1
|
Zhong B, Zhang Y. Survival differences in malignant meningiomas: a latent class analysis using SEER data. Discov Oncol 2025; 16:250. [PMID: 40014173 PMCID: PMC11867996 DOI: 10.1007/s12672-025-02016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/24/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Several studies have used demographic characteristics to examine differences in survival time for patients with malignant meningioma (MM). Latent class analysis (LCA), with its ability to identify mutually patterns of patients in a heterogeneous population. The aim of our study was to analyze the heterogeneity of sociodemographic characteristics in meningioma. METHODS The data of patients diagnosed with malignant meningioma (n = 1,562, age > 18 years old) were extracted from the Surveillance, Epidemiology, and End Result database. Data on sociodemographic characteristics such as age, sex, race, NHIA, marital status, household income, rural or urban residential area, and overall survival time were included. LCA was used to identify heterogeneous patterns of MM. each group was explored using Bayesian network analysis. RESULTS In total, 1562 patients with MM were processed by the LCA model; the 4-class latent class models were the best fit. LCA identified four survival groups: highest, intermediate-high, low-to-moderate, and lowest survival groups. Patients with the longest survival times-93.59 months-were 40-59 years old, female, Black, non-Hispanic, married, and had a family income of $60,000-$74,999 and lived in densely populated areas. Bayesian networks revealed correlations between patients with MM and sociodemographic characteristics in different latent class groups. CONCLUSION We identified and verified differences in clinical and sociodemographic characteristics between survival groups. A comprehensive understanding of the "people-oriented" subgroup characteristics will greatly benefit the diagnosis and treatment of MM.
Collapse
Affiliation(s)
- Bo Zhong
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Neurosurgery Department, XinYu People's Hospital, XinYu, 338000, Jiangxi, People's Republic of China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
2
|
Maurya SK, Chaudhri S, Kumar S, Gupta S. Repurposing of Metabolic Drugs Metformin and Simvastatin as an Emerging Class of Cancer Therapeutics. Pharm Res 2025; 42:49-67. [PMID: 39775614 DOI: 10.1007/s11095-024-03811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Metabolic alterations are commonly associated with various cancers and are recognized as contributing factors to cancer progression, invasion, and metastasis. Drug repurposing, a strategy in drug discovery, utilizes existing knowledge to recommend established drugs for new indications based on clinical data or biological evidence. This approach is considered a less risky alternative to traditional drug development. Metformin, a biguanide, is a product of Galega officinalis (French lilac) primarily prescribed for managing type 2 diabetes, is recognized for its ability to reduce hepatic glucose production and enhance insulin sensitivity, particularly in peripheral tissues such as muscle. It also improves glucose uptake and utilization while decreasing intestinal glucose absorption. Statins, first isolated from the fungus Penicillium citrinum is another class of medication mainly used to lower cholesterol levels in individuals at risk for cardiovascular diseases, work by inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which is essential for cholesterol biosynthesis in the liver. Metformin is frequently used in conjunction with statins to investigate their potential synergistic effects. Combination of metformin and simvastatin has gathered much attention in cancer research because of its potential advantages for cancer prevention and treatment. In this review, we analyze the effects of metformin and simvastatin, both individually and in combination, on key cancer hallmarks, and how this combination affects the expression of biomolecules and associated signaling pathways. We also summarize preclinical research, including clinical trials, on the efficacy, safety, and potential applications of repurposing metformin and simvastatin for cancer therapy.
Collapse
Affiliation(s)
- Santosh Kumar Maurya
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Zhang B, Cao Y, Qu Z, Sun Y, Tian X. The impact of metformin on mortality in patients with type 2 diabetes mellitus: a prospective cohort study. Endocrine 2025; 87:136-143. [PMID: 39190051 DOI: 10.1007/s12020-024-04012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Metformin, a widely used antihyperglycemic drug, has shown efficacy in treating type 2 diabetes mellitus (T2DM) and is associated with potential benefits beyond glycemic control. This study investigates the impact of metformin on mortality in T2DM patients using a prospective cohort design utilizing data from the National Health and Nutrition Examination Survey (NHANES). METHODS In NHANES 1999-2014, a total of 5813 representative participants aged 20 and above with T2DM were included in the analysis. We utilized Kaplan-Meier survival curves and multivariate Cox regression analysis to investigate the impact of metformin on both all-cause mortality and cause-specific mortality among patients with T2DM. RESULTS Kaplan-Meier analysis showed a significant reduction in all-cause and cause-specific mortality in metformin users compared to non-users (p < 0.05). Multivariate Cox regression confirmed these findings, indicating that metformin use was associated with a 18% reduction in all-cause mortality (HR = 0.82, 95% CI = 0.73-0.92, p < 0.001) and 25% reduction in cardiovascular mortality (HR = 0.75, 95% CI = 0.60-0.94, p = 0.01). CONCLUSION Our results suggest that metformin significantly reduces all-cause and cardiovascular mortality in T2DM patients, highlighting its potential benefits beyond glycemic control. These results contribute to the existing literature by providing robust evidence from a large prospective cohort study. However, further research is needed to validate these findings and elucidate the underlying mechanisms controlling the effects of metformin on mortality outcomes in individuals with T2DM.
Collapse
Affiliation(s)
- Bocheng Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Cao
- Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhenan Qu
- Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning, China
| | - Yulan Sun
- Anshan Central Hospital, Anshan, Liaoning, China
| | - Xiaoyuan Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Braveen M, Nachiyappan S, Seetha R, Anusha K, Ahilan A, Prasanth A, Jeyam A. RETRACTED ARTICLE: ALBAE feature extraction based lung pneumonia and cancer classification. Soft comput 2024; 28:589. [PMID: 37362264 PMCID: PMC10187954 DOI: 10.1007/s00500-023-08453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 06/28/2023]
Affiliation(s)
- M. Braveen
- Assistant professor senior, School of
Computer Science and Engineering, Vellore
institute of technology, Chennai, Tamil
Nadu India
| | - S. Nachiyappan
- Associate Professor, School of
Computer Science and Engineering, Vellore
Institute of Technology, Chennai, Tamil
Nadu India
| | - R. Seetha
- Associate Professor, School of
Information Technology and Engineering,
Vellore Institute of Technology,
Vellore, Tamil Nadu India
| | - K. Anusha
- Associate Professor, School of
Computer Science and Engineering, Vellore
Institute of Technology, Chennai, Tamil
Nadu India
| | - A. Ahilan
- Associate Professor, Department of
Electronics and Communication Engineering,
PSN College of Engineering and Technology,
Tirunelveli, Tamil Nadu India
| | - A. Prasanth
- Assistant Professor, Department of
Electronics and Communication Engineering,
Sri Venkateswara College of Engineering,
Sriperumbudur, India
| | - A. Jeyam
- Assistant Professor, Computer Science and
Engineering, Lord Jegannath College of Engineering and Technology, Kanyakumari,
Tamil Nadu 629402 India
| |
Collapse
|
5
|
Kounatidis D, Vallianou NG, Karampela I, Rebelos E, Kouveletsou M, Dalopoulos V, Koufopoulos P, Diakoumopoulou E, Tentolouris N, Dalamaga M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024; 14:1479. [PMID: 39595655 PMCID: PMC11591849 DOI: 10.3390/biom14111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for various cancers, with the impact of anti-diabetic therapies on cancer progression differing across malignancies. Among these therapies, metformin has gained attention for its potential anti-cancer effects, primarily through modulation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway and the induction of autophagy. Beyond metformin, other conventional anti-diabetic treatments, such as insulin, sulfonylureas (SUs), pioglitazone, and dipeptidyl peptidase-4 (DPP-4) inhibitors, have also been examined for their roles in cancer biology, though findings are often inconclusive. More recently, novel medications, like glucagon-like peptide-1 (GLP-1) receptor agonists, dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists, and sodium-glucose co-transporter-2 (SGLT-2) inhibitors, have revolutionized DM management by not only improving glycemic control but also delivering substantial cardiovascular and renal benefits. Given their diverse metabolic effects, including anti-obesogenic properties, these novel agents are now under meticulous investigation for their potential influence on tumorigenesis and cancer advancement. This review aims to offer a comprehensive exploration of the evolving landscape of glucose-lowering treatments and their implications in cancer biology. It critically evaluates experimental evidence surrounding the molecular mechanisms by which these medications may modulate oncogenic signaling pathways and reshape the tumor microenvironment (TME). Furthermore, it assesses translational research and clinical trials to gauge the practical relevance of these findings in real-world settings. Finally, it explores the potential of anti-diabetic medications as adjuncts in cancer treatment, particularly in enhancing the efficacy of chemotherapy, minimizing toxicity, and addressing resistance within the framework of immunotherapy.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece
| |
Collapse
|
6
|
Braga PGS, Vieira JDS, Gurgel ARB, Brum PC. β-blockers and statins: exploring the potential off-label applications in breast, colorectal, prostate, and lung cancers. Front Pharmacol 2024; 15:1423502. [PMID: 39605917 PMCID: PMC11598443 DOI: 10.3389/fphar.2024.1423502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Despite advances in cancer treatment, current cancer incidence and prevalence still demand multimodal treatments to enhance survival and clinical outcomes. Drugs used in cardiology, such as β-blockers and statins have gained attention for their potential roles in oncology. This review focused on their possible complementary use in solid tumors, including breast, colorectal, lung, and prostate cancers. The involvement of the autonomic nervous system in promoting tumor growth can be disrupted by β-blockers, potentially hindering cancer progression. Statins, known for their pleiotropic effects, may also inhibit cancer growth by reducing cholesterol availability, a key factor in cell proliferation. We will provide an update on the impact of these therapies on cancer treatment and surveillance, discuss the underlying mechanisms, and explore their effects on the heart, contributing to the growing field of cardio-oncology.
Collapse
Affiliation(s)
- Pedro Gabriel Senger Braga
- Laboratory of Cellular and Molecular Exercise Physiology, School of Physical Education and Sport of University of São Paulo, São Paulo, Brazil
- Clinica Pro-Coracao, São Paulo, Brazil
| | - Janaína da Silva Vieira
- Laboratory of Cellular and Molecular Exercise Physiology, School of Physical Education and Sport of University of São Paulo, São Paulo, Brazil
- Molecular Oncology Center, Sírio-Libanês Hospital, São Paulo, São Paulo, Brazil
| | - Aline Rachel Bezerra Gurgel
- Laboratory of Cellular and Molecular Exercise Physiology, School of Physical Education and Sport of University of São Paulo, São Paulo, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences of University of Sao Paulo, São Paulo, Brazil
| | - Patricia Chakur Brum
- Laboratory of Cellular and Molecular Exercise Physiology, School of Physical Education and Sport of University of São Paulo, São Paulo, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences of University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Lyu X, Wang Y, Xu Y, Zhao Z, Liu H, Hu Z. Metabolomic Profiling of Tumor Tissues Unveils Metabolic Shifts in Non-Small Cell Lung Cancer Patients with Concurrent Diabetes Mellitus. J Proteome Res 2024; 23:3746-3753. [PMID: 39162688 PMCID: PMC11385698 DOI: 10.1021/acs.jproteome.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A comprehensive understanding of the exact influence of type 2 diabetes mellitus (T2DM) on the metabolic status of non-small cell lung cancer (NSCLC) is still lacking. This study explores metabolic alterations in tumor tissues among patients with coexisting NSCLC and T2DM in comparison with NSCLC patients. A combined approach of clinical analysis and metabolomics was employed, including 20 NSCLC patients and 20 NSCLC+T2DM patients. Targeted metabolomics analysis was performed on tumor tissues using the liquid chromatography-mass spectrometry (LC-MS) approach. A clear segregation was observed between NSCLC+T2DM and matched NSCLC tissue samples in Orthogonal Partial Least Squares Discrimination Analysis (OPLS-DA). Furthermore, the levels of 7 metabolites are found to be significantly different between diabetes/nondiabetes tumor tissue samples. The related pathways included arginine biosynthesis, glutathione metabolism, arginine and proline metabolism, purine metabolism, biotin metabolism, and histidine metabolism. 3-Phenyllactic acid, carnitine-C5, carnitine-C12, and serotonin showed a positive linear correlation with fasting blood glucose levels in NSCLC patients. Uridine, pipecolic acid, cytosine, and fasting blood glucose levels were found to have a negative correlation. Our results suggest that NSCLC patients with concurrent T2DM exhibit distinct metabolic shifts in tumor tissues compared to those of solely NSCLC patients.
Collapse
Affiliation(s)
- Xiaohong Lyu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Zhewei Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Jonusas J, Patasius A, Drevinskaite M, Ladukas A, Linkeviciute-Ulinskiene D, Zabuliene L, Smailyte G. Metformin in Chemoprevention of Lung Cancer: A Retrospective Population-Based Cohort Study in Lithuania. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1275. [PMID: 39202556 PMCID: PMC11356288 DOI: 10.3390/medicina60081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: This study aimed to evaluate the potential chemopreventive effect of antidiabetic medications, specifically metformin and pioglitazone, on lung cancer in patients with type 2 diabetes mellitus (T2DM). Additionally, the potential dose-response relationship for metformin use was analyzed. Methods: We conducted a retrospective cohort study utilizing comprehensive national health insurance and cancer registry databases to gather a large cohort of T2DM patients. Cox proportional hazards regression models were used to assess the risk of lung cancer across different antidiabetic medication groups, adjusting for potential confounders such as age and gender. A dose-response analysis was conducted for metformin users. Results: Our results indicated that metformin users had a significantly lower lung cancer risk than the reference group (HR = 0.69, 95% CI [0.55-0.86], p = 0.001). The risk reduction increased with higher cumulative metformin doses: a metformin cumulative dose between 1,370,000 and 2,976,000 had an HR of 0.61 (95% CI [0.49-0.75], p < 0.001) vs. cumulative metformin dose >2,976,000 which had an HR of 0.35 (95% CI [0.21-0.59], p < 0.001). No significant association between pioglitazone use and the risk of lung cancer was found (HR = 1.00, 95% CI [0.25-4.02]). Conclusions: This study shows that metformin may have a dose-dependent chemopreventive effect against lung cancer in T2DM, while the impact of pioglitazone remains unclear and requires further investigation.
Collapse
Affiliation(s)
- Justinas Jonusas
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Department of Brachytherapy, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | - Ausvydas Patasius
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Department of Public Health, Institute of Health Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Mingaile Drevinskaite
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | - Adomas Ladukas
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
| | | | - Lina Zabuliene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Giedre Smailyte
- Laboratory of Cancer Epidemiology, National Cancer Institute, LT-08406 Vilnius, Lithuania
- Department of Public Health, Institute of Health Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| |
Collapse
|
9
|
Chen M, Liu Y, Li Y, Liu X. Tumor-targeted nano-assemblies for energy-blocking cocktail therapy in cancer. Acta Biomater 2024; 184:368-382. [PMID: 38908417 DOI: 10.1016/j.actbio.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/26/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Starvation therapy aims to "starve" tumor cells by cutting off their nutritional supply. However, due to the complex and varied energy metabolism of tumors, targeting a single nutrient supply often fails to yield significant therapeutic benefits. This study proposes a tumor energy cocktail therapy that combines metformin, an oxidative phosphorylation inhibitor, with 2-deoxy-d-glucose (2-DG), a glycolysis inhibitor, to target tumor cells. To minimize the dosage of both drugs, we have developed a drug delivery strategy that prepared metformin as a nanoderivative, denoted as MA-dots. These MA-dots not only preserve the antitumor properties of metformin but also serve as a targeted delivery platform for 2-DG, ensuring its direct reach to the tumor site. Upon reaching the acidic tumor environment, the composite disintegrates, releasing 2-DG to inhibit glycolysis by targeting hexokinase 2 (HK2), the key enzyme in glycolysis, while MA-dots inhibit mitochondrial OXPHOS. This dual action significantly reduces ATP production in tumor cells, leading to apoptosis. In human lung tumor cells, the half-maximal inhibitory concentration (IC50) of 2-DG@MA-dots was significantly lower than that of either metformin or 2-DG alone, showing a nearly 100-fold and 30-fold reduction in IC50 values to 11.78 µg mL-1, from 1159 µg mL-1 and 351.20 µg mL-1, respectively. In studies with A549 tumor-bearing mice, the combination of low-dose 2-DG and metformin did not impede tumor growth, whereas 2-DG@MA-dots markedly decreased tumor volume, with the mean final tumor volume in the combination treatment group being approximately 89 times greater than that in the 2-DG@MA-dot group. STATEMENT OF SIGNIFICANCE: Metformin is a promising antitumor agent capable of modulating mitochondrial oxidative phosphorylation to inhibit cancer growth. However, its antitumor efficacy is limited when used alone due to compensatory energy mechanisms. Hence, we introduced glycolysis inhibitor 2-deoxy-d-glucose (2-DG) to inhibit an alternative tumor energy pathway. In our study, we developed a drug delivery strategy using metformin-derived nanomedicine (MA-dots) to load 2-DG. This approach enables the co-delivery of both drugs and their synergistic effect at the tumor site, disrupting both energy pathways and introducing an innovative "energy cocktail therapy".
Collapse
Affiliation(s)
- Manling Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, PR China
| | - Yidu Liu
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, Liaoning, PR China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, Liaoning, PR China.
| | - Xue Liu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, PR China; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, PR Singapore.
| |
Collapse
|
10
|
Lee IY, Wang TC, Kuo YJ, Shih WT, Yang PR, Hsu CM, Lin YS, Kuo RS, Wu CY. Astragalus Polysaccharides and Metformin May Have Synergistic Effects on the Apoptosis and Ferroptosis of Lung Adenocarcinoma A549 Cells. Curr Issues Mol Biol 2024; 46:7782-7794. [PMID: 39194678 DOI: 10.3390/cimb46080461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Astragalus polysaccharides (APSs), the compounds extracted from the common herb Astragalus membranaceus, have been extensively studied for their antitumor properties. In this study, we investigated the effect of APS on lung adenocarcinoma A549 cells. The effects of APS and the anti-diabetic drug metformin on apoptosis and ferroptosis were compared. Furthermore, the combination treatment of APS and metformin was also investigated. We found that APS not only reduced the growth of lung cancer cells but also had a synergistic effect with metformin on A549 cells. The study results showed that it may be promising to use APS and metformin as a combination therapy for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Chung Wang
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yu-Jen Kuo
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Cancer Center, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Ren-Shyang Kuo
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
11
|
Sun W, Zhang X, Li N, He Y, Ji J, Zheng D. Genetic association of glycemic traits and antihyperglycemic agent target genes with the risk of lung cancer: A Mendelian randomization study. Diabetes Metab Syndr 2024; 18:103048. [PMID: 38850595 DOI: 10.1016/j.dsx.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
AIMS To evaluate the potential causal effect of glycemic traits on lung cancer and investigate the impact of antihyperglycemic agent-target genes on lung cancer risk. METHODS Genetic variants associated with glycemic traits, antihyperglycemic agent-target genes, and lung cancer were extracted from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), expression quantitative trait loci (eQTLs), protein quantitative trait loci (pQTLs), and the International Lung Cancer Consortium (ILCCO), respectively. Mendelian randomization (MR) analyses were performed to examine the associations of glycemic traits and antihyperglycemic agent-target genes with lung cancer. Mediation analysis was conducted to explore whether overweight operated as a mediator between antihyperglycemic agents and lung cancer outcomes. RESULTS Genetically determined glycated hemoglobin A1c levels were associated with squamous cell lung cancer (OR = 1.78; 95 % CI, 1.08-2.92; p = 0.023). The PRKAB1 gene (the target of metformin) was associated with a lower risk of developing lung adenocarcinoma (OR = 0.85; 95 % CI, 0.76-0.96; p = 0.006). Further mediation analyses did not support overweight as a mediator between PRKAB1 activation and lung adenocarcinoma. CONCLUSION Our analyses suggest an association of genetically determined abnormal glycemic traits with squamous cell lung cancer. The potential association between PRKAB1 activation and a reduced risk of developing lung adenocarcinoma appears to be independent of the anti-obesity effects of metformin, suggesting that PRKAB1 activation may have a direct protective effect on lung adenocarcinoma development.
Collapse
Affiliation(s)
- Wen Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaoyu Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yan He
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| | - Jianguang Ji
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Sweden.
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Salim EI, Elsebakhy S, Hessien M. Repurposing of atorvastatin and metformin denotes their individual and combined antiproliferative effects in non-small cell lung cancer. Fundam Clin Pharmacol 2024; 38:550-560. [PMID: 38258539 DOI: 10.1111/fcp.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Due to the limited success in the treatment of lung adenocarcinomas, new treatment protocols are urgently needed to increase the curability rate and the survival of lung cancer patients. OBJECTIVES Although statins, like atorvastatin (Ator), and metformin (Met) are widely accepted as hypolipidemic and hypoglycemic drugs, respectively, there are many predictions about their enhancing antitumor effect when they are combined with traditional chemotherapeutics. METHODS The individual and combined antiproliferative potential of Ator and Met was tested by MTT-assay in non-small cell lung cancer (NSCLC) A549 cell line, compared to the corresponding effect of Gemcitabine (Gem) with implication on the mechanisms of action. RESULTS Initially, both drugs demonstrated concentration-dependent cytotoxicity in A549 cells. Also, their combination index (CI) indicated their synergistic effect at equi-IC50 concentration (CI = 0.00984). Moreover, Ator and/or Met-treated cells revealed disrupted patterns of SOD, CAT, GSH, MDA, and TAC, developed apoptosis, and larger fractions of the cell population were arrested in G0/G1 phase, particularly in cells dually-treated both Ator and Met. These observations were accompanied by downregulation in the expression of iNOS, HO-1, and the angiogenic marker VEGF, meanwhile, an altered expression of MAPK and AMPK was observed. CONCLUSION Conclusively, these data suggest that repurposing of Ator and Met demonstrates their individual and combined antiproliferative effect in non-small cell lung cancer and they may adopt a similar mechanism of action.
Collapse
Affiliation(s)
- Elsayed I Salim
- Zoology Department, Research Lab. of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta, Egypt
| | - Safaa Elsebakhy
- Molecular Cell Biology Unit, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
13
|
Hou Y, Yang Z, Xiang B, Liu J, Geng L, Xu D, Zhan M, Xu Y, Zhang B. Metformin is a potential therapeutic for COVID-19/LUAD by regulating glucose metabolism. Sci Rep 2024; 14:12406. [PMID: 38811809 PMCID: PMC11137110 DOI: 10.1038/s41598-024-63081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common and aggressive subtype of lung cancer, and coronavirus disease 2019 (COVID-19) has become a serious public health threat worldwide. Patients with LUAD and COVID-19 have a poor prognosis. Therefore, finding medications that can be used to treat COVID-19/LUAD patients is essential. Bioinformatics analysis was used to identify 20 possible metformin target genes for the treatment of COVID-19/LUAD. PTEN and mTOR may serve as hub target genes of metformin. Metformin may be able to cure COVID-19/LUAD comorbidity through energy metabolism, oxidoreductase NADH activity, FoxO signalling pathway, AMPK signalling system, and mTOR signalling pathway, among other pathways, according to the results of bioinformatic research. Metformin has ability to inhibit the proliferation of A549 cells, according to the results of colony formation and proliferation assays. In A549 cells, metformin increased glucose uptake and lactate generation, while decreasing ATP synthesis and the NAD+/NADH ratio. In summary, PTEN and mTOR may be potential targets of metformin for the treatment of COVID-19/LUAD. The mechanism by which metformin inhibits lung adenocarcinoma cell proliferation may be related to glucose metabolism regulated by PI3K/AKT signalling and mTOR signalling pathways. Our study provides a new theoretical basis for the treatment of COVID-19/LUAD.
Collapse
Affiliation(s)
- Yongwang Hou
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Zhicong Yang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Baoli Xiang
- Respiratory Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jiangmin Liu
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Lina Geng
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Minghua Zhan
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Yuhuan Xu
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Bin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
14
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
15
|
Yue Q, Yang L, Liu T, Feng B, Li Y, Wang G, Wei Z, Song Z, Zhao H, Wu S. Controlling Risk Factors Reduces Cancer Risk in Patients with Atherosclerotic Cardiovascular Disease: A Cohort Study. Am J Med 2024; 137:341-349.e7. [PMID: 38135014 DOI: 10.1016/j.amjmed.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The association of atherosclerotic cardiovascular disease (ASCVD) with cancer occurrence is not well examined, and the impact of common risk factors on the risk of cancer in ASCVD patients is not known. This study aimed to explore the effect and possible causes of ASCVD on cancer risk through a cohort study. METHODS A total of 14,665 age- and sex-matched pairs of participants were recruited from the Kailuan cohort (ASCVD vs non-ASCVD). A competing risk model was used to calculate the risk of cancer after ASCVD. RESULTS A total of 1124 cancers occurred after 5.80 (3.05-9.44) years of follow-up. The ASCVD group had a reduced risk of cancer (hazard ratio 0.74; 95% confidence interval, 0.65-0.85). Also, the risk of cancer in the digestive system, respiratory system, urinary system, and reproductive system was reduced by 17%, 16%, 14%, and 52%, respectively. According to the status of systolic and diastolic blood pressure, fasting blood glucose, high-sensitivity C-reactive protein and body mass index after ASCVD, the risk of overall cancer and digestive system cancer decreased with the increase in the number of ideal indicators (P for trend < .01). With the increase of follow-up time, the risk of cancer and the 5 site-specific cancers gradually decreased. CONCLUSIONS Cancer risk can be reduced by controlling for common risk factors after ASCVD event. This risk reduction is site-specific-, time-, and the number of ideal indicator-dependent.
Collapse
Affiliation(s)
- Qing Yue
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ling Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Baoyu Feng
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yun Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | | | - Zhihao Wei
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zongshuang Song
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Haiyan Zhao
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China.
| |
Collapse
|
16
|
Bahardoust M, Mousavi S, Moezi ZD, Yarali M, Tayebi A, Olamaeian F, Tizmaghz A. Effect of Metformin Use on Survival and Recurrence Rate of Gastric Cancer After Gastrectomy in Diabetic Patients: A Systematic Review and Meta-analysis of Observational Studies. J Gastrointest Cancer 2024; 55:65-76. [PMID: 37526857 DOI: 10.1007/s12029-023-00955-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common worldwide cancers and causes of death. Various studies have investigated the effect of metformin on overall survival (OS), cancer-specific survival (CSS), recurrence-free survival (RFS), and recurrence rate in diabetic patients after gastrectomy, and their results have been contradictory. This meta-analysis aimed to evaluate the effect of metformin use compared to sulfonylurea compounds with OS, CSS, RFS, and recurrence rate after gastrectomy in diabetic patients. METHODS We reviewed the Scopus, Google Scholar, PubMed, Web of Science, and Embassy databases until September 2022 based on appropriate MESH terms. All observational studies that evaluated the effect of metformin on survival in diabetic patients who underwent surgery for GC were included. The hazard ratio (HR) with a 95% confidence interval was used to estimate the effect size. The Egger test was used to evaluate publication bias. RESULTS Overall, nine studies, including 245,387 GC patients who underwent surgery, were included. The use of metformin significantly increased the OS rate (HR: 0.81, 95% CI: 0.78, 0.86, P: 0.001, I2: 4.5%), CSS rate (HR: 0.72, 95% CI: 0.63, 0.81, P: 0.011, I2 = 0%), and RFS rate (HR: 719, 95% CI: 0.524, 0.986, P: 0.001) and decreased the recurrence rate after gastrectomy (HR: 0.83, 95% CI: 0.77, 0.87, P: 0.001, I2: 0%). The use of metformin was significantly associated with a greater increase in OS and CSS rate and a greater decrease in recurrence rate in the Asian population than in the Western population. CONCLUSION The use of metformin in diabetic patients with GC can be associated with improved OS, CSS, RFS, and reduced recurrence rate after gastrectomy, especially in the Asian population.
Collapse
Affiliation(s)
- Mansour Bahardoust
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Mousavi
- Department of Public Health, College of Health and Human Services, California State University, Fresno, CA, USA
| | - Zahra Deylami Moezi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yarali
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Tayebi
- Department of General Surgery, School of Medicine, Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran.
| | - Faranak Olamaeian
- Department of General Surgery, School of Medicine, Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Adnan Tizmaghz
- Department of General Surgery, School of Medicine, Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Xu Z, Pan Z, Jin Y, Gao Z, Jiang F, Fu H, Chen X, Zhang X, Yan H, Yang X, Yang B, He Q, Luo P. Inhibition of PRKAA/AMPK (Ser485/491) phosphorylation by crizotinib induces cardiotoxicity via perturbing autophagosome-lysosome fusion. Autophagy 2024; 20:416-436. [PMID: 37733896 PMCID: PMC10813574 DOI: 10.1080/15548627.2023.2259216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Crizotinib, a small-molecule tyrosine kinase inhibitor targeting ALK, MET and ROS1, is the first-line drug for ALK-positive metastatic non-small cell lung cancer and is associated with severe, sometimes fatal, cases of cardiac failure, which increases the risk of mortality. However, the underlying mechanism remains unclear, which causes the lack of therapeutic strategy. We established in vitro and in vivo models for crizotinib-induced cardiotoxicity and found that crizotinib caused left ventricular dysfunction, myocardial injury and pathological remodeling in mice and induced cardiomyocyte apoptosis and mitochondrial injury. In addition, we found that crizotinib prevented the degradation of MET protein by interrupting autophagosome-lysosome fusion and silence of MET or re-activating macroautophagy/autophagy flux rescued the cardiomyocytes death and mitochondrial injury caused by crizotinib, suggesting that impaired autophagy activity is the key reason for crizotinib-induced cardiotoxicity. We further confirmed that recovering the phosphorylation of PRKAA/AMPK (Ser485/491) by metformin re-activated autophagy flux in cardiomyocytes and metformin rescued crizotinib-induced cardiomyocyte injury and cardiac complications. In summary, we revealed a novel mechanism for crizotinib-induced cardiotoxicity, wherein the crizotinib-impaired autophagy process causes cardiomyocyte death and cardiac injury by inhibiting the degradation of MET protein, demonstrated a new function of impeded autophagosome-lysosome fusion in drugs-induced cardiotoxicity, pointed out the essential role of the phosphorylation of PRKAA (Ser485/491) in autophagosome-lysosome fusion and confirmed metformin as a potential therapeutic strategy for crizotinib-induced cardiotoxicity.Abbreviations and Acronyms: AAV: adeno-associated virus; ACAC/ACC: acetyl-Co A carboxylase; AMP: adenosine monophosphate; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; CHX: cycloheximide; CKMB: creatine kinase myocardial band; CQ: chloroquine; c-PARP: cleaved poly (ADP-ribose) polymerase; DAPI: 4'6-diamidino-2-phenylindole; EF: ejection fraction; FOXO: forkhead box O; FS: fractional shortening; GSEA: gene set enrichment analysis; H&E: hematoxylin and eosin; HF: heart failure; HW: TL: ratio of heart weight to tibia length; IR: ischemia-reperfusion; KEGG: Kyoto encyclopedia of genes and genomes; LAMP2: lysosomal-associated membrane protein 2; LDH: lactate dehydrogenase; MCMs: mouse cardiomyocytes; MMP: mitochondrial membrane potential; mtDNA: mitochondrial DNA; MYH6: myosin, heavy peptide 6, cardiac muscle, alpha; MYH7: myosin, heavy peptide 7, cardiac muscle, beta; NPPA: natriuretic peptide type A; NPPB: natriuretic peptide type B; PI: propidium iodide; PI3K: phosphoinositide 3-kinase; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; qPCR: quantitative real-time PCR; SD: standard deviation; SRB: sulforhodamine B; TKI: tyrosine kinase inhibitor; WGA: wheat germ agglutinin.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zezheng Pan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Ying Jin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Feng Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Huangxi Fu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xueqin Chen
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Deparment of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| |
Collapse
|
18
|
Wang Z, Li J, Wang L, Liu Y, Wang W, Chen J, Liang H, Chen YQ, Zhu S. FFAR4 activation inhibits lung adenocarcinoma via blocking respiratory chain complex assembly associated mitochondrial metabolism. Cell Mol Biol Lett 2024; 29:17. [PMID: 38243188 PMCID: PMC10799372 DOI: 10.1186/s11658-024-00535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
Despite notable advancements in the investigation and management of lung adenocarcinoma (LUAD), the mortality rate for individuals afflicted with LUAD remains elevated, and attaining an accurate prognosis is challenging. LUAD exhibits intricate genetic and environmental components, and it is plausible that free fatty acid receptors (FFARs) may bridge the genetic and dietary aspects. The objective of this study is to ascertain whether a correlation exists between FFAR4, which functions as the primary receptor for dietary fatty acids, and various characteristics of LUAD, while also delving into the potential underlying mechanism. The findings of this study indicate a decrease in FFAR4 expression in LUAD, with a positive correlation (P < 0.01) between FFAR4 levels and overall patient survival (OS). Receiver operating characteristic (ROC) curve analysis demonstrated a significant diagnostic value [area under the curve (AUC) of 0.933] associated with FFAR4 expression. Functional investigations revealed that the FFAR4-specific agonist (TUG891) effectively suppressed cell proliferation and induced cell cycle arrest. Furthermore, FFAR4 activation resulted in significant metabolic shifts, including a decrease in oxygen consumption rate (OCR) and an increase in extracellular acidification rate (ECAR) in A549 cells. In detail, the activation of FFAR4 has been observed to impact the assembly process of the mitochondrial respiratory chain complex and the malate-aspartate shuttle process, resulting in a decrease in the transition of NAD+ to NADH and the inhibition of LUAD. These discoveries reveal a previously unrecognized function of FFAR4 in the negative regulation of mitochondrial metabolism and the inhibition of LUAD, indicating its potential as a promising therapeutic target for the treatment and diagnosis of LUAD.
Collapse
Affiliation(s)
- Zhe Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jinyou Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - LongFei Wang
- The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yaowei Liu
- State Key Lab of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - JiaYao Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - HuiJun Liang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Y Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - ShengLong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
19
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
20
|
Sun T, Song C, Zhao G, Feng S, Wei J, Zhang L, Liu X, Li Z, Zhang H. HOMER3 promotes non-small cell lung cancer growth and metastasis primarily through GABPB1-mediated mitochondrial metabolism. Cell Death Dis 2023; 14:814. [PMID: 38081871 PMCID: PMC10713516 DOI: 10.1038/s41419-023-06335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
Cancer metabolism has emerged as a major target for cancer therapy, while the state of mitochondrial drugs has remained largely unexplored, partly due to an inadequate understanding of various mitochondrial functions in tumor contexts. Here, we report that HOMER3 is highly expressed in non-small cell lung cancer (NSCLC) and is closely correlated with poor prognosis. Lung cancer cells with low levels of HOMER3 are found to show significant mitochondrial dysfunction, thereby suppressing their proliferation and metastasis in vivo and in vitro. At the mechanistic level, we demonstrate that HOMER3 and platelet-activating factor acetylhydrolase 1b catalytic subunit 3 cooperate to upregulate the level of GA-binding protein subunit beta-1 (GABPB1), a key transcription factor involved in mitochondrial biogenesis, to control mitochondrial inner membrane genes and mitochondrial function. Concurrently, low levels of HOMER3 and its downstream target GABPB1 led to mitochondrial dysfunction and decreased proliferation and invasive activity of lung cancer cells, which raises the possibility that targeting mitochondrial synthesis is an important and promising therapeutic approach for NSCLC.
Collapse
Affiliation(s)
- Teng Sun
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Chao Song
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Guoqing Zhao
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Shoujie Feng
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Jianhao Wei
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Lixia Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Xiangming Liu
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Zhuoqun Li
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Hao Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
21
|
Liang W, He J, Zhong N. Towards zero lung cancer. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:195-197. [PMID: 39171283 PMCID: PMC11332822 DOI: 10.1016/j.pccm.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/23/2024]
Affiliation(s)
- Wenhua Liang
- The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, Guangdong 510120, China
| | - Jianxing He
- The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, Guangdong 510120, China
| | - Nanshan Zhong
- The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, Guangzhou, Guangdong 510120, China
| |
Collapse
|
22
|
Kang J, Kim T, Han KD, Jung JH, Jeong SM, Yeo YH, Jung K, Lee H, Cho JH, Shin DW. Risk factors for early-onset lung cancer in Korea: analysis of a nationally representative population-based cohort. Epidemiol Health 2023; 45:e2023101. [PMID: 38037323 PMCID: PMC10876445 DOI: 10.4178/epih.e2023101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
OBJECTIVES We examined the associations of socioeconomic factors, health behaviors, and comorbidities with early-onset lung cancer. METHODS The study included 6,794,287 individuals aged 20-39 years who participated in a Korean national health check-up program from 2009 to 2012. During the follow-up period, 4,684 participants developed lung cancer. Multivariable Cox regression analysis was used to estimate the independent associations of potential risk factors with incident lung cancer. RESULTS Older age (multivariable hazard ratio [mHR], 1.13; 95% confidence interval [CI], 1.12 to 1.14) and female sex (mHR, 1.62; 95% CI, 1.49 to 1.75) were associated with increased lung cancer risk. Current smoking was also associated with elevated risk (<10 pack-years: mHR, 1.12; 95% CI, 1.01 to 1.24; ≥10 pack-years: mHR, 1.30; 95% CI, 1.18 to 1.45), but past smoking was not. Although mild alcohol consumption (<10 g/day) was associated with lower lung cancer risk (mHR, 0.92; 95% CI, 0.86 to 0.99), heavier alcohol consumption (≥10 g/day) was not. Higher income (highest vs. lowest quartile: mHR, 0.86; 95% CI, 0.78 to 0.94), physical activity for at least 1,500 metabolic equivalent of task-min/wk (vs. non-exercisers: mHR, 0.83; 95% CI, 0.69 to 0.99) and obesity (vs. normal weight: mHR, 0.89; 95% CI, 0.83 to 0.96) were associated with lower lung cancer risk, whereas metabolic syndrome was associated with increased risk (mHR, 1.13; 95% CI, 1.03 to 1.24). CONCLUSIONS In young adults, age, female sex, smoking, and metabolic syndrome were risk factors for early-onset lung cancer, while high income, physical activity, and obesity displayed protective effects.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Family Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan,
Korea
| | - Taeyun Kim
- Division of Pulmonology, Department of Internal Medicine, The Armed Forces Goyang Hospital, Goyang,
Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul,
Korea
| | - Jin-Hyung Jung
- Department of Medical Statistics, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Su-Min Jeong
- Department of Medicine, Seoul National University College of Medicine, Seoul,
Korea
| | - Yo Hwan Yeo
- Department of Family Medicine, Hallym University Sacred Heart Hospital, Dongtan,
Korea
| | - Kyuwon Jung
- Korea Central Cancer Registry, Division of Cancer Registration and Surveillance, National Cancer Center, Goyang,
Korea
| | - Hyun Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul,
Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Dong Wook Shin
- Supportive Care Center, Samsung Comprehensive Cancer Center/Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul,
Korea
- Center for Clinical Epidemiology, SAIHST, Sungkyunkwan University, Seoul,
Korea
| |
Collapse
|
23
|
Deng C, Xiong L, Chen Y, Wu K, Wu J. Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancer. BMC Pulm Med 2023; 23:360. [PMID: 37749553 PMCID: PMC10521546 DOI: 10.1186/s12890-023-02655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Metformin is the most frequently prescribed medication for the treatment of type II diabetes mellitus and has played an anti-tumor potential in a variety of cancer types. Metformin can inhibit the growth of many cancer cells through various mechanisms, including ferroptosis. However, it is still unclear whether metformin can induce ferroptosis in lung cancer. METHODS This study evaluated the anti-tumor effect of metformin by detecting the levels of oxidative stress factors, the levels of ferrous ions, and the expression of ferroptosis-related genes in A549 and H1299 lung cancer cell lines treated with or without metformin. RESULTS The results showed that metformin treatment increased the levels of MDA, ROS and iron ions, while decreased the levels of GSH, T-SOD and CAT. Meanwhile, metformin treatment reduced the protein expression levels of Gpx4 and SLC7A11, Nrf2 and HO-1, while the addition of ferroptosis inhibitor ferrostatin-1 reversed the reduction. CONCLUSIONS These results demonstrated that metformin exerts anti-tumor effects by inducing ferroptosis through the Nrf2/HO-1 signaling pathway in lung cancer cells, providing a theoretical basis for drug therapy of lung cancer patients.
Collapse
Affiliation(s)
- Chengmin Deng
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Lin Xiong
- Department of Clinical Laboratory, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Yang Chen
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kaifeng Wu
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
- Department of Clinical Laboratory, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Jie Wu
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China.
| |
Collapse
|
24
|
Li J, Yin L, Chen S, Li Z, Ding J, Wu J, Yang K, Xu J. The perspectives of NETosis on the progression of obesity and obesity-related diseases: mechanisms and applications. Front Cell Dev Biol 2023; 11:1221361. [PMID: 37649550 PMCID: PMC10465184 DOI: 10.3389/fcell.2023.1221361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a disease commonly associated with urbanization and can also be characterized as a systemic, chronic metabolic condition resulting from an imbalance between energy intake and expenditure. The World Health Organization (WHO) has identified obesity as the most serious chronic disease that is increasingly prevalent in the world population. If left untreated, it can lead to dangerous health issues such as hypertension, hyperglycemia, hyperlipidemia, hyperuricemia, nonalcoholic steatohepatitis, atherosclerosis, and vulnerability to cardiovascular and cerebrovascular events. The specific mechanisms by which obesity affects the development of these diseases can be refined to the effect on immune cells. Existing studies have shown that the development of obesity and its associated diseases is closely related to the balance or lack thereof in the number and function of various immune cells, of which neutrophils are the most abundant immune cells in humans, infiltrating and accumulating in the adipose tissues of obese individuals, whereas NETosis, as a newly discovered type of neutrophil-related cell death, its role in the development of obesity and related diseases is increasingly emphasized. The article reviews the significant role that NETosis plays in the development of obesity and related diseases, such as diabetes and its complications. It discusses the epidemiology and negative impacts of obesity, explains the mechanisms of NETosis, and examines its potential as a targeted drug to treat obesity and associated ailments.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijia Yin
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siyi Chen
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Florensa D, Mateo J, Solsona F, Galván L, Mesas M, Piñol R, Espinosa-Leal L, Godoy P. Low-dose acetylsalicylic acid for cancer prevention considering risk factors: a retrospective cohort study. Ann Epidemiol 2023; 84:60-66. [PMID: 37302674 DOI: 10.1016/j.annepidem.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE Aspirin (acetylsalicylic acid) has been reported to protect against certain cancers. However, patient-related risk factors may moderate protective effects, including excess weight, smoking, risky alcohol use, and diabetes. We explore the cancer-risk relationship between aspirin intake and those four factors. METHODS Retrospective cohort study of cancers, aspirin intake, and four risk factors in persons aged ≥50 years. Participants received medication during 2007-2016, and cancers were diagnosed in 2012-2016. Adjusted hazard ratios (aHR) for 95% confidence intervals (95%CI) were calculated for aspirin intake and risk factors using Cox proportional hazard modeling. RESULTS Of 118,548 participants, 15,793 consumed aspirin, and 4003 had cancer. Results indicated a significant protective effect of aspirin against colorectal (aHR: 0.7; 95%CI: 0.6-0.8), pancreatic (aHR: 0.5; 95%CI: 0.2-0.9), prostate (aHR: 0.6; 95%CI: 0.5-0.7) cancers and lymphomas (aHR: 0.5; 95%CI: 0.2-0.9), and also, although not significantly, against esophageal (aHR: 0.5; 95%CI: 0.2-1.8), stomach (aHR: 0.7; 95%CI: 0.4-1.3), liver (aHR: 0.7; 95%CI: 0.3-1.5), breast (aHR: 0.8; 95%CI: 0.6-1.0), and lung and bronchial (aHR: 0.9; 95%CI: 0.7-1.2) cancers. Aspirin intake was not significantly protective against leukemia (aHR: 1.0; 95%CI: 0.7-1.4) or bladder cancer (aHR: 1.0; 95%CI: 0.8-1.3). CONCLUSIONS Our results suggest that aspirin intake is associated with a reduced incidence of colorectal, pancreatic, and prostate cancers and lymphomas.
Collapse
Affiliation(s)
- Dídac Florensa
- Department of Computer Engineering and Digital Design, University of Lleida, Lleida, Spain; Population Cancer Registry in Lleida, Santa Maria University Hospital, Lleida, Spain; Field Epidemiology Unit, Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Jordi Mateo
- Department of Computer Engineering and Digital Design, University of Lleida, Lleida, Spain
| | - Francesc Solsona
- Department of Computer Engineering and Digital Design, University of Lleida, Lleida, Spain
| | | | - Miquel Mesas
- Computer Department, Santa Maria University Hospital, Lleida, Spain
| | - Ramon Piñol
- Catalan Health Service, Department of Health, Lleida, Spain
| | | | - Pere Godoy
- Population Cancer Registry in Lleida, Santa Maria University Hospital, Lleida, Spain; Field Epidemiology Unit, Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain; CIBER Epidemiology and Public Health (CIBERESP), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Xia J, Wang L, Zhang N, Xu H. Association between delirium and statin use in patients with congestive heart failure: a retrospective propensity score-weighted analysis. Front Aging Neurosci 2023; 15:1184298. [PMID: 37409005 PMCID: PMC10318247 DOI: 10.3389/fnagi.2023.1184298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Background The relationship between statin use and delirium remains controversial; therefore, we aimed to study the association between statin exposure and delirium and in-hospital mortality in patients with congestive heart failure. Methods In this retrospective study, patients with congestive heart failure were identified from the Medical Information Mart for Intensive Care database. The primary exposure variable was statin use 3 days after admission to the intensive care unit, and the primary outcome measure was the presence of delirium. The secondary outcome measure was in-hospital mortality. Since the cohort study was retrospective, we used inverse probability weighting derived from the propensity score to balance various variables. Results Of 8,396 patients, 5,446 (65%) were statin users. Before matching, the prevalence of delirium was 12.5% and that of in-hospital mortality was 11.8% in patients with congestive heart failure. Statin use was significantly negatively correlated with delirium, with an odds ratio of 0.76 (95% confidence interval: [0.66-0.87]; P < 0.001) in the inverse probability weighting cohort and in-hospital mortality of 0.66 (95% confidence interval: [0.58-0.75]; P < 0.001). Conclusion Statins administered in the intensive care unit can significantly reduce the incidence of delirium and in-hospital mortality in patients with congestive heart failure.
Collapse
Affiliation(s)
- Jiangling Xia
- Department of Anesthesiology, Zibo Central Hospital, Zibo, Shandong, China
| | - Leilei Wang
- School of Architecture and Engineering, Zibo Vocational Institute, Zibo, Shandong, China
| | - Nannan Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong, China
| | - Hongyu Xu
- Department of Anesthesiology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
27
|
Bashraheel SS, Kheraldine H, Khalaf S, Moustafa AEA. Metformin and HER2-positive breast cancer: Mechanisms and therapeutic implications. Biomed Pharmacother 2023; 162:114676. [PMID: 37037091 DOI: 10.1016/j.biopha.2023.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Due to the strong association between diabetes and cancer incidents, several anti-diabetic drugs, including metformin, have been examined for their anticancer activity. Metformin is a biguanide antihyperglycemic agent used as a first-line drug for type II diabetes mellitus. It exhibits anticancer activity by impacting different molecular pathways, such as AMP-inducible protein kinase (AMPK)-dependent and AMPK-independent pathways. Additionally, Metformin indirectly inhibits IGF-1R signaling, which is highly activated in breast malignancy. On the other hand, breast cancer is one of the major causes of cancer-related morbidity and mortality worldwide, where the human epidermal growth factor receptor-positive (HER2-positive) subtype is one of the most aggressive ones with a high rate of lymph node metastasis. In this review, we summarize the association between diabetes and human cancer, listing recent evidence of metformin's anticancer activity. A special focus is dedicated to HER2-positive breast cancer with regards to the interaction between HER2 and IGF-1R. Then, we discuss combination therapy strategies of metformin and other anti-diabetic drugs in HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sarah Khalaf
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, PO. Box 2713, Doha, Qatar; Oncology Department, McGill University, Montreal, Quebec H3A 0G4, Canada.
| |
Collapse
|
28
|
Wang Y, Hu Y, Wang T, Che G, Li L. Addition of metformin for non-small cell lung cancer patients receiving antineoplastic agents. Front Pharmacol 2023; 14:1123834. [PMID: 36969876 PMCID: PMC10036803 DOI: 10.3389/fphar.2023.1123834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Background and purpose: Previous studies have found that metformin can inhibit tumor growth and improve outcomes for cancer patients. However, the association between the addition of metformin to the treatment regimen and survival in non-small cell lung cancer (NSCLC) patients receiving antineoplastic agents such as chemotherapy drugs, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), and immune checkpoint inhibitors (ICIs) remains unclear. This study aimed to evaluate the effect of metformin in NSCLC patients who received the aforementioned antineoplastic therapies.Methods: Several electronic databases were searched for relevant studies published by 10 September 2022. The primary and secondary outcomes were overall survival (OS) and progression-free survival (PFS); eligible studies were those comparing patients with and without the addition of metformin. Hazard ratios (HRs) and 95% confidence intervals (CIs) were combined, with all statistical analyses performed using STATA 15.0.Results: A total of 19 studies involving 6,419 participants were included, of which six were randomized controlled trials. The overall pooled results indicate that the addition of metformin improved OS (HR = 0.84, 95% CI: 0.71–0.98, p = 0.029) and PFS (HR = 0.85, 95% CI: 0.74–0.99, p = 0.039). However, subgroup analysis based on treatment type and comorbidity of diabetes mellitus demonstrated that improvements in OS and PFS were observed only in diabetic and EGFR-TKI-treated patients (OS: HR = 0.64, 95% CI: 0.45–0.90, p = 0.011; PFS: HR = 0.59, 95% CI: 0.34–1.03, p = 0.061).Conclusion: Overall, this meta-analysis found that metformin use could improve outcomes for diabetic patients receiving EGFR-TKIs. However, no significant association between the addition of metformin and the survival of non-diabetic NSCLC patients receiving chemotherapy or ICI therapy was identified based on the current evidence.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guowei Che, ; Lu Li,
| | - Lu Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guowei Che, ; Lu Li,
| |
Collapse
|
29
|
Chen J, Jin H, Zhou H, Liu K. Effects of Metformin on Risk and Prognosis of Biliary Tract Cancer: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:298. [PMID: 36837499 PMCID: PMC9967261 DOI: 10.3390/medicina59020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Background and Objectives: Metformin has been found to potentially reduce the risk and improve the prognosis of a variety of tumors, but these findings remain controversial in biliary tract cancer (BTC). Therefore, this systematic review and meta-analysis was conducted to investigate the association between metformin and BTC. Materials and Methods: Two independent researchers comprehensively searched PubMed, Embase, the Cochrane Library, and Web of Science for eligible studies published from their inception to 31 March 2022. Comparisons of risk, overall survival (OS), and disease-free survival (DFS) for patients with BTC were selected as the endpoints of interest and pooled by random or fixed-effects models. Results: Eleven studies with a total of 24,788,738 participants were eligible for this analysis. The overall pooled effects showed no significant differences in biliary tract cancer risk (hazard ratio (HR) = 0.82, 95% confidence interval (CI): 0.50-1.35, p = 0.436), OS (HR = 0.88, 95% CI: 0.74-1.04, p = 0.135), or DFS (HR = 1.03, 95% CI: 0.79-1.34, p = 0.829) between metformin users and non-users. When restricting participants to those with diabetes, a similar negative result was found, demonstrating that metformin use was not significantly associated with a lower risk of developing BTC compared with a lack of metformin use (HR = 0.65, 95% CI: 0.39-1.07, p = 0.089); notably, the included studies exhibited significant heterogeneity in the selection of participants and the definition of metformin users. Conclusions: Metformin may not be able to reduce the risk of BTC and improve prognosis in certain populations. Based on the limited quantity and quality of the included studies, the present results should be interpreted within their limitations, and further studies are warranted to determine the optimal timing, dose, duration, and scenario of metformin administration.
Collapse
Affiliation(s)
| | | | | | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
30
|
Wu Z, Yao T, Wang Z, Liu B, Wu N, Lu M, Shen N. Association between angiotensin-converting enzyme inhibitors and the risk of lung cancer: a systematic review and meta-analysis. Br J Cancer 2023; 128:168-176. [PMID: 36396817 PMCID: PMC9670057 DOI: 10.1038/s41416-022-02029-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The association between the use of angiotensin-converting enzyme inhibitors (ACEIs) and lung cancer risk remains controversial. This study evaluated the association between the use of ACEIs and lung cancer risk. METHODS Records from five databases were searched from inception to 26 January 2022. Clinical studies involving persons aged ≥18 years with at least one year of follow-up and reporting adverse events, including lung cancer, were recorded with separate outcome reports supplied for the ACEIs and control groups. Data were extracted independently by three authors and pooled using a random-effects model. The primary outcome was lung cancer development. Odds ratios (ORs) with 95% confidence intervals (CIs) and lung cancer-related morbidity were calculated. RESULTS Of 2400 records screened, 13,061,226 patients were included from seven cohort studies and four case-control studies. Pooled results showed that ACEIs use was linked to increased lung cancer risk (OR 1.19, 95% CI 1.05-1.36; P = 0.008), with high heterogeneity (I2 = 98%). CONCLUSIONS ACEI usage is a greater risk factor for lung carcinogenesis than angiotensin receptor blocker use, especially in Asian patients. Further randomised controlled trials are needed to confirm the causal association between the use of ACEIs and lung cancer risk.
Collapse
Affiliation(s)
- Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, 100191, Beijing, P. R. China
| | - Taikang Yao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, 100191, Beijing, P. R. China
- Peking University Health Science Center, Peking University, 100191, Beijing, P. R. China
| | - Zilu Wang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, 100191, Beijing, P. R. China
- Peking University Health Science Center, Peking University, 100191, Beijing, P. R. China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, 100191, Beijing, P. R. China
| | - Nan Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, 100191, Beijing, P. R. China
| | - Ming Lu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, 100191, Beijing, P. R. China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, 100191, Beijing, P. R. China.
| |
Collapse
|
31
|
Yang J, Yang H, Cao L, Yin Y, Shen Y, Zhu W. Prognostic value of metformin in cancers: An updated meta-analysis based on 80 cohort studies. Medicine (Baltimore) 2022; 101:e31799. [PMID: 36626437 PMCID: PMC9750609 DOI: 10.1097/md.0000000000031799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Experiments have shown that metformin can inhibit cancer cell growth, but clinical observations have been inconsistent, so we pooled the currently available data to evaluate the impact of metformin on cancer survival and progression. METHODS PubMed, web of science, Embase, and Cochrane databases were searched. Pooled hazard ratios (HRs) were identified using a random-effects model to estimate the strength of the association between metformin and survival and progression in cancer patients. RESULTS We incorporated 80 articles published from all databases which satisfied the inclusion criterion. It showed that metformin was associated with better overall survival (hazard ratio [HR] = 0. 81; 95% confidence interval [CI]: [0.77-0.85]) and cancer-specific survival (HR = 0.79; 95% CI: [0.73-0.86]), and metformin was associated with progression-free survival (HR = 0.76; 95% CI: [0.66-0.87]). In patients with diabetes mellitus, the HR of overall survival was 0.79(95% CI: [0.75-0.83]), progression-free survival was 0.72(95% CI: [0.60-0.85]), and the cancer-specific survival was 0.76(95% CI: [0.68-0.86]). It was proposed that metformin can improve the prognosis of cancer patients with diabetes mellitus. CONCLUSION Based on cohort studies, metformin therapy has potential survival benefits for patients with malignancy, especially with the greatest benefits seen in breast cancer on overall survival, progression-free survival, and cancer-specific survival. And metformin also showed potential benefits in cancer-specific survival in colorectal and prostate cancer.
Collapse
Affiliation(s)
- Jing Yang
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu Province, P.R. China
| | - Hang Yang
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu Province, P.R. China
| | - Ling Cao
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu Province, P.R. China
| | - Yuzhen Yin
- Oncology Center, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu Province, P.R. China
| | - Ying Shen
- Department of Endocrinology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Wujiang, Jiangsu Province, P.R. China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
- * Correspondence: Wei Zhu, Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, P.R. China (e-mail: )
| |
Collapse
|
32
|
Zhang T, Wang Y, Yao W, Chen Y, Zhang D, Gao Y, Jin S, Li L, Yang S, Wu Y. Metformin antagonizes nickel-refining fumes-induced cell pyroptosis via Nrf2/GOLPH3 pathway in vitro and in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114233. [PMID: 36334342 DOI: 10.1016/j.ecoenv.2022.114233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 05/16/2023]
Abstract
Nickel compounds, an international carcinogen in the industrial environment, increased the risk of lung inflammation even lung cancer in Ni refinery workers. Metformin has displayed the intense anti-inflammation and anti-cancer properties through regulating pyroptosis. This study was designed to explore whether Nickel-refining fumes (NiRF) can induce cell pyroptosis and how AMPK/CREB/Nrf2 mediated the protection afforded by metformin against Ni particles-induced lung impairment. Our results represented that Ni fumes exposure evoked pyroptosis via GOLPH3 and induced oxidative stress, while, metformin treatment alleviated Ni particles-mediated above changes. Moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) involved in the protection of metformin, and the deficiency of Nrf2 attenuated the beneficial protection. We also determined that Nrf2 was a downstream molecule of AMPK/CREB pathway. Furthermore, male C57BL/6 mice were administered with Ni at a dose of 2 mg/kg by non-exposed endotracheal instillation and metformin (100, 200 and 300 mg/kg) via oral gavage for 4 weeks. The results indicated that NiRF promoted GOLPH3 and pyroptosis by stimulating NLRP3, caspase-1, N-GSDMD, IL-18 and IL-1β expression. However, various doses of metformin reduced GOLPH3 and the above protein levels of pyroptosis, also improved AMPK/CREB/Nrf2 expression. In summary, we found that metformin suppressed NiRF-connected GOLPH3-prompted pyroptosis via AMPK/CREB/Nrf2 signaling pathway to confer pulmonary protection.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Yue Wang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Wenxue Yao
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Yangyang Chen
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Dan Zhang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Ying Gao
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Shuo Jin
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Lina Li
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Shikuan Yang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Yonghui Wu
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China.
| |
Collapse
|
33
|
Zhang Z, Zhang X, Gao Y, Chen Y, Qin L, Wu IX. Risk factors for the development of lung cancer among never smokers: A systematic review. Cancer Epidemiol 2022; 81:102274. [PMID: 36209662 DOI: 10.1016/j.canep.2022.102274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/29/2022]
Abstract
This review aimed to summarize the up-to-date evidence on non-genetic factors for the development of never smoking lung cancer (NSLC) and to explore reasons behind the conflicting results. Relevant literature was searched in three electronic databases (PubMed, Embase and Web of Science) from 1 January 2000-31 July 2022. Cohort studies that investigated non-genetic risk factors for primary lung cancer in never smokers were included. The effect of non-genetic factors about NSLC were summarized with pooled relative risk (RR) and 95 % confidence intervals (CIs) through meta-analysis or narrative description when unexplained statistical heterogeneity was observed. The Newcastle-Ottawa Scale was used to appraise the methodological quality of included studies. Sixty cohort studies were included, covering population from Asia, Europe and America. Most included studies (42, 70.0 %) were of high methodological quality. Over 50 years old (RR = 5.26), environmental tobacco smoke (Pooled RR = 1.30), Chronic obstructive pulmonary disease (COPD) (RR = 2.67), family history of lung cancer (Pooled RR = 1.83) and higher level of neutrophil-lymphocyte ratio (RR = 1.73) increased the risk of NSLC. Dairy foods consumption (RR = 0.79), isoflavone intake (Pooled RR = 0.65), and riboflavin intake (RR = 0.62) decreased the risk among female population. Inconsistency or unclear definition for never smokers and risk factors could be observed in included studies. Most life behavior factors associated with NSLC can be modified through lifestyle changes. Future cohort studies are suggested to adopt a clearer definition on never smokers and exposure, conducting subgroup analysis when evidence indicating there is heterogeneity between genders, and explore dose-response relationship between the identified factors and NSLC.
Collapse
Affiliation(s)
- Zixuan Zhang
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Yinyan Gao
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Yancong Chen
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Lang Qin
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Irene Xy Wu
- Xiangya School of Public Health, Central South University, Changsha, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, China.
| |
Collapse
|
34
|
Wen J, Yi Z, Chen Y, Huang J, Mao X, Zhang L, Zeng Y, Cheng Q, Ye W, Liu Z, Liu F, Liu J. Efficacy of metformin therapy in patients with cancer: a meta-analysis of 22 randomised controlled trials. BMC Med 2022; 20:402. [PMID: 36280839 PMCID: PMC9594974 DOI: 10.1186/s12916-022-02599-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To investigate whether metformin monotherapy or adjunctive therapy improves the prognosis in patients with any type of cancer compared to non-metformin users (age ≥18). METHODS Databases (Medline, Embase, and the Cochrane Central Register of Controlled Trials) and clinical trial registries ( ClinicalTrials.gov ; the World Health Organization International Clinical Trials Registry Platform) were screened for randomized, controlled trials (RCT) reporting at least progression-free survival (PFS) and/or overall survival (OS). Main outcome measures included hazard ratios (HR), and combined HRs and 95% confidence intervals (CI) were calculated using random-effects models. RESULTS Of the 8419 records screened, 22 RCTs comprising 5943 participants were included. Pooled HRs were not statistically significant in both PFS (HR 0.97, 95% CI 0.82-1.15, I2 = 50%) and OS (HR 0.98, 95% CI 0.86-1.13, I2 = 33%) for patients with cancer between the metformin and control groups. Subgroup analyses demonstrated that metformin treatment was associated with a marginally significant improvement in PFS in reproductive system cancers (HR 0.86, 95% CI 0.74-1.00) and a significantly worse PFS in digestive system cancers (HR 1.45, 95% CI 1.03-2.04). The PFS or OS was observed consistently across maintenance dose, diabetes exclusion, median follow-up, risk of bias, and combined antitumoral therapies. CONCLUSION Metformin treatment was not associated with cancer-related mortality in adults compared with placebo or no treatment. However, metformin implied beneficial effects in the PFS of the patients with reproductive system cancers but was related to a worse PFS in digestive system cancers. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42022324672.
Collapse
Affiliation(s)
- Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuyao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xueyi Mao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jingfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
35
|
Bu Y, Peng M, Tang X, Xu X, Wu Y, Chen AF, Yang X. Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK-dependent mechanisms. J Cell Mol Med 2022; 26:4886-4903. [PMID: 36052760 PMCID: PMC9549498 DOI: 10.1111/jcmm.17519] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin, a well-known AMPK agonist, has been widely used as the first-line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non-diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK-dependent mechanisms in in vitro and/or in vivo models.
Collapse
Affiliation(s)
- Yizhi Bu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Tang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xu Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yifeng Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Alex F Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
36
|
Chen CJ, Wu CC, Chang CY, Li JR, Ou YC, Chen WY, Liao SL, Wang JD. Metformin Mitigated Obesity-Driven Cancer Aggressiveness in Tumor-Bearing Mice. Int J Mol Sci 2022; 23:9134. [PMID: 36012397 PMCID: PMC9408975 DOI: 10.3390/ijms23169134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Metformin may offer benefits to certain cancer populations experiencing metabolic abnormalities. To extend the anticancer studies of metformin, a tumor model was established through the implantation of murine Lewis Lung Carcinoma (LLC) cells to Normal Diet (ND)-fed and High-Fat Diet (HFD)-fed C57BL/6 mice. The HFD-fed mice displayed metabolic and pro-inflammatory alterations together with accompanying aggressive tumor growth. Metformin mitigated tumor growth in HFD-fed mice, paralleled by reductions in circulating glucose, insulin, soluble P-selectin, TGF-β1 and High Mobility Group Box-1 (HMGB1), as well as tumor expression of cell proliferation, aerobic glycolysis, glutaminolysis, platelets and neutrophils molecules. The suppressive effects of metformin on cell proliferation, migration and oncogenic signaling molecules were confirmed in cell study. Moreover, tumor-bearing HFD-fed mice had higher contents of circulating and tumor immunopositivity of Neutrophil Extracellular Traps (NETs)-associated molecules, with a suppressive effect from metformin. Data taken from neutrophil studies confirmed the inhibitory effect that metformin has on NET formation induced by HMGB1. Furthermore, HMGB1 was identified as a promoting molecule to boost the transition process towards NETs. The current study shows that metabolic, pro-inflammatory and NET alterations appear to play roles in the obesity-driven aggressiveness of cancer, while also representing candidate targets for anticancer potential of metformin.
Collapse
Affiliation(s)
- Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Tungs’ Taichung Metro Harbor Hospital, Taichung City 435, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung City 407, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 407, Taiwan
| |
Collapse
|
37
|
Zhang S, Pang K, Feng X, Zeng Y. Transcriptomic data exploration of consensus genes and molecular mechanisms between chronic obstructive pulmonary disease and lung adenocarcinoma. Sci Rep 2022; 12:13214. [PMID: 35918384 PMCID: PMC9345949 DOI: 10.1038/s41598-022-17552-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Most current research has focused on chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma (LUAD) alone; however, it is important to understand the complex mechanism of COPD progression to LUAD. This study is the first to explore the unique and jointly molecular mechanisms in the pathogenesis of COPD and LUAD across several datasets based on a variety of analysis methods. We used weighted correlation network analysis to search hub genes in two datasets from public databases: GSE10072 and GSE76925. We explored the unique and jointly molecular mechanistic signatures of the two diseases in pathogenesis through enrichment analysis, immune infiltration analysis, and therapeutic targets analysis. Finally, the results were confirmed using real-time quantitative reverse transcription PCR. Fifteen hub genes were identified: GPI, EZH2, EFNA4, CFB, ENO1, SH3PXD2B, SELL, CORIN, MAD2L1, CENPF, TOP2A, ASPM, IGFBP2, CDKN2A, and ELF3. For the first time, SELL, CORIN, GPI, and EFNA4 were found to play a role in the etiology of COPD and LUAD. The LUAD genes identified were primarily involved in the cell cycle and DNA replication processes; COPD genes we found were related to ubiquitin-mediated proteolysis, ribosome, and T/B-cell receptor signaling pathways. The tumor microenvironment of LUAD pathogenesis was influenced by CD4 + T cells, type 1 regulatory T cells, and T helper 1 cells. T follicular helper cells, natural killer T cells, and B cells all impact the immunological inflammation in COPD. The results of drug targets analysis suggest that cisplatin and tretinoin, as well as bortezomib and metformin may be potential targeted therapy for patients with COPD combined LUAD. These signatures may be provided a new direction for developing early interventions and treatments to improve the prognosis of COPD and LUAD.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Avenue, Wuchang District, Wuhan, 430000, Hubei, China
| | - Kun Pang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xinyu Feng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Avenue, Wuchang District, Wuhan, 430000, Hubei, China
| | - Yulan Zeng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Avenue, Wuchang District, Wuhan, 430000, Hubei, China.
| |
Collapse
|
38
|
Sun Y, Fang K, Hu X, Yang J, Jiang Z, Feng L, Li R, Rao Y, Shi S, Dong C. NIR-light-controlled G-quadruplex hydrogel for synergistically enhancing photodynamic therapy via sustained delivery of metformin and catalase-like activity in breast cancer. Mater Today Bio 2022; 16:100375. [PMID: 35983175 PMCID: PMC9379686 DOI: 10.1016/j.mtbio.2022.100375] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022] Open
Abstract
Severely hypoxic condition of tumour represents a notable obstacle against the efficiency of photodynamic therapy (PDT). While mitochondria targeted therapy by metformin has been considered as a promising strategy for reducing oxygen consumption in tumours, its low treatment sensitivity, short half-life and narrow absorption window in vivo remain the intractable challenges. In this report, 5′-guanosine monophosphate (5′GMP), indocyanine green (ICG), hemin and metformin, were combined to construct a smart G-quadruplex (G4) hydrogel named HMI@GEL for breast cancer (BC) treatment. Benefiting from the photothermal (PTT) effect of ICG, HMI@GEL exhibited excellent characteristics of NIR-light-triggered and persistent drug delivery to maintain high intratumoral concentration of metformin. Furthermore, drug loading concentration of metformin reached an amazing 300 mg mL−1 in HMI@GEL. To our knowledge, it might be the highest loading efficiency in the reported literatures. With the combination of catalase-mimicking Hemin@mil88, metformin could inhibit tumour mitochondrial respiratory significantly, which sequentially permitted in situ efficient oxygen generation. Remarkable apoptosis and necrosis were achieved by the combination of PTT and synergistically enhanced PDT as well as the activated tumour immunotherapy. Collectively, the HMI@GEL in situ injectable platform showed a promising strategy for enhanced PDT by metformin, and opened new perspectives for treating BC versatilely. A NIR-light-controlled G-quadruplex hydrogel HMI@GEL loading metformin was prepared for precision breast cancer therapy. The extremely high drug loading capacity (300 mg mL−1) and persistent delivery of metformin was realized for the first time. The combination of catalase-mimicking Hemin@mil88 and metformin dual enhanced intracellular ROS generation. The tumour immune microenvironment was dramatically reshaped by synthetic photodynamic/photothermal therapy.
Collapse
Affiliation(s)
- Yanting Sun
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Kang Fang
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Xiaochun Hu
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Jingxian Yang
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Zhengyang Jiang
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Lei Feng
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Ruihao Li
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Yiming Rao
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Shuo Shi
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
- Corresponding author.
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
- Corresponding author.
| |
Collapse
|
39
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|
40
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
41
|
Bazhanova A, Akhunbaev S, Soodonbekov E, Nurtazinova G, Telmanova Z, Igissinov N. Evaluation of Lung Cancer Incidence Dynamics in Kyrgyzstan. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: In 2020, more than half of all cases (59.6%) of lung cancer of both sexes and 61.9% of lung cancer deaths were registered in Asia. In Kyrgyzstan, lung cancer is the second most common cancer after stomach cancer (11.2% of all diagnosed malignancies).
Objective: The study is to conduct a component analysis of the dynamics of the incidence of lung cancer (LC) in Kyrgyzstan.
Methods: Primary data were for registered patients with LC (ICD 10 – C34) in the whole country during the period of 2010-2019. Evaluation of changes in LC incidence in the population of Kyrgyzstan was performed using component analysis according to the methodological recommendations.
Results: The study period, 4,931 new cases of LC were recorded. During the studied years an average age of patients with lung cancer was 61.4 years (95%CI=60.9-61.9). Age-related indicators of the incidence of LC had a peak in 65+ years in both sexes (84.9±3.20/0000), male (159.5±6.40/0000) and female (35.5±2.20/0000) population. Trends in the ASIR of LC in the entire population tended to decrease in all age groups. The incidence rate decreased from 8.00/0000 (2010) to 7.20/0000 in 2019 and the overall decline was −0.80/0000, including due to the age structure – ∑ΔA=+1.20/0000, due to the risk of acquiring illness – ∑ΔR=−1.80/0000 and their combined effect – ∑ΔAR=−0.20/0000. The component analysis revealed that the increase in the number of patients with LC was mainly due to the growth of the population (ΔP=+17.9%), changes in its age structure (ΔA=+15.4%).
Conclusion: In the Republic of Kyrgyzstan, the incidence of lung cancer is decreasing. According to the component analysis, in general, the increase in the number of patients was due to demographic factors, while the decrease in morbidity was influenced by a decrease in the risk of acquiring illness. The implementation of the results of this study is recommended in the management of anticancer measures for lung cancer.
Collapse
|
42
|
Suwei D, Yanbin X, Jianqiang W, Xiang M, Zhuohui P, Jianping K, Yunqing W, Zhen L. Metformin inhibits melanoma cell metastasis by suppressing the miR-5100/SPINK5/STAT3 axis. Cell Mol Biol Lett 2022; 27:48. [PMID: 35705923 PMCID: PMC9199130 DOI: 10.1186/s11658-022-00353-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most lethal skin cancer characterized by its high metastatic potential. It is urgent to find novel therapy strategies to overcome this feature. Metformin has been confirmed to suppress invasion and migration of various types of cancer. However, additional mechanisms underlying the antimetastatic effect of metformin on melanoma require further investigation. Here, we performed microarray analysis and uncovered an altered mRNA and miRNA expression profile between melanoma and nevus. Luciferase reporter assay confirmed that miR-5100 targets SPINK5 to activate STAT3 phosphorylation. Migration and wound healing assays showed that the miR-5100/SPINK5/STAT3 axis promotes melanoma cell metastasis; the mechanism was proven by initiation of epithelial–mesenchymal transition. Co-immunoprecipitation (Co-IP) further confirmed an indirect interaction between SPINK5 and STAT3. Furthermore, metformin dramatically inhibited miR-5100/SPINK5/STAT3 pathway, and decreased B16-F10 cell metastasis to lung in C57 mouse module. Intriguingly, pretreatment of metformin before melanoma cell injection improved this effect further. These findings exposed the underlying mechanisms of action of metformin and update the use of this drug to prevent metastasis in melanoma.
Collapse
Affiliation(s)
- Dong Suwei
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Xiao Yanbin
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Wang Jianqiang
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China
| | - Ma Xiang
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Peng Zhuohui
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Kang Jianping
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Wang Yunqing
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Li Zhen
- Department of Medical Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| |
Collapse
|
43
|
Marcianò G, Palleria C, Casarella A, Rania V, Basile E, Catarisano L, Vocca C, Bianco L, Pelaia C, Cione E, D’Agostino B, Citraro R, De Sarro G, Gallelli L. Effect of Statins on Lung Cancer Molecular Pathways: A Possible Therapeutic Role. Pharmaceuticals (Basel) 2022; 15:589. [PMID: 35631415 PMCID: PMC9144184 DOI: 10.3390/ph15050589] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a common neoplasm, usually treated through chemotherapy, radiotherapy and/or surgery. Both clinical and experimental studies on cancer cells suggest that some drugs (e.g., statins) have the potential to improve the prognosis of cancer. In fact, statins blocking the enzyme "hydroxy-3-methylglutaryl-coenzyme A reductase" exert pleiotropic effects on different genes involved in the pathogenesis of lung cancer. In this narrative review, we presented the experimental and clinical studies that evaluated the effects of statins on lung cancer and described data on the effectiveness and safety of these compounds. We also evaluated gender differences in the treatment of lung cancer to understand the possibility of personalized therapy based on the modulation of the mevalonate pathway. In conclusion, according to the literature data, statins exert multiple effects on lung cancer cells, even if the evidence for their use in clinical practice is lacking.
Collapse
Affiliation(s)
- Gianmarco Marcianò
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Caterina Palleria
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Alessandro Casarella
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Vincenzo Rania
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Emanuele Basile
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luca Catarisano
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Cristina Vocca
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luigi Bianco
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Corrado Pelaia
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Rita Citraro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
44
|
Mansouri A, Reiner Ž, Ruscica M, Tedeschi-Reiner E, Radbakhsh S, Bagheri Ekta M, Sahebkar A. Antioxidant Effects of Statins by Modulating Nrf2 and Nrf2/HO-1 Signaling in Different Diseases. J Clin Med 2022; 11:1313. [PMID: 35268403 PMCID: PMC8911353 DOI: 10.3390/jcm11051313] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Statins are competitive inhibitors of hydroxymethylglutaryl-CoA (HMG-CoA) reductase and have been used to treat elevated low-density lipoprotein cholesterol (LDL-C) for almost four decades. Antioxidant and anti-inflammatory properties which are independent of the lipid-lowering effects of statins, i.e., their pleiotropic effects, might be beneficial in the prevention or treatment of many diseases. This review discusses the antioxidant effects of statins achieved by modulating the nuclear factor erythroid 2 related factor 2/ heme oxygenase-1 (Nrf2/HO-1) pathway in different organs and diseases. Nrf2 and other proteins involved in the Nrf2/HO-1 signaling pathway have a crucial role in cellular responses to oxidative stress, which is a risk factor for ASCVD. Statins can significantly increase the DNA-binding activity of Nrf2 and induce the expression of its target genes, such as HO-1 and glutathione peroxidase) GPx, (thus protecting the cells against oxidative stress. Antioxidant and anti-inflammatory properties of statins, which are independent of their lipid-lowering effects, could be partly explained by the modulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, University of Zagreb, 10000 Zagreb, Croatia;
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20100 Milan, Italy;
| | - Eugenia Tedeschi-Reiner
- University Hospital Center Sestre Milosrdnice, University of Osijek, Vinogradska Cesta 29, 10000 Zagreb, Croatia;
| | - Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
45
|
Chemopreventive Effects of Concomitant or Individual Use of Statins, Aspirin, Metformin, and Angiotensin Drugs: A Study Using Claims Data of 23 Million Individuals. Cancers (Basel) 2022; 14:cancers14051211. [PMID: 35267516 PMCID: PMC8909564 DOI: 10.3390/cancers14051211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Despite previous studies on statins, aspirin, metformin, and angiotensin-converting-enzyme inhibitors (ACEIs)/angiotensin II receptor blockers (ARBs), little has been studied about all their possible combinations for chemoprevention against cancers. This study aimed to comprehensively analyze the composite chemopreventive effects of all the combinations. In this case-control study, health records were retrieved from claims databases of Taiwan’s Health and Welfare Data Science Center. Eligible cases were matched at a 1:4 ratio with controls for age and sex. Both cases and controls were categorized into 16 exposure groups based on medication use. A total of 601,733 cancer cases were identified. Cancer risks (denoted by adjusted odds ratio; 99% confidence interval) were found to be significantly decreased: overall risk of all cancers in statin-alone (0.864; 0.843, 0.886), aspirin-alone (0.949; 0.939, 0.958), and ACEIs/ARBs (0.982; 0.978, 0.985) users; prostate (0.924; 0.889, 0.962) and female breast (0.967; 0.936, 1.000) cancers in metformin-alone users; gastrointestinal, lung, and liver cancers in aspirin and/or ACEIs/ARBs users; and liver cancer (0.433; 0.398, 0.471) in statin users. In conclusion, the results found no synergistic effect of multiple use of these agents on cancer prevention. Use of two (statins and aspirin, statins and metformin, statins and ACEIs/ARBs, and aspirin and ACEIS/ARBs) showed chemopreventive effects in some combinations, while the use of four, in general, did not.
Collapse
|
46
|
Shin DW, Cho J, Park JH, Cho B. National General Health Screening Program in Korea: history, current status, and future direction: A scoping review. PRECISION AND FUTURE MEDICINE 2022. [DOI: 10.23838/pfm.2021.00135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
47
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
48
|
Chen N, Zhou YS, Wang LC, Huang JB. Advances in metformin‑based metabolic therapy for non‑small cell lung cancer (Review). Oncol Rep 2022; 47:55. [PMID: 35039878 PMCID: PMC8808708 DOI: 10.3892/or.2022.8266] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Therapeutic approaches that target the metabolism of tumor cells have been a popular research topic in recent years. Previous studies have demonstrated that glycolysis inhibitors reduce the proliferation of non‑small cell lung cancer (NSCLC) cells by interfering with the aerobic glycolytic pathway. However, the mitochondrial oxidative phosphorylation (OXPHOS) pathway in tumor cells has also been implicated in lung cancer metabolism. Metformin, a known inhibitor of mitochondrial OXPHOS, has been indicated to reduce NSCLC morbidity and mortality in clinical studies. The present article reviewed the therapeutic effects of metformin against NSCLC, both as a single agent and combined with other anticancer treatments, in order to provide a theoretical basis for its clinical use in adjuvant therapy for NSCLC.
Collapse
Affiliation(s)
- Na Chen
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Yi-Shu Zhou
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Li-Cui Wang
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Jin-Bai Huang
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
49
|
Low-dose aspirin and incidence of lung carcinoma in patients with chronic obstructive pulmonary disease in Hong Kong: A cohort study. PLoS Med 2022; 19:e1003880. [PMID: 35025879 PMCID: PMC8757901 DOI: 10.1371/journal.pmed.1003880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Evidence suggests that chronic obstructive pulmonary disease (COPD) is associated with a higher risk of lung carcinoma. Using a territory-wide clinical electronic medical records system, we investigated the association between low-dose aspirin use (≤160 mg) among patients with COPD and incidence of lung carcinoma and the corresponding risk of bleeding. METHODS AND FINDINGS This is a retrospective cohort study conducted utilizing Clinical Data Analysis Reporting System (CDARS), a territory-wide database developed by the Hong Kong Hospital Authority. Inverse probability of treatment weighting (IPTW) was used to balance baseline covariates between aspirin nonusers (35,049 patients) with new aspirin users (7,679 patients) among all eligible COPD patients from 2005 to 2018 attending any public hospitals. The median age of the cohort was 75.7 years (SD = 11.5), and 80.3% were male. Competing risk regression with Cox proportional hazards model were performed to estimate the subdistribution hazard ratio (SHR) of lung carcinoma with low-dose aspirin and the associated bleeding events. Of all eligible patients, 1,779 (4.2%, 1,526 and 253 among nonusers and users) were diagnosed with lung carcinoma over a median follow-up period of 2.6 years (interquartile range [IQR]: 1.4 to 4.8). Aspirin use was associated with a 25% lower risk of lung carcinoma (SHR = 0.75, 95% confidence interval [CI] 0.65 to 0.87, p = <0.001) and 26% decrease in lung carcinoma-related mortality (SHR = 0.74, 95% CI 0.64 to 0.86, p = <0.001). Subgroup analysis revealed that aspirin was beneficial for patients aged above or below 75 years, but was also beneficial among populations who were male, nondiabetic, and nonhypertensive. Aspirin use was not associated with an increased risk of upper gastrointestinal bleeding (UGIB) (SHR = 1.19, 95% CI 0.94 to 1.53, p = 0.16), but was associated with an increased risk of hemoptysis (SHR = 1.96, 95% CI 1.73 to 2.23, p < 0.001). The main limitations of the study were (i) that one group of patients may be more likely to seek additional medical attention, although this was partially mitigated by the use of propensity score analysis; and (ii) the observational nature of the study renders it unable to establish causality between aspirin use and lung carcinoma incidence. CONCLUSIONS In this study, we observed that low-dose aspirin use was associated with a lower risk of lung carcinoma and lung carcinoma-related mortality among COPD patients. While aspirin was not associated with an increased risk of UGIB, the risk of hemoptysis was elevated.
Collapse
|
50
|
Cheng FF, Liu YL, Du J, Lin JT. Metformin's Mechanisms in Attenuating Hallmarks of Aging and Age-Related Disease. Aging Dis 2022; 13:970-986. [PMID: 35855344 PMCID: PMC9286921 DOI: 10.14336/ad.2021.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Fang-Fang Cheng
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yan-Li Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jun-Tang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang 453003, China.
- Correspondence should be addressed to: Dr. Jun-Tang Lin, Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|