1
|
Giribaldi M, Nebbia S, Briard-Bion V, Jardin J, Ménard O, Dupont D, Coscia A, Cresi F, Lamberti C, Cavallarin L, Deglaire A. Peptidomic profile of human milk as influenced by fortification with different protein sources: An in vitro dynamic digestion simulation. Food Chem 2025; 462:140886. [PMID: 39213965 DOI: 10.1016/j.foodchem.2024.140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Fortification of human milk (HM) is often necessary to meet the nutritional requirements of preterm infants. The present experiment aimed to establish whether the supplementation of HM with either an experimental donkey milk-derived fortifier containing whole donkey milk proteins, or with a commercial bovine milk-derived fortifier containing hydrolyzed bovine whey proteins, affects peptide release differently during digestion. The experiment was conducted using an in vitro dynamic system designed to simulate the preterm infant's digestion followed by digesta analysis by means of LC-MS-MS. The different fortifiers did not appear to influence the cumulative intensity of HM peptides. Fortification had a differential impact on the release of either donkey or bovine bioactive peptides. Donkey milk peptides showed antioxidant/ACE inhibitory activities, while bovine peptides showed opioid, dipeptil- and propyl endo- peptidase inhibitory and antimicrobial activity. A slight delay in peptide release from human lactoferrin and α-lactalbumin was observed when HM was supplemented with donkey milk-derived fortifier.
Collapse
Affiliation(s)
- Marzia Giribaldi
- CNR Institute of Sciences of Food Production, Largo Braccini 2, 10095 Grugliasco, TO, Italy.
| | - Stefano Nebbia
- CNR Institute of Sciences of Food Production, Largo Braccini 2, 10095 Grugliasco, TO, Italy; INRAE, L'Institut Agro, Science et Technologie du Lait et de l'Oeuf, 65 Rue de St Brieuc, 35042 Rennes, France
| | - Valerie Briard-Bion
- INRAE, L'Institut Agro, Science et Technologie du Lait et de l'Oeuf, 65 Rue de St Brieuc, 35042 Rennes, France.
| | - Julien Jardin
- INRAE, L'Institut Agro, Science et Technologie du Lait et de l'Oeuf, 65 Rue de St Brieuc, 35042 Rennes, France.
| | - Olivia Ménard
- INRAE, L'Institut Agro, Science et Technologie du Lait et de l'Oeuf, 65 Rue de St Brieuc, 35042 Rennes, France.
| | - Didier Dupont
- INRAE, L'Institut Agro, Science et Technologie du Lait et de l'Oeuf, 65 Rue de St Brieuc, 35042 Rennes, France.
| | - Alessandra Coscia
- Neonatal Unit, University of Turin, City of Health and Science of Turin, via Ventimiglia 3, 10126 Turin, Italy.
| | - Francesco Cresi
- Neonatal Unit, University of Turin, City of Health and Science of Turin, via Ventimiglia 3, 10126 Turin, Italy.
| | - Cristina Lamberti
- CNR Institute of Sciences of Food Production, Largo Braccini 2, 10095 Grugliasco, TO, Italy.
| | - Laura Cavallarin
- CNR Institute of Sciences of Food Production, Largo Braccini 2, 10095 Grugliasco, TO, Italy.
| | - Amélie Deglaire
- INRAE, L'Institut Agro, Science et Technologie du Lait et de l'Oeuf, 65 Rue de St Brieuc, 35042 Rennes, France.
| |
Collapse
|
2
|
Zhao J, Lei Y, Zhang X, Li Z. A bibliometric analysis of global research on short chain fatty acids in neurological diseases. Medicine (Baltimore) 2024; 103:e40102. [PMID: 39465784 PMCID: PMC11479477 DOI: 10.1097/md.0000000000040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The interest on short chain fatty acids (SCFAs) regulating the progress of neurological diseases has gained significant attention in recent years. This bibliometric analysis aimed to provide insights into the current state and future trends of global research on SCFAs in neurological research. METHODS To analysis the general trend of publications, the scientific output in this field from 1995 to 2024 was first retrieved from the Web of Science Core Collection, Scopus, and PubMed with SCFAs-related and neurological diseases related terms as the subjects. Based on above publication analysis, rapid development stage was marked as 2016 to 2024 and 878 relevant original articles in rapid development stage was retrieved with the time limit from 2016 to 2024. Key bibliometric indicators were calculated and evaluated using CiteSpace with these 878 articles. RESULTS SCFAs are related to the occurrence and development of neurological diseases. China and the USA have contributed in a significant way to foster a better understanding on SCFAs in neurological diseases. The hot theme of research have gradually shifted from neurodegenerative diseases to psychical diseases. In the aspect of mechanism research, the current hotspot is inflammation. SCFAs are able to modulate oxidative stress and microglia maturation, morphology and function to intervene in the development of neurological diseases and thus SCFAs interventions are promising to treat neurological diseases. 2016 to 2024 is the fast-developing stage in this field. In this stage the publications dramatically increased and were of high quality. CONCLUSION SCFAs in neurological research will continue to be an active area in the near future. Future trends might be correlation analysis and neurotherapeutics of SCFAs on patients with psychical diseases and deeper mechanism research is still needed.
Collapse
Affiliation(s)
- Jiuhong Zhao
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yihan Lei
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyuan Zhang
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Zhihong Li
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Petrella L, Polito R, Catapano A, Santillo A, Ciliberti MG, Sevi A, Messina A, Cavaliere G, Marino F, Polverino MG, Messina G, Monda M, Mollica MP, Crispino M, Cimmino F, Albenzio M, Trinchese G. Goat Milk Supplementation Modulates the Mitochondrial Metabolic Flexibility and Orexin-A Levels Influencing the Inflammatory Pattern in Rats. Antioxidants (Basel) 2024; 13:1054. [PMID: 39334713 PMCID: PMC11429022 DOI: 10.3390/antiox13091054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Milk and its derivatives are included in a balanced diet of humans as excellent sources of proteins, vitamins, and essential minerals that are functional nutrients. Knowledge about the nutritional benefits or harms due to milk consumption has been expanding in recent years. We previously explored, in rodent models, the metabolic effects of isoenergetic intake of milk derived from cows, donkeys, or humans, while the impact of goat's milk intake has remained unexplored. The aim of this work was to investigate, in an animal model, the effects of dietary supplementation with goat's milk on energy homeostasis and inflammatory state, focusing on the modulation of mitochondrial functions in most metabolically active organs, such as skeletal muscle and the liver. In addition, we highlighted a link between nutrient intake, substrate metabolism, and the orexinergic system. Our results indicate that goat milk improves mitochondrial oxidative capacity and reduces inflammation and oxidative stress in both organs. Notably, goat milk lowers the circulating levels of Orexin-A, a neuropeptide that plays a crucial role in regulating peripheral energy balance and central nervous system mechanisms. These data provide the first evidence that the anti-inflammatory and antioxidant effects of goat milk are mediated by the modulation of mitochondrial functions and orexinergic signaling.
Collapse
Affiliation(s)
- Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Antonella Santillo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Maria Giovanna Ciliberti
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli, 80131 Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | - Giovanni Messina
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71100 Foggia, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
4
|
Manzo R, Gallardo-Becerra L, Díaz de León-Guerrero S, Villaseñor T, Cornejo-Granados F, Salazar-León J, Ochoa-Leyva A, Pedraza-Alva G, Pérez-Martínez L. Environmental Enrichment Prevents Gut Dysbiosis Progression and Enhances Glucose Metabolism in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2024; 25:6904. [PMID: 39000013 PMCID: PMC11241766 DOI: 10.3390/ijms25136904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is a global health concern implicated in numerous chronic degenerative diseases, including type 2 diabetes, dyslipidemia, and neurodegenerative disorders. It is characterized by chronic low-grade inflammation, gut microbiota dysbiosis, insulin resistance, glucose intolerance, and lipid metabolism disturbances. Here, we investigated the therapeutic potential of environmental enrichment (EE) to prevent the progression of gut dysbiosis in mice with high-fat diet (HFD)-induced metabolic syndrome. C57BL/6 male mice with obesity and metabolic syndrome, continuously fed with an HFD, were exposed to EE. We analyzed the gut microbiota of the mice by sequencing the 16s rRNA gene at different intervals, including on day 0 and 12 and 24 weeks after EE exposure. Fasting glucose levels, glucose tolerance, insulin resistance, food intake, weight gain, lipid profile, hepatic steatosis, and inflammatory mediators were evaluated in serum, adipose tissue, and the colon. We demonstrate that EE intervention prevents the progression of HFD-induced dysbiosis, reducing taxa associated with metabolic syndrome (Tepidimicrobium, Acidaminobacteraceae, and Fusibacter) while promoting those linked to healthy physiology (Syntrophococcus sucrumutans, Dehalobacterium, Prevotella, and Butyricimonas). Furthermore, EE enhances intestinal barrier integrity, increases mucin-producing goblet cell population, and upregulates Muc2 expression in the colon. These alterations correlate with reduced systemic lipopolysaccharide levels and attenuated colon inflammation, resulting in normalized glucose metabolism, diminished adipose tissue inflammation, reduced liver steatosis, improved lipid profiles, and a significant reduction in body weight gain despite mice's continued HFD consumption. Our findings highlight EE as a promising anti-inflammatory strategy for managing obesity-related metabolic dysregulation and suggest its potential in developing probiotics targeting EE-modulated microbial taxa.
Collapse
Affiliation(s)
- Rubiceli Manzo
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sol Díaz de León-Guerrero
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Tomas Villaseñor
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Jonathan Salazar-León
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
5
|
Trinchese G, Feola A, Cavaliere G, Cimmino F, Catapano A, Penna E, Scala G, Greco L, Bernardo L, Porcellini A, Crispino M, Pezone A, Mollica MP. Mitochondrial metabolism and neuroinflammation in the cerebral cortex and cortical synapses of rats: effect of milk intake through DNA methylation. J Nutr Biochem 2024; 128:109624. [PMID: 38518858 DOI: 10.1016/j.jnutbio.2024.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Brain plasticity and cognitive functions are tightly influenced by foods or nutrients, which determine a metabolic modulation having a long-term effect on health, involving also epigenetic mechanisms. Breast milk or formula based on cow milk is the first food for human beings, who, throughout their lives, are then exposed to different types of milk. We previously demonstrated that rats fed with milk derived from distinct species, with different compositions and nutritional properties, display selective modulation of systemic metabolic and inflammatory profiles through changes of mitochondrial functions and redox state in liver, skeletal and cardiac muscle. Here, in a rat model, we demonstrated that isoenergetic supplementation of milk from cow (CM), donkey (DM) or human (HM) impacts mitochondrial functions and redox state in the brain cortex and cortical synapses, affecting neuroinflammation and synaptic plasticity. Interestingly, we found that the administration of different milk modulates DNA methylation in rat brain cortex and consequently affects gene expression. Our results emphasize the importance of nutrition in brain and synapse physiology, and highlight the key role played in this context by mitochondria, nutrient-sensitive organelles able to orchestrate metabolic and inflammatory responses.
Collapse
Affiliation(s)
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Luca Bernardo
- Department of Childhood and Developmental Medicine, Fatebenefratelli Hospital, Milan, Italy
| | | | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Zhao H, Zhao S, Zhu Q, Chen J, Quan Z, Yue X, Cao X. Label-free-based proteomic analysis reveals differential whey proteins of porcine milk during lactation. Food Chem X 2024; 21:101112. [PMID: 38268845 PMCID: PMC10805765 DOI: 10.1016/j.fochx.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
In this study, label-free proteomic technology was applied to analyze and compare the whey proteomes of porcine colostrum and mature milk. In total, 2993 and 2906 whey proteins were detected in porcine colostrum and mature milk, respectively. A total of 2745 common proteins were identified in the two milk samples, and 280 proteins were found to be significantly differentially expressed whey proteins in porcine milk. Gene Ontology analysis demonstrated that the differentially expressed whey proteins were primarily enriched in lipid homeostasis, oxidoreductase activity, and the collagen trimer. Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phagosome and endocytosis were the crucial pathways. This study provides systematic and in-depth insight into the compositions and functional properties of whey proteins in porcine milk during different periods of lactation, which may be beneficial for the development of porcine whey proteins in the future.
Collapse
Affiliation(s)
- Huiwen Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Qing Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhizhong Quan
- Liaoning Complete Biotechnology Co., Ltd., Tieling 112600, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Zhao H, Liu X, Amantai X, Bi J, Cao X, Yue X. Characterization and Comparison Analysis of Milk Fat Globule Membrane Proteins between Human and Porcine Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3210-3217. [PMID: 38291649 DOI: 10.1021/acs.jafc.3c06298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This study aimed to explore the differences in milk fat globule membrane (MFGM) proteins between human milk (HM) and porcine milk (PM) using a label-free quantitative proteomic approach. A total of 3920 and 4001 MFGM proteins were identified between PM and HM, respectively. Among them, 3520 common MFGM proteins were detected, including 956 significant differentially expressed MFGM proteins (DEPs). Gene ontology (GO) enrichment analysis showed that the DEPs were highly enriched in the lipid metabolic process and intrinsic component of membrane. Kyoto Encyclopedia of Genes and Genomes pathways suggested that protein processing in the endoplasmic reticulum was the most highly enriched pathway, followed by peroxisome, complement, and coagulation cascades. This study reflects the difference in the composition of MFGM proteins between HM and PM and provides a scientific and systematic reference for the development of MFGM protein nutrition.
Collapse
Affiliation(s)
- Huiwen Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xiakouna Amantai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiayang Bi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
8
|
Jirillo F. Healthy Effects of Milk and Dairy Product Consumption in the Mediterranean Area and Japan. Endocr Metab Immune Disord Drug Targets 2024; 24:1813-1822. [PMID: 38994611 DOI: 10.2174/0118715303289711240703080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024]
Abstract
Milk is a food enriched in essential components for human health. Especially, in the Mediterranean area, besides cow's milk, milk from goats, sheep, and donkeys, is largely used. The consumption of animal milk is an important component of the Mediterranean (MED) diet, even if in moderate amounts. Milk is a complete food since it contains proteins, carbohydrates, and fats, as well as micronutrients (minerals and vitamins). Milk-fermented products are largely consumed in the MED diet, such as cheese and yogurt, which are rich in essential metabolites, bioactive compounds, vitamins, minerals, and exopolysaccharides. A large body of evidence suggests that consumption of milk and dairy products does not increase the risk of all-cause mortality, type 2 diabetes, and cardiovascular disease, even if some earlier studies have reported harmful effects associated with their higher consumption. Also, in Japan, despite the lower consumption of milk than in Western countries, intake of bovine milk is associated with healthy effects. The present review describes the effects of the various constituents of animal milk on human health, with special reference to the Mediterranean area and Japan. Experimental data and clinical trials support the ability of milk and dairy products to lower the risk of chronic diseases.
Collapse
|
9
|
Zhou M, Huang F, Du X, Wang C, Liu G. Microbial Quality of Donkey Milk during Lactation Stages. Foods 2023; 12:4272. [PMID: 38231735 DOI: 10.3390/foods12234272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
The microbial community in donkey milk and its impact on the nutritional value of donkey milk are still unclear. We evaluated the effects of different lactation stages on the composition and function of donkey milk microbiota. The milk samples were collected at 1, 30, 60, 90, 120, 150, and 180 days post-delivery. The result showed that the microbial composition and functions in donkey milk were significantly affected by different lactation stages. The dominant bacterial phyla in donkey milk are Proteobacteria (60%) and Firmicutes (22%). Ralstonia (39%), Pseudomonas (4%), and Acinetobacter (2%) were the predominant bacterial genera detected in all milk samples. In the mature milk, the abundance of lactic acid bacteria Streptococcus (7%) was higher. Chloroplast (5%) and Rothia (3%) were more plentiful in milk samples from middle and later lactation stages (90-180 d). Furthermore, the pathogens Escherichia-Shigella and Staphylococcus and thermoduric bacteria Corynebacterium, Arthrobacter, and Microbacterium were also detected. Donkey milk is rich in beneficial bacteria and also poses a potential health risk. The above findings have improved our understanding of the composition and function changes of donkey milk microbiota, which is beneficial for the rational utilization of donkey milk.
Collapse
Affiliation(s)
- Miaomiao Zhou
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Fei Huang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Xinyi Du
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Guiqin Liu
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
10
|
Trinchese G, Gena P, Cimmino F, Cavaliere G, Fogliano C, Garra S, Catapano A, Petrella L, Di Chio S, Avallone B, Calamita G, Mollica MP. Hepatocyte Aquaporins AQP8 and AQP9 Are Engaged in the Hepatic Lipid and Glucose Metabolism Modulating the Inflammatory and Redox State in Milk-Supplemented Rats. Nutrients 2023; 15:3651. [PMID: 37630841 PMCID: PMC10459073 DOI: 10.3390/nu15163651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Milk is an important source of nutrients and energy, but there are still many uncertainties regarding the health effects of milk and dairy products consumption. Milk from different species varies in physicochemical and nutritional properties. We previously showed that dietary supplements with different milks in rats trigger significant differences in metabolic and inflammatory states, modulating mitochondrial functions in metabolically active organs such as the liver and skeletal muscle. Here, we have deepened the effects of isoenergetic supplementation of milk (82 kJ) from cow (CM), donkey (DM) or human (HM) on hepatic metabolism to understand the interlink between mitochondrial metabolic flexibility, lipid storage and redox state and to highlight the possible role of two hepatocyte aquaporins (AQPs) of metabolic relevance, AQP8 and AQP9, in this crosstalk. Compared with rats with no milk supplementation, DM- and HM-fed rats had reduced hepatic lipid content with enhanced mitochondrial function and decreased oxidative stress. A marked reduction in AQP8, a hydrogen peroxide channel, was seen in the liver mitochondria of DM-fed rats compared with HM-fed, CM-fed and control animals. DM-fed or HM-fed rats also showed reduced hepatic inflammatory markers and less collagen and Kupffer cells. CM-fed rats showed higher hepatic fat content and increased AQP9 and glycerol permeability. A role of liver AQP8 and AQP9 is suggested in the different metabolic profiles resulting from milk supplementation.
Collapse
Affiliation(s)
- Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (P.G.); (S.G.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (P.G.); (S.G.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Silvia Di Chio
- Azienda Sociosanitaria Territoriale Fatebenefratelli (ASST FBF) SACCO, University of Milan, 20157 Milan, Italy;
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (P.G.); (S.G.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (C.F.); (A.C.); (L.P.); (B.A.); (M.P.M.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
11
|
Mishani HS, Jalalizand A, Modaresi M. Investigating the effect of dichlorvos and acetamiprid residues in greenhouse cucumber on biochemical parameters and protective role of colostrum. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:52. [PMID: 37496647 PMCID: PMC10366977 DOI: 10.4103/jrms.jrms_2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/13/2023] [Accepted: 03/22/2023] [Indexed: 07/28/2023]
Abstract
Background Across the world, people are exposed to pesticide residues in agricultural products. Various materials are used to deal with effects of these residues. Considering the wide use of dichlorvos and acetamiprid in crops, pesticide residues in cucumber and its effects on the biochemical parameters of mice were calculated, and the protective role of donkey colostrum (DC) to deal with the pesticide effects was investigated. Materials and Methods Dichlorvos (4 ml/l) and acetamiprid (0.5 g/l) residues, after spraying cucumber plants, were 0.5 and 1.5 mg/kg, respectively. For 60 days, the mentioned doses were used in the drinking water of 4 groups of mice. No substances were added to mice drinking water in the control group while dichlorvos and acetamiprid groups received 0.5 and 1.5 mg/kg of pesticide, respectively, and the mixed group received a combination of two pesticides. In order to investigate the protective role of DC, 0.2 ml of colostrum was given to each of the groups in a similar division and timing. Results In the biochemical sector, albumin (control 2.96, dichlorvos 1.86, acetamiprid 2.00, and mix 1.6 g/dl) and total protein levels reduced. Alanine aminotransferase (control 41.8, dichlorvos 56.2, acetamiprid 58.4, and mix 68 iu/l) and aspartate aminotransferase levels increased. In the protective role of colostrum, albumin (control 2.96, dichlorvos 2.74, acetamiprid 2.80, and mix 2.50 g/dl) and alanine aminotransferase changes (control 41.8, dichlorvos 43.4, acetamiprid 46.0, and mix 52.2 iu/l) were recorded (P = 0.0001). Conclusion Adding pesticides to mice drinking water causes liver disorders and DC can be effective in protecting these damages.
Collapse
Affiliation(s)
- Hamid Salehi Mishani
- Department of Plant Protection, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Alireza Jalalizand
- Department of Plant Protection, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mehrdad Modaresi
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
12
|
Okamura T, Hamaguchi M, Nakajima H, Kitagawa N, Majima S, Senmaru T, Okada H, Ushigome E, Nakanishi N, Sasano R, Fukui M. Milk protects against sarcopenic obesity due to increase in the genus Akkermansia in faeces of db/db mice. J Cachexia Sarcopenia Muscle 2023; 14:1395-1409. [PMID: 37132118 PMCID: PMC10235896 DOI: 10.1002/jcsm.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Sarcopenic obesity, a combination of sarcopenia and obesity, is a pathological feature of type 2 diabetes. Several human studies have shown that milk is useful in the prevention of sarcopenia. This study was aimed at clarifying the effect of milk on the prevention of sarcopenic obesity in db/db mice. METHODS A randomized and investigator-blinded study was conducted using male db/db mice. Eight-week-old db/db mice were housed for 8 weeks and fed milk (100 μL/day) using a sonde. The faecal microbiota transplantation (FMT) group received antibiotics for 2 weeks, starting at 6 weeks of age, followed by FMT twice a week until 16 weeks of age. RESULTS Milk administration to db/db mice increased grip strength (Milk-: 164.2 ± 4.7 g, Milk+: 230.2 ± 56.0 g, P = 0.017), muscle mass (soleus muscle, Milk-: 164.2 ± 4.7 mg, Milk+: 230.2 ± 56.0 mg, P < 0.001; plantaris muscle, Milk-: 13.3 ± 1.2 mg, Milk+: 16.0 ± 1.7 mg, P < 0.001) and decreased visceral fat mass (Milk-: 2.39 ± 0.08 g, Milk+: 1.98 ± 0.04 mg, P < 0.001), resulting in a significant increase in physical activity (light: P = 0.013, dark: P = 0.034). FMT from mice fed milk not only improved sarcopenic obesity but also significantly improved glucose intolerance. Microarray analysis of gene expression in the small intestine revealed that the expression of amino acid absorption transporter genes, namely, SIc7a5 (P = 0.010), SIc7a1 (P = 0.015), Ppp1r15a (P = 0.041) and SIc7a11 (P = 0.029), was elevated in mice fed milk. In 16S rRNA sequencing of gut microbiota, the genus Akkermansia was increased in both the mice fed milk and the FMT group from the mice fed milk. CONCLUSIONS The findings of this study suggest that besides increasing the intake of nutrients, such as amino acids, milk consumption also changes the intestinal environment, which might contribute to the mechanism of milk-induced improvement of sarcopenic obesity.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Hanako Nakajima
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Nobuko Kitagawa
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Saori Majima
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Takafumi Senmaru
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Hiroshi Okada
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Emi Ushigome
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Naoko Nakanishi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | | | - Michiaki Fukui
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| |
Collapse
|
13
|
Guan B, Zhang Z, Cao X, Yang M, Chai Y, Amantai X, Luo X, Feng D, Liu Y, Yue X, Liu X. Characterization and comparison site-specific N-glycosylation profiling of milk fat globule membrane proteome in donkey and human colostrum and mature milk. Food Chem 2023; 419:136081. [PMID: 37037133 DOI: 10.1016/j.foodchem.2023.136081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Milk fat globule membrane (MFGM) proteins are highly glycosylated and involved in various biological processes within the body. However, information on site-specific N-glycosylation of MFGM glycoproteins in donkey and human milk remains limited. This study aimed to map the most comprehensive site-specific N-glycosylation fingerprinting of donkey and human MFGM glycoproteins using a site-specific glycoproteomics strategy. We identified 1,360, 457, 2,617, and 986 site-specific N-glycans from 296, 77, 214, and 196 N-glycoproteins in donkey colostrum (DC), donkey mature milk (DM), human colostrum (HC), and human mature milk (HM), respectively. Bioinformatics was used to describe the structure-activity relationships of DC, DM, HC, and HM MFGM N-glycoproteins. The results revealed differences in the molecular composition of donkey and human MFGM N-glycoproteins and the dynamic changes to site-specific N-glycosylation of donkey and human MFGM glycoproteins during lactation, deepening our understanding of the composition of donkey and human MFGM N-glycoproteins and their potential physiological roles.
Collapse
Affiliation(s)
- Boyuan Guan
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Zhenghan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yuxia Chai
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xiakouna Amantai
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Daguang Feng
- College of Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yiming Liu
- Foreign Language Teaching Department, Shenyang Agricultural University, Shenyang 11086, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| | - Xiaoyu Liu
- Department of Obstetrics and Gynaecology, General Hospital of Northern Theater Command, Shenyang 110003, China.
| |
Collapse
|
14
|
Farias SDS, Dierings AC, Mufalo VC, Sabei L, Parada Sarmiento M, da Silva AN, Ferraz PA, Pugliesi G, Ribeiro CVDM, Oliveira CADA, Zanella AJ. Asinine milk mitigates stress-mediated immune, cortisol and behavioral responses of piglets to weaning: A study to foster future interventions in humans. Front Immunol 2023; 14:1139249. [PMID: 37122716 PMCID: PMC10140756 DOI: 10.3389/fimmu.2023.1139249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The present study assessed whether asinine milk supplementation improved the immune and behavioral responses of piglets during an early life weaning stress event as a model for its future use in humans. Methods For this, 48 piglets from 4 different litters were used. At 20 days of age, piglets were weighed and allocated with their litter and dam into group pens until 28 days of age. Four piglets from each litter were then randomly assigned to either (1) asinine milk supplementation (n = 16) (2), skimmed cow milk supplementation (n = 16) or (3) no supplementation (n = 16; control group). The supplementations were voluntarily administered for 3 days preweaning and 3 days postweaning using a baby bottle. The effects on the weaning stress response were assessed through salivary cortisol measurements; behavioral tests such as the open field, novel object end elevated plus maze tests; and gene expression of HSD11B1, NR3C1 and IL1B in PBMCs, which was determined by RT-qPCR and normalized to GAPDH and UBB. To test the effect of the supplementations on weight, milk intake, gene expression, and behavior, a randomized block design was used with repeated measurements over time by the PROC MIXED procedure. Results and discussion The effects on salivary cortisol were determined using the ratio between the morning and afternoon concentrations, considering the time before and after the weaning event. Principal component analysis (PCA) and Fisher's test were performed to evaluate the behavior test data. When comparing salivary cortisol concentrations between the pre- and postweaning periods, there was a difference (p < 0.05) between the supplementation groups in the afternoon period, suggesting that piglets fed asinine milk had lower afternoon cortisol concentrations postweaning than their counterparts. For the behavioral tests, the supplementations had no measurable effects. No difference was between groups pre- and postweaning for the expression of HSD11B2, which codes for an enzyme that breaks down cortisol. However, the expression of NR3C1, which encodes the glucocorticoid receptor, was significantly upregulated in piglets supplemented with cow milk (mean 1.245; p < 0.05). Conclusion Asinine milk downregulated 1L1B gene expression, which codes for an inflammatory cytokine. In conclusion, these results suggest that supplementation with asinine milk may represent a strategy to diminish the damage associated with an early life event by modulating IL1B expression and reducing salivary cortisol levels in piglets undergoing weaning stress. Further transcriptomic and metabolomic studies may improve our understanding of the molecular pathways that mediate this systemic immune-mediated response.
Collapse
Affiliation(s)
- Sharacely de Souza Farias
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- *Correspondence: Sharacely de Souza Farias, ; Adroaldo José Zanella,
| | - Ana Carolina Dierings
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Vinicius Cardoso Mufalo
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Leandro Sabei
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marisol Parada Sarmiento
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Arthur Nery da Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Priscila Assis Ferraz
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Claudio Vaz Di Mambro Ribeiro
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Chiara Albano de Araujo Oliveira
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Adroaldo José Zanella
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- *Correspondence: Sharacely de Souza Farias, ; Adroaldo José Zanella,
| |
Collapse
|
15
|
Behaviour of Escherichia coli O157:H7 in raw and mild pasteurised donkey milk treated with high pressure. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Supplementing human milk with a donkey or bovine milk derived fortifier: consequences on proteolysis, lipolysis and particle structure under in vitro dynamic digestion. Food Chem 2022; 395:133579. [DOI: 10.1016/j.foodchem.2022.133579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
|
17
|
Garhwal R, Sangwan K, Mehra R, Kumar N, Bhardwaj A, Pal Y, Buttar HS, Kumar H. A Systematic Review of the Bioactive Components, Nutritional Qualities and Potential Therapeutic Applications of Donkey Milk. J Equine Vet Sci 2022; 115:104006. [DOI: 10.1016/j.jevs.2022.104006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 01/05/2023]
|
18
|
Correa KDP, Silva MET, Ribeiro OS, Matta SLP, Peluzio MDCG, Oliveira EB, Coimbra JSDR. Homogenised and pasteurised human milk: lipid profile and effect as a supplement in the enteral diet of Wistar rats. Br J Nutr 2022; 127:711-721. [PMID: 33902762 DOI: 10.1017/s0007114521001380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The retention of human milk (HM) fat in nasogastric probes of infusion pumps can be observed during the feed of infants unable to suck at the mother's breast. The lack of homogenisation of HM could contribute to the fat holding. Therefore, the present study evaluated (i) the influence of homogenisation on milk fat retaining in infant feeding probes and (ii) the in vivo effect of the homogenisation on lipid absorption by Wistar rats. The animals were fed with HM treated following two processing conditions, that is, pasteurised and homogenised-pasteurised. The animals were randomly subdivided into four experimental groups: water-fed (control), pasteurised milk, homogenised-pasteurised milk and pasteurised-skimmed milk. The results of food consumption, mass body gain, corporate metrics and plasma blood levels of total cholesterol did not show any difference (P < 0·05) among the three types of HM used in the experiments. The liver, intestine and intra-abdominal adipose tissue of the four groups of animals presented normal and healthy histology. The composition of fatty acids in the brain tissue of animals fed with homogenised HM increased when compared with the groups fed with non-homogenised HM. These values were 11·08 % higher for arachidonic acids, 6·59 % for DAH and 47·92 % for nervous acids. The ingestion of homogenised HM promoted higher absorption of milk nutrients. Therefore, the addition of the homogenisation stage in HM processing could be an alternative to reduce fat retention in probes and to improve the lipids' absorption in the body.
Collapse
Affiliation(s)
- Kely de Paula Correa
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Monique E T Silva
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Otávio S Ribeiro
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Sérgio L P Matta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Maria do Carmo G Peluzio
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Eduardo B Oliveira
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| | - Jane S Dos R Coimbra
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. P.H. Rolfs, s/n, 36570-900 Viçosa, MG, Brasil
| |
Collapse
|
19
|
Matera A, Altieri G, Genovese F, Polidori P, Vincenzetti S, Perna A, Simonetti A, Rashvand Avei M, Calbi A, Di Renzo GC. Effect of continuous flow HTST treatments on donkey milk nutritional quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Trinchese G, Cimmino F, Cavaliere G, Rosati L, Catapano A, Sorriento D, Murru E, Bernardo L, Pagani L, Bergamo P, Scudiero R, Iaccarino G, Greco L, Banni S, Crispino M, Mollica MP. Heart Mitochondrial Metabolic Flexibility and Redox Status Are Improved by Donkey and Human Milk Intake. Antioxidants (Basel) 2021; 10:antiox10111807. [PMID: 34829678 PMCID: PMC8614950 DOI: 10.3390/antiox10111807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/24/2023] Open
Abstract
The biological mechanisms linking nutrition and antioxidants content of the diet with cardiovascular protection are subject of intense investigation. It has been demonstrated that dietary supplementation with cow, donkey or human milk, characterized by distinct nutritional properties, triggers significant differences in the metabolic and inflammatory status through the modulation of hepatic and skeletal muscle mitochondrial functions. Cardiac mitochondria play a key role for energy-demanding heart functions, and their disfunctions is leading to pathologies. Indeed, an altered heart mitochondrial function and the consequent increased reactive oxygen species (ROS) production and inflammatory state, is linked to several cardiac diseases such as hypertension and heart failure. In this work it was investigated the impact of the milk consumption on heart mitochondrial functions, inflammation and oxidative stress. In addition, it was underlined the crosstalk between mitochondrial metabolic flexibility, lipid storage and redox status as control mechanisms for the maintenance of cardiovascular health.
Collapse
Affiliation(s)
- Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (G.C.); (L.R.); (A.C.); (R.S.); (M.C.)
- BAT Centre—Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (G.C.); (L.R.); (A.C.); (R.S.); (M.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (G.C.); (L.R.); (A.C.); (R.S.); (M.C.)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (G.C.); (L.R.); (A.C.); (R.S.); (M.C.)
- BAT Centre—Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (G.C.); (L.R.); (A.C.); (R.S.); (M.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (D.S.); (G.I.)
| | - Elisabetta Murru
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (S.B.)
| | - Luca Bernardo
- Department of Childhood and Developmental Medicine, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy; (L.B.); (L.P.)
| | - Luciana Pagani
- Department of Childhood and Developmental Medicine, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy; (L.B.); (L.P.)
| | - Paolo Bergamo
- Institute of Bioscience and Bioresources CNR, IBBR-UOS, 80131 Naples, Italy;
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (G.C.); (L.R.); (A.C.); (R.S.); (M.C.)
- BAT Centre—Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy; (D.S.); (G.I.)
| | - Luigi Greco
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy;
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (E.M.); (S.B.)
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (G.C.); (L.R.); (A.C.); (R.S.); (M.C.)
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (G.T.); (F.C.); (G.C.); (L.R.); (A.C.); (R.S.); (M.C.)
- BAT Centre—Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
- Correspondence: ; Tel.: +39-081-679-990
| |
Collapse
|
21
|
Li Y, Ma Q, Liu G, Wang C. Effects of donkey milk on oxidative stress and inflammatory response. J Food Biochem 2021; 46:e13935. [PMID: 34519070 DOI: 10.1111/jfbc.13935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/20/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Donkey milk is gaining interest as a natural nutritional and medicinal product, mainly because its composition is similar to that of human milk, and it has some potential biological properties, such as antioxidant, anti-inflammatory, antiaging, antimicrobial, and anticancer properties. Considering the increasing prevalence of several chronic diseases related to oxidative stress and inflammation and the multiple beneficial properties and nutritional value of donkey milk, an up-to-date review of the current studies related to the antioxidative and anti-inflammatory abilities of donkey milk is necessary. Therefore, this review aims to discuss the relationship between inflammation and oxidative stress; and to further systematically review the progress of recent research on donkey milk, mainly including its nutritional value and functional properties. Particularly, we highlighted the anti-inflammatory and antioxidative properties of donkey milk using in vitro model, animal model, and the potential role of donkey milk in alleviating some chronic diseases related to inflammation. PRACTICAL APPLICATIONS: This paper was conducted on anti-inflammation and antioxidant activities of donkey milk and its related products, in addition to a summary of the relationship between oxidative stress and inflammation and the value of donkey milk. Donkey milk and its related products have been shown to scavenge reactive oxygen species, activate the antioxidant system, enhance immune function, and maintain the balance of intestinal flora in in vitro and in vivo models. This paper should provide a better understanding of the influences of oxidative stress and inflammation on host health and the biological functions and application of donkey milk, and will provide a certain basis for the nutritional regulation of several chronic diseases related to oxidative stress and inflammation. However, the underlying mechanism is poorly understood. In addition, few clinical studies have been performed to establish its multiple benefits in humans. Further research is warranted to evaluate its impacts on health at molecular levels.
Collapse
Affiliation(s)
- Yan Li
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng, China
| | - Qingshan Ma
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng, China
| | - Guiqin Liu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng, China
| |
Collapse
|
22
|
Jiang G, Zhang X, Gao W, Ji C, Wang Y, Feng P, Feng Y, Zhang Z, Li L, Zhao F. Transport stress affects the fecal microbiota in healthy donkeys. J Vet Intern Med 2021; 35:2449-2457. [PMID: 34331476 PMCID: PMC8478045 DOI: 10.1111/jvim.16235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022] Open
Abstract
Background With the development of large‐scale donkey farming in China, long‐distance transportation has become common practice, and the incidence of intestinal diseases after transportation has increased. The intestinal microbiota is important in health and disease, and whether or not transportation disturbs the intestinal microbiota in donkeys has not been investigated. Objectives To determine the effects of transportation on the fecal microbiota of healthy donkeys using 16S rRNA sequencing. Animals Fecal and blood samples were collected from 12 Dezhou donkeys before and after transportation. Methods Prospective controlled study. Cortisol, ACTH, and heat‐shock protein 90 (HSP90) concentrations were measured. Sequencing of 16S rRNA was used to assess the microbial composition. Alpha diversity and beta diversity were assessed. Results Results showed significant (P < .05) increases in cortisol (58.1 ± 14.6 to 71.1 ± 9.60 ng/mL), ACTH (163.8 ± 31.9 to 315.8 ± 27.9 pg/mL), and HSP90 (10.8 ± 1.67 to 14.6 ± 1.75 ng/mL) on the day of arrival. A significantly lower (P = .04) level of bacterial richness was found in fecal samples after transportation, compared with that before transportation without distinct changes in diversity. Most notably, donkeys had significant decreases in Atopostipes, Eubacterium, Streptococcus, and Coriobacteriaceae. Conclusions and Clinical Importance Transportation can induce stress in healthy donkeys and have some effect on the composition of the in fecal microbiota. Additional studies are required to understand the potential effect of these microbiota changes, especially significantly decreased bacteria, on the development intestinal diseases in donkeys during recovery from transportation.
Collapse
Affiliation(s)
- Guimiao Jiang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.,National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, Liaocheng, Shandong Province, China
| | - Xinhao Zhang
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, Liaocheng, Shandong Province, China.,College of Animal Science and Technology, Shangdong Agricultural University, Taian, China
| | - Weiping Gao
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, Liaocheng, Shandong Province, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, Liaocheng, Shandong Province, China
| | - Yantao Wang
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, Liaocheng, Shandong Province, China
| | - Peixiang Feng
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, Liaocheng, Shandong Province, China
| | - Yulong Feng
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, Liaocheng, Shandong Province, China
| | - Zhiping Zhang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Fuwei Zhao
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, Liaocheng, Shandong Province, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Bridges KM, Newkirk M, Byham-Gray L, Chung M. Comparative effectiveness of liquid human milk fortifiers: A systematic review and meta-analysis. Nutr Clin Pract 2021; 36:1144-1162. [PMID: 34101248 DOI: 10.1002/ncp.10663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/07/2021] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To determine the effectiveness of liquid human milk fortifiers (HMFs) derived from exclusive HM or hydrolyzed protein on growth, necrotizing enterocolitis (NEC), or late-onset sepsis in North American very low-birth-weight (VLBW) infants compared with powder HMFs (control). METHODS Prospective trials published between 2009 and 2020 were systematically reviewed, and meta-analysis was conducted by using a random-effects model. RESULTS Five studies were identified for up to 591 participants across 39 centers. Study treatments included whey or casein hydrolysate HMF and exclusive HM HMF. Infants fed whey or casein hydrolysate HMF had growth differences compared with the control. No differences were found across treatments in regard to NEC or sepsis. CONCLUSION Very low-quality evidence suggests greater linear growth in VLBW infants fed whey hydrolysate liquid HMF, as well as greater weight gain in those fed casein hydrolysate HMF, compared with the control. Additional prospective, multicenter randomized controlled trials are needed to confirm these estimates because of sparsity of evidence. There is insufficient evidence to support HMF decisions regarding NEC or late-onset sepsis prophylaxis.
Collapse
Affiliation(s)
- Kayla M Bridges
- Department of Clinical and Preventive Nutrition Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA.,Neonatal Intensive Care Unit, Beaumont Children's Hospital, Royal Oak, Michigan, USA
| | - Melanie Newkirk
- Neonatal Intensive Care Unit, Johns Hopkins All Children's Hospital, Saint Petersburg, Florida, USA
| | - Laura Byham-Gray
- Department of Clinical and Preventive Nutrition Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Mei Chung
- Department of Clinical and Preventive Nutrition Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA.,Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Martini M, Altomonte I, Tricò D, Lapenta R, Salari F. Current Knowledge on Functionality and Potential Therapeutic Uses of Donkey Milk. Animals (Basel) 2021; 11:ani11051382. [PMID: 34067986 PMCID: PMC8152225 DOI: 10.3390/ani11051382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This paper examines scientific evidence on the positive effects of donkey milk consumption on human health and its possible therapeutic applications. The most investigated clinical use of donkey milk is in feeding infants with food allergies, in whom donkey milk is well tolerated in the 82.6–98.5% of cases. Donkey milk has shown several beneficial properties, including immunomodulatory activity, antioxidant and detoxifying effects, modulation of the intestinal microbiota, and lowering of blood sugar and triglycerides, which have been tested almost exclusively in experimental animals. Inhibitory actions on microorganisms have been also observed in vitro studies. This literature review highlights the need for new clinical trials to collect stronger evidence about the positive effects observed in experimental models which could lead to new therapeutic applications of donkey milk in humans. Abstract The increase of knowledge on the composition of donkey milk has revealed marked similarities to human milk, which led to a growing number of investigations focused on testing the potential effects of donkey milk in vitro and in vivo. This paper examines the scientific evidence regarding the beneficial effects of donkey milk on human health. Most clinical studies report a tolerability of donkey milk in 82.6–98.5% of infants with cow milk protein allergies. The average protein content of donkey milk is about 18 g/L. Caseins, which are main allergenic components of milk, are less represented compared to cow milk (56% of the total protein in donkey vs. 80% in cow milk). Donkey milk is well accepted by children due to its high concentration of lactose (about 60 g/L). Immunomodulatory properties have been reported in one study in humans and in several animal models. Donkey milk also seems to modulate the intestinal microbiota, enhance antioxidant defense mechanisms and detoxifying enzymes activities, reduce hyperglycemia and normalize dyslipidemia. Donkey milk has lower calorie and fat content compared with other milks used in human nutrition (fat ranges from 0.20% to 1.7%) and a more favourable fatty acid profile, being low in saturated fatty acids (3.02 g/L) and high in alpha-linolenic acid (about 7.25 g/100 g of fat). Until now, the beneficial properties of donkey milk have been mostly related to whey proteins, among which β-lactoglobulin is the most represented (6.06 g/L), followed by α-lactalbumin (about 2 g/L) and lysozyme (1.07 g/L). So far, the health functionality of donkey milk has been tested almost exclusively on animal models. Furthermore, in vitro studies have described inhibitory action against bacteria, viruses, and fungi. From the literature review emerges the need for new randomized clinical trials on humans to provide stronger evidence of the potential beneficial health effects of donkey milk, which could lead to new applications as an adjuvant in the treatment of cardiometabolic diseases, malnutrition, and aging.
Collapse
Affiliation(s)
- Mina Martini
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy; (M.M.); (R.L.); (F.S.)
- Interdepartmental Center for Agricultural and Environmental Research “E. Avanzi,”, University of Pisa, San Piero a Gardo (PI), 56122 Pisa, Italy
| | - Iolanda Altomonte
- Interdepartmental Center for Agricultural and Environmental Research “E. Avanzi,”, University of Pisa, San Piero a Gardo (PI), 56122 Pisa, Italy
- Correspondence:
| | - Domenico Tricò
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy;
| | - Riccardo Lapenta
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy; (M.M.); (R.L.); (F.S.)
| | - Federica Salari
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy; (M.M.); (R.L.); (F.S.)
| |
Collapse
|
25
|
Chi X, Liu Z, Wang H, Wang Y, Wei W, Xu B. Royal jelly enhanced the antioxidant activities and modulated the gut microbiota in healthy mice. J Food Biochem 2021; 45:e13701. [PMID: 33792081 DOI: 10.1111/jfbc.13701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Royal jelly (RJ) is a well-known traditional health food that has a wide range of pharmacological activities. In this study, mice were fed with different doses of RJ for 30 days and their antioxidant activities and gut microbiota were measured to examine the correlation between gut microbiota and overall health. RJ did not influence the feed consumption or relative organ weight, but RJ did increase the amount of serum interleukin 10 (IL-10), as well as the levels of antioxidant activities in the liver and kidney. The middle dose of RJ (RJM) decreased the relative abundance of Proteobacteria at phylum level, increased the relative abundance of Lachnospiraceae_NK4A136_group and Bacteroides. Correlation analysis indicated that RJ could optimize the functional network of gut microbiota and the interactions between the gut microbiota and the host. In conclusion, RJ could enhance the antioxidant activities and modulate the gut microbiota. RJM treatment had a more positive effect on physical health compared with RJL and RJH treatments. PRACTICAL APPLICATIONS: Royal jelly is a healthy dietary supplement which has a wide range of functions. The research helps us know the action mechanism of RJ in healthy body and analyzed the correlation of gut microbiota and physiological state. The appropriate dose of RJ was also studied and the health functions of RJ for healthy body were proved. This research could help to increase the RJ consuming in market.
Collapse
Affiliation(s)
- Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Wei Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
26
|
Mollica MP, Trinchese G, Cimmino F, Penna E, Cavaliere G, Tudisco R, Musco N, Manca C, Catapano A, Monda M, Bergamo P, Banni S, Infascelli F, Lombardi P, Crispino M. Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients 2021; 13:1111. [PMID: 33800688 PMCID: PMC8066999 DOI: 10.3390/nu13041111] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Milk contains several important nutrients that are beneficial for human health. This review considers the nutritional qualities of essential fatty acids (FAs), especially omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) present in milk from ruminant and non-ruminant species. In particular, the impact of milk fatty acids on metabolism is discussed, including its effects on the central nervous system. In addition, we presented data indicating how animal feeding-the main way to modify milk fat composition-may have a potential impact on human health, and how rearing and feeding systems strongly affect milk quality within the same animal species. Finally, we have presented the results of in vivo studies aimed at supporting the beneficial effects of milk FA intake in animal models, and the factors limiting their transferability to humans were discussed.
Collapse
Affiliation(s)
- Maria P. Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| | - Raffaella Tudisco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Claudia Manca
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.M.); (S.B.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Paolo Bergamo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (C.M.); (S.B.)
| | - Federico Infascelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80100 Naples, Italy; (R.T.); (N.M.); (F.I.); (P.L.)
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.P.M.); (G.T.); (F.C.); (E.P.); (G.C.); (A.C.); (M.C.)
| |
Collapse
|
27
|
Protective Effect of Lacticaseibacillus casei CRL 431 Postbiotics on Mitochondrial Function and Oxidative Status in Rats with Aflatoxin B 1-Induced Oxidative Stress. Probiotics Antimicrob Proteins 2021; 13:1033-1043. [PMID: 33512646 DOI: 10.1007/s12602-021-09747-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Studies have shown that the intracellular content of probiotic (postbiotics) has antioxidant properties, which can improve the antioxidant status in vivo. However, its absorption and mechanisms underlying the protective effects are still unknown. The antioxidant capacity of Lacticaseibacillus casei CRL431 (IC-431) postbiotics was determined after an in vitro simulated digestive process. Permeability of antioxidant constituents of IC-431 was determined by an ex vivo everted duodenum assay. Aflatoxin B1-induced oxidative stress rat models were established and treated with IC-431; biomarkers of hepatic mitochondrial function and H2O2 levels, oxidative stress, and oxidative stress index (OSi) were examined. The antioxidant capacity of IC-431 (477 ± 45.25 μmol Trolox Equivalent/L) was reduced by exposure to the simulated digestive process. No difference (p > 0.05) was found among digested and the permeate fraction of IC-431. A protective effect was observed by significantly lower OSi and higher liver glutathione peroxidase and catalase activities. Lower H2O2 production, a higher degree of mitochondrial uncoupling, and lower mitochondrial respiration coefficient were also observed (p < 0.05). These results suggest that IC-431 antioxidant components permeate intestinal barriers to enter the bloodstream and regulate antioxidant status during AFB1-induced oxidative stress by reducing hepatic mitochondrial dysfunction, thus enhancing antioxidant enzyme response.
Collapse
|
28
|
Ebrahimi A, Moosavy M, Khatibi SA, Barabadi Z, Hajibemani A. A comparative study of the antibacterial properties of milk from different domestic animals. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alireza Ebrahimi
- Department of Food Hygiene and Aquatic Faculty of Veterinary Medicine University of Tabriz P.O. Box: 51666‐16471 TabrizIran
| | - Mir‐Hassan Moosavy
- Department of Food Hygiene and Aquatic Faculty of Veterinary Medicine University of Tabriz P.O. Box: 51666‐16471 TabrizIran
| | - Seyed Amin Khatibi
- Department of Food Hygiene and Aquatic Faculty of Veterinary Medicine University of Tabriz P.O. Box: 51666‐16471 TabrizIran
- Food and Drug Safety Research Center Tabriz University of Medical Science P.O. Box: 51664‐14766 TabrizIran
| | - Zahra Barabadi
- Department of Tissue Engineering School of Medicine Hamadan University of Medical Sciences P.O. Box: 65176‐19657 HamadanIran
| | - Abolfazl Hajibemani
- Department of Clinical Sciences Faculty of Veterinary Medicine University of Tabriz P.O. Box: 51666‐16471 Tabriz Iran
| |
Collapse
|
29
|
Peila C, Spada E, Deantoni S, Iuliano E, Moro GE, Giribaldi M, Cavallarin L, Cresi F, Coscia A. The "Fortilat" Randomized Clinical Trial Follow-Up: Neurodevelopmental Outcome at 18 Months of Age. Nutrients 2020; 12:nu12123807. [PMID: 33322629 PMCID: PMC7764145 DOI: 10.3390/nu12123807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 01/03/2023] Open
Abstract
Adequate nutrition is fundamental to neonatal survival and short-term outcomes, but it also has long-term consequences on quality of life and neurologic development of preterm infants. Donkey milk has been suggested as a valid alternative for children allergic to cows’ milk proteins, due to its biochemical similarity to human milk; we, hence, hypothesized that donkey milk could be a suitable basis for developing an innovative human milk fortifier for feeding preterm infants. The aim of the current study was to extend the findings and to evaluate the neurodevelopmental outcomes at 18 months of corrected age of the infants enrolled in the clinical trial named “Fortilat”. Infants born ≤1500 g and <32 weeks of gestational age were randomized to receive either a combination of bovine milk-based multicomponent fortifier and protein supplement or a combination of a novel multicomponent fortifier and protein supplement derived from donkey milk. The followed fortification protocol was the same for the two groups and the two diets were designed to be isoproteic and isocaloric. All infants enrolled were included in a developmental assessment program. The neurodevelopmental assessment was performed at 18 ± 6 months of corrected age. Minor and major neurodevelopmental impairment and General Quotient (GQ) at the Griffiths-II Mental Development Scale were considered. The GQ was considered both in continuous and as two classes: lower than and higher than (or equal to) a defined cutoff (GQcl). The difference in GQ and GQcl between the two arms was estimated using Mann–Whitney–Wilcoxon test or Fischer exact test, respectively, on the assumption of casual loss at follow-up. A further analysis was performed using generalized linear models. There were 103 children (bovine milk-derived fortifier arm = 54, donkey milk-derived fortifier arm = 49) included for the neurodevelopmental follow-up. All observations were included in the interval of 18 ± 6 months of corrected age. No significant difference was observed between the two arms in the incidence of neurologic sequelae and the GQs were similar in the two arms. Our results demonstrated no difference for the donkey milk-derived fortifier compared to standard bovine-derived fortifier regarding long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Chiara Peila
- Department of Public Health and Pediatric, Neonatal Unit of Turin University, Via Ventimiglia 3, 10126 Turin, Italy; (E.S.); (S.D.); (E.I.); (F.C.); (A.C.)
- Correspondence:
| | - Elena Spada
- Department of Public Health and Pediatric, Neonatal Unit of Turin University, Via Ventimiglia 3, 10126 Turin, Italy; (E.S.); (S.D.); (E.I.); (F.C.); (A.C.)
| | - Sonia Deantoni
- Department of Public Health and Pediatric, Neonatal Unit of Turin University, Via Ventimiglia 3, 10126 Turin, Italy; (E.S.); (S.D.); (E.I.); (F.C.); (A.C.)
| | - Ester Iuliano
- Department of Public Health and Pediatric, Neonatal Unit of Turin University, Via Ventimiglia 3, 10126 Turin, Italy; (E.S.); (S.D.); (E.I.); (F.C.); (A.C.)
| | - Guido E. Moro
- Italian Association of Human Milk Banks, Via Libero Temolo 4, 20126 Milan, Italy;
| | - Marzia Giribaldi
- Institute of Sciences of Food Production, National Research Council, Largo Braccini 2, 10095 Grugliasco, Italy; (M.G.); (L.C.)
- Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Economics, Strada delle Cacce 73, 10135 Turin, Italy
| | - Laura Cavallarin
- Institute of Sciences of Food Production, National Research Council, Largo Braccini 2, 10095 Grugliasco, Italy; (M.G.); (L.C.)
| | - Francesco Cresi
- Department of Public Health and Pediatric, Neonatal Unit of Turin University, Via Ventimiglia 3, 10126 Turin, Italy; (E.S.); (S.D.); (E.I.); (F.C.); (A.C.)
| | - Alessandra Coscia
- Department of Public Health and Pediatric, Neonatal Unit of Turin University, Via Ventimiglia 3, 10126 Turin, Italy; (E.S.); (S.D.); (E.I.); (F.C.); (A.C.)
| |
Collapse
|
30
|
Derdak R, Sakoui S, Pop OL, Muresan CI, Vodnar DC, Addoum B, Vulturar R, Chis A, Suharoschi R, Soukri A, El Khalfi B. Insights on Health and Food Applications of Equus asinus (Donkey) Milk Bioactive Proteins and Peptides-An Overview. Foods 2020; 9:E1302. [PMID: 32942687 PMCID: PMC7555024 DOI: 10.3390/foods9091302] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its similarity with human milk and its low allergenic properties, donkey milk has long been used as an alternative for infants and patients with cow's milk protein allergy (CMPA). In addition, this milk is attracting growing interest in human nutrition because of presumed health benefits. It has antioxidant, antimicrobial, antitumoral, antiproliferative and antidiabetic activity. In addition, it stimulates the immune system, regulates the gastrointestinal flora, and prevents inflammatory diseases. Although all donkey milk components can contribute to functional and nutritional effects, it is generally accepted that the whey protein fraction plays a significant role. This review aims to highlight the active proteins and peptides of donkey milk in comparison with other types of milk, emphasizing their properties and their roles in different fields of health and food applications.
Collapse
Affiliation(s)
- Reda Derdak
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco; (R.D.); (S.S.); (B.A.); (A.S.); (B.E.K.)
| | - Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco; (R.D.); (S.S.); (B.A.); (A.S.); (B.E.K.)
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.I.M.); (D.C.V.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Carmen Ioana Muresan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.I.M.); (D.C.V.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.I.M.); (D.C.V.)
- Food Biotechnology and Molecular Gastronomy, CDS7, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Boutaina Addoum
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco; (R.D.); (S.S.); (B.A.); (A.S.); (B.E.K.)
| | - Romana Vulturar
- Department of Molecular Sciences, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, Cluj-Napoca, 8 Victor Babeș, 400012 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Romania, 1 Mihail Kogalniceanu, 400084 Cluj-Napoca, Romania
| | - Adina Chis
- Department of Molecular Sciences, ‘Iuliu Hațieganu’ University of Medicine and Pharmacy, Cluj-Napoca, 8 Victor Babeș, 400012 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Romania, 1 Mihail Kogalniceanu, 400084 Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.I.M.); (D.C.V.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco; (R.D.); (S.S.); (B.A.); (A.S.); (B.E.K.)
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco; (R.D.); (S.S.); (B.A.); (A.S.); (B.E.K.)
| |
Collapse
|
31
|
Carvalho E, Adams SH, Børsheim E, Blackburn ML, Ono-Moore KD, Cotter M, Bowlin AK, Yeruva L. Neonatal diet impacts liver mitochondrial bioenergetics in piglets fed formula or human milk. BMC Nutr 2020; 6:13. [PMID: 32318270 PMCID: PMC7158137 DOI: 10.1186/s40795-020-00338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neonatal diet impacts many physiological systems and can modify risk for developing metabolic disease and obesity later in life. Less well studied is the effect of postnatal diet (e.g., comparing human milk (HM) or milk formula (MF) feeding) on mitochondrial bioenergetics. Such effects may be most profound in splanchnic tissues that would have early exposure to diet-associated or gut microbe-derived factors. METHODS To address this question, we measured ileal and liver mitochondrial bioenergetics phenotypes in male piglets fed with HM or MF from day 2 to day 21 age. Ileal and liver tissue were processed for mitochondrial respiration (substrate only [pyruvate, malate, glutamate], substrate + ADP, and proton "leak" post-oligomycin; measured by Oroboros methods), mitochondrial DNA (mtDNA) and metabolically-relevant gene expression analyses. RESULTS No differences between the diet groups were observed in mitochondrial bioenergetics indices in ileal tissue. In contrast, ADP-dependent liver Complex I-linked OXPHOS capacity and Complex I + II-linked OXPHOS capacity were significantly higher in MF animals relative to HM fed piglets. Interestingly, p53, Trap1, and Pparβ transcript abundances were higher in MF-fed relative to HM-fed piglets in the liver. Mitochondrial DNA copy numbers (normalized to nuclear DNA) were similar within-tissue regardless of postnatal diet, and were ~ 2-3 times higher in liver vs. ileal tissue. CONCLUSION While mechanisms remain to be identified, the data indicate that neonatal diet can significantly impact liver mitochondrial bioenergetics phenotypes, even in the absence of a change in mtDNA abundance. Since permeabilized liver mitochondrial respiration was increased in MF piglets only in the presence of ADP, it suggests that formula feeding led to a higher ATP turnover. Specific mechanisms and signals involved with neonatal diet-associated differences in liver bioenergetics remain to be elucidated.
Collapse
Affiliation(s)
- Eugenia Carvalho
- Department of Geriatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Research Institute, Little Rock, AR USA
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sean H. Adams
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Elisabet Børsheim
- Department of Geriatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Research Institute, Little Rock, AR USA
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Michael L. Blackburn
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Kikumi D. Ono-Moore
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Matthew Cotter
- Arkansas Children’s Research Institute, Little Rock, AR USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Anne K. Bowlin
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Laxmi Yeruva
- Arkansas Children’s Research Institute, Little Rock, AR USA
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| |
Collapse
|
32
|
Li Y, Fan Y, Shaikh AS, Wang Z, Wang D, Tan H. Dezhou donkey (Equus asinus) milk a potential treatment strategy for type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112221. [PMID: 31494203 DOI: 10.1016/j.jep.2019.112221] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Donkey (Equus asinus) milk has become a medical and nutrient product since ancient times. In addition, donkey milk was regarded as a medicinal food and substitute product for infant formula in some ancient western countries. Chinese ancient medical books documented the medicinal value of donkey milk, using donkey milk to treat diabetes, cough and jaundice. AIM OF THE STUDY To investigate the donkey milk's components and anti-diabetic effect of donkey milk in vitro and in vivo and to study the molecular mechanism of donkey milk was an anti-diabetic medication. MATERIALS AND METHODS In this study, the gastrointestinal digested donkey milk was simulated in vitro and its products of protein digestion were analyzed by SDS-PAGE. We then performed cell viability assay, insulin secretion assay, animal experiments and ELISA assays to study the anti-diabetic effect of donkey milk in vitro and in vivo. Donkey milk's anti-diabetic molecular mechanism and specific targets were detected by using quantitative real time PCR. RESULTS Lysozyme (LZ) and α-lactalbumin (α-La) exhibited significantly lower digestibility and higher retention than the other components of donkey milk. In vitro, 500 μg/mL of donkey milk could improve damaged β-cells viability significantly (P < 0.0001). In vivo, the blood glucose and HOMA-IR of diabetic rats treated with donkey milk were 14.23 ± 5.18 mM and 74.94 ± 23.62, respectively, whereas the diabetic group were 22.18 ± 2.23 mM and 112.16 ± 18.44, respectively (P < 0.01). The SOD value of donkey milk group was 265.87 ± 21.29 U/L, while the SOD value of diabetic group was 193.20 ± 52.07 U/L (P < 0.05). These results indicated that the blood glucose was reduced, the ability of the body to eliminate free radicals was enhanced, antioxidant levels in the body was increased, insulin resistance was improved in type 2 diabetic rats after donkey milk powder fed for 4 weeks. Furthermore, donkey milk could treat diabetes through down-regulating phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6PC). CONCLUSIONS Donkey milk has played an important role in the treatment of type 2 diabetes, and contributed to the development of the donkey milk products.
Collapse
Affiliation(s)
- Yan Li
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China
| | - Yumei Fan
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Done-E Country, Liaocheng, 252000, China; Dong-E E-Jiao Co. Ltd., Done-E Country, Liaocheng, 252000, China
| | - Abdul Sami Shaikh
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhendong Wang
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China
| | - Dongliang Wang
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China; National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Done-E Country, Liaocheng, 252000, China; Dong-E E-Jiao Co. Ltd., Done-E Country, Liaocheng, 252000, China.
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China.
| |
Collapse
|
33
|
Chen J, Vitetta L. Mitochondria could be a potential key mediator linking the intestinal microbiota to depression. J Cell Biochem 2019; 121:17-24. [PMID: 31385365 DOI: 10.1002/jcb.29311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
The intestinal microbiota has been reported to affect depression, a common mental condition with severe health-related consequences. However, what mediates the effect of the intestinal microbiota on depression has not been well elucidated. We summarize the roles of the mitochondria in eliciting beneficial effects on the gut microbiota to ameliorate symptoms of depression. It is well known that mitochondria play a key role in depression. An important pathogenic factor, namely inflammatory response, may adversely impact mitochondrial functionality to maintain cellular homeostasis. Dysfunction of mitochondria not only affects neuronal function but also reduces neuron cell numbers. We posit that the intestinal microbiota could affect neuronal mitochondrial function through short-chain fatty acids such as butyrate. Brain inflammatory processes could also be affected through the modulation of gut permeability and blood lipopolysaccharide levels. Aberrant mitochondria functionality coupled to adverse cellular homeostasis could be a key mediator for the effect of the intestinal microbiota on the progression of depression.
Collapse
Affiliation(s)
| | - Luis Vitetta
- Medlab Clinical Ltd, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
|
35
|
Abstract
OBJECTIVES The purpose of the present randomized controlled clinical trial was to compare the use of donkey milk-derived fortifier (DF) with commercial bovine milk-derived fortifier (BF) in very preterm or very-low-birth-weight newborns, in terms of feeding tolerance. METHODS This trial included 156 newborns born at <32 weeks of gestational age and/or with a birth weight ≤1500 g. Newborns were randomized 1:1 to receive enteral feeding with either a BF-arm, or a new, DF-arm for 21 days. The fortification protocol was the same for both study arms, and the 2 diets were designed to be isoproteic and isocaloric. Feeding tolerance was assessed by a standardized protocol. RESULTS The risk of feeding intolerance tended to be lower in DF-arm than in BF-arm, with a relative risk reduction of 0.63 (95% confidence interval: -0.29, +0.90). The mean number of episodes per newborn of feeding intolerance and feeding interruptions (any duration) were consistently lower in the DF-arm than in the BF-arm. Episodes of bilious gastric residuals and vomiting were significantly lower in the DF-arm. Time needed to reach full enteral feeding (150 mL · kg · day) and daily weight increase between the first day of exclusive enteral feeding (ie, without administering intravenous fluids) and discharge were similar in the BF- and DF-arms. CONCLUSIONS These results suggest that DF improve feeding tolerance when compared with standard bovine-derived fortifiers, with a similar auxological outcome.
Collapse
|
36
|
Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality. SUSTAINABILITY 2018. [DOI: 10.3390/su10092958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Colostrum is a natural product, issued by both mammals and humans in the first week of lactation. Among different species, donkey colostrum is considered to have, in addition to a valuable composition in nutrients and immune factors, an outstanding similitude with human colostrum. In this context, and taking into account the scarcity of available data concerning the interaction between climate factors and colostrum quality, a trial was conducted aiming to identify the possible influence of environmental factors on donkey colostrum nutritional traits. A stock of 175 jennies from 7 farms located in Cluj and Sălaj Counties was analyzed over a 7-day postpartum period. During the experimental period, the daily temperature, humidity, and wind velocity data were collected. Strong positive correlations are reported between the studied colostrum nutritional traits (fat, protein and lactose). Testing the impact of some environmental parameters upon nutritional content of donkey colostrum indicated three factors that have an influence on the nutritional quality of donkey milk colostrum, labelled as: colostrum nutritional traits, environmental air traits and some colostrum nutritional traits, and climatic traits and some colostrum nutritional traits.
Collapse
|
37
|
Hepatic Mitochondrial Dysfunction and Immune Response in a Murine Model of Peanut Allergy. Nutrients 2018; 10:nu10060744. [PMID: 29890625 PMCID: PMC6024519 DOI: 10.3390/nu10060744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/24/2022] Open
Abstract
Background: Evidence suggests a relevant role for liver and mitochondrial dysfunction in allergic disease. However, the role of hepatic mitochondrial function in food allergy is largely unknown. We aimed to investigate hepatic mitochondrial dysfunction in a murine model of peanut allergy. Methods: Three-week-old C3H/HeOuJ mice were sensitized by the oral route with peanut-extract (PNT). We investigated: 1. the occurrence of effective sensitization to PNT by analysing acute allergic skin response, anaphylactic symptoms score, body temperature, serum mucosal mast cell protease-1 (mMCP-1) and anti-PNT immunoglobulin E (IgE) levels; 2. hepatic involvement by analysing interleukin (IL)-4, IL-5, IL-13, IL-10 and IFN-γ mRNA expression; 3. hepatic mitochondrial oxidation rates and efficiency by polarography, and hydrogen peroxide (H2O2) yield, aconitase and superoxide dysmutase activities by spectrophotometry. Results: Sensitization to PNT was demonstrated by acute allergic skin response, anaphylactic symptoms score, body temperature decrease, serum mMCP-1 and anti-peanut IgE levels. Liver involvement was demonstrated by a significant increase of hepatic Th2 cytokines (IL-4, IL-5 and IL-13) mRNA expression. Mitochondrial dysfunction was demonstrated by lower state 3 respiration rate in the presence of succinate, decreased fatty acid oxidation in the presence of palmitoyl-carnitine, increased yield of ROS proven by the inactivation of aconitase enzyme and higher H2O2 mitochondrial release. Conclusions: We provide evidence of hepatic mitochondrial dysfunction in a murine model of peanut allergy. These data could open the way to the identification of new mitochondrial targets for innovative preventive and therapeutic strategies against food allergy.
Collapse
|
38
|
|
39
|
Valle E, Pozzo L, Giribaldi M, Bergero D, Gennero MS, Dezzutto D, McLean A, Borreani G, Coppa M, Cavallarin L. Effect of farming system on donkey milk composition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2801-2808. [PMID: 29131337 DOI: 10.1002/jsfa.8777] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/19/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Donkey milk is considered as a functional food for sensitive consumers, such as children who are allergic to cow milk. No information is available regarding the effect of farming systems on the quality of donkey milk. The present study aimed to evaluate the effect of the farming system and lactation stage on donkey milk with respect to gross composition, as well as fat-soluble vitamins and fatty acids (FA). RESULTS Individual milk samples were collected from lactating jennies (n = 53) on the six of the largest farms located in North West Italy. The performance of lactating jennies, herd characteristics and feeding strategies were recorded at each milk sampling. The gross composition of the milk, along with the fat-soluble vitamin content, differed in accordance with the farming system. The lactation stage had limited effects on milk quality. A higher milk fat content corresponded to a higher amount of fresh herbage proportion in the diet, with the highest polyunsaturated fatty acid (PUFA), C18:1c9, C18:3n-3, n-3 FA, retinol and α-tocopherol content and the lowest concentrations of the FA that are less favorable for human health in the milk of animals fed on only forage diets. CONCLUSION Extensive farming of dairy donkeys increased the fat content and fat-soluble vitamin concentration of milk and also altered the FA composition to a more favorable profile for human nutrition. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Emanuela Valle
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco, Turin, Italy
| | - Luisa Pozzo
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Pisa, Italy
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Grugliasco, Turin, Italy
| | - Marzia Giribaldi
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Grugliasco, Turin, Italy
| | - Domenico Bergero
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco, Turin, Italy
| | - Maria Silvia Gennero
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Daniela Dezzutto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Amy McLean
- UC Davis, University of California at Davis, Davis, CA, USA
| | - Giorgio Borreani
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Turin, Italy
| | - Mauro Coppa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Grugliasco, Turin, Italy
| | - Laura Cavallarin
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Grugliasco, Turin, Italy
| |
Collapse
|
40
|
Supplementation of suckling rats with cow's milk induces hyperphagia and higher visceral adiposity in females at adulthood, but not in males. J Nutr Biochem 2018; 55:89-103. [DOI: 10.1016/j.jnutbio.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/17/2022]
|
41
|
Souroullas K, Aspri M, Papademas P. Donkey milk as a supplement in infant formula: Benefits and technological challenges. Food Res Int 2018; 109:416-425. [PMID: 29803466 DOI: 10.1016/j.foodres.2018.04.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/30/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
The aim of this review paper is to assess the applicability of donkey's milk to infants suffering from Cow Milk Protein Allergy (CMPA) compared to human and other available milk types. The bioactive and immune-supportive character which could be beneficial as a fortifier to the formula-fed infants is described while limitations of this type of milk are also discussed. Studies showed that human and donkey's milk have similar, overall, chemical composition as well as protein homogeneity and antigenic similarities. Several in vitro and in vivo studies showed that donkey's milk has nutraceutical and functional properties that can support immunity, alter metabolism and beneficially modify gut microbiota. Clinical studies illustrated that donkeys' milk is well tolerated (82.6%-88%) by infants. Finally, the effect that processing (i.e. thermal, non-thermal treatments, drying methods) has on donkey milk components is also discussed pointing out the need for minimally processing this type of milk.
Collapse
Affiliation(s)
- Kallis Souroullas
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus
| | - Maria Aspri
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus
| | - Photis Papademas
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus.
| |
Collapse
|
42
|
Trinchese G, Cavaliere G, De Filippo C, Aceto S, Prisco M, Chun JT, Penna E, Negri R, Muredda L, Demurtas A, Banni S, Berni-Canani R, Mattace Raso G, Calignano A, Meli R, Greco L, Crispino M, Mollica MP. Human Milk and Donkey Milk, Compared to Cow Milk, Reduce Inflammatory Mediators and Modulate Glucose and Lipid Metabolism, Acting on Mitochondrial Function and Oleylethanolamide Levels in Rat Skeletal Muscle. Front Physiol 2018; 9:32. [PMID: 29472867 PMCID: PMC5810302 DOI: 10.3389/fphys.2018.00032] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
Scope: Milk from various species differs in nutrient composition. In particular, human milk (HM) and donkey milk (DM) are characterized by a relative high level of triacylglycerol enriched in palmitic acid in sn-2 position. These dietary fats seem to exert beneficial nutritional properties through N-acylethanolamine tissue modulation. The aim of this study is to compare the effects of cow milk (CM), DM, and HM on inflammation and glucose and lipid metabolism, focusing on mitochondrial function, efficiency, and dynamics in skeletal muscle, which is the major determinant of resting metabolic rate. Moreover, we also evaluated the levels of endocannabinoids and N-acylethanolamines in liver and skeletal muscle, since tissue fatty acid profiles can be modulated by nutrient intervention. Procedures: To this aim, rats were fed with CM, DM, or HM for 4 weeks. Then, glucose tolerance and insulin resistance were analyzed. Pro-inflammatory and anti-inflammatory cytokines were evaluated in serum and skeletal muscle. Skeletal muscle was also processed to estimate mitochondrial function, efficiency, and dynamics, oxidative stress, and antioxidant/detoxifying enzyme activities. Fatty acid profiles, endocannabinoids, and N-acylethanolamine congeners were determined in liver and skeletal muscle tissue. Results: We demonstrated that DM or HM administration reducing inflammation status, improves glucose disposal and insulin resistance and reduces lipid accumulation in skeletal muscle. Moreover, HM or DM administration increases redox status, and mitochondrial uncoupling, affecting mitochondrial dynamics in the skeletal muscle. Interestingly, HM and DM supplementation increase liver and muscle levels of the N-oleoylethanolamine (OEA), a key regulator of lipid metabolism and inflammation. Conclusions: HM and DM have a healthy nutritional effect, acting on inflammatory factors and glucose and lipid metabolism. This beneficial effect is associated to a modulation of mitochondrial function, efficiency, and dynamics and to an increase of OEA levels in skeletal muscle.
Collapse
Affiliation(s)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Chiara De Filippo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Jong Tai Chun
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rossella Negri
- European Laboratory for Food Induced Diseases, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Laura Muredda
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cagliari, Italy
| | - Andrea Demurtas
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cagliari, Italy
| | - Sebastiano Banni
- Dipartimento di Scienze Biomediche, Università degli Studi di Cagliari, Cagliari, Italy
| | - Roberto Berni-Canani
- European Laboratory for Food Induced Diseases, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- European Laboratory for Food Induced Diseases, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria P Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
43
|
Coscia A, Bertino E, Tonetto P, Peila C, Cresi F, Arslanoglu S, Moro GE, Spada E, Milani S, Giribaldi M, Antoniazzi S, Conti A, Cavallarin L. Nutritional adequacy of a novel human milk fortifier from donkey milk in feeding preterm infants: study protocol of a randomized controlled clinical trial. Nutr J 2018; 17:6. [PMID: 29316931 PMCID: PMC5761142 DOI: 10.1186/s12937-017-0308-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fortification of human milk is a standard practice for feeding very low birth weight infants. However, preterm infants often still experience suboptimal growth and feeding intolerance. New fortification strategies and different commercially available fortifiers have been developed. Commercially available fortifiers are constituted by a blend of ingredients from different sources, including plant oils and bovine milk proteins, thus presenting remarkable differences in the quality of macronutrients with respect to human milk. Based on the consideration that donkey milk has been suggested as a valid alternative for children allergic to cow's milk proteins, due to its biochemical similarity to human milk, we hypothesized that donkey milk could be a suitable ingredient for developing an innovative human milk fortifier. The aim of the study is to evaluate feeding tolerance, growth and clinical short and long-term outcomes in a population of preterm infants fed with a novel multi-component fortifier and a protein concentrate derived from donkey milk, in comparison to an analogous population fed with traditional fortifier and protein supplement containing bovine milk proteins. METHODS The study has been designed as a randomized, controlled, single-blind clinical trial. Infants born <1500 g and <32 weeks of gestational age were randomized to receive for 21 days either a combination of control bovine milk-based multicomponent fortifier and protein supplement, or a combination of a novel multicomponent fortifier and protein supplement derived from donkey milk. The fortification protocol followed is the same for the two groups, and the two diets were designed to be isoproteic and isocaloric. Weight, length and head circumference are measured; feeding tolerance is assessed by a standardized protocol. The occurrence of sepsis, necrotizing enterocolitis and adverse effects are monitored. DISCUSSION This is the first clinical study investigating the use of a human milk fortifier derived from donkey milk for the nutrition of preterm infants. If donkey milk derived products will be shown to improve the feeding tolerance or either of the clinical, metabolic, neurological or auxological outcomes of preterm infants, it would be an absolute innovation in the field of feeding practices for preterm infants. TRIAL REGISTRATION ISRCTN - ISRCTN70022881 .
Collapse
Affiliation(s)
- Alessandra Coscia
- Neonatal Unit of Turin University, City of Health and Science of Turin, Via Ventimiglia 3, 10126 Turin, Italy
| | - Enrico Bertino
- Neonatal Unit of Turin University, City of Health and Science of Turin, Via Ventimiglia 3, 10126 Turin, Italy
| | - Paola Tonetto
- Neonatal Unit of Turin University, City of Health and Science of Turin, Via Ventimiglia 3, 10126 Turin, Italy
| | - Chiara Peila
- Neonatal Unit of Turin University, City of Health and Science of Turin, Via Ventimiglia 3, 10126 Turin, Italy
| | - Francesco Cresi
- Neonatal Unit of Turin University, City of Health and Science of Turin, Via Ventimiglia 3, 10126 Turin, Italy
| | - Sertac Arslanoglu
- Italian Association of Human Milk Banks, Via Libero Temolo 4, 20126 Milan, Italy
| | - Guido E Moro
- Italian Association of Human Milk Banks, Via Libero Temolo 4, 20126 Milan, Italy
| | - Elena Spada
- Neonatal Unit of Turin University, City of Health and Science of Turin, Via Ventimiglia 3, 10126 Turin, Italy
| | - Silvano Milani
- Unit of Medical Statistics and Biometry, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marzia Giribaldi
- Institute of Sciences of Food Production, National Research Council, Largo Braccini 2, 10095 Grugliasco (TO), Italy
- Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Economics (CREA), Strada delle cacce 73, 10135 Turin, Italy
| | - Sara Antoniazzi
- Institute of Sciences of Food Production, National Research Council, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Amedeo Conti
- Institute of Sciences of Food Production, National Research Council, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Laura Cavallarin
- Institute of Sciences of Food Production, National Research Council, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
44
|
Aguayo-Patrón SV, Calderón de la Barca AM. Old Fashioned vs. Ultra-Processed-Based Current Diets: Possible Implication in the Increased Susceptibility to Type 1 Diabetes and Celiac Disease in Childhood. Foods 2017; 6:foods6110100. [PMID: 29140275 PMCID: PMC5704144 DOI: 10.3390/foods6110100] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 01/14/2023] Open
Abstract
Ultra-processed foods are ready-to-heat and ready-to-eat products created to replace traditional homemade meals and dishes due to convenience and accessibility. Because of their low-fiber and high-fat and sugar composition, these foodstuffs could induce a negative impact on health. They are partially responsible for obesity and chronic non-transmissible diseases; additionally, they could impact in the prevalence of autoimmune diseases such as type 1 diabetes and celiac disease. The rationale is that the nutritional composition of ultra-processed foodstuffs can induce gut dysbiosis, promoting a pro-inflammatory response and consequently, a “leaky gut”. These factors have been associated with increased risk of autoimmunity in genetically predisposed children. In addition, food emulsifiers, commonly used in ultra-processed products could modify the gut microbiota and intestinal permeability, which could increase the risk of autoimmunity. In contrast, unprocessed and minimally processed food-based diets have shown the capacity to promote gut microbiota eubiosis, anti-inflammatory response, and epithelial integrity, through bacterial butyrate production. Thus, to decrease the susceptibility to autoimmunity, genetically predisposed children should avoid ultra-processed food products and encourage the consumption of fresh and minimally processed foods.
Collapse
Affiliation(s)
- Sandra V Aguayo-Patrón
- Departamento de Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Ana M Calderón de la Barca
- Departamento de Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
45
|
Giribaldi M, Antoniazzi S, Gariglio GM, Coscia A, Bertino E, Cavallarin L. A Preliminary Assessment of HTST Processing on Donkey Milk. Vet Sci 2017; 4:vetsci4040050. [PMID: 29056708 PMCID: PMC5753630 DOI: 10.3390/vetsci4040050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 11/16/2022] Open
Abstract
Due to increasing attention from consumers on non-bovine milk types, and to the increase in the number of small dairy donkey farms in Italy, farmers require more advanced and reliable processing devices, in order to guarantee a safe product of high quality. To this aim, a new small-scale High-Temperature Short-Time (HTST) pasteurizer (72 °C for 15 s), prototyped by the authors, was tested on donkey milk. The efficacy of the HTST device was tested on raw donkey milk microflora by enumeration of total aerobic bacteria, Enterobacteriaceae and Bacillus cereus. The biochemical quality was assessed by determining the protein profile by monodimensional electrophoresis and by measuring lysozyme activity. The HTST apparatus was able to reduce the total bacteria count, and to completely eradicate Enterobacteriaceae. Bacillus cereus, when present, was decreased with low efficiency. Changes in the protein profile were observed in milk pasteurized in accordance with both processes, although HTST seemed to limit casein degradation. Lysozyme activity was not substantially affected in comparison to raw donkey milk. In conclusion, a tailored small-volume HTST device could be safely applied to pasteurize donkey milk in on-farm pasteurization processes on small dairy donkey farms.
Collapse
Affiliation(s)
- Marzia Giribaldi
- Consiglio per la Ricerca in Agricoltura e L'analisi Dell'economia Agraria-Centro di Ricerca in Ingegneria e Trasformazioni Agroalimentari, 10135 Torino, Italy.
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, 10095 Grugliasco (To), Italy.
| | - Sara Antoniazzi
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, 10095 Grugliasco (To), Italy.
| | | | - Alessandra Coscia
- Città della Salute e della Scienza-Struttura Complessa di Neonatologia, 10125 Torino, Italy.
| | - Enrico Bertino
- Città della Salute e della Scienza-Struttura Complessa di Neonatologia, 10125 Torino, Italy.
| | - Laura Cavallarin
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, 10095 Grugliasco (To), Italy.
| |
Collapse
|
46
|
Bergamo P, Cocca E, Monaco A, Cozzolino V, Boscaino F, Ferrandino I, Maurano F, Rossi M. Protective effect of Rumenic acid rich cow's milk against colitis is associated with the activation of Nrf2 pathway in a murine model. Prostaglandins Leukot Essent Fatty Acids 2017; 125:14-23. [PMID: 28987717 DOI: 10.1016/j.plefa.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022]
Abstract
Dietary supplementation with pure cis9, trans11 isomer of Conjugated Linoleic Acid -known as Rumenic Acid (RA)- improves cytoprotective defenses downstream through the activation of nuclear factor-E2-related factor-2(Nrf2). This capability, when Rumenic Acid is consumed in the form of foods, is still unknown. The ability of standard (St) or cow milk naturally-enriched in RA (En) to activate Nrf2 pathway and its impact on dextran sodium sulfate (DSS)-induced colitis was comparatively evaluated. Activity of Nrf2 pathway was investigated in colonic tissue of BALB/c mice, receiving 4-week supplement with skimmed milk (SK), St or St reinforced with pure RA (RSt) providing increasing RA dose (0, 124 or 404mg RA/kg-1 b.w, respectively). Next, the anti-oxidant/ anti-inflammatory effect produced by St or En treatment (383mg RA/kg-1 b.w.) was explored. Finally, macroscopic and histomorphologic features of colitis were evaluated in animals challenged with 5% (w/v) DSS, at the end of St or En treatment. Significant activation of Nrf2 pathway is associated with RSt and En intake (P<0.05), but not with SK or En treatment. En pre-treatment offers better protection, in comparison with St, against pro-oxidant, pro-inflammatory signs (P<0.01) and macroscopic signs triggered by DSS. It can be concluded that Nrf2 activation by higher RA amount contained in En is, at least in part, responsible for the improved protection associated with En intake against DSS-induced colitis.
Collapse
Affiliation(s)
- P Bergamo
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy.
| | - E Cocca
- Institute of Biosciences and Bio-resources, National Research Council (CNR-IBBR), Naples, Italy
| | - A Monaco
- Department of Biology, University "Federico II" of Naples, Italy
| | - V Cozzolino
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - F Boscaino
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - I Ferrandino
- Department of Biology, University "Federico II" of Naples, Italy
| | - F Maurano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - M Rossi
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
47
|
Rieusset J. Mitochondria-associated membranes (MAMs): An emerging platform connecting energy and immune sensing to metabolic flexibility. Biochem Biophys Res Commun 2017. [PMID: 28647358 DOI: 10.1016/j.bbrc.2017.06.097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Living organisms have the capacity to sense both nutrients and immune signals in order to adapt their metabolism to the needs, and both metabolic inflexibility and exacerbated immune responses are associated with metabolic diseases. Over the past decade, mitochondria emerged as key nutrient and immune sensors regulating numerous signalling pathways, and mitochondria dysfunction has been extensively implicated in metabolic diseases. Interestingly, mitochondria interact physically and functionally with the endoplasmic reticulum (ER, in contact sites named mitochondria-associated membranes (MAMs), in order to exchange metabolites and calcium and regulate cellular homeostasis. Emerging evidences suggest that MAMs provide a platform for hormone and nutrient signalling pathways and for innate immune responses, then regulating mitochondrial bioenergetics and apoptosis. Here, I thus propose the concept that MAMs could be attractive nutrient and immune sensors that regulate mitochondria physiology in order to adapt metabolism and cell fate, and that organelle miscommunication could be involved in the metabolic inflexibility and the pro-inflammatory status associated with metabolic diseases.
Collapse
Affiliation(s)
- Jennifer Rieusset
- Laboratoire CarMeN, INSERM U1060, INRA U1235, Université Claude Bernard Lyon1, INSA-Lyon, F-69600 Oullins, France.
| |
Collapse
|
48
|
Clark A, Mach N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front Physiol 2017; 8:319. [PMID: 28579962 PMCID: PMC5437217 DOI: 10.3389/fphys.2017.00319] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
Many physiological changes occur in response to endurance exercise in order to adapt to the increasing energy needs, mitochondria biogenesis, increased reactive oxygen species (ROS) production and acute inflammatory responses. Mitochondria are organelles within each cell that are crucial for ATP production and are also a major producer of ROS and reactive nitrogen species during intense exercise. Recent evidence shows there is a bidirectional interaction between mitochondria and microbiota. The gut microbiota have been shown to regulate key transcriptional co-activators, transcription factors and enzymes involved in mitochondrial biogenesis such as PGC-1α, SIRT1, and AMPK genes. Furthermore, the gut microbiota and its metabolites, such as short chain fatty acids and secondary bile acids, also contribute to host energy production, ROS modulation and inflammation in the gut by attenuating TNFα- mediated immune responses and inflammasomes such as NLRP3. On the other hand, mitochondria, particularly mitochondrial ROS production, have a crucial role in regulating the gut microbiota via modulating intestinal barrier function and mucosal immune responses. Recently, it has also been shown that genetic variants within the mitochondrial genome, could affect mitochondrial function and therefore the intestinal microbiota composition and activity. Diet is also known to dramatically modulate the composition of the gut microbiota. Therefore, studies targeting the gut microbiota can be useful for managing mitochondrial related ROS production, pro-inflammatory signals and metabolic limits in endurance athletes.
Collapse
Affiliation(s)
- Allison Clark
- Health Science Department, Open University of CataloniaBarcelona, Spain
| | - Núria Mach
- Health Science Department, Open University of CataloniaBarcelona, Spain.,UMR 1313, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
49
|
Besu I, Srdic-Rajic T, Matić I, Jankovic L, Besu V, Konic-Ristic A, Juranic Z. The absence of immunoreactivity to donkey’s milk in patients with recurrent aphthous ulcers and immunoreactivity to cow’s milk. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1293017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Irina Besu
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Tatjana Srdic-Rajic
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ivana Matić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ljiljana Jankovic
- Clinic for Periodontology and Oral medicine, Faculty of Stomatology, University of Belgrade, Belgrade, Serbia
| | - Valeri Besu
- Dental Ordination ‘Dr Besu’, Zrenjanin, Serbia
| | - Aleksandra Konic-Ristic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Zorica Juranic
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
50
|
Mollica MP, Mattace Raso G, Cavaliere G, Trinchese G, De Filippo C, Aceto S, Prisco M, Pirozzi C, Di Guida F, Lama A, Crispino M, Tronino D, Di Vaio P, Berni Canani R, Calignano A, Meli R. Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese Mice. Diabetes 2017; 66:1405-1418. [PMID: 28223285 DOI: 10.2337/db16-0924] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022]
Abstract
Fatty liver, oxidative stress, and mitochondrial dysfunction are key pathophysiological features of insulin resistance and obesity. Butyrate, produced by fermentation in the large intestine by gut microbiota, and its synthetic derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide, FBA, have been demonstrated to be protective against insulin resistance and fatty liver. Here, hepatic mitochondria were identified as the main target of the beneficial effect of both butyrate-based compounds in reverting insulin resistance and fat accumulation in diet-induced obese mice. In particular, butyrate and FBA improved respiratory capacity and fatty acid oxidation, activated the AMPK-acetyl-CoA carboxylase pathway, and promoted inefficient metabolism, as shown by the increase in proton leak. Both treatments consistently increased utilization of substrates, especially fatty acids, leading to the reduction of intracellular lipid accumulation and oxidative stress. Finally, the shift of the mitochondrial dynamic toward fusion by butyrate and FBA resulted in the improvement not only of mitochondrial cell energy metabolism but also of glucose homeostasis. In conclusion, butyrate and its more palatable synthetic derivative, FBA, modulating mitochondrial function, efficiency, and dynamics, can be considered a new therapeutic strategy to counteract obesity and insulin resistance.
Collapse
Affiliation(s)
| | | | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Chiara De Filippo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Diana Tronino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Paola Di Vaio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for Investigation of Food Induced Diseases, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|