organs. Although the organoid culture technologies are rapidly developed and the original cells are abundant, the organoid cultured by current technologies are rather different with the real organs, which limits their application. The major challenges of organoid cultures are the immature tissue structure and restricted growth, both of which are caused by poor functional vasculature. Therefore, how to develop the vascularization of organoids has become an urgent problem. We presently reviewed the progresses on the original cells of organoids and the current methods to develop organoids vascularization, which provide clues to solve the above-mentioned problems.
Collapse
Affiliation(s)
- 钧怡 沈
- 四川大学 华西基础医学与法医学院 生物医学工程研究室(成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 智 欧阳
- 四川大学 华西基础医学与法医学院 生物医学工程研究室(成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 健 钟
- 四川大学 华西基础医学与法医学院 生物医学工程研究室(成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 怡岑 龙
- 四川大学 华西基础医学与法医学院 生物医学工程研究室(成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 誉珈 孙
- 四川大学 华西基础医学与法医学院 生物医学工程研究室(成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 烨 曾
- 四川大学 华西基础医学与法医学院 生物医学工程研究室(成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
8
|
Exton J, Higgins JMG, Chen J. Acute brain slice elastic modulus decreases over time. Sci Rep 2023; 13:12826. [PMID: 37550376 PMCID: PMC10406937 DOI: 10.1038/s41598-023-40074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
A common benchmark in the brain tissue mechanics literature is that the properties of acute brain slices should be measured within 8 h of the experimental animal being sacrificed. The core assumption is that-since there is no substantial protein degradation during this time-there will be no change to elastic modulus. This assumption overlooks the possibility of other effects (such as osmotic swelling) that may influence the mechanical properties of the tissue. To achieve consistent and accurate analysis of brain mechanics, it is important to account for or mitigate these effects. Using atomic force microscopy (AFM), tissue hydration and volume measurements, we find that acute brain slices in oxygenated artificial cerebrospinal fluid (aCSF) with a standard osmolarity of 300 mOsm/l experience rapid swelling, softening, and increases in hydration within the first 2 hours after slicing. Reductions in elastic modulus can be partly mitigated by addition of chondroitinase ABC enzyme (CHABC). Increasing aCSF osmolarity to 400 mOsm/l does not prevent softening but may hasten equilibration of samples to a point where measurements of relative elastic modulus are consistent across experiments.
Collapse
Affiliation(s)
- John Exton
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
9
|
Delong LM, Ross AE. Open multi-organ communication device for easy interrogation of tissue slices. LAB ON A CHIP 2023; 23:3034-3049. [PMID: 37278087 PMCID: PMC10330603 DOI: 10.1039/d3lc00115f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we have developed an open multi-organ communication device that facilitates cellular and molecular communication between ex vivo organ slices. Measuring communication between organs is vital for understanding the mechanisms of health regulation yet remains difficult with current technology. Communication between organs along the gut-brain-immune axis is a key regulator of gut homeostasis. As a novel application of the device, we have used tissue slices from the Peyer's patch (PP) and mesenteric lymph node (MLN) due to their importance in gut immunity; however, any organ slices could be used here. The device was designed and fabricated using a combination of 3D printed molds for polydimethylsiloxane (PDMS) soft lithography, PDMS membranes, and track-etch porous membranes. To validate cellular and protein transfer between organs on-chip, we used fluorescence microscopy to quantitate movement of fluorescent proteins and cells from the PP to the MLN, replicating the initial response to immune stimuli in the gut. IFN-γ secretion during perfusion from a naïve vs. inflamed PP to a healthy MLN was quantitated to demonstrate soluble signaling molecules are moving on-chip. Finally, transient catecholamine release was measured during perfusion from PP to MLN using fast-scan cyclic voltammetry at carbon-fiber microelectrodes to demonstrate a novel application of the device for real-time sensing during communication. Overall, we show an open-well multi-organ device capable of facilitating transfer of soluble factors and cells with the added benefit of being available for external analysis techniques like electrochemical sensing which will advance abilities to probe communication in real-time across multiple organs ex vivo.
Collapse
Affiliation(s)
- Lauren M Delong
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
10
|
Chen K, Li Y, Wang B, Yan X, Tao Y, Song W, Xi Z, He K, Xia Q. Patient-derived models facilitate precision medicine in liver cancer by remodeling cell-matrix interaction. Front Immunol 2023; 14:1101324. [PMID: 37215109 PMCID: PMC10192760 DOI: 10.3389/fimmu.2023.1101324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Liver cancer is an aggressive tumor originating in the liver with a dismal prognosis. Current evidence suggests that liver cancer is the fifth most prevalent cancer worldwide and the second most deadly type of malignancy. Tumor heterogeneity accounts for the differences in drug responses among patients, emphasizing the importance of precision medicine. Patient-derived models of cancer are widely used preclinical models to study precision medicine since they preserve tumor heterogeneity ex vivo in the study of many cancers. Patient-derived models preserving cell-cell and cell-matrix interactions better recapitulate in vivo conditions, including patient-derived xenografts (PDXs), induced pluripotent stem cells (iPSCs), precision-cut liver slices (PCLSs), patient-derived organoids (PDOs), and patient-derived tumor spheroids (PDTSs). In this review, we provide a comprehensive overview of the different modalities used to establish preclinical models for precision medicine in liver cancer.
Collapse
Affiliation(s)
- Kaiwen Chen
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Bingran Wang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Xuehan Yan
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiying Tao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weizhou Song
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
11
|
Kim H, Jang EJ, Sankpal NV, Patel M, Patel R. Recent Development of Brain Organoids for Biomedical Application. Macromol Biosci 2023; 23:e2200346. [PMID: 36469016 DOI: 10.1002/mabi.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Over the years, scientists have studied the behavior and anatomy of many animals to understand the own species. However, despite the continuous efforts, it is often difficult to know for certain how the brain works due to the differences between the brains of animals and the human brain. While the use of animal models for research continues, the origin of human cognition and neurological disorders needs further elucidation. To that end, in vitro organoids that exhibit in vivo characteristics of the human brain have been recently developed. These brain-like organoids enable researchers to dive deeper into understanding the human brain, its neurological structures, and the causes of neurological pathologies. This paper reviews the recent developments in the regeneration of brain-like organoids using Matrigel and other alternatives. Further, gel-free methods that may enhance the regeneration process of organoids are discussed. Finally, the vascularized brain organoid growth and development in both in vitro and in vivo conditions are detailed.
Collapse
Affiliation(s)
- HanSol Kim
- Bio-Convergence (BC), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Eun Jo Jang
- Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Narendra V Sankpal
- Norton Thoracic Institute St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon, 21938, South Korea
| |
Collapse
|
12
|
Kamikubo Y, Jin H, Zhou Y, Niisato K, Hashimoto Y, Takasugi N, Sakurai T. Ex vivo analysis platforms for monitoring amyloid precursor protein cleavage. Front Mol Neurosci 2023; 15:1068990. [PMID: 36683852 PMCID: PMC9852844 DOI: 10.3389/fnmol.2022.1068990] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most common cause of dementia in the elderly. The presence of large numbers of senile plaques, neurofibrillary tangles, and cerebral atrophy is the characteristic feature of AD. Amyloid β peptide (Aβ), derived from the amyloid precursor protein (APP), is the main component of senile plaques. AD has been extensively studied using methods involving cell lines, primary cultures of neural cells, and animal models; however, discrepancies have been observed between these methods. Dissociated cultures lose the brain's tissue architecture, including neural circuits, glial cells, and extracellular matrix. Experiments with animal models are lengthy and require laborious monitoring of multiple parameters. Therefore, it is necessary to combine these experimental models to understand the pathology of AD. An experimental platform amenable to continuous observation and experimental manipulation is required to analyze long-term neuronal development, plasticity, and progressive neurodegenerative diseases. In the current study, we provide a practical method to slice and cultivate rodent hippocampus to investigate the cleavage of APP and secretion of Aβ in an ex vivo model. Furthermore, we provide basic information on Aβ secretion using slice cultures. Using our optimized method, dozens to hundreds of long-term stable slice cultures can be coordinated simultaneously. Our findings are valuable for analyses of AD mouse models and senile plaque formation culture models.
Collapse
|
13
|
Targeting the "hallmarks of aging" to slow aging and treat age-related disease: fact or fiction? Mol Psychiatry 2023; 28:242-255. [PMID: 35840801 PMCID: PMC9812785 DOI: 10.1038/s41380-022-01680-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023]
Abstract
Aging is a major risk factor for a number of chronic diseases, including neurodegenerative and cerebrovascular disorders. Aging processes have therefore been discussed as potential targets for the development of novel and broadly effective preventatives or therapeutics for age-related diseases, including those affecting the brain. Mechanisms thought to contribute to aging have been summarized under the term the "hallmarks of aging" and include a loss of proteostasis, mitochondrial dysfunction, altered nutrient sensing, telomere attrition, genomic instability, cellular senescence, stem cell exhaustion, epigenetic alterations and altered intercellular communication. We here examine key claims about the "hallmarks of aging". Our analysis reveals important weaknesses that preclude strong and definitive conclusions concerning a possible role of these processes in shaping organismal aging rate. Significant ambiguity arises from the overreliance on lifespan as a proxy marker for aging, the use of models with unclear relevance for organismal aging, and the use of study designs that do not allow to properly estimate intervention effects on aging rate. We also discuss future research directions that should be taken to clarify if and to what extent putative aging regulators do in fact interact with aging. These include multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate.
Collapse
|
14
|
Castiglione H, Vigneron PA, Baquerre C, Yates F, Rontard J, Honegger T. Human Brain Organoids-on-Chip: Advances, Challenges, and Perspectives for Preclinical Applications. Pharmaceutics 2022; 14:2301. [PMID: 36365119 PMCID: PMC9699341 DOI: 10.3390/pharmaceutics14112301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
There is an urgent need for predictive in vitro models to improve disease modeling and drug target identification and validation, especially for neurological disorders. Cerebral organoids, as alternative methods to in vivo studies, appear now as powerful tools to decipher complex biological processes thanks to their ability to recapitulate many features of the human brain. Combining these innovative models with microfluidic technologies, referred to as brain organoids-on-chips, allows us to model the microenvironment of several neuronal cell types in 3D. Thus, this platform opens new avenues to create a relevant in vitro approach for preclinical applications in neuroscience. The transfer to the pharmaceutical industry in drug discovery stages and the adoption of this approach by the scientific community requires the proposition of innovative microphysiological systems allowing the generation of reproducible cerebral organoids of high quality in terms of structural and functional maturation, and compatibility with automation processes and high-throughput screening. In this review, we will focus on the promising advantages of cerebral organoids for disease modeling and how their combination with microfluidic systems can enhance the reproducibility and quality of these in vitro models. Then, we will finish by explaining why brain organoids-on-chips could be considered promising platforms for pharmacological applications.
Collapse
Affiliation(s)
- Héloïse Castiglione
- NETRI, 69007 Lyon, France
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
| | - Pierre-Antoine Vigneron
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
- Sup’Biotech, Ecole D’ingénieurs, 66 Rue Guy Môquet, 94800 Villejuif, France
| | | | - Frank Yates
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
- Sup’Biotech, Ecole D’ingénieurs, 66 Rue Guy Môquet, 94800 Villejuif, France
| | | | | |
Collapse
|
15
|
Cryan MT, Li Y, Ross AE. Sustained delivery of focal ischemia coupled to real-time neurochemical sensing in brain slices. LAB ON A CHIP 2022; 22:2173-2184. [PMID: 35531656 PMCID: PMC9156565 DOI: 10.1039/d1lc00908g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Local stimulation of tissue can occur naturally in events like immune-mediated inflammation and focal ischemic injuries in brain and is confined to specific regions within tissue, occurring on various timescales. Making chemical measurements at the exact site of stimulation with current technologies is difficult yet important for understanding tissue response. We have developed a microfluidic device capable of local stimulation of brain slices with minimal lateral spread over time and submillimeter, tunable spatial resolution. This device is compatible with electrochemical measurements to monitor signaling at the site of stimulation over time. The PDMS-based device is three layers and contains a culture well, channel layer, and exit port layer for the channels. Channels with exit ports straddling the stimulus channels and ports were specifically fabricated to focus the stimulus over time. We demonstrated that the device is compatible with fast-scan cyclic voltammetry (FSCV) recording of neurotransmitter release. Localized hypoxia in tissue was verified using Image-iT Green Hypoxia Reagent and coupling this device with FSCV enabled measurement of local dopamine changes at the site of focal ischemia for the first time. This work provides a significant advance in knowledge of local neurochemical fluctuations during sustained tissue injury. Overall, the unique capabilities of the device to deliver sustained localized stimulation combined with real-time sensing provide an innovative platform to answer significant biological questions about how tissues respond at the site of controlled, localized injury and chemical stimulation.
Collapse
Affiliation(s)
- Michael T Cryan
- University of Cincinnati, Department of Chemistry, 312 College Drive, 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Yuxin Li
- University of Cincinnati, Department of Chemistry, 312 College Drive, 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- University of Cincinnati, Department of Chemistry, 312 College Drive, 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
16
|
Alternative Brain Slice-on-a-Chip for Organotypic Culture and Effective Fluorescence Injection Testing. Int J Mol Sci 2022; 23:ijms23052549. [PMID: 35269696 PMCID: PMC8910551 DOI: 10.3390/ijms23052549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022] Open
Abstract
Mouse brain slices are one of the most common models to study brain development and functioning, increasing the number of study models that integrate microfluidic systems for hippocampal slice cultures. This report presents an alternative brain slice-on-a-chip, integrating an injection system inside the chip to dispense a fluorescent dye for long-term monitoring. Hippocampal slices have been cultured inside these chips, observing fluorescence signals from living cells, maintaining the cytoarchitecture of the slices. Having fluorescence images of biological samples inside the chip demonstrates the effectiveness of the staining process using the injection method avoiding leaks or biological contamination. The technology developed in this study presents a significant improvement in the local administration of reagents within a brain slice-on-a-chip system, which could be a suitable option for organotypic cultures in a microfluidic chip acting as a highly effective bioreactor.
Collapse
|
17
|
Sharma NS, Karan A, Lee D, Yan Z, Xie J. Advances in Modeling Alzheimer's Disease In Vitro. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
18
|
Yang H, Wang Y, Wang P, Zhang N, Wang P. Tumor organoids for cancer research and personalized medicine. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0335. [PMID: 34520134 PMCID: PMC8958892 DOI: 10.20892/j.issn.2095-3941.2021.0335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022] Open
Abstract
Organoids are three-dimensional culture systems generated from embryonic stem cells, induced pluripotent stem cells, and adult stem cells. They are capable of cell proliferation, differentiation, and self-renewal. Upon stimulation by signal factors and/or growth factors, organoids self-assemble to replicate the morphological and structural characteristics of the corresponding organs. They provide an extraordinary platform for investigating organ development and mimicking pathological processes. Organoid biobanks derived from a wide range of carcinomas have been established to represent different lesions or stages of clinical tumors. Importantly, genomic and transcriptomic analyses have confirmed maintenance of intra- and interpatient heterogeneities in organoids. Therefore, this technology has the potential to revolutionize drug screening and personalized medicine. In this review, we summarized the characteristics and applications of organoids in cancer research by the establishment of organoid biobanks directly from tumor organoids or from genetically modified non-cancerous organoids. We also analyzed the current state of organoid applications in drug screening and personalized medicine.
Collapse
Affiliation(s)
- Hui Yang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Yinuo Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Peng Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Pengyuan Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
- Division of General Surgery, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
19
|
Assessing the Potential of Molecular Imaging for Myelin Quantification in Organotypic Cultures. Pharmaceutics 2021; 13:pharmaceutics13070975. [PMID: 34203246 PMCID: PMC8309097 DOI: 10.3390/pharmaceutics13070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Ex vivo models for the noninvasive study of myelin-related diseases represent an essential tool to understand the mechanisms of diseases and develop therapies against them. Herein, we assessed the potential of multimodal imaging traceable myelin-targeting liposomes to quantify myelin in organotypic cultures. Methods: MRI testing was used to image mouse cerebellar tissue sections and organotypic cultures. Demyelination was induced by lysolecithin treatment. Myelin-targeting liposomes were synthetized and characterized, and their capacity to quantify myelin was tested by fluorescence imaging. Results: Imaging of freshly excised tissue sections ranging from 300 µm to 1 mm in thickness was achieved with good contrast between white (WM) and gray matter (GM) using T2w MRI. The typical loss of stiffness, WM structures, and thickness of organotypic cultures required the use of diffusion-weighted methods. Designed myelin-targeting liposomes allowed for semiquantitative detection by fluorescence, but the specificity for myelin was not consistent between assays due to the unspecific binding of liposomes. Conclusions: With respect to the sensitivity, imaging of brain tissue sections and organotypic cultures by MRI is feasible, and myelin-targeting nanosystems are a promising solution to quantify myelin ex vivo. With respect to specificity, fine tuning of the probe is required. Lipid-based systems may not be suitable for this goal, due to unspecific binding to tissues.
Collapse
|
20
|
Wavreil FDM, Poon J, Wessel GM, Yajima M. Light-induced, spatiotemporal control of protein in the developing embryo of the sea urchin. Dev Biol 2021; 478:13-24. [PMID: 34147471 DOI: 10.1016/j.ydbio.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
Differential protein regulation is a critical biological process that regulates cellular activity and controls cell fate determination. It is especially important during early embryogenesis when post-transcriptional events predominate differential fate specification in many organisms. Light-induced approaches have been a powerful technology to interrogate protein functions with temporal and spatial precision, even at subcellular levels within a cell by controlling laser irradiation on the confocal microscope. However, application and efficacy of these tools need to be tested for each model system or for the cell type of interest because of the complex nature of each system. Here, we introduce two types of light-induced approaches to track and control proteins at a subcellular level in the developing embryo of the sea urchin. We found that the photoconvertible fluorescent protein Kaede is highly efficient to distinguish pre-existing and newly synthesized proteins with no apparent phototoxicity, even when interrogating proteins associated with the mitotic spindle. Further, chromophore-assisted light inactivation (CALI) using miniSOG successfully inactivated target proteins of interest in the vegetal cortex and selectively delayed or inhibited asymmetric cell division. Overall, these light-induced manipulations serve as important molecular tools to identify protein function for for subcellular interrogations in developing embryos.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Jessica Poon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA.
| |
Collapse
|
21
|
Nie X, Liang Z, Li K, Yu H, Huang Y, Ye L, Yang Y. Novel organoid model in drug screening: Past, present, and future. LIVER RESEARCH 2021. [DOI: 10.1016/j.livres.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Saleheen A, Acharyya D, Prosser RA, Baker CA. A microfluidic bubble perfusion device for brain slice culture. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1364-1373. [PMID: 33644791 DOI: 10.1039/d0ay02291h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ex vivo brain slice cultures are utilized as analytical models for studying neurophysiology. Common approaches to maintaining slice cultures include roller tube and membrane interface techniques. The rise of organ-on-chip technologies has demonstrated the value of microfluidic perfusion culture systems for sampling and analysis of complex biology under well-controlled in vitro or ex vivo conditions. A number of approaches to microfluidic brain slice culture have been developed, however these typically involve complex design, fabrication, or operational parameters in order to meet the high oxygen demands of brain slices. Here, we present proof-of-principle for a novel approach to microfluidic brain slice culture. In this system, which we term a microfluidic bubble perfusion device, principles of droplet microfluidics were employed to generate droplets of perfusion media dispersed between bubbles of carbogen gas, and brain tissue slices were perfused with the resulting monodispersed droplets and bubbles. The challenge of tissue immobilization in the flow system was addressed using a two-part cytocompatible carbohydrate-based tissue adhesive. Best practices are discussed for perfusion chamber designs that maintain segmented flow throughout the course of perfusion. Control of droplet and bubble volumes was possible across the range of ca. 4-15 μL, bubble generation frequency was well controlled in the range ca. 1-7 bubbles per min, and bubble duty cycle was well controlled across the range ca. 20-80%. Murine hypothalamic tissue slices containing the suprachiasmatic nuclei were successfully maintained for durations of 8-10 hours, with tissue remaining viable for the duration of perfusion as assessed by Ca2+ imaging and propidium iodide (PI) staining.
Collapse
Affiliation(s)
- Amirus Saleheen
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
23
|
Ucar B, Kajtez J, Foidl BM, Eigel D, Werner C, Long KR, Emnéus J, Bizeau J, Lomora M, Pandit A, Newland B, Humpel C. Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures. Acta Biomater 2021; 121:250-262. [PMID: 33242639 DOI: 10.1016/j.actbio.2020.11.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Protection or repair of the nigrostriatal pathway represents a principal disease-modifying therapeutic strategy for Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) holds great therapeutic potential for PD, but its efficacious delivery remains difficult. The aim of this study was to evaluate the potential of different biomaterials (hydrogels, microspheres, cryogels and microcontact printed surfaces) for reconstructing the nigrostriatal pathway in organotypic co-culture of ventral mesencephalon and dorsal striatum. The biomaterials (either alone or loaded with GDNF) were locally applied onto the brain co-slices and fiber growth between the co-slices was evaluated after three weeks in culture based on staining for tyrosine hydroxylase (TH). Collagen hydrogels loaded with GDNF slightly promoted the TH+ nerve fiber growth towards the dorsal striatum, while GDNF loaded microspheres embedded within the hydrogels did not provide an improvement. Cryogels alone or loaded with GDNF also enhanced TH+ fiber growth. Lines of GDNF immobilized onto the membrane inserts via microcontact printing also significantly improved TH+ fiber growth. In conclusion, this study shows that various biomaterials and tissue engineering techniques can be employed to regenerate the nigrostriatal pathway in organotypic brain slices. This comparison of techniques highlights the relative merits of different technologies that researchers can use/develop for neuronal regeneration strategies.
Collapse
Affiliation(s)
- Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Janko Kajtez
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Denmark
| | - Bettina M Foidl
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Germany
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Denmark
| | - Joëlle Bizeau
- SFI Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Mihai Lomora
- SFI Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- SFI Research Centre for Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
24
|
Das S, Tiwari M, Mondal D, Sahoo BR, Tiwari DK. Growing tool-kit of photosensitizers for clinical and non-clinical applications. J Mater Chem B 2020; 8:10897-10940. [PMID: 33165483 DOI: 10.1039/d0tb02085k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photosensitizers are photosensitive molecules utilized in clinical and non-clinical applications by taking advantage of light-mediated reactive oxygen generation, which triggers local and systemic cellular toxicity. Photosensitizers are used for diverse biological applications such as spatio-temporal inactivation of a protein in a living system by chromophore-assisted light inactivation, localized cell photoablation, photodynamic and immuno-photodynamic therapy, and correlative light-electron microscopy imaging. Substantial efforts have been made to develop several genetically encoded, chemically synthesized, and nanotechnologically driven photosensitizers for successful implementation in redox biology applications. Genetically encoded photosensitizers (GEPS) or reactive oxygen species (ROS) generating proteins have the advantage of using them in the living system since they can be manipulated by genetic engineering with a variety of target-specific genes for the precise spatio-temporal control of ROS generation. The GEPS variety is limited but is expanding with a variety of newly emerging GEPS proteins. Apart from GEPS, a large variety of chemically- and nanotechnologically-empowered photosensitizers have been developed with a major focus on photodynamic therapy-based cancer treatment alone or in combination with pre-existing treatment methods. Recently, immuno-photodynamic therapy has emerged as an effective cancer treatment method using smartly designed photosensitizers to initiate and engage the patient's immune system so as to empower the photosensitizing effect. In this review, we have discussed various types of photosensitizers, their clinical and non-clinical applications, and implementation toward intelligent efficacy, ROS efficiency, and target specificity in biological systems.
Collapse
Affiliation(s)
- Suman Das
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao Plateau, Goa 403206, India.
| | | | | | | | | |
Collapse
|
25
|
Shoemaker JT, Zhang W, Atlas SI, Bryan RA, Inman SW, Vukasinovic J. A 3D Cell Culture Organ-on-a-Chip Platform With a Breathable Hemoglobin Analogue Augments and Extends Primary Human Hepatocyte Functions in vitro. Front Mol Biosci 2020; 7:568777. [PMID: 33195413 PMCID: PMC7645268 DOI: 10.3389/fmolb.2020.568777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Remarkable advances in three-dimensional (3D) cell cultures and organ-on-a-chip technologies have opened the door to recapitulate complex aspects of human physiology, pathology, and drug responses in vitro. The challenges regarding oxygen delivery, throughput, assay multiplexing, and experimental complexity are addressed to ensure that perfused 3D cell culture organ-on-a-chip models become a routine research tool adopted by academic and industrial stakeholders. To move the field forward, we present a throughput-scalable organ-on-a-chip insert system that requires a single tube to operate 48 statistically independent 3D cell culture organ models. Then, we introduce in-well perfusion to circumvent the loss of cell signaling and drug metabolites in otherwise one-way flow of perfusate. Further, to augment the relevancy of 3D cell culture models in vitro, we tackle the problem of oxygen transport by blood using, for the first time, a breathable hemoglobin analog to improve delivery of respiratory gases to cells, because in vivo approximately 98% of oxygen delivery to cells takes place via reversible binding to hemoglobin. Next, we show that improved oxygenation shifts cellular metabolic pathways toward oxidative phosphorylation that contributes to the maintenance of differentiated liver phenotypes in vitro. Lastly, we demonstrate that the activity of cytochrome P450 family of drug metabolizing enzymes is increased and prolonged in primary human hepatocytes cultured in 3D compared to two-dimensional (2D) cell culture gold standard with important ramifications for drug metabolism, drug-drug interactions and pharmacokinetic studies in vitro.
Collapse
Affiliation(s)
| | - Wanrui Zhang
- Lena Biosciences, Inc., Atlanta, GA, United States
| | | | | | | | | |
Collapse
|
26
|
Papaspyropoulos A, Tsolaki M, Foroglou N, Pantazaki AA. Modeling and Targeting Alzheimer's Disease With Organoids. Front Pharmacol 2020; 11:396. [PMID: 32300301 PMCID: PMC7145390 DOI: 10.3389/fphar.2020.00396] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Human neurodegenerative diseases, such as Alzheimer’s disease (AD), are not easily modeled in vitro due to the inaccessibility of brain tissue and the level of complexity required by existing cell culture systems. Three-dimensional (3D) brain organoid systems generated from human pluripotent stem cells (hPSCs) have demonstrated considerable potential in recapitulating key features of AD pathophysiology, such as amyloid plaque- and neurofibrillary tangle-like structures. A number of AD brain organoid models have also been used as platforms to assess the efficacy of pharmacological agents in disease progression. However, despite the fact that stem cell-derived brain organoids mimic early aspects of brain development, they fail to model complex cell-cell interactions pertaining to different regions of the human brain and aspects of natural processes such as cell differentiation and aging. Here, we review current advances and limitations accompanying several hPSC-derived organoid methodologies, as well as recent attempts to utilize them as therapeutic platforms. We additionally discuss comparative benefits and disadvantages of the various hPSC-derived organoid generation protocols and differentiation strategies. Lastly, we provide a comparison of hPSC-derived organoids to primary tissue-derived organoids, examining the future potential and advantages of both systems in modeling neurodegenerative disorders, especially AD.
Collapse
Affiliation(s)
- Angelos Papaspyropoulos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magdalini Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nicolas Foroglou
- Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
27
|
Chatterjee K, Carman-Esparza CM, Munson JM. Methods to measure, model and manipulate fluid flow in brain. J Neurosci Methods 2020; 333:108541. [PMID: 31838183 PMCID: PMC7607555 DOI: 10.1016/j.jneumeth.2019.108541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023]
Abstract
The brain consists of a complex network of cells and matrix that is cushioned and nourished by multiple types of fluids: cerebrospinal fluid, blood, and interstitial fluid. The movement of these fluids through the tissues has recently gained more attention due to implications in Alzheimer's Disease and glioblastoma. Therefore, methods to study these fluid flows are necessary and timely for the current study of neuroscience. Imaging modalities such as magnetic resonance imaging have been used clinically and pre-clinically to image flows in healthy and diseased brains. These measurements have been used to both parameterize and validate models of fluid flow both computational and in vitro. Both of these models can elucidate the changes to fluid flow that occur during disease and can assist in linking the compartments of fluid flow with one another, a difficult challenge experimentally. In vitro models, though in limited use with fluid flow, allow the examination of cellular responses to physiological flow. To determine causation, in vivo methods have been developed to manipulate flow, including both physical and pharmacological manipulations, at each point of fluid movement of origination resulting in exciting findings in the preclinical setting. With new targets, such as the brain-draining lymphatics and glymphatic system, fluid flow and tissue drainage within the brain is an exciting and growing research area. In this review, we discuss the methods that currently exist to examine and test hypotheses related to fluid flow in the brain as we attempt to determine its impact on neural function.
Collapse
Affiliation(s)
- Krishnashis Chatterjee
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Cora M Carman-Esparza
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jennifer M Munson
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
28
|
Mori T, Cukelj R, Prévôt ME, Ustunel S, Story A, Gao Y, Diabre K, McDonough JA, Freeman EJ, Hegmann E, Clements RJ. 3D Porous Liquid Crystal Elastomer Foams Supporting Long-term Neuronal Cultures. Macromol Rapid Commun 2020; 41:e1900585. [PMID: 32009277 DOI: 10.1002/marc.201900585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Indexed: 02/05/2023]
Abstract
3D liquid crystal elastomer (3D-LCE) foams are used to support long-term neuronal cultures for over 60 days. Sequential imaging shows that cell density remains relatively constant throughout the culture period while the number of cells per observational area increases. In a subset of samples, retinoic acid is used to stimulate extensive neuritic outgrowth and maturation of proliferated neurons within the LCEs, inducing a threefold increase in length with cells displaying morphologies indicative of mature neurons. Designed LCEs' micro-channels have a similar diameter to endogenous parenchymal arterioles, ensuring that neurons throughout the construct have constant access to growth media during extended experiments. Here it is shown that 3D-LCEs provide a unique environment and simple method to longitudinally study spatial neuronal function, not possible in conventional culture environments, with simplistic integration into existing methodological pipelines.
Collapse
Affiliation(s)
- Taizo Mori
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Richard Cukelj
- Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Marianne Estelle Prévôt
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Senay Ustunel
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Chemical Physics Interdisciplinary Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Anna Story
- Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Yunxiang Gao
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Karene Diabre
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Jennifer Ann McDonough
- Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Biomedical Sciences Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Brain Health Research Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Ernest Johnson Freeman
- Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Biomedical Sciences Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Brain Health Research Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Elda Hegmann
- Advanced Materials and Liquid Crystal Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Biomedical Sciences Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Brain Health Research Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Chemical Physics Interdisciplinary Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| | - Robert John Clements
- Department of Biological Sciences, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Biomedical Sciences Program, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA.,Brain Health Research Institute, 1425 Lefton Esplanade, Kent State University, Kent, Ohio, 44242-0001, USA
| |
Collapse
|
29
|
Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu J, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. NEUROLOGÍA (ENGLISH EDITION) 2020. [PMCID: PMC7148713 DOI: 10.1016/j.nrleng.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Horowitz LF, Rodriguez AD, Ray T, Folch A. Microfluidics for interrogating live intact tissues. MICROSYSTEMS & NANOENGINEERING 2020; 6:69. [PMID: 32879734 PMCID: PMC7443437 DOI: 10.1038/s41378-020-0164-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
The intricate microarchitecture of tissues - the "tissue microenvironment" - is a strong determinant of tissue function. Microfluidics offers an invaluable tool to precisely stimulate, manipulate, and analyze the tissue microenvironment in live tissues and engineer mass transport around and into small tissue volumes. Such control is critical in clinical studies, especially where tissue samples are scarce, in analytical sensors, where testing smaller amounts of analytes results in faster, more portable sensors, and in biological experiments, where accurate control of the cellular microenvironment is needed. Microfluidics also provides inexpensive multiplexing strategies to address the pressing need to test large quantities of drugs and reagents on a single biopsy specimen, increasing testing accuracy, relevance, and speed while reducing overall diagnostic cost. Here, we review the use of microfluidics to study the physiology and pathophysiology of intact live tissues at sub-millimeter scales. We categorize uses as either in vitro studies - where a piece of an organism must be excised and introduced into the microfluidic device - or in vivo studies - where whole organisms are small enough to be introduced into microchannels or where a microfluidic device is interfaced with a live tissue surface (e.g. the skin or inside an internal organ or tumor) that forms part of an animal larger than the device. These microfluidic systems promise to deliver functional measurements obtained directly on intact tissue - such as the response of tissue to drugs or the analysis of tissue secretions - that cannot be obtained otherwise.
Collapse
Affiliation(s)
- Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Adán D. Rodriguez
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Tyler Ray
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822 USA
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
31
|
Olubajo F, Achawal S, Greenman J. Development of a Microfluidic Culture Paradigm for Ex Vivo Maintenance of Human Glioblastoma Tissue: A New Glioblastoma Model? Transl Oncol 2019; 13:1-10. [PMID: 31726354 PMCID: PMC6854064 DOI: 10.1016/j.tranon.2019.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND: One way to overcome the genetic and molecular variations within glioblastoma is to treat each tumour on an individual basis. To facilitate this, we have developed a microfluidic culture paradigm that maintains human glioblastoma tissue ex vivo. METHODS: The assembled device, fabricated using a photolithographic process, is composed of two layers of glass bonded together to contain a tissue chamber and a network of microchannels that allow continued tissue perfusion. RESULTS: A total of 128 tissue biopsies (from 33 patients) were maintained in microfluidic devices for an average of 72 hours. Tissue viability (measured with Annexin V and propidium iodide) was 61.1% in tissue maintained on chip compared with 68.9% for fresh tissue analysed at commencement of the experiments. Other biomarkers, including lactate dehydrogenase absorbance and trypan blue exclusion, supported the viability of the tissue maintained on chip. Histological appearances remained unchanged during the tissue maintenance period, and immunohistochemical analysis of Ki67 and caspase 3 showed no significant differences when compared with fresh tissues. A trend showed that tumours associated with poorer outcomes (recurrent tumours and Isocitrate Dehydrogenase - IDH wildtype) displayed higher viability on chip than tumours linked with improved outcomes (low-grade gliomas, IDH mutants and primary tumours). conclusions: This work has demonstrated for the first time that human glioblastoma tissue can be successfully maintained within a microfluidic device and has the potential to be developed as a new platform for studying the biology of brain tumours, with the long-term aim of replacing current preclinical GBM models and facilitating personalised treatments.
Collapse
Affiliation(s)
- Farouk Olubajo
- Department of Neurosurgery, Hull and East Yorkshire Hospitals, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK.
| | - Shailendra Achawal
- Department of Neurosurgery, Hull and East Yorkshire Hospitals, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ, UK
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| |
Collapse
|
32
|
OTA N, KANDA GN, MORIGUCHI H, AISHAN Y, SHEN Y, YAMADA RG, UEDA HR, TANAKA Y. A Microfluidic Platform Based on Robust Gas and Liquid Exchange for Long-term Culturing of Explanted Tissues. ANAL SCI 2019; 35:1141-1147. [DOI: 10.2116/analsci.19p099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | | | - Yigang SHEN
- Center for Biosystems Dynamics Research, RIKEN
| | | | - Hiroki R. UEDA
- Center for Biosystems Dynamics Research, RIKEN
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo
| | - Yo TANAKA
- Center for Biosystems Dynamics Research, RIKEN
| |
Collapse
|
33
|
Abstract
Brain organoids are self-assembled three-dimensional aggregates generated from pluripotent stem cells with cell types and cytoarchitectures that resemble the embryonic human brain. As such, they have emerged as novel model systems that can be used to investigate human brain development and disorders. Although brain organoids mimic many key features of early human brain development at molecular, cellular, structural and functional levels, some aspects of brain development, such as the formation of distinct cortical neuronal layers, gyrification, and the establishment of complex neuronal circuitry, are not fully recapitulated. Here, we summarize recent advances in the development of brain organoid methodologies and discuss their applications in disease modeling. In addition, we compare current organoid systems to the embryonic human brain, highlighting features that currently can and cannot be recapitulated, and discuss perspectives for advancing current brain organoid technologies to expand their applications.
Collapse
Affiliation(s)
- Xuyu Qian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Abstract
The aim of this study was to vascularize brain organoids with a patient's own endothelial cells (ECs). Induced pluripotent stem cells (iPSCs) of one UC Davis patient were grown into whole-brain organoids. Simultaneously, iPSCs from the same patient were differentiated into ECs. On day 34, the organoid was re-embedded in Matrigel with 250 000 ECs. Vascularized organoids were grown in vitro for 3-5 weeks or transplanted into immunodeficient mice on day 54, and animals were perfused on day 68. Coating of brain organoids on day 34 with ECs led to robust vascularization of the organoid after 3-5 weeks in vitro and 2 weeks in vivo. Human CD31-positive blood vessels were found inside and in-between rosettes within the center of the organoid after transplantation. Vascularization of brain organoids with a patient's own iPSC-derived ECs is technically feasible.
Collapse
|
35
|
Shim S, Belanger MC, Harris AR, Munson JM, Pompano RR. Two-way communication between ex vivo tissues on a microfluidic chip: application to tumor-lymph node interaction. LAB ON A CHIP 2019; 19:1013-1026. [PMID: 30742147 PMCID: PMC6416076 DOI: 10.1039/c8lc00957k] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Experimentally accessible tools to replicate the complex biological events of in vivo organs offer the potential to reveal mechanisms of disease and potential routes to therapy. In particular, models of inter-organ communication are emerging as the next essential step towards creating a body-on-a-chip, and may be particularly useful for poorly understood processes such as tumor immunity. In this paper, we report the first multi-compartment microfluidic chip that continuously recirculates a small volume of media through two ex vivo tissue samples to support inter-organ cross-talk via secreted factors. To test on-chip communication, protein release and capture were quantified using well-defined artificial tissue samples and model proteins. Proteins released by one sample were transferred to the downstream reservoir and detectable in the downstream sample. Next, the chip was applied to model the communication between a tumor and a lymph node, to test whether on-chip dual-organ culture could recreate key features of tumor-induced immune suppression. Slices of murine lymph node were co-cultured with tumor or healthy tissue on-chip with recirculating media, then tested for their ability to respond to T cell stimulation. Interestingly, lymph node slices co-cultured with tumor slices appeared more immunosuppressed than those co-cultured with healthy tissue, suggesting that the chip may successfully model some features of tumor-immune interaction. In conclusion, this new microfluidic system provides on-chip co-culture of pairs of tissue slices under continuous recirculating flow, and has the potential to model complex inter-organ communication ex vivo with full experimental accessibility of the tissues and their media.
Collapse
Affiliation(s)
- Sangjo Shim
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
36
|
Simeone K, Guay-Lord R, Lateef MA, Péant B, Kendall-Dupont J, Orimoto AM, Carmona E, Provencher D, Saad F, Gervais T, Mes-Masson AM. Paraffin-embedding lithography and micro-dissected tissue micro-arrays: tools for biological and pharmacological analysis of ex vivo solid tumors. LAB ON A CHIP 2019; 19:693-705. [PMID: 30671574 DOI: 10.1039/c8lc00982a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is an urgent need and strong clinical and pharmaceutical interest in developing assays that allow for the direct testing of therapeutic agents on primary tissues. Current technologies fail to provide the required sample longevity, throughput, and integration with standard clinically proven assays to make the approach viable. Here we report a microfluidic micro-histological platform that enables ex vivo culture of a large array of prostate and ovarian cancer micro-dissected tissue (MDT) followed by direct on-chip fixation and paraffination, a process we term paraffin-embedding lithography (PEL). The result is a high density MDT-Micro Array (MDTMA) compatible with standard clinical histopathology that can be used to analyse ex vivo tumor response or resistance to therapeutic agents. The cellular morphology and tissue architecture are preserved in MDTs throughout the 15 day culture period. We also demonstrate how this methodology can be used to study molecular pathways involved in cancer by performing in-depth characterization of biological and pharmacological mechanisms such as p65 nuclear translocation via TNF stimuli, and to predict the treatment outcome in the clinic via MDT response to taxane-based therapies.
Collapse
Affiliation(s)
- Kayla Simeone
- Centre de recherche du CHUM (CRCHUM)/Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Romero-Leguizamón CR, Elnagar MR, Kristiansen U, Kohlmeier KA. Increasing cellular lifespan with a flow system in organotypic culture of the Laterodorsal Tegmentum (LDT). Sci Rep 2019; 9:1486. [PMID: 30728375 PMCID: PMC6365664 DOI: 10.1038/s41598-018-37606-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Organotypic brain culture is an experimental tool widely used in neuroscience studies. One major drawback of this technique is reduced neuronal survival across time, which is likely exacerbated by the loss of blood flow. We have designed a novel, tube flow system, which is easily incorporated into the commonly-used, standard semi-permeable membrane culture methodology which has significantly enhanced neuronal survival in a brain stem nucleus involved in control of motivated and arousal states: the laterodorsal tegmental nucleus (LDT). Our automated system provides nutrients and removes waste in a comparatively aseptic environment, while preserving temperature, and oxygen levels. Using immunohistochemistry and electrophysiology, our system was found superior to standard techniques in preserving tissue quality and survival of LDT cells for up to 2 weeks. In summary, we provide evidence for the first time that the LDT can be preserved in organotypic slice culture, and further, our technical improvements of adding a flow system, which likely enhanced perfusion to the slice, were associated with enhanced neuronal survival. Our perfusion system is expected to facilitate organotypic experiments focused on chronic stimulations and multielectrode recordings in the LDT, as well as enhance neuronal survival in slice cultures originating from other brain regions.
Collapse
Affiliation(s)
- César R Romero-Leguizamón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mohamed R Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark.
| |
Collapse
|
38
|
Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener 2018; 13:27. [PMID: 29788997 PMCID: PMC5964712 DOI: 10.1186/s13024-018-0258-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field.
Collapse
Affiliation(s)
- Eduarda G Z Centeno
- Department of Biotechnology, Federal University of Pelotas, Campus Capão do Leão, Pelotas, RS, 96160-000, Brazil.,Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Angela Bithell
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading, RG6 6UB, UK.
| |
Collapse
|
39
|
Weng W, Li D, Peng C, Behnisch T. Recording Synaptic Plasticity in Acute Hippocampal Slices Maintained in a Small-volume Recycling-, Perfusion-, and Submersion-type Chamber System. J Vis Exp 2018. [PMID: 29364264 DOI: 10.3791/55936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Even though experiments on brain slices have been in use since 1951, problems remain that reduce the probability of achieving a stable and successful analysis of synaptic transmission modulation when performing field potential or intracellular recordings. This manuscript describes methodological aspects that might be helpful in improving experimental conditions for the maintenance of acute brain slices and for recording field excitatory postsynaptic potentials in a commercially available submersion chamber with an outflow-carbogenation unit. The outflow-carbogenation helps to stabilize the oxygen level in experiments that rely on the recycling of a small buffer reservoir to enhance the cost-efficiency of drug experiments. In addition, the manuscript presents representative experiments that examine the effects of different carbogenation modes and stimulation paradigms on the activity-dependent synaptic plasticity of synaptic transmission.
Collapse
Affiliation(s)
- Weiguang Weng
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, the Collaborative Innovation Center for Brain Science, Fudan University
| | - Dongxue Li
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, the Collaborative Innovation Center for Brain Science, Fudan University
| | - Cheng Peng
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, the Collaborative Innovation Center for Brain Science, Fudan University
| | - Thomas Behnisch
- The Institutes of Brain Science, the State Key Laboratory of Medical Neurobiology, the Collaborative Innovation Center for Brain Science, Fudan University;
| |
Collapse
|
40
|
Bandini SB, Spechler JA, Donnelly PE, Lim K, Arnold CB, Schwarzbauer JE, Schwartz J. Perforation Does Not Compromise Patterned Two-Dimensional Substrates for Cell Attachment and Aligned Spreading. ACS Biomater Sci Eng 2017; 3:3123-3127. [PMID: 33445355 DOI: 10.1021/acsbiomaterials.7b00339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymeric sheets were perforated by laser ablation and were uncompromised by a debris field when first treated with a thin layer of photoresist. Polymer sheets perforated with holes comprising 5, 10, and 20% of the nominal surface area were then patterned in stripes by photolithography, which was followed by synthesis in exposed regions of a cell-attractive zirconium oxide-1,4-butanediphosphonic acid interface. Microscopic and scanning electron microscopy analyses following removal of unexposed photoresist show well-aligned stripes for all levels of these perforations. NIH 3T3 fibroblasts plated on each of these perforated surfaces attached to the interface and spread in alignment with pattern fidelity in every case that is as high as that measured on a nonperforated, patterned substrate.
Collapse
Affiliation(s)
- Stephen B Bandini
- Department of Chemistry, ‡Department of Mechanical and Aerospace Engineering, §Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Joshua A Spechler
- Department of Chemistry, Department of Mechanical and Aerospace Engineering, §Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Patrick E Donnelly
- Department of Chemistry, Department of Mechanical and Aerospace Engineering, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Kelly Lim
- Department of Chemistry, Department of Mechanical and Aerospace Engineering, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Craig B Arnold
- Department of Chemistry, Department of Mechanical and Aerospace Engineering, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Jean E Schwarzbauer
- Department of Chemistry, Department of Mechanical and Aerospace Engineering, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Jeffrey Schwartz
- Department of Chemistry, Department of Mechanical and Aerospace Engineering, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
41
|
A Microfluidic Platform for the Characterisation of CNS Active Compounds. Sci Rep 2017; 7:15692. [PMID: 29146949 PMCID: PMC5691080 DOI: 10.1038/s41598-017-15950-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/03/2017] [Indexed: 01/19/2023] Open
Abstract
New in vitro technologies that assess neuronal excitability and the derived synaptic activity within a controlled microenvironment would be beneficial for the characterisation of compounds proposed to affect central nervous system (CNS) function. Here, a microfluidic system with computer controlled compound perfusion is presented that offers a novel methodology for the pharmacological profiling of CNS acting compounds based on calcium imaging readouts. Using this system, multiple applications of the excitatory amino acid glutamate (10 nM–1 mM) elicited reproducible and reversible transient increases in intracellular calcium, allowing the generation of a concentration response curve. In addition, the system allows pharmacological investigations to be performed as evidenced by application of glutamatergic receptor antagonists, reversibly inhibiting glutamate-induced increases in intracellular calcium. Importantly, repeated glutamate applications elicited significant increases in the synaptically driven activation of the adjacent, environmentally isolated neuronal network. Therefore, the proposed new methodology will enable neuropharmacological analysis of CNS active compounds whilst simultaneously determining their effect on synaptic connectivity.
Collapse
|
42
|
Watson DE, Hunziker R, Wikswo JP. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med (Maywood) 2017; 242:1559-1572. [PMID: 29065799 DOI: 10.1177/1535370217732765] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microphysiological systems (MPS), which include engineered organoids (EOs), single organ/tissue chips (TCs), and multiple organs interconnected to create miniature in vitro models of human physiological systems, are rapidly becoming effective tools for drug development and the mechanistic understanding of tissue physiology and pathophysiology. The second MPS thematic issue of Experimental Biology and Medicine comprises 15 articles by scientists and engineers from the National Institutes of Health, the IQ Consortium, the Food and Drug Administration, and Environmental Protection Agency, an MPS company, and academia. Topics include the progress, challenges, and future of organs-on-chips, dissemination of TCs into Pharma, children's health protection, liver zonation, liver chips and their coupling to interconnected systems, gastrointestinal MPS, maturation of immature cardiomyocytes in a heart-on-a-chip, coculture of multiple cell types in a human skin construct, use of synthetic hydrogels to create EOs that form neural tissue models, the blood-brain barrier-on-a-chip, MPS models of coupled female reproductive organs, coupling MPS devices to create a body-on-a-chip, and the use of a microformulator to recapitulate endocrine circadian rhythms. While MPS hardware has been relatively stable since the last MPS thematic issue, there have been significant advances in cell sourcing, with increased reliance on human-induced pluripotent stem cells, and in characterization of the genetic and functional cell state in MPS bioreactors. There is growing appreciation of the need to minimize perfusate-to-cell-volume ratios and respect physiological scaling of coupled TCs. Questions asked by drug developers are followed by an analysis of the potential value, costs, and needs of Pharma. Of highest value and lowest switching costs may be the development of MPS disease models to aid in the discovery of disease mechanisms; novel compounds including probes, leads, and clinical candidates; and mechanism of action of drug candidates. Impact statement Microphysiological systems (MPS), which include engineered organoids and both individual and coupled organs-on-chips and tissue chips, are a rapidly growing topic of research that addresses the known limitations of conventional cellular monoculture on flat plastic - a well-perfected set of techniques that produces reliable, statistically significant results that may not adequately represent human biology and disease. As reviewed in this article and the others in this thematic issue, MPS research has made notable progress in the past three years in both cell sourcing and characterization. As the field matures, currently identified challenges are being addressed, and new ones are being recognized. Building upon investments by the Defense Advanced Research Projects Agency, National Institutes of Health, Food and Drug Administration, Defense Threat Reduction Agency, and Environmental Protection Agency of more than $200 million since 2012 and sizable corporate spending, academic and commercial players in the MPS community are demonstrating their ability to meet the translational challenges required to apply MPS technologies to accelerate drug development and advance toxicology.
Collapse
Affiliation(s)
| | - Rosemarie Hunziker
- 2 National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Wikswo
- 3 Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics & Astronomy, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235-1807, USA
| |
Collapse
|
43
|
Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. Neurologia 2017; 35:32-39. [PMID: 28863829 PMCID: PMC7115679 DOI: 10.1016/j.nrl.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/07/2022] Open
Abstract
Introducción El uso de modelos experimentales en animales permite aumentar el conocimiento sobre la patología del sistema nervioso central. Sin embargo, en la esclerosis múltiple, no existe un modelo que permita una visión general de la enfermedad, de forma que es necesario utilizar una variedad de modelos que abarquen los distintos cambios que se producen. Desarrollo Se revisan los distintos modelos experimentales que pueden ser utilizados en la investigación en la esclerosis múltiple, tanto in vitro como in vivo. En relación a los modelos in vitro se analizan los distintos cultivos celulares y sus potenciales modificaciones así como los modelos en rodajas. En los modelos in vivo, se analizan los modelos de base inmune-inflamatoria como la encefalitis alérgica experimental en los distintos animales, además de las enfermedades desmielinizantes por virus. Por otro lado, se analizan los modelos de desmielinización-remielinización incluyéndose las lesiones químicas por cuprizona, lisolecitina, bromuro de etidio, así como el modelo de zebrafish y los modelos transgénicos. Conclusiones Los modelos experimentales nos permiten acercarnos al conocimiento de los diversos mecanismos que ocurren en la esclerosis múltiple. La utilización de cada uno de ellos depende de los objetivos de investigación que planteen.
Collapse
Affiliation(s)
- L Torre-Fuentes
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - L Moreno-Jiménez
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - V Pytel
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Matías-Guiu
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - U Gómez-Pinedo
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J Matías-Guiu
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
44
|
Abstract
Recent breakthroughs in pluripotent stem cell technologies have enabled a new class of in vitro systems for functional modeling of human brain development. These advances, in combination with improvements in neural differentiation methods, allow the generation of in vitro systems that reproduce many in vivo features of the brain with remarkable similarity. Here, we describe advances in the development of these methods, focusing on neural rosette and organoid approaches, and compare their relative capabilities and limitations. We also discuss current technical hurdles for recreating the cell-type complexity and spatial architecture of the brain in culture and offer potential solutions.
Collapse
|
45
|
Wang L, Tao T, Su W, Yu H, Yu Y, Qin J. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. LAB ON A CHIP 2017; 17:1749-1760. [PMID: 28418422 DOI: 10.1039/c7lc00134g] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diabetic nephropathy is a major chronic renal complication of diabetes mellitus, and is the leading cause of end-stage kidney diseases. Establishing a disease model of diabetic nephropathy in vitro can accelerate the understanding of its mechanisms and pharmaceutical development. We provide the proof-of-principle for using a glomerulus-on-a-chip microdevice that reconstitutes organ-level kidney functions to create a human disease model of early stage diabetic nephropathy on chip. The microfluidic device, which recapitulates the glomerular microenvironment, consists of parallel channels lined by isolated primary glomerular microtissues that experience fluid flow to mimic the glomerular filtration barrier (GFB), including glomerular endothelial cells, 3D basement membrane and podocytes. This device was used to reproduce high glucose-induced critical pathological responses in diabetic nephropathy as observed in humans. The results reveal that hyperglycemia plays a crucial role in the development of increased barrier permeability to albumin and glomerular dysfunction that lead to proteinuria. This organ-on-a-chip microdevice mimics the critical pathological responses of glomerulus that are characteristic of diabetic nephropathy that has not been possible by cell-based and animal models, providing a useful platform for studying the mechanism of diabetic nephropathy and developing an effective therapy in glomerular diseases.
Collapse
Affiliation(s)
- Li Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Tingting Tao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Wentao Su
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Hao Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Yue Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Paci P, Gabriele S, Ris L. A new method allowing long-term potentiation recordings in hippocampal organotypic slices. Brain Behav 2017; 7:e00692. [PMID: 28523233 PMCID: PMC5434196 DOI: 10.1002/brb3.692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hippocampal organotypic slices are used to improve the understanding of synaptic plasticity mechanisms because they allow longer term studies compared to acute slices. However, it is more delicate to keep cultures alive in the recording system outside in vitro conditions. Experiments from the organotypic cultures are common but the handling of slices is rarely described in the literature, even though tissue preservation is crucial. Instruments are sometimes required to extract the slices from the culture inserts but this approach is delicate and can lead to damage, given how strongly the slices are attached to the insert. METHODS A new configuration is proposed to secure the transfer of slices from the incubator to the recording chamber through an adaptor piece that can be designed for any model of chamber and/or insert. The adaptor is a Plexiglas ring in which a culture insert containing the slice can be easily introduced and stabilized. This system allows slices to be placed in the interface for electrophysiological investigations without having to detach them from the insert. That way, no damage is caused and the recording system can safely hold the slices, maintaining them close to culture conditions. RESULTS In addition to the description of the adaptation system, slices were characterized. Their viability was validated and microglial expression was observed. According to the experimental conditions, neuroprotective ramified microgliocytes are present. Dendritic spines studies were also performed to determine neuronal network maturity in culture. Moreover, SKF 83822 hydrobromide and three trains of 100 pulses at 100 Hz with a 10-min inter-train interval are suggested to induce long-term potentiation and to record an increase of fEPSP amplitude and slope. CONCLUSION This paper provides detailed information on the preparation and characterization of hippocampal organotypic slices, a new recording configuration more suitable for cultures, and a long-term potentiation protocol combining SKF and trains.
Collapse
Affiliation(s)
- Paula Paci
- Neuroscience Unit Research Institute for Health Sciences and Technology University of Mons - UMONS Mons Belgium
| | - Sylvain Gabriele
- Mechanobiology & Soft Matter Group Interfaces and Complex Fluids Laboratory Research Institute for Biosciences University of Mons - UMONS Mons Belgium
| | - Laurence Ris
- Neuroscience Unit Research Institute for Health Sciences and Technology University of Mons - UMONS Mons Belgium
| |
Collapse
|
47
|
Gong W, Senčar J, Bakkum DJ, Jäckel D, Obien MEJ, Radivojevic M, Hierlemann AR. Multiple Single-Unit Long-Term Tracking on Organotypic Hippocampal Slices Using High-Density Microelectrode Arrays. Front Neurosci 2016; 10:537. [PMID: 27920665 PMCID: PMC5118563 DOI: 10.3389/fnins.2016.00537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
A novel system to cultivate and record from organotypic brain slices directly on high-density microelectrode arrays (HD-MEA) was developed. This system allows for continuous recording of electrical activity of specific individual neurons at high spatial resolution while monitoring at the same time, neuronal network activity. For the first time, the electrical activity patterns of single neurons and the corresponding neuronal network in an organotypic hippocampal slice culture were studied during several consecutive weeks at daily intervals. An unsupervised iterative spike-sorting algorithm, based on PCA and k-means clustering, was developed to assign the activities to the single units. Spike-triggered average extracellular waveforms of an action potential recorded across neighboring electrodes, termed “footprints” of single-units were generated and tracked over weeks. The developed system offers the potential to study chronic impacts of drugs or genetic modifications on individual neurons in slice preparations over extended times.
Collapse
Affiliation(s)
- Wei Gong
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering ETH Zürich, Basel, Switzerland
| | - Jure Senčar
- Faculty of Electrical Engineering, University of Ljubljana Ljubljana, Slovenia
| | - Douglas J Bakkum
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering ETH Zürich, Basel, Switzerland
| | - David Jäckel
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering ETH Zürich, Basel, Switzerland
| | - Marie Engelene J Obien
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering ETH Zürich, Basel, Switzerland
| | - Milos Radivojevic
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering ETH Zürich, Basel, Switzerland
| | - Andreas R Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering ETH Zürich, Basel, Switzerland
| |
Collapse
|
48
|
Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V. Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioeng Transl Med 2016; 1:63-81. [PMID: 29313007 PMCID: PMC5689508 DOI: 10.1002/btm2.10013] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
The implementation of microfluidic devices within life sciences has furthered the possibilities of both academic and industrial applications such as rapid genome sequencing, predictive drug studies, and single cell manipulation. In contrast to the preferred two‐dimensional cell‐based screening, three‐dimensional (3D) systems have more in vivo relevance as well as ability to perform as a predictive tool for the success or failure of a drug screening campaign. 3D cell culture has shown an adaptive response to the recent advancements in microfluidic technologies which has allowed better control over spheroid sizes and subsequent drug screening studies. In this review, we highlight the most significant developments in the field of microfluidic 3D culture over the past half‐decade with a special focus on their benefits and challenges down the lane. With the newer technologies emerging, implementation of microfluidic 3D culture systems into the drug discovery pipeline is right around the bend.
Collapse
Affiliation(s)
- Nilesh Gupta
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | - Jeffrey R Liu
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | | | - Deepak E Solomon
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | | | - Vivek Gupta
- School of Pharmacy Keck Graduate Institute Claremont CA 91711
| |
Collapse
|
49
|
Liu J, Pan L, Cheng X, Berdichevsky Y. Perfused drop microfluidic device for brain slice culture-based drug discovery. Biomed Microdevices 2016; 18:46. [PMID: 27194028 PMCID: PMC5563980 DOI: 10.1007/s10544-016-0073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Living slices of brain tissue are widely used to model brain processes in vitro. In addition to basic neurophysiology studies, brain slices are also extensively used for pharmacology, toxicology, and drug discovery research. In these experiments, high parallelism and throughput are critical. Capability to conduct long-term electrical recording experiments may also be necessary to address disease processes that require protein synthesis and neural circuit rewiring. We developed a novel perfused drop microfluidic device for use with long term cultures of brain slices (organotypic cultures). Slices of hippocampus were placed into wells cut in polydimethylsiloxane (PDMS) film. Fluid level in the wells was hydrostatically controlled such that a drop was formed around each slice. The drops were continuously perfused with culture medium through microchannels. We found that viable organotypic hippocampal slice cultures could be maintained for at least 9 days in vitro. PDMS microfluidic network could be readily integrated with substrate-printed microelectrodes for parallel electrical recordings of multiple perfused organotypic cultures on a single MEA chip. We expect that this highly scalable perfused drop microfluidic device will facilitate high-throughput drug discovery and toxicology.
Collapse
Affiliation(s)
- Jing Liu
- Department of Electrical and Computer Engineering, Lehigh University, 111 Research Dr. D-320, Bethlehem, PA, 18015, USA
| | - Liping Pan
- Materials Science and Engineering Department, Lehigh University, Bethlehem, PA, 18015, USA
| | - Xuanhong Cheng
- Materials Science and Engineering Department, Lehigh University, Bethlehem, PA, 18015, USA
- Bioengineering Program, Lehigh University, Bethlehem, PA, 18015, USA
| | - Yevgeny Berdichevsky
- Department of Electrical and Computer Engineering, Lehigh University, 111 Research Dr. D-320, Bethlehem, PA, 18015, USA.
- Bioengineering Program, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
50
|
Raju ENS, Kuechler J, Behling S, Sridhar S, Hirseland E, Tronnier V, Zechel C. Maintenance of Stemlike Glioma Cells and Microglia in an Organotypic Glioma Slice Model. Neurosurgery 2016; 77:629-43; discussion 643. [PMID: 26308638 DOI: 10.1227/neu.0000000000000891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The therapeutic resistance of gliomas is, at least in part, due to stemlike glioma cells (SLGCs), which self-renew, generate the bulk of tumor cells, and sustain tumor growth. SLGCs from glioblastomas (GB) have been studied in cell cultures or mouse models, whereas little is known about SLGCs from lower grade gliomas. OBJECTIVE To compare cell and organotypic slice cultures from GBs and lower grade gliomas and study the maintenance of SLGCs. METHODS Cells and tissue slices from astrocytomas, oligodendrogliomas, oligoastrocytomas, and GBs were cultivated in (1) serum-free medium supplemented with the growth factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), (2) medium containing 10% serum plus EGF and bFGF (F+GF medium), or (3) medium containing 10% fetal calf serum (F medium). Maintenance of cells and cytoarchitecture was addressed, using several candidate SLGC markers (Nestin, Sox2, CD133, CD44, CD49f/integrin α6, and Notch) as well as CD31 (endothelial cells), ionized calcium-binding adapter molecule 1 (microglia), and vimentin. Cell vitality was determined. RESULTS SLGCs were present in tissue slices from lower and higher grade gliomas. Preservation of the cytoarchitecture in slices was possible for >3 weeks. Maintenance of SLGCs required the presence of EGF/bFGF in cell and slice cultures, in which F+GF appeared superior to N medium. Constraints were observed regarding the preservation of the microglia but not of the endothelial cells. Maintenance of the microglia was improved by addition of the cytokine macrophage colony-stimulating factor. CONCLUSION Medium supplemented with serum and growth factors EGF, bFGF, and macrophage colony-stimulating factor permits the preservation of SLGCs and non-SLGCs in the original glioma microenvironment.
Collapse
Affiliation(s)
- E N Sanjaya Raju
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|