1
|
Prapaharan B, Lea M, Beaudry JL. Weighing in on the role of brown adipose tissue for treatment of obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13157. [PMID: 39087083 PMCID: PMC11290130 DOI: 10.3389/jpps.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Brown adipose tissue (BAT) activation is an emerging target for obesity treatments due to its thermogenic properties stemming from its ability to shuttle energy through uncoupling protein 1 (Ucp1). Recent rodent studies show how BAT and white adipose tissue (WAT) activity can be modulated to increase the expression of thermogenic proteins. Consequently, these alterations enable organisms to endure cold-temperatures and elevate energy expenditure, thereby promoting weight loss. In humans, BAT is less abundant in obese subjects and impacts of thermogenesis are less pronounced, bringing into question whether energy expending properties of BAT seen in rodents can be translated to human models. Our review will discuss pharmacological, hormonal, bioactive, sex-specific and environmental activators and inhibitors of BAT to determine the potential for BAT to act as a therapeutic strategy. We aim to address the feasibility of utilizing BAT modulators for weight reduction in obese individuals, as recent studies suggest that BAT's contributions to energy expenditure along with Ucp1-dependent and -independent pathways may or may not rectify energy imbalance characteristic of obesity.
Collapse
Affiliation(s)
| | | | - Jacqueline L. Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Smolik S, Miller AL, Mong DA, Trenbeath Z, Miller KR, Cost C, Demedis J. Incidence and Risk Factors for Brown Adipose Tissue Uptake in PET Imaging in Pediatric Patients. J Pediatr Hematol Oncol 2024; 46:e60-e64. [PMID: 37910816 DOI: 10.1097/mph.0000000000002778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Positron emission tomography (PET) scans are used in disease diagnosis and evaluation for pediatric oncology patients. Brown adipose tissue (BAT) 18 F-fluorodeoxyglucose-PET uptake is reported in 35% to 47% of pediatric patients. Several risk factors may be associated with BAT uptake. OBJECTIVE The aim was to determine the incidence and risk factors for BAT in pediatric patients using a consensus-based system and a novel grading scale. METHODS A total of 285 PET scans in 154 patients were retrospectively reviewed for the presence of BAT from September 2015 through December 2016. A consensus review was done by 2 radiologists, who graded BAT on a 0 to 3 scale and assessed its impact on PET interpretation. RESULTS The presence of moderate to severe BAT occurred in 11% of PET scans, and 6% of PETs had limited interpretation. Hodgkin lymphoma (n=53) patients had a 3.62-fold increased odds of moderate or severe BAT and a 6.59-fold increased odds of limited interpretation on PET imaging. CONCLUSION The incidence of BAT was low but impacted radiologic interpretation when present. Further studies with a larger group of Hodgkin lymphoma patients are needed to explore the risk factors associated with moderate or severe BAT.
Collapse
Affiliation(s)
- Suzanne Smolik
- Department of Pediatrics, Division of Hematology/Oncology/BMT, University of Colorado School of Medicine
- Center for Cancer and Blood Disorders, Children's Hospital Colorado
| | - Angie L Miller
- Department of Radiology, Children's Hospital Colorado, University of Colorado
| | - David A Mong
- Department of Radiology, Children's Hospital Colorado, University of Colorado
| | - Zachary Trenbeath
- Department of Radiology, Children's Hospital Colorado, University of Colorado
| | - Kristen R Miller
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz
| | - Carrye Cost
- Janssen Research and Development, Aurora, CO
| | - Jenna Demedis
- Department of Pediatrics, Division of Hematology/Oncology/BMT, University of Colorado School of Medicine
- Center for Cancer and Blood Disorders, Children's Hospital Colorado
| |
Collapse
|
3
|
Pötzsch C, Kurch L, Naumann S, Georgi TW, Sabri O, Stoevesandt D, Cepelova M, Körholz D, Mauz-Körholz C, Hasenclever D, Kluge R. Prevention of activated brown adipose tissue on 18F-FDG-PET scans of young lymphoma patients: results of an ancillary study within the EuroNet-PHL-C2 trial. Sci Rep 2023; 13:21944. [PMID: 38081864 PMCID: PMC10713612 DOI: 10.1038/s41598-023-48871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Activated brown fat (aBAT) is known to affect the evaluation of 18F-FDG PET scans, especially in young patients. The aim of this study was to determine factors influencing the occurrence of aBAT, and to investigate the effectiveness of the two preventive measures, warming and beta-blocker (propranolol) administration. Five-hundred-twenty-eight 18F-FDG-PET scans of 241 EuroNet-PHL-C2 trial patients from 41 nuclear medicine departments in Germany and Czech Republic were screened for aBAT. The occurrence of aBAT was analyzed with patient characteristics (age, sex, body mass index, predisposition to aBAT), weather data at the day of 18F-FDG PET scanning as well as the preventive measures taken. Potentially important factors from univariate analyses were included into a logistic regression model. Warming as a preventive measure was used in 243 18F-FDG-PET scans, propranolol was administered in 36, warming and propranolol were combined in 84, and no preventive measures were taken in 165 scans. Whereas age, sex and body mass index had no clear impact, there was an individual predisposition to aBAT. Logistic regression model revealed that the frequency of aBAT mainly depends on the outside temperature (p = 0.005) and can be effectively reduced by warming (p = 0.004), the administration of unselective beta-blocker or the combination of both. Warming is a simple, cheap and non-invasive method to reduce the frequency of aBAT. However, the effect of warming decreases with increasing outside temperatures. Administration of propranolol seems to be equally effective and provides advantages whenever the positive effect of warming is compromised. The combination of both preventive measures could have an additive effect.
Collapse
Affiliation(s)
- C Pötzsch
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany.
| | - S Naumann
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - T W Georgi
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - O Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| | - D Stoevesandt
- Department of Radiology, Medical Faculty of the Martin-Luther-University, Halle (Saale), Germany
| | - M Cepelova
- Department of Pediatric Hematology and Oncology, University Hospital Motol and Second Medical Faculty of Charles University, Prague, Czech Republic
| | - D Körholz
- Department of Pediatric Hematology and Oncology, Justus-Liebig University Giessen, Giessen, Germany
| | - C Mauz-Körholz
- Department of Pediatric Hematology and Oncology, Justus-Liebig University Giessen, Giessen, Germany
| | - D Hasenclever
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - R Kluge
- Department of Nuclear Medicine, University Hospital of Leipzig, University of Leipzig, Liebigstraße 18, 04103, Leipzig, Germany
| |
Collapse
|
4
|
García-Oropesa EM, Perales-Torres AL, Martínez-López YE, Munguía-Cisneros CX, Nava-González EJ, Pérez-Navarro M, Rosas-Díaz M, Baltazar N, Arroyo-Valerio A, Diaz-Badillo A, Castillo-Ruiz O, Hernández-Ruiz J, Mummidi S, Ramírez-Quintanilla LY, Bustamante A, Ramirez-Pfeiffer C, Vela L, Tapia B, Lopez-Alvarenga JC. Effect of Insulin Resistance on Abdominal Obesity, Liver Fat Infiltration, and Body Mass Index in Youngsters. Arch Med Res 2023; 54:102873. [PMID: 37660428 DOI: 10.1016/j.arcmed.2023.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
AIM Evaluate insulin resistance (IR) as a mediator of the effect of body fat distribution on liver fat infiltration and stiffness (LSt) in young adults using structural equation modeling (SEM). METHODS We invited 500 first year students from two universities and evaluated their family history to determine the risk for cardiometabolic disease. Of these, 174 students (age 19 ± 1 years) were assessed for total body fat percentage (BF%), LSt, fat infiltration (Coefficient attenuated parameter CAP), and serum biochemical analysis. We performed a mediation analysis using two different structural equation models to determine the relationship between BMI, BF%, abdominal obesity (AO), IR, LSt, and fat infiltration using standardized β coefficients. The symbol "->" means "explains/causes". RESULTS Model#1 supported that mediation analysis and had a better fit than the direct effect. AO->IR (b = 0.62, p = 0.005), AO->CAP (b = 0.63, p <0.001), and CAP->IR (b = 0.23, p = 0.007), with negligible effect of BMI on CAP and IR. Model#2 showed direct effect of BMI on LSt was a better fit than mediation. BMI->LSt (b = 0.17, p = 0.05) but no effect AO->LSt. Interestingly, LSt->IR (b = 0.18, p = 0.001), but bi-directional IR->LSt (b = 0.23, p = 0.001). CONCLUSIONS AO and BMI in young adults have differential phenotypic effects on liver CAP and LSt. Visceral fat had a direct effect on IR and CAP. Meanwhile, BMI was associated with LSt. Our findings shed light on the complex interplay of factors influencing liver stiffness, particularly in young individuals. Further research is needed to elucidate the precise mechanisms underlying these associations and their implications for liver health.
Collapse
Affiliation(s)
| | - Adriana L Perales-Torres
- Multidisciplinary Academic Unit Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | | | | | | | | | - Marisol Rosas-Díaz
- Multidisciplinary Academic Unit Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Neyla Baltazar
- Clinical laboratory, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | - América Arroyo-Valerio
- Public Health Research Group, Department of Life Sciences, Texas A and N University-San Antonio, USA
| | - Alvaro Diaz-Badillo
- School of Medicine, Universidad México Americana del Norte, Reynosa, Tamaulipas, Mexico; School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Octelina Castillo-Ruiz
- Multidisciplinary Academic Unit Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | | | - Srinivas Mummidi
- Public Health Research Group, Department of Life Sciences, Texas A and N University-San Antonio, USA
| | - Laura Y Ramírez-Quintanilla
- Multidisciplinary Academic Unit Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Alejandra Bustamante
- Department of Graduate Studies, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Leonel Vela
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Beatriz Tapia
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Juan C Lopez-Alvarenga
- School of Medicine, Universidad México Americana del Norte, Reynosa, Tamaulipas, Mexico; School of Medicine, University of Texas Rio Grande Valley, Edinburg, Texas, USA.
| |
Collapse
|
5
|
Ayache L, Bushell A, Lee J, Salminen I, Crespi B. Mother's warmth from maternal genes: genomic imprinting of brown adipose tissue. Evol Med Public Health 2023; 11:379-385. [PMID: 37928960 PMCID: PMC10621903 DOI: 10.1093/emph/eoad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/04/2023] [Indexed: 11/07/2023] Open
Abstract
Background and objectives Brown adipose tissue (BAT) plays key roles in mammalian physiology, most notably with regard to thermoregulation in infants and juveniles. Previous studies have suggested that intragenomic conflict, in the form of genomic imprinting, mediates BAT thermogenesis, because it represents a public good for groups of siblings, or a mother with her offspring, who huddle together to conserve warmth. By this hypothesis, maternally expressed imprinted genes should promote BAT, while paternally expressed genes should repress it. Methodology We systematically searched the literature using two curated lists of genes imprinted in humans and/or mice, in association with evidence regarding effects of perturbation to imprinted gene expression on BAT development or activity. Results Overall, enhanced BAT was associated with relatively higher expression of maternally expressed imprinted genes, and relatively lower expression of paternally expressed imprinted genes; this pattern was found for 16 of the 19 genes with sufficient information for robust ascertainment (Binomial test, P < 0.005, 2-tailed). Conclusions and implications These results support the kinship theory of imprinting and indicate that future studies of BAT, and its roles in human health and disease, may usefully focus on effects of imprinted genes and associated genomic conflicts.
Collapse
Affiliation(s)
- Lynn Ayache
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Aiden Bushell
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Jessica Lee
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Iiro Salminen
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
6
|
Urlacher SS. The energetics of childhood: Current knowledge and insights into human variation, evolution, and health. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 36866969 DOI: 10.1002/ajpa.24719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
How organisms capture and ultimately use metabolic energy-a limiting resource of life-has profound implications for understanding evolutionary legacies and current patterns of phenotypic variation, adaptation, and health. Energetics research among humans has a rich history in biological anthropology and beyond. The energetics of childhood, however, remains relatively underexplored. This shortcoming is notable given the accepted importance of childhood in the evolution of the unique human life history pattern as well as the known sensitivity of childhood development to local environments and lived experiences. In this review, I have three objectives: (1) To overview current knowledge regarding how children acquire and use energy, highlighting work among diverse human populations and pointing to recent advances and remaining areas of uncertainty; (2) To discuss key applications of this knowledge for understanding human variation, evolution, and health; (3) To recommend future avenues for research. A growing body of evidence supports a model of trade-offs and constraint in childhood energy expenditure. This model, combined with advancements on topics such as the energetics of immune activity, the brain, and the gut, provides insights into the evolution of extended human subadulthood and the nature of variation in childhood development, lifetime phenotype, and health.
Collapse
Affiliation(s)
- Samuel S Urlacher
- Department of Anthropology, Baylor University, Waco, Texas, USA
- Child and Brain Development Program, CIFAR, Toronto, Canada
| |
Collapse
|
7
|
Saito M, Okamatsu-Ogura Y. Thermogenic Brown Fat in Humans: Implications in Energy Homeostasis, Obesity and Metabolic Disorders. World J Mens Health 2023:41.e26. [PMID: 36792089 DOI: 10.5534/wjmh.220224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 01/27/2023] Open
Abstract
In mammals including humans, there are two types of adipose tissue, white and brown adipose tissues (BATs). White adipose tissue is the primary site of energy storage, while BAT is a specialized tissue for non-shivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. It is now established that BAT, through its thermogenic and energy dissipating activities, plays a role in the regulation of body temperature, whole-body energy expenditure, and body fatness. Moreover, increasing evidence has demonstrated that BAT secretes various paracrine and endocrine factors, which influence other peripheral tissues and control systemic metabolic homeostasis, suggesting BAT as a metabolic regulator, other than for thermogenesis. In fact, clinical studies have revealed an association of BAT not only with metabolic disorders such as insulin resistance, diabetes, dyslipidemia, and fatty liver, but also with cardiovascular diseases including hypertension and atherosclerosis. Thus, BAT is an intriguing tissue combating obesity and related metabolic diseases. In this review, we summarize current knowledge on human BAT, focusing its patho-physiological roles in energy homeostasis, obesity and related metabolic disorders. The effects of aging and sex on BAT are also discussed.
Collapse
Affiliation(s)
- Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Adipose Tissue Development Relies on Coordinated Extracellular Matrix Remodeling, Angiogenesis, and Adipogenesis. Biomedicines 2022; 10:biomedicines10092227. [PMID: 36140327 PMCID: PMC9496222 DOI: 10.3390/biomedicines10092227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Despite developing prenatally, the adipose tissue is unique in its ability to undergo drastic growth even after reaching its mature size. This development and subsequent maintenance rely on the proper coordination between the vascular niche and the adipose compartment. In this review, the process of adipose tissue development is broken down to explain (1) the ultrastructural matrix remodeling that is undertaken during simultaneous adipogenesis and angiogenesis, (2) the paracrine crosstalk involved during adipose development, (3) the mechanical regulators involved in adipose growth, and (4) the proteolytic and paracrine oversight for matrix remodeling during adipose development. It is crucial to gain a better understanding of the complex relationships that exist between adipose tissue and the vasculature during tissue development to provide insights into the pathological tissue expansion of obesity and to develop improved soft-tissue reconstruction techniques.
Collapse
|
9
|
Silva GDN, Amato AA. Thermogenic adipose tissue aging: Mechanisms and implications. Front Cell Dev Biol 2022; 10:955612. [PMID: 35979379 PMCID: PMC9376969 DOI: 10.3389/fcell.2022.955612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue undergoes significant anatomical and functional changes with aging, leading to an increased risk of metabolic diseases. Age-related changes in adipose tissue include overall defective adipogenesis, dysfunctional adipokine secretion, inflammation, and impaired ability to produce heat by nonshivering thermogenesis. Thermogenesis in adipose tissue is accomplished by brown and beige adipocytes, which also play a role in regulating energy homeostasis. Brown adipocytes develop prenatally, are found in dedicated depots, and involute in early infancy in humans. In contrast, beige adipocytes arise postnatally in white adipose tissue and persist throughout life, despite being lost with aging. In recent years, there have been significant advances in the understanding of age-related reduction in thermogenic adipocyte mass and function. Mechanisms underlying such changes are beginning to be delineated. They comprise diminished adipose precursor cell pool size and adipogenic potential, mitochondrial dysfunction, decreased sympathetic signaling, and altered paracrine and endocrine signals. This review presents current evidence from animal models and human studies for the mechanisms underlying thermogenic adipocyte loss and discusses potential strategies targeting brown and beige adipocytes to increase health span and longevity.
Collapse
|
10
|
Sexual Dimorphism in Brown Adipose Tissue Activation and White Adipose Tissue Browning. Int J Mol Sci 2022; 23:ijms23158250. [PMID: 35897816 PMCID: PMC9368277 DOI: 10.3390/ijms23158250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
The present narrative review gathers the studies reported so far, addressing sex differences in the effects of cold exposure, feeding pattern and age on brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. In rodents, when exposed to decreasing temperatures, females activate thermogenesis earlier. Results obtained in humans go in the same line, although they do not provide results as solid as those obtained in rodents. Regarding the effects of overfeeding, interesting sex differences on BAT thermogenic capacity have been reported, and the greater or lower sensitivity of each sex to this dietary situation seems to be dependent on the type of feeding. In the case of energy restriction, females are more sensitive than males. In addition, sex differences have also been observed in thermogenesis changes induced by phenolic compound administration. During sexual development, an increase in BAT mass and BAT activity takes place. This phenomenon is greater in boys than in girls, probably due to its relation to muscle-mass growth. The opposite situation takes place during ageing, a lifespan period where thermogenic capacity declines, this being more acute in men than in women. Finally, the vast majority of the studies have reported a higher susceptibility to developing WAT browning amongst females. The scarcity of results highlights the need for further studies devoted to analysing this issue, in order to provide valuable information for a more personalised approach.
Collapse
|
11
|
Tews D, Wabitsch M. Brown Adipose Tissue in Children and Its Metabolic Function. Horm Res Paediatr 2022; 95:104-111. [PMID: 34348306 DOI: 10.1159/000518353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To regulate body temperature, mammals possess brown adipose tissue (BAT), which converts significant amounts of chemical energy into heat. Due to its remarkable energy demand, BAT is currently discussed as a target organ to treat obesity and obesity-related disorders. SUMMARY Although BAT is predominantly present in infants and its relative mass declines with age, new findings suggest that BAT has a relevant role in the regulation of energy homeostasis as well as in the regulation of the energy substrates glucose and lipids in older children, adolescents, and adults. In this overview, we will outline basic mechanisms of BAT thermogenesis and the recently described physiological relevance of BAT in metabolism in children and adolescents. KEY MESSAGE The connection of BAT activity with glucose metabolism and insulin sensitivity seems to be evident from recent studies, implicating BAT as an important influencing factor in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
12
|
Ahmed BA, Varah N, Ong FJ, Blondin DP, Gunn E, Konyer NB, Singh NP, Noseworthy MD, Haman F, Carpentier AC, Punthakee Z, Steinberg GR, Morrison KM. Impaired Cold-Stimulated Supraclavicular Brown Adipose Tissue Activity in Young Boys With Obesity. Diabetes 2022; 71:1193-1204. [PMID: 35293989 DOI: 10.2337/db21-0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022]
Abstract
Childhood obesity is a growing worldwide problem. In adults, lower cold-induced brown adipose tissue (BAT) activity is linked to obesity and metabolic dysfunction; this relationship remains uncertain in children. In this cross-sectional study, we compared cold-induced supraclavicular (SCV) BAT activity (percent change in proton density fat fraction [PDFF]) within the SCV region after 1 h of whole-body cold exposure (18°C), using MRI in 26 boys aged 8-10 years: 13 with normal BMI and 13 with overweight/obesity. Anthropometry, body composition, hepatic fat, visceral adipose tissue (VAT), and pre- and postcold PDFF of the subcutaneous adipose tissue (SAT) in the posterior neck region and the abdomen were measured. Boys with overweight/obesity had lower cold-induced percent decline in SCV PDFF compared with those with normal BMI (1.6 ± 0.8 vs. 4.7 ± 1.2%, P = 0.044). SCV PDFF declined significantly in boys with normal BMI (2.7 ± 0.7%, P = 0.003) but not in boys with overweight/obesity (1.1 ± 0.5%, P = 0.053). No cold-induced changes in the PDFF of either neck SAT (-0.89 ± 0.7%, P = 0.250, vs. 0.37 ± 0.3%, P = 0.230) or abdominal SAT (-0.39 ± 0.5%, P = 0.409, and 0.25 ± 0.2%, P = 0.139, for normal BMI and overweight/obesity groups, respectively) were seen. The cold-induced percent decline in SCV PDFF was inversely related to BMI (r = -0.39, P = 0.047), waist circumference (r = -0.48, P = 0.014), and VAT (r = -0.47, P = 0.014). Thus, in young boys, as in adults, BAT activity is lower in those with overweight/obesity, suggesting that restoring activity may be important for improving metabolic health.
Collapse
Affiliation(s)
- Basma A Ahmed
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nina Varah
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Frank J Ong
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Elizabeth Gunn
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Norman B Konyer
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Nina P Singh
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Noseworthy
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Radiology, McMaster University, Hamilton, Ontario, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Francois Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Andre C Carpentier
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Zubin Punthakee
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Kuroiwa M, Hamaoka‐Fuse S, Amagasa S, Kime R, Endo T, Tanaka R, Kurosawa Y, Hamaoka T. Impact of brown adipose tissue vascular density on body adiposity in healthy Japanese infants and children. Obes Sci Pract 2022; 8:190-198. [PMID: 35388351 PMCID: PMC8976546 DOI: 10.1002/osp4.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Objective The importance of brown adipose tissue (BAT) is well recognized in healthy infants and children. However, information regarding age-related changes in BAT vascular density (BAT-d) and the impact of BAT-d on body adiposity are lacking. This study aimed to evaluate the normal values of BAT-d, factors influencing BAT-d, and the impact of BAT-d on body adiposity in healthy infants and children. Methods This study included 240 participants (127 girls and 113 boys) aged 1 month to 5 years. The tissue total hemoglobin concentration in the supraclavicular region adjusted according to the subcutaneous adipose tissue thickness (SAT) ([total-Hb-Adj]sup) as BAT-d. SAT in the deltoid and interscapular regions (SATdel+int), the Kaup index (body weight [g]/height or length [cm]/height or length [cm] × 10) as body adiposity, and fertilization season were also measured. Results The [total-Hb-Adj]sup of boys was higher than that of girls (r = 0.277, p = 0.009). Younger children had a significantly higher Kaup index (r = 0.495, p < 0.001) and SATdel+int (r = 0.614, p < 0.001) than older children. Children who had higher [total-Hb-Adj]sup had a significantly lower Kaup index (r = 0.495, p = 0.037) and SATdel+int (r = 0.614, p < 0.001). Conclusion The [total-Hb-Adj]sup, as a parameter of BAT-d, is negatively correlated with body adiposity in children aged 1 month to 5 years, and BAT might affect human obesity to a much greater extent than expected. To prevent or treat obesity in early childhood, the level of BAT-d should be considered when using a dietary intervention.
Collapse
Affiliation(s)
- Miyuki Kuroiwa
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Sayuri Hamaoka‐Fuse
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Shiho Amagasa
- Department of Preventive Medicine and Public HealthTokyo Medical UniversityTokyoJapan
| | - Ryotaro Kime
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Tasuki Endo
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Riki Tanaka
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health PromotionTokyo Medical UniversityTokyoJapan
| |
Collapse
|
14
|
Garcia-Beltran C, Cereijo R, Plou C, Gavaldà-Navarro A, Malpique R, Villarroya J, López-Bermejo A, de Zegher F, Ibáñez L, Villarroya F. Posterior Cervical Brown Fat and CXCL14 Levels in the First Year of Life: Sex Differences and Association With Adiposity. J Clin Endocrinol Metab 2022; 107:e1148-e1158. [PMID: 34677618 DOI: 10.1210/clinem/dgab761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Brown adipose tissue (BAT) is particularly abundant in neonates, but its association with measures of adiposity and metabolic health in early infancy is poorly delineated. Besides sustaining nonshivering thermogenesis, BAT secretes brown adipokines that act on systemic metabolism. The chemokine CXCL14 has been identified as a brown adipokine in experimental studies. OBJECTIVE To determine the relationships among BAT activity, adiposity, and circulating CXCL14 levels in the first year of life in girls and boys. METHODS Indices of fat accretion, circulating endocrine-metabolic parameters and serum CXCL14 levels were assessed longitudinally in a cohort of infants at birth and at 4 and 12 months. BAT activity was estimated using infrared thermography only at age 12 months.The main outcome measures were weight and length Z-scores, total and abdominal fat content (by dual X-ray absorptiometry), BAT activity at the posterior cervical and supraclavicular regions, serum levels of glucose, insulin, insulin-like growth factor-I, high-molecular-weight adiponectin, and CXCL14; CXCL14 transcript levels in neonatal BAT and liver. RESULTS Posterior cervical BAT was more active in girls than in boys (P = .02). BAT activity was negatively associated with adiposity parameters only in girls. CXCL14 levels were higher in girls than in boys at age 12 months and correlated positively with the area of active posterior cervical BAT in girls. Neonatal BAT showed high CXCL14 gene expression levels. CONCLUSION BAT activity and the levels of CXCL14-a potential surrogate of BAT activity-are sex specific in the first year of life. Posterior cervical BAT activity associates negatively with indices of adiposity only in girls.
Collapse
Affiliation(s)
- Cristina Garcia-Beltran
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029, Madrid, Spain
| | - Rubén Cereijo
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
- Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cristina Plou
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
| | - Rita Malpique
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029, Madrid, Spain
| | - Joan Villarroya
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
| | - Abel López-Bermejo
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, and Girona Institute for Biomedical Research, 17007 Girona, Spain
| | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029, Madrid, Spain
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
| |
Collapse
|
15
|
Pasquarelli-do-Nascimento G, Machado SA, de Carvalho JMA, Magalhães KG. Obesity and adipose tissue impact on T-cell response and cancer immune checkpoint blockade therapy. IMMUNOTHERAPY ADVANCES 2022; 2:ltac015. [PMID: 36033972 PMCID: PMC9404253 DOI: 10.1093/immadv/ltac015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Many different types of cancer are now well known to have increased occurrence or severity in individuals with obesity. The influence of obesity on cancer and the immune cells in the tumor microenvironment has been thought to be a pleiotropic effect. As key endocrine and immune organs, the highly plastic adipose tissues play crucial roles in obesity pathophysiology, as they show alterations according to environmental cues. Adipose tissues of lean subjects present mostly anti-inflammatory cells that are crucial in tissue remodeling, favoring uncoupling protein 1 expression and non-shivering thermogenesis. Oppositely, obese adipose tissues display massive proinflammatory immune cell infiltration, dying adipocytes, and enhanced crown-like structure formation. In this review, we discuss how obesity can lead to derangements and dysfunctions in antitumor CD8+ T lymphocytes dysfunction. Moreover, we explain how obesity can affect the efficiency of cancer immunotherapy, depicting the mechanisms involved in this process. Cancer immunotherapy management includes monoclonal antibodies targeting the immune checkpoint blockade. Exhausted CD8+ T lymphocytes show elevated programmed cell death-1 (PD-1) expression and highly glycolytic tumors tend to show a good response to anti-PD-1/PD-L1 immunotherapy. Although obesity is a risk factor for the development of several neoplasms and is linked with increased tumor growth and aggressiveness, obesity is also related to improved response to cancer immunotherapy, a phenomenon called the obesity paradox. However, patients affected by obesity present higher incidences of adverse events related to this therapy. These limitations highlight the necessity of a deeper investigation of factors that influence the obesity paradox to improve the application of these therapies.
Collapse
Affiliation(s)
| | - Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia , DF , Brazil
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia , DF , Brazil
| |
Collapse
|
16
|
Levy SB, Leonard WR. The evolutionary significance of human brown adipose tissue: Integrating the timescales of adaptation. Evol Anthropol 2021; 31:75-91. [PMID: 34910348 DOI: 10.1002/evan.21930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/14/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
While human adaptability is regarded as a classical topic in anthropology, recent work provides new insight into metabolic adaptations to cold climates and the role of phenotypic plasticity in human evolution. A growing body of literature demonstrates that adults retain brown adipose tissue (BAT) which may play a role in non-shivering thermogenesis. In this narrative review, we apply the timescales of adaptation framework in order to explore the adaptive significance of human BAT. Human variation in BAT is shaped by multiple adaptive modes (i.e., allostasis, acclimatization, developmental adaptation, epigenetic inheritance, and genetic adaptation), and together the adaptive modes act as an integrated system. We hypothesize that plasticity in BAT facilitated the successful expansion of human populations into circumpolar regions, allowing for selection of genetic adaptations to cold climates to take place. Future research rooted in human energetics and biocultural perspectives is essential for understanding BAT's adaptive and health significance.
Collapse
Affiliation(s)
- Stephanie B Levy
- Department of Anthropology, CUNY Hunter College, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - William R Leonard
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
17
|
Oyama S, Arslanian KJ, Levy SB, Ocobock CJ, Fidow UT, Naseri T, Hawley NL. Feasibility of using infrared thermal imaging to examine brown adipose tissue in infants aged 18 to 25 months. Ann Hum Biol 2021; 48:374-381. [PMID: 34781801 DOI: 10.1080/03014460.2021.1985607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Recent studies in adults indicate that cold-induced temperature change of supraclavicular skin corresponds with brown adipose tissue (BAT) thermogenesis. AIM This study examined the feasibility of using thermography to assess temperature changes in infants aged 18-25 months after mild cooling. Further, this study sought to evaluate whether cold exposure induces a thermal response suggestive of BAT activity underlying the supraclavicular region. SUBJECTS AND METHODS Changes in maximum skin temperature at the supraclavicular and interscapular regions were determined using thermal imaging following a mild 5-minute cooling condition (by removal of clothes in a climate-controlled room) in 67 Samoan infants. Temperature changes of the forehead and hand, known BAT-free regions, served as indicators of cooling efficacy. RESULTS Infants with increased hand and forehead temperatures after cold exposure were excluded from analysis, reducing the effective sample size to 19 infants. On average, forehead (p < 0.001), hand (p < 0.001) and back (0.029) temperatures dropped significantly while supraclavicular temperatures remained constant. Participants with greater decreases in forehead temperature tended to exhibit greater supraclavicular thermogenesis (p = 0.084), suggesting potential BAT activity in this region. CONCLUSIONS While further work is necessary to develop a reliable cooling condition, this study provides proof-of-concept for non-invasive assessment of BAT activity in infants.
Collapse
Affiliation(s)
- Sakurako Oyama
- Department of Anthropology, Yale University, New Haven, CT, USA.,Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kendall J Arslanian
- Department of Anthropology, Yale University, New Haven, CT, USA.,Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Stephanie B Levy
- New York Consortium in Evolutionary Primatology, New York City, NY, USA
| | - Cara J Ocobock
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, USA
| | - Ulai T Fidow
- Department of Obstetrics & Gynecology, Tupua Tamasese Meaole Hospital, Samoa National Health Service, Apia, Samoa
| | | | - Nicola L Hawley
- Department of Anthropology, Yale University, New Haven, CT, USA.,Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
18
|
Tint MT, Michael N, Sadananthan SA, Huang JY, Khoo CM, Godfrey KM, Shek LPC, Lek N, Tan KH, Yap F, Velan SS, Gluckman PD, Chong YS, Karnani N, Chan SY, Leow MKS, Lee KJ, Lee YS, Hu HH, Zhang C, Fortier MV, Eriksson JG. Brown Adipose Tissue, Adiposity, and Metabolic Profile in Preschool Children. J Clin Endocrinol Metab 2021; 106:2901-2914. [PMID: 34143868 PMCID: PMC8475202 DOI: 10.1210/clinem/dgab447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 02/08/2023]
Abstract
CONTEXT An inverse relationship between brown adipose tissue (BAT) and obesity has previously been reported in older children and adults but is unknown in young children. OBJECTIVE We investigated the influence of BAT in thermoneutral condition on adiposity and metabolic profile in Asian preschool children. DESIGN, SETTING, AND PARTICIPANTS A total of 198 children aged 4.5 years from a prospective birth cohort study, Growing Up in Singapore Towards Healthy Outcomes (GUSTO) were successfully studied with water-fat magnetic resonance imaging of the supraclavicular and axillary fat depot (FDSA). Regions within FDSA with fat-signal-fraction between 20% and 80% were considered BAT, and percentage BAT (%BAT; 100*BAT volume/ FDSA volume) was calculated. MAIN OUTCOME MEASURES Abdominal adipose tissue compartment volumes, ectopic fat in the soleus muscle and liver, fatty liver index, metabolic syndrome scores, and markers of insulin sensitivity. RESULTS A 1% unit increase in %BAT was associated with lower body mass index, difference (95% CI), -0.08 (-0.10, -0.06) kg/m2 and smaller abdominal adipose tissue compartment volumes. Ethnicity and sex modified these associations. In addition, each unit increase in %BAT was associated with lower ectopic fat at 4.5 years in the liver, -0.008% (-0.013%, -0.003%); soleus muscle, -0.003% (-0.006%, -0.001%) of water content and lower fatty liver index at 6 years. CONCLUSIONS Higher %BAT is associated with a more favorable metabolic profile. BAT may thus play a role in the pathophysiology of obesity and related metabolic disorders. The observed ethnic and sex differences imply that the protective effect of BAT may vary among different groups.
Collapse
Affiliation(s)
- Mya Thway Tint
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Obstetrics & Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Navin Michael
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jonathan Yinhao Huang
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chin Meng Khoo
- Division of Endocrinology, Department of Medicine, National University Health System, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, NHS Foundation Trust, Southampton, UK
| | - Lynette Pei-Chi Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ngee Lek
- Department of Pediatric Endocrinology, KK Women’s and Children’s Hospital, Singapore
| | - Kok Hian Tan
- Department of Obstetrics and Gynaecology, KK Women’s and Children’s Hospital, Singapore
| | - Fabian Yap
- Department of Pediatric Endocrinology, KK Women’s and Children’s Hospital, Singapore
- Duke-NUS Graduate Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Obstetrics & Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Obstetrics & Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
- Metabolic Disorders Research Programme, Lee Kong Chian School of Medicine, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Kuan Jin Lee
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yung-Seng Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Paediatric Endocrinology, Department of Paediatrics, Khoo Teck Puat–National University Children’s Medical Institute, National University Health System, Singapore
| | - Houchun Harry Hu
- Department of Radiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Obstetrics & Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Correspondence: Johan G. Eriksson, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, MD1, Tahir Foundation Building, Level 12, #12-02/03, 12 Science Drive 2, Singapore 117549, Singapore. ;
| |
Collapse
|
19
|
De Meneck F, de Souza LV, Brioschi ML, Franco MDC. Emerging evidence for the opposite role of circulating irisin levels and brown adipose tissue activity measured by infrared thermography in anthropometric and metabolic profile during childhood. J Therm Biol 2021; 99:103010. [PMID: 34420640 DOI: 10.1016/j.jtherbio.2021.103010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
Irisin is an adipomyokine that increases browning of adipose tissue and thermogenesis, thereby protecting against obesity and insulin resistance. However, the correlation between irisin, brown adipose tissue (BAT), and childhood obesity, as well as its association with an increased risk of developing metabolic diseases, has not been completely elucidated. This study aimed to investigate the association between irisin levels and BAT activity measured by infrared thermography among children and verify their correlation with anthropometric and metabolic parameters. This study included 42 children with normal weight and 18 overweight/obese children. Anthropometric data, irisin levels, lipid and glucose profile were evaluated. The percentage of the thermally active portion of the supraclavicular area (%AreaSCR) before and after a cold stimulus was measured by infrared thermography, and the differences between the percentages of thermally active (Δ%AreaSCR) was calculated as an index of BAT activation. The results were correlated with anthropometric and metabolic parameters. Circulating irisin levels was positive correlated with age (rho=0.327, P= 0.011), body mass index (BMI) (rho=0.707, P<0.001), waist circumference (rho=0.624, P<0.001), total cholesterol (rho=0.361, P=0.044), triglycerides (rho=0.419, P=0.001), and low-density lipoprotein cholesterol (LDLc) (rho=0.381, P= 0.003). Active BAT was negatively correlated with BMI, waist circumference, triglycerides, LDLc and irisin levels. We observed that normal weight children increased significantly the Δ% AreaSCR as compared to overweight/obese children. In conclusion, circulating irisin levels and BAT activity appear to have opposing roles, since normal weight children had greater BAT activity and lower circulating levels of irisin.
Collapse
Affiliation(s)
- Franciele De Meneck
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Marcos Leal Brioschi
- Division of Neurological Surgery, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria do Carmo Franco
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Law JM, Morris DE, Robinson L, Randell T, Denvir L, Symonds ME, Budge H. Reduced brown adipose tissue-associated skin temperature following cold stimulation in children and adolescents with type 1 diabetes. Pediatr Diabetes 2021; 22:407-416. [PMID: 33252166 DOI: 10.1111/pedi.13163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is essential to maintain body temperature. Its ability to convert chemical energy in glucose and free fatty acids to heat is conferred by a unique protein, UCP-1. BAT activity is greatest in children and adolescents, declining through adulthood. Blood glucose concentrations outside the normal nondiabetic range are common in type 1 diabetes and hyperglycaemia leads to insulin resistance in muscle and white adipose tissue, but whether this applies to BAT, is not known. METHOD To investigate the effect of type 1 diabetes on BAT activity, we measured the supraclavicular temperature of 20 children with type 1 diabetes and compared them to 20 age-matched controls, using infrared thermography. RESULTS The diabetes group had lower stimulated supraclavicular temperatures (diabetes group: 35.03 (34.76-35.30)°C; control group: 35.42 (35.16-35.69)°C; p = 0.037) and a reduced response in relative temperature following cold stimulation, after adjusting for BMI (diabetes group: 0.11 (0.03-0.18)°C; control group: 0.22 (0.15-0.29)°C; p = 0.034). In the diabetes group, there was no association between glycaemic measures and supraclavicular temperatures, but the method of insulin delivery may significantly affect the change in supraclavicular temperature with stimulation (injections: 0.01 (-0.07-0.09)°C; pump: 0.15 (0.04-0.26)°C; p = 0.028). CONCLUSIONS While further work is needed to better understand the glucose-insulin-BAT relationship, one possible explanation for the reduced supraclavicular temperature is that exogenous, unlike endogenous, insulin, is not suppressed by the activity of the sympathetic nervous system, preventing lipolysis-driven activation of BAT.
Collapse
Affiliation(s)
- James M Law
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - David E Morris
- Bioengineering Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Lindsay Robinson
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Tabitha Randell
- Paediatric Diabetes & Endocrinology, Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Louise Denvir
- Paediatric Diabetes & Endocrinology, Nottingham Children's Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Digestive Disease Centre and Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Helen Budge
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
21
|
Levy SB, Klimova TM, Zakharova RN, Fedorov AI, Fedorova VI, Baltakhinova ME, Leonard WR. Evidence for a sensitive period of plasticity in brown adipose tissue during early childhood among indigenous Siberians. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:834-846. [PMID: 33913150 DOI: 10.1002/ajpa.24297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Evolutionary theorists have debated the adaptive significance of developmental plasticity in organisms with long lifespans such as humans. This debate in part stems from uncertainty regarding the timing of sensitive periods. Does sensitivity to environmental signals fluctuate across development or does it steadily decline? We investigated developmental plasticity in brown adipose tissue (BAT) among indigenous Siberians in order to explore the timing of phenotypic sensitivity to cold stress. METHODS BAT thermogenesis was quantified using infrared thermal imaging in 78 adults (25 men; 33 women). Cold exposure during gestation, infancy, early childhood, middle childhood, and adolescence was quantified using: (1) the average ambient temperature across each period; (2) the number of times daily temperature dropped below -40°F during each period. We also assessed past cold exposure with a retrospective survey of participation in outdoor activities. RESULTS Adult BAT thermogenesis was significantly associated with the average temperature (p = 0.021), the number of times it was below -40°F (p = 0.026), and participation in winter outdoor activities (p = 0.037) during early childhood. CONCLUSIONS Our results suggest that early childhood represents an important stage for developmental plasticity, and that culture may play a critical role in shaping the timing of environmental signals. The findings highlight a new pathway through which the local consequences of global climate change may influence human biology, and they suggest that ambient temperature may represent an understudied component of the developmental origins of health and disease.
Collapse
Affiliation(s)
- Stephanie B Levy
- Department of Anthropology, CUNY Hunter College, New York, New York, USA
- New York Consortium in Evolution Primatology, New York, New York, USA
| | - Tatiana M Klimova
- North-Eastern Federal University Named M. K. Ammosov, Yakutsk, Russia
- Yakutsk Scientific Center for Complex Medical Problems, Yakutsk, Russia
| | - Raisa N Zakharova
- North-Eastern Federal University Named M. K. Ammosov, Yakutsk, Russia
| | | | | | | | | |
Collapse
|
22
|
Pace NP, Vassallo J, Calleja-Agius J. Gestational diabetes, environmental temperature and climate factors - From epidemiological evidence to physiological mechanisms. Early Hum Dev 2021; 155:105219. [PMID: 33046275 DOI: 10.1016/j.earlhumdev.2020.105219] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gestational diabetes (GDM) is a common metabolic complication of pregnancy that is generally asymptomatic in its clinical course, although it is potentially associated with a wide range of both maternal and foetal complications. The population prevalence of GDM varies widely, depending on the clinical diagnostic criteria, ethnicity, demographics and background prevalence of type 2 diabetes. Climate variability and environmental temperature have recently come to the forefront as potential direct or indirect determinants of human health. The association between GDM and environmental temperature is complex, and studies have often reported conflicting findings. Epidemiologic studies have shown a direct relation between rising environmental temperature and the risk of both GDM and impaired beta cell function. Seasonal trends in the prevalence of GDM have been reported in several populations, with a higher prevalence in summer months. Multiple mechanisms have been proposed to explain the GDM-temperature correlation. A growing body of evidence supports a link between temperature, energy expenditure and adipose tissue metabolism. Brown adipose tissue thermogenesis, induced by cold temperatures, improves insulin sensitivity. Further biological explanations for the GDM-temperature correlation lie in potential association with low vitamin D levels, which varies according to sunshine exposure. Observational studies are also complicated by lifestyle factors, such as diet and physical activity, that could exhibit seasonal variation. In this review article, we provide a systematic overview of available epidemiological evidence linking environmental temperature and gestational diabetes. Furthermore, the physiological mechanisms that give biological plausibility to association between GDM and temperature are explored. As future climate patterns could drive global changes in GDM prevalence, this knowledge has important implications for both clinicians and researchers.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Department of Anatomy, Faculty of Medicine and Surgery, Biomedical Sciences Building, University of Malta, Msida MSD 2080, Malta.
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, Biomedical Sciences Building, University of Malta, Msida MSD 2080, Malta
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, Biomedical Sciences Building, University of Malta, Msida MSD 2080, Malta
| |
Collapse
|
23
|
Santhanam P, Rowe SP, Solnes LB, Quainoo B, Ahima RS. A systematic review of imaging studies of human brown adipose tissue. Ann N Y Acad Sci 2021; 1495:5-23. [PMID: 33604891 DOI: 10.1111/nyas.14579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue (BAT) is involved in energy dissipation and has been linked to weight loss, insulin sensitivity, and reduced risk of atherosclerotic disease. BAT is found most often in the supraclavicular region, as well as mediastinal and paravertebral areas, and it is predominantly seen in young persons. BAT is activated by cold temperature and the sympathetic nervous system. In humans, BAT was initially detected via 2-deoxy-2-[18 F]fluoro-d-glucose (FDG) positron emission tomography/computed tomography (PET/CT), a high-resolution molecular imaging modality used to identify and stage malignancies. Recent studies have shown that BAT can be localized using conventional imaging modalities, such as CT or magnetic resonance imaging, as well as radiotracers used for single-photon emission CT. In this systematic review, we have summarized the evidence for BAT detection in humans using various imaging techniques.
Collapse
Affiliation(s)
- Prasanna Santhanam
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland
| | - Steven P Rowe
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lilja B Solnes
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brittany Quainoo
- Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland
| |
Collapse
|
24
|
Vidović V, Maksimović N, Vidović S, Damnjanović T, Novaković I. Association of PPARG rs3856806 C>T polymorphism with body mass index, glycaemia and lipid parameters in Serbian adolescents. SCRIPTA MEDICA 2021. [DOI: 10.5937/scriptamed52-29376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Background/Aim: Peroxisome proliferator-activated receptor gamma (PPARg) belongs to a family of nuclear hormone receptors and ligand-activated transcription factors. PPARG gene is expressed in many tissues including adipose tissue where it plays a crucial role in differentiation of adipocyte, insulin resistance, blood glucose levels and lipid metabolism. The aim of the study was to examine the association of rs3856806 polymorphism with the body mass index (BMI), fasting glucose levels and lipid parameters in Serbian adolescents. Methods: This research included 287 adolescents of both genders (143 boys and 144 girls), 14-15 years of age. Genotype detection was done by polymerase chain reaction-restriction fragment length polymorphism (RFLP) assay. Results: Results showed statistically significant difference in terms of fasting glucose levels among girls (p = 0.013) depending on their genotype. Female carriers of CC genotype had significantly higher level of fasting glucose levels. Also, results showed that in the group of overweight and obese girls, carriers of CT or TT genotype had statistically significant lower values of HDL cholesterol compared to girls - carriers of CC genotype (p = 0.000). However, this result was not confirmed by multiple regression analysis. Statistically significant association of rs3856806 polymorphism was not observed with BMI nor with other lipid parameters. Conclusion: This polymorphism is associated with fasting glucose level and HDL cholesterol among girls. To draw definite conclusions, further research should be conducted including non-genetic factors and other polymorphisms among this gene.
Collapse
|
25
|
Kaikaew K, Grefhorst A, Visser JA. Sex Differences in Brown Adipose Tissue Function: Sex Hormones, Glucocorticoids, and Their Crosstalk. Front Endocrinol (Lausanne) 2021; 12:652444. [PMID: 33927694 PMCID: PMC8078866 DOI: 10.3389/fendo.2021.652444] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive fat accumulation in the body causes overweight and obesity. To date, research has confirmed that there are two types of adipose tissue with opposing functions: lipid-storing white adipose tissue (WAT) and lipid-burning brown adipose tissue (BAT). After the rediscovery of the presence of metabolically active BAT in adults, BAT has received increasing attention especially since activation of BAT is considered a promising way to combat obesity and associated comorbidities. It has become clear that energy homeostasis differs between the sexes, which has a significant impact on the development of pathological conditions such as type 2 diabetes. Sex differences in BAT activity may contribute to this and, therefore, it is important to address the underlying mechanisms that contribute to sex differences in BAT activity. In this review, we discuss the role of sex hormones in the regulation of BAT activity under physiological and some pathological conditions. Given the increasing number of studies suggesting a crosstalk between sex hormones and the hypothalamic-pituitary-adrenal axis in metabolism, we also discuss this crosstalk in relation to sex differences in BAT activity.
Collapse
Affiliation(s)
- Kasiphak Kaikaew
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| | - Jenny A. Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- *Correspondence: Jenny A. Visser,
| |
Collapse
|
26
|
Effect of Propranolol on 18F-Fluorodeoxyglucose Uptake in Brown Adipose Tissue in Children and Young Adults with Neoplastic Diseases. Mol Imaging Biol 2020; 23:260-269. [PMID: 33067751 DOI: 10.1007/s11307-020-01547-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the effectiveness of propranolol at mitigating FDG uptake in brown adipose tissue (BAT) of pediatric patients with known or suspected malignancies. METHODS PET/CT scans of 3 cohorts of patients treated from 2005 to 2017 were scored for the presence of FDG uptake by BAT at 7 sites: right or left neck/supraclavicular area, right or left axilla, mediastinum, posterior thorax, and abdomen/pelvis. Uptake was scored as follows: 0, none; 1, mild uptake < liver; 2, moderate uptake = liver; and 3, intense uptake > liver. Group 1 consisted of 323 patients (630 scans) who had no specific preparation to mitigate FDG uptake by BAT. Group 2 consisted of 345 patients (705 scans) who underwent only warming in an uptake room with a fixed temperature at 24 °C. Group 3 consisted of 622 patients (1457 scans) who underwent warming. In group 3, patients 8 years and older, 471 patients (1114 scans), were also pre-medicated with oral propranolol 60 min before injection of FDG. Generalized estimation equation, using the logit link method, was used to model the relationship between the incidence of BAT score > 0, in any site, as a function of age, sex, seasonal effect, and body surface area (BSA). RESULTS In patients aged 8 years or older, the incidence of BAT uptake was 35-44 % and declined to 15 % with propranolol. BAT was most frequent in the neck (26 %), axilla (18 %), posterior thorax (18 %), mediastinum (14 %), and abdomen/pelvis (8 %); BAT was less common in warm months (p = 0.001). No substantial benefit was shown with pre-injection warming alone. No significant effect was found for age, sex, or BSA separately. When BAT uptake was present, it was usually intense. CONCLUSION Propranolol preparation minimizes FDG uptake by BAT and should be considered routine for pediatric FDG PET/CT cancer-related protocols in children, adolescents, and young adults.
Collapse
|
27
|
Ruan HB. Developmental and functional heterogeneity of thermogenic adipose tissue. J Mol Cell Biol 2020; 12:775-784. [PMID: 32569352 PMCID: PMC7816678 DOI: 10.1093/jmcb/mjaa029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The obesity epidemic continues to rise as a global health challenge. Thermogenic brown and beige adipocytes dissipate chemical energy as heat, providing an opportunity for developing new therapeutics for obesity and related metabolic diseases. Anatomically, brown adipose tissue is distributed as discrete depots, while beige adipocytes exist within certain depots of white adipose tissue. Developmentally, brown and beige adipocytes arise from multiple embryonic progenitor populations that are distinct and overlapping. Functionally, they respond to a plethora of stimuli to engage uncoupling protein 1-dependent and independent thermogenic programs, thus improving systemic glucose homeostasis, lipid metabolism, and the clearance of branched-chain amino acids. In this review, we highlight recent advances in our understanding of the molecular and cellular mechanisms that contribute to the developmental and functional heterogeneity of thermogenic adipose tissue.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
28
|
Liu J, Zhang C, Zhang B, Sheng Y, Xu W, Luo Y, He X, Huang K. Comprehensive Analysis of the Characteristics and Differences in Adult and Newborn Brown Adipose Tissue (BAT): Newborn BAT Is a More Active/Dynamic BAT. Cells 2020; 9:cells9010201. [PMID: 31947603 PMCID: PMC7017059 DOI: 10.3390/cells9010201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Brown adipose tissue (BAT) plays an essential role in maintaining body temperature and in treating obesity and diabetes. The adult BAT (aBAT) and neonatal BAT (neBAT) vary greatly in capacity, but the characteristics and differences between them on the molecular level, as well as the related features of BAT as it develops post-delivery, have not yet been fully determined. In this study, we examined the morphological features of aBAT and neBAT of mice by using hematoxylin-eosin (H&E) staining, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). We found that neBAT contains a smaller number and size of lipid droplets, as well as more abundant mitochondria, compared with aBAT. The dynamic morphological changes revealed that the number and size of lipid droplets increase, but the number of mitochondria gradually decrease during the post-delivery development, which consisted of some differences in RNA or protein expression levels, such as gradually decreased uncoupling protein 1 (UCP1) expression levels and mitochondrial genes, such as mitochondrial transcription factor A (Tfam). The adipocyte differentiation-related genes, such as transcription factor CCAAT enhancer-binding protein β (CEBPβ), were also continuously upregulated. Additionally, the different features of aBAT and neBAT were analyzed from the global transcription (RNA-Seq) level, which included messenger RNA (mRNA), microRNA, long non-coding RNA (lncRNA), circRNA, and DNA methylation, as well as proteins (proteomics). Differentially methylated region (DMR) analysis identified 383 hyper- and 503 hypo-methylated genes, as well as 1221 new circRNA in ne-BAT and 1991 new circRNA in a-BAT, with significantly higher expression of circRNA in aBAT compared with neBAT. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that mitochondrial activity, protein synthesis, and cell life activity levels were higher in neBAT, and pathways related to ribosomes, spliceosomes, and metabolism were significantly activated in neBAT compared to aBAT. Collectively, this study describes the dynamic changes occurring throughout post-delivery development from the morphological, molecular and omics perspectives. Our study provides information that may be utilized in improving BAT functional activity through gene regulation and/or epigenetic regulation.
Collapse
Affiliation(s)
- Junyu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Chuanhai Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Correspondence: (X.H.); (K.H.)
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.L.); (C.Z.); (B.Z.); (Y.S.); (W.X.); (Y.L.)
- Key Laboratory of Safety Assessment of Genetically Modifed Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Correspondence: (X.H.); (K.H.)
| |
Collapse
|
29
|
Lundström E, Ljungberg J, Andersson J, Manell H, Strand R, Forslund A, Bergsten P, Weghuber D, Mörwald K, Zsoldos F, Widhalm K, Meissnitzer M, Ahlström H, Kullberg J. Brown adipose tissue estimated with the magnetic resonance imaging fat fraction is associated with glucose metabolism in adolescents. Pediatr Obes 2019; 14:e12531. [PMID: 31290284 PMCID: PMC6771901 DOI: 10.1111/ijpo.12531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite therapeutic potential against obesity and diabetes, the associations of brown adipose tissue (BAT) with glucose metabolism in young humans are relatively unexplored. OBJECTIVES To investigate possible associations between magnetic resonance imaging (MRI) estimates of BAT and glucose metabolism, whilst considering sex, age, and adiposity, in adolescents with normal and overweight/obese phenotypes. METHODS In 143 subjects (10-20 years), MRI estimates of BAT were assessed as cervical-supraclavicular adipose tissue (sBAT) fat fraction (FF) and T2* from water-fat MRI. FF and T2* of neighbouring subcutaneous adipose tissue (SAT) were also assessed. Adiposity was estimated with a standardized body mass index, the waist-to-height ratio, and abdominal visceral and subcutaneous adipose tissue volumes. Glucose metabolism was represented by the 2h plasma glucose concentration, the Matsuda index, the homeostatic model assessment of insulin resistance, and the oral disposition index; obtained from oral glucose tolerance tests. RESULTS sBAT FF and T2* correlated positively with adiposity before and after adjustment for sex and age. sBAT FF, but not T2* , correlated with 2h glucose and Matsuda index, also after adjustment for sex, age, and adiposity. The association with 2h glucose persisted after additional adjustment for SAT FF. CONCLUSIONS The association between sBAT FF and 2h glucose, observed independently of sex, age, adiposity, and SAT FF, indicates a role for BAT in glucose metabolism, which potentially could influence the risk of developing diabetes. The lacking association with sBAT T2* might be due to FF being a superior biomarker for BAT and/or to methodological limitations in the T2* quantification.
Collapse
Affiliation(s)
- Elin Lundström
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Joy Ljungberg
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Jonathan Andersson
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden
| | - Hannes Manell
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden,Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Robin Strand
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Department of Information TechnologyUppsala UniversityUppsalaSweden
| | - Anders Forslund
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden
| | - Peter Bergsten
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden,Children Obesity ClinicUppsala University HospitalUppsalaSweden,Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Daniel Weghuber
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Katharina Mörwald
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Fanni Zsoldos
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria
| | - Kurt Widhalm
- Department of PediatricsParacelsus Medical UniversitySalzburgAustria,Obesity Research UnitParacelsus Medical UniversitySalzburgAustria,Department of PediatricsMedical University of ViennaViennaAustria
| | | | - Håkan Ahlström
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Antaros MedicalBioVenture HubMölndalSweden
| | - Joel Kullberg
- Department of Surgical Sciences, Section of RadiologyUppsala UniversityUppsalaSweden,Antaros MedicalBioVenture HubMölndalSweden
| |
Collapse
|
30
|
Sexual Dimorphism of Brown Adipose Tissue Function. J Pediatr 2019; 210:166-172.e1. [PMID: 30979545 DOI: 10.1016/j.jpeds.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine whether brown adipose tissue (BAT) activity in school-age children differs between the sexes and to explore the impact of dietary intake, sedentary behavior, and picky/fussy eating. STUDY DESIGN Children aged 8.5-11.8 years of age (n = 36) underwent infrared thermography to determine the temperature of the skin overlying the main superficial BAT depot in the supraclavicular region before and after 5 minutes of mild cold exposure (single-hand immersion in cool tap water at about 20°C). The relationships between the supraclavicular region temperature and parental reports of food consumption, eating behavior, and inactivity were explored. RESULTS The supraclavicular region temperature was higher in boys (n = 16) at baseline, and after cold exposure. Boys displayed a greater thermogenic response to cold. Strong negative correlations were observed between the supraclavicular region temperature and body mass index percentile, and differences in supraclavicular region temperature between girls and boys persisted after adjustment for body mass index percentile. A negative linear relationship was observed between protein and vegetable intake and supraclavicular region temperature in girls only, but did not persist after adjustment for multiple comparisons. There was no difference in the adjusted supraclavicular region temperature between active or inactive children, or picky and nonpicky eaters. CONCLUSIONS These findings indicate sexual dimorphism in BAT thermogenic activity and a sex-specific impact of diet. Future studies should aim to quantify the contribution of BAT to childhood energy expenditure, energy imbalance, and any role in the origins of childhood obesity.
Collapse
|
31
|
Andersson J, Roswall J, Kjellberg E, Ahlström H, Dahlgren J, Kullberg J. MRI estimates of brown adipose tissue in children – Associations to adiposity, osteocalcin, and thigh muscle volume. Magn Reson Imaging 2019; 58:135-142. [DOI: 10.1016/j.mri.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
|
32
|
Cai L, Tan M, Tan W, Zeng X, Wan N, Wong SHS, O'Reilly J, Sun F, Yang J, Chen Y. Associations of Circulating Irisin Concentrations With Cardiometabolic Risk Factors Among Children Vary by Physical Activity or Sedentary Time Levels. Front Endocrinol (Lausanne) 2019; 10:549. [PMID: 31474938 PMCID: PMC6703142 DOI: 10.3389/fendo.2019.00549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Whether irisin concentrations are associated with physical activity (PA) and sedentary time (ST) remains unknown. The role of irisin on cardiometabolic health among children has been contradictory and scarce. This study aimed to examine associations of PA and ST with irisin concentrations and relationships between irisin concentrations and cardiometabolic parameters among children. Additionally, we assessed the interaction between PA or ST and irisin concentrations on cardiometabolic parameters. Basing on a cross-sectional survey of 3,651 general children aged 7-12 years, 575 with different self-reported PA (moderate-vigorous intensity PA ≥ 60 min/day or <150 min/week) and ST (gender-, age-specific ST ≥ 75% or <25% percentile) levels were selected. PA and ST were assessed by the validated international physical activity questionnaires. Fasting blood glucose and lipid profile levels were measured with standard methods by biochemistry analyzer. Plasma irisin concentrations were measured by ELISA. The associations of PA and ST with circulating irisin concentrations were examined by linear regression. Linear regression analysis was also used to estimate associations of circulating irisin concentrations with cardiometabolic variables. Interactions between PA or ST and irisin concentrations on cardiometabolic parameters were calculated using multiple linear regression models with dichotomized factors (low PA and high PA; low ST and high ST). No significant association was observed between circulating irisin concentrations and habitual PA or ST. Irisin concentrations were negatively associated with body mass index (BMI) (β = -0.220), BMI z-score (β = -0.098), waist circumference (β = -0.621), diastolic blood pressure (DBP) (β = -0.561), and triglyceride (β = -0.019) in low PA subgroup, and negatively related to fasting blood glucose (β = -0.040) among high PA subgroup. Moreover, irisin concentrations were negatively associated with BMI (β = -0.157) and fasting blood glucose (β = -0.026) only in high ST subgroup (all P < 0.05). We also observed a significant interaction between PA and irisin concentrations on BMI (P interaction = 0.0350), BMI z-score (P interaction = 0.0173), and DBP (P interaction = 0.0068). In summary, irisin concentrations were not associated with habitual PA or ST in children. The negative associations of irisin concentrations with BMI, BMI z-score, and DBP were found only among children being inactive, implying that irisin may contribute to an improvement in health, especially among children with unhealthy lifestyles.
Collapse
Affiliation(s)
- Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Minyi Tan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weiqing Tan
- Health Promotion Centre for Primary and Secondary Schools of Guangzhou Municipality, Guangzhou, China
| | - Xia Zeng
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Nianqing Wan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Stephen Heung-sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - John O'Reilly
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China
| | - Fenghua Sun
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China
| | - Jiewen Yang
- Health Promotion Centre for Primary and Secondary Schools of Guangzhou Municipality, Guangzhou, China
| | - Yajun Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yajun Chen
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The current review provides an update on secreted factors and mechanisms that promote a thermogenic program in beige adipocytes, and their potential roles as therapeutic targets to fight obesity. RECENT FINDINGS We outline recent studies revealing unrecognized mechanisms controlling beige adipocyte physiology, and summarize in particular those that underlie beige thermogenesis independently of classical uncoupling. We also update strategies aimed at fostering beige adipogenesis and white-to beige adipocyte conversion. Finally, we summarize newly identified endogenous secreted factors that promote the thermogenic activation of beige adipocytes and discuss their therapeutic potential. SUMMARY The identification of novel endogenous factors that promote beiging and regulate beige adipocyte-specific physiological pathways opens up new avenues for therapeutic engineering targeting obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Allison E. McQueen
- Metabolic Biology Graduate Program and Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley
| | - Suneil K. Koliwad
- The Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jen-Chywan Wang
- Metabolic Biology Graduate Program and Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley
| |
Collapse
|
34
|
Robbins A, Tom CATMB, Cosman MN, Moursi C, Shipp L, Spencer TM, Brash T, Devlin MJ. Low temperature decreases bone mass in mice: Implications for humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:557-568. [PMID: 30187469 DOI: 10.1002/ajpa.23684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Humans exhibit significant ecogeographic variation in bone size and shape. However, it is unclear how significantly environmental temperature influences cortical and trabecular bone, making it difficult to recognize adaptation versus acclimatization in past populations. There is some evidence that cold-induced bone loss results from sympathetic nervous system activation and can be reduced by nonshivering thermogenesis (NST) via uncoupling protein (UCP1) in brown adipose tissue (BAT). Here we test two hypotheses: (1) low temperature induces impaired cortical and trabecular bone acquisition and (2) UCP1, a marker of NST in BAT, increases in proportion to degree of low-temperature exposure. METHODS We housed wildtype C57BL/6J male mice in pairs at 26 °C (thermoneutrality), 22 °C (standard), and 20 °C (cool) from 3 weeks to 6 or 12 weeks of age with access to food and water ad libitum (N = 8/group). RESULTS Cool housed mice ate more but had lower body fat at 20 °C versus 26 °C. Mice at 20 °C had markedly lower distal femur trabecular bone volume fraction, thickness, and connectivity density and lower midshaft femur cortical bone area fraction versus mice at 26 °C (p < .05 for all). UCP1 expression in BAT was inversely related to temperature. DISCUSSION These results support the hypothesis that low temperature was detrimental to bone mass acquisition. Nonshivering thermogenesis in brown adipose tissue increased in proportion to low-temperature exposure but was insufficient to prevent bone loss. These data show that chronic exposure to low temperature impairs bone architecture, suggesting climate may contribute to phenotypic variation in humans and other hominins.
Collapse
Affiliation(s)
- Amy Robbins
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | | | - Miranda N Cosman
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Cleo Moursi
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Lillian Shipp
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Taylor M Spencer
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Timothy Brash
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Maureen J Devlin
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
35
|
Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne) 2018; 9:447. [PMID: 30131768 PMCID: PMC6090055 DOI: 10.3389/fendo.2018.00447] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The demonstration of metabolically active brown adipose tissue (BAT) in humans primarily using positron emission tomography coupled to computed tomography (PET/CT) with the glucose tracer 18-fluorodeoxyglucose (18FDG) has renewed the interest of the scientific and medical community in the possible role of BAT as a target for the prevention and treatment of obesity and type 2 diabetes (T2D). Here, we offer a comprehensive review of BAT energy metabolism in humans. Considerable advances in methods to measure BAT energy metabolism, including nonesterified fatty acids (NEFA), chylomicron-triglycerides (TG), oxygen, Krebs cycle rate, and intracellular TG have led to very good quantification of energy substrate metabolism per volume of active BAT in vivo. These studies have also shown that intracellular TG are likely the primary energy source of BAT upon activation by cold. Current estimates of BAT's contribution to energy expenditure range at the lower end of what would be potentially clinically relevant if chronically sustained. Yet, 18FDG PET/CT remains the gold-standard defining method to quantify total BAT volume of activity, used to calculate BAT's total energy expenditure. Unfortunately, BAT glucose metabolism better reflects BAT's insulin sensitivity and blood flow. It is now clear that most glucose taken up by BAT does not fuel mitochondrial oxidative metabolism and that BAT glucose uptake can therefore be disconnected from thermogenesis. Furthermore, BAT thermogenesis is efficiently recruited upon repeated cold exposure, doubling to tripling its total oxidative capacity, with reciprocal reduction of muscle thermogenesis. Recent data suggest that total BAT volume may be much larger than the typically observed 50-150 ml with 18FDG PET/CT. Therefore, the current estimates of total BAT thermogenesis, largely relying on total BAT volume using 18FDG PET/CT, may underestimate the true contribution of BAT to total energy expenditure. Quantification of the contribution of BAT to energy expenditure begs for the development of more integrated whole body in vivo methods.
Collapse
Affiliation(s)
- André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsi A. Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
36
|
Thompson EE, Nicodemus-Johnson J, Kim KW, Gern JE, Jackson DJ, Lemanske RF, Ober C. Global DNA methylation changes spanning puberty are near predicted estrogen-responsive genes and enriched for genes involved in endocrine and immune processes. Clin Epigenetics 2018; 10:62. [PMID: 29760811 PMCID: PMC5941468 DOI: 10.1186/s13148-018-0491-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022] Open
Abstract
Background The changes that occur during puberty have been implicated in susceptibility to a wide range of diseases later in life, many of which are characterized by sex-specific differences in prevalence. Both genetic and environmental factors have been associated with the onset or delay of puberty, and recent evidence has suggested a role for epigenetic changes in the initiation of puberty as well. Objective To identify global DNA methylation changes that arise across the window of puberty in girls and boys. Methods Genome-wide DNA methylation levels were measured using the Infinium 450K array. We focused our studies on peripheral blood mononuclear cells (PBMCs) from 30 girls and 25 boys pre- and post-puberty (8 and 14 years, respectively), in whom puberty status was confirmed by Tanner staging. Results Our study revealed 347 differentially methylated probes (DMPs) in females and 50 DMPs in males between the ages of 8 and 14 years (FDR 5%). The female DMPs were in or near 312 unique genes, which were over-represented for having high affinity estrogen response elements (permutation P < 2.0 × 10−6), suggesting that some of the effects of estrogen signaling in puberty are modified through epigenetic mechanisms. Ingenuity Pathway Analysis (IPA) of the 312 genes near female puberty DMPs revealed significant networks enriched for immune and inflammatory responses as well as reproductive hormone signaling. Finally, analysis of gene expression in the female PBMCs collected at 14 years revealed modules of correlated transcripts that were enriched for immune and reproductive system functions, and include genes that are responsive to estrogen and androgen receptor signaling. The male DMPs were in or near 48 unique genes, which were enriched for adrenaline and noradrenaline biosynthesis (Enrichr P = 0.021), with no significant networks identified. Additionally, no modules were identified using post-puberty gene expression levels in males. Conclusion Epigenetic changes spanning the window of puberty in females may be responsive to or modify hormonal changes that occur during this time and potentially contribute to sex-specific differences in immune-mediated and endocrine diseases later in life. Electronic supplementary material The online version of this article (10.1186/s13148-018-0491-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emma E Thompson
- 1Department of Human Genetics, The University of Chicago, 920 E 58th St, CLSC Room 501, Chicago, IL 60637 USA
| | - Jessie Nicodemus-Johnson
- 1Department of Human Genetics, The University of Chicago, 920 E 58th St, CLSC Room 501, Chicago, IL 60637 USA.,Present address: Research and Development, USANA Health Sciences Inc, Salt Lake City, Utah USA
| | - Kyung Won Kim
- 1Department of Human Genetics, The University of Chicago, 920 E 58th St, CLSC Room 501, Chicago, IL 60637 USA.,6Present address: Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - James E Gern
- 2School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA.,3Department of Pediatrics, Section of Allergy, Immunology and Rheumatology, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI USA
| | - Daniel J Jackson
- 2School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA.,3Department of Pediatrics, Section of Allergy, Immunology and Rheumatology, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI USA
| | - Robert F Lemanske
- 2School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA.,3Department of Pediatrics, Section of Allergy, Immunology and Rheumatology, University of Wisconsin School of Medicine and Public Health-Madison, Madison, WI USA
| | - Carole Ober
- 1Department of Human Genetics, The University of Chicago, 920 E 58th St, CLSC Room 501, Chicago, IL 60637 USA.,4Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL USA
| |
Collapse
|
37
|
Gilsanz V, Wren TAL, Ponrartana S, Mora S, Rosen CJ. Sexual Dimorphism and the Origins of Human Spinal Health. Endocr Rev 2018; 39:221-239. [PMID: 29385433 PMCID: PMC5888211 DOI: 10.1210/er.2017-00147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Recent observations indicate that the cross-sectional area (CSA) of vertebral bodies is on average 10% smaller in healthy newborn girls than in newborn boys, a striking difference that increases during infancy and puberty and is greatest by the time of sexual and skeletal maturity. The smaller CSA of female vertebrae is associated with greater spinal flexibility and could represent the human adaptation to fetal load in bipedal posture. Unfortunately, it also imparts a mechanical disadvantage that increases stress within the vertebrae for all physical activities. This review summarizes the potential endocrine, genetic, and environmental determinants of vertebral cross-sectional growth and current knowledge of the association between the small female vertebrae and greater risk for a broad array of spinal conditions across the lifespan.
Collapse
Affiliation(s)
- Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Tishya A L Wren
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
38
|
Denis A, Mirallie E, Dru D, Autain Renaudin K, Kraeber-Bodéré F, Ansquer C. Apport de la TEP/TDM au 18 FDG dans le bilan préopératoire des phéochromocytomes. Étude rétrospective comparative par rapport à la scintigraphie à la MIBG. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2018. [DOI: 10.1016/j.mednuc.2018.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Sun L, Yan J, Sun L, Velan S, Leow M. A synopsis of brown adipose tissue imaging modalities for clinical research. DIABETES & METABOLISM 2017; 43:401-410. [DOI: 10.1016/j.diabet.2017.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/02/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
|
40
|
Jankovic A, Otasevic V, Stancic A, Buzadzic B, Korac A, Korac B. Physiological regulation and metabolic role of browning in white adipose tissue. Horm Mol Biol Clin Investig 2017; 31:hmbci-2017-0034. [PMID: 28862984 DOI: 10.1515/hmbci-2017-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/24/2017] [Indexed: 04/25/2024]
Abstract
Great progress has been made in our understanding of the browning process in white adipose tissue (WAT) in rodents. The recognition that i) adult humans have physiologically inducible brown adipose tissue (BAT) that may facilitate resistance to obesity and ii) that adult human BAT molecularly and functionally resembles beige adipose tissue in rodents, reignited optimism that obesity and obesity-related diabetes type 2 can be battled by controlling the browning of WAT. In this review the main cellular mechanisms and molecular mediators of browning of WAT in different physiological states are summarized. The relevance of browning of WAT in metabolic health is considered primarily through a modulation of biological role of fat tissue in overall metabolic homeostasis.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia, Phone: (381-11)-2078-307, Fax: (381-11)-2761-433
| |
Collapse
|
41
|
Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr Rev 2017; 38:267-296. [PMID: 28898979 PMCID: PMC5546881 DOI: 10.1210/er.2017-00111] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Obesity is among the most common and costly chronic disorders worldwide. Estimates suggest that in the United States obesity affects one-third of adults, accounts for up to one-third of total mortality, is concentrated among lower income groups, and increasingly affects children as well as adults. A lack of effective options for long-term weight reduction magnifies the enormity of this problem; individuals who successfully complete behavioral and dietary weight-loss programs eventually regain most of the lost weight. We included evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding mechanisms underlying excess body-fat accumulation, the biological defense of excess fat mass, and the tendency for lost weight to be regained. A major area of emphasis is the science of energy homeostasis, the biological process that maintains weight stability by actively matching energy intake to energy expenditure over time. Growing evidence suggests that obesity is a disorder of the energy homeostasis system, rather than simply arising from the passive accumulation of excess weight. We need to elucidate the mechanisms underlying this "upward setting" or "resetting" of the defended level of body-fat mass, whether inherited or acquired. The ongoing study of how genetic, developmental, and environmental forces affect the energy homeostasis system will help us better understand these mechanisms and are therefore a major focus of this statement. The scientific goal is to elucidate obesity pathogenesis so as to better inform treatment, public policy, advocacy, and awareness of obesity in ways that ultimately diminish its public health and economic consequences.
Collapse
Affiliation(s)
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, New York 10032
| | - Adam Drewnowski
- Center for Public Health Nutrition, University of Washington, Seattle, Washington 98195
| | - Eric Ravussin
- John S. McIlhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Leanne M Redman
- John S. McIlhenny Skeletal Muscle Physiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808
| | - Rudolph L Leibel
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, New York 10032.,Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, New York 10032
| |
Collapse
|
42
|
Physiologische Relevanz des braunen Fettgewebes beim Menschen. Monatsschr Kinderheilkd 2017. [DOI: 10.1007/s00112-016-0129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
George A, Sinha P, Conrad G, Memon AA, Dressler EV, Wagner LM. Pilot study of propranolol premedication to reduce FDG uptake in brown adipose tissue on PET scans of adolescent and young adult oncology patients. Pediatr Hematol Oncol 2017; 34:149-156. [PMID: 28727480 PMCID: PMC8075072 DOI: 10.1080/08880018.2017.1338806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Physiologic uptake of 18F-fluorodeoxyglucose (FDG) in brown adipose tissue (adipose tissue) of cancer patients may confound interpretation of positron emission tomography (PET) scans. Uptake in adipose tissue occurs in up to half of pediatric oncology patients undergoing PET scans, and is especially common in adolescents. adipose tissue is innervated by the sympathetic nervous system, and beta blockers such as propranolol have shown efficacy in reducing adipose tissue uptake on PET scans done in older adult oncology patients. PARTICIPANTS Because propranolol may cause hypoglycemia or other side effects in fasting patients, we prospectively assessed the safety of a single dose of 20 mg propranolol in adolescent and young adult oncology patients undergoing FDG-PET imaging. METHODS Ten patients (median age 18 years, range 14-24) received propranolol premedication prior to FDG-PET. RESULTS No adverse effects or clinically significant changes in serum glucose, heart rate, or blood pressure were observed. Five of the 10 patients had adipose tissue identified on previous PET scans. However, following propranolol administration only, one patient had persistent uptake in adipose tissue. CONCLUSIONS Propranolol was convenient and safe in fasting adolescent and young adult oncology patients undergoing PET scans. Larger studies are warranted to better define the effectiveness of this approach.
Collapse
Affiliation(s)
- Anil George
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, USA
| | - Partha Sinha
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Gary Conrad
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Aum A. Memon
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, USA
| | - Emily V. Dressler
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Lars M. Wagner
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
44
|
Cheng HL, Amatoury M, Steinbeck K. Energy expenditure and intake during puberty in healthy nonobese adolescents: a systematic review. Am J Clin Nutr 2016; 104:1061-1074. [PMID: 27629054 DOI: 10.3945/ajcn.115.129205] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/18/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Puberty is a time of rapid growth and changing energy requirements and is a risk period for obesity. There is little high-quality evidence on the pubertal alterations of energy expenditure and intake, and this has limited our understanding of energy balance during this important life stage. OBJECTIVE The purpose of this study was to summarize existing evidence on pubertal energy expenditure and intake in healthy nonobese adolescents. DESIGN Studies were identified through CINAHL, the Cochrane Library, Embase, MEDLINE, and Web of Science databases up to August 2015. Articles presenting objectively measured data for basal or resting metabolic rate (BMR/RMR), total daily energy expenditure (TDEE), and/or energy intake (EI) for ≥2 categories of puberty were included. Relevant data adjusted for fat-free mass (FFM) also were extracted. Data were dichotomized into prepubertal and pubertal groups and compared through the use of standardized mean differences (SMDs). Heterogeneous study methodologies precluded meta-analysis. RESULTS The search netted 6770 articles, with 12 included for review. From these, 6 of 9 studies supported significantly higher absolute BMR/RMR during puberty (SMD: 1.10-5.93), and all of the studies favored significantly higher absolute TDEE during puberty (SMD: 0.46-9.55). These corresponded to a 12% difference and an 18% difference in absolute BMR/RMR and TDEE, respectively. Results adjusted for FFM were equivocal, with 3 studies favoring higher (1 significantly) and 3 favoring significantly lower adjusted BMR/RMR during puberty. Only 1 study reported EI, showing 41% and 25% greater absolute intakes in pubertal males and females, respectively. These differences were not significant after adjustment for FFM. CONCLUSIONS Reasonably consistent evidence exists to support higher absolute BMR/RMR and TDEE in pubertal than in prepubertal adolescents. Differences are largely accounted for by FFM, among other potential factors such as growth- and puberty-related hormones. This review argues for further research into hormonal influences on pubertal energy balance and subsequent effects on obesity risk.
Collapse
Affiliation(s)
- Hoi Lun Cheng
- Academic Department of Adolescent Medicine, Children's Hospital at Westmead, Sydney, Australia; and Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Mazen Amatoury
- Academic Department of Adolescent Medicine, Children's Hospital at Westmead, Sydney, Australia; and Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Katharine Steinbeck
- Academic Department of Adolescent Medicine, Children's Hospital at Westmead, Sydney, Australia; and Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
45
|
Smith DL, Yarar-Fisher C. Contributors to Metabolic Disease Risk Following Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2016; 4:190-199. [PMID: 29276654 PMCID: PMC5737009 DOI: 10.1007/s40141-016-0124-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Spinal cord injury (SCI) induced changes in neurological function have significant impact on the metabolism and subsequent metabolic-related disease risk in injured individuals. This metabolic-related disease risk relationship is differential depending on the anatomic level and severity of the injury, with high level anatomic injuries contributing a greater risk of glucose and lipid dysregulation resulting in type 2 diabetes and cardiovascular disease risk elevation. Although alterations in body composition, particularly excess adiposity and its anatomical distribution in the visceral depot or ectopic location in non-adipose organs, is known to significantly contribute to metabolic disease risk, changes in fat mass and fat-free mass do not fully account for this elevated disease risk in subjects with SCI. There are other negative adaptations in body composition including reductions in skeletal muscle mass and alterations in muscle fiber type, in addition to significant reduction in physical activity, that contribute to a decline in metabolic rate and increased metabolic disease risk following SCI. Recent studies in adult humans suggest cold- and diet-induced thermogenesis through brown adipose tissue metabolism may be important for energy balance and substrate metabolism, and particularly sensitive to sympathetic nervous signaling. Considering the alterations that occur in the autonomic nervous system (SNS) (sympathetic and parasympathetic) following a SCI, significant dysfunction of brown adipose function is expected. This review will highlight metabolic alterations following SCI and integrate findings from brown adipose tissue studies as potential new areas of research to pursue.
Collapse
Affiliation(s)
- Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Ceren Yarar-Fisher
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham AL, 35294 USA
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| |
Collapse
|
46
|
Ponrartana S, Aggabao PC, Chavez TA, Dharmavaram NL, Gilsanz V. Changes in Brown Adipose Tissue and Muscle Development during Infancy. J Pediatr 2016; 173:116-21. [PMID: 27039232 DOI: 10.1016/j.jpeds.2016.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine the relationship between brown adipose tissue (BAT) and muscle development, two tissues that derive from a common cell lineage, during the first 6 months of postnatal life. STUDY DESIGN Thirty healthy term infants (15 males and females) underwent whole-body magnetic resonance imaging examinations. Measurements of BAT in the supraclavicular area as well as measures of trunk musculature and subcutaneous adiposity were obtained at birth and at 6 months of age. RESULTS Paraspinous musculature and subcutaneous white adipose tissue (WAT) increased, and the proportion of BAT in the supraclavicular area decreased during infancy. Although measures of BAT did not correlate with paraspinous musculature through the first 6 months of life (r = -0.35; P = .09), BAT was a significant predictor of paraspinous musculature after adjusting for weight, body length, and WAT (P = .002); infants with the smallest decreases in BAT had the greatest gains in musculature. In contrast, changes in BAT did not predict increases in subcutaneous WAT (P = .25) during infancy, which were primarily determined by body weight. CONCLUSIONS Changes in BAT are associated with muscle development but not WAT accumulation in healthy infants. Studies are needed to determine the mechanism(s) by which BAT could facilitate muscle growth, and the degree to which decreased muscle mass, such as in preterm and low birth weight infants, is related to a deficiency of BAT.
Collapse
Affiliation(s)
- Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Patricia C Aggabao
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Thomas A Chavez
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Naga L Dharmavaram
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| |
Collapse
|
47
|
Lerea JS, Ring LE, Hassouna R, Chong ACN, Szigeti-Buck K, Horvath TL, Zeltser LM. Reducing Adiposity in a Critical Developmental Window Has Lasting Benefits in Mice. Endocrinology 2016; 157:666-78. [PMID: 26587784 PMCID: PMC4733128 DOI: 10.1210/en.2015-1753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although most adults can lose weight by dieting, a well-characterized compensatory decrease in energy expenditure promotes weight regain more than 90% of the time. Using mice with impaired hypothalamic leptin signaling as a model of early-onset hyperphagia and obesity, we explored whether this unfavorable response to weight loss could be circumvented by early intervention. Early-onset obesity was associated with impairments in the structure and function of brown adipose tissue mitochondria, which were ameliorated by weight loss at any age. Although decreased sympathetic tone in weight-reduced adults resulted in net reductions in brown adipose tissue thermogenesis and energy expenditure that promoted rapid weight regain, this was not the case when dietary interventions were initiated at weaning. Enhanced energy expenditure persisted even after mice were allowed to resume overeating, leading to lasting reductions in adiposity. These findings reveal a time window when dietary interventions can produce metabolic improvements that are stably maintained.
Collapse
Affiliation(s)
- Jaclyn S Lerea
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Laurence E Ring
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Rim Hassouna
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Angie C N Chong
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Klara Szigeti-Buck
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Tamas L Horvath
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Lori M Zeltser
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| |
Collapse
|
48
|
MRI characterization of brown adipose tissue in obese and normal-weight children. Pediatr Radiol 2015; 45:1682-9. [PMID: 26092667 DOI: 10.1007/s00247-015-3391-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/19/2015] [Accepted: 05/08/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. OBJECTIVE To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. MATERIALS AND METHODS Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. RESULTS MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). CONCLUSION This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown adipose tissues between obese and normal-weight children.
Collapse
|
49
|
Franz D, Karampinos DC, Rummeny EJ, Souvatzoglou M, Beer AJ, Nekolla SG, Schwaiger M, Eiber M. Discrimination Between Brown and White Adipose Tissue Using a 2-Point Dixon Water–Fat Separation Method in Simultaneous PET/MRI. J Nucl Med 2015; 56:1742-7. [DOI: 10.2967/jnumed.115.160770] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022] Open
|
50
|
Abstract
Brown adipose tissue (BAT) is the major site of sympathetically activated adaptive thermogenesis during cold exposure and after spontaneous hyperphagia, thereby controlling whole-body energy expenditure and body fat. Recent radionuclide studies have demonstrated the existence of metabolically active BAT in healthy adult humans. Human BAT is activated by acute cold exposure, being positively correlated to cold-induced increases in energy expenditure. The metabolic activity of BAT is lower in older and obese individuals. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruited BAT in association with increased energy expenditure and decreased body fat even in individuals with low BAT activities before the treatment. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders.
Collapse
|