1
|
Wang Y, Wu X, Liu Y, Zhang J, Wang L, Luo X. A wearable platform for biochemical sweat analysis using photonic crystal hydrogel. Anal Chim Acta 2025; 1338:343590. [PMID: 39832860 DOI: 10.1016/j.aca.2024.343590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Wearable systems for health monitoring are highly desired in personal diagnostics and precision medicine while challenges remain in constructing such wearable systems with reliability and high performance. Herein, we report a wearable platform for non-invasive monitoring biomarkers in sweat. The device is composed of a butterfly-shaped like microfluidic platform in which responsive photonic crystal hydrogels are embedded in each butterfly wing as sensors. Sweat lactate concentration and pH can be obtained via the color variation of the sensor with naked eyes. Accurate quantitative analysis of the two target analytes can be obtained via the image analysis on a mobile phone by integrating the linear range response to analytes within the physiological range. Moreover, the sensor exhibits good reproducibility, excellent selectivity and long-term stability. On-body trials have been conducted by attaching the device on volunteers' body, and the obtained results are consistent with those analyzed through standardized methods, demonstrating its potentiality in real-time and continuous monitoring sweat biomarkers. This non-invasive wearable sensor provides a new strategy for personal health monitoring and sports performance assessment.
Collapse
Affiliation(s)
- Yingli Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yun Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jincheng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
2
|
Fathy MA, Bühlmann P. Next-Generation Potentiometric Sensors: A Review of Flexible and Wearable Technologies. BIOSENSORS 2025; 15:51. [PMID: 39852102 PMCID: PMC11764208 DOI: 10.3390/bios15010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously being improved, with the ultimate objective to make compact, sophisticated, highly integrated, and adaptable multi-functional devices that seamlessly connect to clothing or the body, and continuously monitor bodily signals without impeding the wearer's comfort or well-being. Potentiometric sensors, leveraging a range of different solid contact materials, have emerged as a preferred choice for wearable chemical or biological sensors. Nanomaterials play a pivotal role, offering unique properties, such as high conductivity and surface-to-volume ratios. This article provides a review of recent advancements in wearable potentiometric sensors utilizing various solid contacts, with a particular emphasis on nanomaterials. These sensors are employed for precise ion concentration determinations, notably sodium, potassium, calcium, magnesium, ammonium, and chloride, in human biological fluids. This review highlights two primary applications, that is, (1) the enhancement of athletic performance by continuous monitoring of ion levels in sweat to gauge the athlete's health status, and (2) the facilitation of clinical diagnosis and preventive healthcare by monitoring the health status of patients, in particular to detect early signs of dehydration, fatigue, and muscle spasms.
Collapse
Affiliation(s)
- Mahmoud Abdelwahab Fathy
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Lin H, Yan Y, Deng C, Sun N. Engineered Bimetallic MOF-Crafted Bullet Aids in Penetrating Serum Metabolic Traits of Chronic Obstructive Pulmonary Disease. Anal Chem 2024; 96:14688-14696. [PMID: 39208069 DOI: 10.1021/acs.analchem.4c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Metabolomics analysis based on body fluids, combined with high-throughput laser desorption and ionization mass spectrometry (LDI-MS), holds great potential and promising prospects for disease diagnosis and screening. On the other hand, chronic obstructive pulmonary disease (COPD) currently lacks innovative and powerful diagnostic and screening methods. In this work, CoFeNMOF-D, a metal-organic framework (MOF)-derived metal oxide nanomaterial, was synthesized and utilized as a matrix to assist LDI-MS for extracting serum metabolic fingerprints of COPD patients and healthy controls (HC). Through machine learning algorithms, successful discrimination between the COPD and HC was achieved. Furthermore, four potential biomarkers significantly downregulated in COPD were screened out. The disease diagnostic models based on the biomarkers demonstrated excellent diagnostic performance across different algorithms, with area under the curve (AUC) values reaching 0.931 and 0.978 in the training and validation sets, respectively. Finally, the potential metabolic pathways and disease mechanisms associated with the identified markers were explored. This work advances the application of LDI-based molecular diagnostics in clinical settings.
Collapse
Affiliation(s)
- Hairu Lin
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Li B, Sui N, Li M, Gu W, Yang W, Xu W, Zhao J. High-sensitivity and energy-efficient chloride ion sensors based on flexible printed carbon nanotube thin-film transistors for wearable electronics. Talanta 2024; 276:126285. [PMID: 38781918 DOI: 10.1016/j.talanta.2024.126285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The advent of flexible single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) has transformed electronics, providing significant benefits like low operating voltage, reduced power consumption, cost-effectiveness, and improved signal amplification. This study focuses on leveraging these attributes to develop a novel flexible high-sensitivity and energy-efficient chloride ion sensors based on printed flexible SWCNT-TFTs utilizing polymers-sorted semiconducting SWCNTs (sc-SWCNTs) as the active layers and ion liquids-poly(4-vinylphenol as dielectric layers along with the evaporated deposition of aluminum electrodes and printed silver electrodes as the gate and source-drain electrodes, respectively. The sensors exhibit several operational advantages, including low voltage requirements (≤1 V), rapid response speed (5.32 s), significant signal amplification (Up to 702.6 %), low power consumption (0.31 μJ at 1 mmol chloride ion), good repeatability, high sensitivity for both low and high concentrations of chloride ion (up to 100 mmol/L) and excellent mechanical flexibility (No obvious changes after bending for 10,000 times with a 5 mm radius). The detection mechanism of chloride ions was analyzed using X-ray Photoelectron Spectroscopy (XPS). It was found that chloride ions react with silver nanoparticles (AgNPs) to form silver chloride (AgCl) on printed electrodes, impeding carrier transport and reducing the currents in SWCNT TFTs. Importantly, our sensors' compatibility with smart devices allows for real-time monitoring of chloride ion levels in human sweat, offering significant potential for daily health monitoring.
Collapse
Affiliation(s)
- Benxiang Li
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China; Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, PR China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Nianzi Sui
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, PR China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Min Li
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, PR China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Weibing Gu
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, PR China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Wenming Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China
| | - Wanzhen Xu
- School of the Environment and Safety Engineering, School of the Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China.
| | - Jianwen Zhao
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, PR China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, PR China.
| |
Collapse
|
5
|
Castillo-Peinado LS, Calderón-Santiago M, Jurado-Gámez B, Priego-Capote F. Changes in human sweat metabolome conditioned by severity of obstructive sleep apnea and intermittent hypoxemia. J Sleep Res 2024; 33:e14075. [PMID: 37877569 DOI: 10.1111/jsr.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Obstructive sleep apnea (OSA) is a sleep disorder that has been associated with the incidence of other pathologies. Diagnosis is mainly based on the apnea-hypopnea index (AHI) obviating other repercussions such as intermittent hypoxemia, which has been found to be associated to cardiovascular complications. Blood-based samples and urine have been the most utilised biofluids in metabolomics studies related to OSA, while sweat could be an alternative due to its non-invasive and accessible sampling, its reduced complexity, and comparability with other biofluids. Therefore, this research aimed to evaluate metabolic overnight changes in sweat collected from patients with OSA classified according to the AHI and oxygen desaturation index (ODI), looking for potential cardiovascular repercussions. Pre- and post-sleeping sweat samples from all individuals (n = 61) were analysed by gas chromatography coupled to high-resolution mass spectrometry after appropriate sample preparation to detect as many metabolites as possible. Permanent significant alterations in the sweat were reported for pyruvate, serine, lactose, and hydroxybutyrate. The most relevant overnight metabolic alterations in sweat were reported for lactose, succinate, urea, and oxoproline, which presented significantly different effects on factors such as the AHI and ODI for OSA severity classification. Overall metabolic alterations mainly affected energy production-related processes, nitrogen metabolism, and oxidative stress. In conclusion, this research demonstrated the applicability of sweat for evaluation of OSA diagnosis and severity supported by the detected metabolic changes during sleep.
Collapse
Affiliation(s)
- Laura S Castillo-Peinado
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Energy and Environmental Chemistry University Institute (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Energy and Environmental Chemistry University Institute (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Bernabé Jurado-Gámez
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Department of Respiratory Medicine, Reina Sofía University Hospital, Córdoba, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Energy and Environmental Chemistry University Institute (IQUEMA), Campus of Rabanales, University of Córdoba, Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Ferreira CR, Lima Gomes PCFD, Robison KM, Cooper BR, Shannahan JH. Implementation of multiomic mass spectrometry approaches for the evaluation of human health following environmental exposure. Mol Omics 2024; 20:296-321. [PMID: 38623720 PMCID: PMC11163948 DOI: 10.1039/d3mo00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Omics analyses collectively refer to the possibility of profiling genetic variants, RNA, epigenetic markers, proteins, lipids, and metabolites. The most common analytical approaches used for detecting molecules present within biofluids related to metabolism are vibrational spectroscopy techniques, represented by infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies and mass spectrometry (MS). Omics-based assessments utilizing MS are rapidly expanding and being applied to various scientific disciplines and clinical settings. Most of the omics instruments are operated by specialists in dedicated laboratories; however, the development of miniature portable omics has made the technology more available to users for field applications. Variations in molecular information gained from omics approaches are useful for evaluating human health following environmental exposure and the development and progression of numerous diseases. As MS technology develops so do statistical and machine learning methods for the detection of molecular deviations from personalized metabolism, which are correlated to altered health conditions, and they are intended to provide a multi-disciplinary overview for researchers interested in adding multiomic analysis to their current efforts. This includes an introduction to mass spectrometry-based omics technologies, current state-of-the-art capabilities and their respective strengths and limitations for surveying molecular information. Furthermore, we describe how knowledge gained from these assessments can be applied to personalized medicine and diagnostic strategies.
Collapse
Affiliation(s)
- Christina R Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Kiley Marie Robison
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Xu W, Lu L, He Y, Cheng L, Liu A. Long-Term Detection of Glycemic Glucose/Hypoglycemia by Microfluidic Sweat Monitoring Patch. BIOSENSORS 2024; 14:294. [PMID: 38920598 PMCID: PMC11202208 DOI: 10.3390/bios14060294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
A microfluidic sweat monitoring patch that collects human sweat for a long time is designed to achieve the effect of detecting the rise and fall of human sweat glucose over a long period of time by increasing the use time of a single patch. Five collection pools, four serpentine channels, and two different valves are provided. Among them, the three-dimensional valve has a large burst pressure as a balance between the internal and external air pressures of the patch. The bursting pressure of the two-dimensional diverter valve is smaller than that of the three-dimensional gas valve, and its role is to control the flow direction of the liquid. Through plasma hydrophilic treatment of different durations, the optimal hydrophilic duration is obtained. The embedded chromogenic disc detects the sweat glucose value at two adjacent time intervals and compares the information of the human body to increase or reduce glucose. The patch has good flexibility and can fit well with human skin, and because polydimethylsiloxane (PDMS) has good light transmission, it reduces the measurement error caused by the color-taking process and makes the detection results more accurate.
Collapse
Affiliation(s)
| | | | | | - Lin Cheng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (L.L.); (Y.H.)
| | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (L.L.); (Y.H.)
| |
Collapse
|
8
|
Zhang Z, Li Z, Wei K, Cao Z, Zhu Z, Chen R. Sweat as a source of non-invasive biomarkers for clinical diagnosis: An overview. Talanta 2024; 273:125865. [PMID: 38452593 DOI: 10.1016/j.talanta.2024.125865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Sweat has excellent potential as one of the sources of non-invasive biomarkers for clinical diagnosis. It is relatively easy to collect and process and may contain different disease-specific markers and drug metabolites, making it ideal for various clinical applications. This article discusses the anatomy of sweat glands and their role in sweat production, as well as the history and development of multiple sweat sample collection and analysis techniques. Another primary focus of this article is the application of sweat detection in clinical disease diagnosis and other life scenarios. Finally, the limitations and prospects of sweat analysis are discussed.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Department of Plastic and Aesthetic Surgery, Ningbo Hangzhou Bay Hospital, Zhejiang, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Kunchen Wei
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zehui Cao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Rui Chen
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Merritt JR, Ozga M, De Chavez PJD, Boolani A, Baker LB. No effect of tattoos on local sweat concentrations of select cytokines, cortisol, glucose, blood urea nitrogen, or lactate during exercise. Sci Rep 2024; 14:12570. [PMID: 38821996 PMCID: PMC11143332 DOI: 10.1038/s41598-024-63057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Due to growing interest in the investigation of exercise induced sweat biomarkers to assess an individual's health and the increasing prevalence of tattoos in the world's population, investigators sought to determine whether local sweat concentrations and excretion rates of epidermal growth factor (EGF), interleukin (IL) -1α, IL-6, IL-8, cortisol, glucose, blood urea nitrogen (BUN), and lactate differ between tattooed and contralateral non-tattooed skin during exercise. Sixteen recreational exercisers [female (50%)] (age = 25-48 years) with ≥ 1 unilateral permanent tattoo [median tattoo age = 6 years, IQR = 5] on the arm/torso completed an outdoor group fitness session. There were no significant differences between tattooed and non-tattooed skin for sweat EGF, IL-1α, IL-8, cortisol, glucose, BUN, or lactate concentrations. There were no significant differences between tattooed and non-tattooed skin for sweat EGF, IL-1α, IL-8, cortisol, glucose, BUN, or lactate excretion rate. Findings suggest that permanent tattoos older than 1 year may not impact local sweat EGF, IL-1α, IL-8, cortisol, glucose, BUN, and lactate concentrations or excretion rates during exercise.Clinical trial identifier NCT04920266 was registered on June 9, 2021.
Collapse
Affiliation(s)
- James R Merritt
- Gatorade Sports Science Institute, PepsiCo R&D, Valhalla, NY, USA.
| | - Michal Ozga
- Gatorade Sports Science Institute, PepsiCo R&D, Valhalla, NY, USA
| | | | - Ali Boolani
- Gatorade Sports Science Institute, PepsiCo R&D, Valhalla, NY, USA
| | - Lindsay B Baker
- Gatorade Sports Science Institute, PepsiCo R&D, Valhalla, NY, USA
| |
Collapse
|
10
|
Dyshko K, Nicodemus MP, Otterstetter R, Ghadimi H, Daniels S, Fulmer MS, Cheney Z, Ellis R, Stege V, Monty CN. Evaluation of a wearable fabric-based sensor for accurate sodium determination in sweat during exercise. Eur J Appl Physiol 2024; 124:1347-1353. [PMID: 38019318 DOI: 10.1007/s00421-023-05364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Newly developed wearable fabric sensors (WFS) can increase the ease and accuracy of sweat sodium measurements by performing simultaneous sampling and analysis on the body during exercise. PURPOSE Determine the accuracy of a WFS for measurement of sodium concentration in sweat. METHODS Subjects wore a WFS prototype and sweat collectors on their forearm during cycle ergometry. Subjects exercised at a moderate intensity (~ 65% heart rate reserve) for 30-60 min. Sweat samples were collected and analyzed using a commercial sweat sodium analyzer (SSA) every 10-15 min. WFS were adhered with an armband and connected to custom built electronics. Accuracy was determined by comparing predicted WFS concentration to the actual concentration from the commercial SSA and analyzed statistically using ANOVA and Bland-Altman plots. RESULTS A total of 19 subjects completed the study. The average sweat sodium concentration was 59 mM ± 22 mM from a SSA compared with 54 mM ± 22 mM from the WFS. Overall, the average accuracy of the WFS was 88% in comparison to the SSA with p = 0.45. A line of best fit comparing predicted versus actual sweat sodium concentration had a slope of 0.99, intercept of - 4.46, and an r2 of 0.90. Bland-Altman analysis showed the average concentration difference between the WFS and the SSA was 5.35 mM, with 99% of data points between ± 1.96 times the standard deviation. CONCLUSION The WFS accurately predicted sweat sodium concentration during moderate intensity cycle ergometry. With the need for precise assessment of sodium loss, especially during long duration exercise, this novel analysis method can benefit athletes and coaches. Further research involving longer duration and more intense exercise is warranted.
Collapse
Affiliation(s)
- Kristina Dyshko
- RooSense LLC, 1802 E. 25th Street, Cleveland, OH, 44115, USA
| | | | - Ronald Otterstetter
- School of Exercise and Nutrition Sciences, College of Health and Human Sciences, The University of Akron, 302 E. Buchtel Ave, Akron, OH, 44325, USA
| | - Hanieh Ghadimi
- RooSense LLC, 1802 E. 25th Street, Cleveland, OH, 44115, USA
| | - Shelby Daniels
- RooSense LLC, 1802 E. 25th Street, Cleveland, OH, 44115, USA
| | | | - Zachary Cheney
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Rebecca Ellis
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Victoria Stege
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Chelsea N Monty
- Department of Chemical and Biomedical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
11
|
Shahub S, Kumar RM, Lin KC, Banga I, Choi NK, Garcia NM, Muthukumar S, Rubin DT, Prasad S. Continuous Monitoring of CRP, IL-6, and Calprotectin in Inflammatory Bowel Disease Using a Perspiration-Based Wearable Device. Inflamm Bowel Dis 2024:izae054. [PMID: 38520737 DOI: 10.1093/ibd/izae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 03/25/2024]
Abstract
BACKGROUND Wearable sensor devices represent a noninvasive technology to continuously track biomarkers linked to inflammatory bowel disease (IBD). We assessed the inflammatory markers associated with IBD in human perspiration. METHODS Participants with IBD were monitored for 40 to 130 minutes with a proprietary wearable sensor device used to measure C-reactive protein, interleukin-6, and calprotectin. Sensor response using electrochemical impedance spectroscopy and serum samples were measured on the same day. The Mann-Whitney test was used to analyze the relationship between active and remission IBD in serum and perspiration, classified according to endoscopic reports and serum biomarker levels. Asynchronously collected fecal calprotectin from a subset of the population was similarly analyzed. RESULTS A total of 33 subjects were enrolled. Expression of calprotectin was significantly elevated in the active cohort compared with the remission cohort in perspiration (P < .05; median = 906.69 ng/mL; active 95% confidence interval [CI], 466.0-1833 ng/mL; remission 95% CI, 328.4-950.8 ng/mL), serum (median = 1860.82 ng/mL; active 95% CI, 1705-2985 ng/mL; remission 95% CI, 870.2-1786 ng/mL), and stool (P < .05; median = 126.74 µg/g; active 95% CI, 77.08-347.1 µg/g; remission 95% CI, 5.038-190.4 µg/g). Expression of CRP in perspiration and serum was comparable between the active and remission cohorts (perspiration: P > .05; median = 970.83 pg/mL; active 95% CI, 908.7-992 pg/mL; remission 95% CI, 903.3-991.9 pg/mL; serum: median = 2.34 µg/mL; active 95% CI, 1.267-4.492 µg/mL; remission 95% CI, 1.648-4.287 µg/mL). Expression of interleukin-6 in perspiration was nonsignificant in the active cohort compared with the remission cohort and was significantly elevated in serum (perspiration: P < .05; median = 2.13 pg/mL; active 95% CI, 2.124-2.44 pg/mL; remission 95% CI, 1.661-2.451 pg/mL; serum: median = 1.15 pg/mL; active 95% CI, 1.549-3.964 pg/mL; remission 95% CI, 0.4301-1.257 pg/mL). Analysis of the linear relationship between perspiration and serum calprotectin (R2 = 0.7195), C-reactive protein (R2 = 0.615), and interleukin-6 (R2 = 0.5411) demonstrated a strong to moderate relationship across mediums. CONCLUSIONS We demonstrate the clinical utility of perspiration as a noninvasive medium for continuous measurement of inflammatory markers in IBD and find that the measures correlate with serum and stool markers across a range of disease activity.
Collapse
Affiliation(s)
- Sarah Shahub
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
| | | | - Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
| | - Ivneet Banga
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
| | - Natalie K Choi
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL, USA
| | - Nicole M Garcia
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL, USA
| | | | - David T Rubin
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
- EnLiSense LLC, Allen, TX, United States
| |
Collapse
|
12
|
Rocha KN, da Silva JAF, de Jesus DP. Capillary electrophoresis with capacitively coupled contactless conductivity detection (C 4 D) for rapid and simple determination of lactate in sweat. Electrophoresis 2024; 45:392-399. [PMID: 38072648 DOI: 10.1002/elps.202300179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
An analytical method based on capillary electrophoresis (CE) using capacitively coupled contactless conductivity detection (C4 D) was developed and validated for fast, straightforward, and reliable determination of lactate in artificial and human sweat samples. The background electrolyte was composed of equimolar concentrations (10 mmol/L) of 2-(N-morpholino)ethanesulfonic acid and histidine, with 0.2 mmol/L of cetyltrimethylammonium bromide as electroosmotic flow inverter. The limit of detection and quantification were 3.1 and 10.3 µmol/L, respectively. Recoveries in the 97 to 118% range were obtained using sweat samples spiked with lactate at three concentration levels, indicating an acceptable accuracy. The intraday and interday precisions were 1.49 and 7.08%, respectively. The proposed CE-C4 D method can be a starting point for monitoring lactate concentrations in sweat samples for diagnostics, physiological studies, and sports performance assessment applications.
Collapse
Affiliation(s)
- Kionnys N Rocha
- Instituto de Química, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - José A Fracassi da Silva
- Instituto de Química, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, São Paulo, Brazil
| | - Dosil P de Jesus
- Instituto de Química, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Ece E, Ölmez K, Hacıosmanoğlu N, Atabay M, Inci F. Advancing 3D printed microfluidics with computational methods for sweat analysis. Mikrochim Acta 2024; 191:162. [PMID: 38411762 PMCID: PMC10899357 DOI: 10.1007/s00604-024-06231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
The intricate tapestry of biomarkers, including proteins, lipids, carbohydrates, vesicles, and nucleic acids within sweat, exhibits a profound correlation with the ones in the bloodstream. The facile extraction of samples from sweat glands has recently positioned sweat sampling at the forefront of non-invasive health monitoring and diagnostics. While extant platforms for sweat analysis exist, the imperative for portability, cost-effectiveness, ease of manufacture, and expeditious turnaround underscores the necessity for parameters that transcend conventional considerations. In this regard, 3D printed microfluidic devices emerge as promising systems, offering a harmonious fusion of attributes such as multifunctional integration, flexibility, biocompatibility, a controlled closed environment, and a minimal requisite analyte volume-features that leverage their prominence in the realm of sweat analysis. However, formidable challenges, including high throughput demands, chemical interactions intrinsic to the printing materials, size constraints, and durability concerns, beset the landscape of 3D printed microfluidic devices. Within this paradigm, we expound upon the foundational aspects of 3D printed microfluidic devices and proffer a distinctive perspective by delving into the computational study of printing materials utilizing density functional theory (DFT) and molecular dynamics (MD) methodologies. This multifaceted approach serves manifold purposes: (i) understanding the complexity of microfluidic systems, (ii) facilitating comprehensive analyses, (iii) saving both cost and time, (iv) improving design optimization, and (v) augmenting resolution. In a nutshell, the allure of 3D printing lies in its capacity for affordable and expeditious production, offering seamless integration of diverse components into microfluidic devices-a testament to their inherent utility in the domain of sweat analysis. The synergistic fusion of computational assessment methodologies with materials science not only optimizes analysis and production processes, but also expedites their widespread accessibility, ensuring continuous biomarker monitoring from sweat for end-users.
Collapse
Affiliation(s)
- Emre Ece
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Kadriye Ölmez
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Nedim Hacıosmanoğlu
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
14
|
Estrada-Osorio DV, Escalona-Villalpando RA, Gurrola MP, Chaparro-Sánchez R, Rodríguez-Morales JA, Arriaga LG, Ledesma-García J. Abiotic, Hybrid, and Biological Electrocatalytic Materials Applied in Microfluidic Fuel Cells: A Comprehensive Review. ACS MEASUREMENT SCIENCE AU 2024; 4:25-41. [PMID: 38404496 PMCID: PMC10885332 DOI: 10.1021/acsmeasuresciau.3c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 02/27/2024]
Abstract
This article provides an overview of the work reported in the past decade in the field of microfluidic fuel cells. To develop appropriate research, the most commonly used electrocatalytic materials were considered and a new classification was proposed based on their nature: abiotic, hybrid, or biological. This classification allowed the authors to discern the information collected. In this sense, the types of electrocatalysts used for the oxidation of the most common fuels in different environments, such as glucose, ethanol, methanol, glycerol, and lactate, were presented. There are several phenomena presented in this article. This information gives an overview of where research is heading in the field of materials for electrocatalysis, regardless of the fuel used in the microfluidic fuel cell: the synthesis of abiotic and biological materials to obtain hybrid materials that allow the use of the best properties of each material.
Collapse
Affiliation(s)
- D. V. Estrada-Osorio
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| | - Ricardo A. Escalona-Villalpando
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| | - M. P. Gurrola
- CONACYT-Tecnológico
Nacional de México/Instituto Tecnológico de Chetumal, Avenida Insurgentes 330, Chetumal, Quintana Roo 77013, México
- Tecnológico
Nacional de México/Instituto Tecnológico de Chetumal, Avenida Insurgentes 330, Chetumal, Quintana Roo 77013, México
| | - Ricardo Chaparro-Sánchez
- Facultad
de Informática, Universidad Autónoma
de Querétaro, Santiago de
Querétaro, Querétaro 76010, México
| | - J. A. Rodríguez-Morales
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| | - L. G. Arriaga
- Centro
de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo, Querétaro 76703, México
| | - J. Ledesma-García
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| |
Collapse
|
15
|
de Souza HMR, Pereira TTP, de Sá HC, Alves MA, Garrett R, Canuto GAB. Critical Factors in Sample Collection and Preparation for Clinical Metabolomics of Underexplored Biological Specimens. Metabolites 2024; 14:36. [PMID: 38248839 PMCID: PMC10819689 DOI: 10.3390/metabo14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
This review article compiles critical pre-analytical factors for sample collection and extraction of eight uncommon or underexplored biological specimens (human breast milk, ocular fluids, sebum, seminal plasma, sweat, hair, saliva, and cerebrospinal fluid) under the perspective of clinical metabolomics. These samples are interesting for metabolomics studies as they reflect the status of living organisms and can be applied for diagnostic purposes and biomarker discovery. Pre-collection and collection procedures are critical, requiring protocols to be standardized to avoid contamination and bias. Such procedures must consider cleaning the collection area, sample stimulation, diet, and food and drug intake, among other factors that impact the lack of homogeneity of the sample group. Precipitation of proteins and removal of salts and cell debris are the most used sample preparation procedures. This review intends to provide a global view of the practical aspects that most impact results, serving as a starting point for the designing of metabolomic experiments.
Collapse
Affiliation(s)
- Hygor M. R. de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
| | - Tássia T. P. Pereira
- Departamento de Genética, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Hanna C. de Sá
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| | - Marina A. Alves
- Instituto de Pesquisa de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil;
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
- Department of Laboratory Medicine, Boston Children’s Hospital—Harvard Medical School, Boston, MA 02115, USA
| | - Gisele A. B. Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| |
Collapse
|
16
|
Yang H, Ji Y, Shen K, Qian Y, Ye C. Simultaneous detection of urea and lactate in sweat based on a wearable sweat biosensor. BIOMEDICAL OPTICS EXPRESS 2024; 15:14-27. [PMID: 38223175 PMCID: PMC10783907 DOI: 10.1364/boe.505004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 01/16/2024]
Abstract
Urea and lactate are biomarkers in sweat that is closely associated with human health. This study introduces portable, rapid, sensitive, stable, and high-throughput wearable sweat biosensors utilizing Au-Ag nanoshuttles (Au-Ag NSs) for the simultaneous detection of sweat urea and lactate. The Au-Ag NSs arrays within the biosensor's microfluidic cavity provide a substantial surface-enhanced Raman scattering (SERS) enhancement effect. The limit of detection (LOD) for urea and lactate are 2.35 × 10-6 and 8.66 × 10-7 mol/L, respectively. This wearable sweat biosensor demonstrates high resistance to compression bending, repeatability, and stability and can be securely attached to various body parts. Real-time sweat analysis of volunteers wearing the biosensors during exercise demonstrated the method's practicality. This wearable sweat biosensor holds significant potential for monitoring sweat dynamics and serves as a valuable tool for assessing bioinformation in sweat.
Collapse
Affiliation(s)
- Haifan Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yangyang Ji
- Department of Science and Education, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, 226300, China
| | - Kang Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yayun Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Chenchen Ye
- Department of Science and Education, Yixing Traditional Chinese Medicine Hospital, Wuxi, 214200, China
| |
Collapse
|
17
|
Jia Y, Yan B. Visual ratiometric fluorescence sensing of L-lactate in sweat by Eu-MOF and the design of logic devices. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122764. [PMID: 37119612 DOI: 10.1016/j.saa.2023.122764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/14/2023]
Abstract
Using 1, 4-H2NDC as ligand and Eu as the center metal, the lanthanide MOF Eu-NDC was synthesized by hydrothermal method. The material showed a fast ratiometric response to L-lactate, and the fluorescence of the material varied from red to blue with the growth of lactate concentration, which can be used as a fluorescent sensor for L-lactate in sweat. The sensor exhibited good fluorescence stability to interfering components in human sweat and good detection limits for lactate in artificial sweat. Based on this, a visualized molecular logic gate that can monitor sweat lactate levels was constructed, and the material's characteristic of showing different colors with lactate concentration changes was used to indicate possible hypoxia during exercise, opening a new path for combining sweat lactate monitoring with smart molecular devices.
Collapse
Affiliation(s)
- Yinghua Jia
- School of Chem. Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chem. Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China; School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
18
|
Nimer RM, Abdel Rahman AM. Recent advances in proteomic-based diagnostics of cystic fibrosis. Expert Rev Proteomics 2023; 20:151-169. [PMID: 37766616 DOI: 10.1080/14789450.2023.2258282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by thick and sticky mucus accumulation, which may harm numerous internal organs. Various variables such as gene modifiers, environmental factors, age of diagnosis, and CF transmembrane conductance regulator (CFTR) gene mutations influence phenotypic disease diversity. Biomarkers that are based on genomic information may not accurately represent the underlying mechanism of the disease as well as its lethal complications. Therefore, recent advancements in mass spectrometry (MS)-based proteomics may provide deep insights into CF mechanisms and cellular functions by examining alterations in the protein expression patterns from various samples of individuals with CF. AREAS COVERED We present current developments in MS-based proteomics, its application, and findings in CF. In addition, the future roles of proteomics in finding diagnostic and prognostic novel biomarkers. EXPERT OPINION Despite significant advances in MS-based proteomics, extensive research in a large cohort for identifying and validating diagnostic, prognostic, predictive, and therapeutic biomarkers for CF disease is highly needed.
Collapse
Affiliation(s)
- Refat M Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
20
|
Milić N, Milanović M, Drljača J, Sudji J, Milošević N. Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols. SEPARATIONS 2023; 10:226. [DOI: 10.3390/separations10040226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are xenobiotics presented in a variety of everyday products that may disrupt the normal activity of hormones. Exposure to bisphenol A as EDC at trace and ultra-trace levels is associated with adverse health effects, and children are recognized as the most vulnerable group to EDCs exposure. In this review, a summary is presented of up-to-date sample preparation methods and instrumental techniques applied for the detection and quantification of bisphenol A and its structural analogues in various biological matrices. Biological matrices such as blood, cell-free blood products, urine, saliva, breast milk, cordial blood, amniotic and semen fluids, as well as sweat and hair, are very complex; therefore, the detection and later quantification of bisphenols at low levels present a real analytical challenge. The most popular analytical approaches include gas and liquid chromatography coupled with mass spectrometry, and their enhanced reliability and sensitivity finally allow the separation and detection of bisphenols in biological samples, even as ultra-traces. Liquid/liquid extraction (LLE) and solid-phase extraction (SPE) are still the most common methods for their extraction from biological matrices. However, many modern and environmentally safe microextraction techniques are currently under development. The complexity of biological matrices and low concentrations of analytes are the main issues for the limited identification, as well as understanding the adverse health effects caused by chronical and ubiquitous exposure to bisphenols and its analogues.
Collapse
Affiliation(s)
- Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Jovana Drljača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Jan Sudji
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
21
|
Luo N, Gao Y, Wang M, Niu X, Li G, An T. Bidirectional role of synthetic musk tonalide as photosensitizer and activator on amino acids: Formation of sensitizer imine at aqueous chemistry interface of skin. ECO-ENVIRONMENT & HEALTH 2023; 2:32-39. [PMID: 38074450 PMCID: PMC10702883 DOI: 10.1016/j.eehl.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 10/16/2024]
Abstract
Personal care products (PCPs) inevitably come into contact with the skin in people's daily life, potentially causing adverse effects on human health. The adverse effects can be exacerbated under UV irradiation but are rarely studied. In this study, to clearly understand the damage of representative PCPs to human skin and their photochemical transformation behaviors, fragrance tonalide (AHTN) was measured in the presence of amino acids as a basic building block of human tissue. The results showed that amino acids could decelerate the photochemical transformation rate of AHTN, increasing the likelihood of AHNT persisting on the skin surface and the health risk to the human being. Further, the interaction between amino acids and AHTN was investigated. AHTN could play bidirectional roles in damaging amino acids: the photosensitizer and reactive activator. As a photosensitizer, the 1O2 generated from the AHTN photosensitization was partly employed to oxidative damage amino acids. Furthermore, by combining experiments with quantum chemical computation, the carbonyl group of the activator AHTN was found to be the active site to activate the N-containing group of amino acids. The activation mechanism was the electron transfer between AHTN and amino acids. Imines formed during the photochemical transformation of AHTN with histidine/glycine were the molecular initiating event for potential skin sensitization. This study reported for the first time that skin photosensitizer formation threatens human health during the photochemical transformation of AHTN.
Collapse
Affiliation(s)
- Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
22
|
Zhao Y, Yu Y, Zhao S, Zhu R, Zhao J, Cui G. Highly sensitive pH sensor based on flexible polyaniline matrix for synchronal sweat monitoring. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
23
|
Das R, Nag S, Banerjee P. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring. Molecules 2023; 28:1259. [PMID: 36770925 PMCID: PMC9920341 DOI: 10.3390/molecules28031259] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Sweat contains a broad range of important biomarkers, which may be beneficial for acquiring non-invasive biochemical information on human health status. Therefore, highly selective and sensitive electrochemical nanosensors for the non-invasive detection of sweat metabolites have turned into a flourishing contender in the frontier of disease diagnosis. A large surface area, excellent electrocatalytic behavior and conductive properties make nanomaterials promising sensor materials for target-specific detection. Carbon-based nanomaterials (e.g., CNT, carbon quantum dots, and graphene), noble metals (e.g., Au and Pt), and metal oxide nanomaterials (e.g., ZnO, MnO2, and NiO) are widely used for modifying the working electrodes of electrochemical sensors, which may then be further functionalized with requisite enzymes for targeted detection. In the present review, recent developments (2018-2022) of electrochemical nanosensors by both enzymatic as well as non-enzymatic sensors for the effectual detection of sweat metabolites (e.g., glucose, ascorbic acid, lactate, urea/uric acid, ethanol and drug metabolites) have been comprehensively reviewed. Along with this, electrochemical sensing principles, including potentiometry, amperometry, CV, DPV, SWV and EIS have been briefly presented in the present review for a conceptual understanding of the sensing mechanisms. The detection thresholds (in the range of mM-nM), sensitivities, linear dynamic ranges and sensing modalities have also been properly addressed for a systematic understanding of the judicious design of more effective sensors. One step ahead, in the present review, current trends of flexible wearable electrochemical sensors in the form of eyeglasses, tattoos, gloves, patches, headbands, wrist bands, etc., have also been briefly summarized, which are beneficial for on-body in situ measurement of the targeted sweat metabolites. On-body monitoring of sweat metabolites via wireless data transmission has also been addressed. Finally, the gaps in the ongoing research endeavors, unmet challenges, outlooks and future prospects have also been discussed for the development of advanced non-invasive self-health-care-monitoring devices in the near future.
Collapse
Affiliation(s)
- Riyanka Das
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Somrita Nag
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
24
|
Yin J, Li J, Reddy VS, Ji D, Ramakrishna S, Xu L. Flexible Textile-Based Sweat Sensors for Wearable Applications. BIOSENSORS 2023; 13:bios13010127. [PMID: 36671962 PMCID: PMC9856321 DOI: 10.3390/bios13010127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/12/2023]
Abstract
The current physical health care system has gradually evolved into a form of virtual hospitals communicating with sensors, which can not only save time but can also diagnose a patient's physical condition in real time. Textile-based wearable sensors have recently been identified as detection platforms with high potential. They are developed for the real-time noninvasive detection of human physiological information to comprehensively analyze the health status of the human body. Sweat comprises various chemical compositions, which can be used as biomarkers to reflect the relevant information of the human physiology, thus providing references for health conditions. Combined together, textile-based sweat sensors are more flexible and comfortable than other conventional sensors, making them easily integrated into the wearable field. In this short review, the research progress of textile-based flexible sweat sensors was reviewed. Three mechanisms commonly used for textile-based sweat sensors were firstly contrasted with an introduction to their materials and preparation processes. The components of textile-based sweat sensors, which mainly consist of a sweat transportation channel and collector, a signal-selection unit, sensing elements and sensor integration and communication technologies, were reviewed. The applications of textile-based sweat sensors with different mechanisms were also presented. Finally, the existing problems and challenges of sweat sensors were summarized, which may contribute to promote their further development.
Collapse
Affiliation(s)
- Jing Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jingcheng Li
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Vundrala Sumedha Reddy
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Dongxiao Ji
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
25
|
Ponzini E, Santambrogio C, De Palma A, Mauri P, Tavazzi S, Grandori R. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. MASS SPECTROMETRY REVIEWS 2022; 41:842-860. [PMID: 33759206 PMCID: PMC9543345 DOI: 10.1002/mas.21691] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 05/05/2023]
Abstract
The lacrimal film has attracted increasing interest in the last decades as a potential source of biomarkers of physiopathological states, due to its accessibility, moderate complexity, and responsiveness to ocular and systemic diseases. High-performance liquid chromatography-mass spectrometry (LC-MS) has led to effective approaches to tear proteomics, despite the intrinsic limitations in sample amounts. This review focuses on the recent progress in strategy and technology, with an emphasis on the potential for personalized medicine. After an introduction on lacrimal-film composition, examples of applications to biomarker discovery are discussed, comparing approaches based on pooled-sample and single-tear analysis. Then, the most critical steps of the experimental pipeline, that is, tear collection, sample fractionation, and LC-MS implementation, are discussed with reference to proteome-coverage optimization. Advantages and challenges of the alternative procedures are highlighted. Despite the still limited number of studies, tear quantitative proteomics, including single-tear investigation, could offer unique contributions to the identification of low-invasiveness, sustained-accessibility biomarkers, and to the development of personalized approaches to therapy and diagnosis.
Collapse
Affiliation(s)
- Erika Ponzini
- Materials Science DepartmentUniversity of Milano‐BicoccaMilanItaly
| | - Carlo Santambrogio
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | - Antonella De Palma
- Institute for Biomedical TechnologiesNational Research Council (ITB‐CNR)Segrate (MI)Italy
| | - Pierluigi Mauri
- Institute for Biomedical TechnologiesNational Research Council (ITB‐CNR)Segrate (MI)Italy
| | - Silvia Tavazzi
- Materials Science DepartmentUniversity of Milano‐BicoccaMilanItaly
- COMiBUniversity of Milano‐BicoccaMilanItaly
| | - Rita Grandori
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| |
Collapse
|
26
|
Ramachandran B, Liao YC. Microfluidic wearable electrochemical sweat sensors for health monitoring. BIOMICROFLUIDICS 2022; 16:051501. [PMID: 36186757 PMCID: PMC9520469 DOI: 10.1063/5.0116648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Research on remote health monitoring through wearable sensors has attained popularity in recent decades mainly due to aging population and expensive health care services. Microfluidic wearable sweat sensors provide economical, non-invasive mode of sample collection, important physiological information, and continuous tracking of human health. Recent advances in wearable sensors focus on electrochemical monitoring of biomarkers in sweat and can be applicable in various fields like fitness monitoring, nutrition, and medical diagnosis. This review focuses on the evolution of wearable devices from benchtop electrochemical systems to microfluidic-based wearable sensors. Major classification of wearable sensors like skin contact-based and biofluidic-based sensors are discussed. Furthermore, sweat chemistry and related biomarkers are explained in addition to integration of microfluidic systems in wearable sweat sensors. At last, recent advances in wearable electrochemical sweat sensors are discussed, which includes tattoo-based, paper microfluidics, patches, wrist band, and belt-based wearable sensors.
Collapse
Affiliation(s)
- Balaji Ramachandran
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
27
|
Rostampour M, Lawrence Jr D, Hamid Z, Darensbourg J, Calvo-Marzal P, Chumbimuni-Torres K. Highly Reproducible Flexible Ion‐Selective Electrodes for the Detection of Sodium and Potassium in Artificial Sweat. ELECTROANAL 2022. [DOI: 10.1002/elan.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Abstract
In recent years, wearable sensors have enabled the unique mode of real-time and noninvasive monitoring to develop rapidly in medical care, sports, and other fields. Sweat contains a wide range of biomarkers such as metabolites, electrolytes, and various hormones. Combined with wearable technology, sweat can reflect human fatigue, disease, mental stress, dehydration, and so on. This paper comprehensively describes the analysis of sweat components such as glucose, lactic acid, electrolytes, pH, cortisol, vitamins, ethanol, and drugs by wearable sensing technology, and the application of sweat wearable devices in glasses, patches, fabrics, tattoos, and paper. The development trend of sweat wearable devices is prospected. It is believed that if the sweat collection, air permeability, biocompatibility, sensing array construction, continuous monitoring, self-healing technology, power consumption, real-time data transmission, specific recognition, and other problems of the wearable sweat sensor are solved, we can provide the wearer with important information about their health level in the true sense.
Collapse
|
29
|
Gorka M, Thomas A, Bécue A. Chemical composition of the fingermark residue: Assessment of the intravariability over one year using MALDI-MSI. Forensic Sci Int 2022; 338:111380. [PMID: 35849992 DOI: 10.1016/j.forsciint.2022.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
Abstract
These past years, the chemical composition of fingermarks have attracted interest of researchers to meet multiple objectives like the determination of an individual's age, gender or lifestyle or the impact of some fingermark detection processes, to cite a few. These studies have highlighted the need to investigate the consistency of the fingermark composition over time. This research explores the evolution of the secretion residue composition of thirteen donors over one year, focusing on the intravariability. The dual use of Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging (MALDI-MSI) and chemometrics provided valuable data regarding the evolution of composition over time as well as the consistency of presence of hundreds of compounds.
Collapse
Affiliation(s)
- Marie Gorka
- School of Criminal Justice, Faculty of Law, Criminal Justice, and Public Administration, University of Lausanne, Switzerland.
| | - Aurélien Thomas
- Faculty Unit of Toxicology, University Center of Legal Medicine, Vulliette 04, 1000 Lausanne, Switzerland.
| | - Andy Bécue
- School of Criminal Justice, Faculty of Law, Criminal Justice, and Public Administration, University of Lausanne, Switzerland.
| |
Collapse
|
30
|
Liao J, Zhang X, Sun Z, Chen H, Fu J, Si H, Ge C, Lin S. Laser-Induced Graphene-Based Wearable Epidermal Ion-Selective Sensors for Noninvasive Multiplexed Sweat Analysis. BIOSENSORS 2022; 12:bios12060397. [PMID: 35735545 PMCID: PMC9221044 DOI: 10.3390/bios12060397] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 05/23/2023]
Abstract
Wearable sweat sensors are a rapidly rising research area owing to their convenience for personal healthcare and disease diagnosis in a real-time and noninvasive manner. However, the fast and scalable fabrication of flexible electrodes remains a major challenge. Here, we develop a wearable epidermal sensor for multiplexed sweat analysis based on the laser-induced graphene (LIG) technique. This simple and mask-free technique allows the direct manufacturing of graphene electrode patterns on commercial polyimide foils. The resulting LIG devices can simultaneously monitor the pH, Na+, and K+ levels in sweat with the sensitivities of 51.5 mV/decade (pH), 45.4 mV/decade (Na+), and 43.3 mV/decade (K+), respectively. Good reproducibility, stability, and selectivity are also observed. On-body testing of the LIG-based sensor integrated with a flexible printed circuit board during stationary cycling demonstrates its capability for real-time sweat analysis. The concentrations of ions can be remotely and wirelessly transmitted to a custom-developed smartphone application during the period in which the sensor user performs physical activities. Owing to the unique advantages of LIG technique, including facile fabrication, mass production, and versatile, more physiological signals (glucose, uric acid, tyrosine, etc.) could be easily expanded into the LIG-based wearable sensors to reflect the health status or clinical needs of individuals.
Collapse
Affiliation(s)
- Jianjun Liao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; (J.L.); (X.Z.); (Z.S.); (C.G.)
| | - Xiangya Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; (J.L.); (X.Z.); (Z.S.); (C.G.)
| | - Zihan Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; (J.L.); (X.Z.); (Z.S.); (C.G.)
| | - Hande Chen
- Hainan Unican Science and Technology Innovation Institute, Haikou 571152, China; (H.C.); (J.F.)
| | - Jian Fu
- Hainan Unican Science and Technology Innovation Institute, Haikou 571152, China; (H.C.); (J.F.)
| | - Hewei Si
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China;
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China; (J.L.); (X.Z.); (Z.S.); (C.G.)
| | - Shiwei Lin
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China;
| |
Collapse
|
31
|
Salatiello S, Spinelli M, Cassiano C, Amoresano A, Marini F, Cinti S. Sweat urea bioassay based on degradation of Prussian Blue as the sensing architecture. Anal Chim Acta 2022; 1210:339882. [DOI: 10.1016/j.aca.2022.339882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
|
32
|
Nunes MJ, Moura JJG, Noronha JP, Branco LC, Samhan-Arias A, Sousa JP, Rouco C, Cordas CM. Evaluation of Sweat-Sampling Procedures for Human Stress-Biomarker Detection. ANALYTICA 2022; 3:178-194. [DOI: 10.3390/analytica3020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Sweat is a potential biological fluid for the non-invasive analytical assessment of diverse molecules, including biomarkers. Notwithstanding, the sampling methodology is critical, and it must be assessed prior to using sweat for clinical diagnosis. In the current work, the analytical methodology was further developed taking into account the sampling step, in view of the identification and level variations of sweat components that have potential to be stress biomarkers using separation by liquid chromatography and detection by tandem mass spectrometry, in order to attain a screening profile of 26 molecules in just one stage. As such, the molecule identification was used as a test for the evaluation of the sampling procedures, including the location on the body, using patches for long-term sampling and vials for direct sampling, through a qualitative approach. From this evaluation it was possible to conclude that the sampling may be performed on the chest or back skin. Additionally, possible interference was evaluated. The long-term sampling with patches can be used under both rest and exercise conditions with variation of the detected molecule’s levels. The direct sampling, using vials, has the advantage of not having interferences but the disadvantage of only being effective after exercise in order to have enough sample for sweat analysis.
Collapse
Affiliation(s)
- Maria João Nunes
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João Paulo Noronha
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luís Cobra Branco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Alejandro Samhan-Arias
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - João P. Sousa
- CINAMIL, Academia Militar, Rua Gomes Freire, 1150-244 Lisboa, Portugal
| | - Carlos Rouco
- CINAMIL, Academia Militar, Rua Gomes Freire, 1150-244 Lisboa, Portugal
| | - Cristina M. Cordas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
33
|
Liu H, Gu Z, Liu Y, Xiao X, Xiu G. Validation of the Application of Solid Contact Ion-Selective Electrode for Off-Body Sweat Ion Monitoring. BIOSENSORS 2022; 12:bios12040229. [PMID: 35448288 PMCID: PMC9026306 DOI: 10.3390/bios12040229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
The solid contact ion-selective electrode (ISE) is a promising skin-interfaced monitoring system for sweat ions. Despite a growing number of on-body usages of ISE with fancy new materials and device fabrications, there are very few reports attempting to validate ISE results with a gold standard technique. For this purpose, this work uses inductively coupled plasma-optical emission spectrometry (ICP-OES) as a reference technique to conduct a direct evaluation of the sweat sodium and potassium ion levels obtained by ISE in an off-body approach. Eight healthy male subjects were recruited to collect exercise-induced sweat. It was found that sweat sodium and potassium ions present a rather wide concentration range. The sweat sodium concentration did not vary greatly in an exercise period of half an hour, while the sweat potassium concentration typically decreased with exercise. Mineral drink intake had no clear impact on the sweat sodium level, but increased the sweat potassium level. A paired t-test and mean absolute relative difference (MARD) analysis, a method typically used for evaluating the performance of glucometers, was employed to compare the results of ISE and ICP-OES. The statistical analysis validated the feasibility of ISE for measuring sweat ions, although better accuracy is required. Our data suggests that overweight subjects are likely to possess a higher sweat sodium level.
Collapse
Affiliation(s)
- Huixin Liu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai 200237, China;
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhen Gu
- Department of Automation, School of Information Science and Engineering, East China University of Science & Technology, Shanghai 200237, China;
| | - Yuan Liu
- COFCO Corporation, Chao Yang Men South St. No. 8, Beijng 100020, China;
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (X.X.); (G.X.)
| | - Guangli Xiu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai 200237, China;
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science & Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Correspondence: (X.X.); (G.X.)
| |
Collapse
|
34
|
An JE, Kim KH, Park SJ, Seo SE, Kim J, Ha S, Bae J, Kwon OS. Wearable Cortisol Aptasensor for Simple and Rapid Real-Time Monitoring. ACS Sens 2022; 7:99-108. [PMID: 34995062 DOI: 10.1021/acssensors.1c01734] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The necessity of managing stress levels is becoming increasingly apparent as the world suffers from different kinds of stresses including the extent of pandemic, the corona virus disease 2019 (COVID-19). Cortisol, a clinically confirmed stress hormone related to depression and anxiety, affects individuals mentally and physically. However, current cortisol monitoring methods require expert personnel, large and complex machines, and long time for data analysis. Here, we present a flexible and wearable cortisol aptasensor for simple and rapid cortisol real-time monitoring. The sensing channel was produced by electrospinning conducting polyacrylonitrile (PAN) nanofibers (NFs) and subsequent vapor deposition of carboxylated poly(3,4-ethylenedioxythiophene) (PEDOT). The conjugation of the cortisol aptamer on the PEDOT-PAN NFs provided the critical sensing mechanism for the target molecule. The sensing test was performed with a liquid-ion gated field-effect transistor (FET) on a polyester (polyethylene terepthalate). The sensor performance showed a detection limit of 10 pM (<5 s) and high selectivity in the presence of interference materials at 100 times higher concentrations. The practical usage and real-time monitoring of the cortisol aptasensor with a liquid-ion gated FET system was demonstrated by successful transfer to the swab and the skin. In addition, the real-time monitoring of actual sweat by applying the cortisol aptasensor was also successful since the aptasensor was able to detect cortisol approximately 1 nM from actual sweat in a few minutes. This wearable biosensor platform supports the possibility of further application and on-site monitoring for changes of other numerous biomarkers.
Collapse
Affiliation(s)
- Jai Eun An
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon Joo Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Siyoung Ha
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Joonwon Bae
- Department of Applied Chemistry, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
35
|
Yoon S, Yoon H, Zahed MA, Park C, Kim D, Park JY. Multifunctional hybrid skin patch for wearable smart healthcare applications. Biosens Bioelectron 2022; 196:113685. [PMID: 34655969 DOI: 10.1016/j.bios.2021.113685] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023]
Abstract
Recent advances in wearable patches have included various sensors to monitor either physiological signs, such as the heart rate and respiration rate, or metabolites. Nevertheless, most of these have focused only on a single physiological measurement at a time, which significantly inhibits the calibration of various biological signals and diagnostic facilities. In this study, a novel multifunctional hybrid skin patch was developed for the electrochemical analysis of sweat glucose levels and simultaneous monitoring of electrocardiograms (ECGs). Furthermore, pH and temperature sensors were co-integrated onto the same patch for the calibration of the glucose biosensor to prevent inevitable inhibition and weakening of enzyme activity due to changes in the sweat pH and temperature levels. The fabricated electrochemical glucose biosensor exhibited excellent linearity (R2 = 0.9986) and sensitivity (29.10 μA mM-1 cm-2), covering the normal range of human sweat. The potentiometric pH sensor displayed a good response with an excellent sensitivity of -77.81 mV/pH and high linearity (R2 = 0.991), indicating that it can distinguish variations in the typical pH range for human sweat. Furthermore, the P, QRS complex, and T peaks in the measured ECG waveforms could be clearly distinguished, indicating the reliability of the fabricated flexible dry electrodes for continuous monitoring. The fabricated skin patch overcomes the inconvenience of the mandatory attachment of multiple patches on the human body by fully integrating all the electrochemical and electrophysiological sensors on a single patch, thus facilitating advanced glycemic control and continuous ECG monitoring for smart management of chronic diseases and healthcare applications.
Collapse
Affiliation(s)
- Sanghyuk Yoon
- Advanced Sensor and Energy Research (ASER) Laboratory, Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Hyosang Yoon
- Advanced Sensor and Energy Research (ASER) Laboratory, Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Md Abu Zahed
- Advanced Sensor and Energy Research (ASER) Laboratory, Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Chani Park
- Advanced Sensor and Energy Research (ASER) Laboratory, Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Dongkyun Kim
- Advanced Sensor and Energy Research (ASER) Laboratory, Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Jae Yeong Park
- Advanced Sensor and Energy Research (ASER) Laboratory, Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Woodley FW, Gecili E, Szczesniak RD, Shrestha CL, Nemastil CJ, Kopp BT, Hayes D. Sweat metabolomics before and after intravenous antibiotics for pulmonary exacerbation in people with cystic fibrosis. Respir Med 2022; 191:106687. [PMID: 34864373 PMCID: PMC8810598 DOI: 10.1016/j.rmed.2021.106687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/06/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND People with cystic fibrosis (PWCF) suffer from acute unpredictable reductions in pulmonary function associated with a pulmonary exacerbation (PEx) that may require hospitalization. PEx symptoms vary between PWCF without universal diagnostic criteria for diagnosis and response to treatment. RESEARCH QUESTION We characterized sweat metabolomes before and after intravenous (IV) antibiotics in PWCF hospitalized for PEx to determine feasibility and define biological alterations by IV antibiotics for PEx. STUDY DESIGN AND METHODS PWCF with PEx requiring hospitalization for IV antibiotics were recruited from clinic. Sweat samples were collected using the Macroduct® Sweat Collection System at admission prior to initiation of IV antibiotics and after completion prior to discharge. Samples were analyzed for metabolite changes using ultra-high-performance liquid chromatography/tandem accurate mass spectrometry. RESULTS Twenty-six of 29 hospitalized PWCF completed the entire study. A total of 326 compounds of known identity were detected in sweat samples. Of detected metabolites, 147 were significantly different between pre-initiation and post-completion of IV antibiotics for PEx (average treatment 14 days). Global sweat metabolomes changed from before and after IV antibiotic treatment. We discovered specific metabolite profiles predictive of PEx status as well as enriched biologic pathways associated with PEx. However, metabolomic changes were similar in PWCF who failed to return to baseline pulmonary function and those who did not. INTERPRETATION Our findings demonstrate the feasibility of non-invasive sweat metabolomic profiling in PWCF and the potential for sweat metabolomics as a prospective diagnostic and research tool to further advance our understanding of PEx in PWCF.
Collapse
Affiliation(s)
- Frederick W. Woodley
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emrah Gecili
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rhonda D. Szczesniak
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA,Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chandra L. Shrestha
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher J. Nemastil
- Division of Pulmonary Medicine, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Benjamin T. Kopp
- Division of Pulmonary Medicine, Nationwide Children’s Hospital and The Ohio State University College of Medicine, Columbus, OH, USA,Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Don Hayes
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
37
|
Ni HT, Prabhu GRD, Elpa DP, Chiu HY, Urban PL. Flat Disc-Shaped Sampling Probe and Online Re-extraction Apparatus for Mass Spectrometric Analysis of Skin Metabolites: A Proof of Concept. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2803-2811. [PMID: 34739241 DOI: 10.1021/jasms.1c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sweat analysis provides an alternative and noninvasive way of clinical diagnostics. However, sampling and transferring sweat-derived samples to analytical instruments is challenging. In this report, we demonstrate a method utilizing a flat disc-shaped sampling probe, and a compatible re-extraction apparatus coupled online with extractive electrospray ionization (EESI) mass spectrometry (MS). The probe enables sampling of metabolites from a skin area of ∼2.2 cm2. The subsequent online re-extraction and analysis by EESI-MS further mitigates matrix effects caused by sweat components, thus eliminating sample preparation steps. The total analysis time is only 6 min. We have optimized the key parameters of the system, including flow rate of the nebulizing gas in ESI, pressure of the nebulizing gas in pneumatic sample nebulizer, flow rate of the solvent in ESI, and composition of extractant. The standard solutions (0.1 mL) were supplemented with 0.04 M sodium chloride to mimic the matrix effect normally observed in sweat samples. The method has been characterized with four chemical standards (positive-ion mode of histidine, leucine, urocanic acid; negative-ion mode of lactic acid). The limits of detection range from 1.09 to 95.9 nmol. We have further demonstrated the suitability of the method for analysis of sweat. An attempt was made to identify some of the recorded signals by product-ion scan and accurate/exact mass matching.
Collapse
Affiliation(s)
- Hsiang-Ting Ni
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Decibel P Elpa
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Hsien-Yi Chiu
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, 25 Jingguo Road, Hsinchu, 300, Taiwan
- Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, 25 Jingguo Road, Hsinchu 300, Taiwan
- Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S. Road, Taipei 100, Taiwan
- Department of Dermatology, College of Medicine, National Taiwan University, 1 Jen Ai Road, Taipei 100, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road., Hsinchu 30013, Taiwan
| |
Collapse
|
38
|
Dawidowska J, Krzyżanowska M, Markuszewski MJ, Kaliszan M. The Application of Metabolomics in Forensic Science with Focus on Forensic Toxicology and Time-of-Death Estimation. Metabolites 2021; 11:metabo11120801. [PMID: 34940558 PMCID: PMC8708813 DOI: 10.3390/metabo11120801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, the diagnostic methods used by scientists in forensic examinations have enormously expanded. Metabolomics provides an important contribution to analytical method development. The main purpose of this review was to investigate and summarize the most recent applications of metabolomics in forensic science. The primary research method was an extensive review of available international literature in PubMed. The keywords “forensic” and “metabolomics” were used as search criteria for the PubMed database scan. Most authors emphasized the analysis of different biological sample types using chromatography methods. The presented review is a summary of recently published implementations of metabolomics in forensic science and types of biological material used and techniques applied. Possible opportunities for valuable metabolomics’ applications are discussed to emphasize the essential necessities resulting in numerous nontargeted metabolomics’ assays.
Collapse
Affiliation(s)
- Joanna Dawidowska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (J.D.); (M.J.M.)
- Department of Forensic Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (J.D.); (M.J.M.)
| | - Michał Kaliszan
- Department of Forensic Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
- Correspondence: ; Tel.: +48-58-3491255
| |
Collapse
|
39
|
Falk M, Nilsson EJ, Cirovic S, Tudosoiu B, Shleev S. Wearable Electronic Tongue for Non-Invasive Assessment of Human Sweat. SENSORS 2021; 21:s21217311. [PMID: 34770617 PMCID: PMC8587441 DOI: 10.3390/s21217311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Sweat is a promising biofluid in allowing for non-invasive sampling. Here, we investigate the use of a voltammetric electronic tongue, combining different metal electrodes, for the purpose of non-invasive sample assessment, specifically focusing on sweat. A wearable electronic tongue is presented by incorporating metal electrodes on a flexible circuit board and used to non-invasively monitor sweat on the body. The data obtained from the measurements were treated by multivariate data processing. Using principal component analysis to analyze the data collected by the wearable electronic tongue enabled differentiation of sweat samples of different chemical composition, and when combined with 1H-NMR sample differentiation could be attributed to changing analyte concentrations.
Collapse
Affiliation(s)
- Magnus Falk
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; (M.F.); (E.J.N.); (S.C.)
- Biofilms—Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Emelie J. Nilsson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; (M.F.); (E.J.N.); (S.C.)
- Biofilms—Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Stefan Cirovic
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; (M.F.); (E.J.N.); (S.C.)
- Biofilms—Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | | | - Sergey Shleev
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden; (M.F.); (E.J.N.); (S.C.)
- Biofilms—Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
- Correspondence:
| |
Collapse
|
40
|
Van Hoovels K, Xuan X, Cuartero M, Gijssel M, Swarén M, Crespo GA. Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology? ACS Sens 2021; 6:3496-3508. [PMID: 34549938 PMCID: PMC8546758 DOI: 10.1021/acssensors.1c01403] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
The rise of wearable
sensors to measure lactate content in human
sweat during sports activities has attracted the attention of physiologists
given the potential of these “analytical tools” to provide
real-time information. Beyond the assessment of the sensing technology per se, which, in fact, has not rigorously been validated
yet in controlled conditions, there are many open questions about
the true usefulness of such wearable sensors in real scenarios. On
the one hand, the evidence for the origin of sweat lactate (e.g.,
via the sweat gland, derivation from blood, or other alternative mechanisms),
its high concentration (1–25 mM or even higher) compared to
levels in the blood, and the possible correlation between different
biofluids (particularly blood) is rather contradictory and generates
vivid debate in the field. On the other hand, it is important to point
out that accurate detection of sweat lactate is highly dependent on
the procedure used to collect and/or reach the fluid, and this can
likely explain the large discrepancies reported in the literature.
In brief, this paper provides our vision of the current state of the
field and a thoughtful evaluation of the possible reasons for present
controversies, together with an analysis of the impact of wearable
sweat lactate sensors in the physiological context. Finally, although
there is not yet overwhelming scientific evidence to provide an unequivocal
answer to whether wearable sweat lactate sensors can contribute to
sports physiology, we still understand the importance to bring this
challenging question up-front to create awareness and guidance in
the development, validation, and implementation of wearable sensors.
Collapse
Affiliation(s)
- Kevin Van Hoovels
- Kinetic Analysis, Sint Janssingel 92, 5211 DA ’s-Hertogenbosch, The Netherlands
- Jheronimus Academy of Data Science, Sint Janssingel 92, 5211 DA ’s-Hertogenbosch, The Netherlands
| | - Xing Xuan
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Maria Cuartero
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Maarten Gijssel
- Kinetic Analysis, Sint Janssingel 92, 5211 DA ’s-Hertogenbosch, The Netherlands
- Jheronimus Academy of Data Science, Sint Janssingel 92, 5211 DA ’s-Hertogenbosch, The Netherlands
| | - Mikael Swarén
- Swedish Unit of Metrology in Sports, Institution of Health and Welfare, Dalarna University, SE-791 88 Falun, Sweden
| | - Gaston A. Crespo
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|
41
|
Wang Y, Wu J, Yang T, Wang Z, Hasebe Y, Lv T, Zhang Z. A Novel Flexible Electrochemical Ascorbic Acid Sensor Constructed by Ferrocene Methanol doped Multi‐walled Carbon Nanotube Yarn. ELECTROANAL 2021. [DOI: 10.1002/elan.202100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Wang
- School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Middle Road, High-tech Zone, Anshan Liaoning 114051 China
| | - Jinping Wu
- School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Middle Road, High-tech Zone, Anshan Liaoning 114051 China
| | - Tian Yang
- School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Middle Road, High-tech Zone, Anshan Liaoning 114051 China
| | - Zhong Wang
- Alan G. MacDiarmid NanoTech Institute University of Texas at Dallas Richardson Texas 75080 United States
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry Saitama Institute of Technology 1690 Fusaiji, Fukaya Saitama 369-0293 Japan
| | - Tianhang Lv
- School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Middle Road, High-tech Zone, Anshan Liaoning 114051 China
| | - Zhiqiang Zhang
- School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Middle Road, High-tech Zone, Anshan Liaoning 114051 China
| |
Collapse
|
42
|
Brunmair J, Gotsmy M, Niederstaetter L, Neuditschko B, Bileck A, Slany A, Feuerstein ML, Langbauer C, Janker L, Zanghellini J, Meier-Menches SM, Gerner C. Finger sweat analysis enables short interval metabolic biomonitoring in humans. Nat Commun 2021; 12:5993. [PMID: 34645808 PMCID: PMC8514494 DOI: 10.1038/s41467-021-26245-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 09/22/2021] [Indexed: 01/28/2023] Open
Abstract
Metabolic biomonitoring in humans is typically based on the sampling of blood, plasma or urine. Although established in the clinical routine, these sampling procedures are often associated with a variety of compliance issues, which are impeding time-course studies. Here, we show that the metabolic profiling of the minute amounts of sweat sampled from fingertips addresses this challenge. Sweat sampling from fingertips is non-invasive, robust and can be accomplished repeatedly by untrained personnel. The sweat matrix represents a rich source for metabolic phenotyping. We confirm the feasibility of short interval sampling of sweat from the fingertips in time-course studies involving the consumption of coffee or the ingestion of a caffeine capsule after a fasting interval, in which we successfully monitor all known caffeine metabolites as well as endogenous metabolic responses. Fluctuations in the rate of sweat production are accounted for by mathematical modelling to reveal individual rates of caffeine uptake, metabolism and clearance. To conclude, metabotyping using sweat from fingertips combined with mathematical network modelling shows promise for broad applications in precision medicine by enabling the assessment of dynamic metabolic patterns, which may overcome the limitations of purely compositional biomarkers.
Collapse
Affiliation(s)
- Julia Brunmair
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Mathias Gotsmy
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Laura Niederstaetter
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benjamin Neuditschko
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Max Lennart Feuerstein
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Clemens Langbauer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
Burat B, Reynaerts A, Baiwir D, Fléron M, Eppe G, Leal T, Mazzucchelli G. Characterization of the Human Eccrine Sweat Proteome-A Focus on the Biological Variability of Individual Sweat Protein Profiles. Int J Mol Sci 2021; 22:ijms221910871. [PMID: 34639210 PMCID: PMC8509809 DOI: 10.3390/ijms221910871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The potential of eccrine sweat as a bio-fluid of interest for diagnosis and personalized therapy has not yet been fully evaluated, due to the lack of in-depth sweat characterization studies. Thanks to recent developments in omics, together with the availability of accredited sweat collection methods, the analysis of human sweat may now be envisioned as a standardized, non-invasive test for individualized monitoring and personalized medicine. Here, we characterized individual sweat samples, collected from 28 healthy adult volunteers under the most standardized sampling methodology, by applying optimized shotgun proteomics. The thorough characterization of the sweat proteome allowed the identification of 983 unique proteins from which 344 were identified across all samples. Annotation-wise, the study of the sweat proteome unveiled the over-representation of newly addressed actin dynamics, oxidative stress and proteasome-related functions, in addition to well-described proteolysis and anti-microbial immunity. The sweat proteome composition correlated with the inter-individual variability of sweat secretion parameters. In addition, both gender-exclusive proteins and gender-specific protein abundances were highlighted, despite the high similarity between human female and male sweat proteomes. In conclusion, standardized sample collection coupled with optimized shotgun proteomics significantly improved the depth of sweat proteome coverage, far beyond previous similar studies. The identified proteins were involved in many diverse biological processes and molecular functions, indicating the potential of this bio-fluid as a valuable biological matrix for further studies. Addressing sweat variability, our results prove the proteomic profiling of sweat to be a promising bio-fluid analysis for individualized, non-invasive monitoring and personalized medicine.
Collapse
Affiliation(s)
- Bastien Burat
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
- Correspondence: (B.B.); (G.M.); Tel.: +32-(0)-4-366-34-11; Fax: +32-(0)-4-366-43-8 (G.M.)
| | - Audrey Reynaerts
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.R.); (T.L.)
| | - Dominique Baiwir
- GIGA Proteomics Facility, Liège Université, B-4000 Liège, Belgium; (D.B.); (M.F.)
| | - Maximilien Fléron
- GIGA Proteomics Facility, Liège Université, B-4000 Liège, Belgium; (D.B.); (M.F.)
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.R.); (T.L.)
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
- Correspondence: (B.B.); (G.M.); Tel.: +32-(0)-4-366-34-11; Fax: +32-(0)-4-366-43-8 (G.M.)
| |
Collapse
|
44
|
Non-invasive wearable chemical sensors in real-life applications. Anal Chim Acta 2021; 1179:338643. [PMID: 34535258 DOI: 10.1016/j.aca.2021.338643] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022]
Abstract
Over the past decade, non-invasive wearable chemical sensors have gained tremendous attention in the field of personal health monitoring and medical diagnosis. These sensors provide non-invasive, real-time, and continuous monitoring of targeted biomarkers with more simplicity than the conventional diagnostic approaches. This review primarily describes the substrate materials used for sensor fabrication, sample collection and handling, and analytical detection techniques that are utilized to detect biomarkers in different biofluids. Common substrates including paper, textile, and hydrogel for wearable sensor fabrication are discussed. Principles and applications of colorimetric and electrochemical detection in wearable chemical sensors are illustrated. Data transmission systems enabling wireless communication between the sensor and output devices are also discussed. Finally, examples of different designs of wearable chemical sensors including tattoos, garments, and accessories are shown. Successful development of non-invasive wearable chemical sensors will effectively help users to manage their personal health, predict the potential diseases, and eventually improve the overall quality of life.
Collapse
|
45
|
Gao Y, Huang Y, Chen J, Liu Y, Xu Y, Ning X. A Novel Luminescent "Nanochip" as a Tandem Catalytic System for Chemiluminescent Detection of Sweat Glucose. Anal Chem 2021; 93:10593-10600. [PMID: 34291923 DOI: 10.1021/acs.analchem.1c01798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accurate sweat glucose detection is a promising alternative to invasive finger-prick blood tests, allowing for self-monitoring of blood glucose with good patient compliance. In this study, we have developed a tandem catalytic system, termed as a luminescent "nanochip" (LAON), which was composed of gold nanoparticles (AuNPs) and N-(aminobutyl)-N-(ethylisoluminol) (ABEI)-engineered oxygen-doped carbon nitride (O-g-C3N4), for chemiluminescent detection of sweat glucose. The LAON exhibits dual catalytic activity of glucose oxidase and peroxidase and can not only oxidize glucose to generate H2O2 but catalyze H2O2-mediated luminol chemiluminescence, resulting in sensitive detection of glucose. We identify that the LAON can precisely detect glucose with a detection limit of 0.1 μM, enabling us to measure glucose levels in different biological samples. Particularly, the LAON is capable of sensitively and accurately monitoring dynamic changes in sweat glucose during exercise. Therefore, the LAON provides an alternative approach to supersede invasive blood tests and may improve the management of diabetes mellitus.
Collapse
Affiliation(s)
- Ya Gao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yu Huang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yuhang Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
46
|
Abstract
Human health is regulated by complex interactions among the genome, the microbiome, and the environment. While extensive research has been conducted on the human genome and microbiome, little is known about the human exposome. The exposome comprises the totality of chemical, biological, and physical exposures that individuals encounter over their lifetimes. Traditional environmental and biological monitoring only targets specific substances, whereas exposomic approaches identify and quantify thousands of substances simultaneously using nontargeted high-throughput and high-resolution analyses. The quantified self (QS) aims at enhancing our understanding of human health and disease through self-tracking. QS measurements are critical in exposome research, as external exposures impact an individual's health, behavior, and biology. This review discusses both the achievements and the shortcomings of current research and methodologies on the QS and the exposome and proposes future research directions.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
47
|
Lv J, Thangavel G, Li Y, Xiong J, Gao D, Ciou J, Tan MWM, Aziz I, Chen S, Chen J, Zhou X, Poh WC, Lee PS. Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. SCIENCE ADVANCES 2021; 7:eabg8433. [PMID: 34261658 PMCID: PMC8279513 DOI: 10.1126/sciadv.abg8433] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 05/17/2023]
Abstract
We rationally synthesized the thermoplastic and hydrophilic poly(urethane-acrylate) (HPUA) binder for a type of printable and stretchable Ag flakes-HPUA (Ag-HPUA) electrodes in which the conductivity can be enhanced by human sweat. In the presence of human sweat, the synergistic effect of Cl- and lactic acid enables the partial removal of insulating surfactant on silver flakes and facilitates sintering of the exposed silver flakes, thus the resistance of Ag-HPUA electrodes can be notably reduced in both relaxed and stretched state. The on-body data show that the resistance of one electrode has been decreased from 3.02 to 0.62 ohm during the subject's 27-min sweating activity. A stretchable textile sweat-activated battery using Ag-HPUA electrodes as current collectors and human sweat as the electrolyte was constructed for wearable electronics. The enhanced conductivity of the wearable wiring electrode from the reaction with sweat would provide meritorious insight into the design of wearable devices.
Collapse
Affiliation(s)
- Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yi Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jiaqing Xiong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinghao Ciou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Matthew Wei Ming Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Izzat Aziz
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shaohua Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Juntong Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xinran Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Church Poh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
48
|
Fink H, de Barros Fernandes NM, Weissmann J, Frey M. Extraction With Sweat-Sebum Emulsion as a New Test Method for Leachables in Patch-Based Medical Devices, Illustrated by Assessment of Isobornylacrylate (IBOA) in Diabetes Products. J Diabetes Sci Technol 2021; 15:792-800. [PMID: 32115999 PMCID: PMC8258535 DOI: 10.1177/1932296820908656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The increasing offering of patch-based medical devices is accompanied by growing numbers of reported adverse skin reactions. Procedures for testing leachables according to ISO 10993 may not be optimal for lipophilic substances that can be mobilized on skin by sweat and sebum. We propose an improved extraction method for targeted analysis of leachables using low volumes of a sweat-sebum emulsion. The approach is illustrated by the analysis of isobornylacrylate (IBOA), a compound found in some devices and suspected for allergenic potential. METHOD Three patch-based products were tested: an implantable device for continuous glucose monitoring (CGM), an intermittently scanned CGM (isCGM) device, and a micro-insulin pump. Quantification of IBOA was performed by gas chromatography and allergenic potential of IBOA levels was assessed by the KeratinoSens cell assay. Different combinations were used for extraction solvent (isopropanol, 5% ethanol-water solution, and sweat-sebum emulsion), extraction volumes (complete immersion vs partial immersion in 2 mm of solvent), and extraction time (3, 5, and 14 days). RESULTS Isobornylacrylate was only found in the isCGM device. About 20 mg/L IBOA were eluted after 3 days in isopropanol but only about 1 mg/L in ethanol-water. Sweat-sebum emulsion dissolves IBOA better and gives a more stable solution than ethanol-water. Decomposition of IBOA solutions requires adjusted extraction timing or correction of results. In the sweat-sebum extract, IBOA levels were about 20 mg/L after 3 days and about 30 mg/L after 5 days, clearly above the threshold found in the KerationSens assay for keratinocyte activation (10 mg/L). CONCLUSION Extraction by low volumes of sweat-sebum emulsion can be a superior alternative for the targeted simulating-use assessment of leachables in patch-based medical devices.
Collapse
Affiliation(s)
- Herbert Fink
- Roche Diabetes Care GmbH, Mannheim, Germany
- Herbert Fink, Roche Diabetes Care GmbH, Sandhofer Str. 116, 68305 Mannheim, Baden-Württemberg, Germany.
| | | | | | - Manfred Frey
- Steinbeis Innovationszentrum für Zellkulturtechnik, Mannheim, Germany
| |
Collapse
|
49
|
Chen YC, Shan SS, Liao YT, Liao YC. Bio-inspired fractal textile device for rapid sweat collection and monitoring. LAB ON A CHIP 2021; 21:2524-2533. [PMID: 34105558 DOI: 10.1039/d1lc00328c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a new design concept in sweat collection was developed to achieve rapid and intact sweat sampling for analytical purposes. Textiles with fast water wicking properties were first selected and laser engraved into tree-like bifurcating channels for sweat collection. The fractal framework of the bifurcating textile channels was theoretically derived to minimize the flow resistance for fast sweat absorption. The optimized collector with designed fractal geometry exhibited thorough coverage of emerging droplets without overflow. Great collection efficiency was achieved with a short induction time (<1 minute after perspiration begins) and a maximum sweat collection flux up to 4.0 μL cm-2 min-1 without leakage. After being combined with printed sensors and microchips, the assembled sweat collection/sensing device can simultaneously provide measurements of salt concentration and sweat rate for wireless hydration state monitoring. The collection/sensing system also exhibited fast response times to abrupt changes in sweat rates or concentrations and thus can be used to detect instant physical conditions in exercise. Finally, field tests were performed to demonstrate the reliability and practicality of the device in real-time sweat monitoring under vigorous activities.
Collapse
Affiliation(s)
- Yen-Chi Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan. and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Siang-Sin Shan
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Te Liao
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan. and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
50
|
Sweat metabolome and proteome: Recent trends in analytical advances and potential biological functions. J Proteomics 2021; 246:104310. [PMID: 34198014 DOI: 10.1016/j.jprot.2021.104310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Metabolome and proteome profiling of biofluids, e.g., urine, plasma, has generated vast and ever-increasing amounts of knowledge over the last few decades. Paradoxically, omics analyses of sweat, one of the most readily available human biofluids, have lagged behind. This review capitalizes on the current knowledge and state of the art analytical advances of sweat metabolomics and proteomics. Moreover, current applications of sweat omics such as the discovery of disease biomarkers and monitoring athletic performance are also presented in this review. Another area of emerging knowledge that has been highlighted herein lies in the role of skin host-microbiome interactions in shaping the sweat metabolite-protein profiles. Discussion of future research directions describes the need to have a better grasp of sweat chemicals and to better understand how they function as aided by advances in omics tools. Overall, the role of sweat as an information-rich biofluid that could complement the exploration of the skin metabolome/proteome is emphasized.
Collapse
|